1 | // SPDX-License-Identifier: GPL-2.0 |
2 | /* |
3 | * Functions to sequence PREFLUSH and FUA writes. |
4 | * |
5 | * Copyright (C) 2011 Max Planck Institute for Gravitational Physics |
6 | * Copyright (C) 2011 Tejun Heo <tj@kernel.org> |
7 | * |
8 | * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three |
9 | * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request |
10 | * properties and hardware capability. |
11 | * |
12 | * If a request doesn't have data, only REQ_PREFLUSH makes sense, which |
13 | * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates |
14 | * that the device cache should be flushed before the data is executed, and |
15 | * REQ_FUA means that the data must be on non-volatile media on request |
16 | * completion. |
17 | * |
18 | * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any |
19 | * difference. The requests are either completed immediately if there's no data |
20 | * or executed as normal requests otherwise. |
21 | * |
22 | * If the device has writeback cache and supports FUA, REQ_PREFLUSH is |
23 | * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. |
24 | * |
25 | * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH |
26 | * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. |
27 | * |
28 | * The actual execution of flush is double buffered. Whenever a request |
29 | * needs to execute PRE or POSTFLUSH, it queues at |
30 | * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a |
31 | * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush |
32 | * completes, all the requests which were pending are proceeded to the next |
33 | * step. This allows arbitrary merging of different types of PREFLUSH/FUA |
34 | * requests. |
35 | * |
36 | * Currently, the following conditions are used to determine when to issue |
37 | * flush. |
38 | * |
39 | * C1. At any given time, only one flush shall be in progress. This makes |
40 | * double buffering sufficient. |
41 | * |
42 | * C2. Flush is deferred if any request is executing DATA of its sequence. |
43 | * This avoids issuing separate POSTFLUSHes for requests which shared |
44 | * PREFLUSH. |
45 | * |
46 | * C3. The second condition is ignored if there is a request which has |
47 | * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid |
48 | * starvation in the unlikely case where there are continuous stream of |
49 | * FUA (without PREFLUSH) requests. |
50 | * |
51 | * For devices which support FUA, it isn't clear whether C2 (and thus C3) |
52 | * is beneficial. |
53 | * |
54 | * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. |
55 | * Once while executing DATA and again after the whole sequence is |
56 | * complete. The first completion updates the contained bio but doesn't |
57 | * finish it so that the bio submitter is notified only after the whole |
58 | * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in |
59 | * req_bio_endio(). |
60 | * |
61 | * The above peculiarity requires that each PREFLUSH/FUA request has only one |
62 | * bio attached to it, which is guaranteed as they aren't allowed to be |
63 | * merged in the usual way. |
64 | */ |
65 | |
66 | #include <linux/kernel.h> |
67 | #include <linux/module.h> |
68 | #include <linux/bio.h> |
69 | #include <linux/blkdev.h> |
70 | #include <linux/gfp.h> |
71 | #include <linux/part_stat.h> |
72 | |
73 | #include "blk.h" |
74 | #include "blk-mq.h" |
75 | #include "blk-mq-sched.h" |
76 | |
77 | /* PREFLUSH/FUA sequences */ |
78 | enum { |
79 | REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ |
80 | REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ |
81 | REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ |
82 | REQ_FSEQ_DONE = (1 << 3), |
83 | |
84 | REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | |
85 | REQ_FSEQ_POSTFLUSH, |
86 | |
87 | /* |
88 | * If flush has been pending longer than the following timeout, |
89 | * it's issued even if flush_data requests are still in flight. |
90 | */ |
91 | FLUSH_PENDING_TIMEOUT = 5 * HZ, |
92 | }; |
93 | |
94 | static void blk_kick_flush(struct request_queue *q, |
95 | struct blk_flush_queue *fq, blk_opf_t flags); |
96 | |
97 | static inline struct blk_flush_queue * |
98 | blk_get_flush_queue(struct blk_mq_ctx *ctx) |
99 | { |
100 | return blk_mq_map_queue(opf: REQ_OP_FLUSH, ctx)->fq; |
101 | } |
102 | |
103 | static unsigned int blk_flush_cur_seq(struct request *rq) |
104 | { |
105 | return 1 << ffz(rq->flush.seq); |
106 | } |
107 | |
108 | static void blk_flush_restore_request(struct request *rq) |
109 | { |
110 | /* |
111 | * After flush data completion, @rq->bio is %NULL but we need to |
112 | * complete the bio again. @rq->biotail is guaranteed to equal the |
113 | * original @rq->bio. Restore it. |
114 | */ |
115 | rq->bio = rq->biotail; |
116 | if (rq->bio) |
117 | rq->__sector = rq->bio->bi_iter.bi_sector; |
118 | |
119 | /* make @rq a normal request */ |
120 | rq->rq_flags &= ~RQF_FLUSH_SEQ; |
121 | rq->end_io = rq->flush.saved_end_io; |
122 | } |
123 | |
124 | static void blk_account_io_flush(struct request *rq) |
125 | { |
126 | struct block_device *part = rq->q->disk->part0; |
127 | |
128 | part_stat_lock(); |
129 | part_stat_inc(part, ios[STAT_FLUSH]); |
130 | part_stat_add(part, nsecs[STAT_FLUSH], |
131 | blk_time_get_ns() - rq->start_time_ns); |
132 | part_stat_unlock(); |
133 | } |
134 | |
135 | /** |
136 | * blk_flush_complete_seq - complete flush sequence |
137 | * @rq: PREFLUSH/FUA request being sequenced |
138 | * @fq: flush queue |
139 | * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) |
140 | * @error: whether an error occurred |
141 | * |
142 | * @rq just completed @seq part of its flush sequence, record the |
143 | * completion and trigger the next step. |
144 | * |
145 | * CONTEXT: |
146 | * spin_lock_irq(fq->mq_flush_lock) |
147 | */ |
148 | static void blk_flush_complete_seq(struct request *rq, |
149 | struct blk_flush_queue *fq, |
150 | unsigned int seq, blk_status_t error) |
151 | { |
152 | struct request_queue *q = rq->q; |
153 | struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; |
154 | blk_opf_t cmd_flags; |
155 | |
156 | BUG_ON(rq->flush.seq & seq); |
157 | rq->flush.seq |= seq; |
158 | cmd_flags = rq->cmd_flags; |
159 | |
160 | if (likely(!error)) |
161 | seq = blk_flush_cur_seq(rq); |
162 | else |
163 | seq = REQ_FSEQ_DONE; |
164 | |
165 | switch (seq) { |
166 | case REQ_FSEQ_PREFLUSH: |
167 | case REQ_FSEQ_POSTFLUSH: |
168 | /* queue for flush */ |
169 | if (list_empty(head: pending)) |
170 | fq->flush_pending_since = jiffies; |
171 | list_add_tail(new: &rq->queuelist, head: pending); |
172 | break; |
173 | |
174 | case REQ_FSEQ_DATA: |
175 | fq->flush_data_in_flight++; |
176 | spin_lock(lock: &q->requeue_lock); |
177 | list_move(list: &rq->queuelist, head: &q->requeue_list); |
178 | spin_unlock(lock: &q->requeue_lock); |
179 | blk_mq_kick_requeue_list(q); |
180 | break; |
181 | |
182 | case REQ_FSEQ_DONE: |
183 | /* |
184 | * @rq was previously adjusted by blk_insert_flush() for |
185 | * flush sequencing and may already have gone through the |
186 | * flush data request completion path. Restore @rq for |
187 | * normal completion and end it. |
188 | */ |
189 | list_del_init(entry: &rq->queuelist); |
190 | blk_flush_restore_request(rq); |
191 | blk_mq_end_request(rq, error); |
192 | break; |
193 | |
194 | default: |
195 | BUG(); |
196 | } |
197 | |
198 | blk_kick_flush(q, fq, flags: cmd_flags); |
199 | } |
200 | |
201 | static enum rq_end_io_ret flush_end_io(struct request *flush_rq, |
202 | blk_status_t error) |
203 | { |
204 | struct request_queue *q = flush_rq->q; |
205 | struct list_head *running; |
206 | struct request *rq, *n; |
207 | unsigned long flags = 0; |
208 | struct blk_flush_queue *fq = blk_get_flush_queue(ctx: flush_rq->mq_ctx); |
209 | |
210 | /* release the tag's ownership to the req cloned from */ |
211 | spin_lock_irqsave(&fq->mq_flush_lock, flags); |
212 | |
213 | if (!req_ref_put_and_test(req: flush_rq)) { |
214 | fq->rq_status = error; |
215 | spin_unlock_irqrestore(lock: &fq->mq_flush_lock, flags); |
216 | return RQ_END_IO_NONE; |
217 | } |
218 | |
219 | blk_account_io_flush(rq: flush_rq); |
220 | /* |
221 | * Flush request has to be marked as IDLE when it is really ended |
222 | * because its .end_io() is called from timeout code path too for |
223 | * avoiding use-after-free. |
224 | */ |
225 | WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE); |
226 | if (fq->rq_status != BLK_STS_OK) { |
227 | error = fq->rq_status; |
228 | fq->rq_status = BLK_STS_OK; |
229 | } |
230 | |
231 | if (!q->elevator) { |
232 | flush_rq->tag = BLK_MQ_NO_TAG; |
233 | } else { |
234 | blk_mq_put_driver_tag(rq: flush_rq); |
235 | flush_rq->internal_tag = BLK_MQ_NO_TAG; |
236 | } |
237 | |
238 | running = &fq->flush_queue[fq->flush_running_idx]; |
239 | BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); |
240 | |
241 | /* account completion of the flush request */ |
242 | fq->flush_running_idx ^= 1; |
243 | |
244 | /* and push the waiting requests to the next stage */ |
245 | list_for_each_entry_safe(rq, n, running, queuelist) { |
246 | unsigned int seq = blk_flush_cur_seq(rq); |
247 | |
248 | BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); |
249 | list_del_init(entry: &rq->queuelist); |
250 | blk_flush_complete_seq(rq, fq, seq, error); |
251 | } |
252 | |
253 | spin_unlock_irqrestore(lock: &fq->mq_flush_lock, flags); |
254 | return RQ_END_IO_NONE; |
255 | } |
256 | |
257 | bool is_flush_rq(struct request *rq) |
258 | { |
259 | return rq->end_io == flush_end_io; |
260 | } |
261 | |
262 | /** |
263 | * blk_kick_flush - consider issuing flush request |
264 | * @q: request_queue being kicked |
265 | * @fq: flush queue |
266 | * @flags: cmd_flags of the original request |
267 | * |
268 | * Flush related states of @q have changed, consider issuing flush request. |
269 | * Please read the comment at the top of this file for more info. |
270 | * |
271 | * CONTEXT: |
272 | * spin_lock_irq(fq->mq_flush_lock) |
273 | * |
274 | */ |
275 | static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, |
276 | blk_opf_t flags) |
277 | { |
278 | struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; |
279 | struct request *first_rq = |
280 | list_first_entry(pending, struct request, queuelist); |
281 | struct request *flush_rq = fq->flush_rq; |
282 | |
283 | /* C1 described at the top of this file */ |
284 | if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(head: pending)) |
285 | return; |
286 | |
287 | /* C2 and C3 */ |
288 | if (fq->flush_data_in_flight && |
289 | time_before(jiffies, |
290 | fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) |
291 | return; |
292 | |
293 | /* |
294 | * Issue flush and toggle pending_idx. This makes pending_idx |
295 | * different from running_idx, which means flush is in flight. |
296 | */ |
297 | fq->flush_pending_idx ^= 1; |
298 | |
299 | blk_rq_init(q, rq: flush_rq); |
300 | |
301 | /* |
302 | * In case of none scheduler, borrow tag from the first request |
303 | * since they can't be in flight at the same time. And acquire |
304 | * the tag's ownership for flush req. |
305 | * |
306 | * In case of IO scheduler, flush rq need to borrow scheduler tag |
307 | * just for cheating put/get driver tag. |
308 | */ |
309 | flush_rq->mq_ctx = first_rq->mq_ctx; |
310 | flush_rq->mq_hctx = first_rq->mq_hctx; |
311 | |
312 | if (!q->elevator) |
313 | flush_rq->tag = first_rq->tag; |
314 | else |
315 | flush_rq->internal_tag = first_rq->internal_tag; |
316 | |
317 | flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; |
318 | flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); |
319 | flush_rq->rq_flags |= RQF_FLUSH_SEQ; |
320 | flush_rq->end_io = flush_end_io; |
321 | /* |
322 | * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one |
323 | * implied in refcount_inc_not_zero() called from |
324 | * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref |
325 | * and READ flush_rq->end_io |
326 | */ |
327 | smp_wmb(); |
328 | req_ref_set(req: flush_rq, value: 1); |
329 | |
330 | spin_lock(lock: &q->requeue_lock); |
331 | list_add_tail(new: &flush_rq->queuelist, head: &q->flush_list); |
332 | spin_unlock(lock: &q->requeue_lock); |
333 | |
334 | blk_mq_kick_requeue_list(q); |
335 | } |
336 | |
337 | static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq, |
338 | blk_status_t error) |
339 | { |
340 | struct request_queue *q = rq->q; |
341 | struct blk_mq_hw_ctx *hctx = rq->mq_hctx; |
342 | struct blk_mq_ctx *ctx = rq->mq_ctx; |
343 | unsigned long flags; |
344 | struct blk_flush_queue *fq = blk_get_flush_queue(ctx); |
345 | |
346 | if (q->elevator) { |
347 | WARN_ON(rq->tag < 0); |
348 | blk_mq_put_driver_tag(rq); |
349 | } |
350 | |
351 | /* |
352 | * After populating an empty queue, kick it to avoid stall. Read |
353 | * the comment in flush_end_io(). |
354 | */ |
355 | spin_lock_irqsave(&fq->mq_flush_lock, flags); |
356 | fq->flush_data_in_flight--; |
357 | /* |
358 | * May have been corrupted by rq->rq_next reuse, we need to |
359 | * re-initialize rq->queuelist before reusing it here. |
360 | */ |
361 | INIT_LIST_HEAD(list: &rq->queuelist); |
362 | blk_flush_complete_seq(rq, fq, seq: REQ_FSEQ_DATA, error); |
363 | spin_unlock_irqrestore(lock: &fq->mq_flush_lock, flags); |
364 | |
365 | blk_mq_sched_restart(hctx); |
366 | return RQ_END_IO_NONE; |
367 | } |
368 | |
369 | static void blk_rq_init_flush(struct request *rq) |
370 | { |
371 | rq->flush.seq = 0; |
372 | rq->rq_flags |= RQF_FLUSH_SEQ; |
373 | rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ |
374 | rq->end_io = mq_flush_data_end_io; |
375 | } |
376 | |
377 | /* |
378 | * Insert a PREFLUSH/FUA request into the flush state machine. |
379 | * Returns true if the request has been consumed by the flush state machine, |
380 | * or false if the caller should continue to process it. |
381 | */ |
382 | bool blk_insert_flush(struct request *rq) |
383 | { |
384 | struct request_queue *q = rq->q; |
385 | struct blk_flush_queue *fq = blk_get_flush_queue(ctx: rq->mq_ctx); |
386 | bool supports_fua = q->limits.features & BLK_FEAT_FUA; |
387 | unsigned int policy = 0; |
388 | |
389 | /* FLUSH/FUA request must never be merged */ |
390 | WARN_ON_ONCE(rq->bio != rq->biotail); |
391 | |
392 | if (blk_rq_sectors(rq)) |
393 | policy |= REQ_FSEQ_DATA; |
394 | |
395 | /* |
396 | * Check which flushes we need to sequence for this operation. |
397 | */ |
398 | if (blk_queue_write_cache(q)) { |
399 | if (rq->cmd_flags & REQ_PREFLUSH) |
400 | policy |= REQ_FSEQ_PREFLUSH; |
401 | if ((rq->cmd_flags & REQ_FUA) && !supports_fua) |
402 | policy |= REQ_FSEQ_POSTFLUSH; |
403 | } |
404 | |
405 | /* |
406 | * @policy now records what operations need to be done. Adjust |
407 | * REQ_PREFLUSH and FUA for the driver. |
408 | */ |
409 | rq->cmd_flags &= ~REQ_PREFLUSH; |
410 | if (!supports_fua) |
411 | rq->cmd_flags &= ~REQ_FUA; |
412 | |
413 | /* |
414 | * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any |
415 | * of those flags, we have to set REQ_SYNC to avoid skewing |
416 | * the request accounting. |
417 | */ |
418 | rq->cmd_flags |= REQ_SYNC; |
419 | |
420 | switch (policy) { |
421 | case 0: |
422 | /* |
423 | * An empty flush handed down from a stacking driver may |
424 | * translate into nothing if the underlying device does not |
425 | * advertise a write-back cache. In this case, simply |
426 | * complete the request. |
427 | */ |
428 | blk_mq_end_request(rq, error: 0); |
429 | return true; |
430 | case REQ_FSEQ_DATA: |
431 | /* |
432 | * If there's data, but no flush is necessary, the request can |
433 | * be processed directly without going through flush machinery. |
434 | * Queue for normal execution. |
435 | */ |
436 | return false; |
437 | case REQ_FSEQ_DATA | REQ_FSEQ_POSTFLUSH: |
438 | /* |
439 | * Initialize the flush fields and completion handler to trigger |
440 | * the post flush, and then just pass the command on. |
441 | */ |
442 | blk_rq_init_flush(rq); |
443 | rq->flush.seq |= REQ_FSEQ_PREFLUSH; |
444 | spin_lock_irq(lock: &fq->mq_flush_lock); |
445 | fq->flush_data_in_flight++; |
446 | spin_unlock_irq(lock: &fq->mq_flush_lock); |
447 | return false; |
448 | default: |
449 | /* |
450 | * Mark the request as part of a flush sequence and submit it |
451 | * for further processing to the flush state machine. |
452 | */ |
453 | blk_rq_init_flush(rq); |
454 | spin_lock_irq(lock: &fq->mq_flush_lock); |
455 | blk_flush_complete_seq(rq, fq, seq: REQ_FSEQ_ACTIONS & ~policy, error: 0); |
456 | spin_unlock_irq(lock: &fq->mq_flush_lock); |
457 | return true; |
458 | } |
459 | } |
460 | |
461 | /** |
462 | * blkdev_issue_flush - queue a flush |
463 | * @bdev: blockdev to issue flush for |
464 | * |
465 | * Description: |
466 | * Issue a flush for the block device in question. |
467 | */ |
468 | int blkdev_issue_flush(struct block_device *bdev) |
469 | { |
470 | struct bio bio; |
471 | |
472 | bio_init(bio: &bio, bdev, NULL, max_vecs: 0, opf: REQ_OP_WRITE | REQ_PREFLUSH); |
473 | return submit_bio_wait(bio: &bio); |
474 | } |
475 | EXPORT_SYMBOL(blkdev_issue_flush); |
476 | |
477 | struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, |
478 | gfp_t flags) |
479 | { |
480 | struct blk_flush_queue *fq; |
481 | int rq_sz = sizeof(struct request); |
482 | |
483 | fq = kzalloc_node(sizeof(*fq), flags, node); |
484 | if (!fq) |
485 | goto fail; |
486 | |
487 | spin_lock_init(&fq->mq_flush_lock); |
488 | |
489 | rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); |
490 | fq->flush_rq = kzalloc_node(rq_sz, flags, node); |
491 | if (!fq->flush_rq) |
492 | goto fail_rq; |
493 | |
494 | INIT_LIST_HEAD(list: &fq->flush_queue[0]); |
495 | INIT_LIST_HEAD(list: &fq->flush_queue[1]); |
496 | |
497 | return fq; |
498 | |
499 | fail_rq: |
500 | kfree(objp: fq); |
501 | fail: |
502 | return NULL; |
503 | } |
504 | |
505 | void blk_free_flush_queue(struct blk_flush_queue *fq) |
506 | { |
507 | /* bio based request queue hasn't flush queue */ |
508 | if (!fq) |
509 | return; |
510 | |
511 | kfree(objp: fq->flush_rq); |
512 | kfree(objp: fq); |
513 | } |
514 | |
515 | /* |
516 | * Allow driver to set its own lock class to fq->mq_flush_lock for |
517 | * avoiding lockdep complaint. |
518 | * |
519 | * flush_end_io() may be called recursively from some driver, such as |
520 | * nvme-loop, so lockdep may complain 'possible recursive locking' because |
521 | * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class |
522 | * key. We need to assign different lock class for these driver's |
523 | * fq->mq_flush_lock for avoiding the lockdep warning. |
524 | * |
525 | * Use dynamically allocated lock class key for each 'blk_flush_queue' |
526 | * instance is over-kill, and more worse it introduces horrible boot delay |
527 | * issue because synchronize_rcu() is implied in lockdep_unregister_key which |
528 | * is called for each hctx release. SCSI probing may synchronously create and |
529 | * destroy lots of MQ request_queues for non-existent devices, and some robot |
530 | * test kernel always enable lockdep option. It is observed that more than half |
531 | * an hour is taken during SCSI MQ probe with per-fq lock class. |
532 | */ |
533 | void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx, |
534 | struct lock_class_key *key) |
535 | { |
536 | lockdep_set_class(&hctx->fq->mq_flush_lock, key); |
537 | } |
538 | EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class); |
539 | |