1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8#include <uapi/drm/habanalabs_accel.h>
9#include "habanalabs.h"
10#include "../include/hw_ip/mmu/mmu_general.h"
11
12#include <linux/uaccess.h>
13#include <linux/slab.h>
14#include <linux/vmalloc.h>
15#include <linux/pci-p2pdma.h>
16
17MODULE_IMPORT_NS(DMA_BUF);
18
19#define HL_MMU_DEBUG 0
20
21/* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */
22#define DRAM_POOL_PAGE_SIZE SZ_8M
23
24#define MEM_HANDLE_INVALID ULONG_MAX
25
26static int allocate_timestamps_buffers(struct hl_fpriv *hpriv,
27 struct hl_mem_in *args, u64 *handle);
28
29static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size)
30{
31 struct asic_fixed_properties *prop = &hdev->asic_prop;
32 u64 psize;
33
34 /*
35 * for ASIC that supports setting the allocation page size by user we will address
36 * user's choice only if it is not 0 (as 0 means taking the default page size)
37 */
38 if (prop->supports_user_set_page_size && args->alloc.page_size) {
39 psize = args->alloc.page_size;
40
41 if (!is_power_of_2(n: psize)) {
42 dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize);
43 return -EINVAL;
44 }
45 } else {
46 psize = prop->device_mem_alloc_default_page_size;
47 }
48
49 *page_size = psize;
50
51 return 0;
52}
53
54/*
55 * The va ranges in context object contain a list with the available chunks of
56 * device virtual memory.
57 * There is one range for host allocations and one for DRAM allocations.
58 *
59 * On initialization each range contains one chunk of all of its available
60 * virtual range which is a half of the total device virtual range.
61 *
62 * On each mapping of physical pages, a suitable virtual range chunk (with a
63 * minimum size) is selected from the list. If the chunk size equals the
64 * requested size, the chunk is returned. Otherwise, the chunk is split into
65 * two chunks - one to return as result and a remainder to stay in the list.
66 *
67 * On each Unmapping of a virtual address, the relevant virtual chunk is
68 * returned to the list. The chunk is added to the list and if its edges match
69 * the edges of the adjacent chunks (means a contiguous chunk can be created),
70 * the chunks are merged.
71 *
72 * On finish, the list is checked to have only one chunk of all the relevant
73 * virtual range (which is a half of the device total virtual range).
74 * If not (means not all mappings were unmapped), a warning is printed.
75 */
76
77/*
78 * alloc_device_memory() - allocate device memory.
79 * @ctx: pointer to the context structure.
80 * @args: host parameters containing the requested size.
81 * @ret_handle: result handle.
82 *
83 * This function does the following:
84 * - Allocate the requested size rounded up to 'dram_page_size' pages.
85 * - Return unique handle for later map/unmap/free.
86 */
87static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
88 u32 *ret_handle)
89{
90 struct hl_device *hdev = ctx->hdev;
91 struct hl_vm *vm = &hdev->vm;
92 struct hl_vm_phys_pg_pack *phys_pg_pack;
93 u64 paddr = 0, total_size, num_pgs, i;
94 u32 num_curr_pgs, page_size;
95 bool contiguous;
96 int handle, rc;
97
98 num_curr_pgs = 0;
99
100 rc = set_alloc_page_size(hdev, args, page_size: &page_size);
101 if (rc)
102 return rc;
103
104 num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size);
105 total_size = num_pgs * page_size;
106
107 if (!total_size) {
108 dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
109 return -EINVAL;
110 }
111
112 contiguous = args->flags & HL_MEM_CONTIGUOUS;
113
114 if (contiguous) {
115 if (is_power_of_2(n: page_size))
116 paddr = (uintptr_t) gen_pool_dma_alloc_align(pool: vm->dram_pg_pool,
117 size: total_size, NULL, align: page_size);
118 else
119 paddr = gen_pool_alloc(pool: vm->dram_pg_pool, size: total_size);
120 if (!paddr) {
121 dev_err(hdev->dev,
122 "Cannot allocate %llu contiguous pages with total size of %llu\n",
123 num_pgs, total_size);
124 return -ENOMEM;
125 }
126 }
127
128 phys_pg_pack = kzalloc(size: sizeof(*phys_pg_pack), GFP_KERNEL);
129 if (!phys_pg_pack) {
130 rc = -ENOMEM;
131 goto pages_pack_err;
132 }
133
134 phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
135 phys_pg_pack->asid = ctx->asid;
136 phys_pg_pack->npages = num_pgs;
137 phys_pg_pack->page_size = page_size;
138 phys_pg_pack->total_size = total_size;
139 phys_pg_pack->flags = args->flags;
140 phys_pg_pack->contiguous = contiguous;
141
142 phys_pg_pack->pages = kvmalloc_array(n: num_pgs, size: sizeof(u64), GFP_KERNEL);
143 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
144 rc = -ENOMEM;
145 goto pages_arr_err;
146 }
147
148 if (phys_pg_pack->contiguous) {
149 for (i = 0 ; i < num_pgs ; i++)
150 phys_pg_pack->pages[i] = paddr + i * page_size;
151 } else {
152 for (i = 0 ; i < num_pgs ; i++) {
153 if (is_power_of_2(n: page_size))
154 phys_pg_pack->pages[i] =
155 (uintptr_t)gen_pool_dma_alloc_align(pool: vm->dram_pg_pool,
156 size: page_size, NULL,
157 align: page_size);
158 else
159 phys_pg_pack->pages[i] = gen_pool_alloc(pool: vm->dram_pg_pool,
160 size: page_size);
161
162 if (!phys_pg_pack->pages[i]) {
163 dev_err(hdev->dev,
164 "Cannot allocate device memory (out of memory)\n");
165 rc = -ENOMEM;
166 goto page_err;
167 }
168
169 num_curr_pgs++;
170 }
171 }
172
173 spin_lock(lock: &vm->idr_lock);
174 handle = idr_alloc(&vm->phys_pg_pack_handles, ptr: phys_pg_pack, start: 1, end: 0,
175 GFP_ATOMIC);
176 spin_unlock(lock: &vm->idr_lock);
177
178 if (handle < 0) {
179 dev_err(hdev->dev, "Failed to get handle for page\n");
180 rc = -EFAULT;
181 goto idr_err;
182 }
183
184 for (i = 0 ; i < num_pgs ; i++)
185 kref_get(kref: &vm->dram_pg_pool_refcount);
186
187 phys_pg_pack->handle = handle;
188
189 atomic64_add(i: phys_pg_pack->total_size, v: &ctx->dram_phys_mem);
190 atomic64_add(i: phys_pg_pack->total_size, v: &hdev->dram_used_mem);
191
192 *ret_handle = handle;
193
194 return 0;
195
196idr_err:
197page_err:
198 if (!phys_pg_pack->contiguous)
199 for (i = 0 ; i < num_curr_pgs ; i++)
200 gen_pool_free(pool: vm->dram_pg_pool, addr: phys_pg_pack->pages[i],
201 size: page_size);
202
203 kvfree(addr: phys_pg_pack->pages);
204pages_arr_err:
205 kfree(objp: phys_pg_pack);
206pages_pack_err:
207 if (contiguous)
208 gen_pool_free(pool: vm->dram_pg_pool, addr: paddr, size: total_size);
209
210 return rc;
211}
212
213/**
214 * dma_map_host_va() - DMA mapping of the given host virtual address.
215 * @hdev: habanalabs device structure.
216 * @addr: the host virtual address of the memory area.
217 * @size: the size of the memory area.
218 * @p_userptr: pointer to result userptr structure.
219 *
220 * This function does the following:
221 * - Allocate userptr structure.
222 * - Pin the given host memory using the userptr structure.
223 * - Perform DMA mapping to have the DMA addresses of the pages.
224 */
225static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
226 struct hl_userptr **p_userptr)
227{
228 struct hl_userptr *userptr;
229 int rc;
230
231 userptr = kzalloc(size: sizeof(*userptr), GFP_KERNEL);
232 if (!userptr) {
233 rc = -ENOMEM;
234 goto userptr_err;
235 }
236
237 rc = hl_pin_host_memory(hdev, addr, size, userptr);
238 if (rc)
239 goto pin_err;
240
241 userptr->dma_mapped = true;
242 userptr->dir = DMA_BIDIRECTIONAL;
243 userptr->vm_type = VM_TYPE_USERPTR;
244
245 *p_userptr = userptr;
246
247 rc = hl_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL);
248 if (rc) {
249 dev_err(hdev->dev, "failed to map sgt with DMA region\n");
250 goto dma_map_err;
251 }
252
253 return 0;
254
255dma_map_err:
256 hl_unpin_host_memory(hdev, userptr);
257pin_err:
258 kfree(objp: userptr);
259userptr_err:
260
261 return rc;
262}
263
264/**
265 * dma_unmap_host_va() - DMA unmapping of the given host virtual address.
266 * @hdev: habanalabs device structure.
267 * @userptr: userptr to free.
268 *
269 * This function does the following:
270 * - Unpins the physical pages.
271 * - Frees the userptr structure.
272 */
273static void dma_unmap_host_va(struct hl_device *hdev,
274 struct hl_userptr *userptr)
275{
276 hl_unpin_host_memory(hdev, userptr);
277 kfree(objp: userptr);
278}
279
280/**
281 * dram_pg_pool_do_release() - free DRAM pages pool
282 * @ref: pointer to reference object.
283 *
284 * This function does the following:
285 * - Frees the idr structure of physical pages handles.
286 * - Frees the generic pool of DRAM physical pages.
287 */
288static void dram_pg_pool_do_release(struct kref *ref)
289{
290 struct hl_vm *vm = container_of(ref, struct hl_vm,
291 dram_pg_pool_refcount);
292
293 /*
294 * free the idr here as only here we know for sure that there are no
295 * allocated physical pages and hence there are no handles in use
296 */
297 idr_destroy(&vm->phys_pg_pack_handles);
298 gen_pool_destroy(vm->dram_pg_pool);
299}
300
301/**
302 * free_phys_pg_pack() - free physical page pack.
303 * @hdev: habanalabs device structure.
304 * @phys_pg_pack: physical page pack to free.
305 *
306 * This function does the following:
307 * - For DRAM memory only
308 * - iterate over the pack, free each physical block structure by
309 * returning it to the general pool.
310 * - Free the hl_vm_phys_pg_pack structure.
311 */
312static void free_phys_pg_pack(struct hl_device *hdev,
313 struct hl_vm_phys_pg_pack *phys_pg_pack)
314{
315 struct hl_vm *vm = &hdev->vm;
316 u64 i;
317
318 if (phys_pg_pack->created_from_userptr)
319 goto end;
320
321 if (phys_pg_pack->contiguous) {
322 gen_pool_free(pool: vm->dram_pg_pool, addr: phys_pg_pack->pages[0],
323 size: phys_pg_pack->total_size);
324
325 for (i = 0; i < phys_pg_pack->npages ; i++)
326 kref_put(kref: &vm->dram_pg_pool_refcount,
327 release: dram_pg_pool_do_release);
328 } else {
329 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
330 gen_pool_free(pool: vm->dram_pg_pool,
331 addr: phys_pg_pack->pages[i],
332 size: phys_pg_pack->page_size);
333 kref_put(kref: &vm->dram_pg_pool_refcount,
334 release: dram_pg_pool_do_release);
335 }
336 }
337
338end:
339 kvfree(addr: phys_pg_pack->pages);
340 kfree(objp: phys_pg_pack);
341
342 return;
343}
344
345/**
346 * free_device_memory() - free device memory.
347 * @ctx: pointer to the context structure.
348 * @args: host parameters containing the requested size.
349 *
350 * This function does the following:
351 * - Free the device memory related to the given handle.
352 */
353static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args)
354{
355 struct hl_device *hdev = ctx->hdev;
356 struct hl_vm *vm = &hdev->vm;
357 struct hl_vm_phys_pg_pack *phys_pg_pack;
358 u32 handle = args->free.handle;
359
360 spin_lock(lock: &vm->idr_lock);
361 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, id: handle);
362 if (!phys_pg_pack) {
363 spin_unlock(lock: &vm->idr_lock);
364 dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle);
365 return -EINVAL;
366 }
367
368 if (atomic_read(v: &phys_pg_pack->mapping_cnt) > 0) {
369 spin_unlock(lock: &vm->idr_lock);
370 dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle);
371 return -EINVAL;
372 }
373
374 /* must remove from idr before the freeing of the physical pages as the refcount of the pool
375 * is also the trigger of the idr destroy
376 */
377 idr_remove(&vm->phys_pg_pack_handles, id: handle);
378 spin_unlock(lock: &vm->idr_lock);
379
380 atomic64_sub(i: phys_pg_pack->total_size, v: &ctx->dram_phys_mem);
381 atomic64_sub(i: phys_pg_pack->total_size, v: &hdev->dram_used_mem);
382
383 free_phys_pg_pack(hdev, phys_pg_pack);
384
385 return 0;
386}
387
388/**
389 * clear_va_list_locked() - free virtual addresses list.
390 * @hdev: habanalabs device structure.
391 * @va_list: list of virtual addresses to free.
392 *
393 * This function does the following:
394 * - Iterate over the list and free each virtual addresses block.
395 *
396 * This function should be called only when va_list lock is taken.
397 */
398static void clear_va_list_locked(struct hl_device *hdev,
399 struct list_head *va_list)
400{
401 struct hl_vm_va_block *va_block, *tmp;
402
403 list_for_each_entry_safe(va_block, tmp, va_list, node) {
404 list_del(entry: &va_block->node);
405 kfree(objp: va_block);
406 }
407}
408
409/**
410 * print_va_list_locked() - print virtual addresses list.
411 * @hdev: habanalabs device structure.
412 * @va_list: list of virtual addresses to print.
413 *
414 * This function does the following:
415 * - Iterate over the list and print each virtual addresses block.
416 *
417 * This function should be called only when va_list lock is taken.
418 */
419static void print_va_list_locked(struct hl_device *hdev,
420 struct list_head *va_list)
421{
422#if HL_MMU_DEBUG
423 struct hl_vm_va_block *va_block;
424
425 dev_dbg(hdev->dev, "print va list:\n");
426
427 list_for_each_entry(va_block, va_list, node)
428 dev_dbg(hdev->dev,
429 "va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
430 va_block->start, va_block->end, va_block->size);
431#endif
432}
433
434/**
435 * merge_va_blocks_locked() - merge a virtual block if possible.
436 * @hdev: pointer to the habanalabs device structure.
437 * @va_list: pointer to the virtual addresses block list.
438 * @va_block: virtual block to merge with adjacent blocks.
439 *
440 * This function does the following:
441 * - Merge the given blocks with the adjacent blocks if their virtual ranges
442 * create a contiguous virtual range.
443 *
444 * This Function should be called only when va_list lock is taken.
445 */
446static void merge_va_blocks_locked(struct hl_device *hdev,
447 struct list_head *va_list, struct hl_vm_va_block *va_block)
448{
449 struct hl_vm_va_block *prev, *next;
450
451 prev = list_prev_entry(va_block, node);
452 if (&prev->node != va_list && prev->end + 1 == va_block->start) {
453 prev->end = va_block->end;
454 prev->size = prev->end - prev->start + 1;
455 list_del(entry: &va_block->node);
456 kfree(objp: va_block);
457 va_block = prev;
458 }
459
460 next = list_next_entry(va_block, node);
461 if (&next->node != va_list && va_block->end + 1 == next->start) {
462 next->start = va_block->start;
463 next->size = next->end - next->start + 1;
464 list_del(entry: &va_block->node);
465 kfree(objp: va_block);
466 }
467}
468
469/**
470 * add_va_block_locked() - add a virtual block to the virtual addresses list.
471 * @hdev: pointer to the habanalabs device structure.
472 * @va_list: pointer to the virtual addresses block list.
473 * @start: start virtual address.
474 * @end: end virtual address.
475 *
476 * This function does the following:
477 * - Add the given block to the virtual blocks list and merge with other blocks
478 * if a contiguous virtual block can be created.
479 *
480 * This Function should be called only when va_list lock is taken.
481 */
482static int add_va_block_locked(struct hl_device *hdev,
483 struct list_head *va_list, u64 start, u64 end)
484{
485 struct hl_vm_va_block *va_block, *res = NULL;
486 u64 size = end - start + 1;
487
488 print_va_list_locked(hdev, va_list);
489
490 list_for_each_entry(va_block, va_list, node) {
491 /* TODO: remove upon matureness */
492 if (hl_mem_area_crosses_range(address: start, size, range_start_address: va_block->start,
493 range_end_address: va_block->end)) {
494 dev_err(hdev->dev,
495 "block crossing ranges at start 0x%llx, end 0x%llx\n",
496 va_block->start, va_block->end);
497 return -EINVAL;
498 }
499
500 if (va_block->end < start)
501 res = va_block;
502 }
503
504 va_block = kmalloc(size: sizeof(*va_block), GFP_KERNEL);
505 if (!va_block)
506 return -ENOMEM;
507
508 va_block->start = start;
509 va_block->end = end;
510 va_block->size = size;
511
512 if (!res)
513 list_add(new: &va_block->node, head: va_list);
514 else
515 list_add(new: &va_block->node, head: &res->node);
516
517 merge_va_blocks_locked(hdev, va_list, va_block);
518
519 print_va_list_locked(hdev, va_list);
520
521 return 0;
522}
523
524/**
525 * add_va_block() - wrapper for add_va_block_locked.
526 * @hdev: pointer to the habanalabs device structure.
527 * @va_range: pointer to the virtual addresses range object.
528 * @start: start virtual address.
529 * @end: end virtual address.
530 *
531 * This function does the following:
532 * - Takes the list lock and calls add_va_block_locked.
533 */
534static inline int add_va_block(struct hl_device *hdev,
535 struct hl_va_range *va_range, u64 start, u64 end)
536{
537 int rc;
538
539 mutex_lock(&va_range->lock);
540 rc = add_va_block_locked(hdev, va_list: &va_range->list, start, end);
541 mutex_unlock(lock: &va_range->lock);
542
543 return rc;
544}
545
546/**
547 * is_hint_crossing_range() - check if hint address crossing specified reserved.
548 * @range_type: virtual space range type.
549 * @start_addr: start virtual address.
550 * @size: block size.
551 * @prop: asic properties structure to retrieve reserved ranges from.
552 */
553static inline bool is_hint_crossing_range(enum hl_va_range_type range_type,
554 u64 start_addr, u32 size, struct asic_fixed_properties *prop) {
555 bool range_cross;
556
557 if (range_type == HL_VA_RANGE_TYPE_DRAM)
558 range_cross =
559 hl_mem_area_crosses_range(address: start_addr, size,
560 range_start_address: prop->hints_dram_reserved_va_range.start_addr,
561 range_end_address: prop->hints_dram_reserved_va_range.end_addr);
562 else if (range_type == HL_VA_RANGE_TYPE_HOST)
563 range_cross =
564 hl_mem_area_crosses_range(address: start_addr, size,
565 range_start_address: prop->hints_host_reserved_va_range.start_addr,
566 range_end_address: prop->hints_host_reserved_va_range.end_addr);
567 else
568 range_cross =
569 hl_mem_area_crosses_range(address: start_addr, size,
570 range_start_address: prop->hints_host_hpage_reserved_va_range.start_addr,
571 range_end_address: prop->hints_host_hpage_reserved_va_range.end_addr);
572
573 return range_cross;
574}
575
576/**
577 * get_va_block() - get a virtual block for the given size and alignment.
578 *
579 * @hdev: pointer to the habanalabs device structure.
580 * @va_range: pointer to the virtual addresses range.
581 * @size: requested block size.
582 * @hint_addr: hint for requested address by the user.
583 * @va_block_align: required alignment of the virtual block start address.
584 * @range_type: va range type (host, dram)
585 * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT
586 *
587 * This function does the following:
588 * - Iterate on the virtual block list to find a suitable virtual block for the
589 * given size, hint address and alignment.
590 * - Reserve the requested block and update the list.
591 * - Return the start address of the virtual block.
592 */
593static u64 get_va_block(struct hl_device *hdev,
594 struct hl_va_range *va_range,
595 u64 size, u64 hint_addr, u32 va_block_align,
596 enum hl_va_range_type range_type,
597 u32 flags)
598{
599 struct hl_vm_va_block *va_block, *new_va_block = NULL;
600 struct asic_fixed_properties *prop = &hdev->asic_prop;
601 u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end,
602 align_mask, reserved_valid_start = 0, reserved_valid_size = 0,
603 dram_hint_mask = prop->dram_hints_align_mask;
604 bool add_prev = false;
605 bool is_align_pow_2 = is_power_of_2(n: va_range->page_size);
606 bool is_hint_dram_addr = hl_is_dram_va(hdev, virt_addr: hint_addr);
607 bool force_hint = flags & HL_MEM_FORCE_HINT;
608 int rc;
609
610 if (is_align_pow_2)
611 align_mask = ~((u64)va_block_align - 1);
612 else
613 /*
614 * with non-power-of-2 range we work only with page granularity
615 * and the start address is page aligned,
616 * so no need for alignment checking.
617 */
618 size = DIV_ROUND_UP_ULL(size, va_range->page_size) *
619 va_range->page_size;
620
621 tmp_hint_addr = hint_addr & ~dram_hint_mask;
622
623 /* Check if we need to ignore hint address */
624 if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) ||
625 (!is_align_pow_2 && is_hint_dram_addr &&
626 do_div(tmp_hint_addr, va_range->page_size))) {
627
628 if (force_hint) {
629 /* Hint must be respected, so here we just fail */
630 dev_err(hdev->dev,
631 "Hint address 0x%llx is not page aligned - cannot be respected\n",
632 hint_addr);
633 return 0;
634 }
635
636 dev_dbg(hdev->dev,
637 "Hint address 0x%llx will be ignored because it is not aligned\n",
638 hint_addr);
639 hint_addr = 0;
640 }
641
642 mutex_lock(&va_range->lock);
643
644 print_va_list_locked(hdev, va_list: &va_range->list);
645
646 list_for_each_entry(va_block, &va_range->list, node) {
647 /* Calc the first possible aligned addr */
648 valid_start = va_block->start;
649
650 if (is_align_pow_2 && (valid_start & (va_block_align - 1))) {
651 valid_start &= align_mask;
652 valid_start += va_block_align;
653 if (valid_start > va_block->end)
654 continue;
655 }
656
657 valid_size = va_block->end - valid_start + 1;
658 if (valid_size < size)
659 continue;
660
661 /*
662 * In case hint address is 0, and hints_range_reservation
663 * property enabled, then avoid allocating va blocks from the
664 * range reserved for hint addresses
665 */
666 if (prop->hints_range_reservation && !hint_addr)
667 if (is_hint_crossing_range(range_type, start_addr: valid_start,
668 size, prop))
669 continue;
670
671 /* Pick the minimal length block which has the required size */
672 if (!new_va_block || (valid_size < reserved_valid_size)) {
673 new_va_block = va_block;
674 reserved_valid_start = valid_start;
675 reserved_valid_size = valid_size;
676 }
677
678 if (hint_addr && hint_addr >= valid_start &&
679 (hint_addr + size) <= va_block->end) {
680 new_va_block = va_block;
681 reserved_valid_start = hint_addr;
682 reserved_valid_size = valid_size;
683 break;
684 }
685 }
686
687 if (!new_va_block) {
688 dev_err(hdev->dev, "no available va block for size %llu\n",
689 size);
690 goto out;
691 }
692
693 if (force_hint && reserved_valid_start != hint_addr) {
694 /* Hint address must be respected. If we are here - this means
695 * we could not respect it.
696 */
697 dev_err(hdev->dev,
698 "Hint address 0x%llx could not be respected\n",
699 hint_addr);
700 reserved_valid_start = 0;
701 goto out;
702 }
703
704 /*
705 * Check if there is some leftover range due to reserving the new
706 * va block, then return it to the main virtual addresses list.
707 */
708 if (reserved_valid_start > new_va_block->start) {
709 prev_start = new_va_block->start;
710 prev_end = reserved_valid_start - 1;
711
712 new_va_block->start = reserved_valid_start;
713 new_va_block->size = reserved_valid_size;
714
715 add_prev = true;
716 }
717
718 if (new_va_block->size > size) {
719 new_va_block->start += size;
720 new_va_block->size = new_va_block->end - new_va_block->start + 1;
721 } else {
722 list_del(entry: &new_va_block->node);
723 kfree(objp: new_va_block);
724 }
725
726 if (add_prev) {
727 rc = add_va_block_locked(hdev, va_list: &va_range->list, start: prev_start, end: prev_end);
728 if (rc) {
729 reserved_valid_start = 0;
730 goto out;
731 }
732 }
733
734 print_va_list_locked(hdev, va_list: &va_range->list);
735out:
736 mutex_unlock(lock: &va_range->lock);
737
738 return reserved_valid_start;
739}
740
741/*
742 * hl_reserve_va_block() - reserve a virtual block of a given size.
743 * @hdev: pointer to the habanalabs device structure.
744 * @ctx: current context
745 * @type: virtual addresses range type.
746 * @size: requested block size.
747 * @alignment: required alignment in bytes of the virtual block start address,
748 * 0 means no alignment.
749 *
750 * This function does the following:
751 * - Iterate on the virtual block list to find a suitable virtual block for the
752 * given size and alignment.
753 * - Reserve the requested block and update the list.
754 * - Return the start address of the virtual block.
755 */
756u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
757 enum hl_va_range_type type, u64 size, u32 alignment)
758{
759 return get_va_block(hdev, va_range: ctx->va_range[type], size, hint_addr: 0,
760 max(alignment, ctx->va_range[type]->page_size),
761 range_type: type, flags: 0);
762}
763
764/**
765 * hl_get_va_range_type() - get va_range type for the given address and size.
766 * @ctx: context to fetch va_range from.
767 * @address: the start address of the area we want to validate.
768 * @size: the size in bytes of the area we want to validate.
769 * @type: returned va_range type.
770 *
771 * Return: true if the area is inside a valid range, false otherwise.
772 */
773static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size,
774 enum hl_va_range_type *type)
775{
776 int i;
777
778 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) {
779 if (hl_mem_area_inside_range(address, size,
780 range_start_address: ctx->va_range[i]->start_addr,
781 range_end_address: ctx->va_range[i]->end_addr)) {
782 *type = i;
783 return 0;
784 }
785 }
786
787 return -EINVAL;
788}
789
790/**
791 * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block.
792 * @hdev: pointer to the habanalabs device structure
793 * @ctx: pointer to the context structure.
794 * @start_addr: start virtual address.
795 * @size: number of bytes to unreserve.
796 *
797 * This function does the following:
798 * - Takes the list lock and calls add_va_block_locked.
799 */
800int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
801 u64 start_addr, u64 size)
802{
803 enum hl_va_range_type type;
804 int rc;
805
806 rc = hl_get_va_range_type(ctx, address: start_addr, size, type: &type);
807 if (rc) {
808 dev_err(hdev->dev,
809 "cannot find va_range for va %#llx size %llu",
810 start_addr, size);
811 return rc;
812 }
813
814 rc = add_va_block(hdev, va_range: ctx->va_range[type], start: start_addr,
815 end: start_addr + size - 1);
816 if (rc)
817 dev_warn(hdev->dev,
818 "add va block failed for vaddr: 0x%llx\n", start_addr);
819
820 return rc;
821}
822
823/**
824 * init_phys_pg_pack_from_userptr() - initialize physical page pack from host
825 * memory
826 * @ctx: pointer to the context structure.
827 * @userptr: userptr to initialize from.
828 * @pphys_pg_pack: result pointer.
829 * @force_regular_page: tell the function to ignore huge page optimization,
830 * even if possible. Needed for cases where the device VA
831 * is allocated before we know the composition of the
832 * physical pages
833 *
834 * This function does the following:
835 * - Create a physical page pack from the physical pages related to the given
836 * virtual block.
837 */
838static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
839 struct hl_userptr *userptr,
840 struct hl_vm_phys_pg_pack **pphys_pg_pack,
841 bool force_regular_page)
842{
843 u32 npages, page_size = PAGE_SIZE,
844 huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
845 u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
846 struct hl_vm_phys_pg_pack *phys_pg_pack;
847 bool first = true, is_huge_page_opt;
848 u64 page_mask, total_npages;
849 struct scatterlist *sg;
850 dma_addr_t dma_addr;
851 int rc, i, j;
852
853 phys_pg_pack = kzalloc(size: sizeof(*phys_pg_pack), GFP_KERNEL);
854 if (!phys_pg_pack)
855 return -ENOMEM;
856
857 phys_pg_pack->vm_type = userptr->vm_type;
858 phys_pg_pack->created_from_userptr = true;
859 phys_pg_pack->asid = ctx->asid;
860 atomic_set(v: &phys_pg_pack->mapping_cnt, i: 1);
861
862 is_huge_page_opt = (force_regular_page ? false : true);
863
864 /* Only if all dma_addrs are aligned to 2MB and their
865 * sizes is at least 2MB, we can use huge page mapping.
866 * We limit the 2MB optimization to this condition,
867 * since later on we acquire the related VA range as one
868 * consecutive block.
869 */
870 total_npages = 0;
871 for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
872 npages = hl_get_sg_info(sg, dma_addr: &dma_addr);
873
874 total_npages += npages;
875
876 if ((npages % pgs_in_huge_page) ||
877 (dma_addr & (huge_page_size - 1)))
878 is_huge_page_opt = false;
879 }
880
881 if (is_huge_page_opt) {
882 page_size = huge_page_size;
883 do_div(total_npages, pgs_in_huge_page);
884 }
885
886 page_mask = ~(((u64) page_size) - 1);
887
888 phys_pg_pack->pages = kvmalloc_array(n: total_npages, size: sizeof(u64),
889 GFP_KERNEL);
890 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
891 rc = -ENOMEM;
892 goto page_pack_arr_mem_err;
893 }
894
895 phys_pg_pack->npages = total_npages;
896 phys_pg_pack->page_size = page_size;
897 phys_pg_pack->total_size = total_npages * page_size;
898
899 j = 0;
900 for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
901 npages = hl_get_sg_info(sg, dma_addr: &dma_addr);
902
903 /* align down to physical page size and save the offset */
904 if (first) {
905 first = false;
906 phys_pg_pack->offset = dma_addr & (page_size - 1);
907 dma_addr &= page_mask;
908 }
909
910 while (npages) {
911 phys_pg_pack->pages[j++] = dma_addr;
912 dma_addr += page_size;
913
914 if (is_huge_page_opt)
915 npages -= pgs_in_huge_page;
916 else
917 npages--;
918 }
919 }
920
921 *pphys_pg_pack = phys_pg_pack;
922
923 return 0;
924
925page_pack_arr_mem_err:
926 kfree(objp: phys_pg_pack);
927
928 return rc;
929}
930
931/**
932 * map_phys_pg_pack() - maps the physical page pack..
933 * @ctx: pointer to the context structure.
934 * @vaddr: start address of the virtual area to map from.
935 * @phys_pg_pack: the pack of physical pages to map to.
936 *
937 * This function does the following:
938 * - Maps each chunk of virtual memory to matching physical chunk.
939 * - Stores number of successful mappings in the given argument.
940 * - Returns 0 on success, error code otherwise.
941 */
942static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
943 struct hl_vm_phys_pg_pack *phys_pg_pack)
944{
945 struct hl_device *hdev = ctx->hdev;
946 u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
947 u32 page_size = phys_pg_pack->page_size;
948 int rc = 0;
949 bool is_host_addr;
950
951 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
952 paddr = phys_pg_pack->pages[i];
953
954 rc = hl_mmu_map_page(ctx, virt_addr: next_vaddr, phys_addr: paddr, page_size,
955 flush_pte: (i + 1) == phys_pg_pack->npages);
956 if (rc) {
957 dev_err(hdev->dev,
958 "map failed (%d) for handle %u, npages: %llu, mapped: %llu\n",
959 rc, phys_pg_pack->handle, phys_pg_pack->npages,
960 mapped_pg_cnt);
961 goto err;
962 }
963
964 mapped_pg_cnt++;
965 next_vaddr += page_size;
966 }
967
968 return 0;
969
970err:
971 is_host_addr = !hl_is_dram_va(hdev, virt_addr: vaddr);
972
973 next_vaddr = vaddr;
974 for (i = 0 ; i < mapped_pg_cnt ; i++) {
975 if (hl_mmu_unmap_page(ctx, virt_addr: next_vaddr, page_size,
976 flush_pte: (i + 1) == mapped_pg_cnt))
977 dev_warn_ratelimited(hdev->dev,
978 "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
979 phys_pg_pack->handle, next_vaddr,
980 phys_pg_pack->pages[i], page_size);
981
982 next_vaddr += page_size;
983
984 /*
985 * unmapping on Palladium can be really long, so avoid a CPU
986 * soft lockup bug by sleeping a little between unmapping pages
987 *
988 * In addition, on host num of pages could be huge,
989 * because page size could be 4KB, so when unmapping host
990 * pages sleep every 32K pages to avoid soft lockup
991 */
992 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
993 usleep_range(min: 50, max: 200);
994 }
995
996 return rc;
997}
998
999/**
1000 * unmap_phys_pg_pack() - unmaps the physical page pack.
1001 * @ctx: pointer to the context structure.
1002 * @vaddr: start address of the virtual area to unmap.
1003 * @phys_pg_pack: the pack of physical pages to unmap.
1004 */
1005static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
1006 struct hl_vm_phys_pg_pack *phys_pg_pack)
1007{
1008 struct hl_device *hdev = ctx->hdev;
1009 u64 next_vaddr, i;
1010 bool is_host_addr;
1011 u32 page_size;
1012
1013 is_host_addr = !hl_is_dram_va(hdev, virt_addr: vaddr);
1014 page_size = phys_pg_pack->page_size;
1015 next_vaddr = vaddr;
1016
1017 for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
1018 if (hl_mmu_unmap_page(ctx, virt_addr: next_vaddr, page_size,
1019 flush_pte: (i + 1) == phys_pg_pack->npages))
1020 dev_warn_ratelimited(hdev->dev,
1021 "unmap failed for vaddr: 0x%llx\n", next_vaddr);
1022
1023 /*
1024 * unmapping on Palladium can be really long, so avoid a CPU
1025 * soft lockup bug by sleeping a little between unmapping pages
1026 *
1027 * In addition, on host num of pages could be huge,
1028 * because page size could be 4KB, so when unmapping host
1029 * pages sleep every 32K pages to avoid soft lockup
1030 */
1031 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
1032 usleep_range(min: 50, max: 200);
1033 }
1034}
1035
1036/**
1037 * map_device_va() - map the given memory.
1038 * @ctx: pointer to the context structure.
1039 * @args: host parameters with handle/host virtual address.
1040 * @device_addr: pointer to result device virtual address.
1041 *
1042 * This function does the following:
1043 * - If given a physical device memory handle, map to a device virtual block
1044 * and return the start address of this block.
1045 * - If given a host virtual address and size, find the related physical pages,
1046 * map a device virtual block to this pages and return the start address of
1047 * this block.
1048 */
1049static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr)
1050{
1051 struct hl_vm_phys_pg_pack *phys_pg_pack;
1052 enum hl_va_range_type va_range_type = 0;
1053 struct hl_device *hdev = ctx->hdev;
1054 struct hl_userptr *userptr = NULL;
1055 u32 handle = 0, va_block_align;
1056 struct hl_vm_hash_node *hnode;
1057 struct hl_vm *vm = &hdev->vm;
1058 struct hl_va_range *va_range;
1059 bool is_userptr, do_prefetch;
1060 u64 ret_vaddr, hint_addr;
1061 enum vm_type *vm_type;
1062 int rc;
1063
1064 /* set map flags */
1065 is_userptr = args->flags & HL_MEM_USERPTR;
1066 do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH);
1067
1068 /* Assume failure */
1069 *device_addr = 0;
1070
1071 if (is_userptr) {
1072 u64 addr = args->map_host.host_virt_addr,
1073 size = args->map_host.mem_size;
1074 u32 page_size = hdev->asic_prop.pmmu.page_size,
1075 huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
1076
1077 rc = dma_map_host_va(hdev, addr, size, p_userptr: &userptr);
1078 if (rc)
1079 return rc;
1080
1081 rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1082 pphys_pg_pack: &phys_pg_pack, force_regular_page: false);
1083 if (rc) {
1084 dev_err(hdev->dev,
1085 "unable to init page pack for vaddr 0x%llx\n",
1086 addr);
1087 goto init_page_pack_err;
1088 }
1089
1090 vm_type = (enum vm_type *) userptr;
1091 hint_addr = args->map_host.hint_addr;
1092 handle = phys_pg_pack->handle;
1093
1094 /* get required alignment */
1095 if (phys_pg_pack->page_size == page_size) {
1096 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1097 va_range_type = HL_VA_RANGE_TYPE_HOST;
1098 /*
1099 * huge page alignment may be needed in case of regular
1100 * page mapping, depending on the host VA alignment
1101 */
1102 if (addr & (huge_page_size - 1))
1103 va_block_align = page_size;
1104 else
1105 va_block_align = huge_page_size;
1106 } else {
1107 /*
1108 * huge page alignment is needed in case of huge page
1109 * mapping
1110 */
1111 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1112 va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE;
1113 va_block_align = huge_page_size;
1114 }
1115 } else {
1116 handle = lower_32_bits(args->map_device.handle);
1117
1118 spin_lock(lock: &vm->idr_lock);
1119 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, id: handle);
1120 if (!phys_pg_pack) {
1121 spin_unlock(lock: &vm->idr_lock);
1122 dev_err(hdev->dev,
1123 "no match for handle %u\n", handle);
1124 return -EINVAL;
1125 }
1126
1127 /* increment now to avoid freeing device memory while mapping */
1128 atomic_inc(v: &phys_pg_pack->mapping_cnt);
1129
1130 spin_unlock(lock: &vm->idr_lock);
1131
1132 vm_type = (enum vm_type *) phys_pg_pack;
1133
1134 hint_addr = args->map_device.hint_addr;
1135
1136 /* DRAM VA alignment is the same as the MMU page size */
1137 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1138 va_range_type = HL_VA_RANGE_TYPE_DRAM;
1139 va_block_align = hdev->asic_prop.dmmu.page_size;
1140 }
1141
1142 /*
1143 * relevant for mapping device physical memory only, as host memory is
1144 * implicitly shared
1145 */
1146 if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
1147 phys_pg_pack->asid != ctx->asid) {
1148 dev_err(hdev->dev,
1149 "Failed to map memory, handle %u is not shared\n",
1150 handle);
1151 rc = -EPERM;
1152 goto shared_err;
1153 }
1154
1155 hnode = kzalloc(size: sizeof(*hnode), GFP_KERNEL);
1156 if (!hnode) {
1157 rc = -ENOMEM;
1158 goto hnode_err;
1159 }
1160
1161 if (hint_addr && phys_pg_pack->offset) {
1162 if (args->flags & HL_MEM_FORCE_HINT) {
1163 /* Fail if hint must be respected but it can't be */
1164 dev_err(hdev->dev,
1165 "Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n",
1166 hint_addr, phys_pg_pack->offset);
1167 rc = -EINVAL;
1168 goto va_block_err;
1169 }
1170 dev_dbg(hdev->dev,
1171 "Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n",
1172 hint_addr, phys_pg_pack->offset);
1173 }
1174
1175 ret_vaddr = get_va_block(hdev, va_range, size: phys_pg_pack->total_size,
1176 hint_addr, va_block_align,
1177 range_type: va_range_type, flags: args->flags);
1178 if (!ret_vaddr) {
1179 dev_err(hdev->dev, "no available va block for handle %u\n",
1180 handle);
1181 rc = -ENOMEM;
1182 goto va_block_err;
1183 }
1184
1185 mutex_lock(&hdev->mmu_lock);
1186
1187 rc = map_phys_pg_pack(ctx, vaddr: ret_vaddr, phys_pg_pack);
1188 if (rc) {
1189 dev_err(hdev->dev, "mapping page pack failed (%d) for handle %u\n",
1190 rc, handle);
1191 mutex_unlock(lock: &hdev->mmu_lock);
1192 goto map_err;
1193 }
1194
1195 rc = hl_mmu_invalidate_cache_range(hdev, is_hard: false, flags: *vm_type | MMU_OP_SKIP_LOW_CACHE_INV,
1196 asid: ctx->asid, va: ret_vaddr, size: phys_pg_pack->total_size);
1197 mutex_unlock(lock: &hdev->mmu_lock);
1198 if (rc)
1199 goto map_err;
1200
1201 /*
1202 * prefetch is done upon user's request. it is performed in WQ as and so can
1203 * be outside the MMU lock. the operation itself is already protected by the mmu lock
1204 */
1205 if (do_prefetch) {
1206 rc = hl_mmu_prefetch_cache_range(ctx, flags: *vm_type, asid: ctx->asid, va: ret_vaddr,
1207 size: phys_pg_pack->total_size);
1208 if (rc)
1209 goto map_err;
1210 }
1211
1212 ret_vaddr += phys_pg_pack->offset;
1213
1214 hnode->ptr = vm_type;
1215 hnode->vaddr = ret_vaddr;
1216 hnode->handle = is_userptr ? MEM_HANDLE_INVALID : handle;
1217
1218 mutex_lock(&ctx->mem_hash_lock);
1219 hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
1220 mutex_unlock(lock: &ctx->mem_hash_lock);
1221
1222 *device_addr = ret_vaddr;
1223
1224 if (is_userptr)
1225 free_phys_pg_pack(hdev, phys_pg_pack);
1226
1227 return rc;
1228
1229map_err:
1230 if (add_va_block(hdev, va_range, start: ret_vaddr,
1231 end: ret_vaddr + phys_pg_pack->total_size - 1))
1232 dev_warn(hdev->dev,
1233 "release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1234 handle, ret_vaddr);
1235
1236va_block_err:
1237 kfree(objp: hnode);
1238hnode_err:
1239shared_err:
1240 atomic_dec(v: &phys_pg_pack->mapping_cnt);
1241 if (is_userptr)
1242 free_phys_pg_pack(hdev, phys_pg_pack);
1243init_page_pack_err:
1244 if (is_userptr)
1245 dma_unmap_host_va(hdev, userptr);
1246
1247 return rc;
1248}
1249
1250/* Should be called while the context's mem_hash_lock is taken */
1251static struct hl_vm_hash_node *get_vm_hash_node_locked(struct hl_ctx *ctx, u64 vaddr)
1252{
1253 struct hl_vm_hash_node *hnode;
1254
1255 hash_for_each_possible(ctx->mem_hash, hnode, node, vaddr)
1256 if (vaddr == hnode->vaddr)
1257 return hnode;
1258
1259 return NULL;
1260}
1261
1262/**
1263 * unmap_device_va() - unmap the given device virtual address.
1264 * @ctx: pointer to the context structure.
1265 * @args: host parameters with device virtual address to unmap.
1266 * @ctx_free: true if in context free flow, false otherwise.
1267 *
1268 * This function does the following:
1269 * - unmap the physical pages related to the given virtual address.
1270 * - return the device virtual block to the virtual block list.
1271 */
1272static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
1273 bool ctx_free)
1274{
1275 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1276 u64 vaddr = args->unmap.device_virt_addr;
1277 struct asic_fixed_properties *prop;
1278 struct hl_device *hdev = ctx->hdev;
1279 struct hl_userptr *userptr = NULL;
1280 struct hl_vm_hash_node *hnode;
1281 struct hl_va_range *va_range;
1282 enum vm_type *vm_type;
1283 bool is_userptr;
1284 int rc = 0;
1285
1286 prop = &hdev->asic_prop;
1287
1288 /* protect from double entrance */
1289 mutex_lock(&ctx->mem_hash_lock);
1290 hnode = get_vm_hash_node_locked(ctx, vaddr);
1291 if (!hnode) {
1292 mutex_unlock(lock: &ctx->mem_hash_lock);
1293 dev_err(hdev->dev, "unmap failed, no mem hnode for vaddr 0x%llx\n", vaddr);
1294 return -EINVAL;
1295 }
1296
1297 if (hnode->export_cnt) {
1298 mutex_unlock(lock: &ctx->mem_hash_lock);
1299 dev_err(hdev->dev, "failed to unmap %#llx, memory is exported\n", vaddr);
1300 return -EINVAL;
1301 }
1302
1303 hash_del(node: &hnode->node);
1304 mutex_unlock(lock: &ctx->mem_hash_lock);
1305
1306 vm_type = hnode->ptr;
1307
1308 if (*vm_type == VM_TYPE_USERPTR) {
1309 is_userptr = true;
1310 userptr = hnode->ptr;
1311
1312 rc = init_phys_pg_pack_from_userptr(ctx, userptr, pphys_pg_pack: &phys_pg_pack,
1313 force_regular_page: false);
1314 if (rc) {
1315 dev_err(hdev->dev,
1316 "unable to init page pack for vaddr 0x%llx\n",
1317 vaddr);
1318 goto vm_type_err;
1319 }
1320
1321 if (phys_pg_pack->page_size ==
1322 hdev->asic_prop.pmmu.page_size)
1323 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1324 else
1325 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1326 } else if (*vm_type == VM_TYPE_PHYS_PACK) {
1327 is_userptr = false;
1328 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1329 phys_pg_pack = hnode->ptr;
1330 } else {
1331 dev_warn(hdev->dev,
1332 "unmap failed, unknown vm desc for vaddr 0x%llx\n",
1333 vaddr);
1334 rc = -EFAULT;
1335 goto vm_type_err;
1336 }
1337
1338 if (atomic_read(v: &phys_pg_pack->mapping_cnt) == 0) {
1339 dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1340 rc = -EINVAL;
1341 goto mapping_cnt_err;
1342 }
1343
1344 if (!is_userptr && !is_power_of_2(n: phys_pg_pack->page_size))
1345 vaddr = prop->dram_base_address +
1346 DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address,
1347 phys_pg_pack->page_size) *
1348 phys_pg_pack->page_size;
1349 else
1350 vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1351
1352 mutex_lock(&hdev->mmu_lock);
1353
1354 unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1355
1356 /*
1357 * During context free this function is called in a loop to clean all
1358 * the context mappings. Hence the cache invalidation can be called once
1359 * at the loop end rather than for each iteration
1360 */
1361 if (!ctx_free)
1362 rc = hl_mmu_invalidate_cache_range(hdev, is_hard: true, flags: *vm_type, asid: ctx->asid, va: vaddr,
1363 size: phys_pg_pack->total_size);
1364
1365 mutex_unlock(lock: &hdev->mmu_lock);
1366
1367 /*
1368 * If the context is closing we don't need to check for the MMU cache
1369 * invalidation return code and update the VA free list as in this flow
1370 * we invalidate the MMU cache outside of this unmap function and the VA
1371 * free list will be freed anyway.
1372 */
1373 if (!ctx_free) {
1374 int tmp_rc;
1375
1376 tmp_rc = add_va_block(hdev, va_range, start: vaddr,
1377 end: vaddr + phys_pg_pack->total_size - 1);
1378 if (tmp_rc) {
1379 dev_warn(hdev->dev,
1380 "add va block failed for vaddr: 0x%llx\n",
1381 vaddr);
1382 if (!rc)
1383 rc = tmp_rc;
1384 }
1385 }
1386
1387 atomic_dec(v: &phys_pg_pack->mapping_cnt);
1388 kfree(objp: hnode);
1389
1390 if (is_userptr) {
1391 free_phys_pg_pack(hdev, phys_pg_pack);
1392 dma_unmap_host_va(hdev, userptr);
1393 }
1394
1395 return rc;
1396
1397mapping_cnt_err:
1398 if (is_userptr)
1399 free_phys_pg_pack(hdev, phys_pg_pack);
1400vm_type_err:
1401 mutex_lock(&ctx->mem_hash_lock);
1402 hash_add(ctx->mem_hash, &hnode->node, vaddr);
1403 mutex_unlock(lock: &ctx->mem_hash_lock);
1404
1405 return rc;
1406}
1407
1408static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size)
1409{
1410 u32 block_id;
1411 int rc;
1412
1413 *handle = 0;
1414 if (size)
1415 *size = 0;
1416
1417 rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id);
1418 if (rc)
1419 return rc;
1420
1421 *handle = block_id | HL_MMAP_TYPE_BLOCK;
1422 *handle <<= PAGE_SHIFT;
1423
1424 return 0;
1425}
1426
1427static void hw_block_vm_close(struct vm_area_struct *vma)
1428{
1429 struct hl_vm_hw_block_list_node *lnode =
1430 (struct hl_vm_hw_block_list_node *) vma->vm_private_data;
1431 struct hl_ctx *ctx = lnode->ctx;
1432 long new_mmap_size;
1433
1434 new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start);
1435 if (new_mmap_size > 0) {
1436 lnode->mapped_size = new_mmap_size;
1437 return;
1438 }
1439
1440 mutex_lock(&ctx->hw_block_list_lock);
1441 list_del(entry: &lnode->node);
1442 mutex_unlock(lock: &ctx->hw_block_list_lock);
1443 hl_ctx_put(ctx);
1444 kfree(objp: lnode);
1445 vma->vm_private_data = NULL;
1446}
1447
1448static const struct vm_operations_struct hw_block_vm_ops = {
1449 .close = hw_block_vm_close
1450};
1451
1452/**
1453 * hl_hw_block_mmap() - mmap a hw block to user.
1454 * @hpriv: pointer to the private data of the fd
1455 * @vma: pointer to vm_area_struct of the process
1456 *
1457 * Driver increments context reference for every HW block mapped in order
1458 * to prevent user from closing FD without unmapping first
1459 */
1460int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
1461{
1462 struct hl_vm_hw_block_list_node *lnode;
1463 struct hl_device *hdev = hpriv->hdev;
1464 struct hl_ctx *ctx = hpriv->ctx;
1465 u32 block_id, block_size;
1466 int rc;
1467
1468 /* We use the page offset to hold the block id and thus we need to clear
1469 * it before doing the mmap itself
1470 */
1471 block_id = vma->vm_pgoff;
1472 vma->vm_pgoff = 0;
1473
1474 /* Driver only allows mapping of a complete HW block */
1475 block_size = vma->vm_end - vma->vm_start;
1476
1477 if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) {
1478 dev_err(hdev->dev,
1479 "user pointer is invalid - 0x%lx\n",
1480 vma->vm_start);
1481
1482 return -EINVAL;
1483 }
1484
1485 lnode = kzalloc(size: sizeof(*lnode), GFP_KERNEL);
1486 if (!lnode)
1487 return -ENOMEM;
1488
1489 rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size);
1490 if (rc) {
1491 kfree(objp: lnode);
1492 return rc;
1493 }
1494
1495 hl_ctx_get(ctx);
1496
1497 lnode->ctx = ctx;
1498 lnode->vaddr = vma->vm_start;
1499 lnode->block_size = block_size;
1500 lnode->mapped_size = lnode->block_size;
1501 lnode->id = block_id;
1502
1503 vma->vm_private_data = lnode;
1504 vma->vm_ops = &hw_block_vm_ops;
1505
1506 mutex_lock(&ctx->hw_block_list_lock);
1507 list_add_tail(new: &lnode->node, head: &ctx->hw_block_mem_list);
1508 mutex_unlock(lock: &ctx->hw_block_list_lock);
1509
1510 vma->vm_pgoff = block_id;
1511
1512 return 0;
1513}
1514
1515static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size,
1516 struct device *dev, enum dma_data_direction dir)
1517{
1518 dma_addr_t addr;
1519 int rc;
1520
1521 addr = dma_map_resource(dev, phys_addr: bar_address, size: chunk_size, dir,
1522 DMA_ATTR_SKIP_CPU_SYNC);
1523 rc = dma_mapping_error(dev, dma_addr: addr);
1524 if (rc)
1525 return rc;
1526
1527 sg_set_page(sg, NULL, len: chunk_size, offset: 0);
1528 sg_dma_address(sg) = addr;
1529 sg_dma_len(sg) = chunk_size;
1530
1531 return 0;
1532}
1533
1534static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages,
1535 u64 page_size, u64 exported_size, u64 offset,
1536 struct device *dev, enum dma_data_direction dir)
1537{
1538 u64 dma_max_seg_size, curr_page, size, chunk_size, left_size_to_export, left_size_in_page,
1539 left_size_in_dma_seg, device_address, bar_address, start_page;
1540 struct asic_fixed_properties *prop = &hdev->asic_prop;
1541 struct scatterlist *sg;
1542 unsigned int nents, i;
1543 struct sg_table *sgt;
1544 bool next_sg_entry;
1545 int rc;
1546
1547 /* Align max segment size to PAGE_SIZE to fit the minimal IOMMU mapping granularity */
1548 dma_max_seg_size = ALIGN_DOWN(dma_get_max_seg_size(dev), PAGE_SIZE);
1549 if (dma_max_seg_size < PAGE_SIZE) {
1550 dev_err_ratelimited(hdev->dev,
1551 "dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n",
1552 dma_max_seg_size);
1553 return ERR_PTR(error: -EINVAL);
1554 }
1555
1556 sgt = kzalloc(size: sizeof(*sgt), GFP_KERNEL);
1557 if (!sgt)
1558 return ERR_PTR(error: -ENOMEM);
1559
1560 /* Use the offset to move to the actual first page that is exported */
1561 for (start_page = 0 ; start_page < npages ; ++start_page) {
1562 if (offset < page_size)
1563 break;
1564
1565 /* The offset value was validated so there can't be an underflow */
1566 offset -= page_size;
1567 }
1568
1569 /* Calculate the required number of entries for the SG table */
1570 curr_page = start_page;
1571 nents = 1;
1572 left_size_to_export = exported_size;
1573 left_size_in_page = page_size - offset;
1574 left_size_in_dma_seg = dma_max_seg_size;
1575 next_sg_entry = false;
1576
1577 while (true) {
1578 size = min3(left_size_to_export, left_size_in_page, left_size_in_dma_seg);
1579 left_size_to_export -= size;
1580 left_size_in_page -= size;
1581 left_size_in_dma_seg -= size;
1582
1583 if (!left_size_to_export)
1584 break;
1585
1586 if (!left_size_in_page) {
1587 /* left_size_to_export is not zero so there must be another page */
1588 if (pages[curr_page] + page_size != pages[curr_page + 1])
1589 next_sg_entry = true;
1590
1591 ++curr_page;
1592 left_size_in_page = page_size;
1593 }
1594
1595 if (!left_size_in_dma_seg) {
1596 next_sg_entry = true;
1597 left_size_in_dma_seg = dma_max_seg_size;
1598 }
1599
1600 if (next_sg_entry) {
1601 ++nents;
1602 next_sg_entry = false;
1603 }
1604 }
1605
1606 rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO);
1607 if (rc)
1608 goto err_free_sgt;
1609
1610 /* Prepare the SG table entries */
1611 curr_page = start_page;
1612 device_address = pages[curr_page] + offset;
1613 left_size_to_export = exported_size;
1614 left_size_in_page = page_size - offset;
1615 left_size_in_dma_seg = dma_max_seg_size;
1616 next_sg_entry = false;
1617
1618 for_each_sgtable_dma_sg(sgt, sg, i) {
1619 bar_address = hdev->dram_pci_bar_start + (device_address - prop->dram_base_address);
1620 chunk_size = 0;
1621
1622 for ( ; curr_page < npages ; ++curr_page) {
1623 size = min3(left_size_to_export, left_size_in_page, left_size_in_dma_seg);
1624 chunk_size += size;
1625 left_size_to_export -= size;
1626 left_size_in_page -= size;
1627 left_size_in_dma_seg -= size;
1628
1629 if (!left_size_to_export)
1630 break;
1631
1632 if (!left_size_in_page) {
1633 /* left_size_to_export is not zero so there must be another page */
1634 if (pages[curr_page] + page_size != pages[curr_page + 1]) {
1635 device_address = pages[curr_page + 1];
1636 next_sg_entry = true;
1637 }
1638
1639 left_size_in_page = page_size;
1640 }
1641
1642 if (!left_size_in_dma_seg) {
1643 /*
1644 * Skip setting a new device address if already moving to a page
1645 * which is not contiguous with the current page.
1646 */
1647 if (!next_sg_entry) {
1648 device_address += chunk_size;
1649 next_sg_entry = true;
1650 }
1651
1652 left_size_in_dma_seg = dma_max_seg_size;
1653 }
1654
1655 if (next_sg_entry) {
1656 next_sg_entry = false;
1657 break;
1658 }
1659 }
1660
1661 rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
1662 if (rc)
1663 goto err_unmap;
1664 }
1665
1666 /* There should be nothing left to export exactly after looping over all SG elements */
1667 if (left_size_to_export) {
1668 dev_err(hdev->dev,
1669 "left size to export %#llx after initializing %u SG elements\n",
1670 left_size_to_export, sgt->nents);
1671 rc = -ENOMEM;
1672 goto err_unmap;
1673 }
1674
1675 /*
1676 * Because we are not going to include a CPU list, we want to have some chance that other
1677 * users will detect this when going over SG table, by setting the orig_nents to 0 and using
1678 * only nents (length of DMA list).
1679 */
1680 sgt->orig_nents = 0;
1681
1682 dev_dbg(hdev->dev, "prepared SG table with %u entries for importer %s\n",
1683 nents, dev_name(dev));
1684 for_each_sgtable_dma_sg(sgt, sg, i)
1685 dev_dbg(hdev->dev,
1686 "SG entry %d: address %#llx, length %#x\n",
1687 i, sg_dma_address(sg), sg_dma_len(sg));
1688
1689 return sgt;
1690
1691err_unmap:
1692 for_each_sgtable_dma_sg(sgt, sg, i) {
1693 if (!sg_dma_len(sg))
1694 continue;
1695
1696 dma_unmap_resource(dev, sg_dma_address(sg), sg_dma_len(sg), dir,
1697 DMA_ATTR_SKIP_CPU_SYNC);
1698 }
1699
1700 sg_free_table(sgt);
1701
1702err_free_sgt:
1703 kfree(objp: sgt);
1704 return ERR_PTR(error: rc);
1705}
1706
1707static int hl_dmabuf_attach(struct dma_buf *dmabuf,
1708 struct dma_buf_attachment *attachment)
1709{
1710 struct hl_dmabuf_priv *hl_dmabuf;
1711 struct hl_device *hdev;
1712 int rc;
1713
1714 hl_dmabuf = dmabuf->priv;
1715 hdev = hl_dmabuf->ctx->hdev;
1716
1717 rc = pci_p2pdma_distance(provider: hdev->pdev, client: attachment->dev, verbose: true);
1718
1719 if (rc < 0)
1720 attachment->peer2peer = false;
1721 return 0;
1722}
1723
1724static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment,
1725 enum dma_data_direction dir)
1726{
1727 u64 *pages, npages, page_size, exported_size, offset;
1728 struct dma_buf *dma_buf = attachment->dmabuf;
1729 struct hl_vm_phys_pg_pack *phys_pg_pack;
1730 struct hl_dmabuf_priv *hl_dmabuf;
1731 struct hl_device *hdev;
1732 struct sg_table *sgt;
1733
1734 hl_dmabuf = dma_buf->priv;
1735 hdev = hl_dmabuf->ctx->hdev;
1736
1737 if (!attachment->peer2peer) {
1738 dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n");
1739 return ERR_PTR(error: -EPERM);
1740 }
1741
1742 exported_size = hl_dmabuf->dmabuf->size;
1743 offset = hl_dmabuf->offset;
1744 phys_pg_pack = hl_dmabuf->phys_pg_pack;
1745
1746 if (phys_pg_pack) {
1747 pages = phys_pg_pack->pages;
1748 npages = phys_pg_pack->npages;
1749 page_size = phys_pg_pack->page_size;
1750 } else {
1751 pages = &hl_dmabuf->device_phys_addr;
1752 npages = 1;
1753 page_size = hl_dmabuf->dmabuf->size;
1754 }
1755
1756 sgt = alloc_sgt_from_device_pages(hdev, pages, npages, page_size, exported_size, offset,
1757 dev: attachment->dev, dir);
1758 if (IS_ERR(ptr: sgt))
1759 dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt));
1760
1761 return sgt;
1762}
1763
1764static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment,
1765 struct sg_table *sgt,
1766 enum dma_data_direction dir)
1767{
1768 struct scatterlist *sg;
1769 int i;
1770
1771 /* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives
1772 * only in the 'device' domain (after all, it maps a PCI bar address which points to the
1773 * device memory).
1774 *
1775 * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform
1776 * a sync of the memory to the CPU's cache, as it never resided inside that cache.
1777 */
1778 for_each_sgtable_dma_sg(sgt, sg, i)
1779 dma_unmap_resource(dev: attachment->dev, sg_dma_address(sg),
1780 sg_dma_len(sg), dir,
1781 DMA_ATTR_SKIP_CPU_SYNC);
1782
1783 /* Need to restore orig_nents because sg_free_table use that field */
1784 sgt->orig_nents = sgt->nents;
1785 sg_free_table(sgt);
1786 kfree(objp: sgt);
1787}
1788
1789static struct hl_vm_hash_node *memhash_node_export_get(struct hl_ctx *ctx, u64 addr)
1790{
1791 struct hl_device *hdev = ctx->hdev;
1792 struct hl_vm_hash_node *hnode;
1793
1794 /* get the memory handle */
1795 mutex_lock(&ctx->mem_hash_lock);
1796 hnode = get_vm_hash_node_locked(ctx, vaddr: addr);
1797 if (!hnode) {
1798 mutex_unlock(lock: &ctx->mem_hash_lock);
1799 dev_dbg(hdev->dev, "map address %#llx not found\n", addr);
1800 return ERR_PTR(error: -EINVAL);
1801 }
1802
1803 if (upper_32_bits(hnode->handle)) {
1804 mutex_unlock(lock: &ctx->mem_hash_lock);
1805 dev_dbg(hdev->dev, "invalid handle %#llx for map address %#llx\n",
1806 hnode->handle, addr);
1807 return ERR_PTR(error: -EINVAL);
1808 }
1809
1810 /*
1811 * node found, increase export count so this memory cannot be unmapped
1812 * and the hash node cannot be deleted.
1813 */
1814 hnode->export_cnt++;
1815 mutex_unlock(lock: &ctx->mem_hash_lock);
1816
1817 return hnode;
1818}
1819
1820static void memhash_node_export_put(struct hl_ctx *ctx, struct hl_vm_hash_node *hnode)
1821{
1822 mutex_lock(&ctx->mem_hash_lock);
1823 hnode->export_cnt--;
1824 mutex_unlock(lock: &ctx->mem_hash_lock);
1825}
1826
1827static void hl_release_dmabuf(struct dma_buf *dmabuf)
1828{
1829 struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv;
1830 struct hl_ctx *ctx;
1831
1832 if (!hl_dmabuf)
1833 return;
1834
1835 ctx = hl_dmabuf->ctx;
1836
1837 if (hl_dmabuf->memhash_hnode)
1838 memhash_node_export_put(ctx, hnode: hl_dmabuf->memhash_hnode);
1839
1840 atomic_dec(v: &ctx->hdev->dmabuf_export_cnt);
1841 hl_ctx_put(ctx);
1842
1843 /* Paired with get_file() in export_dmabuf() */
1844 fput(ctx->hpriv->file_priv->filp);
1845
1846 kfree(objp: hl_dmabuf);
1847}
1848
1849static const struct dma_buf_ops habanalabs_dmabuf_ops = {
1850 .attach = hl_dmabuf_attach,
1851 .map_dma_buf = hl_map_dmabuf,
1852 .unmap_dma_buf = hl_unmap_dmabuf,
1853 .release = hl_release_dmabuf,
1854};
1855
1856static int export_dmabuf(struct hl_ctx *ctx,
1857 struct hl_dmabuf_priv *hl_dmabuf,
1858 u64 total_size, int flags, int *dmabuf_fd)
1859{
1860 DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
1861 struct hl_device *hdev = ctx->hdev;
1862 int rc, fd;
1863
1864 exp_info.ops = &habanalabs_dmabuf_ops;
1865 exp_info.size = total_size;
1866 exp_info.flags = flags;
1867 exp_info.priv = hl_dmabuf;
1868
1869 hl_dmabuf->dmabuf = dma_buf_export(exp_info: &exp_info);
1870 if (IS_ERR(ptr: hl_dmabuf->dmabuf)) {
1871 dev_err(hdev->dev, "failed to export dma-buf\n");
1872 return PTR_ERR(ptr: hl_dmabuf->dmabuf);
1873 }
1874
1875 fd = dma_buf_fd(dmabuf: hl_dmabuf->dmabuf, flags);
1876 if (fd < 0) {
1877 dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf, %d\n", fd);
1878 rc = fd;
1879 goto err_dma_buf_put;
1880 }
1881
1882 hl_dmabuf->ctx = ctx;
1883 hl_ctx_get(ctx: hl_dmabuf->ctx);
1884 atomic_inc(v: &ctx->hdev->dmabuf_export_cnt);
1885
1886 /* Get compute device file to enforce release order, such that all exported dma-buf will be
1887 * released first and only then the compute device.
1888 * Paired with fput() in hl_release_dmabuf().
1889 */
1890 get_file(f: ctx->hpriv->file_priv->filp);
1891
1892 *dmabuf_fd = fd;
1893
1894 return 0;
1895
1896err_dma_buf_put:
1897 hl_dmabuf->dmabuf->priv = NULL;
1898 dma_buf_put(dmabuf: hl_dmabuf->dmabuf);
1899 return rc;
1900}
1901
1902static int validate_export_params_common(struct hl_device *hdev, u64 addr, u64 size, u64 offset)
1903{
1904 if (!PAGE_ALIGNED(addr)) {
1905 dev_dbg(hdev->dev,
1906 "exported device memory address 0x%llx should be aligned to PAGE_SIZE 0x%lx\n",
1907 addr, PAGE_SIZE);
1908 return -EINVAL;
1909 }
1910
1911 if (!size || !PAGE_ALIGNED(size)) {
1912 dev_dbg(hdev->dev,
1913 "exported device memory size %llu should be a multiple of PAGE_SIZE %lu\n",
1914 size, PAGE_SIZE);
1915 return -EINVAL;
1916 }
1917
1918 if (!PAGE_ALIGNED(offset)) {
1919 dev_dbg(hdev->dev,
1920 "exported device memory offset %llu should be a multiple of PAGE_SIZE %lu\n",
1921 offset, PAGE_SIZE);
1922 return -EINVAL;
1923 }
1924
1925 return 0;
1926}
1927
1928static int validate_export_params_no_mmu(struct hl_device *hdev, u64 device_addr, u64 size)
1929{
1930 struct asic_fixed_properties *prop = &hdev->asic_prop;
1931 u64 bar_address;
1932 int rc;
1933
1934 rc = validate_export_params_common(hdev, addr: device_addr, size, offset: 0);
1935 if (rc)
1936 return rc;
1937
1938 if (device_addr < prop->dram_user_base_address ||
1939 (device_addr + size) > prop->dram_end_address ||
1940 (device_addr + size) < device_addr) {
1941 dev_dbg(hdev->dev,
1942 "DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n",
1943 device_addr, size);
1944 return -EINVAL;
1945 }
1946
1947 bar_address = hdev->dram_pci_bar_start + (device_addr - prop->dram_base_address);
1948
1949 if ((bar_address + size) > (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
1950 (bar_address + size) < bar_address) {
1951 dev_dbg(hdev->dev,
1952 "DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n",
1953 device_addr, size);
1954 return -EINVAL;
1955 }
1956
1957 return 0;
1958}
1959
1960static int validate_export_params(struct hl_device *hdev, u64 device_addr, u64 size, u64 offset,
1961 struct hl_vm_phys_pg_pack *phys_pg_pack)
1962{
1963 struct asic_fixed_properties *prop = &hdev->asic_prop;
1964 u64 bar_address;
1965 int i, rc;
1966
1967 rc = validate_export_params_common(hdev, addr: device_addr, size, offset);
1968 if (rc)
1969 return rc;
1970
1971 if ((offset + size) > phys_pg_pack->total_size) {
1972 dev_dbg(hdev->dev, "offset %#llx and size %#llx exceed total map size %#llx\n",
1973 offset, size, phys_pg_pack->total_size);
1974 return -EINVAL;
1975 }
1976
1977 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
1978 bar_address = hdev->dram_pci_bar_start +
1979 (phys_pg_pack->pages[i] - prop->dram_base_address);
1980
1981 if ((bar_address + phys_pg_pack->page_size) >
1982 (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
1983 (bar_address + phys_pg_pack->page_size) < bar_address) {
1984 dev_dbg(hdev->dev,
1985 "DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n",
1986 phys_pg_pack->pages[i], phys_pg_pack->page_size);
1987 return -EINVAL;
1988 }
1989 }
1990
1991 return 0;
1992}
1993
1994static struct hl_vm_phys_pg_pack *get_phys_pg_pack_from_hash_node(struct hl_device *hdev,
1995 struct hl_vm_hash_node *hnode)
1996{
1997 struct hl_vm_phys_pg_pack *phys_pg_pack;
1998 struct hl_vm *vm = &hdev->vm;
1999
2000 spin_lock(lock: &vm->idr_lock);
2001 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, id: (u32) hnode->handle);
2002 if (!phys_pg_pack) {
2003 spin_unlock(lock: &vm->idr_lock);
2004 dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) hnode->handle);
2005 return ERR_PTR(error: -EINVAL);
2006 }
2007
2008 spin_unlock(lock: &vm->idr_lock);
2009
2010 if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) {
2011 dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", hnode->handle);
2012 return ERR_PTR(error: -EINVAL);
2013 }
2014
2015 return phys_pg_pack;
2016}
2017
2018/**
2019 * export_dmabuf_from_addr() - export a dma-buf object for the given memory
2020 * address and size.
2021 * @ctx: pointer to the context structure.
2022 * @addr: device address.
2023 * @size: size of device memory to export.
2024 * @offset: the offset into the buffer from which to start exporting
2025 * @flags: DMA-BUF file/FD flags.
2026 * @dmabuf_fd: pointer to result FD that represents the dma-buf object.
2027 *
2028 * Create and export a dma-buf object for an existing memory allocation inside
2029 * the device memory, and return a FD which is associated with the dma-buf
2030 * object.
2031 *
2032 * Return: 0 on success, non-zero for failure.
2033 */
2034static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 addr, u64 size, u64 offset,
2035 int flags, int *dmabuf_fd)
2036{
2037 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
2038 struct hl_vm_hash_node *hnode = NULL;
2039 struct asic_fixed_properties *prop;
2040 struct hl_dmabuf_priv *hl_dmabuf;
2041 struct hl_device *hdev;
2042 int rc;
2043
2044 hdev = ctx->hdev;
2045 prop = &hdev->asic_prop;
2046
2047 /* offset must be 0 in devices without virtual memory support */
2048 if (!prop->dram_supports_virtual_memory && offset) {
2049 dev_dbg(hdev->dev, "offset is not allowed in device without virtual memory\n");
2050 return -EINVAL;
2051 }
2052
2053 hl_dmabuf = kzalloc(size: sizeof(*hl_dmabuf), GFP_KERNEL);
2054 if (!hl_dmabuf)
2055 return -ENOMEM;
2056
2057 if (prop->dram_supports_virtual_memory) {
2058 hnode = memhash_node_export_get(ctx, addr);
2059 if (IS_ERR(ptr: hnode)) {
2060 rc = PTR_ERR(ptr: hnode);
2061 goto err_free_dmabuf_wrapper;
2062 }
2063 phys_pg_pack = get_phys_pg_pack_from_hash_node(hdev, hnode);
2064 if (IS_ERR(ptr: phys_pg_pack)) {
2065 rc = PTR_ERR(ptr: phys_pg_pack);
2066 goto dec_memhash_export_cnt;
2067 }
2068 rc = validate_export_params(hdev, device_addr: addr, size, offset, phys_pg_pack);
2069 if (rc)
2070 goto dec_memhash_export_cnt;
2071
2072 hl_dmabuf->phys_pg_pack = phys_pg_pack;
2073 hl_dmabuf->memhash_hnode = hnode;
2074 hl_dmabuf->offset = offset;
2075 } else {
2076 rc = validate_export_params_no_mmu(hdev, device_addr: addr, size);
2077 if (rc)
2078 goto err_free_dmabuf_wrapper;
2079
2080 hl_dmabuf->device_phys_addr = addr;
2081 }
2082
2083 rc = export_dmabuf(ctx, hl_dmabuf, total_size: size, flags, dmabuf_fd);
2084 if (rc)
2085 goto dec_memhash_export_cnt;
2086
2087 return 0;
2088
2089dec_memhash_export_cnt:
2090 if (prop->dram_supports_virtual_memory)
2091 memhash_node_export_put(ctx, hnode);
2092err_free_dmabuf_wrapper:
2093 kfree(objp: hl_dmabuf);
2094 return rc;
2095}
2096
2097static void ts_buff_release(struct hl_mmap_mem_buf *buf)
2098{
2099 struct hl_ts_buff *ts_buff = buf->private;
2100
2101 vfree(addr: ts_buff->kernel_buff_address);
2102 vfree(addr: ts_buff->user_buff_address);
2103 kfree(objp: ts_buff);
2104}
2105
2106static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args)
2107{
2108 struct hl_ts_buff *ts_buff = buf->private;
2109
2110 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE);
2111 return remap_vmalloc_range(vma, addr: ts_buff->user_buff_address, pgoff: 0);
2112}
2113
2114static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args)
2115{
2116 struct hl_ts_buff *ts_buff = NULL;
2117 u32 num_elements;
2118 size_t size;
2119 void *p;
2120
2121 num_elements = *(u32 *)args;
2122
2123 ts_buff = kzalloc(size: sizeof(*ts_buff), flags: gfp);
2124 if (!ts_buff)
2125 return -ENOMEM;
2126
2127 /* Allocate the user buffer */
2128 size = num_elements * sizeof(u64);
2129 p = vmalloc_user(size);
2130 if (!p)
2131 goto free_mem;
2132
2133 ts_buff->user_buff_address = p;
2134 buf->mappable_size = size;
2135
2136 /* Allocate the internal kernel buffer */
2137 size = num_elements * sizeof(struct hl_user_pending_interrupt);
2138 p = vzalloc(size);
2139 if (!p)
2140 goto free_user_buff;
2141
2142 ts_buff->kernel_buff_address = p;
2143 ts_buff->kernel_buff_size = size;
2144
2145 buf->private = ts_buff;
2146
2147 return 0;
2148
2149free_user_buff:
2150 vfree(addr: ts_buff->user_buff_address);
2151free_mem:
2152 kfree(objp: ts_buff);
2153 return -ENOMEM;
2154}
2155
2156static struct hl_mmap_mem_buf_behavior hl_ts_behavior = {
2157 .topic = "TS",
2158 .mem_id = HL_MMAP_TYPE_TS_BUFF,
2159 .mmap = hl_ts_mmap,
2160 .alloc = hl_ts_alloc_buf,
2161 .release = ts_buff_release,
2162};
2163
2164/**
2165 * allocate_timestamps_buffers() - allocate timestamps buffers
2166 * This function will allocate ts buffer that will later on be mapped to the user
2167 * in order to be able to read the timestamp.
2168 * in addition it'll allocate an extra buffer for registration management.
2169 * since we cannot fail during registration for out-of-memory situation, so
2170 * we'll prepare a pool which will be used as user interrupt nodes and instead
2171 * of dynamically allocating nodes while registration we'll pick the node from
2172 * this pool. in addition it'll add node to the mapping hash which will be used
2173 * to map user ts buffer to the internal kernel ts buffer.
2174 * @hpriv: pointer to the private data of the fd
2175 * @args: ioctl input
2176 * @handle: user timestamp buffer handle as an output
2177 */
2178static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle)
2179{
2180 struct hl_mem_mgr *mmg = &hpriv->mem_mgr;
2181 struct hl_mmap_mem_buf *buf;
2182
2183 if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) {
2184 dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n",
2185 args->num_of_elements, TS_MAX_ELEMENTS_NUM);
2186 return -EINVAL;
2187 }
2188
2189 buf = hl_mmap_mem_buf_alloc(mmg, behavior: &hl_ts_behavior, GFP_KERNEL, args: &args->num_of_elements);
2190 if (!buf)
2191 return -ENOMEM;
2192
2193 *handle = buf->handle;
2194
2195 return 0;
2196}
2197
2198int hl_mem_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv)
2199{
2200 struct hl_fpriv *hpriv = file_priv->driver_priv;
2201 enum hl_device_status status;
2202 union hl_mem_args *args = data;
2203 struct hl_device *hdev = hpriv->hdev;
2204 struct hl_ctx *ctx = hpriv->ctx;
2205 u64 block_handle, device_addr = 0;
2206 u32 handle = 0, block_size;
2207 int rc, dmabuf_fd = -EBADF;
2208
2209 if (!hl_device_operational(hdev, status: &status)) {
2210 dev_dbg_ratelimited(hdev->dev,
2211 "Device is %s. Can't execute MEMORY IOCTL\n",
2212 hdev->status[status]);
2213 return -EBUSY;
2214 }
2215
2216 switch (args->in.op) {
2217 case HL_MEM_OP_ALLOC:
2218 if (args->in.alloc.mem_size == 0) {
2219 dev_err(hdev->dev,
2220 "alloc size must be larger than 0\n");
2221 rc = -EINVAL;
2222 goto out;
2223 }
2224
2225 /* If DRAM does not support virtual memory the driver won't
2226 * handle the allocation/freeing of that memory. However, for
2227 * system administration/monitoring purposes, the driver will
2228 * keep track of the amount of DRAM memory that is allocated
2229 * and freed by the user. Because this code totally relies on
2230 * the user's input, the driver can't ensure the validity
2231 * of this accounting.
2232 */
2233 if (!hdev->asic_prop.dram_supports_virtual_memory) {
2234 atomic64_add(i: args->in.alloc.mem_size,
2235 v: &ctx->dram_phys_mem);
2236 atomic64_add(i: args->in.alloc.mem_size,
2237 v: &hdev->dram_used_mem);
2238
2239 dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2240 rc = 0;
2241
2242 memset(args, 0, sizeof(*args));
2243 args->out.handle = 0;
2244 goto out;
2245 }
2246
2247 rc = alloc_device_memory(ctx, args: &args->in, ret_handle: &handle);
2248
2249 memset(args, 0, sizeof(*args));
2250 args->out.handle = (__u64) handle;
2251 break;
2252
2253 case HL_MEM_OP_FREE:
2254 /* If DRAM does not support virtual memory the driver won't
2255 * handle the allocation/freeing of that memory. However, for
2256 * system administration/monitoring purposes, the driver will
2257 * keep track of the amount of DRAM memory that is allocated
2258 * and freed by the user. Because this code totally relies on
2259 * the user's input, the driver can't ensure the validity
2260 * of this accounting.
2261 */
2262 if (!hdev->asic_prop.dram_supports_virtual_memory) {
2263 atomic64_sub(i: args->in.alloc.mem_size,
2264 v: &ctx->dram_phys_mem);
2265 atomic64_sub(i: args->in.alloc.mem_size,
2266 v: &hdev->dram_used_mem);
2267
2268 dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2269 rc = 0;
2270
2271 goto out;
2272 }
2273
2274 rc = free_device_memory(ctx, args: &args->in);
2275 break;
2276
2277 case HL_MEM_OP_MAP:
2278 rc = map_device_va(ctx, args: &args->in, device_addr: &device_addr);
2279
2280 memset(args, 0, sizeof(*args));
2281 args->out.device_virt_addr = device_addr;
2282 break;
2283
2284 case HL_MEM_OP_UNMAP:
2285 rc = unmap_device_va(ctx, args: &args->in, ctx_free: false);
2286 break;
2287
2288 case HL_MEM_OP_MAP_BLOCK:
2289 rc = map_block(hdev, address: args->in.map_block.block_addr,
2290 handle: &block_handle, size: &block_size);
2291 args->out.block_handle = block_handle;
2292 args->out.block_size = block_size;
2293 break;
2294
2295 case HL_MEM_OP_EXPORT_DMABUF_FD:
2296 rc = export_dmabuf_from_addr(ctx,
2297 addr: args->in.export_dmabuf_fd.addr,
2298 size: args->in.export_dmabuf_fd.mem_size,
2299 offset: args->in.export_dmabuf_fd.offset,
2300 flags: args->in.flags,
2301 dmabuf_fd: &dmabuf_fd);
2302 memset(args, 0, sizeof(*args));
2303 args->out.fd = dmabuf_fd;
2304 break;
2305
2306 case HL_MEM_OP_TS_ALLOC:
2307 rc = allocate_timestamps_buffers(hpriv, args: &args->in, handle: &args->out.handle);
2308 break;
2309 default:
2310 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
2311 rc = -EINVAL;
2312 break;
2313 }
2314
2315out:
2316 return rc;
2317}
2318
2319static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
2320 u32 npages, u64 start, u32 offset,
2321 struct hl_userptr *userptr)
2322{
2323 int rc;
2324
2325 if (!access_ok((void __user *) (uintptr_t) addr, size)) {
2326 dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
2327 return -EFAULT;
2328 }
2329
2330 userptr->pages = kvmalloc_array(n: npages, size: sizeof(struct page *), GFP_KERNEL);
2331 if (!userptr->pages)
2332 return -ENOMEM;
2333
2334 rc = pin_user_pages_fast(start, nr_pages: npages, gup_flags: FOLL_WRITE | FOLL_LONGTERM,
2335 pages: userptr->pages);
2336
2337 if (rc != npages) {
2338 dev_err(hdev->dev,
2339 "Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n",
2340 rc, addr, size, npages);
2341 if (rc < 0)
2342 goto destroy_pages;
2343 npages = rc;
2344 rc = -EFAULT;
2345 goto put_pages;
2346 }
2347 userptr->npages = npages;
2348
2349 rc = sg_alloc_table_from_pages(sgt: userptr->sgt,
2350 pages: userptr->pages,
2351 n_pages: npages, offset, size, GFP_KERNEL);
2352 if (rc < 0) {
2353 dev_err(hdev->dev, "failed to create SG table from pages\n");
2354 goto put_pages;
2355 }
2356
2357 return 0;
2358
2359put_pages:
2360 unpin_user_pages(pages: userptr->pages, npages);
2361destroy_pages:
2362 kvfree(addr: userptr->pages);
2363 return rc;
2364}
2365
2366/**
2367 * hl_pin_host_memory() - pins a chunk of host memory.
2368 * @hdev: pointer to the habanalabs device structure.
2369 * @addr: the host virtual address of the memory area.
2370 * @size: the size of the memory area.
2371 * @userptr: pointer to hl_userptr structure.
2372 *
2373 * This function does the following:
2374 * - Pins the physical pages.
2375 * - Create an SG list from those pages.
2376 */
2377int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
2378 struct hl_userptr *userptr)
2379{
2380 u64 start, end;
2381 u32 npages, offset;
2382 int rc;
2383
2384 if (!size) {
2385 dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
2386 return -EINVAL;
2387 }
2388
2389 /*
2390 * If the combination of the address and size requested for this memory
2391 * region causes an integer overflow, return error.
2392 */
2393 if (((addr + size) < addr) ||
2394 PAGE_ALIGN(addr + size) < (addr + size)) {
2395 dev_err(hdev->dev,
2396 "user pointer 0x%llx + %llu causes integer overflow\n",
2397 addr, size);
2398 return -EINVAL;
2399 }
2400
2401 userptr->pid = current->pid;
2402 userptr->sgt = kzalloc(size: sizeof(*userptr->sgt), GFP_KERNEL);
2403 if (!userptr->sgt)
2404 return -ENOMEM;
2405
2406 start = addr & PAGE_MASK;
2407 offset = addr & ~PAGE_MASK;
2408 end = PAGE_ALIGN(addr + size);
2409 npages = (end - start) >> PAGE_SHIFT;
2410
2411 userptr->size = size;
2412 userptr->addr = addr;
2413 userptr->dma_mapped = false;
2414 INIT_LIST_HEAD(list: &userptr->job_node);
2415
2416 rc = get_user_memory(hdev, addr, size, npages, start, offset,
2417 userptr);
2418 if (rc) {
2419 dev_err(hdev->dev,
2420 "failed to get user memory for address 0x%llx\n",
2421 addr);
2422 goto free_sgt;
2423 }
2424
2425 hl_debugfs_add_userptr(hdev, userptr);
2426
2427 return 0;
2428
2429free_sgt:
2430 kfree(objp: userptr->sgt);
2431 return rc;
2432}
2433
2434/*
2435 * hl_unpin_host_memory - unpins a chunk of host memory.
2436 * @hdev: pointer to the habanalabs device structure
2437 * @userptr: pointer to hl_userptr structure
2438 *
2439 * This function does the following:
2440 * - Unpins the physical pages related to the host memory
2441 * - Free the SG list
2442 */
2443void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
2444{
2445 hl_debugfs_remove_userptr(hdev, userptr);
2446
2447 if (userptr->dma_mapped)
2448 hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir);
2449
2450 unpin_user_pages_dirty_lock(pages: userptr->pages, npages: userptr->npages, make_dirty: true);
2451 kvfree(addr: userptr->pages);
2452
2453 list_del(entry: &userptr->job_node);
2454
2455 sg_free_table(userptr->sgt);
2456 kfree(objp: userptr->sgt);
2457}
2458
2459/**
2460 * hl_userptr_delete_list() - clear userptr list.
2461 * @hdev: pointer to the habanalabs device structure.
2462 * @userptr_list: pointer to the list to clear.
2463 *
2464 * This function does the following:
2465 * - Iterates over the list and unpins the host memory and frees the userptr
2466 * structure.
2467 */
2468void hl_userptr_delete_list(struct hl_device *hdev,
2469 struct list_head *userptr_list)
2470{
2471 struct hl_userptr *userptr, *tmp;
2472
2473 list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
2474 hl_unpin_host_memory(hdev, userptr);
2475 kfree(objp: userptr);
2476 }
2477
2478 INIT_LIST_HEAD(list: userptr_list);
2479}
2480
2481/**
2482 * hl_userptr_is_pinned() - returns whether the given userptr is pinned.
2483 * @hdev: pointer to the habanalabs device structure.
2484 * @addr: user address to check.
2485 * @size: user block size to check.
2486 * @userptr_list: pointer to the list to clear.
2487 * @userptr: pointer to userptr to check.
2488 *
2489 * This function does the following:
2490 * - Iterates over the list and checks if the given userptr is in it, means is
2491 * pinned. If so, returns true, otherwise returns false.
2492 */
2493bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
2494 u32 size, struct list_head *userptr_list,
2495 struct hl_userptr **userptr)
2496{
2497 list_for_each_entry((*userptr), userptr_list, job_node) {
2498 if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
2499 return true;
2500 }
2501
2502 return false;
2503}
2504
2505/**
2506 * va_range_init() - initialize virtual addresses range.
2507 * @hdev: pointer to the habanalabs device structure.
2508 * @va_ranges: pointer to va_ranges array.
2509 * @range_type: virtual address range type.
2510 * @start: range start address, inclusive.
2511 * @end: range end address, inclusive.
2512 * @page_size: page size for this va_range.
2513 *
2514 * This function does the following:
2515 * - Initializes the virtual addresses list of the given range with the given
2516 * addresses.
2517 */
2518static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges,
2519 enum hl_va_range_type range_type, u64 start,
2520 u64 end, u32 page_size)
2521{
2522 struct hl_va_range *va_range = va_ranges[range_type];
2523 int rc;
2524
2525 INIT_LIST_HEAD(list: &va_range->list);
2526
2527 /*
2528 * PAGE_SIZE alignment
2529 * it is the caller's responsibility to align the addresses if the
2530 * page size is not a power of 2
2531 */
2532
2533 if (is_power_of_2(n: page_size)) {
2534 start = round_up(start, page_size);
2535
2536 /*
2537 * The end of the range is inclusive, hence we need to align it
2538 * to the end of the last full page in the range. For example if
2539 * end = 0x3ff5 with page size 0x1000, we need to align it to
2540 * 0x2fff. The remaining 0xff5 bytes do not form a full page.
2541 */
2542 end = round_down(end + 1, page_size) - 1;
2543 }
2544
2545 if (start >= end) {
2546 dev_err(hdev->dev, "too small vm range for va list\n");
2547 return -EFAULT;
2548 }
2549
2550 rc = add_va_block(hdev, va_range, start, end);
2551
2552 if (rc) {
2553 dev_err(hdev->dev, "Failed to init host va list\n");
2554 return rc;
2555 }
2556
2557 va_range->start_addr = start;
2558 va_range->end_addr = end;
2559 va_range->page_size = page_size;
2560
2561 return 0;
2562}
2563
2564/**
2565 * va_range_fini() - clear a virtual addresses range.
2566 * @hdev: pointer to the habanalabs structure.
2567 * @va_range: pointer to virtual addresses range.
2568 *
2569 * This function does the following:
2570 * - Frees the virtual addresses block list and its lock.
2571 */
2572static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range)
2573{
2574 mutex_lock(&va_range->lock);
2575 clear_va_list_locked(hdev, va_list: &va_range->list);
2576 mutex_unlock(lock: &va_range->lock);
2577
2578 mutex_destroy(lock: &va_range->lock);
2579 kfree(objp: va_range);
2580}
2581
2582/**
2583 * vm_ctx_init_with_ranges() - initialize virtual memory for context.
2584 * @ctx: pointer to the habanalabs context structure.
2585 * @host_range_start: host virtual addresses range start.
2586 * @host_range_end: host virtual addresses range end.
2587 * @host_page_size: host page size.
2588 * @host_huge_range_start: host virtual addresses range start for memory
2589 * allocated with huge pages.
2590 * @host_huge_range_end: host virtual addresses range end for memory allocated
2591 * with huge pages.
2592 * @host_huge_page_size: host huge page size.
2593 * @dram_range_start: dram virtual addresses range start.
2594 * @dram_range_end: dram virtual addresses range end.
2595 * @dram_page_size: dram page size.
2596 *
2597 * This function initializes the following:
2598 * - MMU for context.
2599 * - Virtual address to area descriptor hashtable.
2600 * - Virtual block list of available virtual memory.
2601 */
2602static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
2603 u64 host_range_start,
2604 u64 host_range_end,
2605 u32 host_page_size,
2606 u64 host_huge_range_start,
2607 u64 host_huge_range_end,
2608 u32 host_huge_page_size,
2609 u64 dram_range_start,
2610 u64 dram_range_end,
2611 u32 dram_page_size)
2612{
2613 struct hl_device *hdev = ctx->hdev;
2614 int i, rc;
2615
2616 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) {
2617 ctx->va_range[i] =
2618 kzalloc(size: sizeof(struct hl_va_range), GFP_KERNEL);
2619 if (!ctx->va_range[i]) {
2620 rc = -ENOMEM;
2621 goto free_va_range;
2622 }
2623 }
2624
2625 rc = hl_mmu_ctx_init(ctx);
2626 if (rc) {
2627 dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
2628 goto free_va_range;
2629 }
2630
2631 mutex_init(&ctx->mem_hash_lock);
2632 hash_init(ctx->mem_hash);
2633
2634 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2635
2636 rc = va_range_init(hdev, va_ranges: ctx->va_range, range_type: HL_VA_RANGE_TYPE_HOST,
2637 start: host_range_start, end: host_range_end, page_size: host_page_size);
2638 if (rc) {
2639 dev_err(hdev->dev, "failed to init host vm range\n");
2640 goto mmu_ctx_fini;
2641 }
2642
2643 if (hdev->pmmu_huge_range) {
2644 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2645
2646 rc = va_range_init(hdev,
2647 va_ranges: ctx->va_range, range_type: HL_VA_RANGE_TYPE_HOST_HUGE,
2648 start: host_huge_range_start, end: host_huge_range_end,
2649 page_size: host_huge_page_size);
2650 if (rc) {
2651 dev_err(hdev->dev,
2652 "failed to init host huge vm range\n");
2653 goto clear_host_va_range;
2654 }
2655 } else {
2656 kfree(objp: ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2657 ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] =
2658 ctx->va_range[HL_VA_RANGE_TYPE_HOST];
2659 }
2660
2661 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2662
2663 rc = va_range_init(hdev, va_ranges: ctx->va_range, range_type: HL_VA_RANGE_TYPE_DRAM,
2664 start: dram_range_start, end: dram_range_end, page_size: dram_page_size);
2665 if (rc) {
2666 dev_err(hdev->dev, "failed to init dram vm range\n");
2667 goto clear_host_huge_va_range;
2668 }
2669
2670 hl_debugfs_add_ctx_mem_hash(hdev, ctx);
2671
2672 return 0;
2673
2674clear_host_huge_va_range:
2675 mutex_destroy(lock: &ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2676
2677 if (hdev->pmmu_huge_range) {
2678 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2679 clear_va_list_locked(hdev,
2680 va_list: &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list);
2681 mutex_unlock(lock: &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2682 }
2683clear_host_va_range:
2684 if (hdev->pmmu_huge_range)
2685 mutex_destroy(lock: &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2686 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2687 clear_va_list_locked(hdev, va_list: &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list);
2688 mutex_unlock(lock: &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2689mmu_ctx_fini:
2690 mutex_destroy(lock: &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2691 mutex_destroy(lock: &ctx->mem_hash_lock);
2692 hl_mmu_ctx_fini(ctx);
2693free_va_range:
2694 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++)
2695 kfree(objp: ctx->va_range[i]);
2696
2697 return rc;
2698}
2699
2700int hl_vm_ctx_init(struct hl_ctx *ctx)
2701{
2702 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
2703 u64 host_range_start, host_range_end, host_huge_range_start,
2704 host_huge_range_end, dram_range_start, dram_range_end;
2705 u32 host_page_size, host_huge_page_size, dram_page_size;
2706
2707 atomic64_set(v: &ctx->dram_phys_mem, i: 0);
2708
2709 /*
2710 * In case of DRAM mapping, the returned address is the physical
2711 * address of the memory related to the given handle.
2712 */
2713 if (ctx->hdev->mmu_disable)
2714 return 0;
2715
2716 dram_range_start = prop->dmmu.start_addr;
2717 dram_range_end = prop->dmmu.end_addr - 1;
2718 dram_page_size = prop->dram_page_size ?
2719 prop->dram_page_size : prop->dmmu.page_size;
2720 host_range_start = prop->pmmu.start_addr;
2721 host_range_end = prop->pmmu.end_addr - 1;
2722 host_page_size = prop->pmmu.page_size;
2723 host_huge_range_start = prop->pmmu_huge.start_addr;
2724 host_huge_range_end = prop->pmmu_huge.end_addr - 1;
2725 host_huge_page_size = prop->pmmu_huge.page_size;
2726
2727 return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
2728 host_page_size, host_huge_range_start,
2729 host_huge_range_end, host_huge_page_size,
2730 dram_range_start, dram_range_end, dram_page_size);
2731}
2732
2733/**
2734 * hl_vm_ctx_fini() - virtual memory teardown of context.
2735 * @ctx: pointer to the habanalabs context structure.
2736 *
2737 * This function perform teardown the following:
2738 * - Virtual block list of available virtual memory.
2739 * - Virtual address to area descriptor hashtable.
2740 * - MMU for context.
2741 *
2742 * In addition this function does the following:
2743 * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
2744 * hashtable should be empty as no valid mappings should exist at this
2745 * point.
2746 * - Frees any existing physical page list from the idr which relates to the
2747 * current context asid.
2748 * - This function checks the virtual block list for correctness. At this point
2749 * the list should contain one element which describes the whole virtual
2750 * memory range of the context. Otherwise, a warning is printed.
2751 */
2752void hl_vm_ctx_fini(struct hl_ctx *ctx)
2753{
2754 struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node;
2755 struct hl_device *hdev = ctx->hdev;
2756 struct hl_vm_hash_node *hnode;
2757 struct hl_vm *vm = &hdev->vm;
2758 struct hlist_node *tmp_node;
2759 struct list_head free_list;
2760 struct hl_mem_in args;
2761 int i;
2762
2763 if (hdev->mmu_disable)
2764 return;
2765
2766 hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
2767
2768 /*
2769 * Clearly something went wrong on hard reset so no point in printing
2770 * another side effect error
2771 */
2772 if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash))
2773 dev_dbg(hdev->dev,
2774 "user released device without removing its memory mappings\n");
2775
2776 hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
2777 dev_dbg(hdev->dev,
2778 "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
2779 hnode->vaddr, ctx->asid);
2780 args.unmap.device_virt_addr = hnode->vaddr;
2781 unmap_device_va(ctx, args: &args, ctx_free: true);
2782 }
2783
2784 mutex_lock(&hdev->mmu_lock);
2785
2786 /* invalidate the cache once after the unmapping loop */
2787 hl_mmu_invalidate_cache(hdev, is_hard: true, flags: MMU_OP_USERPTR);
2788 hl_mmu_invalidate_cache(hdev, is_hard: true, flags: MMU_OP_PHYS_PACK);
2789
2790 mutex_unlock(lock: &hdev->mmu_lock);
2791
2792 INIT_LIST_HEAD(list: &free_list);
2793
2794 spin_lock(lock: &vm->idr_lock);
2795 idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
2796 if (phys_pg_list->asid == ctx->asid) {
2797 dev_dbg(hdev->dev,
2798 "page list 0x%px of asid %d is still alive\n",
2799 phys_pg_list, ctx->asid);
2800
2801 atomic64_sub(i: phys_pg_list->total_size, v: &hdev->dram_used_mem);
2802 idr_remove(&vm->phys_pg_pack_handles, id: i);
2803 list_add(new: &phys_pg_list->node, head: &free_list);
2804 }
2805 spin_unlock(lock: &vm->idr_lock);
2806
2807 list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node)
2808 free_phys_pg_pack(hdev, phys_pg_pack: phys_pg_list);
2809
2810 va_range_fini(hdev, va_range: ctx->va_range[HL_VA_RANGE_TYPE_DRAM]);
2811 va_range_fini(hdev, va_range: ctx->va_range[HL_VA_RANGE_TYPE_HOST]);
2812
2813 if (hdev->pmmu_huge_range)
2814 va_range_fini(hdev, va_range: ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2815
2816 mutex_destroy(lock: &ctx->mem_hash_lock);
2817 hl_mmu_ctx_fini(ctx);
2818
2819 /* In this case we need to clear the global accounting of DRAM usage
2820 * because the user notifies us on allocations. If the user is no more,
2821 * all DRAM is available
2822 */
2823 if (ctx->asid != HL_KERNEL_ASID_ID &&
2824 !hdev->asic_prop.dram_supports_virtual_memory)
2825 atomic64_set(v: &hdev->dram_used_mem, i: 0);
2826}
2827
2828/**
2829 * hl_vm_init() - initialize virtual memory module.
2830 * @hdev: pointer to the habanalabs device structure.
2831 *
2832 * This function initializes the following:
2833 * - MMU module.
2834 * - DRAM physical pages pool of 2MB.
2835 * - Idr for device memory allocation handles.
2836 */
2837int hl_vm_init(struct hl_device *hdev)
2838{
2839 struct asic_fixed_properties *prop = &hdev->asic_prop;
2840 struct hl_vm *vm = &hdev->vm;
2841 int rc;
2842
2843 if (is_power_of_2(n: prop->dram_page_size))
2844 vm->dram_pg_pool =
2845 gen_pool_create(__ffs(prop->dram_page_size), -1);
2846 else
2847 vm->dram_pg_pool =
2848 gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1);
2849
2850 if (!vm->dram_pg_pool) {
2851 dev_err(hdev->dev, "Failed to create dram page pool\n");
2852 return -ENOMEM;
2853 }
2854
2855 kref_init(kref: &vm->dram_pg_pool_refcount);
2856
2857 rc = gen_pool_add(pool: vm->dram_pg_pool, addr: prop->dram_user_base_address,
2858 size: prop->dram_end_address - prop->dram_user_base_address,
2859 nid: -1);
2860
2861 if (rc) {
2862 dev_err(hdev->dev,
2863 "Failed to add memory to dram page pool %d\n", rc);
2864 goto pool_add_err;
2865 }
2866
2867 spin_lock_init(&vm->idr_lock);
2868 idr_init(idr: &vm->phys_pg_pack_handles);
2869
2870 atomic64_set(v: &hdev->dram_used_mem, i: 0);
2871
2872 vm->init_done = true;
2873
2874 return 0;
2875
2876pool_add_err:
2877 gen_pool_destroy(vm->dram_pg_pool);
2878
2879 return rc;
2880}
2881
2882/**
2883 * hl_vm_fini() - virtual memory module teardown.
2884 * @hdev: pointer to the habanalabs device structure.
2885 *
2886 * This function perform teardown to the following:
2887 * - Idr for device memory allocation handles.
2888 * - DRAM physical pages pool of 2MB.
2889 * - MMU module.
2890 */
2891void hl_vm_fini(struct hl_device *hdev)
2892{
2893 struct hl_vm *vm = &hdev->vm;
2894
2895 if (!vm->init_done)
2896 return;
2897
2898 /*
2899 * At this point all the contexts should be freed and hence no DRAM
2900 * memory should be in use. Hence the DRAM pool should be freed here.
2901 */
2902 if (kref_put(kref: &vm->dram_pg_pool_refcount, release: dram_pg_pool_do_release) != 1)
2903 dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
2904 __func__);
2905
2906 vm->init_done = false;
2907}
2908
2909/**
2910 * hl_hw_block_mem_init() - HW block memory initialization.
2911 * @ctx: pointer to the habanalabs context structure.
2912 *
2913 * This function initializes the HW block virtual mapped addresses list and
2914 * it's lock.
2915 */
2916void hl_hw_block_mem_init(struct hl_ctx *ctx)
2917{
2918 mutex_init(&ctx->hw_block_list_lock);
2919 INIT_LIST_HEAD(list: &ctx->hw_block_mem_list);
2920}
2921
2922/**
2923 * hl_hw_block_mem_fini() - HW block memory teardown.
2924 * @ctx: pointer to the habanalabs context structure.
2925 *
2926 * This function clears the HW block virtual mapped addresses list and destroys
2927 * it's lock.
2928 */
2929void hl_hw_block_mem_fini(struct hl_ctx *ctx)
2930{
2931 struct hl_vm_hw_block_list_node *lnode, *tmp;
2932
2933 if (!list_empty(head: &ctx->hw_block_mem_list))
2934 dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n");
2935
2936 list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) {
2937 list_del(entry: &lnode->node);
2938 kfree(objp: lnode);
2939 }
2940
2941 mutex_destroy(lock: &ctx->hw_block_list_lock);
2942}
2943

source code of linux/drivers/accel/habanalabs/common/memory.c