1/*
2 * GTT virtualization
3 *
4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Zhi Wang <zhi.a.wang@intel.com>
27 * Zhenyu Wang <zhenyuw@linux.intel.com>
28 * Xiao Zheng <xiao.zheng@intel.com>
29 *
30 * Contributors:
31 * Min He <min.he@intel.com>
32 * Bing Niu <bing.niu@intel.com>
33 *
34 */
35
36#include "i915_drv.h"
37#include "gvt.h"
38#include "i915_pvinfo.h"
39#include "trace.h"
40
41#include "gt/intel_gt_regs.h"
42
43#if defined(VERBOSE_DEBUG)
44#define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
45#else
46#define gvt_vdbg_mm(fmt, args...)
47#endif
48
49static bool enable_out_of_sync = false;
50static int preallocated_oos_pages = 8192;
51
52/*
53 * validate a gm address and related range size,
54 * translate it to host gm address
55 */
56bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
57{
58 if (size == 0)
59 return vgpu_gmadr_is_valid(vgpu, addr);
60
61 if (vgpu_gmadr_is_aperture(vgpu, addr) &&
62 vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
63 return true;
64 else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
65 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
66 return true;
67
68 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
69 addr, size);
70 return false;
71}
72
73/* translate a guest gmadr to host gmadr */
74int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
75{
76 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
77
78 if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
79 "invalid guest gmadr %llx\n", g_addr))
80 return -EACCES;
81
82 if (vgpu_gmadr_is_aperture(vgpu, g_addr))
83 *h_addr = vgpu_aperture_gmadr_base(vgpu)
84 + (g_addr - vgpu_aperture_offset(vgpu));
85 else
86 *h_addr = vgpu_hidden_gmadr_base(vgpu)
87 + (g_addr - vgpu_hidden_offset(vgpu));
88 return 0;
89}
90
91/* translate a host gmadr to guest gmadr */
92int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
93{
94 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
95
96 if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
97 "invalid host gmadr %llx\n", h_addr))
98 return -EACCES;
99
100 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
101 *g_addr = vgpu_aperture_gmadr_base(vgpu)
102 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
103 else
104 *g_addr = vgpu_hidden_gmadr_base(vgpu)
105 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
106 return 0;
107}
108
109int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
110 unsigned long *h_index)
111{
112 u64 h_addr;
113 int ret;
114
115 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_addr: g_index << I915_GTT_PAGE_SHIFT,
116 h_addr: &h_addr);
117 if (ret)
118 return ret;
119
120 *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
121 return 0;
122}
123
124int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
125 unsigned long *g_index)
126{
127 u64 g_addr;
128 int ret;
129
130 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_addr: h_index << I915_GTT_PAGE_SHIFT,
131 g_addr: &g_addr);
132 if (ret)
133 return ret;
134
135 *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
136 return 0;
137}
138
139#define gtt_type_is_entry(type) \
140 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
141 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
142 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
143
144#define gtt_type_is_pt(type) \
145 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
146
147#define gtt_type_is_pte_pt(type) \
148 (type == GTT_TYPE_PPGTT_PTE_PT)
149
150#define gtt_type_is_root_pointer(type) \
151 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
152
153#define gtt_init_entry(e, t, p, v) do { \
154 (e)->type = t; \
155 (e)->pdev = p; \
156 memcpy(&(e)->val64, &v, sizeof(v)); \
157} while (0)
158
159/*
160 * Mappings between GTT_TYPE* enumerations.
161 * Following information can be found according to the given type:
162 * - type of next level page table
163 * - type of entry inside this level page table
164 * - type of entry with PSE set
165 *
166 * If the given type doesn't have such a kind of information,
167 * e.g. give a l4 root entry type, then request to get its PSE type,
168 * give a PTE page table type, then request to get its next level page
169 * table type, as we know l4 root entry doesn't have a PSE bit,
170 * and a PTE page table doesn't have a next level page table type,
171 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
172 * page table.
173 */
174
175struct gtt_type_table_entry {
176 int entry_type;
177 int pt_type;
178 int next_pt_type;
179 int pse_entry_type;
180};
181
182#define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
183 [type] = { \
184 .entry_type = e_type, \
185 .pt_type = cpt_type, \
186 .next_pt_type = npt_type, \
187 .pse_entry_type = pse_type, \
188 }
189
190static const struct gtt_type_table_entry gtt_type_table[] = {
191 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
192 GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
193 GTT_TYPE_INVALID,
194 GTT_TYPE_PPGTT_PML4_PT,
195 GTT_TYPE_INVALID),
196 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
197 GTT_TYPE_PPGTT_PML4_ENTRY,
198 GTT_TYPE_PPGTT_PML4_PT,
199 GTT_TYPE_PPGTT_PDP_PT,
200 GTT_TYPE_INVALID),
201 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
202 GTT_TYPE_PPGTT_PML4_ENTRY,
203 GTT_TYPE_PPGTT_PML4_PT,
204 GTT_TYPE_PPGTT_PDP_PT,
205 GTT_TYPE_INVALID),
206 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
207 GTT_TYPE_PPGTT_PDP_ENTRY,
208 GTT_TYPE_PPGTT_PDP_PT,
209 GTT_TYPE_PPGTT_PDE_PT,
210 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
211 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
212 GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
213 GTT_TYPE_INVALID,
214 GTT_TYPE_PPGTT_PDE_PT,
215 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
216 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
217 GTT_TYPE_PPGTT_PDP_ENTRY,
218 GTT_TYPE_PPGTT_PDP_PT,
219 GTT_TYPE_PPGTT_PDE_PT,
220 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
221 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
222 GTT_TYPE_PPGTT_PDE_ENTRY,
223 GTT_TYPE_PPGTT_PDE_PT,
224 GTT_TYPE_PPGTT_PTE_PT,
225 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
226 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
227 GTT_TYPE_PPGTT_PDE_ENTRY,
228 GTT_TYPE_PPGTT_PDE_PT,
229 GTT_TYPE_PPGTT_PTE_PT,
230 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
231 /* We take IPS bit as 'PSE' for PTE level. */
232 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
233 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
234 GTT_TYPE_PPGTT_PTE_PT,
235 GTT_TYPE_INVALID,
236 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
237 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
238 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
239 GTT_TYPE_PPGTT_PTE_PT,
240 GTT_TYPE_INVALID,
241 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
242 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
243 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
244 GTT_TYPE_PPGTT_PTE_PT,
245 GTT_TYPE_INVALID,
246 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
247 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
248 GTT_TYPE_PPGTT_PDE_ENTRY,
249 GTT_TYPE_PPGTT_PDE_PT,
250 GTT_TYPE_INVALID,
251 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
252 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
253 GTT_TYPE_PPGTT_PDP_ENTRY,
254 GTT_TYPE_PPGTT_PDP_PT,
255 GTT_TYPE_INVALID,
256 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
257 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
258 GTT_TYPE_GGTT_PTE,
259 GTT_TYPE_INVALID,
260 GTT_TYPE_INVALID,
261 GTT_TYPE_INVALID),
262};
263
264static inline int get_next_pt_type(int type)
265{
266 return gtt_type_table[type].next_pt_type;
267}
268
269static inline int get_entry_type(int type)
270{
271 return gtt_type_table[type].entry_type;
272}
273
274static inline int get_pse_type(int type)
275{
276 return gtt_type_table[type].pse_entry_type;
277}
278
279static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
280{
281 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
282
283 return readq(addr);
284}
285
286static void ggtt_invalidate(struct intel_gt *gt)
287{
288 mmio_hw_access_pre(gt);
289 intel_uncore_write(uncore: gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
290 mmio_hw_access_post(gt);
291}
292
293static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
294{
295 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
296
297 writeq(val: pte, addr);
298}
299
300static inline int gtt_get_entry64(void *pt,
301 struct intel_gvt_gtt_entry *e,
302 unsigned long index, bool hypervisor_access, unsigned long gpa,
303 struct intel_vgpu *vgpu)
304{
305 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
306 int ret;
307
308 if (WARN_ON(info->gtt_entry_size != 8))
309 return -EINVAL;
310
311 if (hypervisor_access) {
312 ret = intel_gvt_read_gpa(vgpu, gpa: gpa +
313 (index << info->gtt_entry_size_shift),
314 buf: &e->val64, len: 8);
315 if (WARN_ON(ret))
316 return ret;
317 } else if (!pt) {
318 e->val64 = read_pte64(ggtt: vgpu->gvt->gt->ggtt, index);
319 } else {
320 e->val64 = *((u64 *)pt + index);
321 }
322 return 0;
323}
324
325static inline int gtt_set_entry64(void *pt,
326 struct intel_gvt_gtt_entry *e,
327 unsigned long index, bool hypervisor_access, unsigned long gpa,
328 struct intel_vgpu *vgpu)
329{
330 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
331 int ret;
332
333 if (WARN_ON(info->gtt_entry_size != 8))
334 return -EINVAL;
335
336 if (hypervisor_access) {
337 ret = intel_gvt_write_gpa(vgpu, gpa: gpa +
338 (index << info->gtt_entry_size_shift),
339 buf: &e->val64, len: 8);
340 if (WARN_ON(ret))
341 return ret;
342 } else if (!pt) {
343 write_pte64(ggtt: vgpu->gvt->gt->ggtt, index, pte: e->val64);
344 } else {
345 *((u64 *)pt + index) = e->val64;
346 }
347 return 0;
348}
349
350#define GTT_HAW 46
351
352#define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30)
353#define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21)
354#define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16)
355#define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12)
356
357#define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
358#define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
359
360#define GTT_64K_PTE_STRIDE 16
361
362static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
363{
364 unsigned long pfn;
365
366 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
367 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
368 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
369 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
370 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
371 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
372 else
373 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
374 return pfn;
375}
376
377static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
378{
379 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
380 e->val64 &= ~ADDR_1G_MASK;
381 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
382 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
383 e->val64 &= ~ADDR_2M_MASK;
384 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
385 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
386 e->val64 &= ~ADDR_64K_MASK;
387 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
388 } else {
389 e->val64 &= ~ADDR_4K_MASK;
390 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
391 }
392
393 e->val64 |= (pfn << PAGE_SHIFT);
394}
395
396static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
397{
398 return !!(e->val64 & _PAGE_PSE);
399}
400
401static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
402{
403 if (gen8_gtt_test_pse(e)) {
404 switch (e->type) {
405 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
406 e->val64 &= ~_PAGE_PSE;
407 e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
408 break;
409 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
410 e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
411 e->val64 &= ~_PAGE_PSE;
412 break;
413 default:
414 WARN_ON(1);
415 }
416 }
417}
418
419static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
420{
421 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
422 return false;
423
424 return !!(e->val64 & GEN8_PDE_IPS_64K);
425}
426
427static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
428{
429 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
430 return;
431
432 e->val64 &= ~GEN8_PDE_IPS_64K;
433}
434
435static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
436{
437 /*
438 * i915 writes PDP root pointer registers without present bit,
439 * it also works, so we need to treat root pointer entry
440 * specifically.
441 */
442 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
443 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
444 return (e->val64 != 0);
445 else
446 return (e->val64 & GEN8_PAGE_PRESENT);
447}
448
449static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
450{
451 e->val64 &= ~GEN8_PAGE_PRESENT;
452}
453
454static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
455{
456 e->val64 |= GEN8_PAGE_PRESENT;
457}
458
459static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
460{
461 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
462}
463
464static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
465{
466 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
467}
468
469static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
470{
471 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
472}
473
474/*
475 * Per-platform GMA routines.
476 */
477static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
478{
479 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
480
481 trace_gma_index(prefix: __func__, gma, index: x);
482 return x;
483}
484
485#define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
486static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
487{ \
488 unsigned long x = (exp); \
489 trace_gma_index(__func__, gma, x); \
490 return x; \
491}
492
493DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
494DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
495DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
496DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
497DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
498
499static const struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
500 .get_entry = gtt_get_entry64,
501 .set_entry = gtt_set_entry64,
502 .clear_present = gtt_entry_clear_present,
503 .set_present = gtt_entry_set_present,
504 .test_present = gen8_gtt_test_present,
505 .test_pse = gen8_gtt_test_pse,
506 .clear_pse = gen8_gtt_clear_pse,
507 .clear_ips = gen8_gtt_clear_ips,
508 .test_ips = gen8_gtt_test_ips,
509 .clear_64k_splited = gen8_gtt_clear_64k_splited,
510 .set_64k_splited = gen8_gtt_set_64k_splited,
511 .test_64k_splited = gen8_gtt_test_64k_splited,
512 .get_pfn = gen8_gtt_get_pfn,
513 .set_pfn = gen8_gtt_set_pfn,
514};
515
516static const struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
517 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
518 .gma_to_pte_index = gen8_gma_to_pte_index,
519 .gma_to_pde_index = gen8_gma_to_pde_index,
520 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
521 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
522 .gma_to_pml4_index = gen8_gma_to_pml4_index,
523};
524
525/* Update entry type per pse and ips bit. */
526static void update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops *pte_ops,
527 struct intel_gvt_gtt_entry *entry, bool ips)
528{
529 switch (entry->type) {
530 case GTT_TYPE_PPGTT_PDE_ENTRY:
531 case GTT_TYPE_PPGTT_PDP_ENTRY:
532 if (pte_ops->test_pse(entry))
533 entry->type = get_pse_type(type: entry->type);
534 break;
535 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
536 if (ips)
537 entry->type = get_pse_type(type: entry->type);
538 break;
539 default:
540 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
541 }
542
543 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
544}
545
546/*
547 * MM helpers.
548 */
549static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
550 struct intel_gvt_gtt_entry *entry, unsigned long index,
551 bool guest)
552{
553 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
554
555 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
556
557 entry->type = mm->ppgtt_mm.root_entry_type;
558 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
559 mm->ppgtt_mm.shadow_pdps,
560 entry, index, false, 0, mm->vgpu);
561 update_entry_type_for_real(pte_ops, entry, ips: false);
562}
563
564static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
565 struct intel_gvt_gtt_entry *entry, unsigned long index)
566{
567 _ppgtt_get_root_entry(mm, entry, index, guest: true);
568}
569
570static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
571 struct intel_gvt_gtt_entry *entry, unsigned long index)
572{
573 _ppgtt_get_root_entry(mm, entry, index, guest: false);
574}
575
576static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
577 struct intel_gvt_gtt_entry *entry, unsigned long index,
578 bool guest)
579{
580 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
581
582 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
583 mm->ppgtt_mm.shadow_pdps,
584 entry, index, false, 0, mm->vgpu);
585}
586
587static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
588 struct intel_gvt_gtt_entry *entry, unsigned long index)
589{
590 _ppgtt_set_root_entry(mm, entry, index, guest: false);
591}
592
593static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
594 struct intel_gvt_gtt_entry *entry, unsigned long index)
595{
596 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
597
598 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
599
600 entry->type = GTT_TYPE_GGTT_PTE;
601 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
602 false, 0, mm->vgpu);
603}
604
605static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
606 struct intel_gvt_gtt_entry *entry, unsigned long index)
607{
608 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
609
610 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
611
612 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
613 false, 0, mm->vgpu);
614}
615
616static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
617 struct intel_gvt_gtt_entry *entry, unsigned long index)
618{
619 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
620
621 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
622
623 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
624}
625
626static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
627 struct intel_gvt_gtt_entry *entry, unsigned long index)
628{
629 const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
630 unsigned long offset = index;
631
632 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
633
634 if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
635 offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
636 mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
637 } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
638 offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
639 mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
640 }
641
642 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
643}
644
645/*
646 * PPGTT shadow page table helpers.
647 */
648static inline int ppgtt_spt_get_entry(
649 struct intel_vgpu_ppgtt_spt *spt,
650 void *page_table, int type,
651 struct intel_gvt_gtt_entry *e, unsigned long index,
652 bool guest)
653{
654 struct intel_gvt *gvt = spt->vgpu->gvt;
655 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
656 int ret;
657
658 e->type = get_entry_type(type);
659
660 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
661 return -EINVAL;
662
663 ret = ops->get_entry(page_table, e, index, guest,
664 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
665 spt->vgpu);
666 if (ret)
667 return ret;
668
669 update_entry_type_for_real(pte_ops: ops, entry: e, ips: guest ?
670 spt->guest_page.pde_ips : false);
671
672 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
673 type, e->type, index, e->val64);
674 return 0;
675}
676
677static inline int ppgtt_spt_set_entry(
678 struct intel_vgpu_ppgtt_spt *spt,
679 void *page_table, int type,
680 struct intel_gvt_gtt_entry *e, unsigned long index,
681 bool guest)
682{
683 struct intel_gvt *gvt = spt->vgpu->gvt;
684 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
685
686 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
687 return -EINVAL;
688
689 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
690 type, e->type, index, e->val64);
691
692 return ops->set_entry(page_table, e, index, guest,
693 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
694 spt->vgpu);
695}
696
697#define ppgtt_get_guest_entry(spt, e, index) \
698 ppgtt_spt_get_entry(spt, NULL, \
699 spt->guest_page.type, e, index, true)
700
701#define ppgtt_set_guest_entry(spt, e, index) \
702 ppgtt_spt_set_entry(spt, NULL, \
703 spt->guest_page.type, e, index, true)
704
705#define ppgtt_get_shadow_entry(spt, e, index) \
706 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
707 spt->shadow_page.type, e, index, false)
708
709#define ppgtt_set_shadow_entry(spt, e, index) \
710 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
711 spt->shadow_page.type, e, index, false)
712
713static void *alloc_spt(gfp_t gfp_mask)
714{
715 struct intel_vgpu_ppgtt_spt *spt;
716
717 spt = kzalloc(size: sizeof(*spt), flags: gfp_mask);
718 if (!spt)
719 return NULL;
720
721 spt->shadow_page.page = alloc_page(gfp_mask);
722 if (!spt->shadow_page.page) {
723 kfree(objp: spt);
724 return NULL;
725 }
726 return spt;
727}
728
729static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
730{
731 __free_page(spt->shadow_page.page);
732 kfree(objp: spt);
733}
734
735static int detach_oos_page(struct intel_vgpu *vgpu,
736 struct intel_vgpu_oos_page *oos_page);
737
738static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
739{
740 struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev;
741
742 trace_spt_free(id: spt->vgpu->id, spt, type: spt->guest_page.type);
743
744 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
745 DMA_BIDIRECTIONAL);
746
747 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
748
749 if (spt->guest_page.gfn) {
750 if (spt->guest_page.oos_page)
751 detach_oos_page(vgpu: spt->vgpu, oos_page: spt->guest_page.oos_page);
752
753 intel_vgpu_unregister_page_track(vgpu: spt->vgpu, gfn: spt->guest_page.gfn);
754 }
755
756 list_del_init(entry: &spt->post_shadow_list);
757 free_spt(spt);
758}
759
760static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
761{
762 struct intel_vgpu_ppgtt_spt *spt, *spn;
763 struct radix_tree_iter iter;
764 LIST_HEAD(all_spt);
765 void __rcu **slot;
766
767 rcu_read_lock();
768 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
769 spt = radix_tree_deref_slot(slot);
770 list_move(list: &spt->post_shadow_list, head: &all_spt);
771 }
772 rcu_read_unlock();
773
774 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
775 ppgtt_free_spt(spt);
776}
777
778static int ppgtt_handle_guest_write_page_table_bytes(
779 struct intel_vgpu_ppgtt_spt *spt,
780 u64 pa, void *p_data, int bytes);
781
782static int ppgtt_write_protection_handler(
783 struct intel_vgpu_page_track *page_track,
784 u64 gpa, void *data, int bytes)
785{
786 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
787
788 int ret;
789
790 if (bytes != 4 && bytes != 8)
791 return -EINVAL;
792
793 ret = ppgtt_handle_guest_write_page_table_bytes(spt, pa: gpa, p_data: data, bytes);
794 if (ret)
795 return ret;
796 return ret;
797}
798
799/* Find a spt by guest gfn. */
800static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
801 struct intel_vgpu *vgpu, unsigned long gfn)
802{
803 struct intel_vgpu_page_track *track;
804
805 track = intel_vgpu_find_page_track(vgpu, gfn);
806 if (track && track->handler == ppgtt_write_protection_handler)
807 return track->priv_data;
808
809 return NULL;
810}
811
812/* Find the spt by shadow page mfn. */
813static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
814 struct intel_vgpu *vgpu, unsigned long mfn)
815{
816 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
817}
818
819static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
820
821/* Allocate shadow page table without guest page. */
822static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
823 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
824{
825 struct device *kdev = vgpu->gvt->gt->i915->drm.dev;
826 struct intel_vgpu_ppgtt_spt *spt = NULL;
827 dma_addr_t daddr;
828 int ret;
829
830retry:
831 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
832 if (!spt) {
833 if (reclaim_one_ppgtt_mm(gvt: vgpu->gvt))
834 goto retry;
835
836 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
837 return ERR_PTR(error: -ENOMEM);
838 }
839
840 spt->vgpu = vgpu;
841 atomic_set(v: &spt->refcount, i: 1);
842 INIT_LIST_HEAD(list: &spt->post_shadow_list);
843
844 /*
845 * Init shadow_page.
846 */
847 spt->shadow_page.type = type;
848 daddr = dma_map_page(kdev, spt->shadow_page.page,
849 0, 4096, DMA_BIDIRECTIONAL);
850 if (dma_mapping_error(dev: kdev, dma_addr: daddr)) {
851 gvt_vgpu_err("fail to map dma addr\n");
852 ret = -EINVAL;
853 goto err_free_spt;
854 }
855 spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
856 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
857
858 ret = radix_tree_insert(&vgpu->gtt.spt_tree, index: spt->shadow_page.mfn, spt);
859 if (ret)
860 goto err_unmap_dma;
861
862 return spt;
863
864err_unmap_dma:
865 dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL);
866err_free_spt:
867 free_spt(spt);
868 return ERR_PTR(error: ret);
869}
870
871/* Allocate shadow page table associated with specific gfn. */
872static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
873 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
874 unsigned long gfn, bool guest_pde_ips)
875{
876 struct intel_vgpu_ppgtt_spt *spt;
877 int ret;
878
879 spt = ppgtt_alloc_spt(vgpu, type);
880 if (IS_ERR(ptr: spt))
881 return spt;
882
883 /*
884 * Init guest_page.
885 */
886 ret = intel_vgpu_register_page_track(vgpu, gfn,
887 handler: ppgtt_write_protection_handler, priv: spt);
888 if (ret) {
889 ppgtt_free_spt(spt);
890 return ERR_PTR(error: ret);
891 }
892
893 spt->guest_page.type = type;
894 spt->guest_page.gfn = gfn;
895 spt->guest_page.pde_ips = guest_pde_ips;
896
897 trace_spt_alloc(id: vgpu->id, spt, type, mfn: spt->shadow_page.mfn, gpt_gfn: gfn);
898
899 return spt;
900}
901
902#define pt_entry_size_shift(spt) \
903 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
904
905#define pt_entries(spt) \
906 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
907
908#define for_each_present_guest_entry(spt, e, i) \
909 for (i = 0; i < pt_entries(spt); \
910 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
911 if (!ppgtt_get_guest_entry(spt, e, i) && \
912 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
913
914#define for_each_present_shadow_entry(spt, e, i) \
915 for (i = 0; i < pt_entries(spt); \
916 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
917 if (!ppgtt_get_shadow_entry(spt, e, i) && \
918 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
919
920#define for_each_shadow_entry(spt, e, i) \
921 for (i = 0; i < pt_entries(spt); \
922 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
923 if (!ppgtt_get_shadow_entry(spt, e, i))
924
925static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
926{
927 int v = atomic_read(v: &spt->refcount);
928
929 trace_spt_refcount(id: spt->vgpu->id, action: "inc", spt, before: v, after: (v + 1));
930 atomic_inc(v: &spt->refcount);
931}
932
933static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
934{
935 int v = atomic_read(v: &spt->refcount);
936
937 trace_spt_refcount(id: spt->vgpu->id, action: "dec", spt, before: v, after: (v - 1));
938 return atomic_dec_return(v: &spt->refcount);
939}
940
941static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
942
943static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
944 struct intel_gvt_gtt_entry *e)
945{
946 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
947 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
948 struct intel_vgpu_ppgtt_spt *s;
949 enum intel_gvt_gtt_type cur_pt_type;
950
951 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
952
953 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
954 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
955 cur_pt_type = get_next_pt_type(type: e->type);
956
957 if (!gtt_type_is_pt(cur_pt_type) ||
958 !gtt_type_is_pt(cur_pt_type + 1)) {
959 drm_WARN(&i915->drm, 1,
960 "Invalid page table type, cur_pt_type is: %d\n",
961 cur_pt_type);
962 return -EINVAL;
963 }
964
965 cur_pt_type += 1;
966
967 if (ops->get_pfn(e) ==
968 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
969 return 0;
970 }
971 s = intel_vgpu_find_spt_by_mfn(vgpu, mfn: ops->get_pfn(e));
972 if (!s) {
973 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
974 ops->get_pfn(e));
975 return -ENXIO;
976 }
977 return ppgtt_invalidate_spt(spt: s);
978}
979
980static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
981 struct intel_gvt_gtt_entry *entry)
982{
983 struct intel_vgpu *vgpu = spt->vgpu;
984 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
985 unsigned long pfn;
986 int type;
987
988 pfn = ops->get_pfn(entry);
989 type = spt->shadow_page.type;
990
991 /* Uninitialized spte or unshadowed spte. */
992 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
993 return;
994
995 intel_gvt_dma_unmap_guest_page(vgpu, dma_addr: pfn << PAGE_SHIFT);
996}
997
998static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
999{
1000 struct intel_vgpu *vgpu = spt->vgpu;
1001 struct intel_gvt_gtt_entry e;
1002 unsigned long index;
1003 int ret;
1004
1005 trace_spt_change(id: spt->vgpu->id, action: "die", spt,
1006 gfn: spt->guest_page.gfn, type: spt->shadow_page.type);
1007
1008 if (ppgtt_put_spt(spt) > 0)
1009 return 0;
1010
1011 for_each_present_shadow_entry(spt, &e, index) {
1012 switch (e.type) {
1013 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1014 gvt_vdbg_mm("invalidate 4K entry\n");
1015 ppgtt_invalidate_pte(spt, entry: &e);
1016 break;
1017 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1018 /* We don't setup 64K shadow entry so far. */
1019 WARN(1, "suspicious 64K gtt entry\n");
1020 continue;
1021 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1022 gvt_vdbg_mm("invalidate 2M entry\n");
1023 continue;
1024 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1025 WARN(1, "GVT doesn't support 1GB page\n");
1026 continue;
1027 case GTT_TYPE_PPGTT_PML4_ENTRY:
1028 case GTT_TYPE_PPGTT_PDP_ENTRY:
1029 case GTT_TYPE_PPGTT_PDE_ENTRY:
1030 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1031 ret = ppgtt_invalidate_spt_by_shadow_entry(
1032 vgpu: spt->vgpu, e: &e);
1033 if (ret)
1034 goto fail;
1035 break;
1036 default:
1037 GEM_BUG_ON(1);
1038 }
1039 }
1040
1041 trace_spt_change(id: spt->vgpu->id, action: "release", spt,
1042 gfn: spt->guest_page.gfn, type: spt->shadow_page.type);
1043 ppgtt_free_spt(spt);
1044 return 0;
1045fail:
1046 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1047 spt, e.val64, e.type);
1048 return ret;
1049}
1050
1051static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1052{
1053 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1054
1055 if (GRAPHICS_VER(dev_priv) == 9) {
1056 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1057 GAMW_ECO_ENABLE_64K_IPS_FIELD;
1058
1059 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1060 } else if (GRAPHICS_VER(dev_priv) >= 11) {
1061 /* 64K paging only controlled by IPS bit in PTE now. */
1062 return true;
1063 } else
1064 return false;
1065}
1066
1067static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1068
1069static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1070 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1071{
1072 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1073 struct intel_vgpu_ppgtt_spt *spt = NULL;
1074 bool ips = false;
1075 int ret;
1076
1077 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1078
1079 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1080 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1081
1082 spt = intel_vgpu_find_spt_by_gfn(vgpu, gfn: ops->get_pfn(we));
1083 if (spt) {
1084 ppgtt_get_spt(spt);
1085
1086 if (ips != spt->guest_page.pde_ips) {
1087 spt->guest_page.pde_ips = ips;
1088
1089 gvt_dbg_mm("reshadow PDE since ips changed\n");
1090 clear_page(page: spt->shadow_page.vaddr);
1091 ret = ppgtt_populate_spt(spt);
1092 if (ret) {
1093 ppgtt_put_spt(spt);
1094 goto err;
1095 }
1096 }
1097 } else {
1098 int type = get_next_pt_type(type: we->type);
1099
1100 if (!gtt_type_is_pt(type)) {
1101 ret = -EINVAL;
1102 goto err;
1103 }
1104
1105 spt = ppgtt_alloc_spt_gfn(vgpu, type, gfn: ops->get_pfn(we), guest_pde_ips: ips);
1106 if (IS_ERR(ptr: spt)) {
1107 ret = PTR_ERR(ptr: spt);
1108 goto err;
1109 }
1110
1111 ret = intel_vgpu_enable_page_track(vgpu, gfn: spt->guest_page.gfn);
1112 if (ret)
1113 goto err_free_spt;
1114
1115 ret = ppgtt_populate_spt(spt);
1116 if (ret)
1117 goto err_free_spt;
1118
1119 trace_spt_change(id: vgpu->id, action: "new", spt, gfn: spt->guest_page.gfn,
1120 type: spt->shadow_page.type);
1121 }
1122 return spt;
1123
1124err_free_spt:
1125 ppgtt_free_spt(spt);
1126 spt = NULL;
1127err:
1128 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1129 spt, we->val64, we->type);
1130 return ERR_PTR(error: ret);
1131}
1132
1133static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1134 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1135{
1136 const struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1137
1138 se->type = ge->type;
1139 se->val64 = ge->val64;
1140
1141 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1142 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1143 ops->clear_ips(se);
1144
1145 ops->set_pfn(se, s->shadow_page.mfn);
1146}
1147
1148static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1149 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1150 struct intel_gvt_gtt_entry *se)
1151{
1152 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1153 struct intel_vgpu_ppgtt_spt *sub_spt;
1154 struct intel_gvt_gtt_entry sub_se;
1155 unsigned long start_gfn;
1156 dma_addr_t dma_addr;
1157 unsigned long sub_index;
1158 int ret;
1159
1160 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1161
1162 start_gfn = ops->get_pfn(se);
1163
1164 sub_spt = ppgtt_alloc_spt(vgpu, type: GTT_TYPE_PPGTT_PTE_PT);
1165 if (IS_ERR(ptr: sub_spt))
1166 return PTR_ERR(ptr: sub_spt);
1167
1168 for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1169 ret = intel_gvt_dma_map_guest_page(vgpu, gfn: start_gfn + sub_index,
1170 PAGE_SIZE, dma_addr: &dma_addr);
1171 if (ret)
1172 goto err;
1173 sub_se.val64 = se->val64;
1174
1175 /* Copy the PAT field from PDE. */
1176 sub_se.val64 &= ~_PAGE_PAT;
1177 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1178
1179 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1180 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1181 }
1182
1183 /* Clear dirty field. */
1184 se->val64 &= ~_PAGE_DIRTY;
1185
1186 ops->clear_pse(se);
1187 ops->clear_ips(se);
1188 ops->set_pfn(se, sub_spt->shadow_page.mfn);
1189 ppgtt_set_shadow_entry(spt, se, index);
1190 return 0;
1191err:
1192 /* Cancel the existing addess mappings of DMA addr. */
1193 for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) {
1194 gvt_vdbg_mm("invalidate 4K entry\n");
1195 ppgtt_invalidate_pte(spt: sub_spt, entry: &sub_se);
1196 }
1197 /* Release the new allocated spt. */
1198 trace_spt_change(id: sub_spt->vgpu->id, action: "release", spt: sub_spt,
1199 gfn: sub_spt->guest_page.gfn, type: sub_spt->shadow_page.type);
1200 ppgtt_free_spt(spt: sub_spt);
1201 return ret;
1202}
1203
1204static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1205 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1206 struct intel_gvt_gtt_entry *se)
1207{
1208 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1209 struct intel_gvt_gtt_entry entry = *se;
1210 unsigned long start_gfn;
1211 dma_addr_t dma_addr;
1212 int i, ret;
1213
1214 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1215
1216 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1217
1218 start_gfn = ops->get_pfn(se);
1219
1220 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1221 ops->set_64k_splited(&entry);
1222
1223 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1224 ret = intel_gvt_dma_map_guest_page(vgpu, gfn: start_gfn + i,
1225 PAGE_SIZE, dma_addr: &dma_addr);
1226 if (ret)
1227 return ret;
1228
1229 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1230 ppgtt_set_shadow_entry(spt, &entry, index + i);
1231 }
1232 return 0;
1233}
1234
1235static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1236 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1237 struct intel_gvt_gtt_entry *ge)
1238{
1239 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1240 struct intel_gvt_gtt_entry se = *ge;
1241 unsigned long gfn;
1242 dma_addr_t dma_addr;
1243 int ret;
1244
1245 if (!pte_ops->test_present(ge))
1246 return 0;
1247
1248 gfn = pte_ops->get_pfn(ge);
1249
1250 switch (ge->type) {
1251 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1252 gvt_vdbg_mm("shadow 4K gtt entry\n");
1253 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE, dma_addr: &dma_addr);
1254 if (ret)
1255 return -ENXIO;
1256 break;
1257 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1258 gvt_vdbg_mm("shadow 64K gtt entry\n");
1259 /*
1260 * The layout of 64K page is special, the page size is
1261 * controlled by uper PDE. To be simple, we always split
1262 * 64K page to smaller 4K pages in shadow PT.
1263 */
1264 return split_64KB_gtt_entry(vgpu, spt, index, se: &se);
1265 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1266 gvt_vdbg_mm("shadow 2M gtt entry\n");
1267 if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M) ||
1268 intel_gvt_dma_map_guest_page(vgpu, gfn,
1269 I915_GTT_PAGE_SIZE_2M, dma_addr: &dma_addr))
1270 return split_2MB_gtt_entry(vgpu, spt, index, se: &se);
1271 break;
1272 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1273 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1274 return -EINVAL;
1275 default:
1276 GEM_BUG_ON(1);
1277 return -EINVAL;
1278 }
1279
1280 /* Successfully shadowed a 4K or 2M page (without splitting). */
1281 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1282 ppgtt_set_shadow_entry(spt, &se, index);
1283 return 0;
1284}
1285
1286static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1287{
1288 struct intel_vgpu *vgpu = spt->vgpu;
1289 struct intel_vgpu_ppgtt_spt *s;
1290 struct intel_gvt_gtt_entry se, ge;
1291 unsigned long i;
1292 int ret;
1293
1294 trace_spt_change(id: spt->vgpu->id, action: "born", spt,
1295 gfn: spt->guest_page.gfn, type: spt->shadow_page.type);
1296
1297 for_each_present_guest_entry(spt, &ge, i) {
1298 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1299 s = ppgtt_populate_spt_by_guest_entry(vgpu, we: &ge);
1300 if (IS_ERR(ptr: s)) {
1301 ret = PTR_ERR(ptr: s);
1302 goto fail;
1303 }
1304 ppgtt_get_shadow_entry(spt, &se, i);
1305 ppgtt_generate_shadow_entry(se: &se, s, ge: &ge);
1306 ppgtt_set_shadow_entry(spt, &se, i);
1307 } else {
1308 ret = ppgtt_populate_shadow_entry(vgpu, spt, index: i, ge: &ge);
1309 if (ret)
1310 goto fail;
1311 }
1312 }
1313 return 0;
1314fail:
1315 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1316 spt, ge.val64, ge.type);
1317 return ret;
1318}
1319
1320static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1321 struct intel_gvt_gtt_entry *se, unsigned long index)
1322{
1323 struct intel_vgpu *vgpu = spt->vgpu;
1324 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1325 int ret;
1326
1327 trace_spt_guest_change(id: spt->vgpu->id, tag: "remove", spt,
1328 type: spt->shadow_page.type, v: se->val64, index);
1329
1330 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1331 se->type, index, se->val64);
1332
1333 if (!ops->test_present(se))
1334 return 0;
1335
1336 if (ops->get_pfn(se) ==
1337 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1338 return 0;
1339
1340 if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1341 struct intel_vgpu_ppgtt_spt *s =
1342 intel_vgpu_find_spt_by_mfn(vgpu, mfn: ops->get_pfn(se));
1343 if (!s) {
1344 gvt_vgpu_err("fail to find guest page\n");
1345 ret = -ENXIO;
1346 goto fail;
1347 }
1348 ret = ppgtt_invalidate_spt(spt: s);
1349 if (ret)
1350 goto fail;
1351 } else {
1352 /* We don't setup 64K shadow entry so far. */
1353 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1354 "suspicious 64K entry\n");
1355 ppgtt_invalidate_pte(spt, entry: se);
1356 }
1357
1358 return 0;
1359fail:
1360 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1361 spt, se->val64, se->type);
1362 return ret;
1363}
1364
1365static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1366 struct intel_gvt_gtt_entry *we, unsigned long index)
1367{
1368 struct intel_vgpu *vgpu = spt->vgpu;
1369 struct intel_gvt_gtt_entry m;
1370 struct intel_vgpu_ppgtt_spt *s;
1371 int ret;
1372
1373 trace_spt_guest_change(id: spt->vgpu->id, tag: "add", spt, type: spt->shadow_page.type,
1374 v: we->val64, index);
1375
1376 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1377 we->type, index, we->val64);
1378
1379 if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1380 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1381 if (IS_ERR(ptr: s)) {
1382 ret = PTR_ERR(ptr: s);
1383 goto fail;
1384 }
1385 ppgtt_get_shadow_entry(spt, &m, index);
1386 ppgtt_generate_shadow_entry(se: &m, s, ge: we);
1387 ppgtt_set_shadow_entry(spt, &m, index);
1388 } else {
1389 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, ge: we);
1390 if (ret)
1391 goto fail;
1392 }
1393 return 0;
1394fail:
1395 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1396 spt, we->val64, we->type);
1397 return ret;
1398}
1399
1400static int sync_oos_page(struct intel_vgpu *vgpu,
1401 struct intel_vgpu_oos_page *oos_page)
1402{
1403 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1404 struct intel_gvt *gvt = vgpu->gvt;
1405 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1406 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1407 struct intel_gvt_gtt_entry old, new;
1408 int index;
1409 int ret;
1410
1411 trace_oos_change(id: vgpu->id, tag: "sync", page_id: oos_page->id,
1412 gpt: spt, type: spt->guest_page.type);
1413
1414 old.type = new.type = get_entry_type(type: spt->guest_page.type);
1415 old.val64 = new.val64 = 0;
1416
1417 for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1418 info->gtt_entry_size_shift); index++) {
1419 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1420 ops->get_entry(NULL, &new, index, true,
1421 spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1422
1423 if (old.val64 == new.val64
1424 && !test_and_clear_bit(nr: index, addr: spt->post_shadow_bitmap))
1425 continue;
1426
1427 trace_oos_sync(id: vgpu->id, page_id: oos_page->id,
1428 gpt: spt, type: spt->guest_page.type,
1429 v: new.val64, index);
1430
1431 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, ge: &new);
1432 if (ret)
1433 return ret;
1434
1435 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1436 }
1437
1438 spt->guest_page.write_cnt = 0;
1439 list_del_init(entry: &spt->post_shadow_list);
1440 return 0;
1441}
1442
1443static int detach_oos_page(struct intel_vgpu *vgpu,
1444 struct intel_vgpu_oos_page *oos_page)
1445{
1446 struct intel_gvt *gvt = vgpu->gvt;
1447 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1448
1449 trace_oos_change(id: vgpu->id, tag: "detach", page_id: oos_page->id,
1450 gpt: spt, type: spt->guest_page.type);
1451
1452 spt->guest_page.write_cnt = 0;
1453 spt->guest_page.oos_page = NULL;
1454 oos_page->spt = NULL;
1455
1456 list_del_init(entry: &oos_page->vm_list);
1457 list_move_tail(list: &oos_page->list, head: &gvt->gtt.oos_page_free_list_head);
1458
1459 return 0;
1460}
1461
1462static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1463 struct intel_vgpu_ppgtt_spt *spt)
1464{
1465 struct intel_gvt *gvt = spt->vgpu->gvt;
1466 int ret;
1467
1468 ret = intel_gvt_read_gpa(vgpu: spt->vgpu,
1469 gpa: spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1470 buf: oos_page->mem, I915_GTT_PAGE_SIZE);
1471 if (ret)
1472 return ret;
1473
1474 oos_page->spt = spt;
1475 spt->guest_page.oos_page = oos_page;
1476
1477 list_move_tail(list: &oos_page->list, head: &gvt->gtt.oos_page_use_list_head);
1478
1479 trace_oos_change(id: spt->vgpu->id, tag: "attach", page_id: oos_page->id,
1480 gpt: spt, type: spt->guest_page.type);
1481 return 0;
1482}
1483
1484static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1485{
1486 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1487 int ret;
1488
1489 ret = intel_vgpu_enable_page_track(vgpu: spt->vgpu, gfn: spt->guest_page.gfn);
1490 if (ret)
1491 return ret;
1492
1493 trace_oos_change(id: spt->vgpu->id, tag: "set page sync", page_id: oos_page->id,
1494 gpt: spt, type: spt->guest_page.type);
1495
1496 list_del_init(entry: &oos_page->vm_list);
1497 return sync_oos_page(vgpu: spt->vgpu, oos_page);
1498}
1499
1500static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1501{
1502 struct intel_gvt *gvt = spt->vgpu->gvt;
1503 struct intel_gvt_gtt *gtt = &gvt->gtt;
1504 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1505 int ret;
1506
1507 WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1508
1509 if (list_empty(head: &gtt->oos_page_free_list_head)) {
1510 oos_page = container_of(gtt->oos_page_use_list_head.next,
1511 struct intel_vgpu_oos_page, list);
1512 ret = ppgtt_set_guest_page_sync(spt: oos_page->spt);
1513 if (ret)
1514 return ret;
1515 ret = detach_oos_page(vgpu: spt->vgpu, oos_page);
1516 if (ret)
1517 return ret;
1518 } else
1519 oos_page = container_of(gtt->oos_page_free_list_head.next,
1520 struct intel_vgpu_oos_page, list);
1521 return attach_oos_page(oos_page, spt);
1522}
1523
1524static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1525{
1526 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1527
1528 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1529 return -EINVAL;
1530
1531 trace_oos_change(id: spt->vgpu->id, tag: "set page out of sync", page_id: oos_page->id,
1532 gpt: spt, type: spt->guest_page.type);
1533
1534 list_add_tail(new: &oos_page->vm_list, head: &spt->vgpu->gtt.oos_page_list_head);
1535 return intel_vgpu_disable_page_track(vgpu: spt->vgpu, gfn: spt->guest_page.gfn);
1536}
1537
1538/**
1539 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1540 * @vgpu: a vGPU
1541 *
1542 * This function is called before submitting a guest workload to host,
1543 * to sync all the out-of-synced shadow for vGPU
1544 *
1545 * Returns:
1546 * Zero on success, negative error code if failed.
1547 */
1548int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1549{
1550 struct list_head *pos, *n;
1551 struct intel_vgpu_oos_page *oos_page;
1552 int ret;
1553
1554 if (!enable_out_of_sync)
1555 return 0;
1556
1557 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1558 oos_page = container_of(pos,
1559 struct intel_vgpu_oos_page, vm_list);
1560 ret = ppgtt_set_guest_page_sync(spt: oos_page->spt);
1561 if (ret)
1562 return ret;
1563 }
1564 return 0;
1565}
1566
1567/*
1568 * The heart of PPGTT shadow page table.
1569 */
1570static int ppgtt_handle_guest_write_page_table(
1571 struct intel_vgpu_ppgtt_spt *spt,
1572 struct intel_gvt_gtt_entry *we, unsigned long index)
1573{
1574 struct intel_vgpu *vgpu = spt->vgpu;
1575 int type = spt->shadow_page.type;
1576 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1577 struct intel_gvt_gtt_entry old_se;
1578 int new_present;
1579 int i, ret;
1580
1581 new_present = ops->test_present(we);
1582
1583 /*
1584 * Adding the new entry first and then removing the old one, that can
1585 * guarantee the ppgtt table is validated during the window between
1586 * adding and removal.
1587 */
1588 ppgtt_get_shadow_entry(spt, &old_se, index);
1589
1590 if (new_present) {
1591 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1592 if (ret)
1593 goto fail;
1594 }
1595
1596 ret = ppgtt_handle_guest_entry_removal(spt, se: &old_se, index);
1597 if (ret)
1598 goto fail;
1599
1600 if (!new_present) {
1601 /* For 64KB splited entries, we need clear them all. */
1602 if (ops->test_64k_splited(&old_se) &&
1603 !(index % GTT_64K_PTE_STRIDE)) {
1604 gvt_vdbg_mm("remove splited 64K shadow entries\n");
1605 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1606 ops->clear_64k_splited(&old_se);
1607 ops->set_pfn(&old_se,
1608 vgpu->gtt.scratch_pt[type].page_mfn);
1609 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1610 }
1611 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1612 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1613 ops->clear_pse(&old_se);
1614 ops->set_pfn(&old_se,
1615 vgpu->gtt.scratch_pt[type].page_mfn);
1616 ppgtt_set_shadow_entry(spt, &old_se, index);
1617 } else {
1618 ops->set_pfn(&old_se,
1619 vgpu->gtt.scratch_pt[type].page_mfn);
1620 ppgtt_set_shadow_entry(spt, &old_se, index);
1621 }
1622 }
1623
1624 return 0;
1625fail:
1626 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1627 spt, we->val64, we->type);
1628 return ret;
1629}
1630
1631
1632
1633static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1634{
1635 return enable_out_of_sync
1636 && gtt_type_is_pte_pt(spt->guest_page.type)
1637 && spt->guest_page.write_cnt >= 2;
1638}
1639
1640static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1641 unsigned long index)
1642{
1643 set_bit(nr: index, addr: spt->post_shadow_bitmap);
1644 if (!list_empty(head: &spt->post_shadow_list))
1645 return;
1646
1647 list_add_tail(new: &spt->post_shadow_list,
1648 head: &spt->vgpu->gtt.post_shadow_list_head);
1649}
1650
1651/**
1652 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1653 * @vgpu: a vGPU
1654 *
1655 * This function is called before submitting a guest workload to host,
1656 * to flush all the post shadows for a vGPU.
1657 *
1658 * Returns:
1659 * Zero on success, negative error code if failed.
1660 */
1661int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1662{
1663 struct list_head *pos, *n;
1664 struct intel_vgpu_ppgtt_spt *spt;
1665 struct intel_gvt_gtt_entry ge;
1666 unsigned long index;
1667 int ret;
1668
1669 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1670 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1671 post_shadow_list);
1672
1673 for_each_set_bit(index, spt->post_shadow_bitmap,
1674 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1675 ppgtt_get_guest_entry(spt, &ge, index);
1676
1677 ret = ppgtt_handle_guest_write_page_table(spt,
1678 we: &ge, index);
1679 if (ret)
1680 return ret;
1681 clear_bit(nr: index, addr: spt->post_shadow_bitmap);
1682 }
1683 list_del_init(entry: &spt->post_shadow_list);
1684 }
1685 return 0;
1686}
1687
1688static int ppgtt_handle_guest_write_page_table_bytes(
1689 struct intel_vgpu_ppgtt_spt *spt,
1690 u64 pa, void *p_data, int bytes)
1691{
1692 struct intel_vgpu *vgpu = spt->vgpu;
1693 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1694 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1695 struct intel_gvt_gtt_entry we, se;
1696 unsigned long index;
1697 int ret;
1698
1699 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1700
1701 ppgtt_get_guest_entry(spt, &we, index);
1702
1703 /*
1704 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1705 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1706 * ignored.
1707 */
1708 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1709 (index % GTT_64K_PTE_STRIDE)) {
1710 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1711 index);
1712 return 0;
1713 }
1714
1715 if (bytes == info->gtt_entry_size) {
1716 ret = ppgtt_handle_guest_write_page_table(spt, we: &we, index);
1717 if (ret)
1718 return ret;
1719 } else {
1720 if (!test_bit(index, spt->post_shadow_bitmap)) {
1721 int type = spt->shadow_page.type;
1722
1723 ppgtt_get_shadow_entry(spt, &se, index);
1724 ret = ppgtt_handle_guest_entry_removal(spt, se: &se, index);
1725 if (ret)
1726 return ret;
1727 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1728 ppgtt_set_shadow_entry(spt, &se, index);
1729 }
1730 ppgtt_set_post_shadow(spt, index);
1731 }
1732
1733 if (!enable_out_of_sync)
1734 return 0;
1735
1736 spt->guest_page.write_cnt++;
1737
1738 if (spt->guest_page.oos_page)
1739 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1740 false, 0, vgpu);
1741
1742 if (can_do_out_of_sync(spt)) {
1743 if (!spt->guest_page.oos_page)
1744 ppgtt_allocate_oos_page(spt);
1745
1746 ret = ppgtt_set_guest_page_oos(spt);
1747 if (ret < 0)
1748 return ret;
1749 }
1750 return 0;
1751}
1752
1753static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1754{
1755 struct intel_vgpu *vgpu = mm->vgpu;
1756 struct intel_gvt *gvt = vgpu->gvt;
1757 struct intel_gvt_gtt *gtt = &gvt->gtt;
1758 const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1759 struct intel_gvt_gtt_entry se;
1760 int index;
1761
1762 if (!mm->ppgtt_mm.shadowed)
1763 return;
1764
1765 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1766 ppgtt_get_shadow_root_entry(mm, entry: &se, index);
1767
1768 if (!ops->test_present(&se))
1769 continue;
1770
1771 ppgtt_invalidate_spt_by_shadow_entry(vgpu, e: &se);
1772 se.val64 = 0;
1773 ppgtt_set_shadow_root_entry(mm, entry: &se, index);
1774
1775 trace_spt_guest_change(id: vgpu->id, tag: "destroy root pointer",
1776 NULL, type: se.type, v: se.val64, index);
1777 }
1778
1779 mm->ppgtt_mm.shadowed = false;
1780}
1781
1782
1783static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1784{
1785 struct intel_vgpu *vgpu = mm->vgpu;
1786 struct intel_gvt *gvt = vgpu->gvt;
1787 struct intel_gvt_gtt *gtt = &gvt->gtt;
1788 const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1789 struct intel_vgpu_ppgtt_spt *spt;
1790 struct intel_gvt_gtt_entry ge, se;
1791 int index, ret;
1792
1793 if (mm->ppgtt_mm.shadowed)
1794 return 0;
1795
1796 if (!test_bit(INTEL_VGPU_STATUS_ATTACHED, vgpu->status))
1797 return -EINVAL;
1798
1799 mm->ppgtt_mm.shadowed = true;
1800
1801 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1802 ppgtt_get_guest_root_entry(mm, entry: &ge, index);
1803
1804 if (!ops->test_present(&ge))
1805 continue;
1806
1807 trace_spt_guest_change(id: vgpu->id, tag: __func__, NULL,
1808 type: ge.type, v: ge.val64, index);
1809
1810 spt = ppgtt_populate_spt_by_guest_entry(vgpu, we: &ge);
1811 if (IS_ERR(ptr: spt)) {
1812 gvt_vgpu_err("fail to populate guest root pointer\n");
1813 ret = PTR_ERR(ptr: spt);
1814 goto fail;
1815 }
1816 ppgtt_generate_shadow_entry(se: &se, s: spt, ge: &ge);
1817 ppgtt_set_shadow_root_entry(mm, entry: &se, index);
1818
1819 trace_spt_guest_change(id: vgpu->id, tag: "populate root pointer",
1820 NULL, type: se.type, v: se.val64, index);
1821 }
1822
1823 return 0;
1824fail:
1825 invalidate_ppgtt_mm(mm);
1826 return ret;
1827}
1828
1829static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1830{
1831 struct intel_vgpu_mm *mm;
1832
1833 mm = kzalloc(size: sizeof(*mm), GFP_KERNEL);
1834 if (!mm)
1835 return NULL;
1836
1837 mm->vgpu = vgpu;
1838 kref_init(kref: &mm->ref);
1839 atomic_set(v: &mm->pincount, i: 0);
1840
1841 return mm;
1842}
1843
1844static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1845{
1846 kfree(objp: mm);
1847}
1848
1849/**
1850 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1851 * @vgpu: a vGPU
1852 * @root_entry_type: ppgtt root entry type
1853 * @pdps: guest pdps.
1854 *
1855 * This function is used to create a ppgtt mm object for a vGPU.
1856 *
1857 * Returns:
1858 * Zero on success, negative error code in pointer if failed.
1859 */
1860struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1861 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1862{
1863 struct intel_gvt *gvt = vgpu->gvt;
1864 struct intel_vgpu_mm *mm;
1865 int ret;
1866
1867 mm = vgpu_alloc_mm(vgpu);
1868 if (!mm)
1869 return ERR_PTR(error: -ENOMEM);
1870
1871 mm->type = INTEL_GVT_MM_PPGTT;
1872
1873 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1874 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1875 mm->ppgtt_mm.root_entry_type = root_entry_type;
1876
1877 INIT_LIST_HEAD(list: &mm->ppgtt_mm.list);
1878 INIT_LIST_HEAD(list: &mm->ppgtt_mm.lru_list);
1879 INIT_LIST_HEAD(list: &mm->ppgtt_mm.link);
1880
1881 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1882 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1883 else
1884 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1885 sizeof(mm->ppgtt_mm.guest_pdps));
1886
1887 ret = shadow_ppgtt_mm(mm);
1888 if (ret) {
1889 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1890 vgpu_free_mm(mm);
1891 return ERR_PTR(error: ret);
1892 }
1893
1894 list_add_tail(new: &mm->ppgtt_mm.list, head: &vgpu->gtt.ppgtt_mm_list_head);
1895
1896 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1897 list_add_tail(new: &mm->ppgtt_mm.lru_list, head: &gvt->gtt.ppgtt_mm_lru_list_head);
1898 mutex_unlock(lock: &gvt->gtt.ppgtt_mm_lock);
1899
1900 return mm;
1901}
1902
1903static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1904{
1905 struct intel_vgpu_mm *mm;
1906 unsigned long nr_entries;
1907
1908 mm = vgpu_alloc_mm(vgpu);
1909 if (!mm)
1910 return ERR_PTR(error: -ENOMEM);
1911
1912 mm->type = INTEL_GVT_MM_GGTT;
1913
1914 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1915 mm->ggtt_mm.virtual_ggtt =
1916 vzalloc(array_size(nr_entries,
1917 vgpu->gvt->device_info.gtt_entry_size));
1918 if (!mm->ggtt_mm.virtual_ggtt) {
1919 vgpu_free_mm(mm);
1920 return ERR_PTR(error: -ENOMEM);
1921 }
1922
1923 mm->ggtt_mm.host_ggtt_aperture = vzalloc(size: (vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1924 if (!mm->ggtt_mm.host_ggtt_aperture) {
1925 vfree(addr: mm->ggtt_mm.virtual_ggtt);
1926 vgpu_free_mm(mm);
1927 return ERR_PTR(error: -ENOMEM);
1928 }
1929
1930 mm->ggtt_mm.host_ggtt_hidden = vzalloc(size: (vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
1931 if (!mm->ggtt_mm.host_ggtt_hidden) {
1932 vfree(addr: mm->ggtt_mm.host_ggtt_aperture);
1933 vfree(addr: mm->ggtt_mm.virtual_ggtt);
1934 vgpu_free_mm(mm);
1935 return ERR_PTR(error: -ENOMEM);
1936 }
1937
1938 return mm;
1939}
1940
1941/**
1942 * _intel_vgpu_mm_release - destroy a mm object
1943 * @mm_ref: a kref object
1944 *
1945 * This function is used to destroy a mm object for vGPU
1946 *
1947 */
1948void _intel_vgpu_mm_release(struct kref *mm_ref)
1949{
1950 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1951
1952 if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1953 gvt_err("vgpu mm pin count bug detected\n");
1954
1955 if (mm->type == INTEL_GVT_MM_PPGTT) {
1956 list_del(entry: &mm->ppgtt_mm.list);
1957
1958 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1959 list_del(entry: &mm->ppgtt_mm.lru_list);
1960 mutex_unlock(lock: &mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1961
1962 invalidate_ppgtt_mm(mm);
1963 } else {
1964 vfree(addr: mm->ggtt_mm.virtual_ggtt);
1965 vfree(addr: mm->ggtt_mm.host_ggtt_aperture);
1966 vfree(addr: mm->ggtt_mm.host_ggtt_hidden);
1967 }
1968
1969 vgpu_free_mm(mm);
1970}
1971
1972/**
1973 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1974 * @mm: a vGPU mm object
1975 *
1976 * This function is called when user doesn't want to use a vGPU mm object
1977 */
1978void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1979{
1980 atomic_dec_if_positive(v: &mm->pincount);
1981}
1982
1983/**
1984 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1985 * @mm: target vgpu mm
1986 *
1987 * This function is called when user wants to use a vGPU mm object. If this
1988 * mm object hasn't been shadowed yet, the shadow will be populated at this
1989 * time.
1990 *
1991 * Returns:
1992 * Zero on success, negative error code if failed.
1993 */
1994int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1995{
1996 int ret;
1997
1998 atomic_inc(v: &mm->pincount);
1999
2000 if (mm->type == INTEL_GVT_MM_PPGTT) {
2001 ret = shadow_ppgtt_mm(mm);
2002 if (ret)
2003 return ret;
2004
2005 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2006 list_move_tail(list: &mm->ppgtt_mm.lru_list,
2007 head: &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2008 mutex_unlock(lock: &mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2009 }
2010
2011 return 0;
2012}
2013
2014static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2015{
2016 struct intel_vgpu_mm *mm;
2017 struct list_head *pos, *n;
2018
2019 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2020
2021 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2022 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2023
2024 if (atomic_read(v: &mm->pincount))
2025 continue;
2026
2027 list_del_init(entry: &mm->ppgtt_mm.lru_list);
2028 mutex_unlock(lock: &gvt->gtt.ppgtt_mm_lock);
2029 invalidate_ppgtt_mm(mm);
2030 return 1;
2031 }
2032 mutex_unlock(lock: &gvt->gtt.ppgtt_mm_lock);
2033 return 0;
2034}
2035
2036/*
2037 * GMA translation APIs.
2038 */
2039static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2040 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2041{
2042 struct intel_vgpu *vgpu = mm->vgpu;
2043 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2044 struct intel_vgpu_ppgtt_spt *s;
2045
2046 s = intel_vgpu_find_spt_by_mfn(vgpu, mfn: ops->get_pfn(e));
2047 if (!s)
2048 return -ENXIO;
2049
2050 if (!guest)
2051 ppgtt_get_shadow_entry(s, e, index);
2052 else
2053 ppgtt_get_guest_entry(s, e, index);
2054 return 0;
2055}
2056
2057/**
2058 * intel_vgpu_gma_to_gpa - translate a gma to GPA
2059 * @mm: mm object. could be a PPGTT or GGTT mm object
2060 * @gma: graphics memory address in this mm object
2061 *
2062 * This function is used to translate a graphics memory address in specific
2063 * graphics memory space to guest physical address.
2064 *
2065 * Returns:
2066 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2067 */
2068unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2069{
2070 struct intel_vgpu *vgpu = mm->vgpu;
2071 struct intel_gvt *gvt = vgpu->gvt;
2072 const struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2073 const struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2074 unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2075 unsigned long gma_index[4];
2076 struct intel_gvt_gtt_entry e;
2077 int i, levels = 0;
2078 int ret;
2079
2080 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2081 mm->type != INTEL_GVT_MM_PPGTT);
2082
2083 if (mm->type == INTEL_GVT_MM_GGTT) {
2084 if (!vgpu_gmadr_is_valid(vgpu, gma))
2085 goto err;
2086
2087 ggtt_get_guest_entry(mm, entry: &e,
2088 index: gma_ops->gma_to_ggtt_pte_index(gma));
2089
2090 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2091 + (gma & ~I915_GTT_PAGE_MASK);
2092
2093 trace_gma_translate(id: vgpu->id, type: "ggtt", ring_id: 0, root_entry_type: 0, gma, gpa);
2094 } else {
2095 switch (mm->ppgtt_mm.root_entry_type) {
2096 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2097 ppgtt_get_shadow_root_entry(mm, entry: &e, index: 0);
2098
2099 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2100 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2101 gma_index[2] = gma_ops->gma_to_pde_index(gma);
2102 gma_index[3] = gma_ops->gma_to_pte_index(gma);
2103 levels = 4;
2104 break;
2105 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2106 ppgtt_get_shadow_root_entry(mm, entry: &e,
2107 index: gma_ops->gma_to_l3_pdp_index(gma));
2108
2109 gma_index[0] = gma_ops->gma_to_pde_index(gma);
2110 gma_index[1] = gma_ops->gma_to_pte_index(gma);
2111 levels = 2;
2112 break;
2113 default:
2114 GEM_BUG_ON(1);
2115 }
2116
2117 /* walk the shadow page table and get gpa from guest entry */
2118 for (i = 0; i < levels; i++) {
2119 ret = ppgtt_get_next_level_entry(mm, e: &e, index: gma_index[i],
2120 guest: (i == levels - 1));
2121 if (ret)
2122 goto err;
2123
2124 if (!pte_ops->test_present(&e)) {
2125 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2126 goto err;
2127 }
2128 }
2129
2130 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2131 (gma & ~I915_GTT_PAGE_MASK);
2132 trace_gma_translate(id: vgpu->id, type: "ppgtt", ring_id: 0,
2133 root_entry_type: mm->ppgtt_mm.root_entry_type, gma, gpa);
2134 }
2135
2136 return gpa;
2137err:
2138 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2139 return INTEL_GVT_INVALID_ADDR;
2140}
2141
2142static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2143 unsigned int off, void *p_data, unsigned int bytes)
2144{
2145 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2146 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2147 unsigned long index = off >> info->gtt_entry_size_shift;
2148 unsigned long gma;
2149 struct intel_gvt_gtt_entry e;
2150
2151 if (bytes != 4 && bytes != 8)
2152 return -EINVAL;
2153
2154 gma = index << I915_GTT_PAGE_SHIFT;
2155 if (!intel_gvt_ggtt_validate_range(vgpu,
2156 addr: gma, size: 1 << I915_GTT_PAGE_SHIFT)) {
2157 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2158 memset(p_data, 0, bytes);
2159 return 0;
2160 }
2161
2162 ggtt_get_guest_entry(mm: ggtt_mm, entry: &e, index);
2163 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2164 bytes);
2165 return 0;
2166}
2167
2168/**
2169 * intel_vgpu_emulate_ggtt_mmio_read - emulate GTT MMIO register read
2170 * @vgpu: a vGPU
2171 * @off: register offset
2172 * @p_data: data will be returned to guest
2173 * @bytes: data length
2174 *
2175 * This function is used to emulate the GTT MMIO register read
2176 *
2177 * Returns:
2178 * Zero on success, error code if failed.
2179 */
2180int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2181 void *p_data, unsigned int bytes)
2182{
2183 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2184 int ret;
2185
2186 if (bytes != 4 && bytes != 8)
2187 return -EINVAL;
2188
2189 off -= info->gtt_start_offset;
2190 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2191 return ret;
2192}
2193
2194static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2195 struct intel_gvt_gtt_entry *entry)
2196{
2197 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2198 unsigned long pfn;
2199
2200 pfn = pte_ops->get_pfn(entry);
2201 if (pfn != vgpu->gvt->gtt.scratch_mfn)
2202 intel_gvt_dma_unmap_guest_page(vgpu, dma_addr: pfn << PAGE_SHIFT);
2203}
2204
2205static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2206 void *p_data, unsigned int bytes)
2207{
2208 struct intel_gvt *gvt = vgpu->gvt;
2209 const struct intel_gvt_device_info *info = &gvt->device_info;
2210 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2211 const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2212 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2213 unsigned long gma, gfn;
2214 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2215 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2216 dma_addr_t dma_addr;
2217 int ret;
2218 struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2219 bool partial_update = false;
2220
2221 if (bytes != 4 && bytes != 8)
2222 return -EINVAL;
2223
2224 gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2225
2226 /* the VM may configure the whole GM space when ballooning is used */
2227 if (!vgpu_gmadr_is_valid(vgpu, gma))
2228 return 0;
2229
2230 e.type = GTT_TYPE_GGTT_PTE;
2231 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2232 bytes);
2233
2234 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2235 * write, save the first 4 bytes in a list and update virtual
2236 * PTE. Only update shadow PTE when the second 4 bytes comes.
2237 */
2238 if (bytes < info->gtt_entry_size) {
2239 bool found = false;
2240
2241 list_for_each_entry_safe(pos, n,
2242 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2243 if (g_gtt_index == pos->offset >>
2244 info->gtt_entry_size_shift) {
2245 if (off != pos->offset) {
2246 /* the second partial part*/
2247 int last_off = pos->offset &
2248 (info->gtt_entry_size - 1);
2249
2250 memcpy((void *)&e.val64 + last_off,
2251 (void *)&pos->data + last_off,
2252 bytes);
2253
2254 list_del(entry: &pos->list);
2255 kfree(objp: pos);
2256 found = true;
2257 break;
2258 }
2259
2260 /* update of the first partial part */
2261 pos->data = e.val64;
2262 ggtt_set_guest_entry(mm: ggtt_mm, entry: &e, index: g_gtt_index);
2263 return 0;
2264 }
2265 }
2266
2267 if (!found) {
2268 /* the first partial part */
2269 partial_pte = kzalloc(size: sizeof(*partial_pte), GFP_KERNEL);
2270 if (!partial_pte)
2271 return -ENOMEM;
2272 partial_pte->offset = off;
2273 partial_pte->data = e.val64;
2274 list_add_tail(new: &partial_pte->list,
2275 head: &ggtt_mm->ggtt_mm.partial_pte_list);
2276 partial_update = true;
2277 }
2278 }
2279
2280 if (!partial_update && (ops->test_present(&e))) {
2281 gfn = ops->get_pfn(&e);
2282 m.val64 = e.val64;
2283 m.type = e.type;
2284
2285 ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE,
2286 dma_addr: &dma_addr);
2287 if (ret) {
2288 gvt_vgpu_err("fail to populate guest ggtt entry\n");
2289 /* guest driver may read/write the entry when partial
2290 * update the entry in this situation p2m will fail
2291 * setting the shadow entry to point to a scratch page
2292 */
2293 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2294 } else
2295 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2296 } else {
2297 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2298 ops->clear_present(&m);
2299 }
2300
2301 ggtt_set_guest_entry(mm: ggtt_mm, entry: &e, index: g_gtt_index);
2302
2303 ggtt_get_host_entry(mm: ggtt_mm, entry: &e, index: g_gtt_index);
2304 ggtt_invalidate_pte(vgpu, entry: &e);
2305
2306 ggtt_set_host_entry(mm: ggtt_mm, entry: &m, index: g_gtt_index);
2307 ggtt_invalidate(gt: gvt->gt);
2308 return 0;
2309}
2310
2311/*
2312 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2313 * @vgpu: a vGPU
2314 * @off: register offset
2315 * @p_data: data from guest write
2316 * @bytes: data length
2317 *
2318 * This function is used to emulate the GTT MMIO register write
2319 *
2320 * Returns:
2321 * Zero on success, error code if failed.
2322 */
2323int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2324 unsigned int off, void *p_data, unsigned int bytes)
2325{
2326 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2327 int ret;
2328 struct intel_vgpu_submission *s = &vgpu->submission;
2329 struct intel_engine_cs *engine;
2330 int i;
2331
2332 if (bytes != 4 && bytes != 8)
2333 return -EINVAL;
2334
2335 off -= info->gtt_start_offset;
2336 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2337
2338 /* if ggtt of last submitted context is written,
2339 * that context is probably got unpinned.
2340 * Set last shadowed ctx to invalid.
2341 */
2342 for_each_engine(engine, vgpu->gvt->gt, i) {
2343 if (!s->last_ctx[i].valid)
2344 continue;
2345
2346 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2347 s->last_ctx[i].valid = false;
2348 }
2349 return ret;
2350}
2351
2352static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2353 enum intel_gvt_gtt_type type)
2354{
2355 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2356 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2357 const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2358 int page_entry_num = I915_GTT_PAGE_SIZE >>
2359 vgpu->gvt->device_info.gtt_entry_size_shift;
2360 void *scratch_pt;
2361 int i;
2362 struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2363 dma_addr_t daddr;
2364
2365 if (drm_WARN_ON(&i915->drm,
2366 type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2367 return -EINVAL;
2368
2369 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2370 if (!scratch_pt) {
2371 gvt_vgpu_err("fail to allocate scratch page\n");
2372 return -ENOMEM;
2373 }
2374
2375 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL);
2376 if (dma_mapping_error(dev, dma_addr: daddr)) {
2377 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2378 __free_page(virt_to_page(scratch_pt));
2379 return -ENOMEM;
2380 }
2381 gtt->scratch_pt[type].page_mfn =
2382 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2383 gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2384 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2385 vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2386
2387 /* Build the tree by full filled the scratch pt with the entries which
2388 * point to the next level scratch pt or scratch page. The
2389 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2390 * 'type' pt.
2391 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2392 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2393 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2394 */
2395 if (type > GTT_TYPE_PPGTT_PTE_PT) {
2396 struct intel_gvt_gtt_entry se;
2397
2398 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2399 se.type = get_entry_type(type: type - 1);
2400 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2401
2402 /* The entry parameters like present/writeable/cache type
2403 * set to the same as i915's scratch page tree.
2404 */
2405 se.val64 |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW;
2406 if (type == GTT_TYPE_PPGTT_PDE_PT)
2407 se.val64 |= PPAT_CACHED;
2408
2409 for (i = 0; i < page_entry_num; i++)
2410 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2411 }
2412
2413 return 0;
2414}
2415
2416static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2417{
2418 int i;
2419 struct device *dev = vgpu->gvt->gt->i915->drm.dev;
2420 dma_addr_t daddr;
2421
2422 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2423 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2424 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2425 I915_GTT_PAGE_SHIFT);
2426 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2427 __free_page(vgpu->gtt.scratch_pt[i].page);
2428 vgpu->gtt.scratch_pt[i].page = NULL;
2429 vgpu->gtt.scratch_pt[i].page_mfn = 0;
2430 }
2431 }
2432
2433 return 0;
2434}
2435
2436static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2437{
2438 int i, ret;
2439
2440 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2441 ret = alloc_scratch_pages(vgpu, type: i);
2442 if (ret)
2443 goto err;
2444 }
2445
2446 return 0;
2447
2448err:
2449 release_scratch_page_tree(vgpu);
2450 return ret;
2451}
2452
2453/**
2454 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2455 * @vgpu: a vGPU
2456 *
2457 * This function is used to initialize per-vGPU graphics memory virtualization
2458 * components.
2459 *
2460 * Returns:
2461 * Zero on success, error code if failed.
2462 */
2463int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2464{
2465 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2466
2467 INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2468
2469 INIT_LIST_HEAD(list: &gtt->ppgtt_mm_list_head);
2470 INIT_LIST_HEAD(list: &gtt->oos_page_list_head);
2471 INIT_LIST_HEAD(list: &gtt->post_shadow_list_head);
2472
2473 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2474 if (IS_ERR(ptr: gtt->ggtt_mm)) {
2475 gvt_vgpu_err("fail to create mm for ggtt.\n");
2476 return PTR_ERR(ptr: gtt->ggtt_mm);
2477 }
2478
2479 intel_vgpu_reset_ggtt(vgpu, invalidate_old: false);
2480
2481 INIT_LIST_HEAD(list: &gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2482
2483 return create_scratch_page_tree(vgpu);
2484}
2485
2486void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2487{
2488 struct list_head *pos, *n;
2489 struct intel_vgpu_mm *mm;
2490
2491 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2492 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2493 intel_vgpu_destroy_mm(mm);
2494 }
2495
2496 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2497 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2498
2499 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2500 gvt_err("Why we still has spt not freed?\n");
2501 ppgtt_free_all_spt(vgpu);
2502 }
2503}
2504
2505static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2506{
2507 struct intel_gvt_partial_pte *pos, *next;
2508
2509 list_for_each_entry_safe(pos, next,
2510 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2511 list) {
2512 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2513 pos->offset, pos->data);
2514 kfree(objp: pos);
2515 }
2516 intel_vgpu_destroy_mm(mm: vgpu->gtt.ggtt_mm);
2517 vgpu->gtt.ggtt_mm = NULL;
2518}
2519
2520/**
2521 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2522 * @vgpu: a vGPU
2523 *
2524 * This function is used to clean up per-vGPU graphics memory virtualization
2525 * components.
2526 *
2527 * Returns:
2528 * Zero on success, error code if failed.
2529 */
2530void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2531{
2532 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2533 intel_vgpu_destroy_ggtt_mm(vgpu);
2534 release_scratch_page_tree(vgpu);
2535}
2536
2537static void clean_spt_oos(struct intel_gvt *gvt)
2538{
2539 struct intel_gvt_gtt *gtt = &gvt->gtt;
2540 struct list_head *pos, *n;
2541 struct intel_vgpu_oos_page *oos_page;
2542
2543 WARN(!list_empty(&gtt->oos_page_use_list_head),
2544 "someone is still using oos page\n");
2545
2546 list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2547 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2548 list_del(entry: &oos_page->list);
2549 free_page((unsigned long)oos_page->mem);
2550 kfree(objp: oos_page);
2551 }
2552}
2553
2554static int setup_spt_oos(struct intel_gvt *gvt)
2555{
2556 struct intel_gvt_gtt *gtt = &gvt->gtt;
2557 struct intel_vgpu_oos_page *oos_page;
2558 int i;
2559 int ret;
2560
2561 INIT_LIST_HEAD(list: &gtt->oos_page_free_list_head);
2562 INIT_LIST_HEAD(list: &gtt->oos_page_use_list_head);
2563
2564 for (i = 0; i < preallocated_oos_pages; i++) {
2565 oos_page = kzalloc(size: sizeof(*oos_page), GFP_KERNEL);
2566 if (!oos_page) {
2567 ret = -ENOMEM;
2568 goto fail;
2569 }
2570 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, order: 0);
2571 if (!oos_page->mem) {
2572 ret = -ENOMEM;
2573 kfree(objp: oos_page);
2574 goto fail;
2575 }
2576
2577 INIT_LIST_HEAD(list: &oos_page->list);
2578 INIT_LIST_HEAD(list: &oos_page->vm_list);
2579 oos_page->id = i;
2580 list_add_tail(new: &oos_page->list, head: &gtt->oos_page_free_list_head);
2581 }
2582
2583 gvt_dbg_mm("%d oos pages preallocated\n", i);
2584
2585 return 0;
2586fail:
2587 clean_spt_oos(gvt);
2588 return ret;
2589}
2590
2591/**
2592 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2593 * @vgpu: a vGPU
2594 * @pdps: pdp root array
2595 *
2596 * This function is used to find a PPGTT mm object from mm object pool
2597 *
2598 * Returns:
2599 * pointer to mm object on success, NULL if failed.
2600 */
2601struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2602 u64 pdps[])
2603{
2604 struct intel_vgpu_mm *mm;
2605 struct list_head *pos;
2606
2607 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2608 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2609
2610 switch (mm->ppgtt_mm.root_entry_type) {
2611 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2612 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2613 return mm;
2614 break;
2615 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2616 if (!memcmp(p: pdps, q: mm->ppgtt_mm.guest_pdps,
2617 size: sizeof(mm->ppgtt_mm.guest_pdps)))
2618 return mm;
2619 break;
2620 default:
2621 GEM_BUG_ON(1);
2622 }
2623 }
2624 return NULL;
2625}
2626
2627/**
2628 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2629 * @vgpu: a vGPU
2630 * @root_entry_type: ppgtt root entry type
2631 * @pdps: guest pdps
2632 *
2633 * This function is used to find or create a PPGTT mm object from a guest.
2634 *
2635 * Returns:
2636 * Zero on success, negative error code if failed.
2637 */
2638struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2639 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2640{
2641 struct intel_vgpu_mm *mm;
2642
2643 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2644 if (mm) {
2645 intel_vgpu_mm_get(mm);
2646 } else {
2647 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2648 if (IS_ERR(ptr: mm))
2649 gvt_vgpu_err("fail to create mm\n");
2650 }
2651 return mm;
2652}
2653
2654/**
2655 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2656 * @vgpu: a vGPU
2657 * @pdps: guest pdps
2658 *
2659 * This function is used to find a PPGTT mm object from a guest and destroy it.
2660 *
2661 * Returns:
2662 * Zero on success, negative error code if failed.
2663 */
2664int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2665{
2666 struct intel_vgpu_mm *mm;
2667
2668 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2669 if (!mm) {
2670 gvt_vgpu_err("fail to find ppgtt instance.\n");
2671 return -EINVAL;
2672 }
2673 intel_vgpu_mm_put(mm);
2674 return 0;
2675}
2676
2677/**
2678 * intel_gvt_init_gtt - initialize mm components of a GVT device
2679 * @gvt: GVT device
2680 *
2681 * This function is called at the initialization stage, to initialize
2682 * the mm components of a GVT device.
2683 *
2684 * Returns:
2685 * zero on success, negative error code if failed.
2686 */
2687int intel_gvt_init_gtt(struct intel_gvt *gvt)
2688{
2689 int ret;
2690 void *page;
2691 struct device *dev = gvt->gt->i915->drm.dev;
2692 dma_addr_t daddr;
2693
2694 gvt_dbg_core("init gtt\n");
2695
2696 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2697 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2698
2699 page = (void *)get_zeroed_page(GFP_KERNEL);
2700 if (!page) {
2701 gvt_err("fail to allocate scratch ggtt page\n");
2702 return -ENOMEM;
2703 }
2704
2705 daddr = dma_map_page(dev, virt_to_page(page), 0,
2706 4096, DMA_BIDIRECTIONAL);
2707 if (dma_mapping_error(dev, dma_addr: daddr)) {
2708 gvt_err("fail to dmamap scratch ggtt page\n");
2709 __free_page(virt_to_page(page));
2710 return -ENOMEM;
2711 }
2712
2713 gvt->gtt.scratch_page = virt_to_page(page);
2714 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2715
2716 if (enable_out_of_sync) {
2717 ret = setup_spt_oos(gvt);
2718 if (ret) {
2719 gvt_err("fail to initialize SPT oos\n");
2720 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2721 __free_page(gvt->gtt.scratch_page);
2722 return ret;
2723 }
2724 }
2725 INIT_LIST_HEAD(list: &gvt->gtt.ppgtt_mm_lru_list_head);
2726 mutex_init(&gvt->gtt.ppgtt_mm_lock);
2727 return 0;
2728}
2729
2730/**
2731 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2732 * @gvt: GVT device
2733 *
2734 * This function is called at the driver unloading stage, to clean up
2735 * the mm components of a GVT device.
2736 *
2737 */
2738void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2739{
2740 struct device *dev = gvt->gt->i915->drm.dev;
2741 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2742 I915_GTT_PAGE_SHIFT);
2743
2744 dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
2745
2746 __free_page(gvt->gtt.scratch_page);
2747
2748 if (enable_out_of_sync)
2749 clean_spt_oos(gvt);
2750}
2751
2752/**
2753 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2754 * @vgpu: a vGPU
2755 *
2756 * This function is called when invalidate all PPGTT instances of a vGPU.
2757 *
2758 */
2759void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2760{
2761 struct list_head *pos, *n;
2762 struct intel_vgpu_mm *mm;
2763
2764 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2765 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2766 if (mm->type == INTEL_GVT_MM_PPGTT) {
2767 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2768 list_del_init(entry: &mm->ppgtt_mm.lru_list);
2769 mutex_unlock(lock: &vgpu->gvt->gtt.ppgtt_mm_lock);
2770 if (mm->ppgtt_mm.shadowed)
2771 invalidate_ppgtt_mm(mm);
2772 }
2773 }
2774}
2775
2776/**
2777 * intel_vgpu_reset_ggtt - reset the GGTT entry
2778 * @vgpu: a vGPU
2779 * @invalidate_old: invalidate old entries
2780 *
2781 * This function is called at the vGPU create stage
2782 * to reset all the GGTT entries.
2783 *
2784 */
2785void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2786{
2787 struct intel_gvt *gvt = vgpu->gvt;
2788 const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2789 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2790 struct intel_gvt_gtt_entry old_entry;
2791 u32 index;
2792 u32 num_entries;
2793
2794 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2795 pte_ops->set_present(&entry);
2796
2797 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2798 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2799 while (num_entries--) {
2800 if (invalidate_old) {
2801 ggtt_get_host_entry(mm: vgpu->gtt.ggtt_mm, entry: &old_entry, index);
2802 ggtt_invalidate_pte(vgpu, entry: &old_entry);
2803 }
2804 ggtt_set_host_entry(mm: vgpu->gtt.ggtt_mm, entry: &entry, index: index++);
2805 }
2806
2807 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2808 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2809 while (num_entries--) {
2810 if (invalidate_old) {
2811 ggtt_get_host_entry(mm: vgpu->gtt.ggtt_mm, entry: &old_entry, index);
2812 ggtt_invalidate_pte(vgpu, entry: &old_entry);
2813 }
2814 ggtt_set_host_entry(mm: vgpu->gtt.ggtt_mm, entry: &entry, index: index++);
2815 }
2816
2817 ggtt_invalidate(gt: gvt->gt);
2818}
2819
2820/**
2821 * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
2822 * @gvt: intel gvt device
2823 *
2824 * This function is called at driver resume stage to restore
2825 * GGTT entries of every vGPU.
2826 *
2827 */
2828void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
2829{
2830 struct intel_vgpu *vgpu;
2831 struct intel_vgpu_mm *mm;
2832 int id;
2833 gen8_pte_t pte;
2834 u32 idx, num_low, num_hi, offset;
2835
2836 /* Restore dirty host ggtt for all vGPUs */
2837 idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
2838 mm = vgpu->gtt.ggtt_mm;
2839
2840 num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2841 offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2842 for (idx = 0; idx < num_low; idx++) {
2843 pte = mm->ggtt_mm.host_ggtt_aperture[idx];
2844 if (pte & GEN8_PAGE_PRESENT)
2845 write_pte64(ggtt: vgpu->gvt->gt->ggtt, index: offset + idx, pte);
2846 }
2847
2848 num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2849 offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2850 for (idx = 0; idx < num_hi; idx++) {
2851 pte = mm->ggtt_mm.host_ggtt_hidden[idx];
2852 if (pte & GEN8_PAGE_PRESENT)
2853 write_pte64(ggtt: vgpu->gvt->gt->ggtt, index: offset + idx, pte);
2854 }
2855 }
2856}
2857

source code of linux/drivers/gpu/drm/i915/gvt/gtt.c