1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Texas Instruments
4 * Author: Rob Clark <robdclark@gmail.com>
5 */
6
7#include <linux/delay.h>
8#include <linux/dma-mapping.h>
9#include <linux/of_graph.h>
10#include <linux/pm_runtime.h>
11
12#include <drm/drm_atomic.h>
13#include <drm/drm_atomic_helper.h>
14#include <drm/drm_crtc.h>
15#include <drm/drm_fb_dma_helper.h>
16#include <drm/drm_fourcc.h>
17#include <drm/drm_framebuffer.h>
18#include <drm/drm_gem_dma_helper.h>
19#include <drm/drm_modeset_helper_vtables.h>
20#include <drm/drm_print.h>
21#include <drm/drm_vblank.h>
22
23#include "tilcdc_drv.h"
24#include "tilcdc_regs.h"
25
26#define TILCDC_VBLANK_SAFETY_THRESHOLD_US 1000
27#define TILCDC_PALETTE_SIZE 32
28#define TILCDC_PALETTE_FIRST_ENTRY 0x4000
29
30struct tilcdc_crtc {
31 struct drm_crtc base;
32
33 struct drm_plane primary;
34 const struct tilcdc_panel_info *info;
35 struct drm_pending_vblank_event *event;
36 struct mutex enable_lock;
37 bool enabled;
38 bool shutdown;
39 wait_queue_head_t frame_done_wq;
40 bool frame_done;
41 spinlock_t irq_lock;
42
43 unsigned int lcd_fck_rate;
44
45 ktime_t last_vblank;
46 unsigned int hvtotal_us;
47
48 struct drm_framebuffer *next_fb;
49
50 /* Only set if an external encoder is connected */
51 bool simulate_vesa_sync;
52
53 int sync_lost_count;
54 bool frame_intact;
55 struct work_struct recover_work;
56
57 dma_addr_t palette_dma_handle;
58 u16 *palette_base;
59 struct completion palette_loaded;
60};
61#define to_tilcdc_crtc(x) container_of(x, struct tilcdc_crtc, base)
62
63static void set_scanout(struct drm_crtc *crtc, struct drm_framebuffer *fb)
64{
65 struct drm_device *dev = crtc->dev;
66 struct tilcdc_drm_private *priv = dev->dev_private;
67 struct drm_gem_dma_object *gem;
68 dma_addr_t start, end;
69 u64 dma_base_and_ceiling;
70
71 gem = drm_fb_dma_get_gem_obj(fb, plane: 0);
72
73 start = gem->dma_addr + fb->offsets[0] +
74 crtc->y * fb->pitches[0] +
75 crtc->x * fb->format->cpp[0];
76
77 end = start + (crtc->mode.vdisplay * fb->pitches[0]);
78
79 /* Write LCDC_DMA_FB_BASE_ADDR_0_REG and LCDC_DMA_FB_CEILING_ADDR_0_REG
80 * with a single insruction, if available. This should make it more
81 * unlikely that LCDC would fetch the DMA addresses in the middle of
82 * an update.
83 */
84 if (priv->rev == 1)
85 end -= 1;
86
87 dma_base_and_ceiling = (u64)end << 32 | start;
88 tilcdc_write64(dev, LCDC_DMA_FB_BASE_ADDR_0_REG, data: dma_base_and_ceiling);
89}
90
91/*
92 * The driver currently only supports only true color formats. For
93 * true color the palette block is bypassed, but a 32 byte palette
94 * should still be loaded. The first 16-bit entry must be 0x4000 while
95 * all other entries must be zeroed.
96 */
97static void tilcdc_crtc_load_palette(struct drm_crtc *crtc)
98{
99 struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
100 struct drm_device *dev = crtc->dev;
101 struct tilcdc_drm_private *priv = dev->dev_private;
102 int ret;
103
104 reinit_completion(x: &tilcdc_crtc->palette_loaded);
105
106 /* Tell the LCDC where the palette is located. */
107 tilcdc_write(dev, LCDC_DMA_FB_BASE_ADDR_0_REG,
108 data: tilcdc_crtc->palette_dma_handle);
109 tilcdc_write(dev, LCDC_DMA_FB_CEILING_ADDR_0_REG,
110 data: (u32) tilcdc_crtc->palette_dma_handle +
111 TILCDC_PALETTE_SIZE - 1);
112
113 /* Set dma load mode for palette loading only. */
114 tilcdc_write_mask(dev, LCDC_RASTER_CTRL_REG,
115 LCDC_PALETTE_LOAD_MODE(PALETTE_ONLY),
116 LCDC_PALETTE_LOAD_MODE_MASK);
117
118 /* Enable DMA Palette Loaded Interrupt */
119 if (priv->rev == 1)
120 tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_V1_PL_INT_ENA);
121 else
122 tilcdc_write(dev, LCDC_INT_ENABLE_SET_REG, LCDC_V2_PL_INT_ENA);
123
124 /* Enable LCDC DMA and wait for palette to be loaded. */
125 tilcdc_clear_irqstatus(dev, mask: 0xffffffff);
126 tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
127
128 ret = wait_for_completion_timeout(x: &tilcdc_crtc->palette_loaded,
129 timeout: msecs_to_jiffies(m: 50));
130 if (ret == 0)
131 dev_err(dev->dev, "%s: Palette loading timeout", __func__);
132
133 /* Disable LCDC DMA and DMA Palette Loaded Interrupt. */
134 tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
135 if (priv->rev == 1)
136 tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_V1_PL_INT_ENA);
137 else
138 tilcdc_write(dev, LCDC_INT_ENABLE_CLR_REG, LCDC_V2_PL_INT_ENA);
139}
140
141static void tilcdc_crtc_enable_irqs(struct drm_device *dev)
142{
143 struct tilcdc_drm_private *priv = dev->dev_private;
144
145 tilcdc_clear_irqstatus(dev, mask: 0xffffffff);
146
147 if (priv->rev == 1) {
148 tilcdc_set(dev, LCDC_RASTER_CTRL_REG,
149 LCDC_V1_SYNC_LOST_INT_ENA | LCDC_V1_FRAME_DONE_INT_ENA |
150 LCDC_V1_UNDERFLOW_INT_ENA);
151 } else {
152 tilcdc_write(dev, LCDC_INT_ENABLE_SET_REG,
153 LCDC_V2_UNDERFLOW_INT_ENA |
154 LCDC_FRAME_DONE | LCDC_SYNC_LOST);
155 }
156}
157
158static void tilcdc_crtc_disable_irqs(struct drm_device *dev)
159{
160 struct tilcdc_drm_private *priv = dev->dev_private;
161
162 /* disable irqs that we might have enabled: */
163 if (priv->rev == 1) {
164 tilcdc_clear(dev, LCDC_RASTER_CTRL_REG,
165 LCDC_V1_SYNC_LOST_INT_ENA | LCDC_V1_FRAME_DONE_INT_ENA |
166 LCDC_V1_UNDERFLOW_INT_ENA | LCDC_V1_PL_INT_ENA);
167 tilcdc_clear(dev, LCDC_DMA_CTRL_REG,
168 LCDC_V1_END_OF_FRAME_INT_ENA);
169 } else {
170 tilcdc_write(dev, LCDC_INT_ENABLE_CLR_REG,
171 LCDC_V2_UNDERFLOW_INT_ENA | LCDC_V2_PL_INT_ENA |
172 LCDC_V2_END_OF_FRAME0_INT_ENA |
173 LCDC_FRAME_DONE | LCDC_SYNC_LOST);
174 }
175}
176
177static void reset(struct drm_crtc *crtc)
178{
179 struct drm_device *dev = crtc->dev;
180 struct tilcdc_drm_private *priv = dev->dev_private;
181
182 if (priv->rev != 2)
183 return;
184
185 tilcdc_set(dev, LCDC_CLK_RESET_REG, LCDC_CLK_MAIN_RESET);
186 usleep_range(min: 250, max: 1000);
187 tilcdc_clear(dev, LCDC_CLK_RESET_REG, LCDC_CLK_MAIN_RESET);
188}
189
190/*
191 * Calculate the percentage difference between the requested pixel clock rate
192 * and the effective rate resulting from calculating the clock divider value.
193 */
194static unsigned int tilcdc_pclk_diff(unsigned long rate,
195 unsigned long real_rate)
196{
197 int r = rate / 100, rr = real_rate / 100;
198
199 return (unsigned int)(abs(((rr - r) * 100) / r));
200}
201
202static void tilcdc_crtc_set_clk(struct drm_crtc *crtc)
203{
204 struct drm_device *dev = crtc->dev;
205 struct tilcdc_drm_private *priv = dev->dev_private;
206 struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
207 unsigned long clk_rate, real_pclk_rate, pclk_rate;
208 unsigned int clkdiv;
209 int ret;
210
211 clkdiv = 2; /* first try using a standard divider of 2 */
212
213 /* mode.clock is in KHz, set_rate wants parameter in Hz */
214 pclk_rate = crtc->mode.clock * 1000;
215
216 ret = clk_set_rate(clk: priv->clk, rate: pclk_rate * clkdiv);
217 clk_rate = clk_get_rate(clk: priv->clk);
218 real_pclk_rate = clk_rate / clkdiv;
219 if (ret < 0 || tilcdc_pclk_diff(rate: pclk_rate, real_rate: real_pclk_rate) > 5) {
220 /*
221 * If we fail to set the clock rate (some architectures don't
222 * use the common clock framework yet and may not implement
223 * all the clk API calls for every clock), try the next best
224 * thing: adjusting the clock divider, unless clk_get_rate()
225 * failed as well.
226 */
227 if (!clk_rate) {
228 /* Nothing more we can do. Just bail out. */
229 dev_err(dev->dev,
230 "failed to set the pixel clock - unable to read current lcdc clock rate\n");
231 return;
232 }
233
234 clkdiv = DIV_ROUND_CLOSEST(clk_rate, pclk_rate);
235
236 /*
237 * Emit a warning if the real clock rate resulting from the
238 * calculated divider differs much from the requested rate.
239 *
240 * 5% is an arbitrary value - LCDs are usually quite tolerant
241 * about pixel clock rates.
242 */
243 real_pclk_rate = clk_rate / clkdiv;
244
245 if (tilcdc_pclk_diff(rate: pclk_rate, real_rate: real_pclk_rate) > 5) {
246 dev_warn(dev->dev,
247 "effective pixel clock rate (%luHz) differs from the requested rate (%luHz)\n",
248 real_pclk_rate, pclk_rate);
249 }
250 }
251
252 tilcdc_crtc->lcd_fck_rate = clk_rate;
253
254 DBG("lcd_clk=%u, mode clock=%d, div=%u",
255 tilcdc_crtc->lcd_fck_rate, crtc->mode.clock, clkdiv);
256
257 /* Configure the LCD clock divisor. */
258 tilcdc_write(dev, LCDC_CTRL_REG, LCDC_CLK_DIVISOR(clkdiv) |
259 LCDC_RASTER_MODE);
260
261 if (priv->rev == 2)
262 tilcdc_set(dev, LCDC_CLK_ENABLE_REG,
263 LCDC_V2_DMA_CLK_EN | LCDC_V2_LIDD_CLK_EN |
264 LCDC_V2_CORE_CLK_EN);
265}
266
267static uint tilcdc_mode_hvtotal(const struct drm_display_mode *mode)
268{
269 return (uint) div_u64(dividend: 1000llu * mode->htotal * mode->vtotal,
270 divisor: mode->clock);
271}
272
273static void tilcdc_crtc_set_mode(struct drm_crtc *crtc)
274{
275 struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
276 struct drm_device *dev = crtc->dev;
277 struct tilcdc_drm_private *priv = dev->dev_private;
278 const struct tilcdc_panel_info *info = tilcdc_crtc->info;
279 uint32_t reg, hbp, hfp, hsw, vbp, vfp, vsw;
280 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
281 struct drm_framebuffer *fb = crtc->primary->state->fb;
282
283 if (WARN_ON(!info))
284 return;
285
286 if (WARN_ON(!fb))
287 return;
288
289 /* Configure the Burst Size and fifo threshold of DMA: */
290 reg = tilcdc_read(dev, LCDC_DMA_CTRL_REG) & ~0x00000770;
291 switch (info->dma_burst_sz) {
292 case 1:
293 reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_1);
294 break;
295 case 2:
296 reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_2);
297 break;
298 case 4:
299 reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_4);
300 break;
301 case 8:
302 reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_8);
303 break;
304 case 16:
305 reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_16);
306 break;
307 default:
308 dev_err(dev->dev, "invalid burst size\n");
309 return;
310 }
311 reg |= (info->fifo_th << 8);
312 tilcdc_write(dev, LCDC_DMA_CTRL_REG, data: reg);
313
314 /* Configure timings: */
315 hbp = mode->htotal - mode->hsync_end;
316 hfp = mode->hsync_start - mode->hdisplay;
317 hsw = mode->hsync_end - mode->hsync_start;
318 vbp = mode->vtotal - mode->vsync_end;
319 vfp = mode->vsync_start - mode->vdisplay;
320 vsw = mode->vsync_end - mode->vsync_start;
321
322 DBG("%dx%d, hbp=%u, hfp=%u, hsw=%u, vbp=%u, vfp=%u, vsw=%u",
323 mode->hdisplay, mode->vdisplay, hbp, hfp, hsw, vbp, vfp, vsw);
324
325 /* Set AC Bias Period and Number of Transitions per Interrupt: */
326 reg = tilcdc_read(dev, LCDC_RASTER_TIMING_2_REG) & ~0x000fff00;
327 reg |= LCDC_AC_BIAS_FREQUENCY(info->ac_bias) |
328 LCDC_AC_BIAS_TRANSITIONS_PER_INT(info->ac_bias_intrpt);
329
330 /*
331 * subtract one from hfp, hbp, hsw because the hardware uses
332 * a value of 0 as 1
333 */
334 if (priv->rev == 2) {
335 /* clear bits we're going to set */
336 reg &= ~0x78000033;
337 reg |= ((hfp-1) & 0x300) >> 8;
338 reg |= ((hbp-1) & 0x300) >> 4;
339 reg |= ((hsw-1) & 0x3c0) << 21;
340 }
341 tilcdc_write(dev, LCDC_RASTER_TIMING_2_REG, data: reg);
342
343 reg = (((mode->hdisplay >> 4) - 1) << 4) |
344 (((hbp-1) & 0xff) << 24) |
345 (((hfp-1) & 0xff) << 16) |
346 (((hsw-1) & 0x3f) << 10);
347 if (priv->rev == 2)
348 reg |= (((mode->hdisplay >> 4) - 1) & 0x40) >> 3;
349 tilcdc_write(dev, LCDC_RASTER_TIMING_0_REG, data: reg);
350
351 reg = ((mode->vdisplay - 1) & 0x3ff) |
352 ((vbp & 0xff) << 24) |
353 ((vfp & 0xff) << 16) |
354 (((vsw-1) & 0x3f) << 10);
355 tilcdc_write(dev, LCDC_RASTER_TIMING_1_REG, data: reg);
356
357 /*
358 * be sure to set Bit 10 for the V2 LCDC controller,
359 * otherwise limited to 1024 pixels width, stopping
360 * 1920x1080 being supported.
361 */
362 if (priv->rev == 2) {
363 if ((mode->vdisplay - 1) & 0x400) {
364 tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG,
365 LCDC_LPP_B10);
366 } else {
367 tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG,
368 LCDC_LPP_B10);
369 }
370 }
371
372 /* Configure display type: */
373 reg = tilcdc_read(dev, LCDC_RASTER_CTRL_REG) &
374 ~(LCDC_TFT_MODE | LCDC_MONO_8BIT_MODE | LCDC_MONOCHROME_MODE |
375 LCDC_V2_TFT_24BPP_MODE | LCDC_V2_TFT_24BPP_UNPACK |
376 0x000ff000 /* Palette Loading Delay bits */);
377 reg |= LCDC_TFT_MODE; /* no monochrome/passive support */
378 if (info->tft_alt_mode)
379 reg |= LCDC_TFT_ALT_ENABLE;
380 if (priv->rev == 2) {
381 switch (fb->format->format) {
382 case DRM_FORMAT_BGR565:
383 case DRM_FORMAT_RGB565:
384 break;
385 case DRM_FORMAT_XBGR8888:
386 case DRM_FORMAT_XRGB8888:
387 reg |= LCDC_V2_TFT_24BPP_UNPACK;
388 fallthrough;
389 case DRM_FORMAT_BGR888:
390 case DRM_FORMAT_RGB888:
391 reg |= LCDC_V2_TFT_24BPP_MODE;
392 break;
393 default:
394 dev_err(dev->dev, "invalid pixel format\n");
395 return;
396 }
397 }
398 reg |= info->fdd << 12;
399 tilcdc_write(dev, LCDC_RASTER_CTRL_REG, data: reg);
400
401 if (info->invert_pxl_clk)
402 tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_PIXEL_CLOCK);
403 else
404 tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_PIXEL_CLOCK);
405
406 if (info->sync_ctrl)
407 tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_CTRL);
408 else
409 tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_CTRL);
410
411 if (info->sync_edge)
412 tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_EDGE);
413 else
414 tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_EDGE);
415
416 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
417 tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_HSYNC);
418 else
419 tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_HSYNC);
420
421 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
422 tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_VSYNC);
423 else
424 tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_VSYNC);
425
426 if (info->raster_order)
427 tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ORDER);
428 else
429 tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ORDER);
430
431 tilcdc_crtc_set_clk(crtc);
432
433 tilcdc_crtc_load_palette(crtc);
434
435 set_scanout(crtc, fb);
436
437 drm_mode_copy(dst: &crtc->hwmode, src: &crtc->state->adjusted_mode);
438
439 tilcdc_crtc->hvtotal_us =
440 tilcdc_mode_hvtotal(mode: &crtc->hwmode);
441}
442
443static void tilcdc_crtc_enable(struct drm_crtc *crtc)
444{
445 struct drm_device *dev = crtc->dev;
446 struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
447 unsigned long flags;
448
449 mutex_lock(&tilcdc_crtc->enable_lock);
450 if (tilcdc_crtc->enabled || tilcdc_crtc->shutdown) {
451 mutex_unlock(lock: &tilcdc_crtc->enable_lock);
452 return;
453 }
454
455 pm_runtime_get_sync(dev: dev->dev);
456
457 reset(crtc);
458
459 tilcdc_crtc_set_mode(crtc);
460
461 tilcdc_crtc_enable_irqs(dev);
462
463 tilcdc_clear(dev, LCDC_DMA_CTRL_REG, LCDC_DUAL_FRAME_BUFFER_ENABLE);
464 tilcdc_write_mask(dev, LCDC_RASTER_CTRL_REG,
465 LCDC_PALETTE_LOAD_MODE(DATA_ONLY),
466 LCDC_PALETTE_LOAD_MODE_MASK);
467
468 /* There is no real chance for a race here as the time stamp
469 * is taken before the raster DMA is started. The spin-lock is
470 * taken to have a memory barrier after taking the time-stamp
471 * and to avoid a context switch between taking the stamp and
472 * enabling the raster.
473 */
474 spin_lock_irqsave(&tilcdc_crtc->irq_lock, flags);
475 tilcdc_crtc->last_vblank = ktime_get();
476 tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
477 spin_unlock_irqrestore(lock: &tilcdc_crtc->irq_lock, flags);
478
479 drm_crtc_vblank_on(crtc);
480
481 tilcdc_crtc->enabled = true;
482 mutex_unlock(lock: &tilcdc_crtc->enable_lock);
483}
484
485static void tilcdc_crtc_atomic_enable(struct drm_crtc *crtc,
486 struct drm_atomic_state *state)
487{
488 tilcdc_crtc_enable(crtc);
489}
490
491static void tilcdc_crtc_off(struct drm_crtc *crtc, bool shutdown)
492{
493 struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
494 struct drm_device *dev = crtc->dev;
495 int ret;
496
497 mutex_lock(&tilcdc_crtc->enable_lock);
498 if (shutdown)
499 tilcdc_crtc->shutdown = true;
500 if (!tilcdc_crtc->enabled) {
501 mutex_unlock(lock: &tilcdc_crtc->enable_lock);
502 return;
503 }
504 tilcdc_crtc->frame_done = false;
505 tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
506
507 /*
508 * Wait for framedone irq which will still come before putting
509 * things to sleep..
510 */
511 ret = wait_event_timeout(tilcdc_crtc->frame_done_wq,
512 tilcdc_crtc->frame_done,
513 msecs_to_jiffies(500));
514 if (ret == 0)
515 dev_err(dev->dev, "%s: timeout waiting for framedone\n",
516 __func__);
517
518 drm_crtc_vblank_off(crtc);
519
520 spin_lock_irq(lock: &crtc->dev->event_lock);
521
522 if (crtc->state->event) {
523 drm_crtc_send_vblank_event(crtc, e: crtc->state->event);
524 crtc->state->event = NULL;
525 }
526
527 spin_unlock_irq(lock: &crtc->dev->event_lock);
528
529 tilcdc_crtc_disable_irqs(dev);
530
531 pm_runtime_put_sync(dev: dev->dev);
532
533 tilcdc_crtc->enabled = false;
534 mutex_unlock(lock: &tilcdc_crtc->enable_lock);
535}
536
537static void tilcdc_crtc_disable(struct drm_crtc *crtc)
538{
539 tilcdc_crtc_off(crtc, shutdown: false);
540}
541
542static void tilcdc_crtc_atomic_disable(struct drm_crtc *crtc,
543 struct drm_atomic_state *state)
544{
545 tilcdc_crtc_disable(crtc);
546}
547
548static void tilcdc_crtc_atomic_flush(struct drm_crtc *crtc,
549 struct drm_atomic_state *state)
550{
551 if (!crtc->state->event)
552 return;
553
554 spin_lock_irq(lock: &crtc->dev->event_lock);
555 drm_crtc_send_vblank_event(crtc, e: crtc->state->event);
556 crtc->state->event = NULL;
557 spin_unlock_irq(lock: &crtc->dev->event_lock);
558}
559
560void tilcdc_crtc_shutdown(struct drm_crtc *crtc)
561{
562 tilcdc_crtc_off(crtc, shutdown: true);
563}
564
565static bool tilcdc_crtc_is_on(struct drm_crtc *crtc)
566{
567 return crtc->state && crtc->state->enable && crtc->state->active;
568}
569
570static void tilcdc_crtc_recover_work(struct work_struct *work)
571{
572 struct tilcdc_crtc *tilcdc_crtc =
573 container_of(work, struct tilcdc_crtc, recover_work);
574 struct drm_crtc *crtc = &tilcdc_crtc->base;
575
576 dev_info(crtc->dev->dev, "%s: Reset CRTC", __func__);
577
578 drm_modeset_lock(lock: &crtc->mutex, NULL);
579
580 if (!tilcdc_crtc_is_on(crtc))
581 goto out;
582
583 tilcdc_crtc_disable(crtc);
584 tilcdc_crtc_enable(crtc);
585out:
586 drm_modeset_unlock(lock: &crtc->mutex);
587}
588
589static void tilcdc_crtc_destroy(struct drm_crtc *crtc)
590{
591 struct tilcdc_drm_private *priv = crtc->dev->dev_private;
592
593 tilcdc_crtc_shutdown(crtc);
594
595 flush_workqueue(priv->wq);
596
597 of_node_put(node: crtc->port);
598 drm_crtc_cleanup(crtc);
599}
600
601int tilcdc_crtc_update_fb(struct drm_crtc *crtc,
602 struct drm_framebuffer *fb,
603 struct drm_pending_vblank_event *event)
604{
605 struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
606 struct drm_device *dev = crtc->dev;
607
608 if (tilcdc_crtc->event) {
609 dev_err(dev->dev, "already pending page flip!\n");
610 return -EBUSY;
611 }
612
613 tilcdc_crtc->event = event;
614
615 mutex_lock(&tilcdc_crtc->enable_lock);
616
617 if (tilcdc_crtc->enabled) {
618 unsigned long flags;
619 ktime_t next_vblank;
620 s64 tdiff;
621
622 spin_lock_irqsave(&tilcdc_crtc->irq_lock, flags);
623
624 next_vblank = ktime_add_us(kt: tilcdc_crtc->last_vblank,
625 usec: tilcdc_crtc->hvtotal_us);
626 tdiff = ktime_to_us(ktime_sub(next_vblank, ktime_get()));
627
628 if (tdiff < TILCDC_VBLANK_SAFETY_THRESHOLD_US)
629 tilcdc_crtc->next_fb = fb;
630 else
631 set_scanout(crtc, fb);
632
633 spin_unlock_irqrestore(lock: &tilcdc_crtc->irq_lock, flags);
634 }
635
636 mutex_unlock(lock: &tilcdc_crtc->enable_lock);
637
638 return 0;
639}
640
641static bool tilcdc_crtc_mode_fixup(struct drm_crtc *crtc,
642 const struct drm_display_mode *mode,
643 struct drm_display_mode *adjusted_mode)
644{
645 struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
646
647 if (!tilcdc_crtc->simulate_vesa_sync)
648 return true;
649
650 /*
651 * tilcdc does not generate VESA-compliant sync but aligns
652 * VS on the second edge of HS instead of first edge.
653 * We use adjusted_mode, to fixup sync by aligning both rising
654 * edges and add HSKEW offset to fix the sync.
655 */
656 adjusted_mode->hskew = mode->hsync_end - mode->hsync_start;
657 adjusted_mode->flags |= DRM_MODE_FLAG_HSKEW;
658
659 if (mode->flags & DRM_MODE_FLAG_NHSYNC) {
660 adjusted_mode->flags |= DRM_MODE_FLAG_PHSYNC;
661 adjusted_mode->flags &= ~DRM_MODE_FLAG_NHSYNC;
662 } else {
663 adjusted_mode->flags |= DRM_MODE_FLAG_NHSYNC;
664 adjusted_mode->flags &= ~DRM_MODE_FLAG_PHSYNC;
665 }
666
667 return true;
668}
669
670static int tilcdc_crtc_atomic_check(struct drm_crtc *crtc,
671 struct drm_atomic_state *state)
672{
673 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
674 crtc);
675 /* If we are not active we don't care */
676 if (!crtc_state->active)
677 return 0;
678
679 if (state->planes[0].ptr != crtc->primary ||
680 state->planes[0].state == NULL ||
681 state->planes[0].state->crtc != crtc) {
682 dev_dbg(crtc->dev->dev, "CRTC primary plane must be present");
683 return -EINVAL;
684 }
685
686 return 0;
687}
688
689static int tilcdc_crtc_enable_vblank(struct drm_crtc *crtc)
690{
691 struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
692 struct drm_device *dev = crtc->dev;
693 struct tilcdc_drm_private *priv = dev->dev_private;
694 unsigned long flags;
695
696 spin_lock_irqsave(&tilcdc_crtc->irq_lock, flags);
697
698 tilcdc_clear_irqstatus(dev, LCDC_END_OF_FRAME0);
699
700 if (priv->rev == 1)
701 tilcdc_set(dev, LCDC_DMA_CTRL_REG,
702 LCDC_V1_END_OF_FRAME_INT_ENA);
703 else
704 tilcdc_set(dev, LCDC_INT_ENABLE_SET_REG,
705 LCDC_V2_END_OF_FRAME0_INT_ENA);
706
707 spin_unlock_irqrestore(lock: &tilcdc_crtc->irq_lock, flags);
708
709 return 0;
710}
711
712static void tilcdc_crtc_disable_vblank(struct drm_crtc *crtc)
713{
714 struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
715 struct drm_device *dev = crtc->dev;
716 struct tilcdc_drm_private *priv = dev->dev_private;
717 unsigned long flags;
718
719 spin_lock_irqsave(&tilcdc_crtc->irq_lock, flags);
720
721 if (priv->rev == 1)
722 tilcdc_clear(dev, LCDC_DMA_CTRL_REG,
723 LCDC_V1_END_OF_FRAME_INT_ENA);
724 else
725 tilcdc_clear(dev, LCDC_INT_ENABLE_SET_REG,
726 LCDC_V2_END_OF_FRAME0_INT_ENA);
727
728 spin_unlock_irqrestore(lock: &tilcdc_crtc->irq_lock, flags);
729}
730
731static void tilcdc_crtc_reset(struct drm_crtc *crtc)
732{
733 struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
734 struct drm_device *dev = crtc->dev;
735 int ret;
736
737 drm_atomic_helper_crtc_reset(crtc);
738
739 /* Turn the raster off if it for some reason is on. */
740 pm_runtime_get_sync(dev: dev->dev);
741 if (tilcdc_read(dev, LCDC_RASTER_CTRL_REG) & LCDC_RASTER_ENABLE) {
742 /* Enable DMA Frame Done Interrupt */
743 tilcdc_write(dev, LCDC_INT_ENABLE_SET_REG, LCDC_FRAME_DONE);
744 tilcdc_clear_irqstatus(dev, mask: 0xffffffff);
745
746 tilcdc_crtc->frame_done = false;
747 tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
748
749 ret = wait_event_timeout(tilcdc_crtc->frame_done_wq,
750 tilcdc_crtc->frame_done,
751 msecs_to_jiffies(500));
752 if (ret == 0)
753 dev_err(dev->dev, "%s: timeout waiting for framedone\n",
754 __func__);
755 }
756 pm_runtime_put_sync(dev: dev->dev);
757}
758
759static const struct drm_crtc_funcs tilcdc_crtc_funcs = {
760 .destroy = tilcdc_crtc_destroy,
761 .set_config = drm_atomic_helper_set_config,
762 .page_flip = drm_atomic_helper_page_flip,
763 .reset = tilcdc_crtc_reset,
764 .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
765 .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
766 .enable_vblank = tilcdc_crtc_enable_vblank,
767 .disable_vblank = tilcdc_crtc_disable_vblank,
768};
769
770static enum drm_mode_status
771tilcdc_crtc_mode_valid(struct drm_crtc *crtc,
772 const struct drm_display_mode *mode)
773{
774 struct tilcdc_drm_private *priv = crtc->dev->dev_private;
775 unsigned int bandwidth;
776 uint32_t hbp, hfp, hsw, vbp, vfp, vsw;
777
778 /*
779 * check to see if the width is within the range that
780 * the LCD Controller physically supports
781 */
782 if (mode->hdisplay > priv->max_width)
783 return MODE_VIRTUAL_X;
784
785 /* width must be multiple of 16 */
786 if (mode->hdisplay & 0xf)
787 return MODE_VIRTUAL_X;
788
789 if (mode->vdisplay > 2048)
790 return MODE_VIRTUAL_Y;
791
792 DBG("Processing mode %dx%d@%d with pixel clock %d",
793 mode->hdisplay, mode->vdisplay,
794 drm_mode_vrefresh(mode), mode->clock);
795
796 hbp = mode->htotal - mode->hsync_end;
797 hfp = mode->hsync_start - mode->hdisplay;
798 hsw = mode->hsync_end - mode->hsync_start;
799 vbp = mode->vtotal - mode->vsync_end;
800 vfp = mode->vsync_start - mode->vdisplay;
801 vsw = mode->vsync_end - mode->vsync_start;
802
803 if ((hbp-1) & ~0x3ff) {
804 DBG("Pruning mode: Horizontal Back Porch out of range");
805 return MODE_HBLANK_WIDE;
806 }
807
808 if ((hfp-1) & ~0x3ff) {
809 DBG("Pruning mode: Horizontal Front Porch out of range");
810 return MODE_HBLANK_WIDE;
811 }
812
813 if ((hsw-1) & ~0x3ff) {
814 DBG("Pruning mode: Horizontal Sync Width out of range");
815 return MODE_HSYNC_WIDE;
816 }
817
818 if (vbp & ~0xff) {
819 DBG("Pruning mode: Vertical Back Porch out of range");
820 return MODE_VBLANK_WIDE;
821 }
822
823 if (vfp & ~0xff) {
824 DBG("Pruning mode: Vertical Front Porch out of range");
825 return MODE_VBLANK_WIDE;
826 }
827
828 if ((vsw-1) & ~0x3f) {
829 DBG("Pruning mode: Vertical Sync Width out of range");
830 return MODE_VSYNC_WIDE;
831 }
832
833 /*
834 * some devices have a maximum allowed pixel clock
835 * configured from the DT
836 */
837 if (mode->clock > priv->max_pixelclock) {
838 DBG("Pruning mode: pixel clock too high");
839 return MODE_CLOCK_HIGH;
840 }
841
842 /*
843 * some devices further limit the max horizontal resolution
844 * configured from the DT
845 */
846 if (mode->hdisplay > priv->max_width)
847 return MODE_BAD_WIDTH;
848
849 /* filter out modes that would require too much memory bandwidth: */
850 bandwidth = mode->hdisplay * mode->vdisplay *
851 drm_mode_vrefresh(mode);
852 if (bandwidth > priv->max_bandwidth) {
853 DBG("Pruning mode: exceeds defined bandwidth limit");
854 return MODE_BAD;
855 }
856
857 return MODE_OK;
858}
859
860static const struct drm_crtc_helper_funcs tilcdc_crtc_helper_funcs = {
861 .mode_valid = tilcdc_crtc_mode_valid,
862 .mode_fixup = tilcdc_crtc_mode_fixup,
863 .atomic_check = tilcdc_crtc_atomic_check,
864 .atomic_enable = tilcdc_crtc_atomic_enable,
865 .atomic_disable = tilcdc_crtc_atomic_disable,
866 .atomic_flush = tilcdc_crtc_atomic_flush,
867};
868
869void tilcdc_crtc_set_panel_info(struct drm_crtc *crtc,
870 const struct tilcdc_panel_info *info)
871{
872 struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
873 tilcdc_crtc->info = info;
874}
875
876void tilcdc_crtc_set_simulate_vesa_sync(struct drm_crtc *crtc,
877 bool simulate_vesa_sync)
878{
879 struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
880
881 tilcdc_crtc->simulate_vesa_sync = simulate_vesa_sync;
882}
883
884void tilcdc_crtc_update_clk(struct drm_crtc *crtc)
885{
886 struct drm_device *dev = crtc->dev;
887 struct tilcdc_drm_private *priv = dev->dev_private;
888 struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
889
890 drm_modeset_lock(lock: &crtc->mutex, NULL);
891 if (tilcdc_crtc->lcd_fck_rate != clk_get_rate(clk: priv->clk)) {
892 if (tilcdc_crtc_is_on(crtc)) {
893 pm_runtime_get_sync(dev: dev->dev);
894 tilcdc_crtc_disable(crtc);
895
896 tilcdc_crtc_set_clk(crtc);
897
898 tilcdc_crtc_enable(crtc);
899 pm_runtime_put_sync(dev: dev->dev);
900 }
901 }
902 drm_modeset_unlock(lock: &crtc->mutex);
903}
904
905#define SYNC_LOST_COUNT_LIMIT 50
906
907irqreturn_t tilcdc_crtc_irq(struct drm_crtc *crtc)
908{
909 struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
910 struct drm_device *dev = crtc->dev;
911 struct tilcdc_drm_private *priv = dev->dev_private;
912 uint32_t stat, reg;
913
914 stat = tilcdc_read_irqstatus(dev);
915 tilcdc_clear_irqstatus(dev, mask: stat);
916
917 if (stat & LCDC_END_OF_FRAME0) {
918 bool skip_event = false;
919 ktime_t now;
920
921 now = ktime_get();
922
923 spin_lock(lock: &tilcdc_crtc->irq_lock);
924
925 tilcdc_crtc->last_vblank = now;
926
927 if (tilcdc_crtc->next_fb) {
928 set_scanout(crtc, fb: tilcdc_crtc->next_fb);
929 tilcdc_crtc->next_fb = NULL;
930 skip_event = true;
931 }
932
933 spin_unlock(lock: &tilcdc_crtc->irq_lock);
934
935 drm_crtc_handle_vblank(crtc);
936
937 if (!skip_event) {
938 struct drm_pending_vblank_event *event;
939
940 spin_lock(lock: &dev->event_lock);
941
942 event = tilcdc_crtc->event;
943 tilcdc_crtc->event = NULL;
944 if (event)
945 drm_crtc_send_vblank_event(crtc, e: event);
946
947 spin_unlock(lock: &dev->event_lock);
948 }
949
950 if (tilcdc_crtc->frame_intact)
951 tilcdc_crtc->sync_lost_count = 0;
952 else
953 tilcdc_crtc->frame_intact = true;
954 }
955
956 if (stat & LCDC_FIFO_UNDERFLOW)
957 dev_err_ratelimited(dev->dev, "%s(0x%08x): FIFO underflow",
958 __func__, stat);
959
960 if (stat & LCDC_PL_LOAD_DONE) {
961 complete(&tilcdc_crtc->palette_loaded);
962 if (priv->rev == 1)
963 tilcdc_clear(dev, LCDC_RASTER_CTRL_REG,
964 LCDC_V1_PL_INT_ENA);
965 else
966 tilcdc_write(dev, LCDC_INT_ENABLE_CLR_REG,
967 LCDC_V2_PL_INT_ENA);
968 }
969
970 if (stat & LCDC_SYNC_LOST) {
971 dev_err_ratelimited(dev->dev, "%s(0x%08x): Sync lost",
972 __func__, stat);
973 tilcdc_crtc->frame_intact = false;
974 if (priv->rev == 1) {
975 reg = tilcdc_read(dev, LCDC_RASTER_CTRL_REG);
976 if (reg & LCDC_RASTER_ENABLE) {
977 tilcdc_clear(dev, LCDC_RASTER_CTRL_REG,
978 LCDC_RASTER_ENABLE);
979 tilcdc_set(dev, LCDC_RASTER_CTRL_REG,
980 LCDC_RASTER_ENABLE);
981 }
982 } else {
983 if (tilcdc_crtc->sync_lost_count++ >
984 SYNC_LOST_COUNT_LIMIT) {
985 dev_err(dev->dev,
986 "%s(0x%08x): Sync lost flood detected, recovering",
987 __func__, stat);
988 queue_work(wq: system_wq,
989 work: &tilcdc_crtc->recover_work);
990 tilcdc_write(dev, LCDC_INT_ENABLE_CLR_REG,
991 LCDC_SYNC_LOST);
992 tilcdc_crtc->sync_lost_count = 0;
993 }
994 }
995 }
996
997 if (stat & LCDC_FRAME_DONE) {
998 tilcdc_crtc->frame_done = true;
999 wake_up(&tilcdc_crtc->frame_done_wq);
1000 /* rev 1 lcdc appears to hang if irq is not disabled here */
1001 if (priv->rev == 1)
1002 tilcdc_clear(dev, LCDC_RASTER_CTRL_REG,
1003 LCDC_V1_FRAME_DONE_INT_ENA);
1004 }
1005
1006 /* For revision 2 only */
1007 if (priv->rev == 2) {
1008 /* Indicate to LCDC that the interrupt service routine has
1009 * completed, see 13.3.6.1.6 in AM335x TRM.
1010 */
1011 tilcdc_write(dev, LCDC_END_OF_INT_IND_REG, data: 0);
1012 }
1013
1014 return IRQ_HANDLED;
1015}
1016
1017int tilcdc_crtc_create(struct drm_device *dev)
1018{
1019 struct tilcdc_drm_private *priv = dev->dev_private;
1020 struct tilcdc_crtc *tilcdc_crtc;
1021 struct drm_crtc *crtc;
1022 int ret;
1023
1024 tilcdc_crtc = devm_kzalloc(dev: dev->dev, size: sizeof(*tilcdc_crtc), GFP_KERNEL);
1025 if (!tilcdc_crtc)
1026 return -ENOMEM;
1027
1028 init_completion(x: &tilcdc_crtc->palette_loaded);
1029 tilcdc_crtc->palette_base = dmam_alloc_coherent(dev: dev->dev,
1030 TILCDC_PALETTE_SIZE,
1031 dma_handle: &tilcdc_crtc->palette_dma_handle,
1032 GFP_KERNEL | __GFP_ZERO);
1033 if (!tilcdc_crtc->palette_base)
1034 return -ENOMEM;
1035 *tilcdc_crtc->palette_base = TILCDC_PALETTE_FIRST_ENTRY;
1036
1037 crtc = &tilcdc_crtc->base;
1038
1039 ret = tilcdc_plane_init(dev, plane: &tilcdc_crtc->primary);
1040 if (ret < 0)
1041 goto fail;
1042
1043 mutex_init(&tilcdc_crtc->enable_lock);
1044
1045 init_waitqueue_head(&tilcdc_crtc->frame_done_wq);
1046
1047 spin_lock_init(&tilcdc_crtc->irq_lock);
1048 INIT_WORK(&tilcdc_crtc->recover_work, tilcdc_crtc_recover_work);
1049
1050 ret = drm_crtc_init_with_planes(dev, crtc,
1051 primary: &tilcdc_crtc->primary,
1052 NULL,
1053 funcs: &tilcdc_crtc_funcs,
1054 name: "tilcdc crtc");
1055 if (ret < 0)
1056 goto fail;
1057
1058 drm_crtc_helper_add(crtc, funcs: &tilcdc_crtc_helper_funcs);
1059
1060 if (priv->is_componentized) {
1061 crtc->port = of_graph_get_port_by_id(node: dev->dev->of_node, id: 0);
1062 if (!crtc->port) { /* This should never happen */
1063 dev_err(dev->dev, "Port node not found in %pOF\n",
1064 dev->dev->of_node);
1065 ret = -EINVAL;
1066 goto fail;
1067 }
1068 }
1069
1070 priv->crtc = crtc;
1071 return 0;
1072
1073fail:
1074 tilcdc_crtc_destroy(crtc);
1075 return ret;
1076}
1077

source code of linux/drivers/gpu/drm/tilcdc/tilcdc_crtc.c