1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2014-2018 Intel Corporation
4 */
5
6#include "i915_drv.h"
7#include "i915_reg.h"
8#include "intel_context.h"
9#include "intel_engine_pm.h"
10#include "intel_engine_regs.h"
11#include "intel_gpu_commands.h"
12#include "intel_gt.h"
13#include "intel_gt_ccs_mode.h"
14#include "intel_gt_mcr.h"
15#include "intel_gt_print.h"
16#include "intel_gt_regs.h"
17#include "intel_ring.h"
18#include "intel_workarounds.h"
19
20/**
21 * DOC: Hardware workarounds
22 *
23 * Hardware workarounds are register programming documented to be executed in
24 * the driver that fall outside of the normal programming sequences for a
25 * platform. There are some basic categories of workarounds, depending on
26 * how/when they are applied:
27 *
28 * - Context workarounds: workarounds that touch registers that are
29 * saved/restored to/from the HW context image. The list is emitted (via Load
30 * Register Immediate commands) once when initializing the device and saved in
31 * the default context. That default context is then used on every context
32 * creation to have a "primed golden context", i.e. a context image that
33 * already contains the changes needed to all the registers.
34 *
35 * Context workarounds should be implemented in the \*_ctx_workarounds_init()
36 * variants respective to the targeted platforms.
37 *
38 * - Engine workarounds: the list of these WAs is applied whenever the specific
39 * engine is reset. It's also possible that a set of engine classes share a
40 * common power domain and they are reset together. This happens on some
41 * platforms with render and compute engines. In this case (at least) one of
42 * them need to keeep the workaround programming: the approach taken in the
43 * driver is to tie those workarounds to the first compute/render engine that
44 * is registered. When executing with GuC submission, engine resets are
45 * outside of kernel driver control, hence the list of registers involved in
46 * written once, on engine initialization, and then passed to GuC, that
47 * saves/restores their values before/after the reset takes place. See
48 * ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
49 *
50 * Workarounds for registers specific to RCS and CCS should be implemented in
51 * rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
52 * registers belonging to BCS, VCS or VECS should be implemented in
53 * xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
54 * engine's MMIO range but that are part of of the common RCS/CCS reset domain
55 * should be implemented in general_render_compute_wa_init(). The settings
56 * about the CCS load balancing should be added in ccs_engine_wa_mode().
57 *
58 * - GT workarounds: the list of these WAs is applied whenever these registers
59 * revert to their default values: on GPU reset, suspend/resume [1]_, etc.
60 *
61 * GT workarounds should be implemented in the \*_gt_workarounds_init()
62 * variants respective to the targeted platforms.
63 *
64 * - Register whitelist: some workarounds need to be implemented in userspace,
65 * but need to touch privileged registers. The whitelist in the kernel
66 * instructs the hardware to allow the access to happen. From the kernel side,
67 * this is just a special case of a MMIO workaround (as we write the list of
68 * these to/be-whitelisted registers to some special HW registers).
69 *
70 * Register whitelisting should be done in the \*_whitelist_build() variants
71 * respective to the targeted platforms.
72 *
73 * - Workaround batchbuffers: buffers that get executed automatically by the
74 * hardware on every HW context restore. These buffers are created and
75 * programmed in the default context so the hardware always go through those
76 * programming sequences when switching contexts. The support for workaround
77 * batchbuffers is enabled these hardware mechanisms:
78 *
79 * #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
80 * context, pointing the hardware to jump to that location when that offset
81 * is reached in the context restore. Workaround batchbuffer in the driver
82 * currently uses this mechanism for all platforms.
83 *
84 * #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
85 * pointing the hardware to a buffer to continue executing after the
86 * engine registers are restored in a context restore sequence. This is
87 * currently not used in the driver.
88 *
89 * - Other: There are WAs that, due to their nature, cannot be applied from a
90 * central place. Those are peppered around the rest of the code, as needed.
91 * Workarounds related to the display IP are the main example.
92 *
93 * .. [1] Technically, some registers are powercontext saved & restored, so they
94 * survive a suspend/resume. In practice, writing them again is not too
95 * costly and simplifies things, so it's the approach taken in the driver.
96 */
97
98static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
99 const char *name, const char *engine_name)
100{
101 wal->gt = gt;
102 wal->name = name;
103 wal->engine_name = engine_name;
104}
105
106#define WA_LIST_CHUNK (1 << 4)
107
108static void wa_init_finish(struct i915_wa_list *wal)
109{
110 /* Trim unused entries. */
111 if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
112 struct i915_wa *list = kmemdup(p: wal->list,
113 size: wal->count * sizeof(*list),
114 GFP_KERNEL);
115
116 if (list) {
117 kfree(objp: wal->list);
118 wal->list = list;
119 }
120 }
121
122 if (!wal->count)
123 return;
124
125 gt_dbg(wal->gt, "Initialized %u %s workarounds on %s\n",
126 wal->wa_count, wal->name, wal->engine_name);
127}
128
129static enum forcewake_domains
130wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
131{
132 enum forcewake_domains fw = 0;
133 struct i915_wa *wa;
134 unsigned int i;
135
136 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
137 fw |= intel_uncore_forcewake_for_reg(uncore,
138 reg: wa->reg,
139 FW_REG_READ |
140 FW_REG_WRITE);
141
142 return fw;
143}
144
145static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
146{
147 unsigned int addr = i915_mmio_reg_offset(wa->reg);
148 struct drm_i915_private *i915 = wal->gt->i915;
149 unsigned int start = 0, end = wal->count;
150 const unsigned int grow = WA_LIST_CHUNK;
151 struct i915_wa *wa_;
152
153 GEM_BUG_ON(!is_power_of_2(grow));
154
155 if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
156 struct i915_wa *list;
157
158 list = kmalloc_array(ALIGN(wal->count + 1, grow), size: sizeof(*wa),
159 GFP_KERNEL);
160 if (!list) {
161 drm_err(&i915->drm, "No space for workaround init!\n");
162 return;
163 }
164
165 if (wal->list) {
166 memcpy(list, wal->list, sizeof(*wa) * wal->count);
167 kfree(objp: wal->list);
168 }
169
170 wal->list = list;
171 }
172
173 while (start < end) {
174 unsigned int mid = start + (end - start) / 2;
175
176 if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
177 start = mid + 1;
178 } else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
179 end = mid;
180 } else {
181 wa_ = &wal->list[mid];
182
183 if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
184 drm_err(&i915->drm,
185 "Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
186 i915_mmio_reg_offset(wa_->reg),
187 wa_->clr, wa_->set);
188
189 wa_->set &= ~wa->clr;
190 }
191
192 wal->wa_count++;
193 wa_->set |= wa->set;
194 wa_->clr |= wa->clr;
195 wa_->read |= wa->read;
196 return;
197 }
198 }
199
200 wal->wa_count++;
201 wa_ = &wal->list[wal->count++];
202 *wa_ = *wa;
203
204 while (wa_-- > wal->list) {
205 GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
206 i915_mmio_reg_offset(wa_[1].reg));
207 if (i915_mmio_reg_offset(wa_[1].reg) >
208 i915_mmio_reg_offset(wa_[0].reg))
209 break;
210
211 swap(wa_[1], wa_[0]);
212 }
213}
214
215static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
216 u32 clear, u32 set, u32 read_mask, bool masked_reg)
217{
218 struct i915_wa wa = {
219 .reg = reg,
220 .clr = clear,
221 .set = set,
222 .read = read_mask,
223 .masked_reg = masked_reg,
224 };
225
226 _wa_add(wal, wa: &wa);
227}
228
229static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
230 u32 clear, u32 set, u32 read_mask, bool masked_reg)
231{
232 struct i915_wa wa = {
233 .mcr_reg = reg,
234 .clr = clear,
235 .set = set,
236 .read = read_mask,
237 .masked_reg = masked_reg,
238 .is_mcr = 1,
239 };
240
241 _wa_add(wal, wa: &wa);
242}
243
244static void
245wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
246{
247 wa_add(wal, reg, clear, set, read_mask: clear | set, masked_reg: false);
248}
249
250static void
251wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
252{
253 wa_mcr_add(wal, reg, clear, set, read_mask: clear | set, masked_reg: false);
254}
255
256static void
257wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
258{
259 wa_write_clr_set(wal, reg, clear: ~0, set);
260}
261
262static void
263wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
264{
265 wa_mcr_write_clr_set(wal, reg, clear: ~0, set);
266}
267
268static void
269wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
270{
271 wa_write_clr_set(wal, reg, clear: set, set);
272}
273
274static void
275wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
276{
277 wa_mcr_write_clr_set(wal, reg, clear: set, set);
278}
279
280static void
281wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
282{
283 wa_write_clr_set(wal, reg, clear: clr, set: 0);
284}
285
286static void
287wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
288{
289 wa_mcr_write_clr_set(wal, reg, clear: clr, set: 0);
290}
291
292/*
293 * WA operations on "masked register". A masked register has the upper 16 bits
294 * documented as "masked" in b-spec. Its purpose is to allow writing to just a
295 * portion of the register without a rmw: you simply write in the upper 16 bits
296 * the mask of bits you are going to modify.
297 *
298 * The wa_masked_* family of functions already does the necessary operations to
299 * calculate the mask based on the parameters passed, so user only has to
300 * provide the lower 16 bits of that register.
301 */
302
303static void
304wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
305{
306 wa_add(wal, reg, clear: 0, _MASKED_BIT_ENABLE(val), read_mask: val, masked_reg: true);
307}
308
309static void
310wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
311{
312 wa_mcr_add(wal, reg, clear: 0, _MASKED_BIT_ENABLE(val), read_mask: val, masked_reg: true);
313}
314
315static void
316wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
317{
318 wa_add(wal, reg, clear: 0, _MASKED_BIT_DISABLE(val), read_mask: val, masked_reg: true);
319}
320
321static void
322wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
323{
324 wa_mcr_add(wal, reg, clear: 0, _MASKED_BIT_DISABLE(val), read_mask: val, masked_reg: true);
325}
326
327static void
328wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
329 u32 mask, u32 val)
330{
331 wa_add(wal, reg, clear: 0, _MASKED_FIELD(mask, val), read_mask: mask, masked_reg: true);
332}
333
334static void
335wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
336 u32 mask, u32 val)
337{
338 wa_mcr_add(wal, reg, clear: 0, _MASKED_FIELD(mask, val), read_mask: mask, masked_reg: true);
339}
340
341static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
342 struct i915_wa_list *wal)
343{
344 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
345}
346
347static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
348 struct i915_wa_list *wal)
349{
350 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
351}
352
353static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
354 struct i915_wa_list *wal)
355{
356 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
357
358 /* WaDisableAsyncFlipPerfMode:bdw,chv */
359 wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
360
361 /* WaDisablePartialInstShootdown:bdw,chv */
362 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
363 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
364
365 /* Use Force Non-Coherent whenever executing a 3D context. This is a
366 * workaround for a possible hang in the unlikely event a TLB
367 * invalidation occurs during a PSD flush.
368 */
369 /* WaForceEnableNonCoherent:bdw,chv */
370 /* WaHdcDisableFetchWhenMasked:bdw,chv */
371 wa_masked_en(wal, HDC_CHICKEN0,
372 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
373 HDC_FORCE_NON_COHERENT);
374
375 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
376 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
377 * polygons in the same 8x4 pixel/sample area to be processed without
378 * stalling waiting for the earlier ones to write to Hierarchical Z
379 * buffer."
380 *
381 * This optimization is off by default for BDW and CHV; turn it on.
382 */
383 wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
384
385 /* Wa4x4STCOptimizationDisable:bdw,chv */
386 wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
387
388 /*
389 * BSpec recommends 8x4 when MSAA is used,
390 * however in practice 16x4 seems fastest.
391 *
392 * Note that PS/WM thread counts depend on the WIZ hashing
393 * disable bit, which we don't touch here, but it's good
394 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
395 */
396 wa_masked_field_set(wal, GEN7_GT_MODE,
397 GEN6_WIZ_HASHING_MASK,
398 GEN6_WIZ_HASHING_16x4);
399}
400
401static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
402 struct i915_wa_list *wal)
403{
404 struct drm_i915_private *i915 = engine->i915;
405
406 gen8_ctx_workarounds_init(engine, wal);
407
408 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
409 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
410
411 /* WaDisableDopClockGating:bdw
412 *
413 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
414 * to disable EUTC clock gating.
415 */
416 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
417 DOP_CLOCK_GATING_DISABLE);
418
419 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
420 GEN8_SAMPLER_POWER_BYPASS_DIS);
421
422 wa_masked_en(wal, HDC_CHICKEN0,
423 /* WaForceContextSaveRestoreNonCoherent:bdw */
424 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
425 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
426 (IS_BROADWELL_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
427}
428
429static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
430 struct i915_wa_list *wal)
431{
432 gen8_ctx_workarounds_init(engine, wal);
433
434 /* WaDisableThreadStallDopClockGating:chv */
435 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
436
437 /* Improve HiZ throughput on CHV. */
438 wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
439}
440
441static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
442 struct i915_wa_list *wal)
443{
444 struct drm_i915_private *i915 = engine->i915;
445
446 if (HAS_LLC(i915)) {
447 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
448 *
449 * Must match Display Engine. See
450 * WaCompressedResourceDisplayNewHashMode.
451 */
452 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
453 GEN9_PBE_COMPRESSED_HASH_SELECTION);
454 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
455 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
456 }
457
458 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
459 /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
460 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
461 FLOW_CONTROL_ENABLE |
462 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
463
464 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
465 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
466 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
467 GEN9_ENABLE_YV12_BUGFIX |
468 GEN9_ENABLE_GPGPU_PREEMPTION);
469
470 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
471 /* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
472 wa_masked_en(wal, CACHE_MODE_1,
473 GEN8_4x4_STC_OPTIMIZATION_DISABLE |
474 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
475
476 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
477 wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
478 GEN9_CCS_TLB_PREFETCH_ENABLE);
479
480 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
481 wa_masked_en(wal, HDC_CHICKEN0,
482 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
483 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
484
485 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
486 * both tied to WaForceContextSaveRestoreNonCoherent
487 * in some hsds for skl. We keep the tie for all gen9. The
488 * documentation is a bit hazy and so we want to get common behaviour,
489 * even though there is no clear evidence we would need both on kbl/bxt.
490 * This area has been source of system hangs so we play it safe
491 * and mimic the skl regardless of what bspec says.
492 *
493 * Use Force Non-Coherent whenever executing a 3D context. This
494 * is a workaround for a possible hang in the unlikely event
495 * a TLB invalidation occurs during a PSD flush.
496 */
497
498 /* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
499 wa_masked_en(wal, HDC_CHICKEN0,
500 HDC_FORCE_NON_COHERENT);
501
502 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
503 if (IS_SKYLAKE(i915) ||
504 IS_KABYLAKE(i915) ||
505 IS_COFFEELAKE(i915) ||
506 IS_COMETLAKE(i915))
507 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
508 GEN8_SAMPLER_POWER_BYPASS_DIS);
509
510 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
511 wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
512
513 /*
514 * Supporting preemption with fine-granularity requires changes in the
515 * batch buffer programming. Since we can't break old userspace, we
516 * need to set our default preemption level to safe value. Userspace is
517 * still able to use more fine-grained preemption levels, since in
518 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
519 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
520 * not real HW workarounds, but merely a way to start using preemption
521 * while maintaining old contract with userspace.
522 */
523
524 /* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
525 wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
526
527 /* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
528 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
529 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
530 GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
531
532 /* WaClearHIZ_WM_CHICKEN3:bxt,glk */
533 if (IS_GEN9_LP(i915))
534 wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
535}
536
537static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
538 struct i915_wa_list *wal)
539{
540 struct intel_gt *gt = engine->gt;
541 u8 vals[3] = { 0, 0, 0 };
542 unsigned int i;
543
544 for (i = 0; i < 3; i++) {
545 u8 ss;
546
547 /*
548 * Only consider slices where one, and only one, subslice has 7
549 * EUs
550 */
551 if (!is_power_of_2(n: gt->info.sseu.subslice_7eu[i]))
552 continue;
553
554 /*
555 * subslice_7eu[i] != 0 (because of the check above) and
556 * ss_max == 4 (maximum number of subslices possible per slice)
557 *
558 * -> 0 <= ss <= 3;
559 */
560 ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
561 vals[i] = 3 - ss;
562 }
563
564 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
565 return;
566
567 /* Tune IZ hashing. See intel_device_info_runtime_init() */
568 wa_masked_field_set(wal, GEN7_GT_MODE,
569 GEN9_IZ_HASHING_MASK(2) |
570 GEN9_IZ_HASHING_MASK(1) |
571 GEN9_IZ_HASHING_MASK(0),
572 GEN9_IZ_HASHING(2, vals[2]) |
573 GEN9_IZ_HASHING(1, vals[1]) |
574 GEN9_IZ_HASHING(0, vals[0]));
575}
576
577static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
578 struct i915_wa_list *wal)
579{
580 gen9_ctx_workarounds_init(engine, wal);
581 skl_tune_iz_hashing(engine, wal);
582}
583
584static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
585 struct i915_wa_list *wal)
586{
587 gen9_ctx_workarounds_init(engine, wal);
588
589 /* WaDisableThreadStallDopClockGating:bxt */
590 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
591 STALL_DOP_GATING_DISABLE);
592
593 /* WaToEnableHwFixForPushConstHWBug:bxt */
594 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
595 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
596}
597
598static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
599 struct i915_wa_list *wal)
600{
601 struct drm_i915_private *i915 = engine->i915;
602
603 gen9_ctx_workarounds_init(engine, wal);
604
605 /* WaToEnableHwFixForPushConstHWBug:kbl */
606 if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
607 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
608 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
609
610 /* WaDisableSbeCacheDispatchPortSharing:kbl */
611 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
612 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
613}
614
615static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
616 struct i915_wa_list *wal)
617{
618 gen9_ctx_workarounds_init(engine, wal);
619
620 /* WaToEnableHwFixForPushConstHWBug:glk */
621 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
622 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
623}
624
625static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
626 struct i915_wa_list *wal)
627{
628 gen9_ctx_workarounds_init(engine, wal);
629
630 /* WaToEnableHwFixForPushConstHWBug:cfl */
631 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
632 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
633
634 /* WaDisableSbeCacheDispatchPortSharing:cfl */
635 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
636 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
637}
638
639static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
640 struct i915_wa_list *wal)
641{
642 /* Wa_1406697149 (WaDisableBankHangMode:icl) */
643 wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL);
644
645 /* WaForceEnableNonCoherent:icl
646 * This is not the same workaround as in early Gen9 platforms, where
647 * lacking this could cause system hangs, but coherency performance
648 * overhead is high and only a few compute workloads really need it
649 * (the register is whitelisted in hardware now, so UMDs can opt in
650 * for coherency if they have a good reason).
651 */
652 wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
653
654 /* WaEnableFloatBlendOptimization:icl */
655 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, clear: 0,
656 _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
657 read_mask: 0 /* write-only, so skip validation */,
658 masked_reg: true);
659
660 /* WaDisableGPGPUMidThreadPreemption:icl */
661 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
662 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
663 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
664
665 /* allow headerless messages for preemptible GPGPU context */
666 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
667 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
668
669 /* Wa_1604278689:icl,ehl */
670 wa_write(wal, IVB_FBC_RT_BASE, set: 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
671 wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
672 clear: 0,
673 set: 0xFFFFFFFF);
674
675 /* Wa_1406306137:icl,ehl */
676 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
677}
678
679/*
680 * These settings aren't actually workarounds, but general tuning settings that
681 * need to be programmed on dg2 platform.
682 */
683static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
684 struct i915_wa_list *wal)
685{
686 wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
687 wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
688 REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
689 wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK,
690 FF_MODE2_TDS_TIMER_128);
691}
692
693static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
694 struct i915_wa_list *wal)
695{
696 struct drm_i915_private *i915 = engine->i915;
697
698 /*
699 * Wa_1409142259:tgl,dg1,adl-p
700 * Wa_1409347922:tgl,dg1,adl-p
701 * Wa_1409252684:tgl,dg1,adl-p
702 * Wa_1409217633:tgl,dg1,adl-p
703 * Wa_1409207793:tgl,dg1,adl-p
704 * Wa_1409178076:tgl,dg1,adl-p
705 * Wa_1408979724:tgl,dg1,adl-p
706 * Wa_14010443199:tgl,rkl,dg1,adl-p
707 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
708 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
709 */
710 wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
711 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
712
713 /* WaDisableGPGPUMidThreadPreemption:gen12 */
714 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
715 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
716 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
717
718 /*
719 * Wa_16011163337 - GS_TIMER
720 *
721 * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we
722 * need to program it even on those that don't explicitly list that
723 * workaround.
724 *
725 * Note that the programming of GEN12_FF_MODE2 is further modified
726 * according to the FF_MODE2 guidance given by Wa_1608008084.
727 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
728 * value when read from the CPU.
729 *
730 * The default value for this register is zero for all fields.
731 * So instead of doing a RMW we should just write the desired values
732 * for TDS and GS timers. Note that since the readback can't be trusted,
733 * the clear mask is just set to ~0 to make sure other bits are not
734 * inadvertently set. For the same reason read verification is ignored.
735 */
736 wa_add(wal,
737 GEN12_FF_MODE2,
738 clear: ~0,
739 FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224,
740 read_mask: 0, masked_reg: false);
741
742 if (!IS_DG1(i915)) {
743 /* Wa_1806527549 */
744 wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
745
746 /* Wa_1606376872 */
747 wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
748 }
749}
750
751static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
752 struct i915_wa_list *wal)
753{
754 gen12_ctx_workarounds_init(engine, wal);
755
756 /* Wa_1409044764 */
757 wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
758 DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
759
760 /* Wa_22010493298 */
761 wa_masked_en(wal, HIZ_CHICKEN,
762 DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
763}
764
765static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
766 struct i915_wa_list *wal)
767{
768 dg2_ctx_gt_tuning_init(engine, wal);
769
770 /* Wa_16013271637:dg2 */
771 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
772 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
773
774 /* Wa_14014947963:dg2 */
775 wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, val: 0x4000);
776
777 /* Wa_18018764978:dg2 */
778 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
779
780 /* Wa_18019271663:dg2 */
781 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
782
783 /* Wa_14019877138:dg2 */
784 wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
785}
786
787static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine,
788 struct i915_wa_list *wal)
789{
790 struct intel_gt *gt = engine->gt;
791
792 dg2_ctx_gt_tuning_init(engine, wal);
793
794 /*
795 * Due to Wa_16014892111, the DRAW_WATERMARK tuning must be done in
796 * gen12_emit_indirect_ctx_rcs() rather than here on some early
797 * steppings.
798 */
799 if (!(IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
800 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)))
801 wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, set: 0x3FF, read_mask: 0, masked_reg: false);
802}
803
804static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine,
805 struct i915_wa_list *wal)
806{
807 struct intel_gt *gt = engine->gt;
808
809 xelpg_ctx_gt_tuning_init(engine, wal);
810
811 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
812 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
813 /* Wa_14014947963 */
814 wa_masked_field_set(wal, VF_PREEMPTION,
815 PREEMPTION_VERTEX_COUNT, val: 0x4000);
816
817 /* Wa_16013271637 */
818 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
819 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
820
821 /* Wa_18019627453 */
822 wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
823
824 /* Wa_18018764978 */
825 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
826 }
827
828 /* Wa_18019271663 */
829 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
830
831 /* Wa_14019877138 */
832 wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
833}
834
835static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
836 struct i915_wa_list *wal)
837{
838 /*
839 * This is a "fake" workaround defined by software to ensure we
840 * maintain reliable, backward-compatible behavior for userspace with
841 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
842 *
843 * The per-context setting of MI_MODE[12] determines whether the bits
844 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
845 * in the traditional manner or whether they should instead use a new
846 * tgl+ meaning that breaks backward compatibility, but allows nesting
847 * into 3rd-level batchbuffers. When this new capability was first
848 * added in TGL, it remained off by default unless a context
849 * intentionally opted in to the new behavior. However Xe_HPG now
850 * flips this on by default and requires that we explicitly opt out if
851 * we don't want the new behavior.
852 *
853 * From a SW perspective, we want to maintain the backward-compatible
854 * behavior for userspace, so we'll apply a fake workaround to set it
855 * back to the legacy behavior on platforms where the hardware default
856 * is to break compatibility. At the moment there is no Linux
857 * userspace that utilizes third-level batchbuffers, so this will avoid
858 * userspace from needing to make any changes. using the legacy
859 * meaning is the correct thing to do. If/when we have userspace
860 * consumers that want to utilize third-level batch nesting, we can
861 * provide a context parameter to allow them to opt-in.
862 */
863 wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
864}
865
866static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
867 struct i915_wa_list *wal)
868{
869 u8 mocs;
870
871 /*
872 * Some blitter commands do not have a field for MOCS, those
873 * commands will use MOCS index pointed by BLIT_CCTL.
874 * BLIT_CCTL registers are needed to be programmed to un-cached.
875 */
876 if (engine->class == COPY_ENGINE_CLASS) {
877 mocs = engine->gt->mocs.uc_index;
878 wa_write_clr_set(wal,
879 BLIT_CCTL(engine->mmio_base),
880 BLIT_CCTL_MASK,
881 BLIT_CCTL_MOCS(mocs, mocs));
882 }
883}
884
885/*
886 * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
887 * defined by the hardware team, but it programming general context registers.
888 * Adding those context register programming in context workaround
889 * allow us to use the wa framework for proper application and validation.
890 */
891static void
892gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
893 struct i915_wa_list *wal)
894{
895 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
896 fakewa_disable_nestedbb_mode(engine, wal);
897
898 gen12_ctx_gt_mocs_init(engine, wal);
899}
900
901static void
902__intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
903 struct i915_wa_list *wal,
904 const char *name)
905{
906 struct drm_i915_private *i915 = engine->i915;
907
908 wa_init_start(wal, gt: engine->gt, name, engine_name: engine->name);
909
910 /* Applies to all engines */
911 /*
912 * Fake workarounds are not the actual workaround but
913 * programming of context registers using workaround framework.
914 */
915 if (GRAPHICS_VER(i915) >= 12)
916 gen12_ctx_gt_fake_wa_init(engine, wal);
917
918 if (engine->class != RENDER_CLASS)
919 goto done;
920
921 if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
922 xelpg_ctx_workarounds_init(engine, wal);
923 else if (IS_PONTEVECCHIO(i915))
924 ; /* noop; none at this time */
925 else if (IS_DG2(i915))
926 dg2_ctx_workarounds_init(engine, wal);
927 else if (IS_XEHPSDV(i915))
928 ; /* noop; none at this time */
929 else if (IS_DG1(i915))
930 dg1_ctx_workarounds_init(engine, wal);
931 else if (GRAPHICS_VER(i915) == 12)
932 gen12_ctx_workarounds_init(engine, wal);
933 else if (GRAPHICS_VER(i915) == 11)
934 icl_ctx_workarounds_init(engine, wal);
935 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
936 cfl_ctx_workarounds_init(engine, wal);
937 else if (IS_GEMINILAKE(i915))
938 glk_ctx_workarounds_init(engine, wal);
939 else if (IS_KABYLAKE(i915))
940 kbl_ctx_workarounds_init(engine, wal);
941 else if (IS_BROXTON(i915))
942 bxt_ctx_workarounds_init(engine, wal);
943 else if (IS_SKYLAKE(i915))
944 skl_ctx_workarounds_init(engine, wal);
945 else if (IS_CHERRYVIEW(i915))
946 chv_ctx_workarounds_init(engine, wal);
947 else if (IS_BROADWELL(i915))
948 bdw_ctx_workarounds_init(engine, wal);
949 else if (GRAPHICS_VER(i915) == 7)
950 gen7_ctx_workarounds_init(engine, wal);
951 else if (GRAPHICS_VER(i915) == 6)
952 gen6_ctx_workarounds_init(engine, wal);
953 else if (GRAPHICS_VER(i915) < 8)
954 ;
955 else
956 MISSING_CASE(GRAPHICS_VER(i915));
957
958done:
959 wa_init_finish(wal);
960}
961
962void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
963{
964 __intel_engine_init_ctx_wa(engine, wal: &engine->ctx_wa_list, name: "context");
965}
966
967int intel_engine_emit_ctx_wa(struct i915_request *rq)
968{
969 struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
970 struct intel_uncore *uncore = rq->engine->uncore;
971 enum forcewake_domains fw;
972 unsigned long flags;
973 struct i915_wa *wa;
974 unsigned int i;
975 u32 *cs;
976 int ret;
977
978 if (wal->count == 0)
979 return 0;
980
981 ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
982 if (ret)
983 return ret;
984
985 cs = intel_ring_begin(rq, num_dwords: (wal->count * 2 + 2));
986 if (IS_ERR(ptr: cs))
987 return PTR_ERR(ptr: cs);
988
989 fw = wal_get_fw_for_rmw(uncore, wal);
990
991 intel_gt_mcr_lock(gt: wal->gt, flags: &flags);
992 spin_lock(lock: &uncore->lock);
993 intel_uncore_forcewake_get__locked(uncore, domains: fw);
994
995 *cs++ = MI_LOAD_REGISTER_IMM(wal->count);
996 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
997 u32 val;
998
999 /* Skip reading the register if it's not really needed */
1000 if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) {
1001 val = wa->set;
1002 } else {
1003 val = wa->is_mcr ?
1004 intel_gt_mcr_read_any_fw(gt: wal->gt, reg: wa->mcr_reg) :
1005 intel_uncore_read_fw(uncore, wa->reg);
1006 val &= ~wa->clr;
1007 val |= wa->set;
1008 }
1009
1010 *cs++ = i915_mmio_reg_offset(wa->reg);
1011 *cs++ = val;
1012 }
1013 *cs++ = MI_NOOP;
1014
1015 intel_uncore_forcewake_put__locked(uncore, domains: fw);
1016 spin_unlock(lock: &uncore->lock);
1017 intel_gt_mcr_unlock(gt: wal->gt, flags);
1018
1019 intel_ring_advance(rq, cs);
1020
1021 ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1022 if (ret)
1023 return ret;
1024
1025 return 0;
1026}
1027
1028static void
1029gen4_gt_workarounds_init(struct intel_gt *gt,
1030 struct i915_wa_list *wal)
1031{
1032 /* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1033 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1034}
1035
1036static void
1037g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1038{
1039 gen4_gt_workarounds_init(gt, wal);
1040
1041 /* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1042 wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1043}
1044
1045static void
1046ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1047{
1048 g4x_gt_workarounds_init(gt, wal);
1049
1050 wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1051}
1052
1053static void
1054snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1055{
1056}
1057
1058static void
1059ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1060{
1061 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1062 wa_masked_dis(wal,
1063 GEN7_COMMON_SLICE_CHICKEN1,
1064 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1065
1066 /* WaApplyL3ControlAndL3ChickenMode:ivb */
1067 wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1068 wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1069
1070 /* WaForceL3Serialization:ivb */
1071 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1072}
1073
1074static void
1075vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1076{
1077 /* WaForceL3Serialization:vlv */
1078 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1079
1080 /*
1081 * WaIncreaseL3CreditsForVLVB0:vlv
1082 * This is the hardware default actually.
1083 */
1084 wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1085}
1086
1087static void
1088hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1089{
1090 /* L3 caching of data atomics doesn't work -- disable it. */
1091 wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1092
1093 wa_add(wal,
1094 HSW_ROW_CHICKEN3, clear: 0,
1095 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1096 read_mask: 0 /* XXX does this reg exist? */, masked_reg: true);
1097
1098 /* WaVSRefCountFullforceMissDisable:hsw */
1099 wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1100}
1101
1102static void
1103gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1104{
1105 const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1106 unsigned int slice, subslice;
1107 u32 mcr, mcr_mask;
1108
1109 GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1110
1111 /*
1112 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1113 * Before any MMIO read into slice/subslice specific registers, MCR
1114 * packet control register needs to be programmed to point to any
1115 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1116 * This means each subsequent MMIO read will be forwarded to an
1117 * specific s/ss combination, but this is OK since these registers
1118 * are consistent across s/ss in almost all cases. In the rare
1119 * occasions, such as INSTDONE, where this value is dependent
1120 * on s/ss combo, the read should be done with read_subslice_reg.
1121 */
1122 slice = ffs(sseu->slice_mask) - 1;
1123 GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1124 subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1125 GEM_BUG_ON(!subslice);
1126 subslice--;
1127
1128 /*
1129 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1130 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1131 */
1132 mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1133 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1134
1135 drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1136
1137 wa_write_clr_set(wal, GEN8_MCR_SELECTOR, clear: mcr_mask, set: mcr);
1138}
1139
1140static void
1141gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1142{
1143 struct drm_i915_private *i915 = gt->i915;
1144
1145 /* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1146 gen9_wa_init_mcr(i915, wal);
1147
1148 /* WaDisableKillLogic:bxt,skl,kbl */
1149 if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1150 wa_write_or(wal,
1151 GAM_ECOCHK,
1152 ECOCHK_DIS_TLB);
1153
1154 if (HAS_LLC(i915)) {
1155 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1156 *
1157 * Must match Display Engine. See
1158 * WaCompressedResourceDisplayNewHashMode.
1159 */
1160 wa_write_or(wal,
1161 MMCD_MISC_CTRL,
1162 MMCD_PCLA | MMCD_HOTSPOT_EN);
1163 }
1164
1165 /* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1166 wa_write_or(wal,
1167 GAM_ECOCHK,
1168 BDW_DISABLE_HDC_INVALIDATION);
1169}
1170
1171static void
1172skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1173{
1174 gen9_gt_workarounds_init(gt, wal);
1175
1176 /* WaDisableGafsUnitClkGating:skl */
1177 wa_write_or(wal,
1178 GEN7_UCGCTL4,
1179 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1180
1181 /* WaInPlaceDecompressionHang:skl */
1182 if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1183 wa_write_or(wal,
1184 GEN9_GAMT_ECO_REG_RW_IA,
1185 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1186}
1187
1188static void
1189kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1190{
1191 gen9_gt_workarounds_init(gt, wal);
1192
1193 /* WaDisableDynamicCreditSharing:kbl */
1194 if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1195 wa_write_or(wal,
1196 GAMT_CHKN_BIT_REG,
1197 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1198
1199 /* WaDisableGafsUnitClkGating:kbl */
1200 wa_write_or(wal,
1201 GEN7_UCGCTL4,
1202 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1203
1204 /* WaInPlaceDecompressionHang:kbl */
1205 wa_write_or(wal,
1206 GEN9_GAMT_ECO_REG_RW_IA,
1207 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1208}
1209
1210static void
1211glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1212{
1213 gen9_gt_workarounds_init(gt, wal);
1214}
1215
1216static void
1217cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1218{
1219 gen9_gt_workarounds_init(gt, wal);
1220
1221 /* WaDisableGafsUnitClkGating:cfl */
1222 wa_write_or(wal,
1223 GEN7_UCGCTL4,
1224 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1225
1226 /* WaInPlaceDecompressionHang:cfl */
1227 wa_write_or(wal,
1228 GEN9_GAMT_ECO_REG_RW_IA,
1229 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1230}
1231
1232static void __set_mcr_steering(struct i915_wa_list *wal,
1233 i915_reg_t steering_reg,
1234 unsigned int slice, unsigned int subslice)
1235{
1236 u32 mcr, mcr_mask;
1237
1238 mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1239 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1240
1241 wa_write_clr_set(wal, reg: steering_reg, clear: mcr_mask, set: mcr);
1242}
1243
1244static void debug_dump_steering(struct intel_gt *gt)
1245{
1246 struct drm_printer p = drm_dbg_printer(drm: &gt->i915->drm, category: DRM_UT_DRIVER,
1247 prefix: "MCR Steering:");
1248
1249 if (drm_debug_enabled(DRM_UT_DRIVER))
1250 intel_gt_mcr_report_steering(p: &p, gt, dump_table: false);
1251}
1252
1253static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1254 unsigned int slice, unsigned int subslice)
1255{
1256 __set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1257
1258 gt->default_steering.groupid = slice;
1259 gt->default_steering.instanceid = subslice;
1260
1261 debug_dump_steering(gt);
1262}
1263
1264static void
1265icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1266{
1267 const struct sseu_dev_info *sseu = &gt->info.sseu;
1268 unsigned int subslice;
1269
1270 GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1271 GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1272
1273 /*
1274 * Although a platform may have subslices, we need to always steer
1275 * reads to the lowest instance that isn't fused off. When Render
1276 * Power Gating is enabled, grabbing forcewake will only power up a
1277 * single subslice (the "minconfig") if there isn't a real workload
1278 * that needs to be run; this means that if we steer register reads to
1279 * one of the higher subslices, we run the risk of reading back 0's or
1280 * random garbage.
1281 */
1282 subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1283
1284 /*
1285 * If the subslice we picked above also steers us to a valid L3 bank,
1286 * then we can just rely on the default steering and won't need to
1287 * worry about explicitly re-steering L3BANK reads later.
1288 */
1289 if (gt->info.l3bank_mask & BIT(subslice))
1290 gt->steering_table[L3BANK] = NULL;
1291
1292 __add_mcr_wa(gt, wal, slice: 0, subslice);
1293}
1294
1295static void
1296xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1297{
1298 const struct sseu_dev_info *sseu = &gt->info.sseu;
1299 unsigned long slice, subslice = 0, slice_mask = 0;
1300 u32 lncf_mask = 0;
1301 int i;
1302
1303 /*
1304 * On Xe_HP the steering increases in complexity. There are now several
1305 * more units that require steering and we're not guaranteed to be able
1306 * to find a common setting for all of them. These are:
1307 * - GSLICE (fusable)
1308 * - DSS (sub-unit within gslice; fusable)
1309 * - L3 Bank (fusable)
1310 * - MSLICE (fusable)
1311 * - LNCF (sub-unit within mslice; always present if mslice is present)
1312 *
1313 * We'll do our default/implicit steering based on GSLICE (in the
1314 * sliceid field) and DSS (in the subsliceid field). If we can
1315 * find overlap between the valid MSLICE and/or LNCF values with
1316 * a suitable GSLICE, then we can just re-use the default value and
1317 * skip and explicit steering at runtime.
1318 *
1319 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1320 * a valid sliceid value. DSS steering is the only type of steering
1321 * that utilizes the 'subsliceid' bits.
1322 *
1323 * Also note that, even though the steering domain is called "GSlice"
1324 * and it is encoded in the register using the gslice format, the spec
1325 * says that the combined (geometry | compute) fuse should be used to
1326 * select the steering.
1327 */
1328
1329 /* Find the potential gslice candidates */
1330 slice_mask = intel_slicemask_from_xehp_dssmask(dss_mask: sseu->subslice_mask,
1331 GEN_DSS_PER_GSLICE);
1332
1333 /*
1334 * Find the potential LNCF candidates. Either LNCF within a valid
1335 * mslice is fine.
1336 */
1337 for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1338 lncf_mask |= (0x3 << (i * 2));
1339
1340 /*
1341 * Are there any sliceid values that work for both GSLICE and LNCF
1342 * steering?
1343 */
1344 if (slice_mask & lncf_mask) {
1345 slice_mask &= lncf_mask;
1346 gt->steering_table[LNCF] = NULL;
1347 }
1348
1349 /* How about sliceid values that also work for MSLICE steering? */
1350 if (slice_mask & gt->info.mslice_mask) {
1351 slice_mask &= gt->info.mslice_mask;
1352 gt->steering_table[MSLICE] = NULL;
1353 }
1354
1355 if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0))
1356 gt->steering_table[GAM] = NULL;
1357
1358 slice = __ffs(slice_mask);
1359 subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, groupnum: slice) %
1360 GEN_DSS_PER_GSLICE;
1361
1362 __add_mcr_wa(gt, wal, slice, subslice);
1363
1364 /*
1365 * SQIDI ranges are special because they use different steering
1366 * registers than everything else we work with. On XeHP SDV and
1367 * DG2-G10, any value in the steering registers will work fine since
1368 * all instances are present, but DG2-G11 only has SQIDI instances at
1369 * ID's 2 and 3, so we need to steer to one of those. For simplicity
1370 * we'll just steer to a hardcoded "2" since that value will work
1371 * everywhere.
1372 */
1373 __set_mcr_steering(wal, MCFG_MCR_SELECTOR, slice: 0, subslice: 2);
1374 __set_mcr_steering(wal, SF_MCR_SELECTOR, slice: 0, subslice: 2);
1375
1376 /*
1377 * On DG2, GAM registers have a dedicated steering control register
1378 * and must always be programmed to a hardcoded groupid of "1."
1379 */
1380 if (IS_DG2(gt->i915))
1381 __set_mcr_steering(wal, GAM_MCR_SELECTOR, slice: 1, subslice: 0);
1382}
1383
1384static void
1385pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1386{
1387 unsigned int dss;
1388
1389 /*
1390 * Setup implicit steering for COMPUTE and DSS ranges to the first
1391 * non-fused-off DSS. All other types of MCR registers will be
1392 * explicitly steered.
1393 */
1394 dss = intel_sseu_find_first_xehp_dss(sseu: &gt->info.sseu, groupsize: 0, groupnum: 0);
1395 __add_mcr_wa(gt, wal, slice: dss / GEN_DSS_PER_CSLICE, subslice: dss % GEN_DSS_PER_CSLICE);
1396}
1397
1398static void
1399icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1400{
1401 struct drm_i915_private *i915 = gt->i915;
1402
1403 icl_wa_init_mcr(gt, wal);
1404
1405 /* WaModifyGamTlbPartitioning:icl */
1406 wa_write_clr_set(wal,
1407 GEN11_GACB_PERF_CTRL,
1408 GEN11_HASH_CTRL_MASK,
1409 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1410
1411 /* Wa_1405766107:icl
1412 * Formerly known as WaCL2SFHalfMaxAlloc
1413 */
1414 wa_write_or(wal,
1415 GEN11_LSN_UNSLCVC,
1416 GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1417 GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1418
1419 /* Wa_220166154:icl
1420 * Formerly known as WaDisCtxReload
1421 */
1422 wa_write_or(wal,
1423 GEN8_GAMW_ECO_DEV_RW_IA,
1424 GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1425
1426 /* Wa_1406463099:icl
1427 * Formerly known as WaGamTlbPendError
1428 */
1429 wa_write_or(wal,
1430 GAMT_CHKN_BIT_REG,
1431 GAMT_CHKN_DISABLE_L3_COH_PIPE);
1432
1433 /*
1434 * Wa_1408615072:icl,ehl (vsunit)
1435 * Wa_1407596294:icl,ehl (hsunit)
1436 */
1437 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1438 VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1439
1440 /* Wa_1407352427:icl,ehl */
1441 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1442 PSDUNIT_CLKGATE_DIS);
1443
1444 /* Wa_1406680159:icl,ehl */
1445 wa_mcr_write_or(wal,
1446 GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1447 GWUNIT_CLKGATE_DIS);
1448
1449 /* Wa_1607087056:icl,ehl,jsl */
1450 if (IS_ICELAKE(i915) ||
1451 ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
1452 IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)))
1453 wa_write_or(wal,
1454 GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1455 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1456
1457 /*
1458 * This is not a documented workaround, but rather an optimization
1459 * to reduce sampler power.
1460 */
1461 wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1462}
1463
1464/*
1465 * Though there are per-engine instances of these registers,
1466 * they retain their value through engine resets and should
1467 * only be provided on the GT workaround list rather than
1468 * the engine-specific workaround list.
1469 */
1470static void
1471wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1472{
1473 struct intel_engine_cs *engine;
1474 int id;
1475
1476 for_each_engine(engine, gt, id) {
1477 if (engine->class != VIDEO_DECODE_CLASS ||
1478 (engine->instance % 2))
1479 continue;
1480
1481 wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1482 IECPUNIT_CLKGATE_DIS);
1483 }
1484}
1485
1486static void
1487gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1488{
1489 icl_wa_init_mcr(gt, wal);
1490
1491 /* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1492 wa_14011060649(gt, wal);
1493
1494 /* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1495 wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1496
1497 /*
1498 * Wa_14015795083
1499 *
1500 * Firmware on some gen12 platforms locks the MISCCPCTL register,
1501 * preventing i915 from modifying it for this workaround. Skip the
1502 * readback verification for this workaround on debug builds; if the
1503 * workaround doesn't stick due to firmware behavior, it's not an error
1504 * that we want CI to flag.
1505 */
1506 wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1507 set: 0, read_mask: 0, masked_reg: false);
1508}
1509
1510static void
1511dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1512{
1513 gen12_gt_workarounds_init(gt, wal);
1514
1515 /* Wa_1409420604:dg1 */
1516 wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1517 CPSSUNIT_CLKGATE_DIS);
1518
1519 /* Wa_1408615072:dg1 */
1520 /* Empirical testing shows this register is unaffected by engine reset. */
1521 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1522}
1523
1524static void
1525xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1526{
1527 struct drm_i915_private *i915 = gt->i915;
1528
1529 xehp_init_mcr(gt, wal);
1530
1531 /* Wa_1409757795:xehpsdv */
1532 wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB);
1533
1534 /* Wa_18011725039:xehpsdv */
1535 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) {
1536 wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER);
1537 wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH);
1538 }
1539
1540 /* Wa_16011155590:xehpsdv */
1541 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1542 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1543 TSGUNIT_CLKGATE_DIS);
1544
1545 /* Wa_14011780169:xehpsdv */
1546 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) {
1547 wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1548 GAMTLBVDBOX7_CLKGATE_DIS |
1549 GAMTLBVDBOX6_CLKGATE_DIS |
1550 GAMTLBVDBOX5_CLKGATE_DIS |
1551 GAMTLBVDBOX4_CLKGATE_DIS |
1552 GAMTLBVDBOX3_CLKGATE_DIS |
1553 GAMTLBVDBOX2_CLKGATE_DIS |
1554 GAMTLBVDBOX1_CLKGATE_DIS |
1555 GAMTLBVDBOX0_CLKGATE_DIS |
1556 GAMTLBKCR_CLKGATE_DIS |
1557 GAMTLBGUC_CLKGATE_DIS |
1558 GAMTLBBLT_CLKGATE_DIS);
1559 wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1560 GAMTLBGFXA1_CLKGATE_DIS |
1561 GAMTLBCOMPA0_CLKGATE_DIS |
1562 GAMTLBCOMPA1_CLKGATE_DIS |
1563 GAMTLBCOMPB0_CLKGATE_DIS |
1564 GAMTLBCOMPB1_CLKGATE_DIS |
1565 GAMTLBCOMPC0_CLKGATE_DIS |
1566 GAMTLBCOMPC1_CLKGATE_DIS |
1567 GAMTLBCOMPD0_CLKGATE_DIS |
1568 GAMTLBCOMPD1_CLKGATE_DIS |
1569 GAMTLBMERT_CLKGATE_DIS |
1570 GAMTLBVEBOX3_CLKGATE_DIS |
1571 GAMTLBVEBOX2_CLKGATE_DIS |
1572 GAMTLBVEBOX1_CLKGATE_DIS |
1573 GAMTLBVEBOX0_CLKGATE_DIS);
1574 }
1575
1576 /* Wa_16012725990:xehpsdv */
1577 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER))
1578 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS);
1579
1580 /* Wa_14011060649:xehpsdv */
1581 wa_14011060649(gt, wal);
1582
1583 /* Wa_14012362059:xehpsdv */
1584 wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1585
1586 /* Wa_14014368820:xehpsdv */
1587 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1588 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1589
1590 /* Wa_14010670810:xehpsdv */
1591 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1592}
1593
1594static void
1595dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1596{
1597 xehp_init_mcr(gt, wal);
1598
1599 /* Wa_14011060649:dg2 */
1600 wa_14011060649(gt, wal);
1601
1602 if (IS_DG2_G10(gt->i915)) {
1603 /* Wa_22010523718:dg2 */
1604 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1605 CG3DDISCFEG_CLKGATE_DIS);
1606
1607 /* Wa_14011006942:dg2 */
1608 wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1609 DSS_ROUTER_CLKGATE_DIS);
1610 }
1611
1612 /* Wa_14014830051:dg2 */
1613 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1614
1615 /*
1616 * Wa_14015795083
1617 * Skip verification for possibly locked register.
1618 */
1619 wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1620 set: 0, read_mask: 0, masked_reg: false);
1621
1622 /* Wa_18018781329 */
1623 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1624 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1625 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1626 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1627
1628 /* Wa_1509235366:dg2 */
1629 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1630 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1631
1632 /* Wa_14010648519:dg2 */
1633 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1634}
1635
1636static void
1637pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1638{
1639 pvc_init_mcr(gt, wal);
1640
1641 /* Wa_14015795083 */
1642 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1643
1644 /* Wa_18018781329 */
1645 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1646 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1647 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1648 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1649
1650 /* Wa_16016694945 */
1651 wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC);
1652}
1653
1654static void
1655xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1656{
1657 /* Wa_14018575942 / Wa_18018781329 */
1658 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1659 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1660
1661 /* Wa_22016670082 */
1662 wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1663
1664 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1665 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
1666 /* Wa_14014830051 */
1667 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1668
1669 /* Wa_14015795083 */
1670 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1671 }
1672
1673 /*
1674 * Unlike older platforms, we no longer setup implicit steering here;
1675 * all MCR accesses are explicitly steered.
1676 */
1677 debug_dump_steering(gt);
1678}
1679
1680static void
1681wa_16021867713(struct intel_gt *gt, struct i915_wa_list *wal)
1682{
1683 struct intel_engine_cs *engine;
1684 int id;
1685
1686 for_each_engine(engine, gt, id)
1687 if (engine->class == VIDEO_DECODE_CLASS)
1688 wa_write_or(wal, VDBOX_CGCTL3F1C(engine->mmio_base),
1689 MFXPIPE_CLKGATE_DIS);
1690}
1691
1692static void
1693xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1694{
1695 wa_16021867713(gt, wal);
1696
1697 /*
1698 * Wa_14018778641
1699 * Wa_18018781329
1700 *
1701 * Note that although these registers are MCR on the primary
1702 * GT, the media GT's versions are regular singleton registers.
1703 */
1704 wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1705
1706 /* Wa_22016670082 */
1707 wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1708
1709 debug_dump_steering(gt);
1710}
1711
1712/*
1713 * The bspec performance guide has recommended MMIO tuning settings. These
1714 * aren't truly "workarounds" but we want to program them through the
1715 * workaround infrastructure to make sure they're (re)applied at the proper
1716 * times.
1717 *
1718 * The programming in this function is for settings that persist through
1719 * engine resets and also are not part of any engine's register state context.
1720 * I.e., settings that only need to be re-applied in the event of a full GT
1721 * reset.
1722 */
1723static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1724{
1725 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) {
1726 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1727 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1728 }
1729
1730 if (IS_PONTEVECCHIO(gt->i915)) {
1731 wa_mcr_write(wal, XEHPC_L3SCRUB,
1732 SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK);
1733 wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN);
1734 }
1735
1736 if (IS_DG2(gt->i915)) {
1737 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1738 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1739 }
1740}
1741
1742static void
1743gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1744{
1745 struct drm_i915_private *i915 = gt->i915;
1746
1747 gt_tuning_settings(gt, wal);
1748
1749 if (gt->type == GT_MEDIA) {
1750 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0))
1751 xelpmp_gt_workarounds_init(gt, wal);
1752 else
1753 MISSING_CASE(MEDIA_VER_FULL(i915));
1754
1755 return;
1756 }
1757
1758 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
1759 xelpg_gt_workarounds_init(gt, wal);
1760 else if (IS_PONTEVECCHIO(i915))
1761 pvc_gt_workarounds_init(gt, wal);
1762 else if (IS_DG2(i915))
1763 dg2_gt_workarounds_init(gt, wal);
1764 else if (IS_XEHPSDV(i915))
1765 xehpsdv_gt_workarounds_init(gt, wal);
1766 else if (IS_DG1(i915))
1767 dg1_gt_workarounds_init(gt, wal);
1768 else if (GRAPHICS_VER(i915) == 12)
1769 gen12_gt_workarounds_init(gt, wal);
1770 else if (GRAPHICS_VER(i915) == 11)
1771 icl_gt_workarounds_init(gt, wal);
1772 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1773 cfl_gt_workarounds_init(gt, wal);
1774 else if (IS_GEMINILAKE(i915))
1775 glk_gt_workarounds_init(gt, wal);
1776 else if (IS_KABYLAKE(i915))
1777 kbl_gt_workarounds_init(gt, wal);
1778 else if (IS_BROXTON(i915))
1779 gen9_gt_workarounds_init(gt, wal);
1780 else if (IS_SKYLAKE(i915))
1781 skl_gt_workarounds_init(gt, wal);
1782 else if (IS_HASWELL(i915))
1783 hsw_gt_workarounds_init(gt, wal);
1784 else if (IS_VALLEYVIEW(i915))
1785 vlv_gt_workarounds_init(gt, wal);
1786 else if (IS_IVYBRIDGE(i915))
1787 ivb_gt_workarounds_init(gt, wal);
1788 else if (GRAPHICS_VER(i915) == 6)
1789 snb_gt_workarounds_init(gt, wal);
1790 else if (GRAPHICS_VER(i915) == 5)
1791 ilk_gt_workarounds_init(gt, wal);
1792 else if (IS_G4X(i915))
1793 g4x_gt_workarounds_init(gt, wal);
1794 else if (GRAPHICS_VER(i915) == 4)
1795 gen4_gt_workarounds_init(gt, wal);
1796 else if (GRAPHICS_VER(i915) <= 8)
1797 ;
1798 else
1799 MISSING_CASE(GRAPHICS_VER(i915));
1800}
1801
1802void intel_gt_init_workarounds(struct intel_gt *gt)
1803{
1804 struct i915_wa_list *wal = &gt->wa_list;
1805
1806 wa_init_start(wal, gt, name: "GT", engine_name: "global");
1807 gt_init_workarounds(gt, wal);
1808 wa_init_finish(wal);
1809}
1810
1811static bool
1812wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1813 const char *name, const char *from)
1814{
1815 if ((cur ^ wa->set) & wa->read) {
1816 gt_err(gt,
1817 "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1818 name, from, i915_mmio_reg_offset(wa->reg),
1819 cur, cur & wa->read, wa->set & wa->read);
1820
1821 return false;
1822 }
1823
1824 return true;
1825}
1826
1827static void wa_list_apply(const struct i915_wa_list *wal)
1828{
1829 struct intel_gt *gt = wal->gt;
1830 struct intel_uncore *uncore = gt->uncore;
1831 enum forcewake_domains fw;
1832 unsigned long flags;
1833 struct i915_wa *wa;
1834 unsigned int i;
1835
1836 if (!wal->count)
1837 return;
1838
1839 fw = wal_get_fw_for_rmw(uncore, wal);
1840
1841 intel_gt_mcr_lock(gt, flags: &flags);
1842 spin_lock(lock: &uncore->lock);
1843 intel_uncore_forcewake_get__locked(uncore, domains: fw);
1844
1845 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1846 u32 val, old = 0;
1847
1848 /* open-coded rmw due to steering */
1849 if (wa->clr)
1850 old = wa->is_mcr ?
1851 intel_gt_mcr_read_any_fw(gt, reg: wa->mcr_reg) :
1852 intel_uncore_read_fw(uncore, wa->reg);
1853 val = (old & ~wa->clr) | wa->set;
1854 if (val != old || !wa->clr) {
1855 if (wa->is_mcr)
1856 intel_gt_mcr_multicast_write_fw(gt, reg: wa->mcr_reg, value: val);
1857 else
1858 intel_uncore_write_fw(uncore, wa->reg, val);
1859 }
1860
1861 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1862 u32 val = wa->is_mcr ?
1863 intel_gt_mcr_read_any_fw(gt, reg: wa->mcr_reg) :
1864 intel_uncore_read_fw(uncore, wa->reg);
1865
1866 wa_verify(gt, wa, cur: val, name: wal->name, from: "application");
1867 }
1868 }
1869
1870 intel_uncore_forcewake_put__locked(uncore, domains: fw);
1871 spin_unlock(lock: &uncore->lock);
1872 intel_gt_mcr_unlock(gt, flags);
1873}
1874
1875void intel_gt_apply_workarounds(struct intel_gt *gt)
1876{
1877 wa_list_apply(wal: &gt->wa_list);
1878}
1879
1880static bool wa_list_verify(struct intel_gt *gt,
1881 const struct i915_wa_list *wal,
1882 const char *from)
1883{
1884 struct intel_uncore *uncore = gt->uncore;
1885 struct i915_wa *wa;
1886 enum forcewake_domains fw;
1887 unsigned long flags;
1888 unsigned int i;
1889 bool ok = true;
1890
1891 fw = wal_get_fw_for_rmw(uncore, wal);
1892
1893 intel_gt_mcr_lock(gt, flags: &flags);
1894 spin_lock(lock: &uncore->lock);
1895 intel_uncore_forcewake_get__locked(uncore, domains: fw);
1896
1897 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1898 ok &= wa_verify(gt: wal->gt, wa, cur: wa->is_mcr ?
1899 intel_gt_mcr_read_any_fw(gt, reg: wa->mcr_reg) :
1900 intel_uncore_read_fw(uncore, wa->reg),
1901 name: wal->name, from);
1902
1903 intel_uncore_forcewake_put__locked(uncore, domains: fw);
1904 spin_unlock(lock: &uncore->lock);
1905 intel_gt_mcr_unlock(gt, flags);
1906
1907 return ok;
1908}
1909
1910bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1911{
1912 return wa_list_verify(gt, wal: &gt->wa_list, from);
1913}
1914
1915__maybe_unused
1916static bool is_nonpriv_flags_valid(u32 flags)
1917{
1918 /* Check only valid flag bits are set */
1919 if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1920 return false;
1921
1922 /* NB: Only 3 out of 4 enum values are valid for access field */
1923 if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1924 RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1925 return false;
1926
1927 return true;
1928}
1929
1930static void
1931whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1932{
1933 struct i915_wa wa = {
1934 .reg = reg
1935 };
1936
1937 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1938 return;
1939
1940 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1941 return;
1942
1943 wa.reg.reg |= flags;
1944 _wa_add(wal, wa: &wa);
1945}
1946
1947static void
1948whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1949{
1950 struct i915_wa wa = {
1951 .mcr_reg = reg,
1952 .is_mcr = 1,
1953 };
1954
1955 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1956 return;
1957
1958 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1959 return;
1960
1961 wa.mcr_reg.reg |= flags;
1962 _wa_add(wal, wa: &wa);
1963}
1964
1965static void
1966whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1967{
1968 whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1969}
1970
1971static void
1972whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
1973{
1974 whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1975}
1976
1977static void gen9_whitelist_build(struct i915_wa_list *w)
1978{
1979 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1980 whitelist_reg(wal: w, GEN9_CTX_PREEMPT_REG);
1981
1982 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1983 whitelist_reg(wal: w, GEN8_CS_CHICKEN1);
1984
1985 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1986 whitelist_reg(wal: w, GEN8_HDC_CHICKEN1);
1987
1988 /* WaSendPushConstantsFromMMIO:skl,bxt */
1989 whitelist_reg(wal: w, COMMON_SLICE_CHICKEN2);
1990}
1991
1992static void skl_whitelist_build(struct intel_engine_cs *engine)
1993{
1994 struct i915_wa_list *w = &engine->whitelist;
1995
1996 if (engine->class != RENDER_CLASS)
1997 return;
1998
1999 gen9_whitelist_build(w);
2000
2001 /* WaDisableLSQCROPERFforOCL:skl */
2002 whitelist_mcr_reg(wal: w, GEN8_L3SQCREG4);
2003}
2004
2005static void bxt_whitelist_build(struct intel_engine_cs *engine)
2006{
2007 if (engine->class != RENDER_CLASS)
2008 return;
2009
2010 gen9_whitelist_build(w: &engine->whitelist);
2011}
2012
2013static void kbl_whitelist_build(struct intel_engine_cs *engine)
2014{
2015 struct i915_wa_list *w = &engine->whitelist;
2016
2017 if (engine->class != RENDER_CLASS)
2018 return;
2019
2020 gen9_whitelist_build(w);
2021
2022 /* WaDisableLSQCROPERFforOCL:kbl */
2023 whitelist_mcr_reg(wal: w, GEN8_L3SQCREG4);
2024}
2025
2026static void glk_whitelist_build(struct intel_engine_cs *engine)
2027{
2028 struct i915_wa_list *w = &engine->whitelist;
2029
2030 if (engine->class != RENDER_CLASS)
2031 return;
2032
2033 gen9_whitelist_build(w);
2034
2035 /* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
2036 whitelist_reg(wal: w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2037}
2038
2039static void cfl_whitelist_build(struct intel_engine_cs *engine)
2040{
2041 struct i915_wa_list *w = &engine->whitelist;
2042
2043 if (engine->class != RENDER_CLASS)
2044 return;
2045
2046 gen9_whitelist_build(w);
2047
2048 /*
2049 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
2050 *
2051 * This covers 4 register which are next to one another :
2052 * - PS_INVOCATION_COUNT
2053 * - PS_INVOCATION_COUNT_UDW
2054 * - PS_DEPTH_COUNT
2055 * - PS_DEPTH_COUNT_UDW
2056 */
2057 whitelist_reg_ext(wal: w, PS_INVOCATION_COUNT,
2058 RING_FORCE_TO_NONPRIV_ACCESS_RD |
2059 RING_FORCE_TO_NONPRIV_RANGE_4);
2060}
2061
2062static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
2063{
2064 struct i915_wa_list *w = &engine->whitelist;
2065
2066 if (engine->class != RENDER_CLASS)
2067 whitelist_reg_ext(wal: w,
2068 RING_CTX_TIMESTAMP(engine->mmio_base),
2069 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2070}
2071
2072static void cml_whitelist_build(struct intel_engine_cs *engine)
2073{
2074 allow_read_ctx_timestamp(engine);
2075
2076 cfl_whitelist_build(engine);
2077}
2078
2079static void icl_whitelist_build(struct intel_engine_cs *engine)
2080{
2081 struct i915_wa_list *w = &engine->whitelist;
2082
2083 allow_read_ctx_timestamp(engine);
2084
2085 switch (engine->class) {
2086 case RENDER_CLASS:
2087 /* WaAllowUMDToModifyHalfSliceChicken7:icl */
2088 whitelist_mcr_reg(wal: w, GEN9_HALF_SLICE_CHICKEN7);
2089
2090 /* WaAllowUMDToModifySamplerMode:icl */
2091 whitelist_mcr_reg(wal: w, GEN10_SAMPLER_MODE);
2092
2093 /* WaEnableStateCacheRedirectToCS:icl */
2094 whitelist_reg(wal: w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2095
2096 /*
2097 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2098 *
2099 * This covers 4 register which are next to one another :
2100 * - PS_INVOCATION_COUNT
2101 * - PS_INVOCATION_COUNT_UDW
2102 * - PS_DEPTH_COUNT
2103 * - PS_DEPTH_COUNT_UDW
2104 */
2105 whitelist_reg_ext(wal: w, PS_INVOCATION_COUNT,
2106 RING_FORCE_TO_NONPRIV_ACCESS_RD |
2107 RING_FORCE_TO_NONPRIV_RANGE_4);
2108 break;
2109
2110 case VIDEO_DECODE_CLASS:
2111 /* hucStatusRegOffset */
2112 whitelist_reg_ext(wal: w, _MMIO(0x2000 + engine->mmio_base),
2113 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2114 /* hucUKernelHdrInfoRegOffset */
2115 whitelist_reg_ext(wal: w, _MMIO(0x2014 + engine->mmio_base),
2116 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2117 /* hucStatus2RegOffset */
2118 whitelist_reg_ext(wal: w, _MMIO(0x23B0 + engine->mmio_base),
2119 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2120 break;
2121
2122 default:
2123 break;
2124 }
2125}
2126
2127static void tgl_whitelist_build(struct intel_engine_cs *engine)
2128{
2129 struct i915_wa_list *w = &engine->whitelist;
2130
2131 allow_read_ctx_timestamp(engine);
2132
2133 switch (engine->class) {
2134 case RENDER_CLASS:
2135 /*
2136 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2137 * Wa_1408556865:tgl
2138 *
2139 * This covers 4 registers which are next to one another :
2140 * - PS_INVOCATION_COUNT
2141 * - PS_INVOCATION_COUNT_UDW
2142 * - PS_DEPTH_COUNT
2143 * - PS_DEPTH_COUNT_UDW
2144 */
2145 whitelist_reg_ext(wal: w, PS_INVOCATION_COUNT,
2146 RING_FORCE_TO_NONPRIV_ACCESS_RD |
2147 RING_FORCE_TO_NONPRIV_RANGE_4);
2148
2149 /*
2150 * Wa_1808121037:tgl
2151 * Wa_14012131227:dg1
2152 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2153 */
2154 whitelist_reg(wal: w, GEN7_COMMON_SLICE_CHICKEN1);
2155
2156 /* Wa_1806527549:tgl */
2157 whitelist_reg(wal: w, HIZ_CHICKEN);
2158
2159 /* Required by recommended tuning setting (not a workaround) */
2160 whitelist_reg(wal: w, GEN11_COMMON_SLICE_CHICKEN3);
2161
2162 break;
2163 default:
2164 break;
2165 }
2166}
2167
2168static void dg2_whitelist_build(struct intel_engine_cs *engine)
2169{
2170 struct i915_wa_list *w = &engine->whitelist;
2171
2172 switch (engine->class) {
2173 case RENDER_CLASS:
2174 /* Required by recommended tuning setting (not a workaround) */
2175 whitelist_mcr_reg(wal: w, XEHP_COMMON_SLICE_CHICKEN3);
2176
2177 break;
2178 default:
2179 break;
2180 }
2181}
2182
2183static void blacklist_trtt(struct intel_engine_cs *engine)
2184{
2185 struct i915_wa_list *w = &engine->whitelist;
2186
2187 /*
2188 * Prevent read/write access to [0x4400, 0x4600) which covers
2189 * the TRTT range across all engines. Note that normally userspace
2190 * cannot access the other engines' trtt control, but for simplicity
2191 * we cover the entire range on each engine.
2192 */
2193 whitelist_reg_ext(wal: w, _MMIO(0x4400),
2194 RING_FORCE_TO_NONPRIV_DENY |
2195 RING_FORCE_TO_NONPRIV_RANGE_64);
2196 whitelist_reg_ext(wal: w, _MMIO(0x4500),
2197 RING_FORCE_TO_NONPRIV_DENY |
2198 RING_FORCE_TO_NONPRIV_RANGE_64);
2199}
2200
2201static void pvc_whitelist_build(struct intel_engine_cs *engine)
2202{
2203 /* Wa_16014440446:pvc */
2204 blacklist_trtt(engine);
2205}
2206
2207static void xelpg_whitelist_build(struct intel_engine_cs *engine)
2208{
2209 struct i915_wa_list *w = &engine->whitelist;
2210
2211 switch (engine->class) {
2212 case RENDER_CLASS:
2213 /* Required by recommended tuning setting (not a workaround) */
2214 whitelist_mcr_reg(wal: w, XEHP_COMMON_SLICE_CHICKEN3);
2215
2216 break;
2217 default:
2218 break;
2219 }
2220}
2221
2222void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2223{
2224 struct drm_i915_private *i915 = engine->i915;
2225 struct i915_wa_list *w = &engine->whitelist;
2226
2227 wa_init_start(wal: w, gt: engine->gt, name: "whitelist", engine_name: engine->name);
2228
2229 if (engine->gt->type == GT_MEDIA)
2230 ; /* none yet */
2231 else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
2232 xelpg_whitelist_build(engine);
2233 else if (IS_PONTEVECCHIO(i915))
2234 pvc_whitelist_build(engine);
2235 else if (IS_DG2(i915))
2236 dg2_whitelist_build(engine);
2237 else if (IS_XEHPSDV(i915))
2238 ; /* none needed */
2239 else if (GRAPHICS_VER(i915) == 12)
2240 tgl_whitelist_build(engine);
2241 else if (GRAPHICS_VER(i915) == 11)
2242 icl_whitelist_build(engine);
2243 else if (IS_COMETLAKE(i915))
2244 cml_whitelist_build(engine);
2245 else if (IS_COFFEELAKE(i915))
2246 cfl_whitelist_build(engine);
2247 else if (IS_GEMINILAKE(i915))
2248 glk_whitelist_build(engine);
2249 else if (IS_KABYLAKE(i915))
2250 kbl_whitelist_build(engine);
2251 else if (IS_BROXTON(i915))
2252 bxt_whitelist_build(engine);
2253 else if (IS_SKYLAKE(i915))
2254 skl_whitelist_build(engine);
2255 else if (GRAPHICS_VER(i915) <= 8)
2256 ;
2257 else
2258 MISSING_CASE(GRAPHICS_VER(i915));
2259
2260 wa_init_finish(wal: w);
2261}
2262
2263void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2264{
2265 const struct i915_wa_list *wal = &engine->whitelist;
2266 struct intel_uncore *uncore = engine->uncore;
2267 const u32 base = engine->mmio_base;
2268 struct i915_wa *wa;
2269 unsigned int i;
2270
2271 if (!wal->count)
2272 return;
2273
2274 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2275 intel_uncore_write(uncore,
2276 RING_FORCE_TO_NONPRIV(base, i),
2277 i915_mmio_reg_offset(wa->reg));
2278
2279 /* And clear the rest just in case of garbage */
2280 for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2281 intel_uncore_write(uncore,
2282 RING_FORCE_TO_NONPRIV(base, i),
2283 i915_mmio_reg_offset(RING_NOPID(base)));
2284}
2285
2286/*
2287 * engine_fake_wa_init(), a place holder to program the registers
2288 * which are not part of an official workaround defined by the
2289 * hardware team.
2290 * Adding programming of those register inside workaround will
2291 * allow utilizing wa framework to proper application and verification.
2292 */
2293static void
2294engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2295{
2296 u8 mocs_w, mocs_r;
2297
2298 /*
2299 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2300 * by the command streamer when executing commands that don't have
2301 * a way to explicitly specify a MOCS setting. The default should
2302 * usually reference whichever MOCS entry corresponds to uncached
2303 * behavior, although use of a WB cached entry is recommended by the
2304 * spec in certain circumstances on specific platforms.
2305 */
2306 if (GRAPHICS_VER(engine->i915) >= 12) {
2307 mocs_r = engine->gt->mocs.uc_index;
2308 mocs_w = engine->gt->mocs.uc_index;
2309
2310 if (HAS_L3_CCS_READ(engine->i915) &&
2311 engine->class == COMPUTE_CLASS) {
2312 mocs_r = engine->gt->mocs.wb_index;
2313
2314 /*
2315 * Even on the few platforms where MOCS 0 is a
2316 * legitimate table entry, it's never the correct
2317 * setting to use here; we can assume the MOCS init
2318 * just forgot to initialize wb_index.
2319 */
2320 drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2321 }
2322
2323 wa_masked_field_set(wal,
2324 RING_CMD_CCTL(engine->mmio_base),
2325 CMD_CCTL_MOCS_MASK,
2326 CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2327 }
2328}
2329
2330static void
2331rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2332{
2333 struct drm_i915_private *i915 = engine->i915;
2334 struct intel_gt *gt = engine->gt;
2335
2336 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2337 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
2338 /* Wa_22014600077 */
2339 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2340 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2341 }
2342
2343 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2344 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2345 IS_DG2(i915)) {
2346 /* Wa_1509727124 */
2347 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2348 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2349 }
2350
2351 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2352 IS_DG2(i915)) {
2353 /* Wa_22012856258 */
2354 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2355 GEN12_DISABLE_READ_SUPPRESSION);
2356 }
2357
2358 if (IS_DG2(i915)) {
2359 /*
2360 * Wa_22010960976:dg2
2361 * Wa_14013347512:dg2
2362 */
2363 wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2364 LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2365 }
2366
2367 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) ||
2368 IS_DG2(i915)) {
2369 /* Wa_14015150844 */
2370 wa_mcr_add(wal, XEHP_HDC_CHICKEN0, clear: 0,
2371 _MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES),
2372 read_mask: 0, masked_reg: true);
2373 }
2374
2375 if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2376 IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2377 /*
2378 * Wa_1606700617:tgl,dg1,adl-p
2379 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2380 * Wa_14010826681:tgl,dg1,rkl,adl-p
2381 * Wa_18019627453:dg2
2382 */
2383 wa_masked_en(wal,
2384 GEN9_CS_DEBUG_MODE1,
2385 FF_DOP_CLOCK_GATE_DISABLE);
2386 }
2387
2388 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2389 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2390 /* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2391 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2392
2393 /*
2394 * Wa_1407928979:tgl A*
2395 * Wa_18011464164:tgl[B0+],dg1[B0+]
2396 * Wa_22010931296:tgl[B0+],dg1[B0+]
2397 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2398 */
2399 wa_write_or(wal, GEN7_FF_THREAD_MODE,
2400 GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2401
2402 /* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2403 wa_mcr_masked_en(wal,
2404 GEN10_SAMPLER_MODE,
2405 ENABLE_SMALLPL);
2406 }
2407
2408 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2409 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2410 /* Wa_1409804808 */
2411 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2412 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2413
2414 /* Wa_14010229206 */
2415 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2416 }
2417
2418 if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2419 /*
2420 * Wa_1607297627
2421 *
2422 * On TGL and RKL there are multiple entries for this WA in the
2423 * BSpec; some indicate this is an A0-only WA, others indicate
2424 * it applies to all steppings so we trust the "all steppings."
2425 */
2426 wa_masked_en(wal,
2427 RING_PSMI_CTL(RENDER_RING_BASE),
2428 GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2429 GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2430 }
2431
2432 if (GRAPHICS_VER(i915) == 11) {
2433 /* This is not an Wa. Enable for better image quality */
2434 wa_masked_en(wal,
2435 _3D_CHICKEN3,
2436 _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2437
2438 /*
2439 * Wa_1405543622:icl
2440 * Formerly known as WaGAPZPriorityScheme
2441 */
2442 wa_write_or(wal,
2443 GEN8_GARBCNTL,
2444 GEN11_ARBITRATION_PRIO_ORDER_MASK);
2445
2446 /*
2447 * Wa_1604223664:icl
2448 * Formerly known as WaL3BankAddressHashing
2449 */
2450 wa_write_clr_set(wal,
2451 GEN8_GARBCNTL,
2452 GEN11_HASH_CTRL_EXCL_MASK,
2453 GEN11_HASH_CTRL_EXCL_BIT0);
2454 wa_write_clr_set(wal,
2455 GEN11_GLBLINVL,
2456 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2457 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2458
2459 /*
2460 * Wa_1405733216:icl
2461 * Formerly known as WaDisableCleanEvicts
2462 */
2463 wa_mcr_write_or(wal,
2464 GEN8_L3SQCREG4,
2465 GEN11_LQSC_CLEAN_EVICT_DISABLE);
2466
2467 /* Wa_1606682166:icl */
2468 wa_write_or(wal,
2469 GEN7_SARCHKMD,
2470 GEN7_DISABLE_SAMPLER_PREFETCH);
2471
2472 /* Wa_1409178092:icl */
2473 wa_mcr_write_clr_set(wal,
2474 GEN11_SCRATCH2,
2475 GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2476 set: 0);
2477
2478 /* WaEnable32PlaneMode:icl */
2479 wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2480 GEN11_ENABLE_32_PLANE_MODE);
2481
2482 /*
2483 * Wa_1408767742:icl[a2..forever],ehl[all]
2484 * Wa_1605460711:icl[a0..c0]
2485 */
2486 wa_write_or(wal,
2487 GEN7_FF_THREAD_MODE,
2488 GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2489
2490 /* Wa_22010271021 */
2491 wa_masked_en(wal,
2492 GEN9_CS_DEBUG_MODE1,
2493 FF_DOP_CLOCK_GATE_DISABLE);
2494 }
2495
2496 /*
2497 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2498 * beyond) allow the kernel-mode driver to choose between two different
2499 * options for controlling preemption granularity and behavior.
2500 *
2501 * Option 1 (hardware default):
2502 * Preemption settings are controlled in a global manner via
2503 * kernel-only register CS_DEBUG_MODE1 (0x20EC). Any granularity
2504 * and settings chosen by the kernel-mode driver will apply to all
2505 * userspace clients.
2506 *
2507 * Option 2:
2508 * Preemption settings are controlled on a per-context basis via
2509 * register CS_CHICKEN1 (0x2580). CS_CHICKEN1 is saved/restored on
2510 * context switch and is writable by userspace (e.g., via
2511 * MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2512 * which allows different userspace drivers/clients to select
2513 * different settings, or to change those settings on the fly in
2514 * response to runtime needs. This option was known by name
2515 * "FtrPerCtxtPreemptionGranularityControl" at one time, although
2516 * that name is somewhat misleading as other non-granularity
2517 * preemption settings are also impacted by this decision.
2518 *
2519 * On Linux, our policy has always been to let userspace drivers
2520 * control preemption granularity/settings (Option 2). This was
2521 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2522 * userspace developed before object-level preemption was enabled would
2523 * not behave well if i915 were to go with Option 1 and enable that
2524 * preemption in a global manner). On gen9 each context would have
2525 * object-level preemption disabled by default (see
2526 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2527 * userspace drivers could opt-in to object-level preemption as they
2528 * saw fit. For post-gen9 platforms, we continue to utilize Option 2;
2529 * even though it is no longer necessary for ABI compatibility when
2530 * enabling a new platform, it does ensure that userspace will be able
2531 * to implement any workarounds that show up requiring temporary
2532 * adjustments to preemption behavior at runtime.
2533 *
2534 * Notes/Workarounds:
2535 * - Wa_14015141709: On DG2 and early steppings of MTL,
2536 * CS_CHICKEN1[0] does not disable object-level preemption as
2537 * it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2538 * using Option 1). Effectively this means userspace is unable
2539 * to disable object-level preemption on these platforms/steppings
2540 * despite the setting here.
2541 *
2542 * - Wa_16013994831: May require that userspace program
2543 * CS_CHICKEN1[10] when certain runtime conditions are true.
2544 * Userspace requires Option 2 to be in effect for their update of
2545 * CS_CHICKEN1[10] to be effective.
2546 *
2547 * Other workarounds may appear in the future that will also require
2548 * Option 2 behavior to allow proper userspace implementation.
2549 */
2550 if (GRAPHICS_VER(i915) >= 9)
2551 wa_masked_en(wal,
2552 GEN7_FF_SLICE_CS_CHICKEN1,
2553 GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2554
2555 if (IS_SKYLAKE(i915) ||
2556 IS_KABYLAKE(i915) ||
2557 IS_COFFEELAKE(i915) ||
2558 IS_COMETLAKE(i915)) {
2559 /* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2560 wa_write_or(wal,
2561 GEN8_GARBCNTL,
2562 GEN9_GAPS_TSV_CREDIT_DISABLE);
2563 }
2564
2565 if (IS_BROXTON(i915)) {
2566 /* WaDisablePooledEuLoadBalancingFix:bxt */
2567 wa_masked_en(wal,
2568 FF_SLICE_CS_CHICKEN2,
2569 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2570 }
2571
2572 if (GRAPHICS_VER(i915) == 9) {
2573 /* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2574 wa_masked_en(wal,
2575 GEN9_CSFE_CHICKEN1_RCS,
2576 GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2577
2578 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2579 wa_mcr_write_or(wal,
2580 BDW_SCRATCH1,
2581 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2582
2583 /* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2584 if (IS_GEN9_LP(i915))
2585 wa_mcr_write_clr_set(wal,
2586 GEN8_L3SQCREG1,
2587 L3_PRIO_CREDITS_MASK,
2588 L3_GENERAL_PRIO_CREDITS(62) |
2589 L3_HIGH_PRIO_CREDITS(2));
2590
2591 /* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2592 wa_mcr_write_or(wal,
2593 GEN8_L3SQCREG4,
2594 GEN8_LQSC_FLUSH_COHERENT_LINES);
2595
2596 /* Disable atomics in L3 to prevent unrecoverable hangs */
2597 wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2598 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, set: 0);
2599 wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2600 GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, set: 0);
2601 wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2602 EVICTION_PERF_FIX_ENABLE, set: 0);
2603 }
2604
2605 if (IS_HASWELL(i915)) {
2606 /* WaSampleCChickenBitEnable:hsw */
2607 wa_masked_en(wal,
2608 HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2609
2610 wa_masked_dis(wal,
2611 CACHE_MODE_0_GEN7,
2612 /* enable HiZ Raw Stall Optimization */
2613 HIZ_RAW_STALL_OPT_DISABLE);
2614 }
2615
2616 if (IS_VALLEYVIEW(i915)) {
2617 /* WaDisableEarlyCull:vlv */
2618 wa_masked_en(wal,
2619 _3D_CHICKEN3,
2620 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2621
2622 /*
2623 * WaVSThreadDispatchOverride:ivb,vlv
2624 *
2625 * This actually overrides the dispatch
2626 * mode for all thread types.
2627 */
2628 wa_write_clr_set(wal,
2629 GEN7_FF_THREAD_MODE,
2630 GEN7_FF_SCHED_MASK,
2631 GEN7_FF_TS_SCHED_HW |
2632 GEN7_FF_VS_SCHED_HW |
2633 GEN7_FF_DS_SCHED_HW);
2634
2635 /* WaPsdDispatchEnable:vlv */
2636 /* WaDisablePSDDualDispatchEnable:vlv */
2637 wa_masked_en(wal,
2638 GEN7_HALF_SLICE_CHICKEN1,
2639 GEN7_MAX_PS_THREAD_DEP |
2640 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2641 }
2642
2643 if (IS_IVYBRIDGE(i915)) {
2644 /* WaDisableEarlyCull:ivb */
2645 wa_masked_en(wal,
2646 _3D_CHICKEN3,
2647 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2648
2649 if (0) { /* causes HiZ corruption on ivb:gt1 */
2650 /* enable HiZ Raw Stall Optimization */
2651 wa_masked_dis(wal,
2652 CACHE_MODE_0_GEN7,
2653 HIZ_RAW_STALL_OPT_DISABLE);
2654 }
2655
2656 /*
2657 * WaVSThreadDispatchOverride:ivb,vlv
2658 *
2659 * This actually overrides the dispatch
2660 * mode for all thread types.
2661 */
2662 wa_write_clr_set(wal,
2663 GEN7_FF_THREAD_MODE,
2664 GEN7_FF_SCHED_MASK,
2665 GEN7_FF_TS_SCHED_HW |
2666 GEN7_FF_VS_SCHED_HW |
2667 GEN7_FF_DS_SCHED_HW);
2668
2669 /* WaDisablePSDDualDispatchEnable:ivb */
2670 if (IS_IVB_GT1(i915))
2671 wa_masked_en(wal,
2672 GEN7_HALF_SLICE_CHICKEN1,
2673 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2674 }
2675
2676 if (GRAPHICS_VER(i915) == 7) {
2677 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2678 wa_masked_en(wal,
2679 RING_MODE_GEN7(RENDER_RING_BASE),
2680 GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2681
2682 /* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2683 wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2684
2685 /*
2686 * BSpec says this must be set, even though
2687 * WaDisable4x2SubspanOptimization:ivb,hsw
2688 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2689 */
2690 wa_masked_en(wal,
2691 CACHE_MODE_1,
2692 PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2693
2694 /*
2695 * BSpec recommends 8x4 when MSAA is used,
2696 * however in practice 16x4 seems fastest.
2697 *
2698 * Note that PS/WM thread counts depend on the WIZ hashing
2699 * disable bit, which we don't touch here, but it's good
2700 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2701 */
2702 wa_masked_field_set(wal,
2703 GEN7_GT_MODE,
2704 GEN6_WIZ_HASHING_MASK,
2705 GEN6_WIZ_HASHING_16x4);
2706 }
2707
2708 if (IS_GRAPHICS_VER(i915, 6, 7))
2709 /*
2710 * We need to disable the AsyncFlip performance optimisations in
2711 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2712 * already be programmed to '1' on all products.
2713 *
2714 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2715 */
2716 wa_masked_en(wal,
2717 RING_MI_MODE(RENDER_RING_BASE),
2718 ASYNC_FLIP_PERF_DISABLE);
2719
2720 if (GRAPHICS_VER(i915) == 6) {
2721 /*
2722 * Required for the hardware to program scanline values for
2723 * waiting
2724 * WaEnableFlushTlbInvalidationMode:snb
2725 */
2726 wa_masked_en(wal,
2727 GFX_MODE,
2728 GFX_TLB_INVALIDATE_EXPLICIT);
2729
2730 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2731 wa_masked_en(wal,
2732 _3D_CHICKEN,
2733 _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2734
2735 wa_masked_en(wal,
2736 _3D_CHICKEN3,
2737 /* WaStripsFansDisableFastClipPerformanceFix:snb */
2738 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2739 /*
2740 * Bspec says:
2741 * "This bit must be set if 3DSTATE_CLIP clip mode is set
2742 * to normal and 3DSTATE_SF number of SF output attributes
2743 * is more than 16."
2744 */
2745 _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2746
2747 /*
2748 * BSpec recommends 8x4 when MSAA is used,
2749 * however in practice 16x4 seems fastest.
2750 *
2751 * Note that PS/WM thread counts depend on the WIZ hashing
2752 * disable bit, which we don't touch here, but it's good
2753 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2754 */
2755 wa_masked_field_set(wal,
2756 GEN6_GT_MODE,
2757 GEN6_WIZ_HASHING_MASK,
2758 GEN6_WIZ_HASHING_16x4);
2759
2760 /* WaDisable_RenderCache_OperationalFlush:snb */
2761 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2762
2763 /*
2764 * From the Sandybridge PRM, volume 1 part 3, page 24:
2765 * "If this bit is set, STCunit will have LRA as replacement
2766 * policy. [...] This bit must be reset. LRA replacement
2767 * policy is not supported."
2768 */
2769 wa_masked_dis(wal,
2770 CACHE_MODE_0,
2771 CM0_STC_EVICT_DISABLE_LRA_SNB);
2772 }
2773
2774 if (IS_GRAPHICS_VER(i915, 4, 6))
2775 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2776 wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2777 clear: 0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2778 /* XXX bit doesn't stick on Broadwater */
2779 IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, masked_reg: true);
2780
2781 if (GRAPHICS_VER(i915) == 4)
2782 /*
2783 * Disable CONSTANT_BUFFER before it is loaded from the context
2784 * image. For as it is loaded, it is executed and the stored
2785 * address may no longer be valid, leading to a GPU hang.
2786 *
2787 * This imposes the requirement that userspace reload their
2788 * CONSTANT_BUFFER on every batch, fortunately a requirement
2789 * they are already accustomed to from before contexts were
2790 * enabled.
2791 */
2792 wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2793 clear: 0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2794 read_mask: 0 /* XXX bit doesn't stick on Broadwater */,
2795 masked_reg: true);
2796}
2797
2798static void
2799xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2800{
2801 struct drm_i915_private *i915 = engine->i915;
2802
2803 /* WaKBLVECSSemaphoreWaitPoll:kbl */
2804 if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2805 wa_write(wal,
2806 RING_SEMA_WAIT_POLL(engine->mmio_base),
2807 set: 1);
2808 }
2809 /* Wa_16018031267, Wa_16018063123 */
2810 if (NEEDS_FASTCOLOR_BLT_WABB(engine))
2811 wa_masked_field_set(wal, ECOSKPD(engine->mmio_base),
2812 XEHP_BLITTER_SCHEDULING_MODE_MASK,
2813 XEHP_BLITTER_ROUND_ROBIN_MODE);
2814}
2815
2816static void
2817ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2818{
2819 if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) {
2820 /* Wa_14014999345:pvc */
2821 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC);
2822 }
2823}
2824
2825/*
2826 * The bspec performance guide has recommended MMIO tuning settings. These
2827 * aren't truly "workarounds" but we want to program them with the same
2828 * workaround infrastructure to ensure that they're automatically added to
2829 * the GuC save/restore lists, re-applied at the right times, and checked for
2830 * any conflicting programming requested by real workarounds.
2831 *
2832 * Programming settings should be added here only if their registers are not
2833 * part of an engine's register state context. If a register is part of a
2834 * context, then any tuning settings should be programmed in an appropriate
2835 * function invoked by __intel_engine_init_ctx_wa().
2836 */
2837static void
2838add_render_compute_tuning_settings(struct intel_gt *gt,
2839 struct i915_wa_list *wal)
2840{
2841 struct drm_i915_private *i915 = gt->i915;
2842
2843 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915))
2844 wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2845
2846 /*
2847 * This tuning setting proves beneficial only on ATS-M designs; the
2848 * default "age based" setting is optimal on regular DG2 and other
2849 * platforms.
2850 */
2851 if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2852 wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2853 THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2854
2855 if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
2856 wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2857}
2858
2859static void ccs_engine_wa_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2860{
2861 struct intel_gt *gt = engine->gt;
2862
2863 if (!IS_DG2(gt->i915))
2864 return;
2865
2866 /*
2867 * Wa_14019159160: This workaround, along with others, leads to
2868 * significant challenges in utilizing load balancing among the
2869 * CCS slices. Consequently, an architectural decision has been
2870 * made to completely disable automatic CCS load balancing.
2871 */
2872 wa_masked_en(wal, GEN12_RCU_MODE, XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE);
2873
2874 /*
2875 * After having disabled automatic load balancing we need to
2876 * assign all slices to a single CCS. We will call it CCS mode 1
2877 */
2878 intel_gt_apply_ccs_mode(gt);
2879}
2880
2881/*
2882 * The workarounds in this function apply to shared registers in
2883 * the general render reset domain that aren't tied to a
2884 * specific engine. Since all render+compute engines get reset
2885 * together, and the contents of these registers are lost during
2886 * the shared render domain reset, we'll define such workarounds
2887 * here and then add them to just a single RCS or CCS engine's
2888 * workaround list (whichever engine has the XXXX flag).
2889 */
2890static void
2891general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2892{
2893 struct drm_i915_private *i915 = engine->i915;
2894 struct intel_gt *gt = engine->gt;
2895
2896 add_render_compute_tuning_settings(gt, wal);
2897
2898 if (GRAPHICS_VER(i915) >= 11) {
2899 /* This is not a Wa (although referred to as
2900 * WaSetInidrectStateOverride in places), this allows
2901 * applications that reference sampler states through
2902 * the BindlessSamplerStateBaseAddress to have their
2903 * border color relative to DynamicStateBaseAddress
2904 * rather than BindlessSamplerStateBaseAddress.
2905 *
2906 * Otherwise SAMPLER_STATE border colors have to be
2907 * copied in multiple heaps (DynamicStateBaseAddress &
2908 * BindlessSamplerStateBaseAddress)
2909 *
2910 * BSpec: 46052
2911 */
2912 wa_mcr_masked_en(wal,
2913 GEN10_SAMPLER_MODE,
2914 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
2915 }
2916
2917 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
2918 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER) ||
2919 IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 74), IP_VER(12, 74)))
2920 /* Wa_14017856879 */
2921 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
2922
2923 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2924 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2925 /*
2926 * Wa_14017066071
2927 * Wa_14017654203
2928 */
2929 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2930 MTL_DISABLE_SAMPLER_SC_OOO);
2931
2932 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2933 /* Wa_22015279794 */
2934 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2935 DISABLE_PREFETCH_INTO_IC);
2936
2937 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2938 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2939 IS_DG2(i915)) {
2940 /* Wa_22013037850 */
2941 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2942 DISABLE_128B_EVICTION_COMMAND_UDW);
2943
2944 /* Wa_18017747507 */
2945 wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
2946 }
2947
2948 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2949 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2950 IS_PONTEVECCHIO(i915) ||
2951 IS_DG2(i915)) {
2952 /* Wa_22014226127 */
2953 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
2954 }
2955
2956 if (IS_PONTEVECCHIO(i915) || IS_DG2(i915)) {
2957 /* Wa_14015227452:dg2,pvc */
2958 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
2959
2960 /* Wa_16015675438:dg2,pvc */
2961 wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE);
2962 }
2963
2964 if (IS_DG2(i915)) {
2965 /*
2966 * Wa_16011620976:dg2_g11
2967 * Wa_22015475538:dg2
2968 */
2969 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
2970
2971 /* Wa_18028616096 */
2972 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, UGM_FRAGMENT_THRESHOLD_TO_3);
2973 }
2974
2975 if (IS_DG2_G11(i915)) {
2976 /*
2977 * Wa_22012826095:dg2
2978 * Wa_22013059131:dg2
2979 */
2980 wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
2981 MAXREQS_PER_BANK,
2982 REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
2983
2984 /* Wa_22013059131:dg2 */
2985 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
2986 FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
2987
2988 /*
2989 * Wa_22012654132
2990 *
2991 * Note that register 0xE420 is write-only and cannot be read
2992 * back for verification on DG2 (due to Wa_14012342262), so
2993 * we need to explicitly skip the readback.
2994 */
2995 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, clear: 0,
2996 _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
2997 read_mask: 0 /* write-only, so skip validation */,
2998 masked_reg: true);
2999 }
3000
3001 if (IS_XEHPSDV(i915)) {
3002 /* Wa_1409954639 */
3003 wa_mcr_masked_en(wal,
3004 GEN8_ROW_CHICKEN,
3005 SYSTOLIC_DOP_CLOCK_GATING_DIS);
3006
3007 /* Wa_1607196519 */
3008 wa_mcr_masked_en(wal,
3009 GEN9_ROW_CHICKEN4,
3010 GEN12_DISABLE_GRF_CLEAR);
3011
3012 /* Wa_14010449647:xehpsdv */
3013 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
3014 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
3015 }
3016}
3017
3018static void
3019engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
3020{
3021 if (GRAPHICS_VER(engine->i915) < 4)
3022 return;
3023
3024 engine_fake_wa_init(engine, wal);
3025
3026 /*
3027 * These are common workarounds that just need to applied
3028 * to a single RCS/CCS engine's workaround list since
3029 * they're reset as part of the general render domain reset.
3030 */
3031 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) {
3032 general_render_compute_wa_init(engine, wal);
3033 ccs_engine_wa_mode(engine, wal);
3034 }
3035
3036 if (engine->class == COMPUTE_CLASS)
3037 ccs_engine_wa_init(engine, wal);
3038 else if (engine->class == RENDER_CLASS)
3039 rcs_engine_wa_init(engine, wal);
3040 else
3041 xcs_engine_wa_init(engine, wal);
3042}
3043
3044void intel_engine_init_workarounds(struct intel_engine_cs *engine)
3045{
3046 struct i915_wa_list *wal = &engine->wa_list;
3047
3048 wa_init_start(wal, gt: engine->gt, name: "engine", engine_name: engine->name);
3049 engine_init_workarounds(engine, wal);
3050 wa_init_finish(wal);
3051}
3052
3053void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
3054{
3055 wa_list_apply(wal: &engine->wa_list);
3056}
3057
3058static const struct i915_range mcr_ranges_gen8[] = {
3059 { .start = 0x5500, .end = 0x55ff },
3060 { .start = 0x7000, .end = 0x7fff },
3061 { .start = 0x9400, .end = 0x97ff },
3062 { .start = 0xb000, .end = 0xb3ff },
3063 { .start = 0xe000, .end = 0xe7ff },
3064 {},
3065};
3066
3067static const struct i915_range mcr_ranges_gen12[] = {
3068 { .start = 0x8150, .end = 0x815f },
3069 { .start = 0x9520, .end = 0x955f },
3070 { .start = 0xb100, .end = 0xb3ff },
3071 { .start = 0xde80, .end = 0xe8ff },
3072 { .start = 0x24a00, .end = 0x24a7f },
3073 {},
3074};
3075
3076static const struct i915_range mcr_ranges_xehp[] = {
3077 { .start = 0x4000, .end = 0x4aff },
3078 { .start = 0x5200, .end = 0x52ff },
3079 { .start = 0x5400, .end = 0x7fff },
3080 { .start = 0x8140, .end = 0x815f },
3081 { .start = 0x8c80, .end = 0x8dff },
3082 { .start = 0x94d0, .end = 0x955f },
3083 { .start = 0x9680, .end = 0x96ff },
3084 { .start = 0xb000, .end = 0xb3ff },
3085 { .start = 0xc800, .end = 0xcfff },
3086 { .start = 0xd800, .end = 0xd8ff },
3087 { .start = 0xdc00, .end = 0xffff },
3088 { .start = 0x17000, .end = 0x17fff },
3089 { .start = 0x24a00, .end = 0x24a7f },
3090 {},
3091};
3092
3093static bool mcr_range(struct drm_i915_private *i915, u32 offset)
3094{
3095 const struct i915_range *mcr_ranges;
3096 int i;
3097
3098 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
3099 mcr_ranges = mcr_ranges_xehp;
3100 else if (GRAPHICS_VER(i915) >= 12)
3101 mcr_ranges = mcr_ranges_gen12;
3102 else if (GRAPHICS_VER(i915) >= 8)
3103 mcr_ranges = mcr_ranges_gen8;
3104 else
3105 return false;
3106
3107 /*
3108 * Registers in these ranges are affected by the MCR selector
3109 * which only controls CPU initiated MMIO. Routing does not
3110 * work for CS access so we cannot verify them on this path.
3111 */
3112 for (i = 0; mcr_ranges[i].start; i++)
3113 if (offset >= mcr_ranges[i].start &&
3114 offset <= mcr_ranges[i].end)
3115 return true;
3116
3117 return false;
3118}
3119
3120static int
3121wa_list_srm(struct i915_request *rq,
3122 const struct i915_wa_list *wal,
3123 struct i915_vma *vma)
3124{
3125 struct drm_i915_private *i915 = rq->i915;
3126 unsigned int i, count = 0;
3127 const struct i915_wa *wa;
3128 u32 srm, *cs;
3129
3130 srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3131 if (GRAPHICS_VER(i915) >= 8)
3132 srm++;
3133
3134 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3135 if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3136 count++;
3137 }
3138
3139 cs = intel_ring_begin(rq, num_dwords: 4 * count);
3140 if (IS_ERR(ptr: cs))
3141 return PTR_ERR(ptr: cs);
3142
3143 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3144 u32 offset = i915_mmio_reg_offset(wa->reg);
3145
3146 if (mcr_range(i915, offset))
3147 continue;
3148
3149 *cs++ = srm;
3150 *cs++ = offset;
3151 *cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3152 *cs++ = 0;
3153 }
3154 intel_ring_advance(rq, cs);
3155
3156 return 0;
3157}
3158
3159static int engine_wa_list_verify(struct intel_context *ce,
3160 const struct i915_wa_list * const wal,
3161 const char *from)
3162{
3163 const struct i915_wa *wa;
3164 struct i915_request *rq;
3165 struct i915_vma *vma;
3166 struct i915_gem_ww_ctx ww;
3167 unsigned int i;
3168 u32 *results;
3169 int err;
3170
3171 if (!wal->count)
3172 return 0;
3173
3174 vma = __vm_create_scratch_for_read(vm: &ce->engine->gt->ggtt->vm,
3175 size: wal->count * sizeof(u32));
3176 if (IS_ERR(ptr: vma))
3177 return PTR_ERR(ptr: vma);
3178
3179 intel_engine_pm_get(engine: ce->engine);
3180 i915_gem_ww_ctx_init(ctx: &ww, intr: false);
3181retry:
3182 err = i915_gem_object_lock(obj: vma->obj, ww: &ww);
3183 if (err == 0)
3184 err = intel_context_pin_ww(ce, ww: &ww);
3185 if (err)
3186 goto err_pm;
3187
3188 err = i915_vma_pin_ww(vma, ww: &ww, size: 0, alignment: 0,
3189 flags: i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3190 if (err)
3191 goto err_unpin;
3192
3193 rq = i915_request_create(ce);
3194 if (IS_ERR(ptr: rq)) {
3195 err = PTR_ERR(ptr: rq);
3196 goto err_vma;
3197 }
3198
3199 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3200 if (err == 0)
3201 err = wa_list_srm(rq, wal, vma);
3202
3203 i915_request_get(rq);
3204 if (err)
3205 i915_request_set_error_once(rq, error: err);
3206 i915_request_add(rq);
3207
3208 if (err)
3209 goto err_rq;
3210
3211 if (i915_request_wait(rq, flags: 0, HZ / 5) < 0) {
3212 err = -ETIME;
3213 goto err_rq;
3214 }
3215
3216 results = i915_gem_object_pin_map(obj: vma->obj, type: I915_MAP_WB);
3217 if (IS_ERR(ptr: results)) {
3218 err = PTR_ERR(ptr: results);
3219 goto err_rq;
3220 }
3221
3222 err = 0;
3223 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3224 if (mcr_range(i915: rq->i915, i915_mmio_reg_offset(wa->reg)))
3225 continue;
3226
3227 if (!wa_verify(gt: wal->gt, wa, cur: results[i], name: wal->name, from))
3228 err = -ENXIO;
3229 }
3230
3231 i915_gem_object_unpin_map(obj: vma->obj);
3232
3233err_rq:
3234 i915_request_put(rq);
3235err_vma:
3236 i915_vma_unpin(vma);
3237err_unpin:
3238 intel_context_unpin(ce);
3239err_pm:
3240 if (err == -EDEADLK) {
3241 err = i915_gem_ww_ctx_backoff(ctx: &ww);
3242 if (!err)
3243 goto retry;
3244 }
3245 i915_gem_ww_ctx_fini(ctx: &ww);
3246 intel_engine_pm_put(engine: ce->engine);
3247 i915_vma_put(vma);
3248 return err;
3249}
3250
3251int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3252 const char *from)
3253{
3254 return engine_wa_list_verify(ce: engine->kernel_context,
3255 wal: &engine->wa_list,
3256 from);
3257}
3258
3259#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3260#include "selftest_workarounds.c"
3261#endif
3262

source code of linux/drivers/gpu/drm/i915/gt/intel_workarounds.c