1/*
2 * Copyright 2020 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26#include "dccg.h"
27#include "clk_mgr_internal.h"
28
29// For dce12_get_dp_ref_freq_khz
30#include "dce100/dce_clk_mgr.h"
31
32// For dcn20_update_clocks_update_dpp_dto
33#include "dcn20/dcn20_clk_mgr.h"
34
35// For DML FPU code
36#include "dml/dcn20/dcn20_fpu.h"
37
38#include "vg_clk_mgr.h"
39#include "dcn301_smu.h"
40#include "reg_helper.h"
41#include "core_types.h"
42#include "dm_helpers.h"
43
44#include "atomfirmware.h"
45#include "vangogh_ip_offset.h"
46#include "clk/clk_11_5_0_offset.h"
47#include "clk/clk_11_5_0_sh_mask.h"
48
49/* Constants */
50
51#define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
52
53/* Macros */
54
55#define TO_CLK_MGR_VGH(clk_mgr)\
56 container_of(clk_mgr, struct clk_mgr_vgh, base)
57
58#define REG(reg_name) \
59 (CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
60
61/* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
62static int vg_get_active_display_cnt_wa(
63 struct dc *dc,
64 struct dc_state *context)
65{
66 int i, display_count;
67 bool tmds_present = false;
68
69 display_count = 0;
70 for (i = 0; i < context->stream_count; i++) {
71 const struct dc_stream_state *stream = context->streams[i];
72
73 if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
74 stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
75 stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
76 tmds_present = true;
77 }
78
79 for (i = 0; i < dc->link_count; i++) {
80 const struct dc_link *link = dc->links[i];
81
82 /* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
83 if (link->link_enc->funcs->is_dig_enabled &&
84 link->link_enc->funcs->is_dig_enabled(link->link_enc))
85 display_count++;
86 }
87
88 /* WA for hang on HDMI after display off back back on*/
89 if (display_count == 0 && tmds_present)
90 display_count = 1;
91
92 return display_count;
93}
94
95static void vg_update_clocks(struct clk_mgr *clk_mgr_base,
96 struct dc_state *context,
97 bool safe_to_lower)
98{
99 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
100 struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
101 struct dc *dc = clk_mgr_base->ctx->dc;
102 int display_count;
103 bool update_dppclk = false;
104 bool update_dispclk = false;
105 bool dpp_clock_lowered = false;
106
107 if (dc->work_arounds.skip_clock_update)
108 return;
109
110 /*
111 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
112 * also if safe to lower is false, we just go in the higher state
113 */
114 if (safe_to_lower) {
115 /* check that we're not already in lower */
116 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
117
118 display_count = vg_get_active_display_cnt_wa(dc, context);
119 /* if we can go lower, go lower */
120 if (display_count == 0) {
121 union display_idle_optimization_u idle_info = { 0 };
122
123 idle_info.idle_info.df_request_disabled = 1;
124 idle_info.idle_info.phy_ref_clk_off = 1;
125
126 dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info: idle_info.data);
127 /* update power state */
128 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
129 }
130 }
131 } else {
132 /* check that we're not already in D0 */
133 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
134 union display_idle_optimization_u idle_info = { 0 };
135
136 dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info: idle_info.data);
137 /* update power state */
138 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
139 }
140 }
141
142 if (should_set_clock(safe_to_lower, calc_clk: new_clocks->dcfclk_khz, cur_clk: clk_mgr_base->clks.dcfclk_khz) && !dc->debug.disable_min_fclk) {
143 clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
144 dcn301_smu_set_hard_min_dcfclk(clk_mgr, requested_dcfclk_khz: clk_mgr_base->clks.dcfclk_khz);
145 }
146
147 if (should_set_clock(safe_to_lower,
148 calc_clk: new_clocks->dcfclk_deep_sleep_khz, cur_clk: clk_mgr_base->clks.dcfclk_deep_sleep_khz) && !dc->debug.disable_min_fclk) {
149 clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
150 dcn301_smu_set_min_deep_sleep_dcfclk(clk_mgr, requested_min_ds_dcfclk_khz: clk_mgr_base->clks.dcfclk_deep_sleep_khz);
151 }
152
153 // workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
154 if (new_clocks->dppclk_khz < 100000)
155 new_clocks->dppclk_khz = 100000;
156
157 if (should_set_clock(safe_to_lower, calc_clk: new_clocks->dppclk_khz, cur_clk: clk_mgr->base.clks.dppclk_khz)) {
158 if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
159 dpp_clock_lowered = true;
160 clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
161 update_dppclk = true;
162 }
163
164 if (should_set_clock(safe_to_lower, calc_clk: new_clocks->dispclk_khz, cur_clk: clk_mgr_base->clks.dispclk_khz)) {
165 clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
166 dcn301_smu_set_dispclk(clk_mgr, requested_dispclk_khz: clk_mgr_base->clks.dispclk_khz);
167
168 update_dispclk = true;
169 }
170
171 if (dpp_clock_lowered) {
172 // increase per DPP DTO before lowering global dppclk
173 dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
174 dcn301_smu_set_dppclk(clk_mgr, requested_dpp_khz: clk_mgr_base->clks.dppclk_khz);
175 } else {
176 // increase global DPPCLK before lowering per DPP DTO
177 if (update_dppclk || update_dispclk)
178 dcn301_smu_set_dppclk(clk_mgr, requested_dpp_khz: clk_mgr_base->clks.dppclk_khz);
179 // always update dtos unless clock is lowered and not safe to lower
180 dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
181 }
182}
183
184
185static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
186{
187 /* get FbMult value */
188 struct fixed31_32 pll_req;
189 unsigned int fbmult_frac_val = 0;
190 unsigned int fbmult_int_val = 0;
191
192
193 /*
194 * Register value of fbmult is in 8.16 format, we are converting to 31.32
195 * to leverage the fix point operations available in driver
196 */
197
198 REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
199 REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
200
201 pll_req = dc_fixpt_from_int(arg: fbmult_int_val);
202
203 /*
204 * since fractional part is only 16 bit in register definition but is 32 bit
205 * in our fix point definiton, need to shift left by 16 to obtain correct value
206 */
207 pll_req.value |= fbmult_frac_val << 16;
208
209 /* multiply by REFCLK period */
210 pll_req = dc_fixpt_mul_int(arg1: pll_req, arg2: clk_mgr->dfs_ref_freq_khz);
211
212 /* integer part is now VCO frequency in kHz */
213 return dc_fixpt_floor(arg: pll_req);
214}
215
216static void vg_dump_clk_registers_internal(struct dcn301_clk_internal *internal, struct clk_mgr *clk_mgr_base)
217{
218 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
219
220 internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK3_CURRENT_CNT);
221 internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_BYPASS_CNTL);
222
223 internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_DS_CNTL); //dcf deep sleep divider
224 internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_0_CLK1_CLK3_ALLOW_DS);
225
226 internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK1_CURRENT_CNT);
227 internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK1_BYPASS_CNTL);
228
229 internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK2_CURRENT_CNT);
230 internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK2_BYPASS_CNTL);
231
232 internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK0_CURRENT_CNT);
233 internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK0_BYPASS_CNTL);
234}
235
236/* This function collect raw clk register values */
237static void vg_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
238 struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
239{
240 struct dcn301_clk_internal internal = {0};
241 char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
242 unsigned int chars_printed = 0;
243 unsigned int remaining_buffer = log_info->bufSize;
244
245 vg_dump_clk_registers_internal(internal: &internal, clk_mgr_base);
246
247 regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
248 regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
249 regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
250 regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
251 regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
252 regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
253
254 regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
255 if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
256 regs_and_bypass->dppclk_bypass = 0;
257 regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
258 if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
259 regs_and_bypass->dcfclk_bypass = 0;
260 regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
261 if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
262 regs_and_bypass->dispclk_bypass = 0;
263 regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
264 if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
265 regs_and_bypass->dprefclk_bypass = 0;
266
267 if (log_info->enabled) {
268 chars_printed = snprintf_count(pBuf: log_info->pBuf, bufSize: remaining_buffer, fmt: "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
269 remaining_buffer -= chars_printed;
270 *log_info->sum_chars_printed += chars_printed;
271 log_info->pBuf += chars_printed;
272
273 chars_printed = snprintf_count(pBuf: log_info->pBuf, bufSize: remaining_buffer, fmt: "dcfclk,%d,%d,%d,%s\n",
274 regs_and_bypass->dcfclk,
275 regs_and_bypass->dcf_deep_sleep_divider,
276 regs_and_bypass->dcf_deep_sleep_allow,
277 bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
278 remaining_buffer -= chars_printed;
279 *log_info->sum_chars_printed += chars_printed;
280 log_info->pBuf += chars_printed;
281
282 chars_printed = snprintf_count(pBuf: log_info->pBuf, bufSize: remaining_buffer, fmt: "dprefclk,%d,N/A,N/A,%s\n",
283 regs_and_bypass->dprefclk,
284 bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
285 remaining_buffer -= chars_printed;
286 *log_info->sum_chars_printed += chars_printed;
287 log_info->pBuf += chars_printed;
288
289 chars_printed = snprintf_count(pBuf: log_info->pBuf, bufSize: remaining_buffer, fmt: "dispclk,%d,N/A,N/A,%s\n",
290 regs_and_bypass->dispclk,
291 bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
292 remaining_buffer -= chars_printed;
293 *log_info->sum_chars_printed += chars_printed;
294 log_info->pBuf += chars_printed;
295
296 //split
297 chars_printed = snprintf_count(pBuf: log_info->pBuf, bufSize: remaining_buffer, fmt: "SPLIT\n");
298 remaining_buffer -= chars_printed;
299 *log_info->sum_chars_printed += chars_printed;
300 log_info->pBuf += chars_printed;
301
302 // REGISTER VALUES
303 chars_printed = snprintf_count(pBuf: log_info->pBuf, bufSize: remaining_buffer, fmt: "reg_name,value,clk_type\n");
304 remaining_buffer -= chars_printed;
305 *log_info->sum_chars_printed += chars_printed;
306 log_info->pBuf += chars_printed;
307
308 chars_printed = snprintf_count(pBuf: log_info->pBuf, bufSize: remaining_buffer, fmt: "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
309 internal.CLK1_CLK3_CURRENT_CNT);
310 remaining_buffer -= chars_printed;
311 *log_info->sum_chars_printed += chars_printed;
312 log_info->pBuf += chars_printed;
313
314 chars_printed = snprintf_count(pBuf: log_info->pBuf, bufSize: remaining_buffer, fmt: "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
315 internal.CLK1_CLK3_DS_CNTL);
316 remaining_buffer -= chars_printed;
317 *log_info->sum_chars_printed += chars_printed;
318 log_info->pBuf += chars_printed;
319
320 chars_printed = snprintf_count(pBuf: log_info->pBuf, bufSize: remaining_buffer, fmt: "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
321 internal.CLK1_CLK3_ALLOW_DS);
322 remaining_buffer -= chars_printed;
323 *log_info->sum_chars_printed += chars_printed;
324 log_info->pBuf += chars_printed;
325
326 chars_printed = snprintf_count(pBuf: log_info->pBuf, bufSize: remaining_buffer, fmt: "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
327 internal.CLK1_CLK2_CURRENT_CNT);
328 remaining_buffer -= chars_printed;
329 *log_info->sum_chars_printed += chars_printed;
330 log_info->pBuf += chars_printed;
331
332 chars_printed = snprintf_count(pBuf: log_info->pBuf, bufSize: remaining_buffer, fmt: "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
333 internal.CLK1_CLK0_CURRENT_CNT);
334 remaining_buffer -= chars_printed;
335 *log_info->sum_chars_printed += chars_printed;
336 log_info->pBuf += chars_printed;
337
338 chars_printed = snprintf_count(pBuf: log_info->pBuf, bufSize: remaining_buffer, fmt: "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
339 internal.CLK1_CLK1_CURRENT_CNT);
340 remaining_buffer -= chars_printed;
341 *log_info->sum_chars_printed += chars_printed;
342 log_info->pBuf += chars_printed;
343
344 chars_printed = snprintf_count(pBuf: log_info->pBuf, bufSize: remaining_buffer, fmt: "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
345 internal.CLK1_CLK3_BYPASS_CNTL);
346 remaining_buffer -= chars_printed;
347 *log_info->sum_chars_printed += chars_printed;
348 log_info->pBuf += chars_printed;
349
350 chars_printed = snprintf_count(pBuf: log_info->pBuf, bufSize: remaining_buffer, fmt: "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
351 internal.CLK1_CLK2_BYPASS_CNTL);
352 remaining_buffer -= chars_printed;
353 *log_info->sum_chars_printed += chars_printed;
354 log_info->pBuf += chars_printed;
355
356 chars_printed = snprintf_count(pBuf: log_info->pBuf, bufSize: remaining_buffer, fmt: "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
357 internal.CLK1_CLK0_BYPASS_CNTL);
358 remaining_buffer -= chars_printed;
359 *log_info->sum_chars_printed += chars_printed;
360 log_info->pBuf += chars_printed;
361
362 chars_printed = snprintf_count(pBuf: log_info->pBuf, bufSize: remaining_buffer, fmt: "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
363 internal.CLK1_CLK1_BYPASS_CNTL);
364 remaining_buffer -= chars_printed;
365 *log_info->sum_chars_printed += chars_printed;
366 log_info->pBuf += chars_printed;
367 }
368}
369
370static void vg_enable_pme_wa(struct clk_mgr *clk_mgr_base)
371{
372 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
373
374 dcn301_smu_enable_pme_wa(clk_mgr);
375}
376
377static void vg_init_clocks(struct clk_mgr *clk_mgr)
378{
379 memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
380 // Assumption is that boot state always supports pstate
381 clk_mgr->clks.p_state_change_support = true;
382 clk_mgr->clks.prev_p_state_change_support = true;
383 clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
384}
385
386static void vg_build_watermark_ranges(struct clk_bw_params *bw_params, struct watermarks *table)
387{
388 int i, num_valid_sets;
389
390 num_valid_sets = 0;
391
392 for (i = 0; i < WM_SET_COUNT; i++) {
393 /* skip empty entries, the smu array has no holes*/
394 if (!bw_params->wm_table.entries[i].valid)
395 continue;
396
397 table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
398 table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
399 /* We will not select WM based on fclk, so leave it as unconstrained */
400 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
401 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
402
403 if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
404 if (i == 0)
405 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
406 else {
407 /* add 1 to make it non-overlapping with next lvl */
408 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
409 bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
410 }
411 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
412 bw_params->clk_table.entries[i].dcfclk_mhz;
413
414 } else {
415 /* unconstrained for memory retraining */
416 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
417 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
418
419 /* Modify previous watermark range to cover up to max */
420 table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
421 }
422 num_valid_sets++;
423 }
424
425 ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
426
427 /* modify the min and max to make sure we cover the whole range*/
428 table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
429 table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
430 table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
431 table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
432
433 /* This is for writeback only, does not matter currently as no writeback support*/
434 table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
435 table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
436 table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
437 table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
438 table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
439}
440
441
442static void vg_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
443{
444 struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
445 struct clk_mgr_vgh *clk_mgr_vgh = TO_CLK_MGR_VGH(clk_mgr);
446 struct watermarks *table = clk_mgr_vgh->smu_wm_set.wm_set;
447
448 if (!clk_mgr->smu_ver)
449 return;
450
451 if (!table || clk_mgr_vgh->smu_wm_set.mc_address.quad_part == 0)
452 return;
453
454 memset(table, 0, sizeof(*table));
455
456 vg_build_watermark_ranges(bw_params: clk_mgr_base->bw_params, table);
457
458 dcn301_smu_set_dram_addr_high(clk_mgr,
459 addr_high: clk_mgr_vgh->smu_wm_set.mc_address.high_part);
460 dcn301_smu_set_dram_addr_low(clk_mgr,
461 addr_low: clk_mgr_vgh->smu_wm_set.mc_address.low_part);
462 dcn301_smu_transfer_wm_table_dram_2_smu(clk_mgr);
463}
464
465static bool vg_are_clock_states_equal(struct dc_clocks *a,
466 struct dc_clocks *b)
467{
468 if (a->dispclk_khz != b->dispclk_khz)
469 return false;
470 else if (a->dppclk_khz != b->dppclk_khz)
471 return false;
472 else if (a->dcfclk_khz != b->dcfclk_khz)
473 return false;
474 else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
475 return false;
476
477 return true;
478}
479
480
481static struct clk_mgr_funcs vg_funcs = {
482 .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
483 .update_clocks = vg_update_clocks,
484 .init_clocks = vg_init_clocks,
485 .enable_pme_wa = vg_enable_pme_wa,
486 .are_clock_states_equal = vg_are_clock_states_equal,
487 .notify_wm_ranges = vg_notify_wm_ranges
488};
489
490static struct clk_bw_params vg_bw_params = {
491 .vram_type = Ddr4MemType,
492 .num_channels = 1,
493 .clk_table = {
494 .entries = {
495 {
496 .voltage = 0,
497 .dcfclk_mhz = 400,
498 .fclk_mhz = 400,
499 .memclk_mhz = 800,
500 .socclk_mhz = 0,
501 },
502 {
503 .voltage = 0,
504 .dcfclk_mhz = 483,
505 .fclk_mhz = 800,
506 .memclk_mhz = 1600,
507 .socclk_mhz = 0,
508 },
509 {
510 .voltage = 0,
511 .dcfclk_mhz = 602,
512 .fclk_mhz = 1067,
513 .memclk_mhz = 1067,
514 .socclk_mhz = 0,
515 },
516 {
517 .voltage = 0,
518 .dcfclk_mhz = 738,
519 .fclk_mhz = 1333,
520 .memclk_mhz = 1600,
521 .socclk_mhz = 0,
522 },
523 },
524
525 .num_entries = 4,
526 },
527
528};
529
530static uint32_t find_max_clk_value(const uint32_t clocks[], uint32_t num_clocks)
531{
532 uint32_t max = 0;
533 int i;
534
535 for (i = 0; i < num_clocks; ++i) {
536 if (clocks[i] > max)
537 max = clocks[i];
538 }
539
540 return max;
541}
542
543static unsigned int find_dcfclk_for_voltage(const struct vg_dpm_clocks *clock_table,
544 unsigned int voltage)
545{
546 int i;
547
548 for (i = 0; i < VG_NUM_SOC_VOLTAGE_LEVELS; i++) {
549 if (i >= VG_NUM_DCFCLK_DPM_LEVELS)
550 break;
551 if (clock_table->SocVoltage[i] == voltage)
552 return clock_table->DcfClocks[i];
553 }
554
555 ASSERT(0);
556 return 0;
557}
558
559static void vg_clk_mgr_helper_populate_bw_params(
560 struct clk_mgr_internal *clk_mgr,
561 struct integrated_info *bios_info,
562 const struct vg_dpm_clocks *clock_table)
563{
564 int i, j;
565 struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
566
567 j = -1;
568
569 ASSERT(VG_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
570
571 /* Find lowest DPM, FCLK is filled in reverse order*/
572
573 for (i = VG_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
574 if (clock_table->DfPstateTable[i].fclk != 0) {
575 j = i;
576 break;
577 }
578 }
579
580 if (j == -1) {
581 /* clock table is all 0s, just use our own hardcode */
582 ASSERT(0);
583 return;
584 }
585
586 bw_params->clk_table.num_entries = j + 1;
587
588 for (i = 0; i < bw_params->clk_table.num_entries - 1; i++, j--) {
589 bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].fclk;
590 bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].memclk;
591 bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].voltage;
592 bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, voltage: clock_table->DfPstateTable[j].voltage);
593 }
594 bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].fclk;
595 bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].memclk;
596 bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].voltage;
597 bw_params->clk_table.entries[i].dcfclk_mhz = find_max_clk_value(clocks: clock_table->DcfClocks, VG_NUM_DCFCLK_DPM_LEVELS);
598
599 bw_params->vram_type = bios_info->memory_type;
600 bw_params->num_channels = bios_info->ma_channel_number;
601
602 for (i = 0; i < WM_SET_COUNT; i++) {
603 bw_params->wm_table.entries[i].wm_inst = i;
604
605 if (i >= bw_params->clk_table.num_entries) {
606 bw_params->wm_table.entries[i].valid = false;
607 continue;
608 }
609
610 bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
611 bw_params->wm_table.entries[i].valid = true;
612 }
613
614 if (bw_params->vram_type == LpDdr4MemType) {
615 /*
616 * WM set D will be re-purposed for memory retraining
617 */
618 DC_FP_START();
619 dcn21_clk_mgr_set_bw_params_wm_table(bw_params);
620 DC_FP_END();
621 }
622
623}
624
625/* Temporary Place holder until we can get them from fuse */
626static struct vg_dpm_clocks dummy_clocks = {
627 .DcfClocks = { 201, 403, 403, 403, 403, 403, 403 },
628 .SocClocks = { 400, 600, 600, 600, 600, 600, 600 },
629 .SocVoltage = { 2800, 2860, 2860, 2860, 2860, 2860, 2860, 2860 },
630 .DfPstateTable = {
631 { .fclk = 400, .memclk = 400, .voltage = 2800 },
632 { .fclk = 400, .memclk = 400, .voltage = 2800 },
633 { .fclk = 400, .memclk = 400, .voltage = 2800 },
634 { .fclk = 400, .memclk = 400, .voltage = 2800 }
635 }
636};
637
638static struct watermarks dummy_wms = { 0 };
639
640static void vg_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
641 struct smu_dpm_clks *smu_dpm_clks)
642{
643 struct vg_dpm_clocks *table = smu_dpm_clks->dpm_clks;
644
645 if (!clk_mgr->smu_ver)
646 return;
647
648 if (!table || smu_dpm_clks->mc_address.quad_part == 0)
649 return;
650
651 memset(table, 0, sizeof(*table));
652
653 dcn301_smu_set_dram_addr_high(clk_mgr,
654 addr_high: smu_dpm_clks->mc_address.high_part);
655 dcn301_smu_set_dram_addr_low(clk_mgr,
656 addr_low: smu_dpm_clks->mc_address.low_part);
657 dcn301_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
658}
659
660void vg_clk_mgr_construct(
661 struct dc_context *ctx,
662 struct clk_mgr_vgh *clk_mgr,
663 struct pp_smu_funcs *pp_smu,
664 struct dccg *dccg)
665{
666 struct smu_dpm_clks smu_dpm_clks = { 0 };
667 struct clk_log_info log_info = {0};
668
669 clk_mgr->base.base.ctx = ctx;
670 clk_mgr->base.base.funcs = &vg_funcs;
671
672 clk_mgr->base.pp_smu = pp_smu;
673
674 clk_mgr->base.dccg = dccg;
675 clk_mgr->base.dfs_bypass_disp_clk = 0;
676
677 clk_mgr->base.dprefclk_ss_percentage = 0;
678 clk_mgr->base.dprefclk_ss_divider = 1000;
679 clk_mgr->base.ss_on_dprefclk = false;
680 clk_mgr->base.dfs_ref_freq_khz = 48000;
681
682 clk_mgr->smu_wm_set.wm_set = (struct watermarks *)dm_helpers_allocate_gpu_mem(
683 ctx: clk_mgr->base.base.ctx,
684 type: DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
685 size: sizeof(struct watermarks),
686 addr: &clk_mgr->smu_wm_set.mc_address.quad_part);
687
688 if (!clk_mgr->smu_wm_set.wm_set) {
689 clk_mgr->smu_wm_set.wm_set = &dummy_wms;
690 clk_mgr->smu_wm_set.mc_address.quad_part = 0;
691 }
692 ASSERT(clk_mgr->smu_wm_set.wm_set);
693
694 smu_dpm_clks.dpm_clks = (struct vg_dpm_clocks *)dm_helpers_allocate_gpu_mem(
695 ctx: clk_mgr->base.base.ctx,
696 type: DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
697 size: sizeof(struct vg_dpm_clocks),
698 addr: &smu_dpm_clks.mc_address.quad_part);
699
700 if (smu_dpm_clks.dpm_clks == NULL) {
701 smu_dpm_clks.dpm_clks = &dummy_clocks;
702 smu_dpm_clks.mc_address.quad_part = 0;
703 }
704
705 ASSERT(smu_dpm_clks.dpm_clks);
706
707 clk_mgr->base.smu_ver = dcn301_smu_get_smu_version(clk_mgr: &clk_mgr->base);
708
709 if (clk_mgr->base.smu_ver)
710 clk_mgr->base.smu_present = true;
711
712 /* TODO: Check we get what we expect during bringup */
713 clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr: &clk_mgr->base);
714
715 /* in case we don't get a value from the register, use default */
716 if (clk_mgr->base.base.dentist_vco_freq_khz == 0)
717 clk_mgr->base.base.dentist_vco_freq_khz = 3600000;
718
719 if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) {
720 vg_bw_params.wm_table = lpddr5_wm_table;
721 } else {
722 vg_bw_params.wm_table = ddr4_wm_table;
723 }
724 /* Saved clocks configured at boot for debug purposes */
725 vg_dump_clk_registers(regs_and_bypass: &clk_mgr->base.base.boot_snapshot, clk_mgr_base: &clk_mgr->base.base, log_info: &log_info);
726
727 clk_mgr->base.base.dprefclk_khz = 600000;
728 dce_clock_read_ss_info(dccg_dce: &clk_mgr->base);
729
730 clk_mgr->base.base.bw_params = &vg_bw_params;
731
732 vg_get_dpm_table_from_smu(clk_mgr: &clk_mgr->base, smu_dpm_clks: &smu_dpm_clks);
733 if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
734 vg_clk_mgr_helper_populate_bw_params(
735 clk_mgr: &clk_mgr->base,
736 bios_info: ctx->dc_bios->integrated_info,
737 clock_table: smu_dpm_clks.dpm_clks);
738 }
739
740 if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
741 dm_helpers_free_gpu_mem(ctx: clk_mgr->base.base.ctx, type: DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
742 pvMem: smu_dpm_clks.dpm_clks);
743}
744
745void vg_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int)
746{
747 struct clk_mgr_vgh *clk_mgr = TO_CLK_MGR_VGH(clk_mgr_int);
748
749 if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0)
750 dm_helpers_free_gpu_mem(ctx: clk_mgr_int->base.ctx, type: DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
751 pvMem: clk_mgr->smu_wm_set.wm_set);
752}
753

source code of linux/drivers/gpu/drm/amd/display/dc/clk_mgr/dcn301/vg_clk_mgr.c