| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Low level x86 E820 memory map handling functions. |
| 4 | * |
| 5 | * The firmware and bootloader passes us the "E820 table", which is the primary |
| 6 | * physical memory layout description available about x86 systems. |
| 7 | * |
| 8 | * The kernel takes the E820 memory layout and optionally modifies it with |
| 9 | * quirks and other tweaks, and feeds that into the generic Linux memory |
| 10 | * allocation code routines via a platform independent interface (memblock, etc.). |
| 11 | */ |
| 12 | #include <linux/crash_dump.h> |
| 13 | #include <linux/memblock.h> |
| 14 | #include <linux/suspend.h> |
| 15 | #include <linux/acpi.h> |
| 16 | #include <linux/firmware-map.h> |
| 17 | #include <linux/sort.h> |
| 18 | #include <linux/memory_hotplug.h> |
| 19 | |
| 20 | #include <asm/e820/api.h> |
| 21 | #include <asm/setup.h> |
| 22 | |
| 23 | /* |
| 24 | * We organize the E820 table into three main data structures: |
| 25 | * |
| 26 | * - 'e820_table_firmware': the original firmware version passed to us by the |
| 27 | * bootloader - not modified by the kernel. It is composed of two parts: |
| 28 | * the first 128 E820 memory entries in boot_params.e820_table and the remaining |
| 29 | * (if any) entries of the SETUP_E820_EXT nodes. We use this to: |
| 30 | * |
| 31 | * - the hibernation code uses it to generate a kernel-independent CRC32 |
| 32 | * checksum of the physical memory layout of a system. |
| 33 | * |
| 34 | * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version |
| 35 | * passed to us by the bootloader - the major difference between |
| 36 | * e820_table_firmware[] and this one is that e820_table_kexec[] |
| 37 | * might be modified by the kexec itself to fake an mptable. |
| 38 | * We use this to: |
| 39 | * |
| 40 | * - kexec, which is a bootloader in disguise, uses the original E820 |
| 41 | * layout to pass to the kexec-ed kernel. This way the original kernel |
| 42 | * can have a restricted E820 map while the kexec()-ed kexec-kernel |
| 43 | * can have access to full memory - etc. |
| 44 | * |
| 45 | * Export the memory layout via /sys/firmware/memmap. kexec-tools uses |
| 46 | * the entries to create an E820 table for the kexec kernel. |
| 47 | * |
| 48 | * kexec_file_load in-kernel code uses the table for the kexec kernel. |
| 49 | * |
| 50 | * - 'e820_table': this is the main E820 table that is massaged by the |
| 51 | * low level x86 platform code, or modified by boot parameters, before |
| 52 | * passed on to higher level MM layers. |
| 53 | * |
| 54 | * Once the E820 map has been converted to the standard Linux memory layout |
| 55 | * information its role stops - modifying it has no effect and does not get |
| 56 | * re-propagated. So its main role is a temporary bootstrap storage of firmware |
| 57 | * specific memory layout data during early bootup. |
| 58 | */ |
| 59 | static struct e820_table e820_table_init __initdata; |
| 60 | static struct e820_table e820_table_kexec_init __initdata; |
| 61 | static struct e820_table e820_table_firmware_init __initdata; |
| 62 | |
| 63 | struct e820_table *e820_table __refdata = &e820_table_init; |
| 64 | struct e820_table *e820_table_kexec __refdata = &e820_table_kexec_init; |
| 65 | struct e820_table *e820_table_firmware __refdata = &e820_table_firmware_init; |
| 66 | |
| 67 | /* For PCI or other memory-mapped resources */ |
| 68 | unsigned long pci_mem_start = 0xaeedbabe; |
| 69 | #ifdef CONFIG_PCI |
| 70 | EXPORT_SYMBOL(pci_mem_start); |
| 71 | #endif |
| 72 | |
| 73 | /* |
| 74 | * This function checks if any part of the range <start,end> is mapped |
| 75 | * with type. |
| 76 | */ |
| 77 | static bool _e820__mapped_any(struct e820_table *table, |
| 78 | u64 start, u64 end, enum e820_type type) |
| 79 | { |
| 80 | int i; |
| 81 | |
| 82 | for (i = 0; i < table->nr_entries; i++) { |
| 83 | struct e820_entry *entry = &table->entries[i]; |
| 84 | |
| 85 | if (type && entry->type != type) |
| 86 | continue; |
| 87 | if (entry->addr >= end || entry->addr + entry->size <= start) |
| 88 | continue; |
| 89 | return true; |
| 90 | } |
| 91 | return false; |
| 92 | } |
| 93 | |
| 94 | bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type) |
| 95 | { |
| 96 | return _e820__mapped_any(table: e820_table_firmware, start, end, type); |
| 97 | } |
| 98 | EXPORT_SYMBOL_GPL(e820__mapped_raw_any); |
| 99 | |
| 100 | bool e820__mapped_any(u64 start, u64 end, enum e820_type type) |
| 101 | { |
| 102 | return _e820__mapped_any(table: e820_table, start, end, type); |
| 103 | } |
| 104 | EXPORT_SYMBOL_GPL(e820__mapped_any); |
| 105 | |
| 106 | /* |
| 107 | * This function checks if the entire <start,end> range is mapped with 'type'. |
| 108 | * |
| 109 | * Note: this function only works correctly once the E820 table is sorted and |
| 110 | * not-overlapping (at least for the range specified), which is the case normally. |
| 111 | */ |
| 112 | static struct e820_entry *__e820__mapped_all(u64 start, u64 end, |
| 113 | enum e820_type type) |
| 114 | { |
| 115 | int i; |
| 116 | |
| 117 | for (i = 0; i < e820_table->nr_entries; i++) { |
| 118 | struct e820_entry *entry = &e820_table->entries[i]; |
| 119 | |
| 120 | if (type && entry->type != type) |
| 121 | continue; |
| 122 | |
| 123 | /* Is the region (part) in overlap with the current region? */ |
| 124 | if (entry->addr >= end || entry->addr + entry->size <= start) |
| 125 | continue; |
| 126 | |
| 127 | /* |
| 128 | * If the region is at the beginning of <start,end> we move |
| 129 | * 'start' to the end of the region since it's ok until there |
| 130 | */ |
| 131 | if (entry->addr <= start) |
| 132 | start = entry->addr + entry->size; |
| 133 | |
| 134 | /* |
| 135 | * If 'start' is now at or beyond 'end', we're done, full |
| 136 | * coverage of the desired range exists: |
| 137 | */ |
| 138 | if (start >= end) |
| 139 | return entry; |
| 140 | } |
| 141 | |
| 142 | return NULL; |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | * This function checks if the entire range <start,end> is mapped with type. |
| 147 | */ |
| 148 | bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type) |
| 149 | { |
| 150 | return __e820__mapped_all(start, end, type); |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * This function returns the type associated with the range <start,end>. |
| 155 | */ |
| 156 | int e820__get_entry_type(u64 start, u64 end) |
| 157 | { |
| 158 | struct e820_entry *entry = __e820__mapped_all(start, end, type: 0); |
| 159 | |
| 160 | return entry ? entry->type : -EINVAL; |
| 161 | } |
| 162 | |
| 163 | /* |
| 164 | * Add a memory region to the kernel E820 map. |
| 165 | */ |
| 166 | static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type) |
| 167 | { |
| 168 | int x = table->nr_entries; |
| 169 | |
| 170 | if (x >= ARRAY_SIZE(table->entries)) { |
| 171 | pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n" , |
| 172 | start, start + size - 1); |
| 173 | return; |
| 174 | } |
| 175 | |
| 176 | table->entries[x].addr = start; |
| 177 | table->entries[x].size = size; |
| 178 | table->entries[x].type = type; |
| 179 | table->nr_entries++; |
| 180 | } |
| 181 | |
| 182 | void __init e820__range_add(u64 start, u64 size, enum e820_type type) |
| 183 | { |
| 184 | __e820__range_add(table: e820_table, start, size, type); |
| 185 | } |
| 186 | |
| 187 | static void __init e820_print_type(enum e820_type type) |
| 188 | { |
| 189 | switch (type) { |
| 190 | case E820_TYPE_RAM: pr_cont("usable" ); break; |
| 191 | case E820_TYPE_RESERVED: pr_cont("reserved" ); break; |
| 192 | case E820_TYPE_SOFT_RESERVED: pr_cont("soft reserved" ); break; |
| 193 | case E820_TYPE_ACPI: pr_cont("ACPI data" ); break; |
| 194 | case E820_TYPE_NVS: pr_cont("ACPI NVS" ); break; |
| 195 | case E820_TYPE_UNUSABLE: pr_cont("unusable" ); break; |
| 196 | case E820_TYPE_PMEM: /* Fall through: */ |
| 197 | case E820_TYPE_PRAM: pr_cont("persistent (type %u)" , type); break; |
| 198 | default: pr_cont("type %u" , type); break; |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | void __init e820__print_table(char *who) |
| 203 | { |
| 204 | int i; |
| 205 | |
| 206 | for (i = 0; i < e820_table->nr_entries; i++) { |
| 207 | pr_info("%s: [mem %#018Lx-%#018Lx] " , |
| 208 | who, |
| 209 | e820_table->entries[i].addr, |
| 210 | e820_table->entries[i].addr + e820_table->entries[i].size - 1); |
| 211 | |
| 212 | e820_print_type(type: e820_table->entries[i].type); |
| 213 | pr_cont("\n" ); |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | /* |
| 218 | * Sanitize an E820 map. |
| 219 | * |
| 220 | * Some E820 layouts include overlapping entries. The following |
| 221 | * replaces the original E820 map with a new one, removing overlaps, |
| 222 | * and resolving conflicting memory types in favor of highest |
| 223 | * numbered type. |
| 224 | * |
| 225 | * The input parameter 'entries' points to an array of 'struct |
| 226 | * e820_entry' which on entry has elements in the range [0, *nr_entries) |
| 227 | * valid, and which has space for up to max_nr_entries entries. |
| 228 | * On return, the resulting sanitized E820 map entries will be in |
| 229 | * overwritten in the same location, starting at 'entries'. |
| 230 | * |
| 231 | * The integer pointed to by nr_entries must be valid on entry (the |
| 232 | * current number of valid entries located at 'entries'). If the |
| 233 | * sanitizing succeeds the *nr_entries will be updated with the new |
| 234 | * number of valid entries (something no more than max_nr_entries). |
| 235 | * |
| 236 | * The return value from e820__update_table() is zero if it |
| 237 | * successfully 'sanitized' the map entries passed in, and is -1 |
| 238 | * if it did nothing, which can happen if either of (1) it was |
| 239 | * only passed one map entry, or (2) any of the input map entries |
| 240 | * were invalid (start + size < start, meaning that the size was |
| 241 | * so big the described memory range wrapped around through zero.) |
| 242 | * |
| 243 | * Visually we're performing the following |
| 244 | * (1,2,3,4 = memory types)... |
| 245 | * |
| 246 | * Sample memory map (w/overlaps): |
| 247 | * ____22__________________ |
| 248 | * ______________________4_ |
| 249 | * ____1111________________ |
| 250 | * _44_____________________ |
| 251 | * 11111111________________ |
| 252 | * ____________________33__ |
| 253 | * ___________44___________ |
| 254 | * __________33333_________ |
| 255 | * ______________22________ |
| 256 | * ___________________2222_ |
| 257 | * _________111111111______ |
| 258 | * _____________________11_ |
| 259 | * _________________4______ |
| 260 | * |
| 261 | * Sanitized equivalent (no overlap): |
| 262 | * 1_______________________ |
| 263 | * _44_____________________ |
| 264 | * ___1____________________ |
| 265 | * ____22__________________ |
| 266 | * ______11________________ |
| 267 | * _________1______________ |
| 268 | * __________3_____________ |
| 269 | * ___________44___________ |
| 270 | * _____________33_________ |
| 271 | * _______________2________ |
| 272 | * ________________1_______ |
| 273 | * _________________4______ |
| 274 | * ___________________2____ |
| 275 | * ____________________33__ |
| 276 | * ______________________4_ |
| 277 | */ |
| 278 | struct change_member { |
| 279 | /* Pointer to the original entry: */ |
| 280 | struct e820_entry *entry; |
| 281 | /* Address for this change point: */ |
| 282 | unsigned long long addr; |
| 283 | }; |
| 284 | |
| 285 | static struct change_member change_point_list[2*E820_MAX_ENTRIES] __initdata; |
| 286 | static struct change_member *change_point[2*E820_MAX_ENTRIES] __initdata; |
| 287 | static struct e820_entry *overlap_list[E820_MAX_ENTRIES] __initdata; |
| 288 | static struct e820_entry new_entries[E820_MAX_ENTRIES] __initdata; |
| 289 | |
| 290 | static int __init cpcompare(const void *a, const void *b) |
| 291 | { |
| 292 | struct change_member * const *app = a, * const *bpp = b; |
| 293 | const struct change_member *ap = *app, *bp = *bpp; |
| 294 | |
| 295 | /* |
| 296 | * Inputs are pointers to two elements of change_point[]. If their |
| 297 | * addresses are not equal, their difference dominates. If the addresses |
| 298 | * are equal, then consider one that represents the end of its region |
| 299 | * to be greater than one that does not. |
| 300 | */ |
| 301 | if (ap->addr != bp->addr) |
| 302 | return ap->addr > bp->addr ? 1 : -1; |
| 303 | |
| 304 | return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr); |
| 305 | } |
| 306 | |
| 307 | static bool e820_nomerge(enum e820_type type) |
| 308 | { |
| 309 | /* |
| 310 | * These types may indicate distinct platform ranges aligned to |
| 311 | * numa node, protection domain, performance domain, or other |
| 312 | * boundaries. Do not merge them. |
| 313 | */ |
| 314 | if (type == E820_TYPE_PRAM) |
| 315 | return true; |
| 316 | if (type == E820_TYPE_SOFT_RESERVED) |
| 317 | return true; |
| 318 | return false; |
| 319 | } |
| 320 | |
| 321 | int __init e820__update_table(struct e820_table *table) |
| 322 | { |
| 323 | struct e820_entry *entries = table->entries; |
| 324 | u32 max_nr_entries = ARRAY_SIZE(table->entries); |
| 325 | enum e820_type current_type, last_type; |
| 326 | unsigned long long last_addr; |
| 327 | u32 new_nr_entries, overlap_entries; |
| 328 | u32 i, chg_idx, chg_nr; |
| 329 | |
| 330 | /* If there's only one memory region, don't bother: */ |
| 331 | if (table->nr_entries < 2) |
| 332 | return -1; |
| 333 | |
| 334 | BUG_ON(table->nr_entries > max_nr_entries); |
| 335 | |
| 336 | /* Bail out if we find any unreasonable addresses in the map: */ |
| 337 | for (i = 0; i < table->nr_entries; i++) { |
| 338 | if (entries[i].addr + entries[i].size < entries[i].addr) |
| 339 | return -1; |
| 340 | } |
| 341 | |
| 342 | /* Create pointers for initial change-point information (for sorting): */ |
| 343 | for (i = 0; i < 2 * table->nr_entries; i++) |
| 344 | change_point[i] = &change_point_list[i]; |
| 345 | |
| 346 | /* |
| 347 | * Record all known change-points (starting and ending addresses), |
| 348 | * omitting empty memory regions: |
| 349 | */ |
| 350 | chg_idx = 0; |
| 351 | for (i = 0; i < table->nr_entries; i++) { |
| 352 | if (entries[i].size != 0) { |
| 353 | change_point[chg_idx]->addr = entries[i].addr; |
| 354 | change_point[chg_idx++]->entry = &entries[i]; |
| 355 | change_point[chg_idx]->addr = entries[i].addr + entries[i].size; |
| 356 | change_point[chg_idx++]->entry = &entries[i]; |
| 357 | } |
| 358 | } |
| 359 | chg_nr = chg_idx; |
| 360 | |
| 361 | /* Sort change-point list by memory addresses (low -> high): */ |
| 362 | sort(base: change_point, num: chg_nr, size: sizeof(*change_point), cmp_func: cpcompare, NULL); |
| 363 | |
| 364 | /* Create a new memory map, removing overlaps: */ |
| 365 | overlap_entries = 0; /* Number of entries in the overlap table */ |
| 366 | new_nr_entries = 0; /* Index for creating new map entries */ |
| 367 | last_type = 0; /* Start with undefined memory type */ |
| 368 | last_addr = 0; /* Start with 0 as last starting address */ |
| 369 | |
| 370 | /* Loop through change-points, determining effect on the new map: */ |
| 371 | for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) { |
| 372 | /* Keep track of all overlapping entries */ |
| 373 | if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) { |
| 374 | /* Add map entry to overlap list (> 1 entry implies an overlap) */ |
| 375 | overlap_list[overlap_entries++] = change_point[chg_idx]->entry; |
| 376 | } else { |
| 377 | /* Remove entry from list (order independent, so swap with last): */ |
| 378 | for (i = 0; i < overlap_entries; i++) { |
| 379 | if (overlap_list[i] == change_point[chg_idx]->entry) |
| 380 | overlap_list[i] = overlap_list[overlap_entries-1]; |
| 381 | } |
| 382 | overlap_entries--; |
| 383 | } |
| 384 | /* |
| 385 | * If there are overlapping entries, decide which |
| 386 | * "type" to use (larger value takes precedence -- |
| 387 | * 1=usable, 2,3,4,4+=unusable) |
| 388 | */ |
| 389 | current_type = 0; |
| 390 | for (i = 0; i < overlap_entries; i++) { |
| 391 | if (overlap_list[i]->type > current_type) |
| 392 | current_type = overlap_list[i]->type; |
| 393 | } |
| 394 | |
| 395 | /* Continue building up new map based on this information: */ |
| 396 | if (current_type != last_type || e820_nomerge(type: current_type)) { |
| 397 | if (last_type) { |
| 398 | new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr; |
| 399 | /* Move forward only if the new size was non-zero: */ |
| 400 | if (new_entries[new_nr_entries].size != 0) |
| 401 | /* No more space left for new entries? */ |
| 402 | if (++new_nr_entries >= max_nr_entries) |
| 403 | break; |
| 404 | } |
| 405 | if (current_type) { |
| 406 | new_entries[new_nr_entries].addr = change_point[chg_idx]->addr; |
| 407 | new_entries[new_nr_entries].type = current_type; |
| 408 | last_addr = change_point[chg_idx]->addr; |
| 409 | } |
| 410 | last_type = current_type; |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | /* Copy the new entries into the original location: */ |
| 415 | memcpy(entries, new_entries, new_nr_entries*sizeof(*entries)); |
| 416 | table->nr_entries = new_nr_entries; |
| 417 | |
| 418 | return 0; |
| 419 | } |
| 420 | |
| 421 | static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) |
| 422 | { |
| 423 | struct boot_e820_entry *entry = entries; |
| 424 | |
| 425 | while (nr_entries) { |
| 426 | u64 start = entry->addr; |
| 427 | u64 size = entry->size; |
| 428 | u64 end = start + size - 1; |
| 429 | u32 type = entry->type; |
| 430 | |
| 431 | /* Ignore the entry on 64-bit overflow: */ |
| 432 | if (start > end && likely(size)) |
| 433 | return -1; |
| 434 | |
| 435 | e820__range_add(start, size, type); |
| 436 | |
| 437 | entry++; |
| 438 | nr_entries--; |
| 439 | } |
| 440 | return 0; |
| 441 | } |
| 442 | |
| 443 | /* |
| 444 | * Copy the BIOS E820 map into a safe place. |
| 445 | * |
| 446 | * Sanity-check it while we're at it.. |
| 447 | * |
| 448 | * If we're lucky and live on a modern system, the setup code |
| 449 | * will have given us a memory map that we can use to properly |
| 450 | * set up memory. If we aren't, we'll fake a memory map. |
| 451 | */ |
| 452 | static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) |
| 453 | { |
| 454 | /* Only one memory region (or negative)? Ignore it */ |
| 455 | if (nr_entries < 2) |
| 456 | return -1; |
| 457 | |
| 458 | return __append_e820_table(entries, nr_entries); |
| 459 | } |
| 460 | |
| 461 | static u64 __init |
| 462 | __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) |
| 463 | { |
| 464 | u64 end; |
| 465 | unsigned int i; |
| 466 | u64 real_updated_size = 0; |
| 467 | |
| 468 | BUG_ON(old_type == new_type); |
| 469 | |
| 470 | if (size > (ULLONG_MAX - start)) |
| 471 | size = ULLONG_MAX - start; |
| 472 | |
| 473 | end = start + size; |
| 474 | printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] " , start, end - 1); |
| 475 | e820_print_type(type: old_type); |
| 476 | pr_cont(" ==> " ); |
| 477 | e820_print_type(type: new_type); |
| 478 | pr_cont("\n" ); |
| 479 | |
| 480 | for (i = 0; i < table->nr_entries; i++) { |
| 481 | struct e820_entry *entry = &table->entries[i]; |
| 482 | u64 final_start, final_end; |
| 483 | u64 entry_end; |
| 484 | |
| 485 | if (entry->type != old_type) |
| 486 | continue; |
| 487 | |
| 488 | entry_end = entry->addr + entry->size; |
| 489 | |
| 490 | /* Completely covered by new range? */ |
| 491 | if (entry->addr >= start && entry_end <= end) { |
| 492 | entry->type = new_type; |
| 493 | real_updated_size += entry->size; |
| 494 | continue; |
| 495 | } |
| 496 | |
| 497 | /* New range is completely covered? */ |
| 498 | if (entry->addr < start && entry_end > end) { |
| 499 | __e820__range_add(table, start, size, type: new_type); |
| 500 | __e820__range_add(table, start: end, size: entry_end - end, type: entry->type); |
| 501 | entry->size = start - entry->addr; |
| 502 | real_updated_size += size; |
| 503 | continue; |
| 504 | } |
| 505 | |
| 506 | /* Partially covered: */ |
| 507 | final_start = max(start, entry->addr); |
| 508 | final_end = min(end, entry_end); |
| 509 | if (final_start >= final_end) |
| 510 | continue; |
| 511 | |
| 512 | __e820__range_add(table, start: final_start, size: final_end - final_start, type: new_type); |
| 513 | |
| 514 | real_updated_size += final_end - final_start; |
| 515 | |
| 516 | /* |
| 517 | * Left range could be head or tail, so need to update |
| 518 | * its size first: |
| 519 | */ |
| 520 | entry->size -= final_end - final_start; |
| 521 | if (entry->addr < final_start) |
| 522 | continue; |
| 523 | |
| 524 | entry->addr = final_end; |
| 525 | } |
| 526 | return real_updated_size; |
| 527 | } |
| 528 | |
| 529 | u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) |
| 530 | { |
| 531 | return __e820__range_update(table: e820_table, start, size, old_type, new_type); |
| 532 | } |
| 533 | |
| 534 | u64 __init e820__range_update_table(struct e820_table *t, u64 start, u64 size, |
| 535 | enum e820_type old_type, enum e820_type new_type) |
| 536 | { |
| 537 | return __e820__range_update(table: t, start, size, old_type, new_type); |
| 538 | } |
| 539 | |
| 540 | /* Remove a range of memory from the E820 table: */ |
| 541 | u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type) |
| 542 | { |
| 543 | int i; |
| 544 | u64 end; |
| 545 | u64 real_removed_size = 0; |
| 546 | |
| 547 | if (size > (ULLONG_MAX - start)) |
| 548 | size = ULLONG_MAX - start; |
| 549 | |
| 550 | end = start + size; |
| 551 | printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] " , start, end - 1); |
| 552 | if (check_type) |
| 553 | e820_print_type(type: old_type); |
| 554 | pr_cont("\n" ); |
| 555 | |
| 556 | for (i = 0; i < e820_table->nr_entries; i++) { |
| 557 | struct e820_entry *entry = &e820_table->entries[i]; |
| 558 | u64 final_start, final_end; |
| 559 | u64 entry_end; |
| 560 | |
| 561 | if (check_type && entry->type != old_type) |
| 562 | continue; |
| 563 | |
| 564 | entry_end = entry->addr + entry->size; |
| 565 | |
| 566 | /* Completely covered? */ |
| 567 | if (entry->addr >= start && entry_end <= end) { |
| 568 | real_removed_size += entry->size; |
| 569 | memset(entry, 0, sizeof(*entry)); |
| 570 | continue; |
| 571 | } |
| 572 | |
| 573 | /* Is the new range completely covered? */ |
| 574 | if (entry->addr < start && entry_end > end) { |
| 575 | e820__range_add(start: end, size: entry_end - end, type: entry->type); |
| 576 | entry->size = start - entry->addr; |
| 577 | real_removed_size += size; |
| 578 | continue; |
| 579 | } |
| 580 | |
| 581 | /* Partially covered: */ |
| 582 | final_start = max(start, entry->addr); |
| 583 | final_end = min(end, entry_end); |
| 584 | if (final_start >= final_end) |
| 585 | continue; |
| 586 | |
| 587 | real_removed_size += final_end - final_start; |
| 588 | |
| 589 | /* |
| 590 | * Left range could be head or tail, so need to update |
| 591 | * the size first: |
| 592 | */ |
| 593 | entry->size -= final_end - final_start; |
| 594 | if (entry->addr < final_start) |
| 595 | continue; |
| 596 | |
| 597 | entry->addr = final_end; |
| 598 | } |
| 599 | return real_removed_size; |
| 600 | } |
| 601 | |
| 602 | void __init e820__update_table_print(void) |
| 603 | { |
| 604 | if (e820__update_table(table: e820_table)) |
| 605 | return; |
| 606 | |
| 607 | pr_info("modified physical RAM map:\n" ); |
| 608 | e820__print_table(who: "modified" ); |
| 609 | } |
| 610 | |
| 611 | static void __init e820__update_table_kexec(void) |
| 612 | { |
| 613 | e820__update_table(table: e820_table_kexec); |
| 614 | } |
| 615 | |
| 616 | #define MAX_GAP_END 0x100000000ull |
| 617 | |
| 618 | /* |
| 619 | * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB). |
| 620 | */ |
| 621 | static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize) |
| 622 | { |
| 623 | unsigned long long last = MAX_GAP_END; |
| 624 | int i = e820_table->nr_entries; |
| 625 | int found = 0; |
| 626 | |
| 627 | while (--i >= 0) { |
| 628 | unsigned long long start = e820_table->entries[i].addr; |
| 629 | unsigned long long end = start + e820_table->entries[i].size; |
| 630 | |
| 631 | /* |
| 632 | * Since "last" is at most 4GB, we know we'll |
| 633 | * fit in 32 bits if this condition is true: |
| 634 | */ |
| 635 | if (last > end) { |
| 636 | unsigned long gap = last - end; |
| 637 | |
| 638 | if (gap >= *gapsize) { |
| 639 | *gapsize = gap; |
| 640 | *gapstart = end; |
| 641 | found = 1; |
| 642 | } |
| 643 | } |
| 644 | if (start < last) |
| 645 | last = start; |
| 646 | } |
| 647 | return found; |
| 648 | } |
| 649 | |
| 650 | /* |
| 651 | * Search for the biggest gap in the low 32 bits of the E820 |
| 652 | * memory space. We pass this space to the PCI subsystem, so |
| 653 | * that it can assign MMIO resources for hotplug or |
| 654 | * unconfigured devices in. |
| 655 | * |
| 656 | * Hopefully the BIOS let enough space left. |
| 657 | */ |
| 658 | __init void e820__setup_pci_gap(void) |
| 659 | { |
| 660 | unsigned long gapstart, gapsize; |
| 661 | int found; |
| 662 | |
| 663 | gapsize = 0x400000; |
| 664 | found = e820_search_gap(gapstart: &gapstart, gapsize: &gapsize); |
| 665 | |
| 666 | if (!found) { |
| 667 | #ifdef CONFIG_X86_64 |
| 668 | gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; |
| 669 | pr_err("Cannot find an available gap in the 32-bit address range\n" ); |
| 670 | pr_err("PCI devices with unassigned 32-bit BARs may not work!\n" ); |
| 671 | #else |
| 672 | gapstart = 0x10000000; |
| 673 | #endif |
| 674 | } |
| 675 | |
| 676 | /* |
| 677 | * e820__reserve_resources_late() protects stolen RAM already: |
| 678 | */ |
| 679 | pci_mem_start = gapstart; |
| 680 | |
| 681 | pr_info("[mem %#010lx-%#010lx] available for PCI devices\n" , |
| 682 | gapstart, gapstart + gapsize - 1); |
| 683 | } |
| 684 | |
| 685 | /* |
| 686 | * Called late during init, in free_initmem(). |
| 687 | * |
| 688 | * Initial e820_table and e820_table_kexec are largish __initdata arrays. |
| 689 | * |
| 690 | * Copy them to a (usually much smaller) dynamically allocated area that is |
| 691 | * sized precisely after the number of e820 entries. |
| 692 | * |
| 693 | * This is done after we've performed all the fixes and tweaks to the tables. |
| 694 | * All functions which modify them are __init functions, which won't exist |
| 695 | * after free_initmem(). |
| 696 | */ |
| 697 | __init void e820__reallocate_tables(void) |
| 698 | { |
| 699 | struct e820_table *n; |
| 700 | int size; |
| 701 | |
| 702 | size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries; |
| 703 | n = kmemdup(e820_table, size, GFP_KERNEL); |
| 704 | BUG_ON(!n); |
| 705 | e820_table = n; |
| 706 | |
| 707 | size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries; |
| 708 | n = kmemdup(e820_table_kexec, size, GFP_KERNEL); |
| 709 | BUG_ON(!n); |
| 710 | e820_table_kexec = n; |
| 711 | |
| 712 | size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries; |
| 713 | n = kmemdup(e820_table_firmware, size, GFP_KERNEL); |
| 714 | BUG_ON(!n); |
| 715 | e820_table_firmware = n; |
| 716 | } |
| 717 | |
| 718 | /* |
| 719 | * Because of the small fixed size of struct boot_params, only the first |
| 720 | * 128 E820 memory entries are passed to the kernel via boot_params.e820_table, |
| 721 | * the remaining (if any) entries are passed via the SETUP_E820_EXT node of |
| 722 | * struct setup_data, which is parsed here. |
| 723 | */ |
| 724 | void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len) |
| 725 | { |
| 726 | int entries; |
| 727 | struct boot_e820_entry *extmap; |
| 728 | struct setup_data *sdata; |
| 729 | |
| 730 | sdata = early_memremap(phys_addr, size: data_len); |
| 731 | entries = sdata->len / sizeof(*extmap); |
| 732 | extmap = (struct boot_e820_entry *)(sdata->data); |
| 733 | |
| 734 | __append_e820_table(entries: extmap, nr_entries: entries); |
| 735 | e820__update_table(table: e820_table); |
| 736 | |
| 737 | memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); |
| 738 | memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); |
| 739 | |
| 740 | early_memunmap(addr: sdata, size: data_len); |
| 741 | pr_info("extended physical RAM map:\n" ); |
| 742 | e820__print_table(who: "extended" ); |
| 743 | } |
| 744 | |
| 745 | /* |
| 746 | * Find the ranges of physical addresses that do not correspond to |
| 747 | * E820 RAM areas and register the corresponding pages as 'nosave' for |
| 748 | * hibernation (32-bit) or software suspend and suspend to RAM (64-bit). |
| 749 | * |
| 750 | * This function requires the E820 map to be sorted and without any |
| 751 | * overlapping entries. |
| 752 | */ |
| 753 | void __init e820__register_nosave_regions(unsigned long limit_pfn) |
| 754 | { |
| 755 | int i; |
| 756 | u64 last_addr = 0; |
| 757 | |
| 758 | for (i = 0; i < e820_table->nr_entries; i++) { |
| 759 | struct e820_entry *entry = &e820_table->entries[i]; |
| 760 | |
| 761 | if (entry->type != E820_TYPE_RAM) |
| 762 | continue; |
| 763 | |
| 764 | if (last_addr < entry->addr) |
| 765 | register_nosave_region(PFN_DOWN(last_addr), PFN_UP(entry->addr)); |
| 766 | |
| 767 | last_addr = entry->addr + entry->size; |
| 768 | } |
| 769 | |
| 770 | register_nosave_region(PFN_DOWN(last_addr), e: limit_pfn); |
| 771 | } |
| 772 | |
| 773 | #ifdef CONFIG_ACPI |
| 774 | /* |
| 775 | * Register ACPI NVS memory regions, so that we can save/restore them during |
| 776 | * hibernation and the subsequent resume: |
| 777 | */ |
| 778 | static int __init e820__register_nvs_regions(void) |
| 779 | { |
| 780 | int i; |
| 781 | |
| 782 | for (i = 0; i < e820_table->nr_entries; i++) { |
| 783 | struct e820_entry *entry = &e820_table->entries[i]; |
| 784 | |
| 785 | if (entry->type == E820_TYPE_NVS) |
| 786 | acpi_nvs_register(start: entry->addr, size: entry->size); |
| 787 | } |
| 788 | |
| 789 | return 0; |
| 790 | } |
| 791 | core_initcall(e820__register_nvs_regions); |
| 792 | #endif |
| 793 | |
| 794 | /* |
| 795 | * Allocate the requested number of bytes with the requested alignment |
| 796 | * and return (the physical address) to the caller. Also register this |
| 797 | * range in the 'kexec' E820 table as a reserved range. |
| 798 | * |
| 799 | * This allows kexec to fake a new mptable, as if it came from the real |
| 800 | * system. |
| 801 | */ |
| 802 | u64 __init e820__memblock_alloc_reserved(u64 size, u64 align) |
| 803 | { |
| 804 | u64 addr; |
| 805 | |
| 806 | addr = memblock_phys_alloc(size, align); |
| 807 | if (addr) { |
| 808 | e820__range_update_table(t: e820_table_kexec, start: addr, size, old_type: E820_TYPE_RAM, new_type: E820_TYPE_RESERVED); |
| 809 | pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n" ); |
| 810 | e820__update_table_kexec(); |
| 811 | } |
| 812 | |
| 813 | return addr; |
| 814 | } |
| 815 | |
| 816 | #ifdef CONFIG_X86_32 |
| 817 | # ifdef CONFIG_X86_PAE |
| 818 | # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) |
| 819 | # else |
| 820 | # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) |
| 821 | # endif |
| 822 | #else /* CONFIG_X86_32 */ |
| 823 | # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT |
| 824 | #endif |
| 825 | |
| 826 | /* |
| 827 | * Find the highest page frame number we have available |
| 828 | */ |
| 829 | static unsigned long __init e820__end_ram_pfn(unsigned long limit_pfn) |
| 830 | { |
| 831 | int i; |
| 832 | unsigned long last_pfn = 0; |
| 833 | unsigned long max_arch_pfn = MAX_ARCH_PFN; |
| 834 | |
| 835 | for (i = 0; i < e820_table->nr_entries; i++) { |
| 836 | struct e820_entry *entry = &e820_table->entries[i]; |
| 837 | unsigned long start_pfn; |
| 838 | unsigned long end_pfn; |
| 839 | |
| 840 | if (entry->type != E820_TYPE_RAM && |
| 841 | entry->type != E820_TYPE_ACPI) |
| 842 | continue; |
| 843 | |
| 844 | start_pfn = entry->addr >> PAGE_SHIFT; |
| 845 | end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT; |
| 846 | |
| 847 | if (start_pfn >= limit_pfn) |
| 848 | continue; |
| 849 | if (end_pfn > limit_pfn) { |
| 850 | last_pfn = limit_pfn; |
| 851 | break; |
| 852 | } |
| 853 | if (end_pfn > last_pfn) |
| 854 | last_pfn = end_pfn; |
| 855 | } |
| 856 | |
| 857 | if (last_pfn > max_arch_pfn) |
| 858 | last_pfn = max_arch_pfn; |
| 859 | |
| 860 | pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n" , |
| 861 | last_pfn, max_arch_pfn); |
| 862 | return last_pfn; |
| 863 | } |
| 864 | |
| 865 | unsigned long __init e820__end_of_ram_pfn(void) |
| 866 | { |
| 867 | return e820__end_ram_pfn(MAX_ARCH_PFN); |
| 868 | } |
| 869 | |
| 870 | unsigned long __init e820__end_of_low_ram_pfn(void) |
| 871 | { |
| 872 | return e820__end_ram_pfn(limit_pfn: 1UL << (32 - PAGE_SHIFT)); |
| 873 | } |
| 874 | |
| 875 | static void __init early_panic(char *msg) |
| 876 | { |
| 877 | early_printk(fmt: msg); |
| 878 | panic(fmt: msg); |
| 879 | } |
| 880 | |
| 881 | static int userdef __initdata; |
| 882 | |
| 883 | /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */ |
| 884 | static int __init parse_memopt(char *p) |
| 885 | { |
| 886 | u64 mem_size; |
| 887 | |
| 888 | if (!p) |
| 889 | return -EINVAL; |
| 890 | |
| 891 | if (!strcmp(p, "nopentium" )) { |
| 892 | #ifdef CONFIG_X86_32 |
| 893 | setup_clear_cpu_cap(X86_FEATURE_PSE); |
| 894 | return 0; |
| 895 | #else |
| 896 | pr_warn("mem=nopentium ignored! (only supported on x86_32)\n" ); |
| 897 | return -EINVAL; |
| 898 | #endif |
| 899 | } |
| 900 | |
| 901 | userdef = 1; |
| 902 | mem_size = memparse(ptr: p, retptr: &p); |
| 903 | |
| 904 | /* Don't remove all memory when getting "mem={invalid}" parameter: */ |
| 905 | if (mem_size == 0) |
| 906 | return -EINVAL; |
| 907 | |
| 908 | e820__range_remove(start: mem_size, ULLONG_MAX - mem_size, old_type: E820_TYPE_RAM, check_type: 1); |
| 909 | |
| 910 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 911 | max_mem_size = mem_size; |
| 912 | #endif |
| 913 | |
| 914 | return 0; |
| 915 | } |
| 916 | early_param("mem" , parse_memopt); |
| 917 | |
| 918 | static int __init parse_memmap_one(char *p) |
| 919 | { |
| 920 | char *oldp; |
| 921 | u64 start_at, mem_size; |
| 922 | |
| 923 | if (!p) |
| 924 | return -EINVAL; |
| 925 | |
| 926 | if (!strncmp(p, "exactmap" , 8)) { |
| 927 | e820_table->nr_entries = 0; |
| 928 | userdef = 1; |
| 929 | return 0; |
| 930 | } |
| 931 | |
| 932 | oldp = p; |
| 933 | mem_size = memparse(ptr: p, retptr: &p); |
| 934 | if (p == oldp) |
| 935 | return -EINVAL; |
| 936 | |
| 937 | userdef = 1; |
| 938 | if (*p == '@') { |
| 939 | start_at = memparse(ptr: p+1, retptr: &p); |
| 940 | e820__range_add(start: start_at, size: mem_size, type: E820_TYPE_RAM); |
| 941 | } else if (*p == '#') { |
| 942 | start_at = memparse(ptr: p+1, retptr: &p); |
| 943 | e820__range_add(start: start_at, size: mem_size, type: E820_TYPE_ACPI); |
| 944 | } else if (*p == '$') { |
| 945 | start_at = memparse(ptr: p+1, retptr: &p); |
| 946 | e820__range_add(start: start_at, size: mem_size, type: E820_TYPE_RESERVED); |
| 947 | } else if (*p == '!') { |
| 948 | start_at = memparse(ptr: p+1, retptr: &p); |
| 949 | e820__range_add(start: start_at, size: mem_size, type: E820_TYPE_PRAM); |
| 950 | } else if (*p == '%') { |
| 951 | enum e820_type from = 0, to = 0; |
| 952 | |
| 953 | start_at = memparse(ptr: p + 1, retptr: &p); |
| 954 | if (*p == '-') |
| 955 | from = simple_strtoull(p + 1, &p, 0); |
| 956 | if (*p == '+') |
| 957 | to = simple_strtoull(p + 1, &p, 0); |
| 958 | if (*p != '\0') |
| 959 | return -EINVAL; |
| 960 | if (from && to) |
| 961 | e820__range_update(start: start_at, size: mem_size, old_type: from, new_type: to); |
| 962 | else if (to) |
| 963 | e820__range_add(start: start_at, size: mem_size, type: to); |
| 964 | else if (from) |
| 965 | e820__range_remove(start: start_at, size: mem_size, old_type: from, check_type: 1); |
| 966 | else |
| 967 | e820__range_remove(start: start_at, size: mem_size, old_type: 0, check_type: 0); |
| 968 | } else { |
| 969 | e820__range_remove(start: mem_size, ULLONG_MAX - mem_size, old_type: E820_TYPE_RAM, check_type: 1); |
| 970 | } |
| 971 | |
| 972 | return *p == '\0' ? 0 : -EINVAL; |
| 973 | } |
| 974 | |
| 975 | static int __init parse_memmap_opt(char *str) |
| 976 | { |
| 977 | while (str) { |
| 978 | char *k = strchr(str, ','); |
| 979 | |
| 980 | if (k) |
| 981 | *k++ = 0; |
| 982 | |
| 983 | parse_memmap_one(p: str); |
| 984 | str = k; |
| 985 | } |
| 986 | |
| 987 | return 0; |
| 988 | } |
| 989 | early_param("memmap" , parse_memmap_opt); |
| 990 | |
| 991 | /* |
| 992 | * Called after parse_early_param(), after early parameters (such as mem=) |
| 993 | * have been processed, in which case we already have an E820 table filled in |
| 994 | * via the parameter callback function(s), but it's not sorted and printed yet: |
| 995 | */ |
| 996 | void __init e820__finish_early_params(void) |
| 997 | { |
| 998 | if (userdef) { |
| 999 | if (e820__update_table(table: e820_table) < 0) |
| 1000 | early_panic(msg: "Invalid user supplied memory map" ); |
| 1001 | |
| 1002 | pr_info("user-defined physical RAM map:\n" ); |
| 1003 | e820__print_table(who: "user" ); |
| 1004 | } |
| 1005 | } |
| 1006 | |
| 1007 | static const char *__init e820_type_to_string(struct e820_entry *entry) |
| 1008 | { |
| 1009 | switch (entry->type) { |
| 1010 | case E820_TYPE_RAM: return "System RAM" ; |
| 1011 | case E820_TYPE_ACPI: return "ACPI Tables" ; |
| 1012 | case E820_TYPE_NVS: return "ACPI Non-volatile Storage" ; |
| 1013 | case E820_TYPE_UNUSABLE: return "Unusable memory" ; |
| 1014 | case E820_TYPE_PRAM: return "Persistent Memory (legacy)" ; |
| 1015 | case E820_TYPE_PMEM: return "Persistent Memory" ; |
| 1016 | case E820_TYPE_RESERVED: return "Reserved" ; |
| 1017 | case E820_TYPE_SOFT_RESERVED: return "Soft Reserved" ; |
| 1018 | default: return "Unknown E820 type" ; |
| 1019 | } |
| 1020 | } |
| 1021 | |
| 1022 | static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry) |
| 1023 | { |
| 1024 | switch (entry->type) { |
| 1025 | case E820_TYPE_RAM: return IORESOURCE_SYSTEM_RAM; |
| 1026 | case E820_TYPE_ACPI: /* Fall-through: */ |
| 1027 | case E820_TYPE_NVS: /* Fall-through: */ |
| 1028 | case E820_TYPE_UNUSABLE: /* Fall-through: */ |
| 1029 | case E820_TYPE_PRAM: /* Fall-through: */ |
| 1030 | case E820_TYPE_PMEM: /* Fall-through: */ |
| 1031 | case E820_TYPE_RESERVED: /* Fall-through: */ |
| 1032 | case E820_TYPE_SOFT_RESERVED: /* Fall-through: */ |
| 1033 | default: return IORESOURCE_MEM; |
| 1034 | } |
| 1035 | } |
| 1036 | |
| 1037 | static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry) |
| 1038 | { |
| 1039 | switch (entry->type) { |
| 1040 | case E820_TYPE_ACPI: return IORES_DESC_ACPI_TABLES; |
| 1041 | case E820_TYPE_NVS: return IORES_DESC_ACPI_NV_STORAGE; |
| 1042 | case E820_TYPE_PMEM: return IORES_DESC_PERSISTENT_MEMORY; |
| 1043 | case E820_TYPE_PRAM: return IORES_DESC_PERSISTENT_MEMORY_LEGACY; |
| 1044 | case E820_TYPE_RESERVED: return IORES_DESC_RESERVED; |
| 1045 | case E820_TYPE_SOFT_RESERVED: return IORES_DESC_SOFT_RESERVED; |
| 1046 | case E820_TYPE_RAM: /* Fall-through: */ |
| 1047 | case E820_TYPE_UNUSABLE: /* Fall-through: */ |
| 1048 | default: return IORES_DESC_NONE; |
| 1049 | } |
| 1050 | } |
| 1051 | |
| 1052 | static bool __init do_mark_busy(enum e820_type type, struct resource *res) |
| 1053 | { |
| 1054 | /* this is the legacy bios/dos rom-shadow + mmio region */ |
| 1055 | if (res->start < (1ULL<<20)) |
| 1056 | return true; |
| 1057 | |
| 1058 | /* |
| 1059 | * Treat persistent memory and other special memory ranges like |
| 1060 | * device memory, i.e. reserve it for exclusive use of a driver |
| 1061 | */ |
| 1062 | switch (type) { |
| 1063 | case E820_TYPE_RESERVED: |
| 1064 | case E820_TYPE_SOFT_RESERVED: |
| 1065 | case E820_TYPE_PRAM: |
| 1066 | case E820_TYPE_PMEM: |
| 1067 | return false; |
| 1068 | case E820_TYPE_RAM: |
| 1069 | case E820_TYPE_ACPI: |
| 1070 | case E820_TYPE_NVS: |
| 1071 | case E820_TYPE_UNUSABLE: |
| 1072 | default: |
| 1073 | return true; |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | /* |
| 1078 | * Mark E820 reserved areas as busy for the resource manager: |
| 1079 | */ |
| 1080 | |
| 1081 | static struct resource __initdata *e820_res; |
| 1082 | |
| 1083 | void __init e820__reserve_resources(void) |
| 1084 | { |
| 1085 | int i; |
| 1086 | struct resource *res; |
| 1087 | u64 end; |
| 1088 | |
| 1089 | res = memblock_alloc_or_panic(sizeof(*res) * e820_table->nr_entries, |
| 1090 | SMP_CACHE_BYTES); |
| 1091 | e820_res = res; |
| 1092 | |
| 1093 | for (i = 0; i < e820_table->nr_entries; i++) { |
| 1094 | struct e820_entry *entry = e820_table->entries + i; |
| 1095 | |
| 1096 | end = entry->addr + entry->size - 1; |
| 1097 | if (end != (resource_size_t)end) { |
| 1098 | res++; |
| 1099 | continue; |
| 1100 | } |
| 1101 | res->start = entry->addr; |
| 1102 | res->end = end; |
| 1103 | res->name = e820_type_to_string(entry); |
| 1104 | res->flags = e820_type_to_iomem_type(entry); |
| 1105 | res->desc = e820_type_to_iores_desc(entry); |
| 1106 | |
| 1107 | /* |
| 1108 | * Don't register the region that could be conflicted with |
| 1109 | * PCI device BAR resources and insert them later in |
| 1110 | * pcibios_resource_survey(): |
| 1111 | */ |
| 1112 | if (do_mark_busy(type: entry->type, res)) { |
| 1113 | res->flags |= IORESOURCE_BUSY; |
| 1114 | insert_resource(parent: &iomem_resource, new: res); |
| 1115 | } |
| 1116 | res++; |
| 1117 | } |
| 1118 | |
| 1119 | /* Expose the kexec e820 table to the sysfs. */ |
| 1120 | for (i = 0; i < e820_table_kexec->nr_entries; i++) { |
| 1121 | struct e820_entry *entry = e820_table_kexec->entries + i; |
| 1122 | |
| 1123 | firmware_map_add_early(start: entry->addr, end: entry->addr + entry->size, type: e820_type_to_string(entry)); |
| 1124 | } |
| 1125 | } |
| 1126 | |
| 1127 | /* |
| 1128 | * How much should we pad the end of RAM, depending on where it is? |
| 1129 | */ |
| 1130 | static unsigned long __init ram_alignment(resource_size_t pos) |
| 1131 | { |
| 1132 | unsigned long mb = pos >> 20; |
| 1133 | |
| 1134 | /* To 64kB in the first megabyte */ |
| 1135 | if (!mb) |
| 1136 | return 64*1024; |
| 1137 | |
| 1138 | /* To 1MB in the first 16MB */ |
| 1139 | if (mb < 16) |
| 1140 | return 1024*1024; |
| 1141 | |
| 1142 | /* To 64MB for anything above that */ |
| 1143 | return 64*1024*1024; |
| 1144 | } |
| 1145 | |
| 1146 | #define MAX_RESOURCE_SIZE ((resource_size_t)-1) |
| 1147 | |
| 1148 | void __init e820__reserve_resources_late(void) |
| 1149 | { |
| 1150 | int i; |
| 1151 | struct resource *res; |
| 1152 | |
| 1153 | res = e820_res; |
| 1154 | for (i = 0; i < e820_table->nr_entries; i++) { |
| 1155 | if (!res->parent && res->end) |
| 1156 | insert_resource_expand_to_fit(root: &iomem_resource, new: res); |
| 1157 | res++; |
| 1158 | } |
| 1159 | |
| 1160 | /* |
| 1161 | * Try to bump up RAM regions to reasonable boundaries, to |
| 1162 | * avoid stolen RAM: |
| 1163 | */ |
| 1164 | for (i = 0; i < e820_table->nr_entries; i++) { |
| 1165 | struct e820_entry *entry = &e820_table->entries[i]; |
| 1166 | u64 start, end; |
| 1167 | |
| 1168 | if (entry->type != E820_TYPE_RAM) |
| 1169 | continue; |
| 1170 | |
| 1171 | start = entry->addr + entry->size; |
| 1172 | end = round_up(start, ram_alignment(start)) - 1; |
| 1173 | if (end > MAX_RESOURCE_SIZE) |
| 1174 | end = MAX_RESOURCE_SIZE; |
| 1175 | if (start >= end) |
| 1176 | continue; |
| 1177 | |
| 1178 | printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n" , start, end); |
| 1179 | reserve_region_with_split(root: &iomem_resource, start, end, name: "RAM buffer" ); |
| 1180 | } |
| 1181 | } |
| 1182 | |
| 1183 | /* |
| 1184 | * Pass the firmware (bootloader) E820 map to the kernel and process it: |
| 1185 | */ |
| 1186 | char *__init e820__memory_setup_default(void) |
| 1187 | { |
| 1188 | char *who = "BIOS-e820" ; |
| 1189 | |
| 1190 | /* |
| 1191 | * Try to copy the BIOS-supplied E820-map. |
| 1192 | * |
| 1193 | * Otherwise fake a memory map; one section from 0k->640k, |
| 1194 | * the next section from 1mb->appropriate_mem_k |
| 1195 | */ |
| 1196 | if (append_e820_table(entries: boot_params.e820_table, nr_entries: boot_params.e820_entries) < 0) { |
| 1197 | u64 mem_size; |
| 1198 | |
| 1199 | /* Compare results from other methods and take the one that gives more RAM: */ |
| 1200 | if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) { |
| 1201 | mem_size = boot_params.screen_info.ext_mem_k; |
| 1202 | who = "BIOS-88" ; |
| 1203 | } else { |
| 1204 | mem_size = boot_params.alt_mem_k; |
| 1205 | who = "BIOS-e801" ; |
| 1206 | } |
| 1207 | |
| 1208 | e820_table->nr_entries = 0; |
| 1209 | e820__range_add(start: 0, LOWMEMSIZE(), type: E820_TYPE_RAM); |
| 1210 | e820__range_add(HIGH_MEMORY, size: mem_size << 10, type: E820_TYPE_RAM); |
| 1211 | } |
| 1212 | |
| 1213 | /* We just appended a lot of ranges, sanitize the table: */ |
| 1214 | e820__update_table(table: e820_table); |
| 1215 | |
| 1216 | return who; |
| 1217 | } |
| 1218 | |
| 1219 | /* |
| 1220 | * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader |
| 1221 | * E820 map - with an optional platform quirk available for virtual platforms |
| 1222 | * to override this method of boot environment processing: |
| 1223 | */ |
| 1224 | void __init e820__memory_setup(void) |
| 1225 | { |
| 1226 | char *who; |
| 1227 | |
| 1228 | /* This is a firmware interface ABI - make sure we don't break it: */ |
| 1229 | BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20); |
| 1230 | |
| 1231 | who = x86_init.resources.memory_setup(); |
| 1232 | |
| 1233 | memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); |
| 1234 | memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); |
| 1235 | |
| 1236 | pr_info("BIOS-provided physical RAM map:\n" ); |
| 1237 | e820__print_table(who); |
| 1238 | } |
| 1239 | |
| 1240 | void __init e820__memblock_setup(void) |
| 1241 | { |
| 1242 | int i; |
| 1243 | u64 end; |
| 1244 | |
| 1245 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 1246 | /* |
| 1247 | * Memory used by the kernel cannot be hot-removed because Linux |
| 1248 | * cannot migrate the kernel pages. When memory hotplug is |
| 1249 | * enabled, we should prevent memblock from allocating memory |
| 1250 | * for the kernel. |
| 1251 | * |
| 1252 | * ACPI SRAT records all hotpluggable memory ranges. But before |
| 1253 | * SRAT is parsed, we don't know about it. |
| 1254 | * |
| 1255 | * The kernel image is loaded into memory at very early time. We |
| 1256 | * cannot prevent this anyway. So on NUMA system, we set any |
| 1257 | * node the kernel resides in as un-hotpluggable. |
| 1258 | * |
| 1259 | * Since on modern servers, one node could have double-digit |
| 1260 | * gigabytes memory, we can assume the memory around the kernel |
| 1261 | * image is also un-hotpluggable. So before SRAT is parsed, just |
| 1262 | * allocate memory near the kernel image to try the best to keep |
| 1263 | * the kernel away from hotpluggable memory. |
| 1264 | */ |
| 1265 | if (movable_node_is_enabled()) |
| 1266 | memblock_set_bottom_up(enable: true); |
| 1267 | #endif |
| 1268 | |
| 1269 | /* |
| 1270 | * At this point only the first megabyte is mapped for sure, the |
| 1271 | * rest of the memory cannot be used for memblock resizing |
| 1272 | */ |
| 1273 | memblock_set_current_limit(ISA_END_ADDRESS); |
| 1274 | |
| 1275 | /* |
| 1276 | * The bootstrap memblock region count maximum is 128 entries |
| 1277 | * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries |
| 1278 | * than that - so allow memblock resizing. |
| 1279 | * |
| 1280 | * This is safe, because this call happens pretty late during x86 setup, |
| 1281 | * so we know about reserved memory regions already. (This is important |
| 1282 | * so that memblock resizing does no stomp over reserved areas.) |
| 1283 | */ |
| 1284 | memblock_allow_resize(); |
| 1285 | |
| 1286 | for (i = 0; i < e820_table->nr_entries; i++) { |
| 1287 | struct e820_entry *entry = &e820_table->entries[i]; |
| 1288 | |
| 1289 | end = entry->addr + entry->size; |
| 1290 | if (end != (resource_size_t)end) |
| 1291 | continue; |
| 1292 | |
| 1293 | if (entry->type == E820_TYPE_SOFT_RESERVED) |
| 1294 | memblock_reserve(base: entry->addr, size: entry->size); |
| 1295 | |
| 1296 | if (entry->type != E820_TYPE_RAM) |
| 1297 | continue; |
| 1298 | |
| 1299 | memblock_add(base: entry->addr, size: entry->size); |
| 1300 | } |
| 1301 | |
| 1302 | /* |
| 1303 | * At this point memblock is only allowed to allocate from memory |
| 1304 | * below 1M (aka ISA_END_ADDRESS) up until direct map is completely set |
| 1305 | * up in init_mem_mapping(). |
| 1306 | * |
| 1307 | * KHO kernels are special and use only scratch memory for memblock |
| 1308 | * allocations, but memory below 1M is ignored by kernel after early |
| 1309 | * boot and cannot be naturally marked as scratch. |
| 1310 | * |
| 1311 | * To allow allocation of the real-mode trampoline and a few (if any) |
| 1312 | * other very early allocations from below 1M forcibly mark the memory |
| 1313 | * below 1M as scratch. |
| 1314 | * |
| 1315 | * After real mode trampoline is allocated, we clear that scratch |
| 1316 | * marking. |
| 1317 | */ |
| 1318 | memblock_mark_kho_scratch(base: 0, SZ_1M); |
| 1319 | |
| 1320 | /* |
| 1321 | * 32-bit systems are limited to 4BG of memory even with HIGHMEM and |
| 1322 | * to even less without it. |
| 1323 | * Discard memory after max_pfn - the actual limit detected at runtime. |
| 1324 | */ |
| 1325 | if (IS_ENABLED(CONFIG_X86_32)) |
| 1326 | memblock_remove(PFN_PHYS(max_pfn), size: -1); |
| 1327 | |
| 1328 | /* Throw away partial pages: */ |
| 1329 | memblock_trim_memory(PAGE_SIZE); |
| 1330 | |
| 1331 | memblock_dump_all(); |
| 1332 | } |
| 1333 | |