| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * Contains common pci routines for ALL ppc platform |
| 4 | * (based on pci_32.c and pci_64.c) |
| 5 | * |
| 6 | * Port for PPC64 David Engebretsen, IBM Corp. |
| 7 | * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. |
| 8 | * |
| 9 | * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM |
| 10 | * Rework, based on alpha PCI code. |
| 11 | * |
| 12 | * Common pmac/prep/chrp pci routines. -- Cort |
| 13 | */ |
| 14 | |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/pci.h> |
| 17 | #include <linux/string.h> |
| 18 | #include <linux/init.h> |
| 19 | #include <linux/delay.h> |
| 20 | #include <linux/export.h> |
| 21 | #include <linux/of_address.h> |
| 22 | #include <linux/of_pci.h> |
| 23 | #include <linux/mm.h> |
| 24 | #include <linux/shmem_fs.h> |
| 25 | #include <linux/list.h> |
| 26 | #include <linux/syscalls.h> |
| 27 | #include <linux/irq.h> |
| 28 | #include <linux/vmalloc.h> |
| 29 | #include <linux/slab.h> |
| 30 | #include <linux/vgaarb.h> |
| 31 | #include <linux/numa.h> |
| 32 | #include <linux/msi.h> |
| 33 | #include <linux/irqdomain.h> |
| 34 | |
| 35 | #include <asm/processor.h> |
| 36 | #include <asm/io.h> |
| 37 | #include <asm/pci-bridge.h> |
| 38 | #include <asm/byteorder.h> |
| 39 | #include <asm/machdep.h> |
| 40 | #include <asm/ppc-pci.h> |
| 41 | #include <asm/eeh.h> |
| 42 | #include <asm/setup.h> |
| 43 | |
| 44 | #include "../../../drivers/pci/pci.h" |
| 45 | |
| 46 | /* hose_spinlock protects accesses to the phb_bitmap. */ |
| 47 | static DEFINE_SPINLOCK(hose_spinlock); |
| 48 | LIST_HEAD(hose_list); |
| 49 | |
| 50 | /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */ |
| 51 | #define MAX_PHBS 0x10000 |
| 52 | |
| 53 | /* |
| 54 | * For dynamic PHB numbering: used/free PHBs tracking bitmap. |
| 55 | * Accesses to this bitmap should be protected by hose_spinlock. |
| 56 | */ |
| 57 | static DECLARE_BITMAP(phb_bitmap, MAX_PHBS); |
| 58 | |
| 59 | /* ISA Memory physical address */ |
| 60 | resource_size_t isa_mem_base; |
| 61 | EXPORT_SYMBOL(isa_mem_base); |
| 62 | |
| 63 | |
| 64 | static const struct dma_map_ops *pci_dma_ops; |
| 65 | |
| 66 | void __init set_pci_dma_ops(const struct dma_map_ops *dma_ops) |
| 67 | { |
| 68 | pci_dma_ops = dma_ops; |
| 69 | } |
| 70 | |
| 71 | static int get_phb_number(struct device_node *dn) |
| 72 | { |
| 73 | int ret, phb_id = -1; |
| 74 | u64 prop; |
| 75 | |
| 76 | /* |
| 77 | * Try fixed PHB numbering first, by checking archs and reading |
| 78 | * the respective device-tree properties. Firstly, try reading |
| 79 | * standard "linux,pci-domain", then try reading "ibm,opal-phbid" |
| 80 | * (only present in powernv OPAL environment), then try device-tree |
| 81 | * alias and as the last try to use lower bits of "reg" property. |
| 82 | */ |
| 83 | ret = of_get_pci_domain_nr(node: dn); |
| 84 | if (ret >= 0) { |
| 85 | prop = ret; |
| 86 | ret = 0; |
| 87 | } |
| 88 | if (ret) |
| 89 | ret = of_property_read_u64(np: dn, propname: "ibm,opal-phbid" , out_value: &prop); |
| 90 | |
| 91 | if (ret) { |
| 92 | ret = of_alias_get_id(np: dn, stem: "pci" ); |
| 93 | if (ret >= 0) { |
| 94 | prop = ret; |
| 95 | ret = 0; |
| 96 | } |
| 97 | } |
| 98 | if (ret) { |
| 99 | u32 prop_32; |
| 100 | ret = of_property_read_u32_index(np: dn, propname: "reg" , index: 1, out_value: &prop_32); |
| 101 | prop = prop_32; |
| 102 | } |
| 103 | |
| 104 | if (!ret) |
| 105 | phb_id = (int)(prop & (MAX_PHBS - 1)); |
| 106 | |
| 107 | spin_lock(lock: &hose_spinlock); |
| 108 | |
| 109 | /* We need to be sure to not use the same PHB number twice. */ |
| 110 | if ((phb_id >= 0) && !test_and_set_bit(nr: phb_id, addr: phb_bitmap)) |
| 111 | goto out_unlock; |
| 112 | |
| 113 | /* If everything fails then fallback to dynamic PHB numbering. */ |
| 114 | phb_id = find_first_zero_bit(addr: phb_bitmap, MAX_PHBS); |
| 115 | BUG_ON(phb_id >= MAX_PHBS); |
| 116 | set_bit(nr: phb_id, addr: phb_bitmap); |
| 117 | |
| 118 | out_unlock: |
| 119 | spin_unlock(lock: &hose_spinlock); |
| 120 | |
| 121 | return phb_id; |
| 122 | } |
| 123 | |
| 124 | struct pci_controller *pcibios_alloc_controller(struct device_node *dev) |
| 125 | { |
| 126 | struct pci_controller *phb; |
| 127 | |
| 128 | phb = kzalloc(sizeof(struct pci_controller), GFP_KERNEL); |
| 129 | if (phb == NULL) |
| 130 | return NULL; |
| 131 | |
| 132 | phb->global_number = get_phb_number(dn: dev); |
| 133 | |
| 134 | spin_lock(lock: &hose_spinlock); |
| 135 | list_add_tail(new: &phb->list_node, head: &hose_list); |
| 136 | spin_unlock(lock: &hose_spinlock); |
| 137 | |
| 138 | phb->dn = of_node_get(node: dev); |
| 139 | phb->is_dynamic = slab_is_available(); |
| 140 | #ifdef CONFIG_PPC64 |
| 141 | if (dev) { |
| 142 | int nid = of_node_to_nid(dev); |
| 143 | |
| 144 | if (nid < 0 || !node_online(nid)) |
| 145 | nid = NUMA_NO_NODE; |
| 146 | |
| 147 | PHB_SET_NODE(phb, nid); |
| 148 | } |
| 149 | #endif |
| 150 | return phb; |
| 151 | } |
| 152 | EXPORT_SYMBOL_GPL(pcibios_alloc_controller); |
| 153 | |
| 154 | void pcibios_free_controller(struct pci_controller *phb) |
| 155 | { |
| 156 | spin_lock(lock: &hose_spinlock); |
| 157 | |
| 158 | /* Clear bit of phb_bitmap to allow reuse of this PHB number. */ |
| 159 | if (phb->global_number < MAX_PHBS) |
| 160 | clear_bit(nr: phb->global_number, addr: phb_bitmap); |
| 161 | of_node_put(node: phb->dn); |
| 162 | list_del(entry: &phb->list_node); |
| 163 | spin_unlock(lock: &hose_spinlock); |
| 164 | |
| 165 | if (phb->is_dynamic) |
| 166 | kfree(objp: phb); |
| 167 | } |
| 168 | EXPORT_SYMBOL_GPL(pcibios_free_controller); |
| 169 | |
| 170 | /* |
| 171 | * This function is used to call pcibios_free_controller() |
| 172 | * in a deferred manner: a callback from the PCI subsystem. |
| 173 | * |
| 174 | * _*DO NOT*_ call pcibios_free_controller() explicitly if |
| 175 | * this is used (or it may access an invalid *phb pointer). |
| 176 | * |
| 177 | * The callback occurs when all references to the root bus |
| 178 | * are dropped (e.g., child buses/devices and their users). |
| 179 | * |
| 180 | * It's called as .release_fn() of 'struct pci_host_bridge' |
| 181 | * which is associated with the 'struct pci_controller.bus' |
| 182 | * (root bus) - it expects .release_data to hold a pointer |
| 183 | * to 'struct pci_controller'. |
| 184 | * |
| 185 | * In order to use it, register .release_fn()/release_data |
| 186 | * like this: |
| 187 | * |
| 188 | * pci_set_host_bridge_release(bridge, |
| 189 | * pcibios_free_controller_deferred |
| 190 | * (void *) phb); |
| 191 | * |
| 192 | * e.g. in the pcibios_root_bridge_prepare() callback from |
| 193 | * pci_create_root_bus(). |
| 194 | */ |
| 195 | void pcibios_free_controller_deferred(struct pci_host_bridge *bridge) |
| 196 | { |
| 197 | struct pci_controller *phb = (struct pci_controller *) |
| 198 | bridge->release_data; |
| 199 | |
| 200 | pr_debug("domain %d, dynamic %d\n" , phb->global_number, phb->is_dynamic); |
| 201 | |
| 202 | pcibios_free_controller(phb); |
| 203 | } |
| 204 | EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred); |
| 205 | |
| 206 | /* |
| 207 | * The function is used to return the minimal alignment |
| 208 | * for memory or I/O windows of the associated P2P bridge. |
| 209 | * By default, 4KiB alignment for I/O windows and 1MiB for |
| 210 | * memory windows. |
| 211 | */ |
| 212 | resource_size_t pcibios_window_alignment(struct pci_bus *bus, |
| 213 | unsigned long type) |
| 214 | { |
| 215 | struct pci_controller *phb = pci_bus_to_host(bus); |
| 216 | |
| 217 | if (phb->controller_ops.window_alignment) |
| 218 | return phb->controller_ops.window_alignment(bus, type); |
| 219 | |
| 220 | /* |
| 221 | * PCI core will figure out the default |
| 222 | * alignment: 4KiB for I/O and 1MiB for |
| 223 | * memory window. |
| 224 | */ |
| 225 | return 1; |
| 226 | } |
| 227 | |
| 228 | void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type) |
| 229 | { |
| 230 | struct pci_controller *hose = pci_bus_to_host(bus); |
| 231 | |
| 232 | if (hose->controller_ops.setup_bridge) |
| 233 | hose->controller_ops.setup_bridge(bus, type); |
| 234 | } |
| 235 | |
| 236 | void pcibios_reset_secondary_bus(struct pci_dev *dev) |
| 237 | { |
| 238 | struct pci_controller *phb = pci_bus_to_host(dev->bus); |
| 239 | |
| 240 | if (phb->controller_ops.reset_secondary_bus) { |
| 241 | phb->controller_ops.reset_secondary_bus(dev); |
| 242 | return; |
| 243 | } |
| 244 | |
| 245 | pci_reset_secondary_bus(dev); |
| 246 | } |
| 247 | |
| 248 | resource_size_t pcibios_default_alignment(void) |
| 249 | { |
| 250 | if (ppc_md.pcibios_default_alignment) |
| 251 | return ppc_md.pcibios_default_alignment(); |
| 252 | |
| 253 | return 0; |
| 254 | } |
| 255 | |
| 256 | #ifdef CONFIG_PCI_IOV |
| 257 | resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno) |
| 258 | { |
| 259 | if (ppc_md.pcibios_iov_resource_alignment) |
| 260 | return ppc_md.pcibios_iov_resource_alignment(pdev, resno); |
| 261 | |
| 262 | return pci_iov_resource_size(dev: pdev, resno); |
| 263 | } |
| 264 | |
| 265 | int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) |
| 266 | { |
| 267 | if (ppc_md.pcibios_sriov_enable) |
| 268 | return ppc_md.pcibios_sriov_enable(pdev, num_vfs); |
| 269 | |
| 270 | return 0; |
| 271 | } |
| 272 | |
| 273 | int pcibios_sriov_disable(struct pci_dev *pdev) |
| 274 | { |
| 275 | if (ppc_md.pcibios_sriov_disable) |
| 276 | return ppc_md.pcibios_sriov_disable(pdev); |
| 277 | |
| 278 | return 0; |
| 279 | } |
| 280 | |
| 281 | #endif /* CONFIG_PCI_IOV */ |
| 282 | |
| 283 | static resource_size_t pcibios_io_size(const struct pci_controller *hose) |
| 284 | { |
| 285 | #ifdef CONFIG_PPC64 |
| 286 | return hose->pci_io_size; |
| 287 | #else |
| 288 | return resource_size(res: &hose->io_resource); |
| 289 | #endif |
| 290 | } |
| 291 | |
| 292 | int pcibios_vaddr_is_ioport(void __iomem *address) |
| 293 | { |
| 294 | int ret = 0; |
| 295 | struct pci_controller *hose; |
| 296 | resource_size_t size; |
| 297 | |
| 298 | spin_lock(lock: &hose_spinlock); |
| 299 | list_for_each_entry(hose, &hose_list, list_node) { |
| 300 | size = pcibios_io_size(hose); |
| 301 | if (address >= hose->io_base_virt && |
| 302 | address < (hose->io_base_virt + size)) { |
| 303 | ret = 1; |
| 304 | break; |
| 305 | } |
| 306 | } |
| 307 | spin_unlock(lock: &hose_spinlock); |
| 308 | return ret; |
| 309 | } |
| 310 | |
| 311 | unsigned long pci_address_to_pio(phys_addr_t address) |
| 312 | { |
| 313 | struct pci_controller *hose; |
| 314 | resource_size_t size; |
| 315 | unsigned long ret = ~0; |
| 316 | |
| 317 | spin_lock(lock: &hose_spinlock); |
| 318 | list_for_each_entry(hose, &hose_list, list_node) { |
| 319 | size = pcibios_io_size(hose); |
| 320 | if (address >= hose->io_base_phys && |
| 321 | address < (hose->io_base_phys + size)) { |
| 322 | unsigned long base = |
| 323 | (unsigned long)hose->io_base_virt - _IO_BASE; |
| 324 | ret = base + (address - hose->io_base_phys); |
| 325 | break; |
| 326 | } |
| 327 | } |
| 328 | spin_unlock(lock: &hose_spinlock); |
| 329 | |
| 330 | return ret; |
| 331 | } |
| 332 | EXPORT_SYMBOL_GPL(pci_address_to_pio); |
| 333 | |
| 334 | /* |
| 335 | * Return the domain number for this bus. |
| 336 | */ |
| 337 | int pci_domain_nr(struct pci_bus *bus) |
| 338 | { |
| 339 | struct pci_controller *hose = pci_bus_to_host(bus); |
| 340 | |
| 341 | return hose->global_number; |
| 342 | } |
| 343 | EXPORT_SYMBOL(pci_domain_nr); |
| 344 | |
| 345 | /* This routine is meant to be used early during boot, when the |
| 346 | * PCI bus numbers have not yet been assigned, and you need to |
| 347 | * issue PCI config cycles to an OF device. |
| 348 | * It could also be used to "fix" RTAS config cycles if you want |
| 349 | * to set pci_assign_all_buses to 1 and still use RTAS for PCI |
| 350 | * config cycles. |
| 351 | */ |
| 352 | struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node) |
| 353 | { |
| 354 | while(node) { |
| 355 | struct pci_controller *hose, *tmp; |
| 356 | list_for_each_entry_safe(hose, tmp, &hose_list, list_node) |
| 357 | if (hose->dn == node) |
| 358 | return hose; |
| 359 | node = node->parent; |
| 360 | } |
| 361 | return NULL; |
| 362 | } |
| 363 | |
| 364 | struct pci_controller *pci_find_controller_for_domain(int domain_nr) |
| 365 | { |
| 366 | struct pci_controller *hose; |
| 367 | |
| 368 | list_for_each_entry(hose, &hose_list, list_node) |
| 369 | if (hose->global_number == domain_nr) |
| 370 | return hose; |
| 371 | |
| 372 | return NULL; |
| 373 | } |
| 374 | |
| 375 | struct pci_intx_virq { |
| 376 | int virq; |
| 377 | struct kref kref; |
| 378 | struct list_head list_node; |
| 379 | }; |
| 380 | |
| 381 | static LIST_HEAD(intx_list); |
| 382 | static DEFINE_MUTEX(intx_mutex); |
| 383 | |
| 384 | static void ppc_pci_intx_release(struct kref *kref) |
| 385 | { |
| 386 | struct pci_intx_virq *vi = container_of(kref, struct pci_intx_virq, kref); |
| 387 | |
| 388 | list_del(entry: &vi->list_node); |
| 389 | irq_dispose_mapping(virq: vi->virq); |
| 390 | kfree(objp: vi); |
| 391 | } |
| 392 | |
| 393 | static int ppc_pci_unmap_irq_line(struct notifier_block *nb, |
| 394 | unsigned long action, void *data) |
| 395 | { |
| 396 | struct pci_dev *pdev = to_pci_dev(data); |
| 397 | |
| 398 | if (action == BUS_NOTIFY_DEL_DEVICE) { |
| 399 | struct pci_intx_virq *vi; |
| 400 | |
| 401 | mutex_lock(&intx_mutex); |
| 402 | list_for_each_entry(vi, &intx_list, list_node) { |
| 403 | if (vi->virq == pdev->irq) { |
| 404 | kref_put(kref: &vi->kref, release: ppc_pci_intx_release); |
| 405 | break; |
| 406 | } |
| 407 | } |
| 408 | mutex_unlock(lock: &intx_mutex); |
| 409 | } |
| 410 | |
| 411 | return NOTIFY_DONE; |
| 412 | } |
| 413 | |
| 414 | static struct notifier_block ppc_pci_unmap_irq_notifier = { |
| 415 | .notifier_call = ppc_pci_unmap_irq_line, |
| 416 | }; |
| 417 | |
| 418 | static int ppc_pci_register_irq_notifier(void) |
| 419 | { |
| 420 | return bus_register_notifier(bus: &pci_bus_type, nb: &ppc_pci_unmap_irq_notifier); |
| 421 | } |
| 422 | arch_initcall(ppc_pci_register_irq_notifier); |
| 423 | |
| 424 | /* |
| 425 | * Reads the interrupt pin to determine if interrupt is use by card. |
| 426 | * If the interrupt is used, then gets the interrupt line from the |
| 427 | * openfirmware and sets it in the pci_dev and pci_config line. |
| 428 | */ |
| 429 | static int pci_read_irq_line(struct pci_dev *pci_dev) |
| 430 | { |
| 431 | int virq; |
| 432 | struct pci_intx_virq *vi, *vitmp; |
| 433 | |
| 434 | /* Preallocate vi as rewind is complex if this fails after mapping */ |
| 435 | vi = kzalloc(sizeof(struct pci_intx_virq), GFP_KERNEL); |
| 436 | if (!vi) |
| 437 | return -1; |
| 438 | |
| 439 | pr_debug("PCI: Try to map irq for %s...\n" , pci_name(pci_dev)); |
| 440 | |
| 441 | /* Try to get a mapping from the device-tree */ |
| 442 | virq = of_irq_parse_and_map_pci(dev: pci_dev, slot: 0, pin: 0); |
| 443 | if (virq <= 0) { |
| 444 | u8 line, pin; |
| 445 | |
| 446 | /* If that fails, lets fallback to what is in the config |
| 447 | * space and map that through the default controller. We |
| 448 | * also set the type to level low since that's what PCI |
| 449 | * interrupts are. If your platform does differently, then |
| 450 | * either provide a proper interrupt tree or don't use this |
| 451 | * function. |
| 452 | */ |
| 453 | if (pci_read_config_byte(dev: pci_dev, PCI_INTERRUPT_PIN, val: &pin)) |
| 454 | goto error_exit; |
| 455 | if (pin == 0) |
| 456 | goto error_exit; |
| 457 | if (pci_read_config_byte(dev: pci_dev, PCI_INTERRUPT_LINE, val: &line) || |
| 458 | line == 0xff || line == 0) { |
| 459 | goto error_exit; |
| 460 | } |
| 461 | pr_debug(" No map ! Using line %d (pin %d) from PCI config\n" , |
| 462 | line, pin); |
| 463 | |
| 464 | virq = irq_create_mapping(NULL, hwirq: line); |
| 465 | if (virq) |
| 466 | irq_set_irq_type(irq: virq, type: IRQ_TYPE_LEVEL_LOW); |
| 467 | } |
| 468 | |
| 469 | if (!virq) { |
| 470 | pr_debug(" Failed to map !\n" ); |
| 471 | goto error_exit; |
| 472 | } |
| 473 | |
| 474 | pr_debug(" Mapped to linux irq %d\n" , virq); |
| 475 | |
| 476 | pci_dev->irq = virq; |
| 477 | |
| 478 | mutex_lock(&intx_mutex); |
| 479 | list_for_each_entry(vitmp, &intx_list, list_node) { |
| 480 | if (vitmp->virq == virq) { |
| 481 | kref_get(kref: &vitmp->kref); |
| 482 | kfree(objp: vi); |
| 483 | vi = NULL; |
| 484 | break; |
| 485 | } |
| 486 | } |
| 487 | if (vi) { |
| 488 | vi->virq = virq; |
| 489 | kref_init(kref: &vi->kref); |
| 490 | list_add_tail(new: &vi->list_node, head: &intx_list); |
| 491 | } |
| 492 | mutex_unlock(lock: &intx_mutex); |
| 493 | |
| 494 | return 0; |
| 495 | error_exit: |
| 496 | kfree(objp: vi); |
| 497 | return -1; |
| 498 | } |
| 499 | |
| 500 | /* |
| 501 | * Platform support for /proc/bus/pci/X/Y mmap()s. |
| 502 | * -- paulus. |
| 503 | */ |
| 504 | int pci_iobar_pfn(struct pci_dev *pdev, int bar, struct vm_area_struct *vma) |
| 505 | { |
| 506 | struct pci_controller *hose = pci_bus_to_host(pdev->bus); |
| 507 | resource_size_t ioaddr = pci_resource_start(pdev, bar); |
| 508 | |
| 509 | if (!hose) |
| 510 | return -EINVAL; |
| 511 | |
| 512 | /* Convert to an offset within this PCI controller */ |
| 513 | ioaddr -= (unsigned long)hose->io_base_virt - _IO_BASE; |
| 514 | |
| 515 | vma->vm_pgoff += (ioaddr + hose->io_base_phys) >> PAGE_SHIFT; |
| 516 | return 0; |
| 517 | } |
| 518 | |
| 519 | /* |
| 520 | * This one is used by /dev/mem and video who have no clue about the |
| 521 | * PCI device, it tries to find the PCI device first and calls the |
| 522 | * above routine |
| 523 | */ |
| 524 | pgprot_t pci_phys_mem_access_prot(unsigned long pfn, |
| 525 | unsigned long size, |
| 526 | pgprot_t prot) |
| 527 | { |
| 528 | struct pci_dev *pdev = NULL; |
| 529 | struct resource *found = NULL; |
| 530 | resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT; |
| 531 | int i; |
| 532 | |
| 533 | if (page_is_ram(pfn)) |
| 534 | return prot; |
| 535 | |
| 536 | prot = pgprot_noncached(prot); |
| 537 | for_each_pci_dev(pdev) { |
| 538 | for (i = 0; i <= PCI_ROM_RESOURCE; i++) { |
| 539 | struct resource *rp = &pdev->resource[i]; |
| 540 | int flags = rp->flags; |
| 541 | |
| 542 | /* Active and same type? */ |
| 543 | if ((flags & IORESOURCE_MEM) == 0) |
| 544 | continue; |
| 545 | /* In the range of this resource? */ |
| 546 | if (offset < (rp->start & PAGE_MASK) || |
| 547 | offset > rp->end) |
| 548 | continue; |
| 549 | found = rp; |
| 550 | break; |
| 551 | } |
| 552 | if (found) |
| 553 | break; |
| 554 | } |
| 555 | if (found) { |
| 556 | if (found->flags & IORESOURCE_PREFETCH) |
| 557 | prot = pgprot_noncached_wc(prot); |
| 558 | pci_dev_put(dev: pdev); |
| 559 | } |
| 560 | |
| 561 | pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n" , |
| 562 | (unsigned long long)offset, pgprot_val(prot)); |
| 563 | |
| 564 | return prot; |
| 565 | } |
| 566 | |
| 567 | /* This provides legacy IO read access on a bus */ |
| 568 | int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size) |
| 569 | { |
| 570 | unsigned long offset; |
| 571 | struct pci_controller *hose = pci_bus_to_host(bus); |
| 572 | struct resource *rp = &hose->io_resource; |
| 573 | void __iomem *addr; |
| 574 | |
| 575 | /* Check if port can be supported by that bus. We only check |
| 576 | * the ranges of the PHB though, not the bus itself as the rules |
| 577 | * for forwarding legacy cycles down bridges are not our problem |
| 578 | * here. So if the host bridge supports it, we do it. |
| 579 | */ |
| 580 | offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| 581 | offset += port; |
| 582 | |
| 583 | if (!(rp->flags & IORESOURCE_IO)) |
| 584 | return -ENXIO; |
| 585 | if (offset < rp->start || (offset + size) > rp->end) |
| 586 | return -ENXIO; |
| 587 | addr = hose->io_base_virt + port; |
| 588 | |
| 589 | switch(size) { |
| 590 | case 1: |
| 591 | *((u8 *)val) = in_8(addr); |
| 592 | return 1; |
| 593 | case 2: |
| 594 | if (port & 1) |
| 595 | return -EINVAL; |
| 596 | *((u16 *)val) = in_le16(addr); |
| 597 | return 2; |
| 598 | case 4: |
| 599 | if (port & 3) |
| 600 | return -EINVAL; |
| 601 | *((u32 *)val) = in_le32(addr); |
| 602 | return 4; |
| 603 | } |
| 604 | return -EINVAL; |
| 605 | } |
| 606 | |
| 607 | /* This provides legacy IO write access on a bus */ |
| 608 | int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size) |
| 609 | { |
| 610 | unsigned long offset; |
| 611 | struct pci_controller *hose = pci_bus_to_host(bus); |
| 612 | struct resource *rp = &hose->io_resource; |
| 613 | void __iomem *addr; |
| 614 | |
| 615 | /* Check if port can be supported by that bus. We only check |
| 616 | * the ranges of the PHB though, not the bus itself as the rules |
| 617 | * for forwarding legacy cycles down bridges are not our problem |
| 618 | * here. So if the host bridge supports it, we do it. |
| 619 | */ |
| 620 | offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| 621 | offset += port; |
| 622 | |
| 623 | if (!(rp->flags & IORESOURCE_IO)) |
| 624 | return -ENXIO; |
| 625 | if (offset < rp->start || (offset + size) > rp->end) |
| 626 | return -ENXIO; |
| 627 | addr = hose->io_base_virt + port; |
| 628 | |
| 629 | /* WARNING: The generic code is idiotic. It gets passed a pointer |
| 630 | * to what can be a 1, 2 or 4 byte quantity and always reads that |
| 631 | * as a u32, which means that we have to correct the location of |
| 632 | * the data read within those 32 bits for size 1 and 2 |
| 633 | */ |
| 634 | switch(size) { |
| 635 | case 1: |
| 636 | out_8(addr, val >> 24); |
| 637 | return 1; |
| 638 | case 2: |
| 639 | if (port & 1) |
| 640 | return -EINVAL; |
| 641 | out_le16(addr, val >> 16); |
| 642 | return 2; |
| 643 | case 4: |
| 644 | if (port & 3) |
| 645 | return -EINVAL; |
| 646 | out_le32(addr, val); |
| 647 | return 4; |
| 648 | } |
| 649 | return -EINVAL; |
| 650 | } |
| 651 | |
| 652 | /* This provides legacy IO or memory mmap access on a bus */ |
| 653 | int pci_mmap_legacy_page_range(struct pci_bus *bus, |
| 654 | struct vm_area_struct *vma, |
| 655 | enum pci_mmap_state mmap_state) |
| 656 | { |
| 657 | struct pci_controller *hose = pci_bus_to_host(bus); |
| 658 | resource_size_t offset = |
| 659 | ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; |
| 660 | resource_size_t size = vma->vm_end - vma->vm_start; |
| 661 | struct resource *rp; |
| 662 | |
| 663 | pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n" , |
| 664 | pci_domain_nr(bus), bus->number, |
| 665 | mmap_state == pci_mmap_mem ? "MEM" : "IO" , |
| 666 | (unsigned long long)offset, |
| 667 | (unsigned long long)(offset + size - 1)); |
| 668 | |
| 669 | if (mmap_state == pci_mmap_mem) { |
| 670 | /* Hack alert ! |
| 671 | * |
| 672 | * Because X is lame and can fail starting if it gets an error trying |
| 673 | * to mmap legacy_mem (instead of just moving on without legacy memory |
| 674 | * access) we fake it here by giving it anonymous memory, effectively |
| 675 | * behaving just like /dev/zero |
| 676 | */ |
| 677 | if ((offset + size) > hose->isa_mem_size) { |
| 678 | printk(KERN_DEBUG |
| 679 | "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n" , |
| 680 | current->comm, current->pid, pci_domain_nr(bus), bus->number); |
| 681 | if (vma->vm_flags & VM_SHARED) |
| 682 | return shmem_zero_setup(vma); |
| 683 | return 0; |
| 684 | } |
| 685 | offset += hose->isa_mem_phys; |
| 686 | } else { |
| 687 | unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| 688 | unsigned long roffset = offset + io_offset; |
| 689 | rp = &hose->io_resource; |
| 690 | if (!(rp->flags & IORESOURCE_IO)) |
| 691 | return -ENXIO; |
| 692 | if (roffset < rp->start || (roffset + size) > rp->end) |
| 693 | return -ENXIO; |
| 694 | offset += hose->io_base_phys; |
| 695 | } |
| 696 | pr_debug(" -> mapping phys %llx\n" , (unsigned long long)offset); |
| 697 | |
| 698 | vma->vm_pgoff = offset >> PAGE_SHIFT; |
| 699 | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); |
| 700 | return remap_pfn_range(vma, addr: vma->vm_start, pfn: vma->vm_pgoff, |
| 701 | size: vma->vm_end - vma->vm_start, |
| 702 | vma->vm_page_prot); |
| 703 | } |
| 704 | |
| 705 | void pci_resource_to_user(const struct pci_dev *dev, int bar, |
| 706 | const struct resource *rsrc, |
| 707 | resource_size_t *start, resource_size_t *end) |
| 708 | { |
| 709 | struct pci_bus_region region; |
| 710 | |
| 711 | if (rsrc->flags & IORESOURCE_IO) { |
| 712 | pcibios_resource_to_bus(bus: dev->bus, region: ®ion, |
| 713 | res: (struct resource *) rsrc); |
| 714 | *start = region.start; |
| 715 | *end = region.end; |
| 716 | return; |
| 717 | } |
| 718 | |
| 719 | /* We pass a CPU physical address to userland for MMIO instead of a |
| 720 | * BAR value because X is lame and expects to be able to use that |
| 721 | * to pass to /dev/mem! |
| 722 | * |
| 723 | * That means we may have 64-bit values where some apps only expect |
| 724 | * 32 (like X itself since it thinks only Sparc has 64-bit MMIO). |
| 725 | */ |
| 726 | *start = rsrc->start; |
| 727 | *end = rsrc->end; |
| 728 | } |
| 729 | |
| 730 | /** |
| 731 | * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree |
| 732 | * @hose: newly allocated pci_controller to be setup |
| 733 | * @dev: device node of the host bridge |
| 734 | * @primary: set if primary bus (32 bits only, soon to be deprecated) |
| 735 | * |
| 736 | * This function will parse the "ranges" property of a PCI host bridge device |
| 737 | * node and setup the resource mapping of a pci controller based on its |
| 738 | * content. |
| 739 | * |
| 740 | * Life would be boring if it wasn't for a few issues that we have to deal |
| 741 | * with here: |
| 742 | * |
| 743 | * - We can only cope with one IO space range and up to 3 Memory space |
| 744 | * ranges. However, some machines (thanks Apple !) tend to split their |
| 745 | * space into lots of small contiguous ranges. So we have to coalesce. |
| 746 | * |
| 747 | * - Some busses have IO space not starting at 0, which causes trouble with |
| 748 | * the way we do our IO resource renumbering. The code somewhat deals with |
| 749 | * it for 64 bits but I would expect problems on 32 bits. |
| 750 | * |
| 751 | * - Some 32 bits platforms such as 4xx can have physical space larger than |
| 752 | * 32 bits so we need to use 64 bits values for the parsing |
| 753 | */ |
| 754 | void pci_process_bridge_OF_ranges(struct pci_controller *hose, |
| 755 | struct device_node *dev, int primary) |
| 756 | { |
| 757 | int memno = 0; |
| 758 | struct resource *res; |
| 759 | struct of_pci_range range; |
| 760 | struct of_pci_range_parser parser; |
| 761 | |
| 762 | printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n" , |
| 763 | dev, primary ? "(primary)" : "" ); |
| 764 | |
| 765 | /* Check for ranges property */ |
| 766 | if (of_pci_range_parser_init(parser: &parser, node: dev)) |
| 767 | return; |
| 768 | |
| 769 | /* Parse it */ |
| 770 | for_each_of_pci_range(&parser, &range) { |
| 771 | /* If we failed translation or got a zero-sized region |
| 772 | * (some FW try to feed us with non sensical zero sized regions |
| 773 | * such as power3 which look like some kind of attempt at exposing |
| 774 | * the VGA memory hole) |
| 775 | */ |
| 776 | if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) |
| 777 | continue; |
| 778 | |
| 779 | /* Act based on address space type */ |
| 780 | res = NULL; |
| 781 | switch (range.flags & IORESOURCE_TYPE_BITS) { |
| 782 | case IORESOURCE_IO: |
| 783 | printk(KERN_INFO |
| 784 | " IO 0x%016llx..0x%016llx -> 0x%016llx\n" , |
| 785 | range.cpu_addr, range.cpu_addr + range.size - 1, |
| 786 | range.pci_addr); |
| 787 | |
| 788 | /* We support only one IO range */ |
| 789 | if (hose->pci_io_size) { |
| 790 | printk(KERN_INFO |
| 791 | " \\--> Skipped (too many) !\n" ); |
| 792 | continue; |
| 793 | } |
| 794 | #ifdef CONFIG_PPC32 |
| 795 | /* On 32 bits, limit I/O space to 16MB */ |
| 796 | if (range.size > 0x01000000) |
| 797 | range.size = 0x01000000; |
| 798 | |
| 799 | /* 32 bits needs to map IOs here */ |
| 800 | hose->io_base_virt = ioremap(range.cpu_addr, |
| 801 | range.size); |
| 802 | |
| 803 | /* Expect trouble if pci_addr is not 0 */ |
| 804 | if (primary) |
| 805 | isa_io_base = |
| 806 | (unsigned long)hose->io_base_virt; |
| 807 | #endif /* CONFIG_PPC32 */ |
| 808 | /* pci_io_size and io_base_phys always represent IO |
| 809 | * space starting at 0 so we factor in pci_addr |
| 810 | */ |
| 811 | hose->pci_io_size = range.pci_addr + range.size; |
| 812 | hose->io_base_phys = range.cpu_addr - range.pci_addr; |
| 813 | |
| 814 | /* Build resource */ |
| 815 | res = &hose->io_resource; |
| 816 | range.cpu_addr = range.pci_addr; |
| 817 | break; |
| 818 | case IORESOURCE_MEM: |
| 819 | printk(KERN_INFO |
| 820 | " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n" , |
| 821 | range.cpu_addr, range.cpu_addr + range.size - 1, |
| 822 | range.pci_addr, |
| 823 | (range.flags & IORESOURCE_PREFETCH) ? |
| 824 | "Prefetch" : "" ); |
| 825 | |
| 826 | /* We support only 3 memory ranges */ |
| 827 | if (memno >= 3) { |
| 828 | printk(KERN_INFO |
| 829 | " \\--> Skipped (too many) !\n" ); |
| 830 | continue; |
| 831 | } |
| 832 | /* Handles ISA memory hole space here */ |
| 833 | if (range.pci_addr == 0) { |
| 834 | if (primary || isa_mem_base == 0) |
| 835 | isa_mem_base = range.cpu_addr; |
| 836 | hose->isa_mem_phys = range.cpu_addr; |
| 837 | hose->isa_mem_size = range.size; |
| 838 | } |
| 839 | |
| 840 | /* Build resource */ |
| 841 | hose->mem_offset[memno] = range.cpu_addr - |
| 842 | range.pci_addr; |
| 843 | res = &hose->mem_resources[memno++]; |
| 844 | break; |
| 845 | } |
| 846 | if (res != NULL) { |
| 847 | res->name = dev->full_name; |
| 848 | res->flags = range.flags; |
| 849 | res->start = range.cpu_addr; |
| 850 | res->end = range.cpu_addr + range.size - 1; |
| 851 | res->parent = res->child = res->sibling = NULL; |
| 852 | } |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | /* Decide whether to display the domain number in /proc */ |
| 857 | int pci_proc_domain(struct pci_bus *bus) |
| 858 | { |
| 859 | struct pci_controller *hose = pci_bus_to_host(bus); |
| 860 | |
| 861 | if (!pci_has_flag(flag: PCI_ENABLE_PROC_DOMAINS)) |
| 862 | return 0; |
| 863 | if (pci_has_flag(flag: PCI_COMPAT_DOMAIN_0)) |
| 864 | return hose->global_number != 0; |
| 865 | return 1; |
| 866 | } |
| 867 | |
| 868 | int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) |
| 869 | { |
| 870 | if (ppc_md.pcibios_root_bridge_prepare) |
| 871 | return ppc_md.pcibios_root_bridge_prepare(bridge); |
| 872 | |
| 873 | return 0; |
| 874 | } |
| 875 | |
| 876 | /* This header fixup will do the resource fixup for all devices as they are |
| 877 | * probed, but not for bridge ranges |
| 878 | */ |
| 879 | static void pcibios_fixup_resources(struct pci_dev *dev) |
| 880 | { |
| 881 | struct pci_controller *hose = pci_bus_to_host(dev->bus); |
| 882 | struct resource *res; |
| 883 | int i; |
| 884 | |
| 885 | if (!hose) { |
| 886 | printk(KERN_ERR "No host bridge for PCI dev %s !\n" , |
| 887 | pci_name(dev)); |
| 888 | return; |
| 889 | } |
| 890 | |
| 891 | if (dev->is_virtfn) |
| 892 | return; |
| 893 | |
| 894 | pci_dev_for_each_resource(dev, res, i) { |
| 895 | struct pci_bus_region reg; |
| 896 | |
| 897 | if (!res->flags) |
| 898 | continue; |
| 899 | |
| 900 | /* If we're going to re-assign everything, we mark all resources |
| 901 | * as unset (and 0-base them). In addition, we mark BARs starting |
| 902 | * at 0 as unset as well, except if PCI_PROBE_ONLY is also set |
| 903 | * since in that case, we don't want to re-assign anything |
| 904 | */ |
| 905 | pcibios_resource_to_bus(bus: dev->bus, region: ®, res); |
| 906 | if (pci_has_flag(flag: PCI_REASSIGN_ALL_RSRC) || |
| 907 | (reg.start == 0 && !pci_has_flag(flag: PCI_PROBE_ONLY))) { |
| 908 | /* Only print message if not re-assigning */ |
| 909 | if (!pci_has_flag(flag: PCI_REASSIGN_ALL_RSRC)) |
| 910 | pr_debug("PCI:%s Resource %d %pR is unassigned\n" , |
| 911 | pci_name(dev), i, res); |
| 912 | res->end -= res->start; |
| 913 | res->start = 0; |
| 914 | res->flags |= IORESOURCE_UNSET; |
| 915 | continue; |
| 916 | } |
| 917 | |
| 918 | pr_debug("PCI:%s Resource %d %pR\n" , pci_name(dev), i, res); |
| 919 | } |
| 920 | |
| 921 | /* Call machine specific resource fixup */ |
| 922 | if (ppc_md.pcibios_fixup_resources) |
| 923 | ppc_md.pcibios_fixup_resources(dev); |
| 924 | } |
| 925 | DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources); |
| 926 | |
| 927 | /* This function tries to figure out if a bridge resource has been initialized |
| 928 | * by the firmware or not. It doesn't have to be absolutely bullet proof, but |
| 929 | * things go more smoothly when it gets it right. It should covers cases such |
| 930 | * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges |
| 931 | */ |
| 932 | static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus, |
| 933 | struct resource *res) |
| 934 | { |
| 935 | struct pci_controller *hose = pci_bus_to_host(bus); |
| 936 | struct pci_dev *dev = bus->self; |
| 937 | resource_size_t offset; |
| 938 | struct pci_bus_region region; |
| 939 | u16 command; |
| 940 | int i; |
| 941 | |
| 942 | /* We don't do anything if PCI_PROBE_ONLY is set */ |
| 943 | if (pci_has_flag(flag: PCI_PROBE_ONLY)) |
| 944 | return 0; |
| 945 | |
| 946 | /* Job is a bit different between memory and IO */ |
| 947 | if (res->flags & IORESOURCE_MEM) { |
| 948 | pcibios_resource_to_bus(bus: dev->bus, region: ®ion, res); |
| 949 | |
| 950 | /* If the BAR is non-0 then it's probably been initialized */ |
| 951 | if (region.start != 0) |
| 952 | return 0; |
| 953 | |
| 954 | /* The BAR is 0, let's check if memory decoding is enabled on |
| 955 | * the bridge. If not, we consider it unassigned |
| 956 | */ |
| 957 | pci_read_config_word(dev, PCI_COMMAND, val: &command); |
| 958 | if ((command & PCI_COMMAND_MEMORY) == 0) |
| 959 | return 1; |
| 960 | |
| 961 | /* Memory decoding is enabled and the BAR is 0. If any of the bridge |
| 962 | * resources covers that starting address (0 then it's good enough for |
| 963 | * us for memory space) |
| 964 | */ |
| 965 | for (i = 0; i < 3; i++) { |
| 966 | if ((hose->mem_resources[i].flags & IORESOURCE_MEM) && |
| 967 | hose->mem_resources[i].start == hose->mem_offset[i]) |
| 968 | return 0; |
| 969 | } |
| 970 | |
| 971 | /* Well, it starts at 0 and we know it will collide so we may as |
| 972 | * well consider it as unassigned. That covers the Apple case. |
| 973 | */ |
| 974 | return 1; |
| 975 | } else { |
| 976 | /* If the BAR is non-0, then we consider it assigned */ |
| 977 | offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| 978 | if (((res->start - offset) & 0xfffffffful) != 0) |
| 979 | return 0; |
| 980 | |
| 981 | /* Here, we are a bit different than memory as typically IO space |
| 982 | * starting at low addresses -is- valid. What we do instead if that |
| 983 | * we consider as unassigned anything that doesn't have IO enabled |
| 984 | * in the PCI command register, and that's it. |
| 985 | */ |
| 986 | pci_read_config_word(dev, PCI_COMMAND, val: &command); |
| 987 | if (command & PCI_COMMAND_IO) |
| 988 | return 0; |
| 989 | |
| 990 | /* It's starting at 0 and IO is disabled in the bridge, consider |
| 991 | * it unassigned |
| 992 | */ |
| 993 | return 1; |
| 994 | } |
| 995 | } |
| 996 | |
| 997 | /* Fixup resources of a PCI<->PCI bridge */ |
| 998 | static void pcibios_fixup_bridge(struct pci_bus *bus) |
| 999 | { |
| 1000 | struct resource *res; |
| 1001 | int i; |
| 1002 | |
| 1003 | struct pci_dev *dev = bus->self; |
| 1004 | |
| 1005 | pci_bus_for_each_resource(bus, res, i) { |
| 1006 | if (!res || !res->flags) |
| 1007 | continue; |
| 1008 | if (i >= 3 && bus->self->transparent) |
| 1009 | continue; |
| 1010 | |
| 1011 | /* If we're going to reassign everything, we can |
| 1012 | * shrink the P2P resource to have size as being |
| 1013 | * of 0 in order to save space. |
| 1014 | */ |
| 1015 | if (pci_has_flag(flag: PCI_REASSIGN_ALL_RSRC)) { |
| 1016 | res->flags |= IORESOURCE_UNSET; |
| 1017 | res->start = 0; |
| 1018 | res->end = -1; |
| 1019 | continue; |
| 1020 | } |
| 1021 | |
| 1022 | pr_debug("PCI:%s Bus rsrc %d %pR\n" , pci_name(dev), i, res); |
| 1023 | |
| 1024 | /* Try to detect uninitialized P2P bridge resources, |
| 1025 | * and clear them out so they get re-assigned later |
| 1026 | */ |
| 1027 | if (pcibios_uninitialized_bridge_resource(bus, res)) { |
| 1028 | res->flags = 0; |
| 1029 | pr_debug("PCI:%s (unassigned)\n" , pci_name(dev)); |
| 1030 | } |
| 1031 | } |
| 1032 | } |
| 1033 | |
| 1034 | void pcibios_setup_bus_self(struct pci_bus *bus) |
| 1035 | { |
| 1036 | struct pci_controller *phb; |
| 1037 | |
| 1038 | /* Fix up the bus resources for P2P bridges */ |
| 1039 | if (bus->self != NULL) |
| 1040 | pcibios_fixup_bridge(bus); |
| 1041 | |
| 1042 | /* Platform specific bus fixups. This is currently only used |
| 1043 | * by fsl_pci and I'm hoping to get rid of it at some point |
| 1044 | */ |
| 1045 | if (ppc_md.pcibios_fixup_bus) |
| 1046 | ppc_md.pcibios_fixup_bus(bus); |
| 1047 | |
| 1048 | /* Setup bus DMA mappings */ |
| 1049 | phb = pci_bus_to_host(bus); |
| 1050 | if (phb->controller_ops.dma_bus_setup) |
| 1051 | phb->controller_ops.dma_bus_setup(bus); |
| 1052 | } |
| 1053 | |
| 1054 | void pcibios_bus_add_device(struct pci_dev *dev) |
| 1055 | { |
| 1056 | struct pci_controller *phb; |
| 1057 | /* Fixup NUMA node as it may not be setup yet by the generic |
| 1058 | * code and is needed by the DMA init |
| 1059 | */ |
| 1060 | set_dev_node(dev: &dev->dev, pcibus_to_node(dev->bus)); |
| 1061 | |
| 1062 | /* Hook up default DMA ops */ |
| 1063 | set_dma_ops(&dev->dev, pci_dma_ops); |
| 1064 | dev->dev.archdata.dma_offset = PCI_DRAM_OFFSET; |
| 1065 | |
| 1066 | /* Additional platform DMA/iommu setup */ |
| 1067 | phb = pci_bus_to_host(dev->bus); |
| 1068 | if (phb->controller_ops.dma_dev_setup) |
| 1069 | phb->controller_ops.dma_dev_setup(dev); |
| 1070 | |
| 1071 | /* Read default IRQs and fixup if necessary */ |
| 1072 | pci_read_irq_line(pci_dev: dev); |
| 1073 | if (ppc_md.pci_irq_fixup) |
| 1074 | ppc_md.pci_irq_fixup(dev); |
| 1075 | |
| 1076 | if (ppc_md.pcibios_bus_add_device) |
| 1077 | ppc_md.pcibios_bus_add_device(dev); |
| 1078 | } |
| 1079 | |
| 1080 | int pcibios_device_add(struct pci_dev *dev) |
| 1081 | { |
| 1082 | struct irq_domain *d; |
| 1083 | |
| 1084 | #ifdef CONFIG_PCI_IOV |
| 1085 | if (ppc_md.pcibios_fixup_sriov) |
| 1086 | ppc_md.pcibios_fixup_sriov(dev); |
| 1087 | #endif /* CONFIG_PCI_IOV */ |
| 1088 | |
| 1089 | d = dev_get_msi_domain(dev: &dev->bus->dev); |
| 1090 | if (d) |
| 1091 | dev_set_msi_domain(dev: &dev->dev, d); |
| 1092 | return 0; |
| 1093 | } |
| 1094 | |
| 1095 | void pcibios_set_master(struct pci_dev *dev) |
| 1096 | { |
| 1097 | /* No special bus mastering setup handling */ |
| 1098 | } |
| 1099 | |
| 1100 | void pcibios_fixup_bus(struct pci_bus *bus) |
| 1101 | { |
| 1102 | /* When called from the generic PCI probe, read PCI<->PCI bridge |
| 1103 | * bases. This is -not- called when generating the PCI tree from |
| 1104 | * the OF device-tree. |
| 1105 | */ |
| 1106 | pci_read_bridge_bases(child: bus); |
| 1107 | |
| 1108 | /* Now fixup the bus */ |
| 1109 | pcibios_setup_bus_self(bus); |
| 1110 | } |
| 1111 | EXPORT_SYMBOL(pcibios_fixup_bus); |
| 1112 | |
| 1113 | static int skip_isa_ioresource_align(struct pci_dev *dev) |
| 1114 | { |
| 1115 | if (pci_has_flag(flag: PCI_CAN_SKIP_ISA_ALIGN) && |
| 1116 | !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA)) |
| 1117 | return 1; |
| 1118 | return 0; |
| 1119 | } |
| 1120 | |
| 1121 | /* |
| 1122 | * We need to avoid collisions with `mirrored' VGA ports |
| 1123 | * and other strange ISA hardware, so we always want the |
| 1124 | * addresses to be allocated in the 0x000-0x0ff region |
| 1125 | * modulo 0x400. |
| 1126 | * |
| 1127 | * Why? Because some silly external IO cards only decode |
| 1128 | * the low 10 bits of the IO address. The 0x00-0xff region |
| 1129 | * is reserved for motherboard devices that decode all 16 |
| 1130 | * bits, so it's ok to allocate at, say, 0x2800-0x28ff, |
| 1131 | * but we want to try to avoid allocating at 0x2900-0x2bff |
| 1132 | * which might have be mirrored at 0x0100-0x03ff.. |
| 1133 | */ |
| 1134 | resource_size_t pcibios_align_resource(void *data, const struct resource *res, |
| 1135 | resource_size_t size, resource_size_t align) |
| 1136 | { |
| 1137 | struct pci_dev *dev = data; |
| 1138 | resource_size_t start = res->start; |
| 1139 | |
| 1140 | if (res->flags & IORESOURCE_IO) { |
| 1141 | if (skip_isa_ioresource_align(dev)) |
| 1142 | return start; |
| 1143 | if (start & 0x300) |
| 1144 | start = (start + 0x3ff) & ~0x3ff; |
| 1145 | } |
| 1146 | |
| 1147 | return start; |
| 1148 | } |
| 1149 | EXPORT_SYMBOL(pcibios_align_resource); |
| 1150 | |
| 1151 | /* |
| 1152 | * Reparent resource children of pr that conflict with res |
| 1153 | * under res, and make res replace those children. |
| 1154 | */ |
| 1155 | static int reparent_resources(struct resource *parent, |
| 1156 | struct resource *res) |
| 1157 | { |
| 1158 | struct resource *p, **pp; |
| 1159 | struct resource **firstpp = NULL; |
| 1160 | |
| 1161 | for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) { |
| 1162 | if (p->end < res->start) |
| 1163 | continue; |
| 1164 | if (res->end < p->start) |
| 1165 | break; |
| 1166 | if (p->start < res->start || p->end > res->end) |
| 1167 | return -1; /* not completely contained */ |
| 1168 | if (firstpp == NULL) |
| 1169 | firstpp = pp; |
| 1170 | } |
| 1171 | if (firstpp == NULL) |
| 1172 | return -1; /* didn't find any conflicting entries? */ |
| 1173 | res->parent = parent; |
| 1174 | res->child = *firstpp; |
| 1175 | res->sibling = *pp; |
| 1176 | *firstpp = res; |
| 1177 | *pp = NULL; |
| 1178 | for (p = res->child; p != NULL; p = p->sibling) { |
| 1179 | p->parent = res; |
| 1180 | pr_debug("PCI: Reparented %s %pR under %s\n" , |
| 1181 | p->name, p, res->name); |
| 1182 | } |
| 1183 | return 0; |
| 1184 | } |
| 1185 | |
| 1186 | /* |
| 1187 | * Handle resources of PCI devices. If the world were perfect, we could |
| 1188 | * just allocate all the resource regions and do nothing more. It isn't. |
| 1189 | * On the other hand, we cannot just re-allocate all devices, as it would |
| 1190 | * require us to know lots of host bridge internals. So we attempt to |
| 1191 | * keep as much of the original configuration as possible, but tweak it |
| 1192 | * when it's found to be wrong. |
| 1193 | * |
| 1194 | * Known BIOS problems we have to work around: |
| 1195 | * - I/O or memory regions not configured |
| 1196 | * - regions configured, but not enabled in the command register |
| 1197 | * - bogus I/O addresses above 64K used |
| 1198 | * - expansion ROMs left enabled (this may sound harmless, but given |
| 1199 | * the fact the PCI specs explicitly allow address decoders to be |
| 1200 | * shared between expansion ROMs and other resource regions, it's |
| 1201 | * at least dangerous) |
| 1202 | * |
| 1203 | * Our solution: |
| 1204 | * (1) Allocate resources for all buses behind PCI-to-PCI bridges. |
| 1205 | * This gives us fixed barriers on where we can allocate. |
| 1206 | * (2) Allocate resources for all enabled devices. If there is |
| 1207 | * a collision, just mark the resource as unallocated. Also |
| 1208 | * disable expansion ROMs during this step. |
| 1209 | * (3) Try to allocate resources for disabled devices. If the |
| 1210 | * resources were assigned correctly, everything goes well, |
| 1211 | * if they weren't, they won't disturb allocation of other |
| 1212 | * resources. |
| 1213 | * (4) Assign new addresses to resources which were either |
| 1214 | * not configured at all or misconfigured. If explicitly |
| 1215 | * requested by the user, configure expansion ROM address |
| 1216 | * as well. |
| 1217 | */ |
| 1218 | |
| 1219 | static void pcibios_allocate_bus_resources(struct pci_bus *bus) |
| 1220 | { |
| 1221 | struct pci_bus *b; |
| 1222 | int i; |
| 1223 | struct resource *res, *pr; |
| 1224 | |
| 1225 | pr_debug("PCI: Allocating bus resources for %04x:%02x...\n" , |
| 1226 | pci_domain_nr(bus), bus->number); |
| 1227 | |
| 1228 | pci_bus_for_each_resource(bus, res, i) { |
| 1229 | if (!res || !res->flags || res->start > res->end || res->parent) |
| 1230 | continue; |
| 1231 | |
| 1232 | /* If the resource was left unset at this point, we clear it */ |
| 1233 | if (res->flags & IORESOURCE_UNSET) |
| 1234 | goto clear_resource; |
| 1235 | |
| 1236 | if (bus->parent == NULL) |
| 1237 | pr = (res->flags & IORESOURCE_IO) ? |
| 1238 | &ioport_resource : &iomem_resource; |
| 1239 | else { |
| 1240 | pr = pci_find_parent_resource(dev: bus->self, res); |
| 1241 | if (pr == res) { |
| 1242 | /* this happens when the generic PCI |
| 1243 | * code (wrongly) decides that this |
| 1244 | * bridge is transparent -- paulus |
| 1245 | */ |
| 1246 | continue; |
| 1247 | } |
| 1248 | } |
| 1249 | |
| 1250 | pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n" , |
| 1251 | bus->self ? pci_name(bus->self) : "PHB" , bus->number, |
| 1252 | i, res, pr, (pr && pr->name) ? pr->name : "nil" ); |
| 1253 | |
| 1254 | if (pr && !(pr->flags & IORESOURCE_UNSET)) { |
| 1255 | struct pci_dev *dev = bus->self; |
| 1256 | |
| 1257 | if (request_resource(root: pr, new: res) == 0) |
| 1258 | continue; |
| 1259 | /* |
| 1260 | * Must be a conflict with an existing entry. |
| 1261 | * Move that entry (or entries) under the |
| 1262 | * bridge resource and try again. |
| 1263 | */ |
| 1264 | if (reparent_resources(parent: pr, res) == 0) |
| 1265 | continue; |
| 1266 | |
| 1267 | if (dev && i < PCI_BRIDGE_RESOURCE_NUM && |
| 1268 | pci_claim_bridge_resource(bridge: dev, |
| 1269 | i: i + PCI_BRIDGE_RESOURCES) == 0) |
| 1270 | continue; |
| 1271 | } |
| 1272 | pr_warn("PCI: Cannot allocate resource region %d of PCI bridge %d, will remap\n" , |
| 1273 | i, bus->number); |
| 1274 | clear_resource: |
| 1275 | /* The resource might be figured out when doing |
| 1276 | * reassignment based on the resources required |
| 1277 | * by the downstream PCI devices. Here we set |
| 1278 | * the size of the resource to be 0 in order to |
| 1279 | * save more space. |
| 1280 | */ |
| 1281 | res->start = 0; |
| 1282 | res->end = -1; |
| 1283 | res->flags = 0; |
| 1284 | } |
| 1285 | |
| 1286 | list_for_each_entry(b, &bus->children, node) |
| 1287 | pcibios_allocate_bus_resources(bus: b); |
| 1288 | } |
| 1289 | |
| 1290 | static inline void alloc_resource(struct pci_dev *dev, int idx) |
| 1291 | { |
| 1292 | struct resource *pr, *r = &dev->resource[idx]; |
| 1293 | |
| 1294 | pr_debug("PCI: Allocating %s: Resource %d: %pR\n" , |
| 1295 | pci_name(dev), idx, r); |
| 1296 | |
| 1297 | pr = pci_find_parent_resource(dev, res: r); |
| 1298 | if (!pr || (pr->flags & IORESOURCE_UNSET) || |
| 1299 | request_resource(root: pr, new: r) < 0) { |
| 1300 | printk(KERN_WARNING "PCI: Cannot allocate resource region %d" |
| 1301 | " of device %s, will remap\n" , idx, pci_name(dev)); |
| 1302 | if (pr) |
| 1303 | pr_debug("PCI: parent is %p: %pR\n" , pr, pr); |
| 1304 | /* We'll assign a new address later */ |
| 1305 | r->flags |= IORESOURCE_UNSET; |
| 1306 | r->end -= r->start; |
| 1307 | r->start = 0; |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | static void __init pcibios_allocate_resources(int pass) |
| 1312 | { |
| 1313 | struct pci_dev *dev = NULL; |
| 1314 | int idx, disabled; |
| 1315 | u16 command; |
| 1316 | struct resource *r; |
| 1317 | |
| 1318 | for_each_pci_dev(dev) { |
| 1319 | pci_read_config_word(dev, PCI_COMMAND, val: &command); |
| 1320 | for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) { |
| 1321 | r = &dev->resource[idx]; |
| 1322 | if (r->parent) /* Already allocated */ |
| 1323 | continue; |
| 1324 | if (!r->flags || (r->flags & IORESOURCE_UNSET)) |
| 1325 | continue; /* Not assigned at all */ |
| 1326 | /* We only allocate ROMs on pass 1 just in case they |
| 1327 | * have been screwed up by firmware |
| 1328 | */ |
| 1329 | if (idx == PCI_ROM_RESOURCE ) |
| 1330 | disabled = 1; |
| 1331 | if (r->flags & IORESOURCE_IO) |
| 1332 | disabled = !(command & PCI_COMMAND_IO); |
| 1333 | else |
| 1334 | disabled = !(command & PCI_COMMAND_MEMORY); |
| 1335 | if (pass == disabled) |
| 1336 | alloc_resource(dev, idx); |
| 1337 | } |
| 1338 | if (pass) |
| 1339 | continue; |
| 1340 | r = &dev->resource[PCI_ROM_RESOURCE]; |
| 1341 | if (r->flags) { |
| 1342 | /* Turn the ROM off, leave the resource region, |
| 1343 | * but keep it unregistered. |
| 1344 | */ |
| 1345 | u32 reg; |
| 1346 | pci_read_config_dword(dev, where: dev->rom_base_reg, val: ®); |
| 1347 | if (reg & PCI_ROM_ADDRESS_ENABLE) { |
| 1348 | pr_debug("PCI: Switching off ROM of %s\n" , |
| 1349 | pci_name(dev)); |
| 1350 | r->flags &= ~IORESOURCE_ROM_ENABLE; |
| 1351 | pci_write_config_dword(dev, where: dev->rom_base_reg, |
| 1352 | val: reg & ~PCI_ROM_ADDRESS_ENABLE); |
| 1353 | } |
| 1354 | } |
| 1355 | } |
| 1356 | } |
| 1357 | |
| 1358 | static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus) |
| 1359 | { |
| 1360 | struct pci_controller *hose = pci_bus_to_host(bus); |
| 1361 | resource_size_t offset; |
| 1362 | struct resource *res, *pres; |
| 1363 | int i; |
| 1364 | |
| 1365 | pr_debug("Reserving legacy ranges for domain %04x\n" , pci_domain_nr(bus)); |
| 1366 | |
| 1367 | /* Check for IO */ |
| 1368 | if (!(hose->io_resource.flags & IORESOURCE_IO)) |
| 1369 | goto no_io; |
| 1370 | offset = (unsigned long)hose->io_base_virt - _IO_BASE; |
| 1371 | res = kzalloc(sizeof(struct resource), GFP_KERNEL); |
| 1372 | BUG_ON(res == NULL); |
| 1373 | res->name = "Legacy IO" ; |
| 1374 | res->flags = IORESOURCE_IO; |
| 1375 | res->start = offset; |
| 1376 | res->end = (offset + 0xfff) & 0xfffffffful; |
| 1377 | pr_debug("Candidate legacy IO: %pR\n" , res); |
| 1378 | if (request_resource(root: &hose->io_resource, new: res)) { |
| 1379 | printk(KERN_DEBUG |
| 1380 | "PCI %04x:%02x Cannot reserve Legacy IO %pR\n" , |
| 1381 | pci_domain_nr(bus), bus->number, res); |
| 1382 | kfree(objp: res); |
| 1383 | } |
| 1384 | |
| 1385 | no_io: |
| 1386 | /* Check for memory */ |
| 1387 | for (i = 0; i < 3; i++) { |
| 1388 | pres = &hose->mem_resources[i]; |
| 1389 | offset = hose->mem_offset[i]; |
| 1390 | if (!(pres->flags & IORESOURCE_MEM)) |
| 1391 | continue; |
| 1392 | pr_debug("hose mem res: %pR\n" , pres); |
| 1393 | if ((pres->start - offset) <= 0xa0000 && |
| 1394 | (pres->end - offset) >= 0xbffff) |
| 1395 | break; |
| 1396 | } |
| 1397 | if (i >= 3) |
| 1398 | return; |
| 1399 | res = kzalloc(sizeof(struct resource), GFP_KERNEL); |
| 1400 | BUG_ON(res == NULL); |
| 1401 | res->name = "Legacy VGA memory" ; |
| 1402 | res->flags = IORESOURCE_MEM; |
| 1403 | res->start = 0xa0000 + offset; |
| 1404 | res->end = 0xbffff + offset; |
| 1405 | pr_debug("Candidate VGA memory: %pR\n" , res); |
| 1406 | if (request_resource(root: pres, new: res)) { |
| 1407 | printk(KERN_DEBUG |
| 1408 | "PCI %04x:%02x Cannot reserve VGA memory %pR\n" , |
| 1409 | pci_domain_nr(bus), bus->number, res); |
| 1410 | kfree(objp: res); |
| 1411 | } |
| 1412 | } |
| 1413 | |
| 1414 | void __init pcibios_resource_survey(void) |
| 1415 | { |
| 1416 | struct pci_bus *b; |
| 1417 | |
| 1418 | /* Allocate and assign resources */ |
| 1419 | list_for_each_entry(b, &pci_root_buses, node) |
| 1420 | pcibios_allocate_bus_resources(bus: b); |
| 1421 | if (!pci_has_flag(flag: PCI_REASSIGN_ALL_RSRC)) { |
| 1422 | pcibios_allocate_resources(pass: 0); |
| 1423 | pcibios_allocate_resources(pass: 1); |
| 1424 | } |
| 1425 | |
| 1426 | /* Before we start assigning unassigned resource, we try to reserve |
| 1427 | * the low IO area and the VGA memory area if they intersect the |
| 1428 | * bus available resources to avoid allocating things on top of them |
| 1429 | */ |
| 1430 | if (!pci_has_flag(flag: PCI_PROBE_ONLY)) { |
| 1431 | list_for_each_entry(b, &pci_root_buses, node) |
| 1432 | pcibios_reserve_legacy_regions(bus: b); |
| 1433 | } |
| 1434 | |
| 1435 | /* Now, if the platform didn't decide to blindly trust the firmware, |
| 1436 | * we proceed to assigning things that were left unassigned |
| 1437 | */ |
| 1438 | if (!pci_has_flag(flag: PCI_PROBE_ONLY)) { |
| 1439 | pr_debug("PCI: Assigning unassigned resources...\n" ); |
| 1440 | pci_assign_unassigned_resources(); |
| 1441 | } |
| 1442 | } |
| 1443 | |
| 1444 | /* This is used by the PCI hotplug driver to allocate resource |
| 1445 | * of newly plugged busses. We can try to consolidate with the |
| 1446 | * rest of the code later, for now, keep it as-is as our main |
| 1447 | * resource allocation function doesn't deal with sub-trees yet. |
| 1448 | */ |
| 1449 | void pcibios_claim_one_bus(struct pci_bus *bus) |
| 1450 | { |
| 1451 | struct pci_dev *dev; |
| 1452 | struct pci_bus *child_bus; |
| 1453 | |
| 1454 | list_for_each_entry(dev, &bus->devices, bus_list) { |
| 1455 | struct resource *r; |
| 1456 | int i; |
| 1457 | |
| 1458 | pci_dev_for_each_resource(dev, r, i) { |
| 1459 | if (r->parent || !r->start || !r->flags) |
| 1460 | continue; |
| 1461 | |
| 1462 | pr_debug("PCI: Claiming %s: Resource %d: %pR\n" , |
| 1463 | pci_name(dev), i, r); |
| 1464 | |
| 1465 | if (pci_claim_resource(dev, i) == 0) |
| 1466 | continue; |
| 1467 | |
| 1468 | pci_claim_bridge_resource(bridge: dev, i); |
| 1469 | } |
| 1470 | } |
| 1471 | |
| 1472 | list_for_each_entry(child_bus, &bus->children, node) |
| 1473 | pcibios_claim_one_bus(bus: child_bus); |
| 1474 | } |
| 1475 | EXPORT_SYMBOL_GPL(pcibios_claim_one_bus); |
| 1476 | |
| 1477 | |
| 1478 | /* pcibios_finish_adding_to_bus |
| 1479 | * |
| 1480 | * This is to be called by the hotplug code after devices have been |
| 1481 | * added to a bus, this include calling it for a PHB that is just |
| 1482 | * being added |
| 1483 | */ |
| 1484 | void pcibios_finish_adding_to_bus(struct pci_bus *bus) |
| 1485 | { |
| 1486 | pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n" , |
| 1487 | pci_domain_nr(bus), bus->number); |
| 1488 | |
| 1489 | /* Allocate bus and devices resources */ |
| 1490 | pcibios_allocate_bus_resources(bus); |
| 1491 | pcibios_claim_one_bus(bus); |
| 1492 | if (!pci_has_flag(flag: PCI_PROBE_ONLY)) { |
| 1493 | if (bus->self) |
| 1494 | pci_assign_unassigned_bridge_resources(bridge: bus->self); |
| 1495 | else |
| 1496 | pci_assign_unassigned_bus_resources(bus); |
| 1497 | } |
| 1498 | |
| 1499 | /* Add new devices to global lists. Register in proc, sysfs. */ |
| 1500 | pci_bus_add_devices(bus); |
| 1501 | } |
| 1502 | EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus); |
| 1503 | |
| 1504 | int pcibios_enable_device(struct pci_dev *dev, int mask) |
| 1505 | { |
| 1506 | struct pci_controller *phb = pci_bus_to_host(dev->bus); |
| 1507 | |
| 1508 | if (phb->controller_ops.enable_device_hook) |
| 1509 | if (!phb->controller_ops.enable_device_hook(dev)) |
| 1510 | return -EINVAL; |
| 1511 | |
| 1512 | return pci_enable_resources(dev, mask); |
| 1513 | } |
| 1514 | |
| 1515 | void pcibios_disable_device(struct pci_dev *dev) |
| 1516 | { |
| 1517 | struct pci_controller *phb = pci_bus_to_host(dev->bus); |
| 1518 | |
| 1519 | if (phb->controller_ops.disable_device) |
| 1520 | phb->controller_ops.disable_device(dev); |
| 1521 | } |
| 1522 | |
| 1523 | resource_size_t pcibios_io_space_offset(struct pci_controller *hose) |
| 1524 | { |
| 1525 | return (unsigned long) hose->io_base_virt - _IO_BASE; |
| 1526 | } |
| 1527 | |
| 1528 | static void pcibios_setup_phb_resources(struct pci_controller *hose, |
| 1529 | struct list_head *resources) |
| 1530 | { |
| 1531 | struct resource *res; |
| 1532 | resource_size_t offset; |
| 1533 | int i; |
| 1534 | |
| 1535 | /* Hookup PHB IO resource */ |
| 1536 | res = &hose->io_resource; |
| 1537 | |
| 1538 | if (!res->flags) { |
| 1539 | pr_debug("PCI: I/O resource not set for host" |
| 1540 | " bridge %pOF (domain %d)\n" , |
| 1541 | hose->dn, hose->global_number); |
| 1542 | } else { |
| 1543 | offset = pcibios_io_space_offset(hose); |
| 1544 | |
| 1545 | pr_debug("PCI: PHB IO resource = %pR off 0x%08llx\n" , |
| 1546 | res, (unsigned long long)offset); |
| 1547 | pci_add_resource_offset(resources, res, offset); |
| 1548 | } |
| 1549 | |
| 1550 | /* Hookup PHB Memory resources */ |
| 1551 | for (i = 0; i < 3; ++i) { |
| 1552 | res = &hose->mem_resources[i]; |
| 1553 | if (!res->flags) |
| 1554 | continue; |
| 1555 | |
| 1556 | offset = hose->mem_offset[i]; |
| 1557 | pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n" , i, |
| 1558 | res, (unsigned long long)offset); |
| 1559 | |
| 1560 | pci_add_resource_offset(resources, res, offset); |
| 1561 | } |
| 1562 | } |
| 1563 | |
| 1564 | /* |
| 1565 | * Null PCI config access functions, for the case when we can't |
| 1566 | * find a hose. |
| 1567 | */ |
| 1568 | #define NULL_PCI_OP(rw, size, type) \ |
| 1569 | static int \ |
| 1570 | null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \ |
| 1571 | { \ |
| 1572 | return PCIBIOS_DEVICE_NOT_FOUND; \ |
| 1573 | } |
| 1574 | |
| 1575 | static int |
| 1576 | null_read_config(struct pci_bus *bus, unsigned int devfn, int offset, |
| 1577 | int len, u32 *val) |
| 1578 | { |
| 1579 | return PCIBIOS_DEVICE_NOT_FOUND; |
| 1580 | } |
| 1581 | |
| 1582 | static int |
| 1583 | null_write_config(struct pci_bus *bus, unsigned int devfn, int offset, |
| 1584 | int len, u32 val) |
| 1585 | { |
| 1586 | return PCIBIOS_DEVICE_NOT_FOUND; |
| 1587 | } |
| 1588 | |
| 1589 | static struct pci_ops null_pci_ops = |
| 1590 | { |
| 1591 | .read = null_read_config, |
| 1592 | .write = null_write_config, |
| 1593 | }; |
| 1594 | |
| 1595 | /* |
| 1596 | * These functions are used early on before PCI scanning is done |
| 1597 | * and all of the pci_dev and pci_bus structures have been created. |
| 1598 | */ |
| 1599 | static struct pci_bus * |
| 1600 | fake_pci_bus(struct pci_controller *hose, int busnr) |
| 1601 | { |
| 1602 | static struct pci_bus bus; |
| 1603 | |
| 1604 | if (hose == NULL) { |
| 1605 | printk(KERN_ERR "Can't find hose for PCI bus %d!\n" , busnr); |
| 1606 | } |
| 1607 | bus.number = busnr; |
| 1608 | bus.sysdata = hose; |
| 1609 | bus.ops = hose? hose->ops: &null_pci_ops; |
| 1610 | return &bus; |
| 1611 | } |
| 1612 | |
| 1613 | #define EARLY_PCI_OP(rw, size, type) \ |
| 1614 | int early_##rw##_config_##size(struct pci_controller *hose, int bus, \ |
| 1615 | int devfn, int offset, type value) \ |
| 1616 | { \ |
| 1617 | return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \ |
| 1618 | devfn, offset, value); \ |
| 1619 | } |
| 1620 | |
| 1621 | EARLY_PCI_OP(read, byte, u8 *) |
| 1622 | EARLY_PCI_OP(read, word, u16 *) |
| 1623 | EARLY_PCI_OP(read, dword, u32 *) |
| 1624 | EARLY_PCI_OP(write, byte, u8) |
| 1625 | EARLY_PCI_OP(write, word, u16) |
| 1626 | EARLY_PCI_OP(write, dword, u32) |
| 1627 | |
| 1628 | int early_find_capability(struct pci_controller *hose, int bus, int devfn, |
| 1629 | int cap) |
| 1630 | { |
| 1631 | return pci_bus_find_capability(bus: fake_pci_bus(hose, busnr: bus), devfn, cap); |
| 1632 | } |
| 1633 | |
| 1634 | struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus) |
| 1635 | { |
| 1636 | struct pci_controller *hose = bus->sysdata; |
| 1637 | |
| 1638 | return of_node_get(node: hose->dn); |
| 1639 | } |
| 1640 | |
| 1641 | /** |
| 1642 | * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus |
| 1643 | * @hose: Pointer to the PCI host controller instance structure |
| 1644 | */ |
| 1645 | void pcibios_scan_phb(struct pci_controller *hose) |
| 1646 | { |
| 1647 | LIST_HEAD(resources); |
| 1648 | struct pci_bus *bus; |
| 1649 | struct device_node *node = hose->dn; |
| 1650 | int mode; |
| 1651 | |
| 1652 | pr_debug("PCI: Scanning PHB %pOF\n" , node); |
| 1653 | |
| 1654 | /* Get some IO space for the new PHB */ |
| 1655 | pcibios_setup_phb_io_space(hose); |
| 1656 | |
| 1657 | /* Wire up PHB bus resources */ |
| 1658 | pcibios_setup_phb_resources(hose, resources: &resources); |
| 1659 | |
| 1660 | hose->busn.start = hose->first_busno; |
| 1661 | hose->busn.end = hose->last_busno; |
| 1662 | hose->busn.flags = IORESOURCE_BUS; |
| 1663 | pci_add_resource(resources: &resources, res: &hose->busn); |
| 1664 | |
| 1665 | /* Create an empty bus for the toplevel */ |
| 1666 | bus = pci_create_root_bus(parent: hose->parent, bus: hose->first_busno, |
| 1667 | ops: hose->ops, sysdata: hose, resources: &resources); |
| 1668 | if (bus == NULL) { |
| 1669 | pr_err("Failed to create bus for PCI domain %04x\n" , |
| 1670 | hose->global_number); |
| 1671 | pci_free_resource_list(resources: &resources); |
| 1672 | return; |
| 1673 | } |
| 1674 | hose->bus = bus; |
| 1675 | |
| 1676 | /* Get probe mode and perform scan */ |
| 1677 | mode = PCI_PROBE_NORMAL; |
| 1678 | if (node && hose->controller_ops.probe_mode) |
| 1679 | mode = hose->controller_ops.probe_mode(bus); |
| 1680 | pr_debug(" probe mode: %d\n" , mode); |
| 1681 | if (mode == PCI_PROBE_DEVTREE) |
| 1682 | of_scan_bus(node, bus); |
| 1683 | |
| 1684 | if (mode == PCI_PROBE_NORMAL) { |
| 1685 | pci_bus_update_busn_res_end(b: bus, busmax: 255); |
| 1686 | hose->last_busno = pci_scan_child_bus(bus); |
| 1687 | pci_bus_update_busn_res_end(b: bus, busmax: hose->last_busno); |
| 1688 | } |
| 1689 | |
| 1690 | /* Platform gets a chance to do some global fixups before |
| 1691 | * we proceed to resource allocation |
| 1692 | */ |
| 1693 | if (ppc_md.pcibios_fixup_phb) |
| 1694 | ppc_md.pcibios_fixup_phb(hose); |
| 1695 | |
| 1696 | /* Configure PCI Express settings */ |
| 1697 | if (bus && !pci_has_flag(flag: PCI_PROBE_ONLY)) { |
| 1698 | struct pci_bus *child; |
| 1699 | list_for_each_entry(child, &bus->children, node) |
| 1700 | pcie_bus_configure_settings(bus: child); |
| 1701 | } |
| 1702 | } |
| 1703 | EXPORT_SYMBOL_GPL(pcibios_scan_phb); |
| 1704 | |
| 1705 | static void fixup_hide_host_resource_fsl(struct pci_dev *dev) |
| 1706 | { |
| 1707 | int class = dev->class >> 8; |
| 1708 | /* When configured as agent, programming interface = 1 */ |
| 1709 | int prog_if = dev->class & 0xf; |
| 1710 | struct resource *r; |
| 1711 | |
| 1712 | if ((class == PCI_CLASS_PROCESSOR_POWERPC || |
| 1713 | class == PCI_CLASS_BRIDGE_OTHER) && |
| 1714 | (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) && |
| 1715 | (prog_if == 0) && |
| 1716 | (dev->bus->parent == NULL)) { |
| 1717 | pci_dev_for_each_resource(dev, r) { |
| 1718 | r->start = 0; |
| 1719 | r->end = 0; |
| 1720 | r->flags = 0; |
| 1721 | } |
| 1722 | } |
| 1723 | } |
| 1724 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl); |
| 1725 | DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl); |
| 1726 | |
| 1727 | |
| 1728 | static int __init discover_phbs(void) |
| 1729 | { |
| 1730 | if (ppc_md.discover_phbs) |
| 1731 | ppc_md.discover_phbs(); |
| 1732 | |
| 1733 | return 0; |
| 1734 | } |
| 1735 | core_initcall(discover_phbs); |
| 1736 | |