1 | // SPDX-License-Identifier: GPL-2.0 |
2 | /* |
3 | * Functions to sequence PREFLUSH and FUA writes. |
4 | * |
5 | * Copyright (C) 2011 Max Planck Institute for Gravitational Physics |
6 | * Copyright (C) 2011 Tejun Heo <tj@kernel.org> |
7 | * |
8 | * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three |
9 | * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request |
10 | * properties and hardware capability. |
11 | * |
12 | * If a request doesn't have data, only REQ_PREFLUSH makes sense, which |
13 | * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates |
14 | * that the device cache should be flushed before the data is executed, and |
15 | * REQ_FUA means that the data must be on non-volatile media on request |
16 | * completion. |
17 | * |
18 | * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any |
19 | * difference. The requests are either completed immediately if there's no data |
20 | * or executed as normal requests otherwise. |
21 | * |
22 | * If the device has writeback cache and supports FUA, REQ_PREFLUSH is |
23 | * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. |
24 | * |
25 | * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH |
26 | * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. |
27 | * |
28 | * The actual execution of flush is double buffered. Whenever a request |
29 | * needs to execute PRE or POSTFLUSH, it queues at |
30 | * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a |
31 | * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush |
32 | * completes, all the requests which were pending are proceeded to the next |
33 | * step. This allows arbitrary merging of different types of PREFLUSH/FUA |
34 | * requests. |
35 | * |
36 | * Currently, the following conditions are used to determine when to issue |
37 | * flush. |
38 | * |
39 | * C1. At any given time, only one flush shall be in progress. This makes |
40 | * double buffering sufficient. |
41 | * |
42 | * C2. Flush is deferred if any request is executing DATA of its sequence. |
43 | * This avoids issuing separate POSTFLUSHes for requests which shared |
44 | * PREFLUSH. |
45 | * |
46 | * C3. The second condition is ignored if there is a request which has |
47 | * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid |
48 | * starvation in the unlikely case where there are continuous stream of |
49 | * FUA (without PREFLUSH) requests. |
50 | * |
51 | * For devices which support FUA, it isn't clear whether C2 (and thus C3) |
52 | * is beneficial. |
53 | * |
54 | * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. |
55 | * Once while executing DATA and again after the whole sequence is |
56 | * complete. The first completion updates the contained bio but doesn't |
57 | * finish it so that the bio submitter is notified only after the whole |
58 | * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in |
59 | * req_bio_endio(). |
60 | * |
61 | * The above peculiarity requires that each PREFLUSH/FUA request has only one |
62 | * bio attached to it, which is guaranteed as they aren't allowed to be |
63 | * merged in the usual way. |
64 | */ |
65 | |
66 | #include <linux/kernel.h> |
67 | #include <linux/module.h> |
68 | #include <linux/bio.h> |
69 | #include <linux/blkdev.h> |
70 | #include <linux/gfp.h> |
71 | #include <linux/part_stat.h> |
72 | |
73 | #include "blk.h" |
74 | #include "blk-mq.h" |
75 | #include "blk-mq-sched.h" |
76 | |
77 | /* PREFLUSH/FUA sequences */ |
78 | enum { |
79 | REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ |
80 | REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ |
81 | REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ |
82 | REQ_FSEQ_DONE = (1 << 3), |
83 | |
84 | REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | |
85 | REQ_FSEQ_POSTFLUSH, |
86 | |
87 | /* |
88 | * If flush has been pending longer than the following timeout, |
89 | * it's issued even if flush_data requests are still in flight. |
90 | */ |
91 | FLUSH_PENDING_TIMEOUT = 5 * HZ, |
92 | }; |
93 | |
94 | static void blk_kick_flush(struct request_queue *q, |
95 | struct blk_flush_queue *fq, blk_opf_t flags); |
96 | |
97 | static inline struct blk_flush_queue * |
98 | blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx) |
99 | { |
100 | return blk_mq_map_queue(q, opf: REQ_OP_FLUSH, ctx)->fq; |
101 | } |
102 | |
103 | static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq) |
104 | { |
105 | unsigned int policy = 0; |
106 | |
107 | if (blk_rq_sectors(rq)) |
108 | policy |= REQ_FSEQ_DATA; |
109 | |
110 | if (fflags & (1UL << QUEUE_FLAG_WC)) { |
111 | if (rq->cmd_flags & REQ_PREFLUSH) |
112 | policy |= REQ_FSEQ_PREFLUSH; |
113 | if (!(fflags & (1UL << QUEUE_FLAG_FUA)) && |
114 | (rq->cmd_flags & REQ_FUA)) |
115 | policy |= REQ_FSEQ_POSTFLUSH; |
116 | } |
117 | return policy; |
118 | } |
119 | |
120 | static unsigned int blk_flush_cur_seq(struct request *rq) |
121 | { |
122 | return 1 << ffz(rq->flush.seq); |
123 | } |
124 | |
125 | static void blk_flush_restore_request(struct request *rq) |
126 | { |
127 | /* |
128 | * After flush data completion, @rq->bio is %NULL but we need to |
129 | * complete the bio again. @rq->biotail is guaranteed to equal the |
130 | * original @rq->bio. Restore it. |
131 | */ |
132 | rq->bio = rq->biotail; |
133 | |
134 | /* make @rq a normal request */ |
135 | rq->rq_flags &= ~RQF_FLUSH_SEQ; |
136 | rq->end_io = rq->flush.saved_end_io; |
137 | } |
138 | |
139 | static void blk_account_io_flush(struct request *rq) |
140 | { |
141 | struct block_device *part = rq->q->disk->part0; |
142 | |
143 | part_stat_lock(); |
144 | part_stat_inc(part, ios[STAT_FLUSH]); |
145 | part_stat_add(part, nsecs[STAT_FLUSH], |
146 | blk_time_get_ns() - rq->start_time_ns); |
147 | part_stat_unlock(); |
148 | } |
149 | |
150 | /** |
151 | * blk_flush_complete_seq - complete flush sequence |
152 | * @rq: PREFLUSH/FUA request being sequenced |
153 | * @fq: flush queue |
154 | * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) |
155 | * @error: whether an error occurred |
156 | * |
157 | * @rq just completed @seq part of its flush sequence, record the |
158 | * completion and trigger the next step. |
159 | * |
160 | * CONTEXT: |
161 | * spin_lock_irq(fq->mq_flush_lock) |
162 | */ |
163 | static void blk_flush_complete_seq(struct request *rq, |
164 | struct blk_flush_queue *fq, |
165 | unsigned int seq, blk_status_t error) |
166 | { |
167 | struct request_queue *q = rq->q; |
168 | struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; |
169 | blk_opf_t cmd_flags; |
170 | |
171 | BUG_ON(rq->flush.seq & seq); |
172 | rq->flush.seq |= seq; |
173 | cmd_flags = rq->cmd_flags; |
174 | |
175 | if (likely(!error)) |
176 | seq = blk_flush_cur_seq(rq); |
177 | else |
178 | seq = REQ_FSEQ_DONE; |
179 | |
180 | switch (seq) { |
181 | case REQ_FSEQ_PREFLUSH: |
182 | case REQ_FSEQ_POSTFLUSH: |
183 | /* queue for flush */ |
184 | if (list_empty(head: pending)) |
185 | fq->flush_pending_since = jiffies; |
186 | list_move_tail(list: &rq->queuelist, head: pending); |
187 | break; |
188 | |
189 | case REQ_FSEQ_DATA: |
190 | fq->flush_data_in_flight++; |
191 | spin_lock(lock: &q->requeue_lock); |
192 | list_move(list: &rq->queuelist, head: &q->requeue_list); |
193 | spin_unlock(lock: &q->requeue_lock); |
194 | blk_mq_kick_requeue_list(q); |
195 | break; |
196 | |
197 | case REQ_FSEQ_DONE: |
198 | /* |
199 | * @rq was previously adjusted by blk_insert_flush() for |
200 | * flush sequencing and may already have gone through the |
201 | * flush data request completion path. Restore @rq for |
202 | * normal completion and end it. |
203 | */ |
204 | list_del_init(entry: &rq->queuelist); |
205 | blk_flush_restore_request(rq); |
206 | blk_mq_end_request(rq, error); |
207 | break; |
208 | |
209 | default: |
210 | BUG(); |
211 | } |
212 | |
213 | blk_kick_flush(q, fq, flags: cmd_flags); |
214 | } |
215 | |
216 | static enum rq_end_io_ret flush_end_io(struct request *flush_rq, |
217 | blk_status_t error) |
218 | { |
219 | struct request_queue *q = flush_rq->q; |
220 | struct list_head *running; |
221 | struct request *rq, *n; |
222 | unsigned long flags = 0; |
223 | struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx: flush_rq->mq_ctx); |
224 | |
225 | /* release the tag's ownership to the req cloned from */ |
226 | spin_lock_irqsave(&fq->mq_flush_lock, flags); |
227 | |
228 | if (!req_ref_put_and_test(req: flush_rq)) { |
229 | fq->rq_status = error; |
230 | spin_unlock_irqrestore(lock: &fq->mq_flush_lock, flags); |
231 | return RQ_END_IO_NONE; |
232 | } |
233 | |
234 | blk_account_io_flush(rq: flush_rq); |
235 | /* |
236 | * Flush request has to be marked as IDLE when it is really ended |
237 | * because its .end_io() is called from timeout code path too for |
238 | * avoiding use-after-free. |
239 | */ |
240 | WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE); |
241 | if (fq->rq_status != BLK_STS_OK) { |
242 | error = fq->rq_status; |
243 | fq->rq_status = BLK_STS_OK; |
244 | } |
245 | |
246 | if (!q->elevator) { |
247 | flush_rq->tag = BLK_MQ_NO_TAG; |
248 | } else { |
249 | blk_mq_put_driver_tag(rq: flush_rq); |
250 | flush_rq->internal_tag = BLK_MQ_NO_TAG; |
251 | } |
252 | |
253 | running = &fq->flush_queue[fq->flush_running_idx]; |
254 | BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); |
255 | |
256 | /* account completion of the flush request */ |
257 | fq->flush_running_idx ^= 1; |
258 | |
259 | /* and push the waiting requests to the next stage */ |
260 | list_for_each_entry_safe(rq, n, running, queuelist) { |
261 | unsigned int seq = blk_flush_cur_seq(rq); |
262 | |
263 | BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); |
264 | blk_flush_complete_seq(rq, fq, seq, error); |
265 | } |
266 | |
267 | spin_unlock_irqrestore(lock: &fq->mq_flush_lock, flags); |
268 | return RQ_END_IO_NONE; |
269 | } |
270 | |
271 | bool is_flush_rq(struct request *rq) |
272 | { |
273 | return rq->end_io == flush_end_io; |
274 | } |
275 | |
276 | /** |
277 | * blk_kick_flush - consider issuing flush request |
278 | * @q: request_queue being kicked |
279 | * @fq: flush queue |
280 | * @flags: cmd_flags of the original request |
281 | * |
282 | * Flush related states of @q have changed, consider issuing flush request. |
283 | * Please read the comment at the top of this file for more info. |
284 | * |
285 | * CONTEXT: |
286 | * spin_lock_irq(fq->mq_flush_lock) |
287 | * |
288 | */ |
289 | static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, |
290 | blk_opf_t flags) |
291 | { |
292 | struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; |
293 | struct request *first_rq = |
294 | list_first_entry(pending, struct request, queuelist); |
295 | struct request *flush_rq = fq->flush_rq; |
296 | |
297 | /* C1 described at the top of this file */ |
298 | if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(head: pending)) |
299 | return; |
300 | |
301 | /* C2 and C3 */ |
302 | if (fq->flush_data_in_flight && |
303 | time_before(jiffies, |
304 | fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) |
305 | return; |
306 | |
307 | /* |
308 | * Issue flush and toggle pending_idx. This makes pending_idx |
309 | * different from running_idx, which means flush is in flight. |
310 | */ |
311 | fq->flush_pending_idx ^= 1; |
312 | |
313 | blk_rq_init(q, rq: flush_rq); |
314 | |
315 | /* |
316 | * In case of none scheduler, borrow tag from the first request |
317 | * since they can't be in flight at the same time. And acquire |
318 | * the tag's ownership for flush req. |
319 | * |
320 | * In case of IO scheduler, flush rq need to borrow scheduler tag |
321 | * just for cheating put/get driver tag. |
322 | */ |
323 | flush_rq->mq_ctx = first_rq->mq_ctx; |
324 | flush_rq->mq_hctx = first_rq->mq_hctx; |
325 | |
326 | if (!q->elevator) |
327 | flush_rq->tag = first_rq->tag; |
328 | else |
329 | flush_rq->internal_tag = first_rq->internal_tag; |
330 | |
331 | flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; |
332 | flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); |
333 | flush_rq->rq_flags |= RQF_FLUSH_SEQ; |
334 | flush_rq->end_io = flush_end_io; |
335 | /* |
336 | * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one |
337 | * implied in refcount_inc_not_zero() called from |
338 | * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref |
339 | * and READ flush_rq->end_io |
340 | */ |
341 | smp_wmb(); |
342 | req_ref_set(req: flush_rq, value: 1); |
343 | |
344 | spin_lock(lock: &q->requeue_lock); |
345 | list_add_tail(new: &flush_rq->queuelist, head: &q->flush_list); |
346 | spin_unlock(lock: &q->requeue_lock); |
347 | |
348 | blk_mq_kick_requeue_list(q); |
349 | } |
350 | |
351 | static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq, |
352 | blk_status_t error) |
353 | { |
354 | struct request_queue *q = rq->q; |
355 | struct blk_mq_hw_ctx *hctx = rq->mq_hctx; |
356 | struct blk_mq_ctx *ctx = rq->mq_ctx; |
357 | unsigned long flags; |
358 | struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); |
359 | |
360 | if (q->elevator) { |
361 | WARN_ON(rq->tag < 0); |
362 | blk_mq_put_driver_tag(rq); |
363 | } |
364 | |
365 | /* |
366 | * After populating an empty queue, kick it to avoid stall. Read |
367 | * the comment in flush_end_io(). |
368 | */ |
369 | spin_lock_irqsave(&fq->mq_flush_lock, flags); |
370 | fq->flush_data_in_flight--; |
371 | /* |
372 | * May have been corrupted by rq->rq_next reuse, we need to |
373 | * re-initialize rq->queuelist before reusing it here. |
374 | */ |
375 | INIT_LIST_HEAD(list: &rq->queuelist); |
376 | blk_flush_complete_seq(rq, fq, seq: REQ_FSEQ_DATA, error); |
377 | spin_unlock_irqrestore(lock: &fq->mq_flush_lock, flags); |
378 | |
379 | blk_mq_sched_restart(hctx); |
380 | return RQ_END_IO_NONE; |
381 | } |
382 | |
383 | static void blk_rq_init_flush(struct request *rq) |
384 | { |
385 | rq->flush.seq = 0; |
386 | rq->rq_flags |= RQF_FLUSH_SEQ; |
387 | rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ |
388 | rq->end_io = mq_flush_data_end_io; |
389 | } |
390 | |
391 | /* |
392 | * Insert a PREFLUSH/FUA request into the flush state machine. |
393 | * Returns true if the request has been consumed by the flush state machine, |
394 | * or false if the caller should continue to process it. |
395 | */ |
396 | bool blk_insert_flush(struct request *rq) |
397 | { |
398 | struct request_queue *q = rq->q; |
399 | unsigned long fflags = q->queue_flags; /* may change, cache */ |
400 | unsigned int policy = blk_flush_policy(fflags, rq); |
401 | struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx: rq->mq_ctx); |
402 | |
403 | /* FLUSH/FUA request must never be merged */ |
404 | WARN_ON_ONCE(rq->bio != rq->biotail); |
405 | |
406 | /* |
407 | * @policy now records what operations need to be done. Adjust |
408 | * REQ_PREFLUSH and FUA for the driver. |
409 | */ |
410 | rq->cmd_flags &= ~REQ_PREFLUSH; |
411 | if (!(fflags & (1UL << QUEUE_FLAG_FUA))) |
412 | rq->cmd_flags &= ~REQ_FUA; |
413 | |
414 | /* |
415 | * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any |
416 | * of those flags, we have to set REQ_SYNC to avoid skewing |
417 | * the request accounting. |
418 | */ |
419 | rq->cmd_flags |= REQ_SYNC; |
420 | |
421 | switch (policy) { |
422 | case 0: |
423 | /* |
424 | * An empty flush handed down from a stacking driver may |
425 | * translate into nothing if the underlying device does not |
426 | * advertise a write-back cache. In this case, simply |
427 | * complete the request. |
428 | */ |
429 | blk_mq_end_request(rq, error: 0); |
430 | return true; |
431 | case REQ_FSEQ_DATA: |
432 | /* |
433 | * If there's data, but no flush is necessary, the request can |
434 | * be processed directly without going through flush machinery. |
435 | * Queue for normal execution. |
436 | */ |
437 | return false; |
438 | case REQ_FSEQ_DATA | REQ_FSEQ_POSTFLUSH: |
439 | /* |
440 | * Initialize the flush fields and completion handler to trigger |
441 | * the post flush, and then just pass the command on. |
442 | */ |
443 | blk_rq_init_flush(rq); |
444 | rq->flush.seq |= REQ_FSEQ_PREFLUSH; |
445 | spin_lock_irq(lock: &fq->mq_flush_lock); |
446 | fq->flush_data_in_flight++; |
447 | spin_unlock_irq(lock: &fq->mq_flush_lock); |
448 | return false; |
449 | default: |
450 | /* |
451 | * Mark the request as part of a flush sequence and submit it |
452 | * for further processing to the flush state machine. |
453 | */ |
454 | blk_rq_init_flush(rq); |
455 | spin_lock_irq(lock: &fq->mq_flush_lock); |
456 | blk_flush_complete_seq(rq, fq, seq: REQ_FSEQ_ACTIONS & ~policy, error: 0); |
457 | spin_unlock_irq(lock: &fq->mq_flush_lock); |
458 | return true; |
459 | } |
460 | } |
461 | |
462 | /** |
463 | * blkdev_issue_flush - queue a flush |
464 | * @bdev: blockdev to issue flush for |
465 | * |
466 | * Description: |
467 | * Issue a flush for the block device in question. |
468 | */ |
469 | int blkdev_issue_flush(struct block_device *bdev) |
470 | { |
471 | struct bio bio; |
472 | |
473 | bio_init(bio: &bio, bdev, NULL, max_vecs: 0, opf: REQ_OP_WRITE | REQ_PREFLUSH); |
474 | return submit_bio_wait(bio: &bio); |
475 | } |
476 | EXPORT_SYMBOL(blkdev_issue_flush); |
477 | |
478 | struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, |
479 | gfp_t flags) |
480 | { |
481 | struct blk_flush_queue *fq; |
482 | int rq_sz = sizeof(struct request); |
483 | |
484 | fq = kzalloc_node(size: sizeof(*fq), flags, node); |
485 | if (!fq) |
486 | goto fail; |
487 | |
488 | spin_lock_init(&fq->mq_flush_lock); |
489 | |
490 | rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); |
491 | fq->flush_rq = kzalloc_node(size: rq_sz, flags, node); |
492 | if (!fq->flush_rq) |
493 | goto fail_rq; |
494 | |
495 | INIT_LIST_HEAD(list: &fq->flush_queue[0]); |
496 | INIT_LIST_HEAD(list: &fq->flush_queue[1]); |
497 | |
498 | return fq; |
499 | |
500 | fail_rq: |
501 | kfree(objp: fq); |
502 | fail: |
503 | return NULL; |
504 | } |
505 | |
506 | void blk_free_flush_queue(struct blk_flush_queue *fq) |
507 | { |
508 | /* bio based request queue hasn't flush queue */ |
509 | if (!fq) |
510 | return; |
511 | |
512 | kfree(objp: fq->flush_rq); |
513 | kfree(objp: fq); |
514 | } |
515 | |
516 | /* |
517 | * Allow driver to set its own lock class to fq->mq_flush_lock for |
518 | * avoiding lockdep complaint. |
519 | * |
520 | * flush_end_io() may be called recursively from some driver, such as |
521 | * nvme-loop, so lockdep may complain 'possible recursive locking' because |
522 | * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class |
523 | * key. We need to assign different lock class for these driver's |
524 | * fq->mq_flush_lock for avoiding the lockdep warning. |
525 | * |
526 | * Use dynamically allocated lock class key for each 'blk_flush_queue' |
527 | * instance is over-kill, and more worse it introduces horrible boot delay |
528 | * issue because synchronize_rcu() is implied in lockdep_unregister_key which |
529 | * is called for each hctx release. SCSI probing may synchronously create and |
530 | * destroy lots of MQ request_queues for non-existent devices, and some robot |
531 | * test kernel always enable lockdep option. It is observed that more than half |
532 | * an hour is taken during SCSI MQ probe with per-fq lock class. |
533 | */ |
534 | void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx, |
535 | struct lock_class_key *key) |
536 | { |
537 | lockdep_set_class(&hctx->fq->mq_flush_lock, key); |
538 | } |
539 | EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class); |
540 | |