| 1 | /* Alias analysis for trees. |
| 2 | Copyright (C) 2004-2025 Free Software Foundation, Inc. |
| 3 | Contributed by Diego Novillo <dnovillo@redhat.com> |
| 4 | |
| 5 | This file is part of GCC. |
| 6 | |
| 7 | GCC is free software; you can redistribute it and/or modify |
| 8 | it under the terms of the GNU General Public License as published by |
| 9 | the Free Software Foundation; either version 3, or (at your option) |
| 10 | any later version. |
| 11 | |
| 12 | GCC is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | GNU General Public License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU General Public License |
| 18 | along with GCC; see the file COPYING3. If not see |
| 19 | <http://www.gnu.org/licenses/>. */ |
| 20 | |
| 21 | #include "config.h" |
| 22 | #include "system.h" |
| 23 | #include "coretypes.h" |
| 24 | #include "backend.h" |
| 25 | #include "target.h" |
| 26 | #include "rtl.h" |
| 27 | #include "tree.h" |
| 28 | #include "gimple.h" |
| 29 | #include "timevar.h" /* for TV_ALIAS_STMT_WALK */ |
| 30 | #include "ssa.h" |
| 31 | #include "cgraph.h" |
| 32 | #include "tree-pretty-print.h" |
| 33 | #include "alias.h" |
| 34 | #include "fold-const.h" |
| 35 | #include "langhooks.h" |
| 36 | #include "dumpfile.h" |
| 37 | #include "tree-eh.h" |
| 38 | #include "tree-dfa.h" |
| 39 | #include "ipa-reference.h" |
| 40 | #include "varasm.h" |
| 41 | #include "ipa-modref-tree.h" |
| 42 | #include "ipa-modref.h" |
| 43 | #include "attr-fnspec.h" |
| 44 | #include "errors.h" |
| 45 | #include "dbgcnt.h" |
| 46 | #include "gimple-pretty-print.h" |
| 47 | #include "print-tree.h" |
| 48 | #include "tree-ssa-alias-compare.h" |
| 49 | #include "builtins.h" |
| 50 | #include "internal-fn.h" |
| 51 | #include "ipa-utils.h" |
| 52 | |
| 53 | /* Broad overview of how alias analysis on gimple works: |
| 54 | |
| 55 | Statements clobbering or using memory are linked through the |
| 56 | virtual operand factored use-def chain. The virtual operand |
| 57 | is unique per function, its symbol is accessible via gimple_vop (cfun). |
| 58 | Virtual operands are used for efficiently walking memory statements |
| 59 | in the gimple IL and are useful for things like value-numbering as |
| 60 | a generation count for memory references. |
| 61 | |
| 62 | SSA_NAME pointers may have associated points-to information |
| 63 | accessible via the SSA_NAME_PTR_INFO macro. Flow-insensitive |
| 64 | points-to information is (re-)computed by the TODO_rebuild_alias |
| 65 | pass manager todo. Points-to information is also used for more |
| 66 | precise tracking of call-clobbered and call-used variables and |
| 67 | related disambiguations. |
| 68 | |
| 69 | This file contains functions for disambiguating memory references, |
| 70 | the so called alias-oracle and tools for walking of the gimple IL. |
| 71 | |
| 72 | The main alias-oracle entry-points are |
| 73 | |
| 74 | bool stmt_may_clobber_ref_p (gimple *, tree) |
| 75 | |
| 76 | This function queries if a statement may invalidate (parts of) |
| 77 | the memory designated by the reference tree argument. |
| 78 | |
| 79 | bool ref_maybe_used_by_stmt_p (gimple *, tree) |
| 80 | |
| 81 | This function queries if a statement may need (parts of) the |
| 82 | memory designated by the reference tree argument. |
| 83 | |
| 84 | There are variants of these functions that only handle the call |
| 85 | part of a statement, call_may_clobber_ref_p and ref_maybe_used_by_call_p. |
| 86 | Note that these do not disambiguate against a possible call lhs. |
| 87 | |
| 88 | bool refs_may_alias_p (tree, tree) |
| 89 | |
| 90 | This function tries to disambiguate two reference trees. |
| 91 | |
| 92 | bool ptr_deref_may_alias_global_p (tree, bool) |
| 93 | |
| 94 | This function queries if dereferencing a pointer variable may |
| 95 | alias global memory. If bool argument is true, global memory |
| 96 | is considered to also include function local memory that escaped. |
| 97 | |
| 98 | More low-level disambiguators are available and documented in |
| 99 | this file. Low-level disambiguators dealing with points-to |
| 100 | information are in tree-ssa-structalias.cc. */ |
| 101 | |
| 102 | static int nonoverlapping_refs_since_match_p (tree, tree, tree, tree, bool); |
| 103 | static bool nonoverlapping_component_refs_p (const_tree, const_tree); |
| 104 | |
| 105 | /* Query statistics for the different low-level disambiguators. |
| 106 | A high-level query may trigger multiple of them. */ |
| 107 | |
| 108 | static struct { |
| 109 | unsigned HOST_WIDE_INT refs_may_alias_p_may_alias; |
| 110 | unsigned HOST_WIDE_INT refs_may_alias_p_no_alias; |
| 111 | unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_may_alias; |
| 112 | unsigned HOST_WIDE_INT ref_maybe_used_by_call_p_no_alias; |
| 113 | unsigned HOST_WIDE_INT call_may_clobber_ref_p_may_alias; |
| 114 | unsigned HOST_WIDE_INT call_may_clobber_ref_p_no_alias; |
| 115 | unsigned HOST_WIDE_INT aliasing_component_refs_p_may_alias; |
| 116 | unsigned HOST_WIDE_INT aliasing_component_refs_p_no_alias; |
| 117 | unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_may_alias; |
| 118 | unsigned HOST_WIDE_INT nonoverlapping_component_refs_p_no_alias; |
| 119 | unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_may_alias; |
| 120 | unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_must_overlap; |
| 121 | unsigned HOST_WIDE_INT nonoverlapping_refs_since_match_p_no_alias; |
| 122 | unsigned HOST_WIDE_INT stmt_kills_ref_p_no; |
| 123 | unsigned HOST_WIDE_INT stmt_kills_ref_p_yes; |
| 124 | unsigned HOST_WIDE_INT modref_use_may_alias; |
| 125 | unsigned HOST_WIDE_INT modref_use_no_alias; |
| 126 | unsigned HOST_WIDE_INT modref_clobber_may_alias; |
| 127 | unsigned HOST_WIDE_INT modref_clobber_no_alias; |
| 128 | unsigned HOST_WIDE_INT modref_kill_no; |
| 129 | unsigned HOST_WIDE_INT modref_kill_yes; |
| 130 | unsigned HOST_WIDE_INT modref_tests; |
| 131 | unsigned HOST_WIDE_INT modref_baseptr_tests; |
| 132 | } alias_stats; |
| 133 | |
| 134 | void |
| 135 | dump_alias_stats (FILE *s) |
| 136 | { |
| 137 | fprintf (stream: s, format: "\nAlias oracle query stats:\n" ); |
| 138 | fprintf (stream: s, format: " refs_may_alias_p: " |
| 139 | HOST_WIDE_INT_PRINT_DEC" disambiguations, " |
| 140 | HOST_WIDE_INT_PRINT_DEC" queries\n" , |
| 141 | alias_stats.refs_may_alias_p_no_alias, |
| 142 | alias_stats.refs_may_alias_p_no_alias |
| 143 | + alias_stats.refs_may_alias_p_may_alias); |
| 144 | fprintf (stream: s, format: " ref_maybe_used_by_call_p: " |
| 145 | HOST_WIDE_INT_PRINT_DEC" disambiguations, " |
| 146 | HOST_WIDE_INT_PRINT_DEC" queries\n" , |
| 147 | alias_stats.ref_maybe_used_by_call_p_no_alias, |
| 148 | alias_stats.refs_may_alias_p_no_alias |
| 149 | + alias_stats.ref_maybe_used_by_call_p_may_alias); |
| 150 | fprintf (stream: s, format: " call_may_clobber_ref_p: " |
| 151 | HOST_WIDE_INT_PRINT_DEC" disambiguations, " |
| 152 | HOST_WIDE_INT_PRINT_DEC" queries\n" , |
| 153 | alias_stats.call_may_clobber_ref_p_no_alias, |
| 154 | alias_stats.call_may_clobber_ref_p_no_alias |
| 155 | + alias_stats.call_may_clobber_ref_p_may_alias); |
| 156 | fprintf (stream: s, format: " stmt_kills_ref_p: " |
| 157 | HOST_WIDE_INT_PRINT_DEC" kills, " |
| 158 | HOST_WIDE_INT_PRINT_DEC" queries\n" , |
| 159 | alias_stats.stmt_kills_ref_p_yes + alias_stats.modref_kill_yes, |
| 160 | alias_stats.stmt_kills_ref_p_yes + alias_stats.modref_kill_yes |
| 161 | + alias_stats.stmt_kills_ref_p_no + alias_stats.modref_kill_no); |
| 162 | fprintf (stream: s, format: " nonoverlapping_component_refs_p: " |
| 163 | HOST_WIDE_INT_PRINT_DEC" disambiguations, " |
| 164 | HOST_WIDE_INT_PRINT_DEC" queries\n" , |
| 165 | alias_stats.nonoverlapping_component_refs_p_no_alias, |
| 166 | alias_stats.nonoverlapping_component_refs_p_no_alias |
| 167 | + alias_stats.nonoverlapping_component_refs_p_may_alias); |
| 168 | fprintf (stream: s, format: " nonoverlapping_refs_since_match_p: " |
| 169 | HOST_WIDE_INT_PRINT_DEC" disambiguations, " |
| 170 | HOST_WIDE_INT_PRINT_DEC" must overlaps, " |
| 171 | HOST_WIDE_INT_PRINT_DEC" queries\n" , |
| 172 | alias_stats.nonoverlapping_refs_since_match_p_no_alias, |
| 173 | alias_stats.nonoverlapping_refs_since_match_p_must_overlap, |
| 174 | alias_stats.nonoverlapping_refs_since_match_p_no_alias |
| 175 | + alias_stats.nonoverlapping_refs_since_match_p_may_alias |
| 176 | + alias_stats.nonoverlapping_refs_since_match_p_must_overlap); |
| 177 | fprintf (stream: s, format: " aliasing_component_refs_p: " |
| 178 | HOST_WIDE_INT_PRINT_DEC" disambiguations, " |
| 179 | HOST_WIDE_INT_PRINT_DEC" queries\n" , |
| 180 | alias_stats.aliasing_component_refs_p_no_alias, |
| 181 | alias_stats.aliasing_component_refs_p_no_alias |
| 182 | + alias_stats.aliasing_component_refs_p_may_alias); |
| 183 | dump_alias_stats_in_alias_c (s); |
| 184 | fprintf (stream: s, format: "\nModref stats:\n" ); |
| 185 | fprintf (stream: s, format: " modref kill: " |
| 186 | HOST_WIDE_INT_PRINT_DEC" kills, " |
| 187 | HOST_WIDE_INT_PRINT_DEC" queries\n" , |
| 188 | alias_stats.modref_kill_yes, |
| 189 | alias_stats.modref_kill_yes |
| 190 | + alias_stats.modref_kill_no); |
| 191 | fprintf (stream: s, format: " modref use: " |
| 192 | HOST_WIDE_INT_PRINT_DEC" disambiguations, " |
| 193 | HOST_WIDE_INT_PRINT_DEC" queries\n" , |
| 194 | alias_stats.modref_use_no_alias, |
| 195 | alias_stats.modref_use_no_alias |
| 196 | + alias_stats.modref_use_may_alias); |
| 197 | fprintf (stream: s, format: " modref clobber: " |
| 198 | HOST_WIDE_INT_PRINT_DEC" disambiguations, " |
| 199 | HOST_WIDE_INT_PRINT_DEC" queries\n" |
| 200 | " " HOST_WIDE_INT_PRINT_DEC" tbaa queries (%f per modref query)\n" |
| 201 | " " HOST_WIDE_INT_PRINT_DEC" base compares (%f per modref query)\n" , |
| 202 | alias_stats.modref_clobber_no_alias, |
| 203 | alias_stats.modref_clobber_no_alias |
| 204 | + alias_stats.modref_clobber_may_alias, |
| 205 | alias_stats.modref_tests, |
| 206 | ((double)alias_stats.modref_tests) |
| 207 | / (alias_stats.modref_clobber_no_alias |
| 208 | + alias_stats.modref_clobber_may_alias), |
| 209 | alias_stats.modref_baseptr_tests, |
| 210 | ((double)alias_stats.modref_baseptr_tests) |
| 211 | / (alias_stats.modref_clobber_no_alias |
| 212 | + alias_stats.modref_clobber_may_alias)); |
| 213 | } |
| 214 | |
| 215 | |
| 216 | /* Return true, if dereferencing PTR may alias with a global variable. |
| 217 | When ESCAPED_LOCAL_P is true escaped local memory is also considered |
| 218 | global. */ |
| 219 | |
| 220 | bool |
| 221 | ptr_deref_may_alias_global_p (tree ptr, bool escaped_local_p) |
| 222 | { |
| 223 | struct ptr_info_def *pi; |
| 224 | |
| 225 | /* If we end up with a pointer constant here that may point |
| 226 | to global memory. */ |
| 227 | if (TREE_CODE (ptr) != SSA_NAME) |
| 228 | return true; |
| 229 | |
| 230 | pi = SSA_NAME_PTR_INFO (ptr); |
| 231 | |
| 232 | /* If we do not have points-to information for this variable, |
| 233 | we have to punt. */ |
| 234 | if (!pi) |
| 235 | return true; |
| 236 | |
| 237 | /* ??? This does not use TBAA to prune globals ptr may not access. */ |
| 238 | return pt_solution_includes_global (&pi->pt, escaped_local_p); |
| 239 | } |
| 240 | |
| 241 | /* Return true if dereferencing PTR may alias DECL. |
| 242 | The caller is responsible for applying TBAA to see if PTR |
| 243 | may access DECL at all. */ |
| 244 | |
| 245 | static bool |
| 246 | ptr_deref_may_alias_decl_p (tree ptr, tree decl) |
| 247 | { |
| 248 | struct ptr_info_def *pi; |
| 249 | |
| 250 | /* Conversions are irrelevant for points-to information and |
| 251 | data-dependence analysis can feed us those. */ |
| 252 | STRIP_NOPS (ptr); |
| 253 | |
| 254 | /* Anything we do not explicilty handle aliases. */ |
| 255 | if ((TREE_CODE (ptr) != SSA_NAME |
| 256 | && TREE_CODE (ptr) != ADDR_EXPR |
| 257 | && TREE_CODE (ptr) != POINTER_PLUS_EXPR) |
| 258 | || !POINTER_TYPE_P (TREE_TYPE (ptr)) |
| 259 | || (!VAR_P (decl) |
| 260 | && TREE_CODE (decl) != PARM_DECL |
| 261 | && TREE_CODE (decl) != RESULT_DECL)) |
| 262 | return true; |
| 263 | |
| 264 | /* Disregard pointer offsetting. */ |
| 265 | if (TREE_CODE (ptr) == POINTER_PLUS_EXPR) |
| 266 | { |
| 267 | do |
| 268 | { |
| 269 | ptr = TREE_OPERAND (ptr, 0); |
| 270 | } |
| 271 | while (TREE_CODE (ptr) == POINTER_PLUS_EXPR); |
| 272 | return ptr_deref_may_alias_decl_p (ptr, decl); |
| 273 | } |
| 274 | |
| 275 | /* ADDR_EXPR pointers either just offset another pointer or directly |
| 276 | specify the pointed-to set. */ |
| 277 | if (TREE_CODE (ptr) == ADDR_EXPR) |
| 278 | { |
| 279 | tree base = get_base_address (TREE_OPERAND (ptr, 0)); |
| 280 | if (base |
| 281 | && (TREE_CODE (base) == MEM_REF |
| 282 | || TREE_CODE (base) == TARGET_MEM_REF)) |
| 283 | ptr = TREE_OPERAND (base, 0); |
| 284 | else if (base |
| 285 | && DECL_P (base)) |
| 286 | return compare_base_decls (base, decl) != 0; |
| 287 | else if (base |
| 288 | && CONSTANT_CLASS_P (base)) |
| 289 | return false; |
| 290 | else |
| 291 | return true; |
| 292 | } |
| 293 | |
| 294 | /* Non-aliased variables cannot be pointed to. */ |
| 295 | if (!may_be_aliased (var: decl)) |
| 296 | return false; |
| 297 | |
| 298 | /* From here we require a SSA name pointer. Anything else aliases. */ |
| 299 | if (TREE_CODE (ptr) != SSA_NAME |
| 300 | || !POINTER_TYPE_P (TREE_TYPE (ptr))) |
| 301 | return true; |
| 302 | |
| 303 | /* If we do not have useful points-to information for this pointer |
| 304 | we cannot disambiguate anything else. */ |
| 305 | pi = SSA_NAME_PTR_INFO (ptr); |
| 306 | if (!pi) |
| 307 | return true; |
| 308 | |
| 309 | return pt_solution_includes (&pi->pt, decl); |
| 310 | } |
| 311 | |
| 312 | /* Return true if dereferenced PTR1 and PTR2 may alias. |
| 313 | The caller is responsible for applying TBAA to see if accesses |
| 314 | through PTR1 and PTR2 may conflict at all. */ |
| 315 | |
| 316 | bool |
| 317 | ptr_derefs_may_alias_p (tree ptr1, tree ptr2) |
| 318 | { |
| 319 | struct ptr_info_def *pi1, *pi2; |
| 320 | |
| 321 | /* Conversions are irrelevant for points-to information and |
| 322 | data-dependence analysis can feed us those. */ |
| 323 | STRIP_NOPS (ptr1); |
| 324 | STRIP_NOPS (ptr2); |
| 325 | |
| 326 | /* Disregard pointer offsetting. */ |
| 327 | if (TREE_CODE (ptr1) == POINTER_PLUS_EXPR) |
| 328 | { |
| 329 | do |
| 330 | { |
| 331 | ptr1 = TREE_OPERAND (ptr1, 0); |
| 332 | } |
| 333 | while (TREE_CODE (ptr1) == POINTER_PLUS_EXPR); |
| 334 | return ptr_derefs_may_alias_p (ptr1, ptr2); |
| 335 | } |
| 336 | if (TREE_CODE (ptr2) == POINTER_PLUS_EXPR) |
| 337 | { |
| 338 | do |
| 339 | { |
| 340 | ptr2 = TREE_OPERAND (ptr2, 0); |
| 341 | } |
| 342 | while (TREE_CODE (ptr2) == POINTER_PLUS_EXPR); |
| 343 | return ptr_derefs_may_alias_p (ptr1, ptr2); |
| 344 | } |
| 345 | |
| 346 | /* ADDR_EXPR pointers either just offset another pointer or directly |
| 347 | specify the pointed-to set. */ |
| 348 | if (TREE_CODE (ptr1) == ADDR_EXPR) |
| 349 | { |
| 350 | tree base = get_base_address (TREE_OPERAND (ptr1, 0)); |
| 351 | if (base |
| 352 | && (TREE_CODE (base) == MEM_REF |
| 353 | || TREE_CODE (base) == TARGET_MEM_REF)) |
| 354 | return ptr_derefs_may_alias_p (TREE_OPERAND (base, 0), ptr2); |
| 355 | else if (base |
| 356 | && DECL_P (base)) |
| 357 | return ptr_deref_may_alias_decl_p (ptr: ptr2, decl: base); |
| 358 | /* Try ptr2 when ptr1 points to a constant. */ |
| 359 | else if (base |
| 360 | && !CONSTANT_CLASS_P (base)) |
| 361 | return true; |
| 362 | } |
| 363 | if (TREE_CODE (ptr2) == ADDR_EXPR) |
| 364 | { |
| 365 | tree base = get_base_address (TREE_OPERAND (ptr2, 0)); |
| 366 | if (base |
| 367 | && (TREE_CODE (base) == MEM_REF |
| 368 | || TREE_CODE (base) == TARGET_MEM_REF)) |
| 369 | return ptr_derefs_may_alias_p (ptr1, TREE_OPERAND (base, 0)); |
| 370 | else if (base |
| 371 | && DECL_P (base)) |
| 372 | return ptr_deref_may_alias_decl_p (ptr: ptr1, decl: base); |
| 373 | else |
| 374 | return true; |
| 375 | } |
| 376 | |
| 377 | /* From here we require SSA name pointers. Anything else aliases. */ |
| 378 | if (TREE_CODE (ptr1) != SSA_NAME |
| 379 | || TREE_CODE (ptr2) != SSA_NAME |
| 380 | || !POINTER_TYPE_P (TREE_TYPE (ptr1)) |
| 381 | || !POINTER_TYPE_P (TREE_TYPE (ptr2))) |
| 382 | return true; |
| 383 | |
| 384 | /* We may end up with two empty points-to solutions for two same pointers. |
| 385 | In this case we still want to say both pointers alias, so shortcut |
| 386 | that here. */ |
| 387 | if (ptr1 == ptr2) |
| 388 | return true; |
| 389 | |
| 390 | /* If we do not have useful points-to information for either pointer |
| 391 | we cannot disambiguate anything else. */ |
| 392 | pi1 = SSA_NAME_PTR_INFO (ptr1); |
| 393 | pi2 = SSA_NAME_PTR_INFO (ptr2); |
| 394 | if (!pi1 || !pi2) |
| 395 | return true; |
| 396 | |
| 397 | /* ??? This does not use TBAA to prune decls from the intersection |
| 398 | that not both pointers may access. */ |
| 399 | return pt_solutions_intersect (&pi1->pt, &pi2->pt); |
| 400 | } |
| 401 | |
| 402 | /* Return true if dereferencing PTR may alias *REF. |
| 403 | The caller is responsible for applying TBAA to see if PTR |
| 404 | may access *REF at all. */ |
| 405 | |
| 406 | static bool |
| 407 | ptr_deref_may_alias_ref_p_1 (tree ptr, ao_ref *ref) |
| 408 | { |
| 409 | tree base = ao_ref_base (ref); |
| 410 | |
| 411 | if (TREE_CODE (base) == MEM_REF |
| 412 | || TREE_CODE (base) == TARGET_MEM_REF) |
| 413 | return ptr_derefs_may_alias_p (ptr1: ptr, TREE_OPERAND (base, 0)); |
| 414 | else if (DECL_P (base)) |
| 415 | return ptr_deref_may_alias_decl_p (ptr, decl: base); |
| 416 | |
| 417 | return true; |
| 418 | } |
| 419 | |
| 420 | /* Returns true if PTR1 and PTR2 compare unequal because of points-to. */ |
| 421 | |
| 422 | bool |
| 423 | ptrs_compare_unequal (tree ptr1, tree ptr2) |
| 424 | { |
| 425 | /* First resolve the pointers down to a SSA name pointer base or |
| 426 | a VAR_DECL, PARM_DECL or RESULT_DECL. This explicitely does |
| 427 | not yet try to handle LABEL_DECLs, FUNCTION_DECLs, CONST_DECLs |
| 428 | or STRING_CSTs which needs points-to adjustments to track them |
| 429 | in the points-to sets. */ |
| 430 | tree obj1 = NULL_TREE; |
| 431 | tree obj2 = NULL_TREE; |
| 432 | if (TREE_CODE (ptr1) == ADDR_EXPR) |
| 433 | { |
| 434 | tree tem = get_base_address (TREE_OPERAND (ptr1, 0)); |
| 435 | if (! tem) |
| 436 | return false; |
| 437 | if (VAR_P (tem) |
| 438 | || TREE_CODE (tem) == PARM_DECL |
| 439 | || TREE_CODE (tem) == RESULT_DECL) |
| 440 | obj1 = tem; |
| 441 | else if (TREE_CODE (tem) == MEM_REF) |
| 442 | ptr1 = TREE_OPERAND (tem, 0); |
| 443 | } |
| 444 | if (TREE_CODE (ptr2) == ADDR_EXPR) |
| 445 | { |
| 446 | tree tem = get_base_address (TREE_OPERAND (ptr2, 0)); |
| 447 | if (! tem) |
| 448 | return false; |
| 449 | if (VAR_P (tem) |
| 450 | || TREE_CODE (tem) == PARM_DECL |
| 451 | || TREE_CODE (tem) == RESULT_DECL) |
| 452 | obj2 = tem; |
| 453 | else if (TREE_CODE (tem) == MEM_REF) |
| 454 | ptr2 = TREE_OPERAND (tem, 0); |
| 455 | } |
| 456 | |
| 457 | /* Canonicalize ptr vs. object. */ |
| 458 | if (TREE_CODE (ptr1) == SSA_NAME && obj2) |
| 459 | { |
| 460 | std::swap (a&: ptr1, b&: ptr2); |
| 461 | std::swap (a&: obj1, b&: obj2); |
| 462 | } |
| 463 | |
| 464 | if (obj1 && obj2) |
| 465 | /* Other code handles this correctly, no need to duplicate it here. */; |
| 466 | else if (obj1 && TREE_CODE (ptr2) == SSA_NAME) |
| 467 | { |
| 468 | struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr2); |
| 469 | /* We may not use restrict to optimize pointer comparisons. |
| 470 | See PR71062. So we have to assume that restrict-pointed-to |
| 471 | may be in fact obj1. */ |
| 472 | if (!pi |
| 473 | || pi->pt.vars_contains_restrict |
| 474 | || pi->pt.vars_contains_interposable) |
| 475 | return false; |
| 476 | if (VAR_P (obj1) |
| 477 | && (TREE_STATIC (obj1) || DECL_EXTERNAL (obj1))) |
| 478 | { |
| 479 | varpool_node *node = varpool_node::get (decl: obj1); |
| 480 | /* If obj1 may bind to NULL give up (see below). */ |
| 481 | if (! node |
| 482 | || ! node->nonzero_address () |
| 483 | || ! decl_binds_to_current_def_p (obj1)) |
| 484 | return false; |
| 485 | } |
| 486 | return !pt_solution_includes (&pi->pt, obj1); |
| 487 | } |
| 488 | else if (TREE_CODE (ptr1) == SSA_NAME) |
| 489 | { |
| 490 | struct ptr_info_def *pi1 = SSA_NAME_PTR_INFO (ptr1); |
| 491 | if (!pi1 |
| 492 | || pi1->pt.vars_contains_restrict |
| 493 | || pi1->pt.vars_contains_interposable) |
| 494 | return false; |
| 495 | if (integer_zerop (ptr2) && !pi1->pt.null) |
| 496 | return true; |
| 497 | if (TREE_CODE (ptr2) == SSA_NAME) |
| 498 | { |
| 499 | struct ptr_info_def *pi2 = SSA_NAME_PTR_INFO (ptr2); |
| 500 | if (!pi2 |
| 501 | || pi2->pt.vars_contains_restrict |
| 502 | || pi2->pt.vars_contains_interposable) |
| 503 | return false; |
| 504 | if ((!pi1->pt.null || !pi2->pt.null) |
| 505 | /* ??? We do not represent FUNCTION_DECL and LABEL_DECL |
| 506 | in pt.vars but only set pt.vars_contains_nonlocal. This |
| 507 | makes compares involving those and other nonlocals |
| 508 | imprecise. */ |
| 509 | && (!pi1->pt.vars_contains_nonlocal |
| 510 | || !pi2->pt.vars_contains_nonlocal) |
| 511 | && (!pt_solution_includes_const_pool (&pi1->pt) |
| 512 | || !pt_solution_includes_const_pool (&pi2->pt))) |
| 513 | return !pt_solutions_intersect (&pi1->pt, &pi2->pt); |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | return false; |
| 518 | } |
| 519 | |
| 520 | /* Returns whether reference REF to BASE may refer to global memory. |
| 521 | When ESCAPED_LOCAL_P is true escaped local memory is also considered |
| 522 | global. */ |
| 523 | |
| 524 | static bool |
| 525 | ref_may_alias_global_p_1 (tree base, bool escaped_local_p) |
| 526 | { |
| 527 | if (DECL_P (base)) |
| 528 | return (is_global_var (t: base) |
| 529 | || (escaped_local_p |
| 530 | && pt_solution_includes (&cfun->gimple_df->escaped_return, |
| 531 | base))); |
| 532 | else if (TREE_CODE (base) == MEM_REF |
| 533 | || TREE_CODE (base) == TARGET_MEM_REF) |
| 534 | return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0), |
| 535 | escaped_local_p); |
| 536 | return true; |
| 537 | } |
| 538 | |
| 539 | bool |
| 540 | ref_may_alias_global_p (ao_ref *ref, bool escaped_local_p) |
| 541 | { |
| 542 | tree base = ao_ref_base (ref); |
| 543 | return ref_may_alias_global_p_1 (base, escaped_local_p); |
| 544 | } |
| 545 | |
| 546 | bool |
| 547 | ref_may_alias_global_p (tree ref, bool escaped_local_p) |
| 548 | { |
| 549 | tree base = get_base_address (t: ref); |
| 550 | return ref_may_alias_global_p_1 (base, escaped_local_p); |
| 551 | } |
| 552 | |
| 553 | /* Return true whether STMT may clobber global memory. |
| 554 | When ESCAPED_LOCAL_P is true escaped local memory is also considered |
| 555 | global. */ |
| 556 | |
| 557 | bool |
| 558 | stmt_may_clobber_global_p (gimple *stmt, bool escaped_local_p) |
| 559 | { |
| 560 | tree lhs; |
| 561 | |
| 562 | if (!gimple_vdef (g: stmt)) |
| 563 | return false; |
| 564 | |
| 565 | /* ??? We can ask the oracle whether an artificial pointer |
| 566 | dereference with a pointer with points-to information covering |
| 567 | all global memory (what about non-address taken memory?) maybe |
| 568 | clobbered by this call. As there is at the moment no convenient |
| 569 | way of doing that without generating garbage do some manual |
| 570 | checking instead. |
| 571 | ??? We could make a NULL ao_ref argument to the various |
| 572 | predicates special, meaning any global memory. */ |
| 573 | |
| 574 | switch (gimple_code (g: stmt)) |
| 575 | { |
| 576 | case GIMPLE_ASSIGN: |
| 577 | lhs = gimple_assign_lhs (gs: stmt); |
| 578 | return (TREE_CODE (lhs) != SSA_NAME |
| 579 | && ref_may_alias_global_p (ref: lhs, escaped_local_p)); |
| 580 | case GIMPLE_CALL: |
| 581 | return true; |
| 582 | default: |
| 583 | return true; |
| 584 | } |
| 585 | } |
| 586 | |
| 587 | |
| 588 | /* Dump alias information on FILE. */ |
| 589 | |
| 590 | void |
| 591 | dump_alias_info (FILE *file) |
| 592 | { |
| 593 | unsigned i; |
| 594 | tree ptr; |
| 595 | const char *funcname |
| 596 | = lang_hooks.decl_printable_name (current_function_decl, 2); |
| 597 | tree var; |
| 598 | |
| 599 | fprintf (stream: file, format: "\n\nAlias information for %s\n\n" , funcname); |
| 600 | |
| 601 | fprintf (stream: file, format: "Aliased symbols\n\n" ); |
| 602 | |
| 603 | FOR_EACH_LOCAL_DECL (cfun, i, var) |
| 604 | { |
| 605 | if (may_be_aliased (var)) |
| 606 | dump_variable (file, var); |
| 607 | } |
| 608 | |
| 609 | fprintf (stream: file, format: "\nCall clobber information\n" ); |
| 610 | |
| 611 | fprintf (stream: file, format: "\nESCAPED" ); |
| 612 | dump_points_to_solution (file, &cfun->gimple_df->escaped); |
| 613 | |
| 614 | fprintf (stream: file, format: "\nESCAPED_RETURN" ); |
| 615 | dump_points_to_solution (file, &cfun->gimple_df->escaped_return); |
| 616 | |
| 617 | fprintf (stream: file, format: "\n\nFlow-insensitive points-to information\n\n" ); |
| 618 | |
| 619 | FOR_EACH_SSA_NAME (i, ptr, cfun) |
| 620 | { |
| 621 | struct ptr_info_def *pi; |
| 622 | |
| 623 | if (!POINTER_TYPE_P (TREE_TYPE (ptr)) |
| 624 | || SSA_NAME_IN_FREE_LIST (ptr)) |
| 625 | continue; |
| 626 | |
| 627 | pi = SSA_NAME_PTR_INFO (ptr); |
| 628 | if (pi) |
| 629 | dump_points_to_info_for (file, ptr); |
| 630 | } |
| 631 | |
| 632 | fprintf (stream: file, format: "\n" ); |
| 633 | } |
| 634 | |
| 635 | |
| 636 | /* Dump alias information on stderr. */ |
| 637 | |
| 638 | DEBUG_FUNCTION void |
| 639 | debug_alias_info (void) |
| 640 | { |
| 641 | dump_alias_info (stderr); |
| 642 | } |
| 643 | |
| 644 | |
| 645 | /* Dump the points-to set *PT into FILE. */ |
| 646 | |
| 647 | void |
| 648 | dump_points_to_solution (FILE *file, struct pt_solution *pt) |
| 649 | { |
| 650 | if (pt->anything) |
| 651 | fprintf (stream: file, format: ", points-to anything" ); |
| 652 | |
| 653 | if (pt->nonlocal) |
| 654 | fprintf (stream: file, format: ", points-to non-local" ); |
| 655 | |
| 656 | if (pt->escaped) |
| 657 | fprintf (stream: file, format: ", points-to escaped" ); |
| 658 | |
| 659 | if (pt->ipa_escaped) |
| 660 | fprintf (stream: file, format: ", points-to unit escaped" ); |
| 661 | |
| 662 | if (pt->null) |
| 663 | fprintf (stream: file, format: ", points-to NULL" ); |
| 664 | |
| 665 | if (pt->const_pool) |
| 666 | fprintf (stream: file, format: ", points-to const-pool" ); |
| 667 | |
| 668 | if (pt->vars) |
| 669 | { |
| 670 | fprintf (stream: file, format: ", points-to vars: " ); |
| 671 | dump_decl_set (file, pt->vars); |
| 672 | if (pt->vars_contains_nonlocal |
| 673 | || pt->vars_contains_escaped |
| 674 | || pt->vars_contains_escaped_heap |
| 675 | || pt->vars_contains_restrict |
| 676 | || pt->vars_contains_interposable) |
| 677 | { |
| 678 | const char *comma = "" ; |
| 679 | fprintf (stream: file, format: " (" ); |
| 680 | if (pt->vars_contains_nonlocal) |
| 681 | { |
| 682 | fprintf (stream: file, format: "nonlocal" ); |
| 683 | comma = ", " ; |
| 684 | } |
| 685 | if (pt->vars_contains_escaped) |
| 686 | { |
| 687 | fprintf (stream: file, format: "%sescaped" , comma); |
| 688 | comma = ", " ; |
| 689 | } |
| 690 | if (pt->vars_contains_escaped_heap) |
| 691 | { |
| 692 | fprintf (stream: file, format: "%sescaped heap" , comma); |
| 693 | comma = ", " ; |
| 694 | } |
| 695 | if (pt->vars_contains_restrict) |
| 696 | { |
| 697 | fprintf (stream: file, format: "%srestrict" , comma); |
| 698 | comma = ", " ; |
| 699 | } |
| 700 | if (pt->vars_contains_interposable) |
| 701 | fprintf (stream: file, format: "%sinterposable" , comma); |
| 702 | fprintf (stream: file, format: ")" ); |
| 703 | } |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | |
| 708 | /* Unified dump function for pt_solution. */ |
| 709 | |
| 710 | DEBUG_FUNCTION void |
| 711 | debug (pt_solution &ref) |
| 712 | { |
| 713 | dump_points_to_solution (stderr, pt: &ref); |
| 714 | } |
| 715 | |
| 716 | DEBUG_FUNCTION void |
| 717 | debug (pt_solution *ptr) |
| 718 | { |
| 719 | if (ptr) |
| 720 | debug (ref&: *ptr); |
| 721 | else |
| 722 | fprintf (stderr, format: "<nil>\n" ); |
| 723 | } |
| 724 | |
| 725 | |
| 726 | /* Dump points-to information for SSA_NAME PTR into FILE. */ |
| 727 | |
| 728 | void |
| 729 | dump_points_to_info_for (FILE *file, tree ptr) |
| 730 | { |
| 731 | struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr); |
| 732 | |
| 733 | print_generic_expr (file, ptr, dump_flags); |
| 734 | |
| 735 | if (pi) |
| 736 | dump_points_to_solution (file, pt: &pi->pt); |
| 737 | else |
| 738 | fprintf (stream: file, format: ", points-to anything" ); |
| 739 | |
| 740 | fprintf (stream: file, format: "\n" ); |
| 741 | } |
| 742 | |
| 743 | |
| 744 | /* Dump points-to information for VAR into stderr. */ |
| 745 | |
| 746 | DEBUG_FUNCTION void |
| 747 | debug_points_to_info_for (tree var) |
| 748 | { |
| 749 | dump_points_to_info_for (stderr, ptr: var); |
| 750 | } |
| 751 | |
| 752 | |
| 753 | /* Initializes the alias-oracle reference representation *R from REF. */ |
| 754 | |
| 755 | void |
| 756 | ao_ref_init (ao_ref *r, tree ref) |
| 757 | { |
| 758 | r->ref = ref; |
| 759 | r->base = NULL_TREE; |
| 760 | r->offset = 0; |
| 761 | r->size = -1; |
| 762 | r->max_size = -1; |
| 763 | r->ref_alias_set = -1; |
| 764 | r->base_alias_set = -1; |
| 765 | r->volatile_p = ref ? TREE_THIS_VOLATILE (ref) : false; |
| 766 | } |
| 767 | |
| 768 | /* Returns the base object of the memory reference *REF. */ |
| 769 | |
| 770 | tree |
| 771 | ao_ref_base (ao_ref *ref) |
| 772 | { |
| 773 | bool reverse; |
| 774 | |
| 775 | if (ref->base) |
| 776 | return ref->base; |
| 777 | ref->base = get_ref_base_and_extent (ref->ref, &ref->offset, &ref->size, |
| 778 | &ref->max_size, &reverse); |
| 779 | return ref->base; |
| 780 | } |
| 781 | |
| 782 | /* Returns the base object alias set of the memory reference *REF. */ |
| 783 | |
| 784 | alias_set_type |
| 785 | ao_ref_base_alias_set (ao_ref *ref) |
| 786 | { |
| 787 | tree base_ref; |
| 788 | if (ref->base_alias_set != -1) |
| 789 | return ref->base_alias_set; |
| 790 | if (!ref->ref) |
| 791 | return 0; |
| 792 | base_ref = ref->ref; |
| 793 | if (TREE_CODE (base_ref) == WITH_SIZE_EXPR) |
| 794 | base_ref = TREE_OPERAND (base_ref, 0); |
| 795 | while (handled_component_p (t: base_ref)) |
| 796 | base_ref = TREE_OPERAND (base_ref, 0); |
| 797 | ref->base_alias_set = get_alias_set (base_ref); |
| 798 | return ref->base_alias_set; |
| 799 | } |
| 800 | |
| 801 | /* Returns the reference alias set of the memory reference *REF. */ |
| 802 | |
| 803 | alias_set_type |
| 804 | ao_ref_alias_set (ao_ref *ref) |
| 805 | { |
| 806 | if (ref->ref_alias_set != -1) |
| 807 | return ref->ref_alias_set; |
| 808 | if (!ref->ref) |
| 809 | return 0; |
| 810 | ref->ref_alias_set = get_alias_set (ref->ref); |
| 811 | return ref->ref_alias_set; |
| 812 | } |
| 813 | |
| 814 | /* Returns a type satisfying |
| 815 | get_deref_alias_set (type) == ao_ref_base_alias_set (REF). */ |
| 816 | |
| 817 | tree |
| 818 | ao_ref_base_alias_ptr_type (ao_ref *ref) |
| 819 | { |
| 820 | tree base_ref; |
| 821 | |
| 822 | if (!ref->ref) |
| 823 | return NULL_TREE; |
| 824 | base_ref = ref->ref; |
| 825 | if (TREE_CODE (base_ref) == WITH_SIZE_EXPR) |
| 826 | base_ref = TREE_OPERAND (base_ref, 0); |
| 827 | while (handled_component_p (t: base_ref)) |
| 828 | base_ref = TREE_OPERAND (base_ref, 0); |
| 829 | tree ret = reference_alias_ptr_type (base_ref); |
| 830 | return ret; |
| 831 | } |
| 832 | |
| 833 | /* Returns a type satisfying |
| 834 | get_deref_alias_set (type) == ao_ref_alias_set (REF). */ |
| 835 | |
| 836 | tree |
| 837 | ao_ref_alias_ptr_type (ao_ref *ref) |
| 838 | { |
| 839 | if (!ref->ref) |
| 840 | return NULL_TREE; |
| 841 | tree ret = reference_alias_ptr_type (ref->ref); |
| 842 | return ret; |
| 843 | } |
| 844 | |
| 845 | /* Return the alignment of the access *REF and store it in the *ALIGN |
| 846 | and *BITPOS pairs. Returns false if no alignment could be determined. |
| 847 | See get_object_alignment_2 for details. */ |
| 848 | |
| 849 | bool |
| 850 | ao_ref_alignment (ao_ref *ref, unsigned int *align, |
| 851 | unsigned HOST_WIDE_INT *bitpos) |
| 852 | { |
| 853 | if (ref->ref) |
| 854 | return get_object_alignment_1 (ref->ref, align, bitpos); |
| 855 | |
| 856 | /* When we just have ref->base we cannot use get_object_alignment since |
| 857 | that will eventually use the type of the appearant access while for |
| 858 | example ao_ref_init_from_ptr_and_range is not careful to adjust that. */ |
| 859 | *align = BITS_PER_UNIT; |
| 860 | HOST_WIDE_INT offset; |
| 861 | if (!ref->offset.is_constant (const_value: &offset) |
| 862 | || !get_object_alignment_2 (ref->base, align, bitpos, true)) |
| 863 | return false; |
| 864 | *bitpos += (unsigned HOST_WIDE_INT)offset * BITS_PER_UNIT; |
| 865 | *bitpos = *bitpos & (*align - 1); |
| 866 | return true; |
| 867 | } |
| 868 | |
| 869 | /* Init an alias-oracle reference representation from a gimple pointer |
| 870 | PTR a range specified by OFFSET, SIZE and MAX_SIZE under the assumption |
| 871 | that RANGE_KNOWN is set. |
| 872 | |
| 873 | The access is assumed to be only to or after of the pointer target adjusted |
| 874 | by the offset, not before it (even in the case RANGE_KNOWN is false). */ |
| 875 | |
| 876 | void |
| 877 | ao_ref_init_from_ptr_and_range (ao_ref *ref, tree ptr, |
| 878 | bool range_known, |
| 879 | poly_int64 offset, |
| 880 | poly_int64 size, |
| 881 | poly_int64 max_size) |
| 882 | { |
| 883 | poly_int64 t, = 0; |
| 884 | |
| 885 | ref->ref = NULL_TREE; |
| 886 | if (TREE_CODE (ptr) == SSA_NAME) |
| 887 | { |
| 888 | gimple *stmt = SSA_NAME_DEF_STMT (ptr); |
| 889 | if (gimple_assign_single_p (gs: stmt) |
| 890 | && gimple_assign_rhs_code (gs: stmt) == ADDR_EXPR) |
| 891 | ptr = gimple_assign_rhs1 (gs: stmt); |
| 892 | else if (is_gimple_assign (gs: stmt) |
| 893 | && gimple_assign_rhs_code (gs: stmt) == POINTER_PLUS_EXPR |
| 894 | && ptrdiff_tree_p (gimple_assign_rhs2 (gs: stmt), &extra_offset)) |
| 895 | { |
| 896 | ptr = gimple_assign_rhs1 (gs: stmt); |
| 897 | extra_offset *= BITS_PER_UNIT; |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | if (TREE_CODE (ptr) == ADDR_EXPR) |
| 902 | { |
| 903 | ref->base = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &t); |
| 904 | if (ref->base) |
| 905 | ref->offset = BITS_PER_UNIT * t; |
| 906 | else |
| 907 | { |
| 908 | range_known = false; |
| 909 | ref->offset = 0; |
| 910 | ref->base = get_base_address (TREE_OPERAND (ptr, 0)); |
| 911 | } |
| 912 | } |
| 913 | else |
| 914 | { |
| 915 | gcc_assert (POINTER_TYPE_P (TREE_TYPE (ptr))); |
| 916 | ref->base = build2 (MEM_REF, char_type_node, |
| 917 | ptr, null_pointer_node); |
| 918 | ref->offset = 0; |
| 919 | } |
| 920 | ref->offset += extra_offset + offset; |
| 921 | if (range_known) |
| 922 | { |
| 923 | ref->max_size = max_size; |
| 924 | ref->size = size; |
| 925 | } |
| 926 | else |
| 927 | ref->max_size = ref->size = -1; |
| 928 | ref->ref_alias_set = 0; |
| 929 | ref->base_alias_set = 0; |
| 930 | ref->volatile_p = false; |
| 931 | } |
| 932 | |
| 933 | /* Init an alias-oracle reference representation from a gimple pointer |
| 934 | PTR and a gimple size SIZE in bytes. If SIZE is NULL_TREE then the |
| 935 | size is assumed to be unknown. The access is assumed to be only |
| 936 | to or after of the pointer target, not before it. */ |
| 937 | |
| 938 | void |
| 939 | ao_ref_init_from_ptr_and_size (ao_ref *ref, tree ptr, tree size) |
| 940 | { |
| 941 | poly_int64 size_hwi; |
| 942 | if (size |
| 943 | && poly_int_tree_p (t: size, value: &size_hwi) |
| 944 | && coeffs_in_range_p (a: size_hwi, b: 0, HOST_WIDE_INT_MAX / BITS_PER_UNIT)) |
| 945 | { |
| 946 | size_hwi = size_hwi * BITS_PER_UNIT; |
| 947 | ao_ref_init_from_ptr_and_range (ref, ptr, range_known: true, offset: 0, size: size_hwi, max_size: size_hwi); |
| 948 | } |
| 949 | else |
| 950 | ao_ref_init_from_ptr_and_range (ref, ptr, range_known: false, offset: 0, size: -1, max_size: -1); |
| 951 | } |
| 952 | |
| 953 | /* S1 and S2 are TYPE_SIZE or DECL_SIZE. Compare them: |
| 954 | Return -1 if S1 < S2 |
| 955 | Return 1 if S1 > S2 |
| 956 | Return 0 if equal or incomparable. */ |
| 957 | |
| 958 | static int |
| 959 | compare_sizes (tree s1, tree s2) |
| 960 | { |
| 961 | if (!s1 || !s2) |
| 962 | return 0; |
| 963 | |
| 964 | poly_uint64 size1; |
| 965 | poly_uint64 size2; |
| 966 | |
| 967 | if (!poly_int_tree_p (t: s1, value: &size1) || !poly_int_tree_p (t: s2, value: &size2)) |
| 968 | return 0; |
| 969 | if (known_lt (size1, size2)) |
| 970 | return -1; |
| 971 | if (known_lt (size2, size1)) |
| 972 | return 1; |
| 973 | return 0; |
| 974 | } |
| 975 | |
| 976 | /* Compare TYPE1 and TYPE2 by its size. |
| 977 | Return -1 if size of TYPE1 < size of TYPE2 |
| 978 | Return 1 if size of TYPE1 > size of TYPE2 |
| 979 | Return 0 if types are of equal sizes or we can not compare them. */ |
| 980 | |
| 981 | static int |
| 982 | compare_type_sizes (tree type1, tree type2) |
| 983 | { |
| 984 | /* Be conservative for arrays and vectors. We want to support partial |
| 985 | overlap on int[3] and int[3] as tested in gcc.dg/torture/alias-2.c. */ |
| 986 | while (TREE_CODE (type1) == ARRAY_TYPE |
| 987 | || VECTOR_TYPE_P (type1)) |
| 988 | type1 = TREE_TYPE (type1); |
| 989 | while (TREE_CODE (type2) == ARRAY_TYPE |
| 990 | || VECTOR_TYPE_P (type2)) |
| 991 | type2 = TREE_TYPE (type2); |
| 992 | return compare_sizes (TYPE_SIZE (type1), TYPE_SIZE (type2)); |
| 993 | } |
| 994 | |
| 995 | /* Return 1 if TYPE1 and TYPE2 are to be considered equivalent for the |
| 996 | purpose of TBAA. Return 0 if they are distinct and -1 if we cannot |
| 997 | decide. */ |
| 998 | |
| 999 | static inline int |
| 1000 | same_type_for_tbaa (tree type1, tree type2) |
| 1001 | { |
| 1002 | type1 = TYPE_MAIN_VARIANT (type1); |
| 1003 | type2 = TYPE_MAIN_VARIANT (type2); |
| 1004 | |
| 1005 | /* Handle the most common case first. */ |
| 1006 | if (type1 == type2) |
| 1007 | return 1; |
| 1008 | |
| 1009 | /* If we would have to do structural comparison bail out. */ |
| 1010 | if (TYPE_STRUCTURAL_EQUALITY_P (type1) |
| 1011 | || TYPE_STRUCTURAL_EQUALITY_P (type2)) |
| 1012 | return -1; |
| 1013 | |
| 1014 | /* Compare the canonical types. */ |
| 1015 | if (TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2)) |
| 1016 | return 1; |
| 1017 | |
| 1018 | /* ??? Array types are not properly unified in all cases as we have |
| 1019 | spurious changes in the index types for example. Removing this |
| 1020 | causes all sorts of problems with the Fortran frontend. */ |
| 1021 | if (TREE_CODE (type1) == ARRAY_TYPE |
| 1022 | && TREE_CODE (type2) == ARRAY_TYPE) |
| 1023 | return -1; |
| 1024 | |
| 1025 | /* ??? In Ada, an lvalue of an unconstrained type can be used to access an |
| 1026 | object of one of its constrained subtypes, e.g. when a function with an |
| 1027 | unconstrained parameter passed by reference is called on an object and |
| 1028 | inlined. But, even in the case of a fixed size, type and subtypes are |
| 1029 | not equivalent enough as to share the same TYPE_CANONICAL, since this |
| 1030 | would mean that conversions between them are useless, whereas they are |
| 1031 | not (e.g. type and subtypes can have different modes). So, in the end, |
| 1032 | they are only guaranteed to have the same alias set. */ |
| 1033 | alias_set_type set1 = get_alias_set (type1); |
| 1034 | alias_set_type set2 = get_alias_set (type2); |
| 1035 | if (set1 == set2) |
| 1036 | return -1; |
| 1037 | |
| 1038 | /* Pointers to void are considered compatible with all other pointers, |
| 1039 | so for two pointers see what the alias set resolution thinks. */ |
| 1040 | if (POINTER_TYPE_P (type1) |
| 1041 | && POINTER_TYPE_P (type2) |
| 1042 | && alias_sets_conflict_p (set1, set2)) |
| 1043 | return -1; |
| 1044 | |
| 1045 | /* The types are known to be not equal. */ |
| 1046 | return 0; |
| 1047 | } |
| 1048 | |
| 1049 | /* Return true if TYPE is a composite type (i.e. we may apply one of handled |
| 1050 | components on it). */ |
| 1051 | |
| 1052 | static bool |
| 1053 | type_has_components_p (tree type) |
| 1054 | { |
| 1055 | return AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type) |
| 1056 | || TREE_CODE (type) == COMPLEX_TYPE; |
| 1057 | } |
| 1058 | |
| 1059 | /* MATCH1 and MATCH2 which are part of access path of REF1 and REF2 |
| 1060 | respectively are either pointing to same address or are completely |
| 1061 | disjoint. If PARTIAL_OVERLAP is true, assume that outermost arrays may |
| 1062 | just partly overlap. |
| 1063 | |
| 1064 | Try to disambiguate using the access path starting from the match |
| 1065 | and return false if there is no conflict. |
| 1066 | |
| 1067 | Helper for aliasing_component_refs_p. */ |
| 1068 | |
| 1069 | static bool |
| 1070 | aliasing_matching_component_refs_p (tree match1, tree ref1, |
| 1071 | poly_int64 offset1, poly_int64 max_size1, |
| 1072 | tree match2, tree ref2, |
| 1073 | poly_int64 offset2, poly_int64 max_size2, |
| 1074 | bool partial_overlap) |
| 1075 | { |
| 1076 | poly_int64 offadj, sztmp, msztmp; |
| 1077 | bool reverse; |
| 1078 | |
| 1079 | if (!partial_overlap) |
| 1080 | { |
| 1081 | get_ref_base_and_extent (match2, &offadj, &sztmp, &msztmp, &reverse); |
| 1082 | offset2 -= offadj; |
| 1083 | get_ref_base_and_extent (match1, &offadj, &sztmp, &msztmp, &reverse); |
| 1084 | offset1 -= offadj; |
| 1085 | if (!ranges_maybe_overlap_p (pos1: offset1, size1: max_size1, pos2: offset2, size2: max_size2)) |
| 1086 | { |
| 1087 | ++alias_stats.aliasing_component_refs_p_no_alias; |
| 1088 | return false; |
| 1089 | } |
| 1090 | } |
| 1091 | |
| 1092 | int cmp = nonoverlapping_refs_since_match_p (match1, ref1, match2, ref2, |
| 1093 | partial_overlap); |
| 1094 | if (cmp == 1 |
| 1095 | || (cmp == -1 && nonoverlapping_component_refs_p (ref1, ref2))) |
| 1096 | { |
| 1097 | ++alias_stats.aliasing_component_refs_p_no_alias; |
| 1098 | return false; |
| 1099 | } |
| 1100 | ++alias_stats.aliasing_component_refs_p_may_alias; |
| 1101 | return true; |
| 1102 | } |
| 1103 | |
| 1104 | /* Return true if REF is reference to zero sized trailing array. I.e. |
| 1105 | struct foo {int bar; int array[0];} *fooptr; |
| 1106 | fooptr->array. */ |
| 1107 | |
| 1108 | static bool |
| 1109 | component_ref_to_zero_sized_trailing_array_p (tree ref) |
| 1110 | { |
| 1111 | return (TREE_CODE (ref) == COMPONENT_REF |
| 1112 | && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE |
| 1113 | && (!TYPE_SIZE (TREE_TYPE (TREE_OPERAND (ref, 1))) |
| 1114 | || integer_zerop (TYPE_SIZE (TREE_TYPE (TREE_OPERAND (ref, 1))))) |
| 1115 | && array_ref_flexible_size_p (ref)); |
| 1116 | } |
| 1117 | |
| 1118 | /* Worker for aliasing_component_refs_p. Most parameters match parameters of |
| 1119 | aliasing_component_refs_p. |
| 1120 | |
| 1121 | Walk access path REF2 and try to find type matching TYPE1 |
| 1122 | (which is a start of possibly aliasing access path REF1). |
| 1123 | If match is found, try to disambiguate. |
| 1124 | |
| 1125 | Return 0 for sucessful disambiguation. |
| 1126 | Return 1 if match was found but disambiguation failed |
| 1127 | Return -1 if there is no match. |
| 1128 | In this case MAYBE_MATCH is set to 0 if there is no type matching TYPE1 |
| 1129 | in access patch REF2 and -1 if we are not sure. */ |
| 1130 | |
| 1131 | static int |
| 1132 | aliasing_component_refs_walk (tree ref1, tree type1, tree base1, |
| 1133 | poly_int64 offset1, poly_int64 max_size1, |
| 1134 | tree end_struct_ref1, |
| 1135 | tree ref2, tree base2, |
| 1136 | poly_int64 offset2, poly_int64 max_size2, |
| 1137 | bool *maybe_match) |
| 1138 | { |
| 1139 | tree ref = ref2; |
| 1140 | int same_p = 0; |
| 1141 | |
| 1142 | while (true) |
| 1143 | { |
| 1144 | /* We walk from inner type to the outer types. If type we see is |
| 1145 | already too large to be part of type1, terminate the search. */ |
| 1146 | int cmp = compare_type_sizes (type1, TREE_TYPE (ref)); |
| 1147 | |
| 1148 | if (cmp < 0 |
| 1149 | && (!end_struct_ref1 |
| 1150 | || compare_type_sizes (TREE_TYPE (end_struct_ref1), |
| 1151 | TREE_TYPE (ref)) < 0)) |
| 1152 | break; |
| 1153 | /* If types may be of same size, see if we can decide about their |
| 1154 | equality. */ |
| 1155 | if (cmp == 0) |
| 1156 | { |
| 1157 | same_p = same_type_for_tbaa (TREE_TYPE (ref), type2: type1); |
| 1158 | if (same_p == 1) |
| 1159 | break; |
| 1160 | /* In case we can't decide whether types are same try to |
| 1161 | continue looking for the exact match. |
| 1162 | Remember however that we possibly saw a match |
| 1163 | to bypass the access path continuations tests we do later. */ |
| 1164 | if (same_p == -1) |
| 1165 | *maybe_match = true; |
| 1166 | } |
| 1167 | if (!handled_component_p (t: ref)) |
| 1168 | break; |
| 1169 | ref = TREE_OPERAND (ref, 0); |
| 1170 | } |
| 1171 | if (same_p == 1) |
| 1172 | { |
| 1173 | bool partial_overlap = false; |
| 1174 | |
| 1175 | /* We assume that arrays can overlap by multiple of their elements |
| 1176 | size as tested in gcc.dg/torture/alias-2.c. |
| 1177 | This partial overlap happen only when both arrays are bases of |
| 1178 | the access and not contained within another component ref. |
| 1179 | To be safe we also assume partial overlap for VLAs. */ |
| 1180 | if (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE |
| 1181 | && (!TYPE_SIZE (TREE_TYPE (base1)) |
| 1182 | || TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) != INTEGER_CST |
| 1183 | || ref == base2)) |
| 1184 | { |
| 1185 | /* Setting maybe_match to true triggers |
| 1186 | nonoverlapping_component_refs_p test later that still may do |
| 1187 | useful disambiguation. */ |
| 1188 | *maybe_match = true; |
| 1189 | partial_overlap = true; |
| 1190 | } |
| 1191 | return aliasing_matching_component_refs_p (match1: base1, ref1, |
| 1192 | offset1, max_size1, |
| 1193 | match2: ref, ref2, |
| 1194 | offset2, max_size2, |
| 1195 | partial_overlap); |
| 1196 | } |
| 1197 | return -1; |
| 1198 | } |
| 1199 | |
| 1200 | /* Consider access path1 base1....ref1 and access path2 base2...ref2. |
| 1201 | Return true if they can be composed to single access path |
| 1202 | base1...ref1...base2...ref2. |
| 1203 | |
| 1204 | REF_TYPE1 if type of REF1. END_STRUCT_PAST_END1 is true if there is |
| 1205 | a trailing array access after REF1 in the non-TBAA part of the access. |
| 1206 | REF1_ALIAS_SET is the alias set of REF1. |
| 1207 | |
| 1208 | BASE_TYPE2 is type of base2. END_STRUCT_REF2 is non-NULL if there is |
| 1209 | a trailing array access in the TBAA part of access path2. |
| 1210 | BASE2_ALIAS_SET is the alias set of base2. */ |
| 1211 | |
| 1212 | bool |
| 1213 | access_path_may_continue_p (tree ref_type1, bool end_struct_past_end1, |
| 1214 | alias_set_type ref1_alias_set, |
| 1215 | tree base_type2, tree end_struct_ref2, |
| 1216 | alias_set_type base2_alias_set) |
| 1217 | { |
| 1218 | /* Access path can not continue past types with no components. */ |
| 1219 | if (!type_has_components_p (type: ref_type1)) |
| 1220 | return false; |
| 1221 | |
| 1222 | /* If first access path ends by too small type to hold base of |
| 1223 | the second access path, typically paths can not continue. |
| 1224 | |
| 1225 | Punt if end_struct_past_end1 is true. We want to support arbitrary |
| 1226 | type puning past first COMPONENT_REF to union because redundant store |
| 1227 | elimination depends on this, see PR92152. For this reason we can not |
| 1228 | check size of the reference because types may partially overlap. */ |
| 1229 | if (!end_struct_past_end1) |
| 1230 | { |
| 1231 | if (compare_type_sizes (type1: ref_type1, type2: base_type2) < 0) |
| 1232 | return false; |
| 1233 | /* If the path2 contains trailing array access we can strenghten the check |
| 1234 | to verify that also the size of element of the trailing array fits. |
| 1235 | In fact we could check for offset + type_size, but we do not track |
| 1236 | offsets and this is quite side case. */ |
| 1237 | if (end_struct_ref2 |
| 1238 | && compare_type_sizes (type1: ref_type1, TREE_TYPE (end_struct_ref2)) < 0) |
| 1239 | return false; |
| 1240 | } |
| 1241 | return (base2_alias_set == ref1_alias_set |
| 1242 | || alias_set_subset_of (base2_alias_set, ref1_alias_set)); |
| 1243 | } |
| 1244 | |
| 1245 | /* Determine if the two component references REF1 and REF2 which are |
| 1246 | based on access types TYPE1 and TYPE2 and of which at least one is based |
| 1247 | on an indirect reference may alias. |
| 1248 | REF1_ALIAS_SET, BASE1_ALIAS_SET, REF2_ALIAS_SET and BASE2_ALIAS_SET |
| 1249 | are the respective alias sets. */ |
| 1250 | |
| 1251 | static bool |
| 1252 | aliasing_component_refs_p (tree ref1, |
| 1253 | alias_set_type ref1_alias_set, |
| 1254 | alias_set_type base1_alias_set, |
| 1255 | poly_int64 offset1, poly_int64 max_size1, |
| 1256 | tree ref2, |
| 1257 | alias_set_type ref2_alias_set, |
| 1258 | alias_set_type base2_alias_set, |
| 1259 | poly_int64 offset2, poly_int64 max_size2) |
| 1260 | { |
| 1261 | /* If one reference is a component references through pointers try to find a |
| 1262 | common base and apply offset based disambiguation. This handles |
| 1263 | for example |
| 1264 | struct A { int i; int j; } *q; |
| 1265 | struct B { struct A a; int k; } *p; |
| 1266 | disambiguating q->i and p->a.j. */ |
| 1267 | tree base1, base2; |
| 1268 | tree type1, type2; |
| 1269 | bool maybe_match = false; |
| 1270 | tree end_struct_ref1 = NULL, end_struct_ref2 = NULL; |
| 1271 | bool end_struct_past_end1 = false; |
| 1272 | bool end_struct_past_end2 = false; |
| 1273 | |
| 1274 | /* Choose bases and base types to search for. |
| 1275 | The access path is as follows: |
| 1276 | base....end_of_tbaa_ref...actual_ref |
| 1277 | At one place in the access path may be a reference to zero sized or |
| 1278 | trailing array. |
| 1279 | |
| 1280 | We generally discard the segment after end_of_tbaa_ref however |
| 1281 | we need to be careful in case it contains zero sized or trailing array. |
| 1282 | These may happen after reference to union and in this case we need to |
| 1283 | not disambiguate type puning scenarios. |
| 1284 | |
| 1285 | We set: |
| 1286 | base1 to point to base |
| 1287 | |
| 1288 | ref1 to point to end_of_tbaa_ref |
| 1289 | |
| 1290 | end_struct_ref1 to point the trailing reference (if it exists |
| 1291 | in range base....end_of_tbaa_ref |
| 1292 | |
| 1293 | end_struct_past_end1 is true if this trailing reference occurs in |
| 1294 | end_of_tbaa_ref...actual_ref. */ |
| 1295 | base1 = ref1; |
| 1296 | while (handled_component_p (t: base1)) |
| 1297 | { |
| 1298 | /* Generally access paths are monotous in the size of object. The |
| 1299 | exception are trailing arrays of structures. I.e. |
| 1300 | struct a {int array[0];}; |
| 1301 | or |
| 1302 | struct a {int array1[0]; int array[];}; |
| 1303 | Such struct has size 0 but accesses to a.array may have non-zero size. |
| 1304 | In this case the size of TREE_TYPE (base1) is smaller than |
| 1305 | size of TREE_TYPE (TREE_OPERAND (base1, 0)). |
| 1306 | |
| 1307 | Because we compare sizes of arrays just by sizes of their elements, |
| 1308 | we only need to care about zero sized array fields here. */ |
| 1309 | if (component_ref_to_zero_sized_trailing_array_p (ref: base1)) |
| 1310 | { |
| 1311 | gcc_checking_assert (!end_struct_ref1); |
| 1312 | end_struct_ref1 = base1; |
| 1313 | } |
| 1314 | if (ends_tbaa_access_path_p (base1)) |
| 1315 | { |
| 1316 | ref1 = TREE_OPERAND (base1, 0); |
| 1317 | if (end_struct_ref1) |
| 1318 | { |
| 1319 | end_struct_past_end1 = true; |
| 1320 | end_struct_ref1 = NULL; |
| 1321 | } |
| 1322 | } |
| 1323 | base1 = TREE_OPERAND (base1, 0); |
| 1324 | } |
| 1325 | type1 = TREE_TYPE (base1); |
| 1326 | base2 = ref2; |
| 1327 | while (handled_component_p (t: base2)) |
| 1328 | { |
| 1329 | if (component_ref_to_zero_sized_trailing_array_p (ref: base2)) |
| 1330 | { |
| 1331 | gcc_checking_assert (!end_struct_ref2); |
| 1332 | end_struct_ref2 = base2; |
| 1333 | } |
| 1334 | if (ends_tbaa_access_path_p (base2)) |
| 1335 | { |
| 1336 | ref2 = TREE_OPERAND (base2, 0); |
| 1337 | if (end_struct_ref2) |
| 1338 | { |
| 1339 | end_struct_past_end2 = true; |
| 1340 | end_struct_ref2 = NULL; |
| 1341 | } |
| 1342 | } |
| 1343 | base2 = TREE_OPERAND (base2, 0); |
| 1344 | } |
| 1345 | type2 = TREE_TYPE (base2); |
| 1346 | |
| 1347 | /* Now search for the type1 in the access path of ref2. This |
| 1348 | would be a common base for doing offset based disambiguation on. |
| 1349 | This however only makes sense if type2 is big enough to hold type1. */ |
| 1350 | int cmp_outer = compare_type_sizes (type1: type2, type2: type1); |
| 1351 | |
| 1352 | /* If type2 is big enough to contain type1 walk its access path. |
| 1353 | We also need to care of arrays at the end of structs that may extend |
| 1354 | beyond the end of structure. If this occurs in the TBAA part of the |
| 1355 | access path, we need to consider the increased type as well. */ |
| 1356 | if (cmp_outer >= 0 |
| 1357 | || (end_struct_ref2 |
| 1358 | && compare_type_sizes (TREE_TYPE (end_struct_ref2), type2: type1) >= 0)) |
| 1359 | { |
| 1360 | int res = aliasing_component_refs_walk (ref1, type1, base1, |
| 1361 | offset1, max_size1, |
| 1362 | end_struct_ref1, |
| 1363 | ref2, base2, offset2, max_size2, |
| 1364 | maybe_match: &maybe_match); |
| 1365 | if (res != -1) |
| 1366 | return res; |
| 1367 | } |
| 1368 | |
| 1369 | /* If we didn't find a common base, try the other way around. */ |
| 1370 | if (cmp_outer <= 0 |
| 1371 | || (end_struct_ref1 |
| 1372 | && compare_type_sizes (TREE_TYPE (end_struct_ref1), type2) <= 0)) |
| 1373 | { |
| 1374 | int res = aliasing_component_refs_walk (ref1: ref2, type1: type2, base1: base2, |
| 1375 | offset1: offset2, max_size1: max_size2, |
| 1376 | end_struct_ref1: end_struct_ref2, |
| 1377 | ref2: ref1, base2: base1, offset2: offset1, max_size2: max_size1, |
| 1378 | maybe_match: &maybe_match); |
| 1379 | if (res != -1) |
| 1380 | return res; |
| 1381 | } |
| 1382 | |
| 1383 | /* In the following code we make an assumption that the types in access |
| 1384 | paths do not overlap and thus accesses alias only if one path can be |
| 1385 | continuation of another. If we was not able to decide about equivalence, |
| 1386 | we need to give up. */ |
| 1387 | if (maybe_match) |
| 1388 | { |
| 1389 | if (!nonoverlapping_component_refs_p (ref1, ref2)) |
| 1390 | { |
| 1391 | ++alias_stats.aliasing_component_refs_p_may_alias; |
| 1392 | return true; |
| 1393 | } |
| 1394 | ++alias_stats.aliasing_component_refs_p_no_alias; |
| 1395 | return false; |
| 1396 | } |
| 1397 | |
| 1398 | if (access_path_may_continue_p (TREE_TYPE (ref1), end_struct_past_end1, |
| 1399 | ref1_alias_set, |
| 1400 | base_type2: type2, end_struct_ref2, |
| 1401 | base2_alias_set) |
| 1402 | || access_path_may_continue_p (TREE_TYPE (ref2), end_struct_past_end1: end_struct_past_end2, |
| 1403 | ref1_alias_set: ref2_alias_set, |
| 1404 | base_type2: type1, end_struct_ref2: end_struct_ref1, |
| 1405 | base2_alias_set: base1_alias_set)) |
| 1406 | { |
| 1407 | ++alias_stats.aliasing_component_refs_p_may_alias; |
| 1408 | return true; |
| 1409 | } |
| 1410 | ++alias_stats.aliasing_component_refs_p_no_alias; |
| 1411 | return false; |
| 1412 | } |
| 1413 | |
| 1414 | /* FIELD1 and FIELD2 are two fields of component refs. We assume |
| 1415 | that bases of both component refs are either equivalent or nonoverlapping. |
| 1416 | We do not assume that the containers of FIELD1 and FIELD2 are of the |
| 1417 | same type or size. |
| 1418 | |
| 1419 | Return 0 in case the base address of component_refs are same then |
| 1420 | FIELD1 and FIELD2 have same address. Note that FIELD1 and FIELD2 |
| 1421 | may not be of same type or size. |
| 1422 | |
| 1423 | Return 1 if FIELD1 and FIELD2 are non-overlapping. |
| 1424 | |
| 1425 | Return -1 otherwise. |
| 1426 | |
| 1427 | Main difference between 0 and -1 is to let |
| 1428 | nonoverlapping_component_refs_since_match_p discover the semantically |
| 1429 | equivalent part of the access path. |
| 1430 | |
| 1431 | Note that this function is used even with -fno-strict-aliasing |
| 1432 | and makes use of no TBAA assumptions. */ |
| 1433 | |
| 1434 | static int |
| 1435 | nonoverlapping_component_refs_p_1 (const_tree field1, const_tree field2) |
| 1436 | { |
| 1437 | /* If both fields are of the same type, we could save hard work of |
| 1438 | comparing offsets. */ |
| 1439 | tree type1 = DECL_CONTEXT (field1); |
| 1440 | tree type2 = DECL_CONTEXT (field2); |
| 1441 | |
| 1442 | if (TREE_CODE (type1) == RECORD_TYPE |
| 1443 | && DECL_BIT_FIELD_REPRESENTATIVE (field1)) |
| 1444 | field1 = DECL_BIT_FIELD_REPRESENTATIVE (field1); |
| 1445 | if (TREE_CODE (type2) == RECORD_TYPE |
| 1446 | && DECL_BIT_FIELD_REPRESENTATIVE (field2)) |
| 1447 | field2 = DECL_BIT_FIELD_REPRESENTATIVE (field2); |
| 1448 | |
| 1449 | /* ??? Bitfields can overlap at RTL level so punt on them. |
| 1450 | FIXME: RTL expansion should be fixed by adjusting the access path |
| 1451 | when producing MEM_ATTRs for MEMs which are wider than |
| 1452 | the bitfields similarly as done in set_mem_attrs_minus_bitpos. */ |
| 1453 | if (DECL_BIT_FIELD (field1) && DECL_BIT_FIELD (field2)) |
| 1454 | return -1; |
| 1455 | |
| 1456 | /* Assume that different FIELD_DECLs never overlap within a RECORD_TYPE. */ |
| 1457 | if (type1 == type2 && TREE_CODE (type1) == RECORD_TYPE) |
| 1458 | return field1 != field2; |
| 1459 | |
| 1460 | /* In common case the offsets and bit offsets will be the same. |
| 1461 | However if frontends do not agree on the alignment, they may be |
| 1462 | different even if they actually represent same address. |
| 1463 | Try the common case first and if that fails calcualte the |
| 1464 | actual bit offset. */ |
| 1465 | if (tree_int_cst_equal (DECL_FIELD_OFFSET (field1), |
| 1466 | DECL_FIELD_OFFSET (field2)) |
| 1467 | && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (field1), |
| 1468 | DECL_FIELD_BIT_OFFSET (field2))) |
| 1469 | return 0; |
| 1470 | |
| 1471 | /* Note that it may be possible to use component_ref_field_offset |
| 1472 | which would provide offsets as trees. However constructing and folding |
| 1473 | trees is expensive and does not seem to be worth the compile time |
| 1474 | cost. */ |
| 1475 | |
| 1476 | poly_uint64 offset1, offset2; |
| 1477 | poly_uint64 bit_offset1, bit_offset2; |
| 1478 | |
| 1479 | if (poly_int_tree_p (DECL_FIELD_OFFSET (field1), value: &offset1) |
| 1480 | && poly_int_tree_p (DECL_FIELD_OFFSET (field2), value: &offset2) |
| 1481 | && poly_int_tree_p (DECL_FIELD_BIT_OFFSET (field1), value: &bit_offset1) |
| 1482 | && poly_int_tree_p (DECL_FIELD_BIT_OFFSET (field2), value: &bit_offset2)) |
| 1483 | { |
| 1484 | offset1 = (offset1 << LOG2_BITS_PER_UNIT) + bit_offset1; |
| 1485 | offset2 = (offset2 << LOG2_BITS_PER_UNIT) + bit_offset2; |
| 1486 | |
| 1487 | if (known_eq (offset1, offset2)) |
| 1488 | return 0; |
| 1489 | |
| 1490 | poly_uint64 size1, size2; |
| 1491 | |
| 1492 | if (poly_int_tree_p (DECL_SIZE (field1), value: &size1) |
| 1493 | && poly_int_tree_p (DECL_SIZE (field2), value: &size2) |
| 1494 | && !ranges_maybe_overlap_p (pos1: offset1, size1, pos2: offset2, size2)) |
| 1495 | return 1; |
| 1496 | } |
| 1497 | /* Resort to slower overlap checking by looking for matching types in |
| 1498 | the middle of access path. */ |
| 1499 | return -1; |
| 1500 | } |
| 1501 | |
| 1502 | /* Return low bound of array. Do not produce new trees |
| 1503 | and thus do not care about particular type of integer constant |
| 1504 | and placeholder exprs. */ |
| 1505 | |
| 1506 | static tree |
| 1507 | cheap_array_ref_low_bound (tree ref) |
| 1508 | { |
| 1509 | tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0))); |
| 1510 | |
| 1511 | /* Avoid expensive array_ref_low_bound. |
| 1512 | low bound is either stored in operand2, or it is TYPE_MIN_VALUE of domain |
| 1513 | type or it is zero. */ |
| 1514 | if (TREE_OPERAND (ref, 2)) |
| 1515 | return TREE_OPERAND (ref, 2); |
| 1516 | else if (domain_type && TYPE_MIN_VALUE (domain_type)) |
| 1517 | return TYPE_MIN_VALUE (domain_type); |
| 1518 | else |
| 1519 | return integer_zero_node; |
| 1520 | } |
| 1521 | |
| 1522 | /* REF1 and REF2 are ARRAY_REFs with either same base address or which are |
| 1523 | completely disjoint. |
| 1524 | |
| 1525 | Return 1 if the refs are non-overlapping. |
| 1526 | Return 0 if they are possibly overlapping but if so the overlap again |
| 1527 | starts on the same address. |
| 1528 | Return -1 otherwise. */ |
| 1529 | |
| 1530 | int |
| 1531 | nonoverlapping_array_refs_p (tree ref1, tree ref2) |
| 1532 | { |
| 1533 | tree index1 = TREE_OPERAND (ref1, 1); |
| 1534 | tree index2 = TREE_OPERAND (ref2, 1); |
| 1535 | tree low_bound1 = cheap_array_ref_low_bound (ref: ref1); |
| 1536 | tree low_bound2 = cheap_array_ref_low_bound (ref: ref2); |
| 1537 | |
| 1538 | /* Handle zero offsets first: we do not need to match type size in this |
| 1539 | case. */ |
| 1540 | if (operand_equal_p (index1, low_bound1, flags: 0) |
| 1541 | && operand_equal_p (index2, low_bound2, flags: 0)) |
| 1542 | return 0; |
| 1543 | |
| 1544 | /* If type sizes are different, give up. |
| 1545 | |
| 1546 | Avoid expensive array_ref_element_size. |
| 1547 | If operand 3 is present it denotes size in the alignmnet units. |
| 1548 | Otherwise size is TYPE_SIZE of the element type. |
| 1549 | Handle only common cases where types are of the same "kind". */ |
| 1550 | if ((TREE_OPERAND (ref1, 3) == NULL) != (TREE_OPERAND (ref2, 3) == NULL)) |
| 1551 | return -1; |
| 1552 | |
| 1553 | tree elmt_type1 = TREE_TYPE (TREE_TYPE (TREE_OPERAND (ref1, 0))); |
| 1554 | tree elmt_type2 = TREE_TYPE (TREE_TYPE (TREE_OPERAND (ref2, 0))); |
| 1555 | |
| 1556 | if (TREE_OPERAND (ref1, 3)) |
| 1557 | { |
| 1558 | if (TYPE_ALIGN (elmt_type1) != TYPE_ALIGN (elmt_type2) |
| 1559 | || !operand_equal_p (TREE_OPERAND (ref1, 3), |
| 1560 | TREE_OPERAND (ref2, 3), flags: 0)) |
| 1561 | return -1; |
| 1562 | } |
| 1563 | else |
| 1564 | { |
| 1565 | if (!operand_equal_p (TYPE_SIZE_UNIT (elmt_type1), |
| 1566 | TYPE_SIZE_UNIT (elmt_type2), flags: 0)) |
| 1567 | return -1; |
| 1568 | } |
| 1569 | |
| 1570 | /* Since we know that type sizes are the same, there is no need to return |
| 1571 | -1 after this point. Partial overlap can not be introduced. */ |
| 1572 | |
| 1573 | /* We may need to fold trees in this case. |
| 1574 | TODO: Handle integer constant case at least. */ |
| 1575 | if (!operand_equal_p (low_bound1, low_bound2, flags: 0)) |
| 1576 | return 0; |
| 1577 | |
| 1578 | if (TREE_CODE (index1) == INTEGER_CST && TREE_CODE (index2) == INTEGER_CST) |
| 1579 | { |
| 1580 | if (tree_int_cst_equal (index1, index2)) |
| 1581 | return 0; |
| 1582 | return 1; |
| 1583 | } |
| 1584 | /* TODO: We can use VRP to further disambiguate here. */ |
| 1585 | return 0; |
| 1586 | } |
| 1587 | |
| 1588 | /* Try to disambiguate REF1 and REF2 under the assumption that MATCH1 and |
| 1589 | MATCH2 either point to the same address or are disjoint. |
| 1590 | MATCH1 and MATCH2 are assumed to be ref in the access path of REF1 and REF2 |
| 1591 | respectively or NULL in the case we established equivalence of bases. |
| 1592 | If PARTIAL_OVERLAP is true assume that the toplevel arrays may actually |
| 1593 | overlap by exact multiply of their element size. |
| 1594 | |
| 1595 | This test works by matching the initial segment of the access path |
| 1596 | and does not rely on TBAA thus is safe for !flag_strict_aliasing if |
| 1597 | match was determined without use of TBAA oracle. |
| 1598 | |
| 1599 | Return 1 if we can determine that component references REF1 and REF2, |
| 1600 | that are within a common DECL, cannot overlap. |
| 1601 | |
| 1602 | Return 0 if paths are same and thus there is nothing to disambiguate more |
| 1603 | (i.e. there is must alias assuming there is must alias between MATCH1 and |
| 1604 | MATCH2) |
| 1605 | |
| 1606 | Return -1 if we can not determine 0 or 1 - this happens when we met |
| 1607 | non-matching types was met in the path. |
| 1608 | In this case it may make sense to continue by other disambiguation |
| 1609 | oracles. */ |
| 1610 | |
| 1611 | static int |
| 1612 | nonoverlapping_refs_since_match_p (tree match1, tree ref1, |
| 1613 | tree match2, tree ref2, |
| 1614 | bool partial_overlap) |
| 1615 | { |
| 1616 | int ntbaa1 = 0, ntbaa2 = 0; |
| 1617 | /* Early return if there are no references to match, we do not need |
| 1618 | to walk the access paths. |
| 1619 | |
| 1620 | Do not consider this as may-alias for stats - it is more useful |
| 1621 | to have information how many disambiguations happened provided that |
| 1622 | the query was meaningful. */ |
| 1623 | |
| 1624 | if (match1 == ref1 || !handled_component_p (t: ref1) |
| 1625 | || match2 == ref2 || !handled_component_p (t: ref2)) |
| 1626 | return -1; |
| 1627 | |
| 1628 | auto_vec<tree, 16> component_refs1; |
| 1629 | auto_vec<tree, 16> component_refs2; |
| 1630 | |
| 1631 | /* Create the stack of handled components for REF1. */ |
| 1632 | while (handled_component_p (t: ref1) && ref1 != match1) |
| 1633 | { |
| 1634 | /* We use TBAA only to re-synchronize after mismatched refs. So we |
| 1635 | do not need to truncate access path after TBAA part ends. */ |
| 1636 | if (ends_tbaa_access_path_p (ref1)) |
| 1637 | ntbaa1 = 0; |
| 1638 | else |
| 1639 | ntbaa1++; |
| 1640 | component_refs1.safe_push (obj: ref1); |
| 1641 | ref1 = TREE_OPERAND (ref1, 0); |
| 1642 | } |
| 1643 | |
| 1644 | /* Create the stack of handled components for REF2. */ |
| 1645 | while (handled_component_p (t: ref2) && ref2 != match2) |
| 1646 | { |
| 1647 | if (ends_tbaa_access_path_p (ref2)) |
| 1648 | ntbaa2 = 0; |
| 1649 | else |
| 1650 | ntbaa2++; |
| 1651 | component_refs2.safe_push (obj: ref2); |
| 1652 | ref2 = TREE_OPERAND (ref2, 0); |
| 1653 | } |
| 1654 | |
| 1655 | if (!flag_strict_aliasing) |
| 1656 | { |
| 1657 | ntbaa1 = 0; |
| 1658 | ntbaa2 = 0; |
| 1659 | } |
| 1660 | |
| 1661 | bool mem_ref1 = TREE_CODE (ref1) == MEM_REF && ref1 != match1; |
| 1662 | bool mem_ref2 = TREE_CODE (ref2) == MEM_REF && ref2 != match2; |
| 1663 | |
| 1664 | /* If only one of access path starts with MEM_REF check that offset is 0 |
| 1665 | so the addresses stays the same after stripping it. |
| 1666 | TODO: In this case we may walk the other access path until we get same |
| 1667 | offset. |
| 1668 | |
| 1669 | If both starts with MEM_REF, offset has to be same. */ |
| 1670 | if ((mem_ref1 && !mem_ref2 && !integer_zerop (TREE_OPERAND (ref1, 1))) |
| 1671 | || (mem_ref2 && !mem_ref1 && !integer_zerop (TREE_OPERAND (ref2, 1))) |
| 1672 | || (mem_ref1 && mem_ref2 |
| 1673 | && !tree_int_cst_equal (TREE_OPERAND (ref1, 1), |
| 1674 | TREE_OPERAND (ref2, 1)))) |
| 1675 | { |
| 1676 | ++alias_stats.nonoverlapping_refs_since_match_p_may_alias; |
| 1677 | return -1; |
| 1678 | } |
| 1679 | |
| 1680 | /* TARGET_MEM_REF are never wrapped in handled components, so we do not need |
| 1681 | to handle them here at all. */ |
| 1682 | gcc_checking_assert (TREE_CODE (ref1) != TARGET_MEM_REF |
| 1683 | && TREE_CODE (ref2) != TARGET_MEM_REF); |
| 1684 | |
| 1685 | /* Pop the stacks in parallel and examine the COMPONENT_REFs of the same |
| 1686 | rank. This is sufficient because we start from the same DECL and you |
| 1687 | cannot reference several fields at a time with COMPONENT_REFs (unlike |
| 1688 | with ARRAY_RANGE_REFs for arrays) so you always need the same number |
| 1689 | of them to access a sub-component, unless you're in a union, in which |
| 1690 | case the return value will precisely be false. */ |
| 1691 | while (true) |
| 1692 | { |
| 1693 | /* Track if we seen unmatched ref with non-zero offset. In this case |
| 1694 | we must look for partial overlaps. */ |
| 1695 | bool seen_unmatched_ref_p = false; |
| 1696 | |
| 1697 | /* First match ARRAY_REFs an try to disambiguate. */ |
| 1698 | if (!component_refs1.is_empty () |
| 1699 | && !component_refs2.is_empty ()) |
| 1700 | { |
| 1701 | unsigned int narray_refs1=0, narray_refs2=0; |
| 1702 | |
| 1703 | /* We generally assume that both access paths starts by same sequence |
| 1704 | of refs. However if number of array refs is not in sync, try |
| 1705 | to recover and pop elts until number match. This helps the case |
| 1706 | where one access path starts by array and other by element. */ |
| 1707 | for (narray_refs1 = 0; narray_refs1 < component_refs1.length (); |
| 1708 | narray_refs1++) |
| 1709 | if (TREE_CODE (component_refs1 [component_refs1.length() |
| 1710 | - 1 - narray_refs1]) != ARRAY_REF) |
| 1711 | break; |
| 1712 | |
| 1713 | for (narray_refs2 = 0; narray_refs2 < component_refs2.length (); |
| 1714 | narray_refs2++) |
| 1715 | if (TREE_CODE (component_refs2 [component_refs2.length() |
| 1716 | - 1 - narray_refs2]) != ARRAY_REF) |
| 1717 | break; |
| 1718 | for (; narray_refs1 > narray_refs2; narray_refs1--) |
| 1719 | { |
| 1720 | ref1 = component_refs1.pop (); |
| 1721 | ntbaa1--; |
| 1722 | |
| 1723 | /* If index is non-zero we need to check whether the reference |
| 1724 | does not break the main invariant that bases are either |
| 1725 | disjoint or equal. Consider the example: |
| 1726 | |
| 1727 | unsigned char out[][1]; |
| 1728 | out[1]="a"; |
| 1729 | out[i][0]; |
| 1730 | |
| 1731 | Here bases out and out are same, but after removing the |
| 1732 | [i] index, this invariant no longer holds, because |
| 1733 | out[i] points to the middle of array out. |
| 1734 | |
| 1735 | TODO: If size of type of the skipped reference is an integer |
| 1736 | multiply of the size of type of the other reference this |
| 1737 | invariant can be verified, but even then it is not completely |
| 1738 | safe with !flag_strict_aliasing if the other reference contains |
| 1739 | unbounded array accesses. |
| 1740 | See */ |
| 1741 | |
| 1742 | if (!operand_equal_p (TREE_OPERAND (ref1, 1), |
| 1743 | cheap_array_ref_low_bound (ref: ref1), flags: 0)) |
| 1744 | return 0; |
| 1745 | } |
| 1746 | for (; narray_refs2 > narray_refs1; narray_refs2--) |
| 1747 | { |
| 1748 | ref2 = component_refs2.pop (); |
| 1749 | ntbaa2--; |
| 1750 | if (!operand_equal_p (TREE_OPERAND (ref2, 1), |
| 1751 | cheap_array_ref_low_bound (ref: ref2), flags: 0)) |
| 1752 | return 0; |
| 1753 | } |
| 1754 | /* Try to disambiguate matched arrays. */ |
| 1755 | for (unsigned int i = 0; i < narray_refs1; i++) |
| 1756 | { |
| 1757 | int cmp = nonoverlapping_array_refs_p (ref1: component_refs1.pop (), |
| 1758 | ref2: component_refs2.pop ()); |
| 1759 | ntbaa1--; |
| 1760 | ntbaa2--; |
| 1761 | if (cmp == 1 && !partial_overlap) |
| 1762 | { |
| 1763 | ++alias_stats |
| 1764 | .nonoverlapping_refs_since_match_p_no_alias; |
| 1765 | return 1; |
| 1766 | } |
| 1767 | if (cmp == -1) |
| 1768 | { |
| 1769 | seen_unmatched_ref_p = true; |
| 1770 | /* We can not maintain the invariant that bases are either |
| 1771 | same or completely disjoint. However we can still recover |
| 1772 | from type based alias analysis if we reach references to |
| 1773 | same sizes. We do not attempt to match array sizes, so |
| 1774 | just finish array walking and look for component refs. */ |
| 1775 | if (ntbaa1 < 0 || ntbaa2 < 0) |
| 1776 | { |
| 1777 | ++alias_stats.nonoverlapping_refs_since_match_p_may_alias; |
| 1778 | return -1; |
| 1779 | } |
| 1780 | for (i++; i < narray_refs1; i++) |
| 1781 | { |
| 1782 | component_refs1.pop (); |
| 1783 | component_refs2.pop (); |
| 1784 | ntbaa1--; |
| 1785 | ntbaa2--; |
| 1786 | } |
| 1787 | break; |
| 1788 | } |
| 1789 | partial_overlap = false; |
| 1790 | } |
| 1791 | } |
| 1792 | |
| 1793 | /* Next look for component_refs. */ |
| 1794 | do |
| 1795 | { |
| 1796 | if (component_refs1.is_empty ()) |
| 1797 | { |
| 1798 | ++alias_stats |
| 1799 | .nonoverlapping_refs_since_match_p_must_overlap; |
| 1800 | return 0; |
| 1801 | } |
| 1802 | ref1 = component_refs1.pop (); |
| 1803 | ntbaa1--; |
| 1804 | if (TREE_CODE (ref1) != COMPONENT_REF) |
| 1805 | { |
| 1806 | seen_unmatched_ref_p = true; |
| 1807 | if (ntbaa1 < 0 || ntbaa2 < 0) |
| 1808 | { |
| 1809 | ++alias_stats.nonoverlapping_refs_since_match_p_may_alias; |
| 1810 | return -1; |
| 1811 | } |
| 1812 | } |
| 1813 | } |
| 1814 | while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref1, 0)))); |
| 1815 | |
| 1816 | do |
| 1817 | { |
| 1818 | if (component_refs2.is_empty ()) |
| 1819 | { |
| 1820 | ++alias_stats |
| 1821 | .nonoverlapping_refs_since_match_p_must_overlap; |
| 1822 | return 0; |
| 1823 | } |
| 1824 | ref2 = component_refs2.pop (); |
| 1825 | ntbaa2--; |
| 1826 | if (TREE_CODE (ref2) != COMPONENT_REF) |
| 1827 | { |
| 1828 | if (ntbaa1 < 0 || ntbaa2 < 0) |
| 1829 | { |
| 1830 | ++alias_stats.nonoverlapping_refs_since_match_p_may_alias; |
| 1831 | return -1; |
| 1832 | } |
| 1833 | seen_unmatched_ref_p = true; |
| 1834 | } |
| 1835 | } |
| 1836 | while (!RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (ref2, 0)))); |
| 1837 | |
| 1838 | /* BIT_FIELD_REF and VIEW_CONVERT_EXPR are taken off the vectors |
| 1839 | earlier. */ |
| 1840 | gcc_checking_assert (TREE_CODE (ref1) == COMPONENT_REF |
| 1841 | && TREE_CODE (ref2) == COMPONENT_REF); |
| 1842 | |
| 1843 | tree field1 = TREE_OPERAND (ref1, 1); |
| 1844 | tree field2 = TREE_OPERAND (ref2, 1); |
| 1845 | |
| 1846 | /* ??? We cannot simply use the type of operand #0 of the refs here |
| 1847 | as the Fortran compiler smuggles type punning into COMPONENT_REFs |
| 1848 | for common blocks instead of using unions like everyone else. */ |
| 1849 | tree type1 = DECL_CONTEXT (field1); |
| 1850 | tree type2 = DECL_CONTEXT (field2); |
| 1851 | |
| 1852 | partial_overlap = false; |
| 1853 | |
| 1854 | /* If we skipped array refs on type of different sizes, we can |
| 1855 | no longer be sure that there are not partial overlaps. */ |
| 1856 | if (seen_unmatched_ref_p && ntbaa1 >= 0 && ntbaa2 >= 0 |
| 1857 | && !operand_equal_p (TYPE_SIZE (type1), TYPE_SIZE (type2), flags: 0)) |
| 1858 | { |
| 1859 | ++alias_stats |
| 1860 | .nonoverlapping_refs_since_match_p_may_alias; |
| 1861 | return -1; |
| 1862 | } |
| 1863 | |
| 1864 | int cmp = nonoverlapping_component_refs_p_1 (field1, field2); |
| 1865 | if (cmp == -1) |
| 1866 | { |
| 1867 | ++alias_stats |
| 1868 | .nonoverlapping_refs_since_match_p_may_alias; |
| 1869 | return -1; |
| 1870 | } |
| 1871 | else if (cmp == 1) |
| 1872 | { |
| 1873 | ++alias_stats |
| 1874 | .nonoverlapping_refs_since_match_p_no_alias; |
| 1875 | return 1; |
| 1876 | } |
| 1877 | } |
| 1878 | } |
| 1879 | |
| 1880 | /* Return TYPE_UID which can be used to match record types we consider |
| 1881 | same for TBAA purposes. */ |
| 1882 | |
| 1883 | static inline int |
| 1884 | ncr_type_uid (const_tree field) |
| 1885 | { |
| 1886 | /* ??? We cannot simply use the type of operand #0 of the refs here |
| 1887 | as the Fortran compiler smuggles type punning into COMPONENT_REFs |
| 1888 | for common blocks instead of using unions like everyone else. */ |
| 1889 | tree type = DECL_FIELD_CONTEXT (field); |
| 1890 | /* With LTO types considered same_type_for_tbaa_p |
| 1891 | from different translation unit may not have same |
| 1892 | main variant. They however have same TYPE_CANONICAL. */ |
| 1893 | if (TYPE_CANONICAL (type)) |
| 1894 | return TYPE_UID (TYPE_CANONICAL (type)); |
| 1895 | return TYPE_UID (type); |
| 1896 | } |
| 1897 | |
| 1898 | /* qsort compare function to sort FIELD_DECLs after their |
| 1899 | DECL_FIELD_CONTEXT TYPE_UID. */ |
| 1900 | |
| 1901 | static inline int |
| 1902 | ncr_compar (const void *field1_, const void *field2_) |
| 1903 | { |
| 1904 | const_tree field1 = *(const_tree *) const_cast <void *>(field1_); |
| 1905 | const_tree field2 = *(const_tree *) const_cast <void *>(field2_); |
| 1906 | unsigned int uid1 = ncr_type_uid (field: field1); |
| 1907 | unsigned int uid2 = ncr_type_uid (field: field2); |
| 1908 | |
| 1909 | if (uid1 < uid2) |
| 1910 | return -1; |
| 1911 | else if (uid1 > uid2) |
| 1912 | return 1; |
| 1913 | return 0; |
| 1914 | } |
| 1915 | |
| 1916 | /* Return true if we can determine that the fields referenced cannot |
| 1917 | overlap for any pair of objects. This relies on TBAA. */ |
| 1918 | |
| 1919 | static bool |
| 1920 | nonoverlapping_component_refs_p (const_tree x, const_tree y) |
| 1921 | { |
| 1922 | /* Early return if we have nothing to do. |
| 1923 | |
| 1924 | Do not consider this as may-alias for stats - it is more useful |
| 1925 | to have information how many disambiguations happened provided that |
| 1926 | the query was meaningful. */ |
| 1927 | if (!flag_strict_aliasing |
| 1928 | || !x || !y |
| 1929 | || !handled_component_p (t: x) |
| 1930 | || !handled_component_p (t: y)) |
| 1931 | return false; |
| 1932 | |
| 1933 | auto_vec<const_tree, 16> fieldsx; |
| 1934 | while (handled_component_p (t: x)) |
| 1935 | { |
| 1936 | if (TREE_CODE (x) == COMPONENT_REF) |
| 1937 | { |
| 1938 | tree field = TREE_OPERAND (x, 1); |
| 1939 | tree type = DECL_FIELD_CONTEXT (field); |
| 1940 | if (TREE_CODE (type) == RECORD_TYPE) |
| 1941 | fieldsx.safe_push (obj: field); |
| 1942 | } |
| 1943 | else if (ends_tbaa_access_path_p (x)) |
| 1944 | fieldsx.truncate (size: 0); |
| 1945 | x = TREE_OPERAND (x, 0); |
| 1946 | } |
| 1947 | if (fieldsx.length () == 0) |
| 1948 | return false; |
| 1949 | auto_vec<const_tree, 16> fieldsy; |
| 1950 | while (handled_component_p (t: y)) |
| 1951 | { |
| 1952 | if (TREE_CODE (y) == COMPONENT_REF) |
| 1953 | { |
| 1954 | tree field = TREE_OPERAND (y, 1); |
| 1955 | tree type = DECL_FIELD_CONTEXT (field); |
| 1956 | if (TREE_CODE (type) == RECORD_TYPE) |
| 1957 | fieldsy.safe_push (TREE_OPERAND (y, 1)); |
| 1958 | } |
| 1959 | else if (ends_tbaa_access_path_p (y)) |
| 1960 | fieldsy.truncate (size: 0); |
| 1961 | y = TREE_OPERAND (y, 0); |
| 1962 | } |
| 1963 | if (fieldsy.length () == 0) |
| 1964 | { |
| 1965 | ++alias_stats.nonoverlapping_component_refs_p_may_alias; |
| 1966 | return false; |
| 1967 | } |
| 1968 | |
| 1969 | /* Most common case first. */ |
| 1970 | if (fieldsx.length () == 1 |
| 1971 | && fieldsy.length () == 1) |
| 1972 | { |
| 1973 | if (same_type_for_tbaa (DECL_FIELD_CONTEXT (fieldsx[0]), |
| 1974 | DECL_FIELD_CONTEXT (fieldsy[0])) == 1 |
| 1975 | && nonoverlapping_component_refs_p_1 (field1: fieldsx[0], field2: fieldsy[0]) == 1) |
| 1976 | { |
| 1977 | ++alias_stats.nonoverlapping_component_refs_p_no_alias; |
| 1978 | return true; |
| 1979 | } |
| 1980 | else |
| 1981 | { |
| 1982 | ++alias_stats.nonoverlapping_component_refs_p_may_alias; |
| 1983 | return false; |
| 1984 | } |
| 1985 | } |
| 1986 | |
| 1987 | if (fieldsx.length () == 2) |
| 1988 | { |
| 1989 | if (ncr_compar (field1_: &fieldsx[0], field2_: &fieldsx[1]) == 1) |
| 1990 | std::swap (a&: fieldsx[0], b&: fieldsx[1]); |
| 1991 | } |
| 1992 | else |
| 1993 | fieldsx.qsort (ncr_compar); |
| 1994 | |
| 1995 | if (fieldsy.length () == 2) |
| 1996 | { |
| 1997 | if (ncr_compar (field1_: &fieldsy[0], field2_: &fieldsy[1]) == 1) |
| 1998 | std::swap (a&: fieldsy[0], b&: fieldsy[1]); |
| 1999 | } |
| 2000 | else |
| 2001 | fieldsy.qsort (ncr_compar); |
| 2002 | |
| 2003 | unsigned i = 0, j = 0; |
| 2004 | do |
| 2005 | { |
| 2006 | const_tree fieldx = fieldsx[i]; |
| 2007 | const_tree fieldy = fieldsy[j]; |
| 2008 | |
| 2009 | /* We're left with accessing different fields of a structure, |
| 2010 | no possible overlap. */ |
| 2011 | if (same_type_for_tbaa (DECL_FIELD_CONTEXT (fieldx), |
| 2012 | DECL_FIELD_CONTEXT (fieldy)) == 1 |
| 2013 | && nonoverlapping_component_refs_p_1 (field1: fieldx, field2: fieldy) == 1) |
| 2014 | { |
| 2015 | ++alias_stats.nonoverlapping_component_refs_p_no_alias; |
| 2016 | return true; |
| 2017 | } |
| 2018 | |
| 2019 | if (ncr_type_uid (field: fieldx) < ncr_type_uid (field: fieldy)) |
| 2020 | { |
| 2021 | i++; |
| 2022 | if (i == fieldsx.length ()) |
| 2023 | break; |
| 2024 | } |
| 2025 | else |
| 2026 | { |
| 2027 | j++; |
| 2028 | if (j == fieldsy.length ()) |
| 2029 | break; |
| 2030 | } |
| 2031 | } |
| 2032 | while (1); |
| 2033 | |
| 2034 | ++alias_stats.nonoverlapping_component_refs_p_may_alias; |
| 2035 | return false; |
| 2036 | } |
| 2037 | |
| 2038 | |
| 2039 | /* Return true if two memory references based on the variables BASE1 |
| 2040 | and BASE2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and |
| 2041 | [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. REF1 and REF2 |
| 2042 | if non-NULL are the complete memory reference trees. */ |
| 2043 | |
| 2044 | static bool |
| 2045 | decl_refs_may_alias_p (tree ref1, tree base1, |
| 2046 | poly_int64 offset1, poly_int64 max_size1, |
| 2047 | poly_int64 size1, |
| 2048 | tree ref2, tree base2, |
| 2049 | poly_int64 offset2, poly_int64 max_size2, |
| 2050 | poly_int64 size2) |
| 2051 | { |
| 2052 | gcc_checking_assert (DECL_P (base1) && DECL_P (base2)); |
| 2053 | |
| 2054 | /* If both references are based on different variables, they cannot alias. */ |
| 2055 | if (compare_base_decls (base1, base2) == 0) |
| 2056 | return false; |
| 2057 | |
| 2058 | /* If both references are based on the same variable, they cannot alias if |
| 2059 | the accesses do not overlap. */ |
| 2060 | if (!ranges_maybe_overlap_p (pos1: offset1, size1: max_size1, pos2: offset2, size2: max_size2)) |
| 2061 | return false; |
| 2062 | |
| 2063 | /* If there is must alias, there is no use disambiguating further. */ |
| 2064 | if (known_eq (size1, max_size1) && known_eq (size2, max_size2)) |
| 2065 | return true; |
| 2066 | |
| 2067 | /* For components with variable position, the above test isn't sufficient, |
| 2068 | so we disambiguate component references manually. */ |
| 2069 | if (ref1 && ref2 |
| 2070 | && handled_component_p (t: ref1) && handled_component_p (t: ref2) |
| 2071 | && nonoverlapping_refs_since_match_p (NULL, ref1, NULL, ref2, partial_overlap: false) == 1) |
| 2072 | return false; |
| 2073 | |
| 2074 | return true; |
| 2075 | } |
| 2076 | |
| 2077 | /* Return true if access with BASE is view converted. |
| 2078 | Base must not be stripped from inner MEM_REF (&decl) |
| 2079 | which is done by ao_ref_base and thus one extra walk |
| 2080 | of handled components is needed. */ |
| 2081 | |
| 2082 | bool |
| 2083 | view_converted_memref_p (tree base) |
| 2084 | { |
| 2085 | if (TREE_CODE (base) != MEM_REF && TREE_CODE (base) != TARGET_MEM_REF) |
| 2086 | return false; |
| 2087 | return (same_type_for_tbaa (TREE_TYPE (base), |
| 2088 | TREE_TYPE (TREE_TYPE (TREE_OPERAND (base, 1)))) |
| 2089 | != 1); |
| 2090 | } |
| 2091 | |
| 2092 | /* Return true if an indirect reference based on *PTR1 constrained |
| 2093 | to [OFFSET1, OFFSET1 + MAX_SIZE1) may alias a variable based on BASE2 |
| 2094 | constrained to [OFFSET2, OFFSET2 + MAX_SIZE2). *PTR1 and BASE2 have |
| 2095 | the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1 |
| 2096 | in which case they are computed on-demand. REF1 and REF2 |
| 2097 | if non-NULL are the complete memory reference trees. */ |
| 2098 | |
| 2099 | static bool |
| 2100 | indirect_ref_may_alias_decl_p (tree ref1 ATTRIBUTE_UNUSED, tree base1, |
| 2101 | poly_int64 offset1, poly_int64 max_size1, |
| 2102 | poly_int64 size1, |
| 2103 | alias_set_type ref1_alias_set, |
| 2104 | alias_set_type base1_alias_set, |
| 2105 | tree ref2 ATTRIBUTE_UNUSED, tree base2, |
| 2106 | poly_int64 offset2, poly_int64 max_size2, |
| 2107 | poly_int64 size2, |
| 2108 | alias_set_type ref2_alias_set, |
| 2109 | alias_set_type base2_alias_set, bool tbaa_p) |
| 2110 | { |
| 2111 | tree ptr1; |
| 2112 | tree ptrtype1, dbase2; |
| 2113 | |
| 2114 | gcc_checking_assert ((TREE_CODE (base1) == MEM_REF |
| 2115 | || TREE_CODE (base1) == TARGET_MEM_REF) |
| 2116 | && DECL_P (base2)); |
| 2117 | |
| 2118 | ptr1 = TREE_OPERAND (base1, 0); |
| 2119 | poly_offset_int moff = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT; |
| 2120 | |
| 2121 | /* If only one reference is based on a variable, they cannot alias if |
| 2122 | the pointer access is beyond the extent of the variable access. |
| 2123 | (the pointer base cannot validly point to an offset less than zero |
| 2124 | of the variable). |
| 2125 | ??? IVOPTs creates bases that do not honor this restriction, |
| 2126 | so do not apply this optimization for TARGET_MEM_REFs. */ |
| 2127 | if (TREE_CODE (base1) != TARGET_MEM_REF |
| 2128 | && !ranges_maybe_overlap_p (pos1: offset1 + moff, size1: -1, pos2: offset2, size2: max_size2)) |
| 2129 | return false; |
| 2130 | |
| 2131 | /* If the pointer based access is bigger than the variable they cannot |
| 2132 | alias. This is similar to the check below where we use TBAA to |
| 2133 | increase the size of the pointer based access based on the dynamic |
| 2134 | type of a containing object we can infer from it. */ |
| 2135 | poly_int64 dsize2; |
| 2136 | if (known_size_p (a: size1) |
| 2137 | && poly_int_tree_p (DECL_SIZE (base2), value: &dsize2) |
| 2138 | && known_lt (dsize2, size1)) |
| 2139 | return false; |
| 2140 | |
| 2141 | /* They also cannot alias if the pointer may not point to the decl. */ |
| 2142 | if (!ptr_deref_may_alias_decl_p (ptr: ptr1, decl: base2)) |
| 2143 | return false; |
| 2144 | |
| 2145 | /* Disambiguations that rely on strict aliasing rules follow. */ |
| 2146 | if (!flag_strict_aliasing || !tbaa_p) |
| 2147 | return true; |
| 2148 | |
| 2149 | /* If the alias set for a pointer access is zero all bets are off. */ |
| 2150 | if (base1_alias_set == 0 || base2_alias_set == 0) |
| 2151 | return true; |
| 2152 | |
| 2153 | /* When we are trying to disambiguate an access with a pointer dereference |
| 2154 | as base versus one with a decl as base we can use both the size |
| 2155 | of the decl and its dynamic type for extra disambiguation. |
| 2156 | ??? We do not know anything about the dynamic type of the decl |
| 2157 | other than that its alias-set contains base2_alias_set as a subset |
| 2158 | which does not help us here. */ |
| 2159 | /* As we know nothing useful about the dynamic type of the decl just |
| 2160 | use the usual conflict check rather than a subset test. |
| 2161 | ??? We could introduce -fvery-strict-aliasing when the language |
| 2162 | does not allow decls to have a dynamic type that differs from their |
| 2163 | static type. Then we can check |
| 2164 | !alias_set_subset_of (base1_alias_set, base2_alias_set) instead. */ |
| 2165 | if (base1_alias_set != base2_alias_set |
| 2166 | && !alias_sets_conflict_p (base1_alias_set, base2_alias_set)) |
| 2167 | return false; |
| 2168 | |
| 2169 | ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1)); |
| 2170 | |
| 2171 | /* If the size of the access relevant for TBAA through the pointer |
| 2172 | is bigger than the size of the decl we can't possibly access the |
| 2173 | decl via that pointer. */ |
| 2174 | if (/* ??? This in turn may run afoul when a decl of type T which is |
| 2175 | a member of union type U is accessed through a pointer to |
| 2176 | type U and sizeof T is smaller than sizeof U. */ |
| 2177 | TREE_CODE (TREE_TYPE (ptrtype1)) != UNION_TYPE |
| 2178 | && TREE_CODE (TREE_TYPE (ptrtype1)) != QUAL_UNION_TYPE |
| 2179 | && compare_sizes (DECL_SIZE (base2), |
| 2180 | TYPE_SIZE (TREE_TYPE (ptrtype1))) < 0) |
| 2181 | return false; |
| 2182 | |
| 2183 | if (!ref2) |
| 2184 | return true; |
| 2185 | |
| 2186 | /* If the decl is accessed via a MEM_REF, reconstruct the base |
| 2187 | we can use for TBAA and an appropriately adjusted offset. */ |
| 2188 | dbase2 = ref2; |
| 2189 | while (handled_component_p (t: dbase2)) |
| 2190 | dbase2 = TREE_OPERAND (dbase2, 0); |
| 2191 | poly_int64 doffset1 = offset1; |
| 2192 | poly_offset_int doffset2 = offset2; |
| 2193 | if (TREE_CODE (dbase2) == MEM_REF |
| 2194 | || TREE_CODE (dbase2) == TARGET_MEM_REF) |
| 2195 | { |
| 2196 | doffset2 -= mem_ref_offset (dbase2) << LOG2_BITS_PER_UNIT; |
| 2197 | tree ptrtype2 = TREE_TYPE (TREE_OPERAND (dbase2, 1)); |
| 2198 | /* If second reference is view-converted, give up now. */ |
| 2199 | if (same_type_for_tbaa (TREE_TYPE (dbase2), TREE_TYPE (ptrtype2)) != 1) |
| 2200 | return true; |
| 2201 | } |
| 2202 | |
| 2203 | /* If first reference is view-converted, give up now. */ |
| 2204 | if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1) |
| 2205 | return true; |
| 2206 | |
| 2207 | /* If both references are through the same type, they do not alias |
| 2208 | if the accesses do not overlap. This does extra disambiguation |
| 2209 | for mixed/pointer accesses but requires strict aliasing. |
| 2210 | For MEM_REFs we require that the component-ref offset we computed |
| 2211 | is relative to the start of the type which we ensure by |
| 2212 | comparing rvalue and access type and disregarding the constant |
| 2213 | pointer offset. |
| 2214 | |
| 2215 | But avoid treating variable length arrays as "objects", instead assume they |
| 2216 | can overlap by an exact multiple of their element size. |
| 2217 | See gcc.dg/torture/alias-2.c. */ |
| 2218 | if (((TREE_CODE (base1) != TARGET_MEM_REF |
| 2219 | || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1))) |
| 2220 | && (TREE_CODE (dbase2) != TARGET_MEM_REF |
| 2221 | || (!TMR_INDEX (dbase2) && !TMR_INDEX2 (dbase2)))) |
| 2222 | && same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (dbase2)) == 1) |
| 2223 | { |
| 2224 | bool partial_overlap = (TREE_CODE (TREE_TYPE (base1)) == ARRAY_TYPE |
| 2225 | && (TYPE_SIZE (TREE_TYPE (base1)) |
| 2226 | && TREE_CODE (TYPE_SIZE (TREE_TYPE (base1))) |
| 2227 | != INTEGER_CST)); |
| 2228 | if (!partial_overlap |
| 2229 | && !ranges_maybe_overlap_p (pos1: doffset1, size1: max_size1, pos2: doffset2, size2: max_size2)) |
| 2230 | return false; |
| 2231 | if (!ref1 || !ref2 |
| 2232 | /* If there is must alias, there is no use disambiguating further. */ |
| 2233 | || (!partial_overlap |
| 2234 | && known_eq (size1, max_size1) && known_eq (size2, max_size2))) |
| 2235 | return true; |
| 2236 | int res = nonoverlapping_refs_since_match_p (match1: base1, ref1, match2: base2, ref2, |
| 2237 | partial_overlap); |
| 2238 | if (res == -1) |
| 2239 | return !nonoverlapping_component_refs_p (x: ref1, y: ref2); |
| 2240 | return !res; |
| 2241 | } |
| 2242 | |
| 2243 | /* Do access-path based disambiguation. */ |
| 2244 | if (ref1 && ref2 |
| 2245 | && (handled_component_p (t: ref1) || handled_component_p (t: ref2))) |
| 2246 | return aliasing_component_refs_p (ref1, |
| 2247 | ref1_alias_set, base1_alias_set, |
| 2248 | offset1, max_size1, |
| 2249 | ref2, |
| 2250 | ref2_alias_set, base2_alias_set, |
| 2251 | offset2, max_size2); |
| 2252 | |
| 2253 | return true; |
| 2254 | } |
| 2255 | |
| 2256 | /* Return true if two indirect references based on *PTR1 |
| 2257 | and *PTR2 constrained to [OFFSET1, OFFSET1 + MAX_SIZE1) and |
| 2258 | [OFFSET2, OFFSET2 + MAX_SIZE2) may alias. *PTR1 and *PTR2 have |
| 2259 | the alias sets BASE1_ALIAS_SET and BASE2_ALIAS_SET which can be -1 |
| 2260 | in which case they are computed on-demand. REF1 and REF2 |
| 2261 | if non-NULL are the complete memory reference trees. */ |
| 2262 | |
| 2263 | static bool |
| 2264 | indirect_refs_may_alias_p (tree ref1 ATTRIBUTE_UNUSED, tree base1, |
| 2265 | poly_int64 offset1, poly_int64 max_size1, |
| 2266 | poly_int64 size1, |
| 2267 | alias_set_type ref1_alias_set, |
| 2268 | alias_set_type base1_alias_set, |
| 2269 | tree ref2 ATTRIBUTE_UNUSED, tree base2, |
| 2270 | poly_int64 offset2, poly_int64 max_size2, |
| 2271 | poly_int64 size2, |
| 2272 | alias_set_type ref2_alias_set, |
| 2273 | alias_set_type base2_alias_set, bool tbaa_p) |
| 2274 | { |
| 2275 | tree ptr1; |
| 2276 | tree ptr2; |
| 2277 | tree ptrtype1, ptrtype2; |
| 2278 | |
| 2279 | gcc_checking_assert ((TREE_CODE (base1) == MEM_REF |
| 2280 | || TREE_CODE (base1) == TARGET_MEM_REF) |
| 2281 | && (TREE_CODE (base2) == MEM_REF |
| 2282 | || TREE_CODE (base2) == TARGET_MEM_REF)); |
| 2283 | |
| 2284 | ptr1 = TREE_OPERAND (base1, 0); |
| 2285 | ptr2 = TREE_OPERAND (base2, 0); |
| 2286 | |
| 2287 | /* If both bases are based on pointers they cannot alias if they may not |
| 2288 | point to the same memory object or if they point to the same object |
| 2289 | and the accesses do not overlap. */ |
| 2290 | if ((!cfun || gimple_in_ssa_p (cfun)) |
| 2291 | && operand_equal_p (ptr1, ptr2, flags: 0) |
| 2292 | && (((TREE_CODE (base1) != TARGET_MEM_REF |
| 2293 | || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1))) |
| 2294 | && (TREE_CODE (base2) != TARGET_MEM_REF |
| 2295 | || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2)))) |
| 2296 | || (TREE_CODE (base1) == TARGET_MEM_REF |
| 2297 | && TREE_CODE (base2) == TARGET_MEM_REF |
| 2298 | && (TMR_STEP (base1) == TMR_STEP (base2) |
| 2299 | || (TMR_STEP (base1) && TMR_STEP (base2) |
| 2300 | && operand_equal_p (TMR_STEP (base1), |
| 2301 | TMR_STEP (base2), flags: 0))) |
| 2302 | && (TMR_INDEX (base1) == TMR_INDEX (base2) |
| 2303 | || (TMR_INDEX (base1) && TMR_INDEX (base2) |
| 2304 | && operand_equal_p (TMR_INDEX (base1), |
| 2305 | TMR_INDEX (base2), flags: 0))) |
| 2306 | && (TMR_INDEX2 (base1) == TMR_INDEX2 (base2) |
| 2307 | || (TMR_INDEX2 (base1) && TMR_INDEX2 (base2) |
| 2308 | && operand_equal_p (TMR_INDEX2 (base1), |
| 2309 | TMR_INDEX2 (base2), flags: 0)))))) |
| 2310 | { |
| 2311 | poly_offset_int moff1 = mem_ref_offset (base1) << LOG2_BITS_PER_UNIT; |
| 2312 | poly_offset_int moff2 = mem_ref_offset (base2) << LOG2_BITS_PER_UNIT; |
| 2313 | if (!ranges_maybe_overlap_p (pos1: offset1 + moff1, size1: max_size1, |
| 2314 | pos2: offset2 + moff2, size2: max_size2)) |
| 2315 | return false; |
| 2316 | /* If there is must alias, there is no use disambiguating further. */ |
| 2317 | if (known_eq (size1, max_size1) && known_eq (size2, max_size2)) |
| 2318 | return true; |
| 2319 | if (ref1 && ref2) |
| 2320 | { |
| 2321 | int res = nonoverlapping_refs_since_match_p (NULL, ref1, NULL, ref2, |
| 2322 | partial_overlap: false); |
| 2323 | if (res != -1) |
| 2324 | return !res; |
| 2325 | } |
| 2326 | } |
| 2327 | if (!ptr_derefs_may_alias_p (ptr1, ptr2)) |
| 2328 | return false; |
| 2329 | |
| 2330 | /* Disambiguations that rely on strict aliasing rules follow. */ |
| 2331 | if (!flag_strict_aliasing || !tbaa_p) |
| 2332 | return true; |
| 2333 | |
| 2334 | ptrtype1 = TREE_TYPE (TREE_OPERAND (base1, 1)); |
| 2335 | ptrtype2 = TREE_TYPE (TREE_OPERAND (base2, 1)); |
| 2336 | |
| 2337 | /* If the alias set for a pointer access is zero all bets are off. */ |
| 2338 | if (base1_alias_set == 0 |
| 2339 | || base2_alias_set == 0) |
| 2340 | return true; |
| 2341 | |
| 2342 | /* Do type-based disambiguation. */ |
| 2343 | if (base1_alias_set != base2_alias_set |
| 2344 | && !alias_sets_conflict_p (base1_alias_set, base2_alias_set)) |
| 2345 | return false; |
| 2346 | |
| 2347 | /* If either reference is view-converted, give up now. */ |
| 2348 | if (same_type_for_tbaa (TREE_TYPE (base1), TREE_TYPE (ptrtype1)) != 1 |
| 2349 | || same_type_for_tbaa (TREE_TYPE (base2), TREE_TYPE (ptrtype2)) != 1) |
| 2350 | return true; |
| 2351 | |
| 2352 | /* If both references are through the same type, they do not alias |
| 2353 | if the accesses do not overlap. This does extra disambiguation |
| 2354 | for mixed/pointer accesses but requires strict aliasing. */ |
| 2355 | if ((TREE_CODE (base1) != TARGET_MEM_REF |
| 2356 | || (!TMR_INDEX (base1) && !TMR_INDEX2 (base1))) |
| 2357 | && (TREE_CODE (base2) != TARGET_MEM_REF |
| 2358 | || (!TMR_INDEX (base2) && !TMR_INDEX2 (base2))) |
| 2359 | && same_type_for_tbaa (TREE_TYPE (ptrtype1), |
| 2360 | TREE_TYPE (ptrtype2)) == 1) |
| 2361 | { |
| 2362 | /* But avoid treating arrays as "objects", instead assume they |
| 2363 | can overlap by an exact multiple of their element size. |
| 2364 | See gcc.dg/torture/alias-2.c. */ |
| 2365 | bool partial_overlap = TREE_CODE (TREE_TYPE (ptrtype1)) == ARRAY_TYPE; |
| 2366 | |
| 2367 | if (!partial_overlap |
| 2368 | && !ranges_maybe_overlap_p (pos1: offset1, size1: max_size1, pos2: offset2, size2: max_size2)) |
| 2369 | return false; |
| 2370 | if (!ref1 || !ref2 |
| 2371 | || (!partial_overlap |
| 2372 | && known_eq (size1, max_size1) && known_eq (size2, max_size2))) |
| 2373 | return true; |
| 2374 | int res = nonoverlapping_refs_since_match_p (match1: base1, ref1, match2: base2, ref2, |
| 2375 | partial_overlap); |
| 2376 | if (res == -1) |
| 2377 | return !nonoverlapping_component_refs_p (x: ref1, y: ref2); |
| 2378 | return !res; |
| 2379 | } |
| 2380 | |
| 2381 | /* Do access-path based disambiguation. */ |
| 2382 | if (ref1 && ref2 |
| 2383 | && (handled_component_p (t: ref1) || handled_component_p (t: ref2))) |
| 2384 | return aliasing_component_refs_p (ref1, |
| 2385 | ref1_alias_set, base1_alias_set, |
| 2386 | offset1, max_size1, |
| 2387 | ref2, |
| 2388 | ref2_alias_set, base2_alias_set, |
| 2389 | offset2, max_size2); |
| 2390 | |
| 2391 | return true; |
| 2392 | } |
| 2393 | |
| 2394 | /* Return true, if the two memory references REF1 and REF2 may alias. */ |
| 2395 | |
| 2396 | static bool |
| 2397 | refs_may_alias_p_2 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p) |
| 2398 | { |
| 2399 | tree base1, base2; |
| 2400 | poly_int64 offset1 = 0, offset2 = 0; |
| 2401 | poly_int64 max_size1 = -1, max_size2 = -1; |
| 2402 | bool var1_p, var2_p, ind1_p, ind2_p; |
| 2403 | |
| 2404 | gcc_checking_assert ((!ref1->ref |
| 2405 | || TREE_CODE (ref1->ref) == SSA_NAME |
| 2406 | || DECL_P (ref1->ref) |
| 2407 | || TREE_CODE (ref1->ref) == STRING_CST |
| 2408 | || handled_component_p (ref1->ref) |
| 2409 | || TREE_CODE (ref1->ref) == MEM_REF |
| 2410 | || TREE_CODE (ref1->ref) == TARGET_MEM_REF |
| 2411 | || TREE_CODE (ref1->ref) == WITH_SIZE_EXPR) |
| 2412 | && (!ref2->ref |
| 2413 | || TREE_CODE (ref2->ref) == SSA_NAME |
| 2414 | || DECL_P (ref2->ref) |
| 2415 | || TREE_CODE (ref2->ref) == STRING_CST |
| 2416 | || handled_component_p (ref2->ref) |
| 2417 | || TREE_CODE (ref2->ref) == MEM_REF |
| 2418 | || TREE_CODE (ref2->ref) == TARGET_MEM_REF |
| 2419 | || TREE_CODE (ref2->ref) == WITH_SIZE_EXPR)); |
| 2420 | |
| 2421 | /* Decompose the references into their base objects and the access. */ |
| 2422 | base1 = ao_ref_base (ref: ref1); |
| 2423 | offset1 = ref1->offset; |
| 2424 | max_size1 = ref1->max_size; |
| 2425 | base2 = ao_ref_base (ref: ref2); |
| 2426 | offset2 = ref2->offset; |
| 2427 | max_size2 = ref2->max_size; |
| 2428 | |
| 2429 | /* We can end up with registers or constants as bases for example from |
| 2430 | *D.1663_44 = VIEW_CONVERT_EXPR<struct DB_LSN>(__tmp$B0F64_59); |
| 2431 | which is seen as a struct copy. */ |
| 2432 | if (TREE_CODE (base1) == SSA_NAME |
| 2433 | || TREE_CODE (base1) == CONST_DECL |
| 2434 | || TREE_CODE (base1) == CONSTRUCTOR |
| 2435 | || TREE_CODE (base1) == ADDR_EXPR |
| 2436 | || CONSTANT_CLASS_P (base1) |
| 2437 | || TREE_CODE (base2) == SSA_NAME |
| 2438 | || TREE_CODE (base2) == CONST_DECL |
| 2439 | || TREE_CODE (base2) == CONSTRUCTOR |
| 2440 | || TREE_CODE (base2) == ADDR_EXPR |
| 2441 | || CONSTANT_CLASS_P (base2)) |
| 2442 | return false; |
| 2443 | |
| 2444 | /* Two volatile accesses always conflict. */ |
| 2445 | if (ref1->volatile_p |
| 2446 | && ref2->volatile_p) |
| 2447 | return true; |
| 2448 | |
| 2449 | /* refN->ref may convey size information, do not confuse our workers |
| 2450 | with that but strip it - ao_ref_base took it into account already. */ |
| 2451 | tree ref1ref = ref1->ref; |
| 2452 | if (ref1ref && TREE_CODE (ref1ref) == WITH_SIZE_EXPR) |
| 2453 | ref1ref = TREE_OPERAND (ref1ref, 0); |
| 2454 | tree ref2ref = ref2->ref; |
| 2455 | if (ref2ref && TREE_CODE (ref2ref) == WITH_SIZE_EXPR) |
| 2456 | ref2ref = TREE_OPERAND (ref2ref, 0); |
| 2457 | |
| 2458 | /* Defer to simple offset based disambiguation if we have |
| 2459 | references based on two decls. Do this before defering to |
| 2460 | TBAA to handle must-alias cases in conformance with the |
| 2461 | GCC extension of allowing type-punning through unions. */ |
| 2462 | var1_p = DECL_P (base1); |
| 2463 | var2_p = DECL_P (base2); |
| 2464 | if (var1_p && var2_p) |
| 2465 | return decl_refs_may_alias_p (ref1: ref1ref, base1, offset1, max_size1, |
| 2466 | size1: ref1->size, |
| 2467 | ref2: ref2ref, base2, offset2, max_size2, |
| 2468 | size2: ref2->size); |
| 2469 | |
| 2470 | /* We can end up referring to code via function and label decls. |
| 2471 | As we likely do not properly track code aliases conservatively |
| 2472 | bail out. */ |
| 2473 | if (TREE_CODE (base1) == FUNCTION_DECL |
| 2474 | || TREE_CODE (base1) == LABEL_DECL |
| 2475 | || TREE_CODE (base2) == FUNCTION_DECL |
| 2476 | || TREE_CODE (base2) == LABEL_DECL) |
| 2477 | return true; |
| 2478 | |
| 2479 | /* Handle restrict based accesses. |
| 2480 | ??? ao_ref_base strips inner MEM_REF [&decl], recover from that |
| 2481 | here. */ |
| 2482 | tree rbase1 = base1; |
| 2483 | tree rbase2 = base2; |
| 2484 | if (var1_p) |
| 2485 | { |
| 2486 | rbase1 = ref1ref; |
| 2487 | if (rbase1) |
| 2488 | while (handled_component_p (t: rbase1)) |
| 2489 | rbase1 = TREE_OPERAND (rbase1, 0); |
| 2490 | } |
| 2491 | if (var2_p) |
| 2492 | { |
| 2493 | rbase2 = ref2ref; |
| 2494 | if (rbase2) |
| 2495 | while (handled_component_p (t: rbase2)) |
| 2496 | rbase2 = TREE_OPERAND (rbase2, 0); |
| 2497 | } |
| 2498 | if (rbase1 && rbase2 |
| 2499 | && (TREE_CODE (rbase1) == MEM_REF || TREE_CODE (rbase1) == TARGET_MEM_REF) |
| 2500 | && (TREE_CODE (rbase2) == MEM_REF || TREE_CODE (rbase2) == TARGET_MEM_REF) |
| 2501 | /* If the accesses are in the same restrict clique... */ |
| 2502 | && MR_DEPENDENCE_CLIQUE (rbase1) == MR_DEPENDENCE_CLIQUE (rbase2) |
| 2503 | /* But based on different pointers they do not alias. */ |
| 2504 | && MR_DEPENDENCE_BASE (rbase1) != MR_DEPENDENCE_BASE (rbase2)) |
| 2505 | return false; |
| 2506 | |
| 2507 | ind1_p = (TREE_CODE (base1) == MEM_REF |
| 2508 | || TREE_CODE (base1) == TARGET_MEM_REF); |
| 2509 | ind2_p = (TREE_CODE (base2) == MEM_REF |
| 2510 | || TREE_CODE (base2) == TARGET_MEM_REF); |
| 2511 | |
| 2512 | /* Canonicalize the pointer-vs-decl case. */ |
| 2513 | if (ind1_p && var2_p) |
| 2514 | { |
| 2515 | std::swap (a&: offset1, b&: offset2); |
| 2516 | std::swap (a&: max_size1, b&: max_size2); |
| 2517 | std::swap (a&: base1, b&: base2); |
| 2518 | std::swap (a&: ref1, b&: ref2); |
| 2519 | std::swap (a&: ref1ref, b&: ref2ref); |
| 2520 | var1_p = true; |
| 2521 | ind1_p = false; |
| 2522 | var2_p = false; |
| 2523 | ind2_p = true; |
| 2524 | } |
| 2525 | |
| 2526 | /* First defer to TBAA if possible. */ |
| 2527 | if (tbaa_p |
| 2528 | && flag_strict_aliasing |
| 2529 | && !alias_sets_conflict_p (ao_ref_alias_set (ref: ref1), |
| 2530 | ao_ref_alias_set (ref: ref2))) |
| 2531 | return false; |
| 2532 | |
| 2533 | /* If the reference is based on a pointer that points to memory |
| 2534 | that may not be written to then the other reference cannot possibly |
| 2535 | clobber it. */ |
| 2536 | if ((TREE_CODE (TREE_OPERAND (base2, 0)) == SSA_NAME |
| 2537 | && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base2, 0))) |
| 2538 | || (ind1_p |
| 2539 | && TREE_CODE (TREE_OPERAND (base1, 0)) == SSA_NAME |
| 2540 | && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base1, 0)))) |
| 2541 | return false; |
| 2542 | |
| 2543 | /* Dispatch to the pointer-vs-decl or pointer-vs-pointer disambiguators. */ |
| 2544 | if (var1_p && ind2_p) |
| 2545 | return indirect_ref_may_alias_decl_p (ref1: ref2ref, base1: base2, |
| 2546 | offset1: offset2, max_size1: max_size2, size1: ref2->size, |
| 2547 | ref1_alias_set: ao_ref_alias_set (ref: ref2), |
| 2548 | base1_alias_set: ao_ref_base_alias_set (ref: ref2), |
| 2549 | ref2: ref1ref, base2: base1, |
| 2550 | offset2: offset1, max_size2: max_size1, size2: ref1->size, |
| 2551 | ref2_alias_set: ao_ref_alias_set (ref: ref1), |
| 2552 | base2_alias_set: ao_ref_base_alias_set (ref: ref1), |
| 2553 | tbaa_p); |
| 2554 | else if (ind1_p && ind2_p) |
| 2555 | return indirect_refs_may_alias_p (ref1: ref1ref, base1, |
| 2556 | offset1, max_size1, size1: ref1->size, |
| 2557 | ref1_alias_set: ao_ref_alias_set (ref: ref1), |
| 2558 | base1_alias_set: ao_ref_base_alias_set (ref: ref1), |
| 2559 | ref2: ref2ref, base2, |
| 2560 | offset2, max_size2, size2: ref2->size, |
| 2561 | ref2_alias_set: ao_ref_alias_set (ref: ref2), |
| 2562 | base2_alias_set: ao_ref_base_alias_set (ref: ref2), |
| 2563 | tbaa_p); |
| 2564 | |
| 2565 | gcc_unreachable (); |
| 2566 | } |
| 2567 | |
| 2568 | /* Return true, if the two memory references REF1 and REF2 may alias |
| 2569 | and update statistics. */ |
| 2570 | |
| 2571 | bool |
| 2572 | refs_may_alias_p_1 (ao_ref *ref1, ao_ref *ref2, bool tbaa_p) |
| 2573 | { |
| 2574 | bool res = refs_may_alias_p_2 (ref1, ref2, tbaa_p); |
| 2575 | if (res) |
| 2576 | ++alias_stats.refs_may_alias_p_may_alias; |
| 2577 | else |
| 2578 | ++alias_stats.refs_may_alias_p_no_alias; |
| 2579 | return res; |
| 2580 | } |
| 2581 | |
| 2582 | static bool |
| 2583 | refs_may_alias_p (tree ref1, ao_ref *ref2, bool tbaa_p) |
| 2584 | { |
| 2585 | ao_ref r1; |
| 2586 | ao_ref_init (r: &r1, ref: ref1); |
| 2587 | return refs_may_alias_p_1 (ref1: &r1, ref2, tbaa_p); |
| 2588 | } |
| 2589 | |
| 2590 | bool |
| 2591 | refs_may_alias_p (tree ref1, tree ref2, bool tbaa_p) |
| 2592 | { |
| 2593 | ao_ref r1, r2; |
| 2594 | ao_ref_init (r: &r1, ref: ref1); |
| 2595 | ao_ref_init (r: &r2, ref: ref2); |
| 2596 | return refs_may_alias_p_1 (ref1: &r1, ref2: &r2, tbaa_p); |
| 2597 | } |
| 2598 | |
| 2599 | /* Returns true if there is a anti-dependence for the STORE that |
| 2600 | executes after the LOAD. */ |
| 2601 | |
| 2602 | bool |
| 2603 | refs_anti_dependent_p (tree load, tree store) |
| 2604 | { |
| 2605 | ao_ref r1, r2; |
| 2606 | ao_ref_init (r: &r1, ref: load); |
| 2607 | ao_ref_init (r: &r2, ref: store); |
| 2608 | return refs_may_alias_p_1 (ref1: &r1, ref2: &r2, tbaa_p: false); |
| 2609 | } |
| 2610 | |
| 2611 | /* Returns true if there is a output dependence for the stores |
| 2612 | STORE1 and STORE2. */ |
| 2613 | |
| 2614 | bool |
| 2615 | refs_output_dependent_p (tree store1, tree store2) |
| 2616 | { |
| 2617 | ao_ref r1, r2; |
| 2618 | ao_ref_init (r: &r1, ref: store1); |
| 2619 | ao_ref_init (r: &r2, ref: store2); |
| 2620 | return refs_may_alias_p_1 (ref1: &r1, ref2: &r2, tbaa_p: false); |
| 2621 | } |
| 2622 | |
| 2623 | /* Returns true if and only if REF may alias any access stored in TT. |
| 2624 | IF TBAA_P is true, use TBAA oracle. */ |
| 2625 | |
| 2626 | static bool |
| 2627 | modref_may_conflict (const gcall *stmt, |
| 2628 | modref_tree <alias_set_type> *tt, ao_ref *ref, bool tbaa_p) |
| 2629 | { |
| 2630 | alias_set_type base_set, ref_set; |
| 2631 | bool global_memory_ok = false; |
| 2632 | |
| 2633 | if (tt->every_base) |
| 2634 | return true; |
| 2635 | |
| 2636 | if (!dbg_cnt (index: ipa_mod_ref)) |
| 2637 | return true; |
| 2638 | |
| 2639 | base_set = ao_ref_base_alias_set (ref); |
| 2640 | |
| 2641 | ref_set = ao_ref_alias_set (ref); |
| 2642 | |
| 2643 | int num_tests = 0, max_tests = param_modref_max_tests; |
| 2644 | for (auto base_node : tt->bases) |
| 2645 | { |
| 2646 | if (tbaa_p && flag_strict_aliasing) |
| 2647 | { |
| 2648 | if (num_tests >= max_tests) |
| 2649 | return true; |
| 2650 | alias_stats.modref_tests++; |
| 2651 | if (!alias_sets_conflict_p (base_set, base_node->base)) |
| 2652 | continue; |
| 2653 | num_tests++; |
| 2654 | } |
| 2655 | |
| 2656 | if (base_node->every_ref) |
| 2657 | return true; |
| 2658 | |
| 2659 | for (auto ref_node : base_node->refs) |
| 2660 | { |
| 2661 | /* Do not repeat same test as before. */ |
| 2662 | if ((ref_set != base_set || base_node->base != ref_node->ref) |
| 2663 | && tbaa_p && flag_strict_aliasing) |
| 2664 | { |
| 2665 | if (num_tests >= max_tests) |
| 2666 | return true; |
| 2667 | alias_stats.modref_tests++; |
| 2668 | if (!alias_sets_conflict_p (ref_set, ref_node->ref)) |
| 2669 | continue; |
| 2670 | num_tests++; |
| 2671 | } |
| 2672 | |
| 2673 | if (ref_node->every_access) |
| 2674 | return true; |
| 2675 | |
| 2676 | /* TBAA checks did not disambiguate, try individual accesses. */ |
| 2677 | for (auto access_node : ref_node->accesses) |
| 2678 | { |
| 2679 | if (num_tests >= max_tests) |
| 2680 | return true; |
| 2681 | |
| 2682 | if (access_node.parm_index == MODREF_GLOBAL_MEMORY_PARM) |
| 2683 | { |
| 2684 | if (global_memory_ok) |
| 2685 | continue; |
| 2686 | if (ref_may_alias_global_p (ref, escaped_local_p: true)) |
| 2687 | return true; |
| 2688 | global_memory_ok = true; |
| 2689 | num_tests++; |
| 2690 | continue; |
| 2691 | } |
| 2692 | |
| 2693 | tree arg = access_node.get_call_arg (stmt); |
| 2694 | if (!arg) |
| 2695 | return true; |
| 2696 | |
| 2697 | alias_stats.modref_baseptr_tests++; |
| 2698 | |
| 2699 | if (integer_zerop (arg) && flag_delete_null_pointer_checks) |
| 2700 | continue; |
| 2701 | |
| 2702 | /* PTA oracle will be unhapy of arg is not an pointer. */ |
| 2703 | if (!POINTER_TYPE_P (TREE_TYPE (arg))) |
| 2704 | return true; |
| 2705 | |
| 2706 | /* If we don't have base pointer, give up. */ |
| 2707 | if (!ref->ref && !ref->base) |
| 2708 | continue; |
| 2709 | |
| 2710 | ao_ref ref2; |
| 2711 | if (access_node.get_ao_ref (stmt, ref: &ref2)) |
| 2712 | { |
| 2713 | ref2.ref_alias_set = ref_node->ref; |
| 2714 | ref2.base_alias_set = base_node->base; |
| 2715 | if (refs_may_alias_p_1 (ref1: &ref2, ref2: ref, tbaa_p)) |
| 2716 | return true; |
| 2717 | } |
| 2718 | else if (ptr_deref_may_alias_ref_p_1 (ptr: arg, ref)) |
| 2719 | return true; |
| 2720 | |
| 2721 | num_tests++; |
| 2722 | } |
| 2723 | } |
| 2724 | } |
| 2725 | return false; |
| 2726 | } |
| 2727 | |
| 2728 | /* Check if REF conflicts with call using "fn spec" attribute. |
| 2729 | If CLOBBER is true we are checking for writes, otherwise check loads. |
| 2730 | |
| 2731 | Return 0 if there are no conflicts (except for possible function call |
| 2732 | argument reads), 1 if there are conflicts and -1 if we can not decide by |
| 2733 | fn spec. */ |
| 2734 | |
| 2735 | static int |
| 2736 | check_fnspec (gcall *call, ao_ref *ref, bool clobber) |
| 2737 | { |
| 2738 | attr_fnspec fnspec = gimple_call_fnspec (stmt: call); |
| 2739 | if (fnspec.known_p ()) |
| 2740 | { |
| 2741 | if (clobber |
| 2742 | ? !fnspec.global_memory_written_p () |
| 2743 | : !fnspec.global_memory_read_p ()) |
| 2744 | { |
| 2745 | for (unsigned int i = 0; i < gimple_call_num_args (gs: call); i++) |
| 2746 | if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, i))) |
| 2747 | && (!fnspec.arg_specified_p (i) |
| 2748 | || (clobber ? fnspec.arg_maybe_written_p (i) |
| 2749 | : fnspec.arg_maybe_read_p (i)))) |
| 2750 | { |
| 2751 | ao_ref dref; |
| 2752 | tree size = NULL_TREE; |
| 2753 | unsigned int size_arg; |
| 2754 | |
| 2755 | if (!fnspec.arg_specified_p (i)) |
| 2756 | ; |
| 2757 | else if (fnspec.arg_max_access_size_given_by_arg_p |
| 2758 | (i, arg: &size_arg)) |
| 2759 | size = gimple_call_arg (gs: call, index: size_arg); |
| 2760 | else if (fnspec.arg_access_size_given_by_type_p (i)) |
| 2761 | { |
| 2762 | tree callee = gimple_call_fndecl (gs: call); |
| 2763 | tree t = TYPE_ARG_TYPES (TREE_TYPE (callee)); |
| 2764 | |
| 2765 | for (unsigned int p = 0; p < i; p++) |
| 2766 | t = TREE_CHAIN (t); |
| 2767 | size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_VALUE (t))); |
| 2768 | } |
| 2769 | poly_int64 size_hwi; |
| 2770 | if (size |
| 2771 | && poly_int_tree_p (t: size, value: &size_hwi) |
| 2772 | && coeffs_in_range_p (a: size_hwi, b: 0, |
| 2773 | HOST_WIDE_INT_MAX / BITS_PER_UNIT)) |
| 2774 | { |
| 2775 | size_hwi = size_hwi * BITS_PER_UNIT; |
| 2776 | ao_ref_init_from_ptr_and_range (ref: &dref, |
| 2777 | ptr: gimple_call_arg (gs: call, index: i), |
| 2778 | range_known: true, offset: 0, size: -1, max_size: size_hwi); |
| 2779 | } |
| 2780 | else |
| 2781 | ao_ref_init_from_ptr_and_range (ref: &dref, |
| 2782 | ptr: gimple_call_arg (gs: call, index: i), |
| 2783 | range_known: false, offset: 0, size: -1, max_size: -1); |
| 2784 | if (refs_may_alias_p_1 (ref1: &dref, ref2: ref, tbaa_p: false)) |
| 2785 | return 1; |
| 2786 | } |
| 2787 | if (clobber |
| 2788 | && fnspec.errno_maybe_written_p () |
| 2789 | && flag_errno_math |
| 2790 | && targetm.ref_may_alias_errno (ref)) |
| 2791 | return 1; |
| 2792 | return 0; |
| 2793 | } |
| 2794 | } |
| 2795 | |
| 2796 | /* FIXME: we should handle barriers more consistently, but for now leave the |
| 2797 | check here. */ |
| 2798 | if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)) |
| 2799 | switch (DECL_FUNCTION_CODE (decl: gimple_call_fndecl (gs: call))) |
| 2800 | { |
| 2801 | /* __sync_* builtins and some OpenMP builtins act as threading |
| 2802 | barriers. */ |
| 2803 | #undef DEF_SYNC_BUILTIN |
| 2804 | #define DEF_SYNC_BUILTIN(ENUM, NAME, TYPE, ATTRS) case ENUM: |
| 2805 | #include "sync-builtins.def" |
| 2806 | #undef DEF_SYNC_BUILTIN |
| 2807 | case BUILT_IN_GOMP_ATOMIC_START: |
| 2808 | case BUILT_IN_GOMP_ATOMIC_END: |
| 2809 | case BUILT_IN_GOMP_BARRIER: |
| 2810 | case BUILT_IN_GOMP_BARRIER_CANCEL: |
| 2811 | case BUILT_IN_GOMP_TASKWAIT: |
| 2812 | case BUILT_IN_GOMP_TASKGROUP_END: |
| 2813 | case BUILT_IN_GOMP_CRITICAL_START: |
| 2814 | case BUILT_IN_GOMP_CRITICAL_END: |
| 2815 | case BUILT_IN_GOMP_CRITICAL_NAME_START: |
| 2816 | case BUILT_IN_GOMP_CRITICAL_NAME_END: |
| 2817 | case BUILT_IN_GOMP_LOOP_END: |
| 2818 | case BUILT_IN_GOMP_LOOP_END_CANCEL: |
| 2819 | case BUILT_IN_GOMP_ORDERED_START: |
| 2820 | case BUILT_IN_GOMP_ORDERED_END: |
| 2821 | case BUILT_IN_GOMP_SECTIONS_END: |
| 2822 | case BUILT_IN_GOMP_SECTIONS_END_CANCEL: |
| 2823 | case BUILT_IN_GOMP_SINGLE_COPY_START: |
| 2824 | case BUILT_IN_GOMP_SINGLE_COPY_END: |
| 2825 | return 1; |
| 2826 | |
| 2827 | default: |
| 2828 | return -1; |
| 2829 | } |
| 2830 | return -1; |
| 2831 | } |
| 2832 | |
| 2833 | /* If the call CALL may use the memory reference REF return true, |
| 2834 | otherwise return false. */ |
| 2835 | |
| 2836 | static bool |
| 2837 | ref_maybe_used_by_call_p_1 (gcall *call, ao_ref *ref, bool tbaa_p) |
| 2838 | { |
| 2839 | tree base, callee; |
| 2840 | unsigned i; |
| 2841 | int flags = gimple_call_flags (call); |
| 2842 | |
| 2843 | if (flags & (ECF_CONST|ECF_NOVOPS)) |
| 2844 | goto process_args; |
| 2845 | |
| 2846 | /* A call that is not without side-effects might involve volatile |
| 2847 | accesses and thus conflicts with all other volatile accesses. */ |
| 2848 | if (ref->volatile_p) |
| 2849 | return true; |
| 2850 | |
| 2851 | if (gimple_call_internal_p (gs: call)) |
| 2852 | switch (gimple_call_internal_fn (gs: call)) |
| 2853 | { |
| 2854 | case IFN_MASK_STORE: |
| 2855 | case IFN_SCATTER_STORE: |
| 2856 | case IFN_MASK_SCATTER_STORE: |
| 2857 | case IFN_LEN_STORE: |
| 2858 | case IFN_MASK_LEN_STORE: |
| 2859 | return false; |
| 2860 | case IFN_MASK_STORE_LANES: |
| 2861 | case IFN_MASK_LEN_STORE_LANES: |
| 2862 | goto process_args; |
| 2863 | case IFN_MASK_LOAD: |
| 2864 | case IFN_LEN_LOAD: |
| 2865 | case IFN_MASK_LEN_LOAD: |
| 2866 | case IFN_MASK_LOAD_LANES: |
| 2867 | case IFN_MASK_LEN_LOAD_LANES: |
| 2868 | { |
| 2869 | ao_ref rhs_ref; |
| 2870 | tree lhs = gimple_call_lhs (gs: call); |
| 2871 | if (lhs) |
| 2872 | { |
| 2873 | ao_ref_init_from_ptr_and_size (ref: &rhs_ref, |
| 2874 | ptr: gimple_call_arg (gs: call, index: 0), |
| 2875 | TYPE_SIZE_UNIT (TREE_TYPE (lhs))); |
| 2876 | /* We cannot make this a known-size access since otherwise |
| 2877 | we disambiguate against refs to decls that are smaller. */ |
| 2878 | rhs_ref.size = -1; |
| 2879 | rhs_ref.ref_alias_set = rhs_ref.base_alias_set |
| 2880 | = tbaa_p ? get_deref_alias_set (TREE_TYPE |
| 2881 | (gimple_call_arg (call, 1))) : 0; |
| 2882 | return refs_may_alias_p_1 (ref1: ref, ref2: &rhs_ref, tbaa_p); |
| 2883 | } |
| 2884 | break; |
| 2885 | } |
| 2886 | default:; |
| 2887 | } |
| 2888 | |
| 2889 | callee = gimple_call_fndecl (gs: call); |
| 2890 | if (callee != NULL_TREE) |
| 2891 | { |
| 2892 | struct cgraph_node *node = cgraph_node::get (decl: callee); |
| 2893 | /* We can not safely optimize based on summary of calle if it does |
| 2894 | not always bind to current def: it is possible that memory load |
| 2895 | was optimized out earlier and the interposed variant may not be |
| 2896 | optimized this way. */ |
| 2897 | if (node && node->binds_to_current_def_p ()) |
| 2898 | { |
| 2899 | modref_summary *summary = get_modref_function_summary (func: node); |
| 2900 | if (summary && !summary->calls_interposable) |
| 2901 | { |
| 2902 | if (!modref_may_conflict (stmt: call, tt: summary->loads, ref, tbaa_p)) |
| 2903 | { |
| 2904 | alias_stats.modref_use_no_alias++; |
| 2905 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2906 | { |
| 2907 | fprintf (stream: dump_file, |
| 2908 | format: "ipa-modref: call stmt " ); |
| 2909 | print_gimple_stmt (dump_file, call, 0); |
| 2910 | fprintf (stream: dump_file, |
| 2911 | format: "ipa-modref: call to %s does not use " , |
| 2912 | node->dump_name ()); |
| 2913 | if (!ref->ref && ref->base) |
| 2914 | { |
| 2915 | fprintf (stream: dump_file, format: "base: " ); |
| 2916 | print_generic_expr (dump_file, ref->base); |
| 2917 | } |
| 2918 | else if (ref->ref) |
| 2919 | { |
| 2920 | fprintf (stream: dump_file, format: "ref: " ); |
| 2921 | print_generic_expr (dump_file, ref->ref); |
| 2922 | } |
| 2923 | fprintf (stream: dump_file, format: " alias sets: %i->%i\n" , |
| 2924 | ao_ref_base_alias_set (ref), |
| 2925 | ao_ref_alias_set (ref)); |
| 2926 | } |
| 2927 | goto process_args; |
| 2928 | } |
| 2929 | alias_stats.modref_use_may_alias++; |
| 2930 | } |
| 2931 | } |
| 2932 | } |
| 2933 | |
| 2934 | base = ao_ref_base (ref); |
| 2935 | if (!base) |
| 2936 | return true; |
| 2937 | |
| 2938 | /* If the reference is based on a decl that is not aliased the call |
| 2939 | cannot possibly use it. */ |
| 2940 | if (DECL_P (base) |
| 2941 | && !may_be_aliased (var: base) |
| 2942 | /* But local statics can be used through recursion. */ |
| 2943 | && !is_global_var (t: base)) |
| 2944 | goto process_args; |
| 2945 | |
| 2946 | if (int res = check_fnspec (call, ref, clobber: false)) |
| 2947 | { |
| 2948 | if (res == 1) |
| 2949 | return true; |
| 2950 | } |
| 2951 | else |
| 2952 | goto process_args; |
| 2953 | |
| 2954 | /* Check if base is a global static variable that is not read |
| 2955 | by the function. */ |
| 2956 | if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base)) |
| 2957 | { |
| 2958 | struct cgraph_node *node = cgraph_node::get (decl: callee); |
| 2959 | bitmap read; |
| 2960 | int id; |
| 2961 | |
| 2962 | /* FIXME: Callee can be an OMP builtin that does not have a call graph |
| 2963 | node yet. We should enforce that there are nodes for all decls in the |
| 2964 | IL and remove this check instead. */ |
| 2965 | if (node |
| 2966 | && (id = ipa_reference_var_uid (t: base)) != -1 |
| 2967 | && (read = ipa_reference_get_read_global (fn: node)) |
| 2968 | && !bitmap_bit_p (read, id)) |
| 2969 | goto process_args; |
| 2970 | } |
| 2971 | |
| 2972 | /* Check if the base variable is call-used. */ |
| 2973 | if (DECL_P (base)) |
| 2974 | { |
| 2975 | if (pt_solution_includes (gimple_call_use_set (call_stmt: call), base)) |
| 2976 | return true; |
| 2977 | } |
| 2978 | else if ((TREE_CODE (base) == MEM_REF |
| 2979 | || TREE_CODE (base) == TARGET_MEM_REF) |
| 2980 | && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME) |
| 2981 | { |
| 2982 | struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0)); |
| 2983 | if (!pi) |
| 2984 | return true; |
| 2985 | |
| 2986 | if (pt_solutions_intersect (gimple_call_use_set (call_stmt: call), &pi->pt)) |
| 2987 | return true; |
| 2988 | } |
| 2989 | else |
| 2990 | return true; |
| 2991 | |
| 2992 | /* Inspect call arguments for passed-by-value aliases. */ |
| 2993 | process_args: |
| 2994 | for (i = 0; i < gimple_call_num_args (gs: call); ++i) |
| 2995 | { |
| 2996 | tree op = gimple_call_arg (gs: call, index: i); |
| 2997 | int flags = gimple_call_arg_flags (call, i); |
| 2998 | |
| 2999 | if (flags & (EAF_UNUSED | EAF_NO_DIRECT_READ)) |
| 3000 | continue; |
| 3001 | |
| 3002 | if (TREE_CODE (op) == WITH_SIZE_EXPR) |
| 3003 | op = TREE_OPERAND (op, 0); |
| 3004 | |
| 3005 | if (TREE_CODE (op) != SSA_NAME |
| 3006 | && !is_gimple_min_invariant (op)) |
| 3007 | { |
| 3008 | ao_ref r; |
| 3009 | ao_ref_init (r: &r, ref: op); |
| 3010 | if (refs_may_alias_p_1 (ref1: &r, ref2: ref, tbaa_p)) |
| 3011 | return true; |
| 3012 | } |
| 3013 | } |
| 3014 | |
| 3015 | return false; |
| 3016 | } |
| 3017 | |
| 3018 | static bool |
| 3019 | ref_maybe_used_by_call_p (gcall *call, ao_ref *ref, bool tbaa_p) |
| 3020 | { |
| 3021 | bool res; |
| 3022 | res = ref_maybe_used_by_call_p_1 (call, ref, tbaa_p); |
| 3023 | if (res) |
| 3024 | ++alias_stats.ref_maybe_used_by_call_p_may_alias; |
| 3025 | else |
| 3026 | ++alias_stats.ref_maybe_used_by_call_p_no_alias; |
| 3027 | return res; |
| 3028 | } |
| 3029 | |
| 3030 | |
| 3031 | /* If the statement STMT may use the memory reference REF return |
| 3032 | true, otherwise return false. */ |
| 3033 | |
| 3034 | bool |
| 3035 | ref_maybe_used_by_stmt_p (gimple *stmt, ao_ref *ref, bool tbaa_p) |
| 3036 | { |
| 3037 | if (is_gimple_assign (gs: stmt)) |
| 3038 | { |
| 3039 | tree rhs; |
| 3040 | |
| 3041 | /* All memory assign statements are single. */ |
| 3042 | if (!gimple_assign_single_p (gs: stmt)) |
| 3043 | return false; |
| 3044 | |
| 3045 | rhs = gimple_assign_rhs1 (gs: stmt); |
| 3046 | if (is_gimple_reg (rhs) |
| 3047 | || is_gimple_min_invariant (rhs) |
| 3048 | || gimple_assign_rhs_code (gs: stmt) == CONSTRUCTOR) |
| 3049 | return false; |
| 3050 | |
| 3051 | return refs_may_alias_p (ref1: rhs, ref2: ref, tbaa_p); |
| 3052 | } |
| 3053 | else if (is_gimple_call (gs: stmt)) |
| 3054 | return ref_maybe_used_by_call_p (call: as_a <gcall *> (p: stmt), ref, tbaa_p); |
| 3055 | else if (greturn *return_stmt = dyn_cast <greturn *> (p: stmt)) |
| 3056 | { |
| 3057 | tree retval = gimple_return_retval (gs: return_stmt); |
| 3058 | if (retval |
| 3059 | && TREE_CODE (retval) != SSA_NAME |
| 3060 | && !is_gimple_min_invariant (retval) |
| 3061 | && refs_may_alias_p (ref1: retval, ref2: ref, tbaa_p)) |
| 3062 | return true; |
| 3063 | /* If ref escapes the function then the return acts as a use. */ |
| 3064 | tree base = ao_ref_base (ref); |
| 3065 | if (!base) |
| 3066 | ; |
| 3067 | else if (DECL_P (base)) |
| 3068 | return is_global_var (t: base); |
| 3069 | else if (TREE_CODE (base) == MEM_REF |
| 3070 | || TREE_CODE (base) == TARGET_MEM_REF) |
| 3071 | return ptr_deref_may_alias_global_p (TREE_OPERAND (base, 0), escaped_local_p: false); |
| 3072 | return false; |
| 3073 | } |
| 3074 | |
| 3075 | return true; |
| 3076 | } |
| 3077 | |
| 3078 | bool |
| 3079 | ref_maybe_used_by_stmt_p (gimple *stmt, tree ref, bool tbaa_p) |
| 3080 | { |
| 3081 | ao_ref r; |
| 3082 | ao_ref_init (r: &r, ref); |
| 3083 | return ref_maybe_used_by_stmt_p (stmt, ref: &r, tbaa_p); |
| 3084 | } |
| 3085 | |
| 3086 | /* If the call in statement CALL may clobber the memory reference REF |
| 3087 | return true, otherwise return false. */ |
| 3088 | |
| 3089 | bool |
| 3090 | call_may_clobber_ref_p_1 (gcall *call, ao_ref *ref, bool tbaa_p) |
| 3091 | { |
| 3092 | tree base; |
| 3093 | tree callee; |
| 3094 | |
| 3095 | /* If the call is pure or const it cannot clobber anything. */ |
| 3096 | if (gimple_call_flags (call) |
| 3097 | & (ECF_PURE|ECF_CONST|ECF_LOOPING_CONST_OR_PURE|ECF_NOVOPS)) |
| 3098 | return false; |
| 3099 | if (gimple_call_internal_p (gs: call)) |
| 3100 | switch (auto fn = gimple_call_internal_fn (gs: call)) |
| 3101 | { |
| 3102 | /* Treat these internal calls like ECF_PURE for aliasing, |
| 3103 | they don't write to any memory the program should care about. |
| 3104 | They have important other side-effects, and read memory, |
| 3105 | so can't be ECF_NOVOPS. */ |
| 3106 | case IFN_UBSAN_NULL: |
| 3107 | case IFN_UBSAN_BOUNDS: |
| 3108 | case IFN_UBSAN_VPTR: |
| 3109 | case IFN_UBSAN_OBJECT_SIZE: |
| 3110 | case IFN_UBSAN_PTR: |
| 3111 | case IFN_ASAN_CHECK: |
| 3112 | return false; |
| 3113 | case IFN_MASK_STORE: |
| 3114 | case IFN_LEN_STORE: |
| 3115 | case IFN_MASK_LEN_STORE: |
| 3116 | case IFN_MASK_STORE_LANES: |
| 3117 | case IFN_MASK_LEN_STORE_LANES: |
| 3118 | { |
| 3119 | tree rhs = gimple_call_arg (gs: call, |
| 3120 | index: internal_fn_stored_value_index (fn)); |
| 3121 | ao_ref lhs_ref; |
| 3122 | ao_ref_init_from_ptr_and_size (ref: &lhs_ref, ptr: gimple_call_arg (gs: call, index: 0), |
| 3123 | TYPE_SIZE_UNIT (TREE_TYPE (rhs))); |
| 3124 | /* We cannot make this a known-size access since otherwise |
| 3125 | we disambiguate against refs to decls that are smaller. */ |
| 3126 | lhs_ref.size = -1; |
| 3127 | lhs_ref.ref_alias_set = lhs_ref.base_alias_set |
| 3128 | = tbaa_p ? get_deref_alias_set |
| 3129 | (TREE_TYPE (gimple_call_arg (call, 1))) : 0; |
| 3130 | return refs_may_alias_p_1 (ref1: ref, ref2: &lhs_ref, tbaa_p); |
| 3131 | } |
| 3132 | default: |
| 3133 | break; |
| 3134 | } |
| 3135 | |
| 3136 | callee = gimple_call_fndecl (gs: call); |
| 3137 | |
| 3138 | if (callee != NULL_TREE && !ref->volatile_p) |
| 3139 | { |
| 3140 | struct cgraph_node *node = cgraph_node::get (decl: callee); |
| 3141 | if (node) |
| 3142 | { |
| 3143 | modref_summary *summary = get_modref_function_summary (func: node); |
| 3144 | if (summary) |
| 3145 | { |
| 3146 | if (!modref_may_conflict (stmt: call, tt: summary->stores, ref, tbaa_p) |
| 3147 | && (!summary->writes_errno |
| 3148 | || !targetm.ref_may_alias_errno (ref))) |
| 3149 | { |
| 3150 | alias_stats.modref_clobber_no_alias++; |
| 3151 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 3152 | { |
| 3153 | fprintf (stream: dump_file, |
| 3154 | format: "ipa-modref: call stmt " ); |
| 3155 | print_gimple_stmt (dump_file, call, 0); |
| 3156 | fprintf (stream: dump_file, |
| 3157 | format: "ipa-modref: call to %s does not clobber " , |
| 3158 | node->dump_name ()); |
| 3159 | if (!ref->ref && ref->base) |
| 3160 | { |
| 3161 | fprintf (stream: dump_file, format: "base: " ); |
| 3162 | print_generic_expr (dump_file, ref->base); |
| 3163 | } |
| 3164 | else if (ref->ref) |
| 3165 | { |
| 3166 | fprintf (stream: dump_file, format: "ref: " ); |
| 3167 | print_generic_expr (dump_file, ref->ref); |
| 3168 | } |
| 3169 | fprintf (stream: dump_file, format: " alias sets: %i->%i\n" , |
| 3170 | ao_ref_base_alias_set (ref), |
| 3171 | ao_ref_alias_set (ref)); |
| 3172 | } |
| 3173 | return false; |
| 3174 | } |
| 3175 | alias_stats.modref_clobber_may_alias++; |
| 3176 | } |
| 3177 | } |
| 3178 | } |
| 3179 | |
| 3180 | base = ao_ref_base (ref); |
| 3181 | if (!base) |
| 3182 | return true; |
| 3183 | |
| 3184 | if (TREE_CODE (base) == SSA_NAME |
| 3185 | || CONSTANT_CLASS_P (base)) |
| 3186 | return false; |
| 3187 | |
| 3188 | /* A call that is not without side-effects might involve volatile |
| 3189 | accesses and thus conflicts with all other volatile accesses. */ |
| 3190 | if (ref->volatile_p) |
| 3191 | return true; |
| 3192 | |
| 3193 | /* If the reference is based on a decl that is not aliased the call |
| 3194 | cannot possibly clobber it. */ |
| 3195 | if (DECL_P (base) |
| 3196 | && !may_be_aliased (var: base) |
| 3197 | /* But local non-readonly statics can be modified through recursion |
| 3198 | or the call may implement a threading barrier which we must |
| 3199 | treat as may-def. */ |
| 3200 | && (TREE_READONLY (base) |
| 3201 | || !is_global_var (t: base))) |
| 3202 | return false; |
| 3203 | |
| 3204 | /* If the reference is based on a pointer that points to memory |
| 3205 | that may not be written to then the call cannot possibly clobber it. */ |
| 3206 | if ((TREE_CODE (base) == MEM_REF |
| 3207 | || TREE_CODE (base) == TARGET_MEM_REF) |
| 3208 | && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME |
| 3209 | && SSA_NAME_POINTS_TO_READONLY_MEMORY (TREE_OPERAND (base, 0))) |
| 3210 | return false; |
| 3211 | |
| 3212 | if (int res = check_fnspec (call, ref, clobber: true)) |
| 3213 | { |
| 3214 | if (res == 1) |
| 3215 | return true; |
| 3216 | } |
| 3217 | else |
| 3218 | return false; |
| 3219 | |
| 3220 | /* Check if base is a global static variable that is not written |
| 3221 | by the function. */ |
| 3222 | if (callee != NULL_TREE && VAR_P (base) && TREE_STATIC (base)) |
| 3223 | { |
| 3224 | struct cgraph_node *node = cgraph_node::get (decl: callee); |
| 3225 | bitmap written; |
| 3226 | int id; |
| 3227 | |
| 3228 | if (node |
| 3229 | && (id = ipa_reference_var_uid (t: base)) != -1 |
| 3230 | && (written = ipa_reference_get_written_global (fn: node)) |
| 3231 | && !bitmap_bit_p (written, id)) |
| 3232 | return false; |
| 3233 | } |
| 3234 | |
| 3235 | /* Check if the base variable is call-clobbered. */ |
| 3236 | if (DECL_P (base)) |
| 3237 | return pt_solution_includes (gimple_call_clobber_set (call_stmt: call), base); |
| 3238 | else if ((TREE_CODE (base) == MEM_REF |
| 3239 | || TREE_CODE (base) == TARGET_MEM_REF) |
| 3240 | && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME) |
| 3241 | { |
| 3242 | struct ptr_info_def *pi = SSA_NAME_PTR_INFO (TREE_OPERAND (base, 0)); |
| 3243 | if (!pi) |
| 3244 | return true; |
| 3245 | |
| 3246 | return pt_solutions_intersect (gimple_call_clobber_set (call_stmt: call), &pi->pt); |
| 3247 | } |
| 3248 | |
| 3249 | return true; |
| 3250 | } |
| 3251 | |
| 3252 | /* If the call in statement CALL may clobber the memory reference REF |
| 3253 | return true, otherwise return false. */ |
| 3254 | |
| 3255 | bool |
| 3256 | call_may_clobber_ref_p (gcall *call, tree ref, bool tbaa_p) |
| 3257 | { |
| 3258 | bool res; |
| 3259 | ao_ref r; |
| 3260 | ao_ref_init (r: &r, ref); |
| 3261 | res = call_may_clobber_ref_p_1 (call, ref: &r, tbaa_p); |
| 3262 | if (res) |
| 3263 | ++alias_stats.call_may_clobber_ref_p_may_alias; |
| 3264 | else |
| 3265 | ++alias_stats.call_may_clobber_ref_p_no_alias; |
| 3266 | return res; |
| 3267 | } |
| 3268 | |
| 3269 | |
| 3270 | /* If the statement STMT may clobber the memory reference REF return true, |
| 3271 | otherwise return false. */ |
| 3272 | |
| 3273 | bool |
| 3274 | stmt_may_clobber_ref_p_1 (gimple *stmt, ao_ref *ref, bool tbaa_p) |
| 3275 | { |
| 3276 | if (is_gimple_call (gs: stmt)) |
| 3277 | { |
| 3278 | tree lhs = gimple_call_lhs (gs: stmt); |
| 3279 | if (lhs |
| 3280 | && TREE_CODE (lhs) != SSA_NAME) |
| 3281 | { |
| 3282 | ao_ref r; |
| 3283 | ao_ref_init (r: &r, ref: lhs); |
| 3284 | if (refs_may_alias_p_1 (ref1: ref, ref2: &r, tbaa_p)) |
| 3285 | return true; |
| 3286 | } |
| 3287 | |
| 3288 | return call_may_clobber_ref_p_1 (call: as_a <gcall *> (p: stmt), ref, tbaa_p); |
| 3289 | } |
| 3290 | else if (gimple_assign_single_p (gs: stmt)) |
| 3291 | { |
| 3292 | tree lhs = gimple_assign_lhs (gs: stmt); |
| 3293 | if (TREE_CODE (lhs) != SSA_NAME) |
| 3294 | { |
| 3295 | ao_ref r; |
| 3296 | ao_ref_init (r: &r, ref: lhs); |
| 3297 | return refs_may_alias_p_1 (ref1: ref, ref2: &r, tbaa_p); |
| 3298 | } |
| 3299 | } |
| 3300 | else if (gimple_code (g: stmt) == GIMPLE_ASM) |
| 3301 | return true; |
| 3302 | |
| 3303 | return false; |
| 3304 | } |
| 3305 | |
| 3306 | bool |
| 3307 | stmt_may_clobber_ref_p (gimple *stmt, tree ref, bool tbaa_p) |
| 3308 | { |
| 3309 | ao_ref r; |
| 3310 | ao_ref_init (r: &r, ref); |
| 3311 | return stmt_may_clobber_ref_p_1 (stmt, ref: &r, tbaa_p); |
| 3312 | } |
| 3313 | |
| 3314 | /* Return true if store1 and store2 described by corresponding tuples |
| 3315 | <BASE, OFFSET, SIZE, MAX_SIZE> have the same size and store to the same |
| 3316 | address. */ |
| 3317 | |
| 3318 | static bool |
| 3319 | same_addr_size_stores_p (tree base1, poly_int64 offset1, poly_int64 size1, |
| 3320 | poly_int64 max_size1, |
| 3321 | tree base2, poly_int64 offset2, poly_int64 size2, |
| 3322 | poly_int64 max_size2) |
| 3323 | { |
| 3324 | /* Offsets need to be 0. */ |
| 3325 | if (maybe_ne (a: offset1, b: 0) |
| 3326 | || maybe_ne (a: offset2, b: 0)) |
| 3327 | return false; |
| 3328 | |
| 3329 | bool base1_obj_p = SSA_VAR_P (base1); |
| 3330 | bool base2_obj_p = SSA_VAR_P (base2); |
| 3331 | |
| 3332 | /* We need one object. */ |
| 3333 | if (base1_obj_p == base2_obj_p) |
| 3334 | return false; |
| 3335 | tree obj = base1_obj_p ? base1 : base2; |
| 3336 | |
| 3337 | /* And we need one MEM_REF. */ |
| 3338 | bool base1_memref_p = TREE_CODE (base1) == MEM_REF; |
| 3339 | bool base2_memref_p = TREE_CODE (base2) == MEM_REF; |
| 3340 | if (base1_memref_p == base2_memref_p) |
| 3341 | return false; |
| 3342 | tree memref = base1_memref_p ? base1 : base2; |
| 3343 | |
| 3344 | /* Sizes need to be valid. */ |
| 3345 | if (!known_size_p (a: max_size1) |
| 3346 | || !known_size_p (a: max_size2) |
| 3347 | || !known_size_p (a: size1) |
| 3348 | || !known_size_p (a: size2)) |
| 3349 | return false; |
| 3350 | |
| 3351 | /* Max_size needs to match size. */ |
| 3352 | if (maybe_ne (a: max_size1, b: size1) |
| 3353 | || maybe_ne (a: max_size2, b: size2)) |
| 3354 | return false; |
| 3355 | |
| 3356 | /* Sizes need to match. */ |
| 3357 | if (maybe_ne (a: size1, b: size2)) |
| 3358 | return false; |
| 3359 | |
| 3360 | |
| 3361 | /* Check that memref is a store to pointer with singleton points-to info. */ |
| 3362 | if (!integer_zerop (TREE_OPERAND (memref, 1))) |
| 3363 | return false; |
| 3364 | tree ptr = TREE_OPERAND (memref, 0); |
| 3365 | if (TREE_CODE (ptr) != SSA_NAME) |
| 3366 | return false; |
| 3367 | struct ptr_info_def *pi = SSA_NAME_PTR_INFO (ptr); |
| 3368 | unsigned int pt_uid; |
| 3369 | if (pi == NULL |
| 3370 | || !pt_solution_singleton_or_null_p (&pi->pt, &pt_uid)) |
| 3371 | return false; |
| 3372 | |
| 3373 | /* Be conservative with non-call exceptions when the address might |
| 3374 | be NULL. */ |
| 3375 | if (cfun->can_throw_non_call_exceptions && pi->pt.null) |
| 3376 | return false; |
| 3377 | |
| 3378 | /* Check that ptr points relative to obj. */ |
| 3379 | unsigned int obj_uid = DECL_PT_UID (obj); |
| 3380 | if (obj_uid != pt_uid) |
| 3381 | return false; |
| 3382 | |
| 3383 | /* Check that the object size is the same as the store size. That ensures us |
| 3384 | that ptr points to the start of obj. */ |
| 3385 | return (DECL_SIZE (obj) |
| 3386 | && poly_int_tree_p (DECL_SIZE (obj)) |
| 3387 | && known_eq (wi::to_poly_offset (DECL_SIZE (obj)), size1)); |
| 3388 | } |
| 3389 | |
| 3390 | /* Return true if REF is killed by an store described by |
| 3391 | BASE, OFFSET, SIZE and MAX_SIZE. */ |
| 3392 | |
| 3393 | static bool |
| 3394 | store_kills_ref_p (tree base, poly_int64 offset, poly_int64 size, |
| 3395 | poly_int64 max_size, ao_ref *ref) |
| 3396 | { |
| 3397 | poly_int64 ref_offset = ref->offset; |
| 3398 | /* We can get MEM[symbol: sZ, index: D.8862_1] here, |
| 3399 | so base == ref->base does not always hold. */ |
| 3400 | if (base != ref->base) |
| 3401 | { |
| 3402 | /* Try using points-to info. */ |
| 3403 | if (same_addr_size_stores_p (base1: base, offset1: offset, size1: size, max_size1: max_size, base2: ref->base, |
| 3404 | offset2: ref->offset, size2: ref->size, max_size2: ref->max_size)) |
| 3405 | return true; |
| 3406 | |
| 3407 | /* If both base and ref->base are MEM_REFs, only compare the |
| 3408 | first operand, and if the second operand isn't equal constant, |
| 3409 | try to add the offsets into offset and ref_offset. */ |
| 3410 | if (TREE_CODE (base) == MEM_REF && TREE_CODE (ref->base) == MEM_REF |
| 3411 | && TREE_OPERAND (base, 0) == TREE_OPERAND (ref->base, 0)) |
| 3412 | { |
| 3413 | if (!tree_int_cst_equal (TREE_OPERAND (base, 1), |
| 3414 | TREE_OPERAND (ref->base, 1))) |
| 3415 | { |
| 3416 | poly_offset_int off1 = mem_ref_offset (base); |
| 3417 | off1 <<= LOG2_BITS_PER_UNIT; |
| 3418 | off1 += offset; |
| 3419 | poly_offset_int off2 = mem_ref_offset (ref->base); |
| 3420 | off2 <<= LOG2_BITS_PER_UNIT; |
| 3421 | off2 += ref_offset; |
| 3422 | if (!off1.to_shwi (r: &offset) || !off2.to_shwi (r: &ref_offset)) |
| 3423 | size = -1; |
| 3424 | } |
| 3425 | } |
| 3426 | else |
| 3427 | size = -1; |
| 3428 | } |
| 3429 | /* For a must-alias check we need to be able to constrain |
| 3430 | the access properly. */ |
| 3431 | return (known_eq (size, max_size) |
| 3432 | && known_subrange_p (pos1: ref_offset, size1: ref->max_size, pos2: offset, size2: size)); |
| 3433 | } |
| 3434 | |
| 3435 | /* If STMT kills the memory reference REF return true, otherwise |
| 3436 | return false. */ |
| 3437 | |
| 3438 | bool |
| 3439 | stmt_kills_ref_p (gimple *stmt, ao_ref *ref) |
| 3440 | { |
| 3441 | if (!ao_ref_base (ref)) |
| 3442 | return false; |
| 3443 | |
| 3444 | if (gimple_has_lhs (stmt) |
| 3445 | && TREE_CODE (gimple_get_lhs (stmt)) != SSA_NAME |
| 3446 | /* The assignment is not necessarily carried out if it can throw |
| 3447 | and we can catch it in the current function where we could inspect |
| 3448 | the previous value. Similarly if the function can throw externally |
| 3449 | and the ref does not die on the function return. |
| 3450 | ??? We only need to care about the RHS throwing. For aggregate |
| 3451 | assignments or similar calls and non-call exceptions the LHS |
| 3452 | might throw as well. |
| 3453 | ??? We also should care about possible longjmp, but since we |
| 3454 | do not understand that longjmp is not using global memory we will |
| 3455 | not consider a kill here since the function call will be considered |
| 3456 | as possibly using REF. */ |
| 3457 | && !stmt_can_throw_internal (cfun, stmt) |
| 3458 | && (!stmt_can_throw_external (cfun, stmt) |
| 3459 | || !ref_may_alias_global_p (ref, escaped_local_p: false))) |
| 3460 | { |
| 3461 | tree lhs = gimple_get_lhs (stmt); |
| 3462 | /* If LHS is literally a base of the access we are done. */ |
| 3463 | if (ref->ref) |
| 3464 | { |
| 3465 | tree base = ref->ref; |
| 3466 | tree innermost_dropped_array_ref = NULL_TREE; |
| 3467 | if (handled_component_p (t: base)) |
| 3468 | { |
| 3469 | tree saved_lhs0 = NULL_TREE; |
| 3470 | if (handled_component_p (t: lhs)) |
| 3471 | { |
| 3472 | saved_lhs0 = TREE_OPERAND (lhs, 0); |
| 3473 | TREE_OPERAND (lhs, 0) = integer_zero_node; |
| 3474 | } |
| 3475 | do |
| 3476 | { |
| 3477 | /* Just compare the outermost handled component, if |
| 3478 | they are equal we have found a possible common |
| 3479 | base. */ |
| 3480 | tree saved_base0 = TREE_OPERAND (base, 0); |
| 3481 | TREE_OPERAND (base, 0) = integer_zero_node; |
| 3482 | bool res = operand_equal_p (lhs, base, flags: 0); |
| 3483 | TREE_OPERAND (base, 0) = saved_base0; |
| 3484 | if (res) |
| 3485 | break; |
| 3486 | /* Remember if we drop an array-ref that we need to |
| 3487 | double-check not being at struct end. */ |
| 3488 | if (TREE_CODE (base) == ARRAY_REF |
| 3489 | || TREE_CODE (base) == ARRAY_RANGE_REF) |
| 3490 | innermost_dropped_array_ref = base; |
| 3491 | /* Otherwise drop handled components of the access. */ |
| 3492 | base = saved_base0; |
| 3493 | } |
| 3494 | while (handled_component_p (t: base)); |
| 3495 | if (saved_lhs0) |
| 3496 | TREE_OPERAND (lhs, 0) = saved_lhs0; |
| 3497 | } |
| 3498 | /* Finally check if the lhs has the same address and size as the |
| 3499 | base candidate of the access. Watch out if we have dropped |
| 3500 | an array-ref that might have flexible size, this means ref->ref |
| 3501 | may be outside of the TYPE_SIZE of its base. */ |
| 3502 | if ((! innermost_dropped_array_ref |
| 3503 | || ! array_ref_flexible_size_p (innermost_dropped_array_ref)) |
| 3504 | && (lhs == base |
| 3505 | || (((TYPE_SIZE (TREE_TYPE (lhs)) |
| 3506 | == TYPE_SIZE (TREE_TYPE (base))) |
| 3507 | || (TYPE_SIZE (TREE_TYPE (lhs)) |
| 3508 | && TYPE_SIZE (TREE_TYPE (base)) |
| 3509 | && operand_equal_p (TYPE_SIZE (TREE_TYPE (lhs)), |
| 3510 | TYPE_SIZE (TREE_TYPE (base)), |
| 3511 | flags: 0))) |
| 3512 | && operand_equal_p (lhs, base, |
| 3513 | flags: OEP_ADDRESS_OF |
| 3514 | | OEP_MATCH_SIDE_EFFECTS)))) |
| 3515 | { |
| 3516 | ++alias_stats.stmt_kills_ref_p_yes; |
| 3517 | return true; |
| 3518 | } |
| 3519 | } |
| 3520 | |
| 3521 | /* Now look for non-literal equal bases with the restriction of |
| 3522 | handling constant offset and size. */ |
| 3523 | /* For a must-alias check we need to be able to constrain |
| 3524 | the access properly. */ |
| 3525 | if (!ref->max_size_known_p ()) |
| 3526 | { |
| 3527 | ++alias_stats.stmt_kills_ref_p_no; |
| 3528 | return false; |
| 3529 | } |
| 3530 | poly_int64 size, offset, max_size; |
| 3531 | bool reverse; |
| 3532 | tree base = get_ref_base_and_extent (lhs, &offset, &size, &max_size, |
| 3533 | &reverse); |
| 3534 | if (store_kills_ref_p (base, offset, size, max_size, ref)) |
| 3535 | { |
| 3536 | ++alias_stats.stmt_kills_ref_p_yes; |
| 3537 | return true; |
| 3538 | } |
| 3539 | } |
| 3540 | |
| 3541 | if (is_gimple_call (gs: stmt)) |
| 3542 | { |
| 3543 | tree callee = gimple_call_fndecl (gs: stmt); |
| 3544 | struct cgraph_node *node; |
| 3545 | modref_summary *summary; |
| 3546 | |
| 3547 | /* Try to disambiguate using modref summary. Modref records a vector |
| 3548 | of stores with known offsets relative to function parameters that must |
| 3549 | happen every execution of function. Find if we have a matching |
| 3550 | store and verify that function can not use the value. */ |
| 3551 | if (callee != NULL_TREE |
| 3552 | && (node = cgraph_node::get (decl: callee)) != NULL |
| 3553 | && node->binds_to_current_def_p () |
| 3554 | && (summary = get_modref_function_summary (func: node)) != NULL |
| 3555 | && summary->kills.length () |
| 3556 | /* Check that we can not trap while evaulating function |
| 3557 | parameters. This check is overly conservative. */ |
| 3558 | && (!cfun->can_throw_non_call_exceptions |
| 3559 | || (!stmt_can_throw_internal (cfun, stmt) |
| 3560 | && (!stmt_can_throw_external (cfun, stmt) |
| 3561 | || !ref_may_alias_global_p (ref, escaped_local_p: false))))) |
| 3562 | { |
| 3563 | for (auto kill : summary->kills) |
| 3564 | { |
| 3565 | ao_ref dref; |
| 3566 | |
| 3567 | /* We only can do useful compares if we know the access range |
| 3568 | precisely. */ |
| 3569 | if (!kill.get_ao_ref (stmt: as_a <gcall *> (p: stmt), ref: &dref)) |
| 3570 | continue; |
| 3571 | if (store_kills_ref_p (base: ao_ref_base (ref: &dref), offset: dref.offset, |
| 3572 | size: dref.size, max_size: dref.max_size, ref)) |
| 3573 | { |
| 3574 | /* For store to be killed it needs to not be used |
| 3575 | earlier. */ |
| 3576 | if (ref_maybe_used_by_call_p_1 (call: as_a <gcall *> (p: stmt), ref, |
| 3577 | tbaa_p: true) |
| 3578 | || !dbg_cnt (index: ipa_mod_ref)) |
| 3579 | break; |
| 3580 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 3581 | { |
| 3582 | fprintf (stream: dump_file, |
| 3583 | format: "ipa-modref: call stmt " ); |
| 3584 | print_gimple_stmt (dump_file, stmt, 0); |
| 3585 | fprintf (stream: dump_file, |
| 3586 | format: "ipa-modref: call to %s kills " , |
| 3587 | node->dump_name ()); |
| 3588 | print_generic_expr (dump_file, ref->base); |
| 3589 | fprintf (stream: dump_file, format: "\n" ); |
| 3590 | } |
| 3591 | ++alias_stats.modref_kill_yes; |
| 3592 | return true; |
| 3593 | } |
| 3594 | } |
| 3595 | ++alias_stats.modref_kill_no; |
| 3596 | } |
| 3597 | if (callee != NULL_TREE |
| 3598 | && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)) |
| 3599 | switch (DECL_FUNCTION_CODE (decl: callee)) |
| 3600 | { |
| 3601 | case BUILT_IN_FREE: |
| 3602 | { |
| 3603 | tree ptr = gimple_call_arg (gs: stmt, index: 0); |
| 3604 | tree base = ao_ref_base (ref); |
| 3605 | if (base && TREE_CODE (base) == MEM_REF |
| 3606 | && TREE_OPERAND (base, 0) == ptr) |
| 3607 | { |
| 3608 | ++alias_stats.stmt_kills_ref_p_yes; |
| 3609 | return true; |
| 3610 | } |
| 3611 | break; |
| 3612 | } |
| 3613 | |
| 3614 | case BUILT_IN_MEMCPY: |
| 3615 | case BUILT_IN_MEMPCPY: |
| 3616 | case BUILT_IN_MEMMOVE: |
| 3617 | case BUILT_IN_MEMSET: |
| 3618 | case BUILT_IN_MEMCPY_CHK: |
| 3619 | case BUILT_IN_MEMPCPY_CHK: |
| 3620 | case BUILT_IN_MEMMOVE_CHK: |
| 3621 | case BUILT_IN_MEMSET_CHK: |
| 3622 | case BUILT_IN_STRNCPY: |
| 3623 | case BUILT_IN_STPNCPY: |
| 3624 | case BUILT_IN_CALLOC: |
| 3625 | { |
| 3626 | /* For a must-alias check we need to be able to constrain |
| 3627 | the access properly. */ |
| 3628 | if (!ref->max_size_known_p ()) |
| 3629 | { |
| 3630 | ++alias_stats.stmt_kills_ref_p_no; |
| 3631 | return false; |
| 3632 | } |
| 3633 | tree dest; |
| 3634 | tree len; |
| 3635 | |
| 3636 | /* In execution order a calloc call will never kill |
| 3637 | anything. However, DSE will (ab)use this interface |
| 3638 | to ask if a calloc call writes the same memory locations |
| 3639 | as a later assignment, memset, etc. So handle calloc |
| 3640 | in the expected way. */ |
| 3641 | if (DECL_FUNCTION_CODE (decl: callee) == BUILT_IN_CALLOC) |
| 3642 | { |
| 3643 | tree arg0 = gimple_call_arg (gs: stmt, index: 0); |
| 3644 | tree arg1 = gimple_call_arg (gs: stmt, index: 1); |
| 3645 | if (TREE_CODE (arg0) != INTEGER_CST |
| 3646 | || TREE_CODE (arg1) != INTEGER_CST) |
| 3647 | { |
| 3648 | ++alias_stats.stmt_kills_ref_p_no; |
| 3649 | return false; |
| 3650 | } |
| 3651 | |
| 3652 | dest = gimple_call_lhs (gs: stmt); |
| 3653 | if (!dest) |
| 3654 | { |
| 3655 | ++alias_stats.stmt_kills_ref_p_no; |
| 3656 | return false; |
| 3657 | } |
| 3658 | len = fold_build2 (MULT_EXPR, TREE_TYPE (arg0), arg0, arg1); |
| 3659 | } |
| 3660 | else |
| 3661 | { |
| 3662 | dest = gimple_call_arg (gs: stmt, index: 0); |
| 3663 | len = gimple_call_arg (gs: stmt, index: 2); |
| 3664 | } |
| 3665 | if (!poly_int_tree_p (t: len)) |
| 3666 | return false; |
| 3667 | ao_ref dref; |
| 3668 | ao_ref_init_from_ptr_and_size (ref: &dref, ptr: dest, size: len); |
| 3669 | if (store_kills_ref_p (base: ao_ref_base (ref: &dref), offset: dref.offset, |
| 3670 | size: dref.size, max_size: dref.max_size, ref)) |
| 3671 | { |
| 3672 | ++alias_stats.stmt_kills_ref_p_yes; |
| 3673 | return true; |
| 3674 | } |
| 3675 | break; |
| 3676 | } |
| 3677 | |
| 3678 | case BUILT_IN_VA_END: |
| 3679 | { |
| 3680 | tree ptr = gimple_call_arg (gs: stmt, index: 0); |
| 3681 | if (TREE_CODE (ptr) == ADDR_EXPR) |
| 3682 | { |
| 3683 | tree base = ao_ref_base (ref); |
| 3684 | if (TREE_OPERAND (ptr, 0) == base) |
| 3685 | { |
| 3686 | ++alias_stats.stmt_kills_ref_p_yes; |
| 3687 | return true; |
| 3688 | } |
| 3689 | } |
| 3690 | break; |
| 3691 | } |
| 3692 | |
| 3693 | default:; |
| 3694 | } |
| 3695 | } |
| 3696 | ++alias_stats.stmt_kills_ref_p_no; |
| 3697 | return false; |
| 3698 | } |
| 3699 | |
| 3700 | bool |
| 3701 | stmt_kills_ref_p (gimple *stmt, tree ref) |
| 3702 | { |
| 3703 | ao_ref r; |
| 3704 | ao_ref_init (r: &r, ref); |
| 3705 | return stmt_kills_ref_p (stmt, ref: &r); |
| 3706 | } |
| 3707 | |
| 3708 | /* Return whether REF can be subject to store data races. */ |
| 3709 | |
| 3710 | bool |
| 3711 | ref_can_have_store_data_races (tree ref) |
| 3712 | { |
| 3713 | /* With -fallow-store-data-races do not care about them. */ |
| 3714 | if (flag_store_data_races) |
| 3715 | return false; |
| 3716 | |
| 3717 | tree base = get_base_address (t: ref); |
| 3718 | if (auto_var_p (base) |
| 3719 | && ! may_be_aliased (var: base)) |
| 3720 | /* Automatic variables not aliased are not subject to |
| 3721 | data races. */ |
| 3722 | return false; |
| 3723 | |
| 3724 | return true; |
| 3725 | } |
| 3726 | |
| 3727 | |
| 3728 | /* Walk the virtual use-def chain of VUSE until hitting the virtual operand |
| 3729 | TARGET or a statement clobbering the memory reference REF in which |
| 3730 | case false is returned. The walk starts with VUSE, one argument of PHI. */ |
| 3731 | |
| 3732 | static bool |
| 3733 | maybe_skip_until (gimple *phi, tree &target, basic_block target_bb, |
| 3734 | ao_ref *ref, tree vuse, bool tbaa_p, unsigned int &limit, |
| 3735 | bitmap *visited, bool abort_on_visited, |
| 3736 | void *(*translate)(ao_ref *, tree, void *, translate_flags *), |
| 3737 | translate_flags disambiguate_only, |
| 3738 | void *data) |
| 3739 | { |
| 3740 | basic_block bb = gimple_bb (g: phi); |
| 3741 | |
| 3742 | if (!*visited) |
| 3743 | { |
| 3744 | *visited = BITMAP_ALLOC (NULL); |
| 3745 | bitmap_tree_view (*visited); |
| 3746 | } |
| 3747 | |
| 3748 | bitmap_set_bit (*visited, SSA_NAME_VERSION (PHI_RESULT (phi))); |
| 3749 | |
| 3750 | /* Walk until we hit the target. */ |
| 3751 | while (vuse != target) |
| 3752 | { |
| 3753 | gimple *def_stmt = SSA_NAME_DEF_STMT (vuse); |
| 3754 | /* If we are searching for the target VUSE by walking up to |
| 3755 | TARGET_BB dominating the original PHI we are finished once |
| 3756 | we reach a default def or a definition in a block dominating |
| 3757 | that block. Update TARGET and return. */ |
| 3758 | if (!target |
| 3759 | && (gimple_nop_p (g: def_stmt) |
| 3760 | || dominated_by_p (CDI_DOMINATORS, |
| 3761 | target_bb, gimple_bb (g: def_stmt)))) |
| 3762 | { |
| 3763 | target = vuse; |
| 3764 | return true; |
| 3765 | } |
| 3766 | |
| 3767 | /* Recurse for PHI nodes. */ |
| 3768 | if (gimple_code (g: def_stmt) == GIMPLE_PHI) |
| 3769 | { |
| 3770 | /* An already visited PHI node ends the walk successfully. */ |
| 3771 | if (bitmap_bit_p (*visited, SSA_NAME_VERSION (PHI_RESULT (def_stmt)))) |
| 3772 | return !abort_on_visited; |
| 3773 | vuse = get_continuation_for_phi (def_stmt, ref, tbaa_p, limit, |
| 3774 | visited, abort_on_visited, |
| 3775 | translate, data, disambiguate_only); |
| 3776 | if (!vuse) |
| 3777 | return false; |
| 3778 | continue; |
| 3779 | } |
| 3780 | else if (gimple_nop_p (g: def_stmt)) |
| 3781 | return false; |
| 3782 | else |
| 3783 | { |
| 3784 | /* A clobbering statement or the end of the IL ends it failing. */ |
| 3785 | if ((int)limit <= 0) |
| 3786 | return false; |
| 3787 | --limit; |
| 3788 | if (stmt_may_clobber_ref_p_1 (stmt: def_stmt, ref, tbaa_p)) |
| 3789 | { |
| 3790 | translate_flags tf = disambiguate_only; |
| 3791 | if (translate |
| 3792 | && (*translate) (ref, vuse, data, &tf) == NULL) |
| 3793 | ; |
| 3794 | else |
| 3795 | return false; |
| 3796 | } |
| 3797 | } |
| 3798 | /* If we reach a new basic-block see if we already skipped it |
| 3799 | in a previous walk that ended successfully. */ |
| 3800 | if (gimple_bb (g: def_stmt) != bb) |
| 3801 | { |
| 3802 | if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (vuse))) |
| 3803 | return !abort_on_visited; |
| 3804 | bb = gimple_bb (g: def_stmt); |
| 3805 | } |
| 3806 | vuse = gimple_vuse (g: def_stmt); |
| 3807 | } |
| 3808 | return true; |
| 3809 | } |
| 3810 | |
| 3811 | |
| 3812 | /* Starting from a PHI node for the virtual operand of the memory reference |
| 3813 | REF find a continuation virtual operand that allows to continue walking |
| 3814 | statements dominating PHI skipping only statements that cannot possibly |
| 3815 | clobber REF. Decrements LIMIT for each alias disambiguation done |
| 3816 | and aborts the walk, returning NULL_TREE if it reaches zero. |
| 3817 | Returns NULL_TREE if no suitable virtual operand can be found. */ |
| 3818 | |
| 3819 | tree |
| 3820 | get_continuation_for_phi (gimple *phi, ao_ref *ref, bool tbaa_p, |
| 3821 | unsigned int &limit, bitmap *visited, |
| 3822 | bool abort_on_visited, |
| 3823 | void *(*translate)(ao_ref *, tree, void *, |
| 3824 | translate_flags *), |
| 3825 | void *data, |
| 3826 | translate_flags disambiguate_only) |
| 3827 | { |
| 3828 | unsigned nargs = gimple_phi_num_args (gs: phi); |
| 3829 | |
| 3830 | /* Through a single-argument PHI we can simply look through. */ |
| 3831 | if (nargs == 1) |
| 3832 | return PHI_ARG_DEF (phi, 0); |
| 3833 | |
| 3834 | /* For two or more arguments try to pairwise skip non-aliasing code |
| 3835 | until we hit the phi argument definition that dominates the other one. */ |
| 3836 | basic_block phi_bb = gimple_bb (g: phi); |
| 3837 | tree arg0, arg1; |
| 3838 | unsigned i; |
| 3839 | |
| 3840 | /* Find a candidate for the virtual operand which definition |
| 3841 | dominates those of all others. */ |
| 3842 | /* First look if any of the args themselves satisfy this. */ |
| 3843 | for (i = 0; i < nargs; ++i) |
| 3844 | { |
| 3845 | arg0 = PHI_ARG_DEF (phi, i); |
| 3846 | if (SSA_NAME_IS_DEFAULT_DEF (arg0)) |
| 3847 | break; |
| 3848 | basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (arg0)); |
| 3849 | if (def_bb != phi_bb |
| 3850 | && dominated_by_p (CDI_DOMINATORS, phi_bb, def_bb)) |
| 3851 | break; |
| 3852 | arg0 = NULL_TREE; |
| 3853 | } |
| 3854 | /* If not, look if we can reach such candidate by walking defs |
| 3855 | until we hit the immediate dominator. maybe_skip_until will |
| 3856 | do that for us. */ |
| 3857 | basic_block dom = get_immediate_dominator (CDI_DOMINATORS, phi_bb); |
| 3858 | |
| 3859 | /* Then check against the (to be) found candidate. */ |
| 3860 | for (i = 0; i < nargs; ++i) |
| 3861 | { |
| 3862 | arg1 = PHI_ARG_DEF (phi, i); |
| 3863 | if (arg1 == arg0) |
| 3864 | ; |
| 3865 | else if (! maybe_skip_until (phi, target&: arg0, target_bb: dom, ref, vuse: arg1, tbaa_p, |
| 3866 | limit, visited, |
| 3867 | abort_on_visited, |
| 3868 | translate, |
| 3869 | /* Do not valueize when walking over |
| 3870 | backedges. */ |
| 3871 | disambiguate_only: dominated_by_p |
| 3872 | (CDI_DOMINATORS, |
| 3873 | gimple_bb (SSA_NAME_DEF_STMT (arg1)), |
| 3874 | phi_bb) |
| 3875 | ? TR_DISAMBIGUATE |
| 3876 | : disambiguate_only, data)) |
| 3877 | return NULL_TREE; |
| 3878 | } |
| 3879 | |
| 3880 | return arg0; |
| 3881 | } |
| 3882 | |
| 3883 | /* Based on the memory reference REF and its virtual use VUSE call |
| 3884 | WALKER for each virtual use that is equivalent to VUSE, including VUSE |
| 3885 | itself. That is, for each virtual use for which its defining statement |
| 3886 | does not clobber REF. |
| 3887 | |
| 3888 | WALKER is called with REF, the current virtual use and DATA. If |
| 3889 | WALKER returns non-NULL the walk stops and its result is returned. |
| 3890 | At the end of a non-successful walk NULL is returned. |
| 3891 | |
| 3892 | TRANSLATE if non-NULL is called with a pointer to REF, the virtual |
| 3893 | use which definition is a statement that may clobber REF and DATA. |
| 3894 | If TRANSLATE returns (void *)-1 the walk stops and NULL is returned. |
| 3895 | If TRANSLATE returns non-NULL the walk stops and its result is returned. |
| 3896 | If TRANSLATE returns NULL the walk continues and TRANSLATE is supposed |
| 3897 | to adjust REF and *DATA to make that valid. |
| 3898 | |
| 3899 | VALUEIZE if non-NULL is called with the next VUSE that is considered |
| 3900 | and return value is substituted for that. This can be used to |
| 3901 | implement optimistic value-numbering for example. Note that the |
| 3902 | VUSE argument is assumed to be valueized already. |
| 3903 | |
| 3904 | LIMIT specifies the number of alias queries we are allowed to do, |
| 3905 | the walk stops when it reaches zero and NULL is returned. LIMIT |
| 3906 | is decremented by the number of alias queries (plus adjustments |
| 3907 | done by the callbacks) upon return. |
| 3908 | |
| 3909 | TODO: Cache the vector of equivalent vuses per ref, vuse pair. */ |
| 3910 | |
| 3911 | void * |
| 3912 | walk_non_aliased_vuses (ao_ref *ref, tree vuse, bool tbaa_p, |
| 3913 | void *(*walker)(ao_ref *, tree, void *), |
| 3914 | void *(*translate)(ao_ref *, tree, void *, |
| 3915 | translate_flags *), |
| 3916 | tree (*valueize)(tree), |
| 3917 | unsigned &limit, void *data) |
| 3918 | { |
| 3919 | bitmap visited = NULL; |
| 3920 | void *res; |
| 3921 | bool translated = false; |
| 3922 | |
| 3923 | timevar_push (tv: TV_ALIAS_STMT_WALK); |
| 3924 | |
| 3925 | do |
| 3926 | { |
| 3927 | gimple *def_stmt; |
| 3928 | |
| 3929 | /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */ |
| 3930 | res = (*walker) (ref, vuse, data); |
| 3931 | /* Abort walk. */ |
| 3932 | if (res == (void *)-1) |
| 3933 | { |
| 3934 | res = NULL; |
| 3935 | break; |
| 3936 | } |
| 3937 | /* Lookup succeeded. */ |
| 3938 | else if (res != NULL) |
| 3939 | break; |
| 3940 | |
| 3941 | if (valueize) |
| 3942 | { |
| 3943 | vuse = valueize (vuse); |
| 3944 | if (!vuse) |
| 3945 | { |
| 3946 | res = NULL; |
| 3947 | break; |
| 3948 | } |
| 3949 | } |
| 3950 | def_stmt = SSA_NAME_DEF_STMT (vuse); |
| 3951 | if (gimple_nop_p (g: def_stmt)) |
| 3952 | break; |
| 3953 | else if (gimple_code (g: def_stmt) == GIMPLE_PHI) |
| 3954 | vuse = get_continuation_for_phi (phi: def_stmt, ref, tbaa_p, limit, |
| 3955 | visited: &visited, abort_on_visited: translated, translate, data); |
| 3956 | else |
| 3957 | { |
| 3958 | if ((int)limit <= 0) |
| 3959 | { |
| 3960 | res = NULL; |
| 3961 | break; |
| 3962 | } |
| 3963 | --limit; |
| 3964 | if (stmt_may_clobber_ref_p_1 (stmt: def_stmt, ref, tbaa_p)) |
| 3965 | { |
| 3966 | if (!translate) |
| 3967 | break; |
| 3968 | translate_flags disambiguate_only = TR_TRANSLATE; |
| 3969 | res = (*translate) (ref, vuse, data, &disambiguate_only); |
| 3970 | /* Failed lookup and translation. */ |
| 3971 | if (res == (void *)-1) |
| 3972 | { |
| 3973 | res = NULL; |
| 3974 | break; |
| 3975 | } |
| 3976 | /* Lookup succeeded. */ |
| 3977 | else if (res != NULL) |
| 3978 | break; |
| 3979 | /* Translation succeeded, continue walking. */ |
| 3980 | translated = translated || disambiguate_only == TR_TRANSLATE; |
| 3981 | } |
| 3982 | vuse = gimple_vuse (g: def_stmt); |
| 3983 | } |
| 3984 | } |
| 3985 | while (vuse); |
| 3986 | |
| 3987 | if (visited) |
| 3988 | BITMAP_FREE (visited); |
| 3989 | |
| 3990 | timevar_pop (tv: TV_ALIAS_STMT_WALK); |
| 3991 | |
| 3992 | return res; |
| 3993 | } |
| 3994 | |
| 3995 | |
| 3996 | /* Based on the memory reference REF call WALKER for each vdef whose |
| 3997 | defining statement may clobber REF, starting with VDEF. If REF |
| 3998 | is NULL_TREE, each defining statement is visited. |
| 3999 | |
| 4000 | WALKER is called with REF, the current vdef and DATA. If WALKER |
| 4001 | returns true the walk is stopped, otherwise it continues. |
| 4002 | |
| 4003 | If function entry is reached, FUNCTION_ENTRY_REACHED is set to true. |
| 4004 | The pointer may be NULL and then we do not track this information. |
| 4005 | |
| 4006 | At PHI nodes walk_aliased_vdefs forks into one walk for each |
| 4007 | PHI argument (but only one walk continues at merge points), the |
| 4008 | return value is true if any of the walks was successful. |
| 4009 | |
| 4010 | The function returns the number of statements walked or -1 if |
| 4011 | LIMIT stmts were walked and the walk was aborted at this point. |
| 4012 | If LIMIT is zero the walk is not aborted. */ |
| 4013 | |
| 4014 | static int |
| 4015 | walk_aliased_vdefs_1 (ao_ref *ref, tree vdef, |
| 4016 | bool (*walker)(ao_ref *, tree, void *), void *data, |
| 4017 | bitmap *visited, unsigned int cnt, |
| 4018 | bool *function_entry_reached, unsigned limit) |
| 4019 | { |
| 4020 | do |
| 4021 | { |
| 4022 | gimple *def_stmt = SSA_NAME_DEF_STMT (vdef); |
| 4023 | |
| 4024 | if (*visited |
| 4025 | && !bitmap_set_bit (*visited, SSA_NAME_VERSION (vdef))) |
| 4026 | return cnt; |
| 4027 | |
| 4028 | if (gimple_nop_p (g: def_stmt)) |
| 4029 | { |
| 4030 | if (function_entry_reached) |
| 4031 | *function_entry_reached = true; |
| 4032 | return cnt; |
| 4033 | } |
| 4034 | else if (gimple_code (g: def_stmt) == GIMPLE_PHI) |
| 4035 | { |
| 4036 | unsigned i; |
| 4037 | if (!*visited) |
| 4038 | { |
| 4039 | *visited = BITMAP_ALLOC (NULL); |
| 4040 | bitmap_tree_view (*visited); |
| 4041 | } |
| 4042 | for (i = 0; i < gimple_phi_num_args (gs: def_stmt); ++i) |
| 4043 | { |
| 4044 | int res = walk_aliased_vdefs_1 (ref, |
| 4045 | vdef: gimple_phi_arg_def (gs: def_stmt, index: i), |
| 4046 | walker, data, visited, cnt, |
| 4047 | function_entry_reached, limit); |
| 4048 | if (res == -1) |
| 4049 | return -1; |
| 4050 | cnt = res; |
| 4051 | } |
| 4052 | return cnt; |
| 4053 | } |
| 4054 | |
| 4055 | /* ??? Do we want to account this to TV_ALIAS_STMT_WALK? */ |
| 4056 | cnt++; |
| 4057 | if (cnt == limit) |
| 4058 | return -1; |
| 4059 | if ((!ref |
| 4060 | || stmt_may_clobber_ref_p_1 (stmt: def_stmt, ref)) |
| 4061 | && (*walker) (ref, vdef, data)) |
| 4062 | return cnt; |
| 4063 | |
| 4064 | vdef = gimple_vuse (g: def_stmt); |
| 4065 | } |
| 4066 | while (1); |
| 4067 | } |
| 4068 | |
| 4069 | int |
| 4070 | walk_aliased_vdefs (ao_ref *ref, tree vdef, |
| 4071 | bool (*walker)(ao_ref *, tree, void *), void *data, |
| 4072 | bitmap *visited, |
| 4073 | bool *function_entry_reached, unsigned int limit) |
| 4074 | { |
| 4075 | bitmap local_visited = NULL; |
| 4076 | int ret; |
| 4077 | |
| 4078 | timevar_push (tv: TV_ALIAS_STMT_WALK); |
| 4079 | |
| 4080 | if (function_entry_reached) |
| 4081 | *function_entry_reached = false; |
| 4082 | |
| 4083 | ret = walk_aliased_vdefs_1 (ref, vdef, walker, data, |
| 4084 | visited: visited ? visited : &local_visited, cnt: 0, |
| 4085 | function_entry_reached, limit); |
| 4086 | if (local_visited) |
| 4087 | BITMAP_FREE (local_visited); |
| 4088 | |
| 4089 | timevar_pop (tv: TV_ALIAS_STMT_WALK); |
| 4090 | |
| 4091 | return ret; |
| 4092 | } |
| 4093 | |
| 4094 | /* Verify validity of the fnspec string. |
| 4095 | See attr-fnspec.h for details. */ |
| 4096 | |
| 4097 | void |
| 4098 | attr_fnspec::verify () |
| 4099 | { |
| 4100 | bool err = false; |
| 4101 | if (!len) |
| 4102 | return; |
| 4103 | |
| 4104 | /* Check return value specifier. */ |
| 4105 | if (len < return_desc_size) |
| 4106 | err = true; |
| 4107 | else if ((len - return_desc_size) % arg_desc_size) |
| 4108 | err = true; |
| 4109 | else if ((str[0] < '1' || str[0] > '4') |
| 4110 | && str[0] != '.' && str[0] != 'm') |
| 4111 | err = true; |
| 4112 | |
| 4113 | switch (str[1]) |
| 4114 | { |
| 4115 | case ' ': |
| 4116 | case 'p': |
| 4117 | case 'P': |
| 4118 | case 'c': |
| 4119 | case 'C': |
| 4120 | break; |
| 4121 | default: |
| 4122 | err = true; |
| 4123 | } |
| 4124 | if (err) |
| 4125 | internal_error ("invalid fn spec attribute \"%s\"" , str); |
| 4126 | |
| 4127 | /* Now check all parameters. */ |
| 4128 | for (unsigned int i = 0; arg_specified_p (i); i++) |
| 4129 | { |
| 4130 | unsigned int idx = arg_idx (i); |
| 4131 | switch (str[idx]) |
| 4132 | { |
| 4133 | case 'x': |
| 4134 | case 'X': |
| 4135 | case 'r': |
| 4136 | case 'R': |
| 4137 | case 'o': |
| 4138 | case 'O': |
| 4139 | case 'w': |
| 4140 | case 'W': |
| 4141 | case '.': |
| 4142 | if ((str[idx + 1] >= '1' && str[idx + 1] <= '9') |
| 4143 | || str[idx + 1] == 't') |
| 4144 | { |
| 4145 | if (str[idx] != 'r' && str[idx] != 'R' |
| 4146 | && str[idx] != 'w' && str[idx] != 'W' |
| 4147 | && str[idx] != 'o' && str[idx] != 'O') |
| 4148 | err = true; |
| 4149 | if (str[idx + 1] != 't' |
| 4150 | /* Size specified is scalar, so it should be described |
| 4151 | by ". " if specified at all. */ |
| 4152 | && (arg_specified_p (i: str[idx + 1] - '1') |
| 4153 | && str[arg_idx (i: str[idx + 1] - '1')] != '.')) |
| 4154 | err = true; |
| 4155 | } |
| 4156 | else if (str[idx + 1] != ' ') |
| 4157 | err = true; |
| 4158 | break; |
| 4159 | default: |
| 4160 | if (str[idx] < '1' || str[idx] > '9') |
| 4161 | err = true; |
| 4162 | } |
| 4163 | if (err) |
| 4164 | internal_error ("invalid fn spec attribute \"%s\" arg %i" , str, i); |
| 4165 | } |
| 4166 | } |
| 4167 | |
| 4168 | /* Return ture if TYPE1 and TYPE2 will always give the same answer |
| 4169 | when compared with other types using same_type_for_tbaa. */ |
| 4170 | |
| 4171 | static bool |
| 4172 | types_equal_for_same_type_for_tbaa_p (tree type1, tree type2, |
| 4173 | bool lto_streaming_safe) |
| 4174 | { |
| 4175 | /* We use same_type_for_tbaa_p to match types in the access path. |
| 4176 | This check is overly conservative. */ |
| 4177 | type1 = TYPE_MAIN_VARIANT (type1); |
| 4178 | type2 = TYPE_MAIN_VARIANT (type2); |
| 4179 | |
| 4180 | if (TYPE_STRUCTURAL_EQUALITY_P (type1) |
| 4181 | != TYPE_STRUCTURAL_EQUALITY_P (type2)) |
| 4182 | return false; |
| 4183 | if (TYPE_STRUCTURAL_EQUALITY_P (type1)) |
| 4184 | return true; |
| 4185 | |
| 4186 | if (lto_streaming_safe) |
| 4187 | return type1 == type2; |
| 4188 | else |
| 4189 | return TYPE_CANONICAL (type1) == TYPE_CANONICAL (type2); |
| 4190 | } |
| 4191 | |
| 4192 | /* Return ture if TYPE1 and TYPE2 will always give the same answer |
| 4193 | when compared with other types using same_type_for_tbaa. */ |
| 4194 | |
| 4195 | bool |
| 4196 | types_equal_for_same_type_for_tbaa_p (tree type1, tree type2) |
| 4197 | { |
| 4198 | return types_equal_for_same_type_for_tbaa_p (type1, type2, |
| 4199 | lto_streaming_safe: lto_streaming_expected_p ()); |
| 4200 | } |
| 4201 | |
| 4202 | /* Compare REF1 and REF2 and return flags specifying their differences. |
| 4203 | If LTO_STREAMING_SAFE is true do not use alias sets and canonical |
| 4204 | types that are going to be recomputed. |
| 4205 | If TBAA is true also compare TBAA metadata. */ |
| 4206 | |
| 4207 | int |
| 4208 | ao_compare::compare_ao_refs (ao_ref *ref1, ao_ref *ref2, |
| 4209 | bool lto_streaming_safe, |
| 4210 | bool tbaa) |
| 4211 | { |
| 4212 | if (TREE_THIS_VOLATILE (ref1->ref) != TREE_THIS_VOLATILE (ref2->ref)) |
| 4213 | return SEMANTICS; |
| 4214 | tree base1 = ao_ref_base (ref: ref1); |
| 4215 | tree base2 = ao_ref_base (ref: ref2); |
| 4216 | |
| 4217 | if (!known_eq (ref1->offset, ref2->offset) |
| 4218 | || !known_eq (ref1->size, ref2->size) |
| 4219 | || !known_eq (ref1->max_size, ref2->max_size)) |
| 4220 | return SEMANTICS; |
| 4221 | |
| 4222 | /* For variable accesses we need to compare actual paths |
| 4223 | to check that both refs are accessing same address and the access size. */ |
| 4224 | if (!known_eq (ref1->size, ref1->max_size)) |
| 4225 | { |
| 4226 | if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (ref1->ref)), |
| 4227 | TYPE_SIZE (TREE_TYPE (ref2->ref)), flags: 0)) |
| 4228 | return SEMANTICS; |
| 4229 | tree r1 = ref1->ref; |
| 4230 | tree r2 = ref2->ref; |
| 4231 | |
| 4232 | /* Handle toplevel COMPONENT_REFs of bitfields. |
| 4233 | Those are special since they are not allowed in |
| 4234 | ADDR_EXPR. */ |
| 4235 | if (TREE_CODE (r1) == COMPONENT_REF |
| 4236 | && DECL_BIT_FIELD (TREE_OPERAND (r1, 1))) |
| 4237 | { |
| 4238 | if (TREE_CODE (r2) != COMPONENT_REF |
| 4239 | || !DECL_BIT_FIELD (TREE_OPERAND (r2, 1))) |
| 4240 | return SEMANTICS; |
| 4241 | tree field1 = TREE_OPERAND (r1, 1); |
| 4242 | tree field2 = TREE_OPERAND (r2, 1); |
| 4243 | if (!operand_equal_p (DECL_FIELD_OFFSET (field1), |
| 4244 | DECL_FIELD_OFFSET (field2), flags: 0) |
| 4245 | || !operand_equal_p (DECL_FIELD_BIT_OFFSET (field1), |
| 4246 | DECL_FIELD_BIT_OFFSET (field2), flags: 0) |
| 4247 | || !operand_equal_p (DECL_SIZE (field1), DECL_SIZE (field2), flags: 0) |
| 4248 | || !types_compatible_p (TREE_TYPE (r1), |
| 4249 | TREE_TYPE (r2))) |
| 4250 | return SEMANTICS; |
| 4251 | r1 = TREE_OPERAND (r1, 0); |
| 4252 | r2 = TREE_OPERAND (r2, 0); |
| 4253 | } |
| 4254 | else if (TREE_CODE (r2) == COMPONENT_REF |
| 4255 | && DECL_BIT_FIELD (TREE_OPERAND (r2, 1))) |
| 4256 | return SEMANTICS; |
| 4257 | |
| 4258 | /* Similarly for bit field refs. */ |
| 4259 | if (TREE_CODE (r1) == BIT_FIELD_REF) |
| 4260 | { |
| 4261 | if (TREE_CODE (r2) != BIT_FIELD_REF |
| 4262 | || !operand_equal_p (TREE_OPERAND (r1, 1), |
| 4263 | TREE_OPERAND (r2, 1), flags: 0) |
| 4264 | || !operand_equal_p (TREE_OPERAND (r1, 2), |
| 4265 | TREE_OPERAND (r2, 2), flags: 0) |
| 4266 | || !types_compatible_p (TREE_TYPE (r1), |
| 4267 | TREE_TYPE (r2))) |
| 4268 | return SEMANTICS; |
| 4269 | r1 = TREE_OPERAND (r1, 0); |
| 4270 | r2 = TREE_OPERAND (r2, 0); |
| 4271 | } |
| 4272 | else if (TREE_CODE (r2) == BIT_FIELD_REF) |
| 4273 | return SEMANTICS; |
| 4274 | |
| 4275 | /* Now we can compare the address of actual memory access. */ |
| 4276 | if (!operand_equal_p (r1, r2, flags: OEP_ADDRESS_OF | OEP_MATCH_SIDE_EFFECTS)) |
| 4277 | return SEMANTICS; |
| 4278 | } |
| 4279 | /* For constant accesses we get more matches by comparing offset only. */ |
| 4280 | else if (!operand_equal_p (base1, base2, |
| 4281 | flags: OEP_ADDRESS_OF | OEP_MATCH_SIDE_EFFECTS)) |
| 4282 | return SEMANTICS; |
| 4283 | |
| 4284 | /* We can't simply use get_object_alignment_1 on the full |
| 4285 | reference as for accesses with variable indexes this reports |
| 4286 | too conservative alignment. */ |
| 4287 | unsigned int align1, align2; |
| 4288 | unsigned HOST_WIDE_INT bitpos1, bitpos2; |
| 4289 | bool known1 = get_object_alignment_1 (base1, &align1, &bitpos1); |
| 4290 | bool known2 = get_object_alignment_1 (base2, &align2, &bitpos2); |
| 4291 | /* ??? For MEMREF get_object_alignment_1 determines aligned from |
| 4292 | TYPE_ALIGN but still returns false. This seem to contradict |
| 4293 | its description. So compare even if alignment is unknown. */ |
| 4294 | if (known1 != known2 |
| 4295 | || (bitpos1 != bitpos2 || align1 != align2)) |
| 4296 | return SEMANTICS; |
| 4297 | |
| 4298 | /* Now we know that accesses are semantically same. */ |
| 4299 | int flags = 0; |
| 4300 | |
| 4301 | /* ao_ref_base strips inner MEM_REF [&decl], recover from that here. */ |
| 4302 | tree rbase1 = ref1->ref; |
| 4303 | if (rbase1) |
| 4304 | while (handled_component_p (t: rbase1)) |
| 4305 | rbase1 = TREE_OPERAND (rbase1, 0); |
| 4306 | tree rbase2 = ref2->ref; |
| 4307 | while (handled_component_p (t: rbase2)) |
| 4308 | rbase2 = TREE_OPERAND (rbase2, 0); |
| 4309 | |
| 4310 | /* MEM_REFs and TARGET_MEM_REFs record dependence cliques which are used to |
| 4311 | implement restrict pointers. MR_DEPENDENCE_CLIQUE 0 means no information. |
| 4312 | Otherwise we need to match bases and cliques. */ |
| 4313 | if ((((TREE_CODE (rbase1) == MEM_REF || TREE_CODE (rbase1) == TARGET_MEM_REF) |
| 4314 | && MR_DEPENDENCE_CLIQUE (rbase1)) |
| 4315 | || ((TREE_CODE (rbase2) == MEM_REF || TREE_CODE (rbase2) == TARGET_MEM_REF) |
| 4316 | && MR_DEPENDENCE_CLIQUE (rbase2))) |
| 4317 | && (TREE_CODE (rbase1) != TREE_CODE (rbase2) |
| 4318 | || MR_DEPENDENCE_CLIQUE (rbase1) != MR_DEPENDENCE_CLIQUE (rbase2) |
| 4319 | || (MR_DEPENDENCE_BASE (rbase1) != MR_DEPENDENCE_BASE (rbase2)))) |
| 4320 | flags |= DEPENDENCE_CLIQUE; |
| 4321 | |
| 4322 | if (!tbaa) |
| 4323 | return flags; |
| 4324 | |
| 4325 | /* Alias sets are not stable across LTO sreaming; be conservative here |
| 4326 | and compare types the alias sets are ultimately based on. */ |
| 4327 | if (lto_streaming_safe) |
| 4328 | { |
| 4329 | tree t1 = ao_ref_alias_ptr_type (ref: ref1); |
| 4330 | tree t2 = ao_ref_alias_ptr_type (ref: ref2); |
| 4331 | if (!alias_ptr_types_compatible_p (t1, t2)) |
| 4332 | flags |= REF_ALIAS_SET; |
| 4333 | |
| 4334 | t1 = ao_ref_base_alias_ptr_type (ref: ref1); |
| 4335 | t2 = ao_ref_base_alias_ptr_type (ref: ref2); |
| 4336 | if (!alias_ptr_types_compatible_p (t1, t2)) |
| 4337 | flags |= BASE_ALIAS_SET; |
| 4338 | } |
| 4339 | else |
| 4340 | { |
| 4341 | if (ao_ref_alias_set (ref: ref1) != ao_ref_alias_set (ref: ref2)) |
| 4342 | flags |= REF_ALIAS_SET; |
| 4343 | if (ao_ref_base_alias_set (ref: ref1) != ao_ref_base_alias_set (ref: ref2)) |
| 4344 | flags |= BASE_ALIAS_SET; |
| 4345 | } |
| 4346 | |
| 4347 | /* Access path is used only on non-view-converted references. */ |
| 4348 | bool view_converted = view_converted_memref_p (base: rbase1); |
| 4349 | if (view_converted_memref_p (base: rbase2) != view_converted) |
| 4350 | return flags | ACCESS_PATH; |
| 4351 | else if (view_converted) |
| 4352 | return flags; |
| 4353 | |
| 4354 | |
| 4355 | /* Find start of access paths and look for trailing arrays. */ |
| 4356 | tree c1 = ref1->ref, c2 = ref2->ref; |
| 4357 | tree end_struct_ref1 = NULL, end_struct_ref2 = NULL; |
| 4358 | int nskipped1 = 0, nskipped2 = 0; |
| 4359 | int i = 0; |
| 4360 | |
| 4361 | for (tree p1 = ref1->ref; handled_component_p (t: p1); p1 = TREE_OPERAND (p1, 0)) |
| 4362 | { |
| 4363 | if (component_ref_to_zero_sized_trailing_array_p (ref: p1)) |
| 4364 | end_struct_ref1 = p1; |
| 4365 | if (ends_tbaa_access_path_p (p1)) |
| 4366 | c1 = p1, nskipped1 = i; |
| 4367 | i++; |
| 4368 | } |
| 4369 | i = 0; |
| 4370 | for (tree p2 = ref2->ref; handled_component_p (t: p2); p2 = TREE_OPERAND (p2, 0)) |
| 4371 | { |
| 4372 | if (component_ref_to_zero_sized_trailing_array_p (ref: p2)) |
| 4373 | end_struct_ref2 = p2; |
| 4374 | if (ends_tbaa_access_path_p (p2)) |
| 4375 | c2 = p2, nskipped2 = i; |
| 4376 | i++; |
| 4377 | } |
| 4378 | |
| 4379 | /* For variable accesses we can not rely on offset match bellow. |
| 4380 | We know that paths are struturally same, so only check that |
| 4381 | starts of TBAA paths did not diverge. */ |
| 4382 | if (!known_eq (ref1->size, ref1->max_size) |
| 4383 | && nskipped1 != nskipped2) |
| 4384 | return flags | ACCESS_PATH; |
| 4385 | |
| 4386 | /* Information about trailing refs is used by |
| 4387 | aliasing_component_refs_p that is applied only if paths |
| 4388 | has handled components.. */ |
| 4389 | if (!handled_component_p (t: c1) && !handled_component_p (t: c2)) |
| 4390 | ; |
| 4391 | else if ((end_struct_ref1 != NULL) != (end_struct_ref2 != NULL)) |
| 4392 | return flags | ACCESS_PATH; |
| 4393 | if (end_struct_ref1 |
| 4394 | && same_type_for_tbaa (TREE_TYPE (end_struct_ref1), |
| 4395 | TREE_TYPE (end_struct_ref2)) != 1) |
| 4396 | return flags | ACCESS_PATH; |
| 4397 | |
| 4398 | /* Now compare all handled components of the access path. |
| 4399 | We have three oracles that cares about access paths: |
| 4400 | - aliasing_component_refs_p |
| 4401 | - nonoverlapping_refs_since_match_p |
| 4402 | - nonoverlapping_component_refs_p |
| 4403 | We need to match things these oracles compare. |
| 4404 | |
| 4405 | It is only necessary to check types for compatibility |
| 4406 | and offsets. Rest of what oracles compares are actual |
| 4407 | addresses. Those are already known to be same: |
| 4408 | - for constant accesses we check offsets |
| 4409 | - for variable accesses we already matched |
| 4410 | the path lexically with operand_equal_p. */ |
| 4411 | while (true) |
| 4412 | { |
| 4413 | bool comp1 = handled_component_p (t: c1); |
| 4414 | bool comp2 = handled_component_p (t: c2); |
| 4415 | |
| 4416 | if (comp1 != comp2) |
| 4417 | return flags | ACCESS_PATH; |
| 4418 | if (!comp1) |
| 4419 | break; |
| 4420 | |
| 4421 | if (TREE_CODE (c1) != TREE_CODE (c2)) |
| 4422 | return flags | ACCESS_PATH; |
| 4423 | |
| 4424 | /* aliasing_component_refs_p attempts to find type match within |
| 4425 | the paths. For that reason both types needs to be equal |
| 4426 | with respect to same_type_for_tbaa_p. */ |
| 4427 | if (!types_equal_for_same_type_for_tbaa_p (TREE_TYPE (c1), |
| 4428 | TREE_TYPE (c2), |
| 4429 | lto_streaming_safe)) |
| 4430 | return flags | ACCESS_PATH; |
| 4431 | if (component_ref_to_zero_sized_trailing_array_p (ref: c1) |
| 4432 | != component_ref_to_zero_sized_trailing_array_p (ref: c2)) |
| 4433 | return flags | ACCESS_PATH; |
| 4434 | |
| 4435 | /* aliasing_matching_component_refs_p compares |
| 4436 | offsets within the path. Other properties are ignored. |
| 4437 | Do not bother to verify offsets in variable accesses. Here we |
| 4438 | already compared them by operand_equal_p so they are |
| 4439 | structurally same. */ |
| 4440 | if (!known_eq (ref1->size, ref1->max_size)) |
| 4441 | { |
| 4442 | poly_int64 offadj1, sztmc1, msztmc1; |
| 4443 | bool reverse1; |
| 4444 | get_ref_base_and_extent (c1, &offadj1, &sztmc1, &msztmc1, &reverse1); |
| 4445 | poly_int64 offadj2, sztmc2, msztmc2; |
| 4446 | bool reverse2; |
| 4447 | get_ref_base_and_extent (c2, &offadj2, &sztmc2, &msztmc2, &reverse2); |
| 4448 | if (!known_eq (offadj1, offadj2)) |
| 4449 | return flags | ACCESS_PATH; |
| 4450 | } |
| 4451 | c1 = TREE_OPERAND (c1, 0); |
| 4452 | c2 = TREE_OPERAND (c2, 0); |
| 4453 | } |
| 4454 | /* Finally test the access type. */ |
| 4455 | if (!types_equal_for_same_type_for_tbaa_p (TREE_TYPE (c1), |
| 4456 | TREE_TYPE (c2), |
| 4457 | lto_streaming_safe)) |
| 4458 | return flags | ACCESS_PATH; |
| 4459 | return flags; |
| 4460 | } |
| 4461 | |
| 4462 | /* Hash REF to HSTATE. If LTO_STREAMING_SAFE do not use alias sets |
| 4463 | and canonical types. */ |
| 4464 | void |
| 4465 | ao_compare::hash_ao_ref (ao_ref *ref, bool lto_streaming_safe, bool tbaa, |
| 4466 | inchash::hash &hstate) |
| 4467 | { |
| 4468 | tree base = ao_ref_base (ref); |
| 4469 | tree tbase = base; |
| 4470 | |
| 4471 | if (!known_eq (ref->size, ref->max_size)) |
| 4472 | { |
| 4473 | tree r = ref->ref; |
| 4474 | if (TREE_CODE (r) == COMPONENT_REF |
| 4475 | && DECL_BIT_FIELD (TREE_OPERAND (r, 1))) |
| 4476 | { |
| 4477 | tree field = TREE_OPERAND (r, 1); |
| 4478 | hash_operand (DECL_FIELD_OFFSET (field), hstate, flags: 0); |
| 4479 | hash_operand (DECL_FIELD_BIT_OFFSET (field), hstate, flags: 0); |
| 4480 | hash_operand (DECL_SIZE (field), hstate, flags: 0); |
| 4481 | r = TREE_OPERAND (r, 0); |
| 4482 | } |
| 4483 | if (TREE_CODE (r) == BIT_FIELD_REF) |
| 4484 | { |
| 4485 | hash_operand (TREE_OPERAND (r, 1), hstate, flags: 0); |
| 4486 | hash_operand (TREE_OPERAND (r, 2), hstate, flags: 0); |
| 4487 | r = TREE_OPERAND (r, 0); |
| 4488 | } |
| 4489 | hash_operand (TYPE_SIZE (TREE_TYPE (ref->ref)), hstate, flags: 0); |
| 4490 | hash_operand (r, hstate, flags: OEP_ADDRESS_OF | OEP_MATCH_SIDE_EFFECTS); |
| 4491 | } |
| 4492 | else |
| 4493 | { |
| 4494 | hash_operand (tbase, hstate, flags: OEP_ADDRESS_OF | OEP_MATCH_SIDE_EFFECTS); |
| 4495 | hstate.add_poly_int (v: ref->offset); |
| 4496 | hstate.add_poly_int (v: ref->size); |
| 4497 | hstate.add_poly_int (v: ref->max_size); |
| 4498 | } |
| 4499 | if (!lto_streaming_safe && tbaa) |
| 4500 | { |
| 4501 | hstate.add_int (v: ao_ref_alias_set (ref)); |
| 4502 | hstate.add_int (v: ao_ref_base_alias_set (ref)); |
| 4503 | } |
| 4504 | } |
| 4505 | |