1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 * K. Y. Srinivasan <kys@microsoft.com>
9 */
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/device.h>
15#include <linux/platform_device.h>
16#include <linux/interrupt.h>
17#include <linux/sysctl.h>
18#include <linux/slab.h>
19#include <linux/acpi.h>
20#include <linux/completion.h>
21#include <linux/hyperv.h>
22#include <linux/kernel_stat.h>
23#include <linux/of_address.h>
24#include <linux/clockchips.h>
25#include <linux/cpu.h>
26#include <linux/sched/isolation.h>
27#include <linux/sched/task_stack.h>
28
29#include <linux/delay.h>
30#include <linux/panic_notifier.h>
31#include <linux/ptrace.h>
32#include <linux/screen_info.h>
33#include <linux/efi.h>
34#include <linux/random.h>
35#include <linux/kernel.h>
36#include <linux/syscore_ops.h>
37#include <linux/dma-map-ops.h>
38#include <linux/pci.h>
39#include <clocksource/hyperv_timer.h>
40#include <asm/mshyperv.h>
41#include "hyperv_vmbus.h"
42
43struct vmbus_dynid {
44 struct list_head node;
45 struct hv_vmbus_device_id id;
46};
47
48static struct device *hv_dev;
49
50static int hyperv_cpuhp_online;
51
52static long __percpu *vmbus_evt;
53
54/* Values parsed from ACPI DSDT */
55int vmbus_irq;
56int vmbus_interrupt;
57
58/*
59 * The panic notifier below is responsible solely for unloading the
60 * vmbus connection, which is necessary in a panic event.
61 *
62 * Notice an intrincate relation of this notifier with Hyper-V
63 * framebuffer panic notifier exists - we need vmbus connection alive
64 * there in order to succeed, so we need to order both with each other
65 * [see hvfb_on_panic()] - this is done using notifiers' priorities.
66 */
67static int hv_panic_vmbus_unload(struct notifier_block *nb, unsigned long val,
68 void *args)
69{
70 vmbus_initiate_unload(crash: true);
71 return NOTIFY_DONE;
72}
73static struct notifier_block hyperv_panic_vmbus_unload_block = {
74 .notifier_call = hv_panic_vmbus_unload,
75 .priority = INT_MIN + 1, /* almost the latest one to execute */
76};
77
78static const char *fb_mmio_name = "fb_range";
79static struct resource *fb_mmio;
80static struct resource *hyperv_mmio;
81static DEFINE_MUTEX(hyperv_mmio_lock);
82
83static int vmbus_exists(void)
84{
85 if (hv_dev == NULL)
86 return -ENODEV;
87
88 return 0;
89}
90
91static u8 channel_monitor_group(const struct vmbus_channel *channel)
92{
93 return (u8)channel->offermsg.monitorid / 32;
94}
95
96static u8 channel_monitor_offset(const struct vmbus_channel *channel)
97{
98 return (u8)channel->offermsg.monitorid % 32;
99}
100
101static u32 channel_pending(const struct vmbus_channel *channel,
102 const struct hv_monitor_page *monitor_page)
103{
104 u8 monitor_group = channel_monitor_group(channel);
105
106 return monitor_page->trigger_group[monitor_group].pending;
107}
108
109static u32 channel_latency(const struct vmbus_channel *channel,
110 const struct hv_monitor_page *monitor_page)
111{
112 u8 monitor_group = channel_monitor_group(channel);
113 u8 monitor_offset = channel_monitor_offset(channel);
114
115 return monitor_page->latency[monitor_group][monitor_offset];
116}
117
118static u32 channel_conn_id(struct vmbus_channel *channel,
119 struct hv_monitor_page *monitor_page)
120{
121 u8 monitor_group = channel_monitor_group(channel);
122 u8 monitor_offset = channel_monitor_offset(channel);
123
124 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
125}
126
127static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
128 char *buf)
129{
130 struct hv_device *hv_dev = device_to_hv_device(dev);
131
132 if (!hv_dev->channel)
133 return -ENODEV;
134 return sysfs_emit(buf, fmt: "%d\n", hv_dev->channel->offermsg.child_relid);
135}
136static DEVICE_ATTR_RO(id);
137
138static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
139 char *buf)
140{
141 struct hv_device *hv_dev = device_to_hv_device(dev);
142
143 if (!hv_dev->channel)
144 return -ENODEV;
145 return sysfs_emit(buf, fmt: "%d\n", hv_dev->channel->state);
146}
147static DEVICE_ATTR_RO(state);
148
149static ssize_t monitor_id_show(struct device *dev,
150 struct device_attribute *dev_attr, char *buf)
151{
152 struct hv_device *hv_dev = device_to_hv_device(dev);
153
154 if (!hv_dev->channel)
155 return -ENODEV;
156 return sysfs_emit(buf, fmt: "%d\n", hv_dev->channel->offermsg.monitorid);
157}
158static DEVICE_ATTR_RO(monitor_id);
159
160static ssize_t class_id_show(struct device *dev,
161 struct device_attribute *dev_attr, char *buf)
162{
163 struct hv_device *hv_dev = device_to_hv_device(dev);
164
165 if (!hv_dev->channel)
166 return -ENODEV;
167 return sysfs_emit(buf, fmt: "{%pUl}\n",
168 &hv_dev->channel->offermsg.offer.if_type);
169}
170static DEVICE_ATTR_RO(class_id);
171
172static ssize_t device_id_show(struct device *dev,
173 struct device_attribute *dev_attr, char *buf)
174{
175 struct hv_device *hv_dev = device_to_hv_device(dev);
176
177 if (!hv_dev->channel)
178 return -ENODEV;
179 return sysfs_emit(buf, fmt: "{%pUl}\n",
180 &hv_dev->channel->offermsg.offer.if_instance);
181}
182static DEVICE_ATTR_RO(device_id);
183
184static ssize_t modalias_show(struct device *dev,
185 struct device_attribute *dev_attr, char *buf)
186{
187 struct hv_device *hv_dev = device_to_hv_device(dev);
188
189 return sysfs_emit(buf, fmt: "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
190}
191static DEVICE_ATTR_RO(modalias);
192
193#ifdef CONFIG_NUMA
194static ssize_t numa_node_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
196{
197 struct hv_device *hv_dev = device_to_hv_device(dev);
198
199 if (!hv_dev->channel)
200 return -ENODEV;
201
202 return sysfs_emit(buf, fmt: "%d\n", cpu_to_node(cpu: hv_dev->channel->target_cpu));
203}
204static DEVICE_ATTR_RO(numa_node);
205#endif
206
207static ssize_t server_monitor_pending_show(struct device *dev,
208 struct device_attribute *dev_attr,
209 char *buf)
210{
211 struct hv_device *hv_dev = device_to_hv_device(dev);
212
213 if (!hv_dev->channel)
214 return -ENODEV;
215 return sysfs_emit(buf, fmt: "%d\n", channel_pending(channel: hv_dev->channel,
216 monitor_page: vmbus_connection.monitor_pages[0]));
217}
218static DEVICE_ATTR_RO(server_monitor_pending);
219
220static ssize_t client_monitor_pending_show(struct device *dev,
221 struct device_attribute *dev_attr,
222 char *buf)
223{
224 struct hv_device *hv_dev = device_to_hv_device(dev);
225
226 if (!hv_dev->channel)
227 return -ENODEV;
228 return sysfs_emit(buf, fmt: "%d\n", channel_pending(channel: hv_dev->channel,
229 monitor_page: vmbus_connection.monitor_pages[1]));
230}
231static DEVICE_ATTR_RO(client_monitor_pending);
232
233static ssize_t server_monitor_latency_show(struct device *dev,
234 struct device_attribute *dev_attr,
235 char *buf)
236{
237 struct hv_device *hv_dev = device_to_hv_device(dev);
238
239 if (!hv_dev->channel)
240 return -ENODEV;
241 return sysfs_emit(buf, fmt: "%d\n", channel_latency(channel: hv_dev->channel,
242 monitor_page: vmbus_connection.monitor_pages[0]));
243}
244static DEVICE_ATTR_RO(server_monitor_latency);
245
246static ssize_t client_monitor_latency_show(struct device *dev,
247 struct device_attribute *dev_attr,
248 char *buf)
249{
250 struct hv_device *hv_dev = device_to_hv_device(dev);
251
252 if (!hv_dev->channel)
253 return -ENODEV;
254 return sysfs_emit(buf, fmt: "%d\n", channel_latency(channel: hv_dev->channel,
255 monitor_page: vmbus_connection.monitor_pages[1]));
256}
257static DEVICE_ATTR_RO(client_monitor_latency);
258
259static ssize_t server_monitor_conn_id_show(struct device *dev,
260 struct device_attribute *dev_attr,
261 char *buf)
262{
263 struct hv_device *hv_dev = device_to_hv_device(dev);
264
265 if (!hv_dev->channel)
266 return -ENODEV;
267 return sysfs_emit(buf, fmt: "%d\n", channel_conn_id(channel: hv_dev->channel,
268 monitor_page: vmbus_connection.monitor_pages[0]));
269}
270static DEVICE_ATTR_RO(server_monitor_conn_id);
271
272static ssize_t client_monitor_conn_id_show(struct device *dev,
273 struct device_attribute *dev_attr,
274 char *buf)
275{
276 struct hv_device *hv_dev = device_to_hv_device(dev);
277
278 if (!hv_dev->channel)
279 return -ENODEV;
280 return sysfs_emit(buf, fmt: "%d\n", channel_conn_id(channel: hv_dev->channel,
281 monitor_page: vmbus_connection.monitor_pages[1]));
282}
283static DEVICE_ATTR_RO(client_monitor_conn_id);
284
285static ssize_t out_intr_mask_show(struct device *dev,
286 struct device_attribute *dev_attr, char *buf)
287{
288 struct hv_device *hv_dev = device_to_hv_device(dev);
289 struct hv_ring_buffer_debug_info outbound;
290 int ret;
291
292 if (!hv_dev->channel)
293 return -ENODEV;
294
295 ret = hv_ringbuffer_get_debuginfo(ring_info: &hv_dev->channel->outbound,
296 debug_info: &outbound);
297 if (ret < 0)
298 return ret;
299
300 return sysfs_emit(buf, fmt: "%d\n", outbound.current_interrupt_mask);
301}
302static DEVICE_ATTR_RO(out_intr_mask);
303
304static ssize_t out_read_index_show(struct device *dev,
305 struct device_attribute *dev_attr, char *buf)
306{
307 struct hv_device *hv_dev = device_to_hv_device(dev);
308 struct hv_ring_buffer_debug_info outbound;
309 int ret;
310
311 if (!hv_dev->channel)
312 return -ENODEV;
313
314 ret = hv_ringbuffer_get_debuginfo(ring_info: &hv_dev->channel->outbound,
315 debug_info: &outbound);
316 if (ret < 0)
317 return ret;
318 return sysfs_emit(buf, fmt: "%d\n", outbound.current_read_index);
319}
320static DEVICE_ATTR_RO(out_read_index);
321
322static ssize_t out_write_index_show(struct device *dev,
323 struct device_attribute *dev_attr,
324 char *buf)
325{
326 struct hv_device *hv_dev = device_to_hv_device(dev);
327 struct hv_ring_buffer_debug_info outbound;
328 int ret;
329
330 if (!hv_dev->channel)
331 return -ENODEV;
332
333 ret = hv_ringbuffer_get_debuginfo(ring_info: &hv_dev->channel->outbound,
334 debug_info: &outbound);
335 if (ret < 0)
336 return ret;
337 return sysfs_emit(buf, fmt: "%d\n", outbound.current_write_index);
338}
339static DEVICE_ATTR_RO(out_write_index);
340
341static ssize_t out_read_bytes_avail_show(struct device *dev,
342 struct device_attribute *dev_attr,
343 char *buf)
344{
345 struct hv_device *hv_dev = device_to_hv_device(dev);
346 struct hv_ring_buffer_debug_info outbound;
347 int ret;
348
349 if (!hv_dev->channel)
350 return -ENODEV;
351
352 ret = hv_ringbuffer_get_debuginfo(ring_info: &hv_dev->channel->outbound,
353 debug_info: &outbound);
354 if (ret < 0)
355 return ret;
356 return sysfs_emit(buf, fmt: "%d\n", outbound.bytes_avail_toread);
357}
358static DEVICE_ATTR_RO(out_read_bytes_avail);
359
360static ssize_t out_write_bytes_avail_show(struct device *dev,
361 struct device_attribute *dev_attr,
362 char *buf)
363{
364 struct hv_device *hv_dev = device_to_hv_device(dev);
365 struct hv_ring_buffer_debug_info outbound;
366 int ret;
367
368 if (!hv_dev->channel)
369 return -ENODEV;
370
371 ret = hv_ringbuffer_get_debuginfo(ring_info: &hv_dev->channel->outbound,
372 debug_info: &outbound);
373 if (ret < 0)
374 return ret;
375 return sysfs_emit(buf, fmt: "%d\n", outbound.bytes_avail_towrite);
376}
377static DEVICE_ATTR_RO(out_write_bytes_avail);
378
379static ssize_t in_intr_mask_show(struct device *dev,
380 struct device_attribute *dev_attr, char *buf)
381{
382 struct hv_device *hv_dev = device_to_hv_device(dev);
383 struct hv_ring_buffer_debug_info inbound;
384 int ret;
385
386 if (!hv_dev->channel)
387 return -ENODEV;
388
389 ret = hv_ringbuffer_get_debuginfo(ring_info: &hv_dev->channel->inbound, debug_info: &inbound);
390 if (ret < 0)
391 return ret;
392
393 return sysfs_emit(buf, fmt: "%d\n", inbound.current_interrupt_mask);
394}
395static DEVICE_ATTR_RO(in_intr_mask);
396
397static ssize_t in_read_index_show(struct device *dev,
398 struct device_attribute *dev_attr, char *buf)
399{
400 struct hv_device *hv_dev = device_to_hv_device(dev);
401 struct hv_ring_buffer_debug_info inbound;
402 int ret;
403
404 if (!hv_dev->channel)
405 return -ENODEV;
406
407 ret = hv_ringbuffer_get_debuginfo(ring_info: &hv_dev->channel->inbound, debug_info: &inbound);
408 if (ret < 0)
409 return ret;
410
411 return sysfs_emit(buf, fmt: "%d\n", inbound.current_read_index);
412}
413static DEVICE_ATTR_RO(in_read_index);
414
415static ssize_t in_write_index_show(struct device *dev,
416 struct device_attribute *dev_attr, char *buf)
417{
418 struct hv_device *hv_dev = device_to_hv_device(dev);
419 struct hv_ring_buffer_debug_info inbound;
420 int ret;
421
422 if (!hv_dev->channel)
423 return -ENODEV;
424
425 ret = hv_ringbuffer_get_debuginfo(ring_info: &hv_dev->channel->inbound, debug_info: &inbound);
426 if (ret < 0)
427 return ret;
428
429 return sysfs_emit(buf, fmt: "%d\n", inbound.current_write_index);
430}
431static DEVICE_ATTR_RO(in_write_index);
432
433static ssize_t in_read_bytes_avail_show(struct device *dev,
434 struct device_attribute *dev_attr,
435 char *buf)
436{
437 struct hv_device *hv_dev = device_to_hv_device(dev);
438 struct hv_ring_buffer_debug_info inbound;
439 int ret;
440
441 if (!hv_dev->channel)
442 return -ENODEV;
443
444 ret = hv_ringbuffer_get_debuginfo(ring_info: &hv_dev->channel->inbound, debug_info: &inbound);
445 if (ret < 0)
446 return ret;
447
448 return sysfs_emit(buf, fmt: "%d\n", inbound.bytes_avail_toread);
449}
450static DEVICE_ATTR_RO(in_read_bytes_avail);
451
452static ssize_t in_write_bytes_avail_show(struct device *dev,
453 struct device_attribute *dev_attr,
454 char *buf)
455{
456 struct hv_device *hv_dev = device_to_hv_device(dev);
457 struct hv_ring_buffer_debug_info inbound;
458 int ret;
459
460 if (!hv_dev->channel)
461 return -ENODEV;
462
463 ret = hv_ringbuffer_get_debuginfo(ring_info: &hv_dev->channel->inbound, debug_info: &inbound);
464 if (ret < 0)
465 return ret;
466
467 return sysfs_emit(buf, fmt: "%d\n", inbound.bytes_avail_towrite);
468}
469static DEVICE_ATTR_RO(in_write_bytes_avail);
470
471static ssize_t channel_vp_mapping_show(struct device *dev,
472 struct device_attribute *dev_attr,
473 char *buf)
474{
475 struct hv_device *hv_dev = device_to_hv_device(dev);
476 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
477 int n_written;
478 struct list_head *cur;
479
480 if (!channel)
481 return -ENODEV;
482
483 mutex_lock(&vmbus_connection.channel_mutex);
484
485 n_written = sysfs_emit(buf, fmt: "%u:%u\n",
486 channel->offermsg.child_relid,
487 channel->target_cpu);
488
489 list_for_each(cur, &channel->sc_list) {
490
491 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
492 n_written += sysfs_emit_at(buf, at: n_written, fmt: "%u:%u\n",
493 cur_sc->offermsg.child_relid,
494 cur_sc->target_cpu);
495 }
496
497 mutex_unlock(lock: &vmbus_connection.channel_mutex);
498
499 return n_written;
500}
501static DEVICE_ATTR_RO(channel_vp_mapping);
502
503static ssize_t vendor_show(struct device *dev,
504 struct device_attribute *dev_attr,
505 char *buf)
506{
507 struct hv_device *hv_dev = device_to_hv_device(dev);
508
509 return sysfs_emit(buf, fmt: "0x%x\n", hv_dev->vendor_id);
510}
511static DEVICE_ATTR_RO(vendor);
512
513static ssize_t device_show(struct device *dev,
514 struct device_attribute *dev_attr,
515 char *buf)
516{
517 struct hv_device *hv_dev = device_to_hv_device(dev);
518
519 return sysfs_emit(buf, fmt: "0x%x\n", hv_dev->device_id);
520}
521static DEVICE_ATTR_RO(device);
522
523static ssize_t driver_override_store(struct device *dev,
524 struct device_attribute *attr,
525 const char *buf, size_t count)
526{
527 struct hv_device *hv_dev = device_to_hv_device(dev);
528 int ret;
529
530 ret = driver_set_override(dev, override: &hv_dev->driver_override, s: buf, len: count);
531 if (ret)
532 return ret;
533
534 return count;
535}
536
537static ssize_t driver_override_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539{
540 struct hv_device *hv_dev = device_to_hv_device(dev);
541 ssize_t len;
542
543 device_lock(dev);
544 len = sysfs_emit(buf, fmt: "%s\n", hv_dev->driver_override);
545 device_unlock(dev);
546
547 return len;
548}
549static DEVICE_ATTR_RW(driver_override);
550
551/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
552static struct attribute *vmbus_dev_attrs[] = {
553 &dev_attr_id.attr,
554 &dev_attr_state.attr,
555 &dev_attr_monitor_id.attr,
556 &dev_attr_class_id.attr,
557 &dev_attr_device_id.attr,
558 &dev_attr_modalias.attr,
559#ifdef CONFIG_NUMA
560 &dev_attr_numa_node.attr,
561#endif
562 &dev_attr_server_monitor_pending.attr,
563 &dev_attr_client_monitor_pending.attr,
564 &dev_attr_server_monitor_latency.attr,
565 &dev_attr_client_monitor_latency.attr,
566 &dev_attr_server_monitor_conn_id.attr,
567 &dev_attr_client_monitor_conn_id.attr,
568 &dev_attr_out_intr_mask.attr,
569 &dev_attr_out_read_index.attr,
570 &dev_attr_out_write_index.attr,
571 &dev_attr_out_read_bytes_avail.attr,
572 &dev_attr_out_write_bytes_avail.attr,
573 &dev_attr_in_intr_mask.attr,
574 &dev_attr_in_read_index.attr,
575 &dev_attr_in_write_index.attr,
576 &dev_attr_in_read_bytes_avail.attr,
577 &dev_attr_in_write_bytes_avail.attr,
578 &dev_attr_channel_vp_mapping.attr,
579 &dev_attr_vendor.attr,
580 &dev_attr_device.attr,
581 &dev_attr_driver_override.attr,
582 NULL,
583};
584
585/*
586 * Device-level attribute_group callback function. Returns the permission for
587 * each attribute, and returns 0 if an attribute is not visible.
588 */
589static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
590 struct attribute *attr, int idx)
591{
592 struct device *dev = kobj_to_dev(kobj);
593 const struct hv_device *hv_dev = device_to_hv_device(dev);
594
595 /* Hide the monitor attributes if the monitor mechanism is not used. */
596 if (!hv_dev->channel->offermsg.monitor_allocated &&
597 (attr == &dev_attr_monitor_id.attr ||
598 attr == &dev_attr_server_monitor_pending.attr ||
599 attr == &dev_attr_client_monitor_pending.attr ||
600 attr == &dev_attr_server_monitor_latency.attr ||
601 attr == &dev_attr_client_monitor_latency.attr ||
602 attr == &dev_attr_server_monitor_conn_id.attr ||
603 attr == &dev_attr_client_monitor_conn_id.attr))
604 return 0;
605
606 return attr->mode;
607}
608
609static const struct attribute_group vmbus_dev_group = {
610 .attrs = vmbus_dev_attrs,
611 .is_visible = vmbus_dev_attr_is_visible
612};
613__ATTRIBUTE_GROUPS(vmbus_dev);
614
615/* Set up the attribute for /sys/bus/vmbus/hibernation */
616static ssize_t hibernation_show(const struct bus_type *bus, char *buf)
617{
618 return sprintf(buf, fmt: "%d\n", !!hv_is_hibernation_supported());
619}
620
621static BUS_ATTR_RO(hibernation);
622
623static struct attribute *vmbus_bus_attrs[] = {
624 &bus_attr_hibernation.attr,
625 NULL,
626};
627static const struct attribute_group vmbus_bus_group = {
628 .attrs = vmbus_bus_attrs,
629};
630__ATTRIBUTE_GROUPS(vmbus_bus);
631
632/*
633 * vmbus_uevent - add uevent for our device
634 *
635 * This routine is invoked when a device is added or removed on the vmbus to
636 * generate a uevent to udev in the userspace. The udev will then look at its
637 * rule and the uevent generated here to load the appropriate driver
638 *
639 * The alias string will be of the form vmbus:guid where guid is the string
640 * representation of the device guid (each byte of the guid will be
641 * represented with two hex characters.
642 */
643static int vmbus_uevent(const struct device *device, struct kobj_uevent_env *env)
644{
645 const struct hv_device *dev = device_to_hv_device(device);
646 const char *format = "MODALIAS=vmbus:%*phN";
647
648 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
649}
650
651static const struct hv_vmbus_device_id *
652hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
653{
654 if (id == NULL)
655 return NULL; /* empty device table */
656
657 for (; !guid_is_null(guid: &id->guid); id++)
658 if (guid_equal(u1: &id->guid, u2: guid))
659 return id;
660
661 return NULL;
662}
663
664static const struct hv_vmbus_device_id *
665hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
666{
667 const struct hv_vmbus_device_id *id = NULL;
668 struct vmbus_dynid *dynid;
669
670 spin_lock(lock: &drv->dynids.lock);
671 list_for_each_entry(dynid, &drv->dynids.list, node) {
672 if (guid_equal(u1: &dynid->id.guid, u2: guid)) {
673 id = &dynid->id;
674 break;
675 }
676 }
677 spin_unlock(lock: &drv->dynids.lock);
678
679 return id;
680}
681
682static const struct hv_vmbus_device_id vmbus_device_null;
683
684/*
685 * Return a matching hv_vmbus_device_id pointer.
686 * If there is no match, return NULL.
687 */
688static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
689 struct hv_device *dev)
690{
691 const guid_t *guid = &dev->dev_type;
692 const struct hv_vmbus_device_id *id;
693
694 /* When driver_override is set, only bind to the matching driver */
695 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
696 return NULL;
697
698 /* Look at the dynamic ids first, before the static ones */
699 id = hv_vmbus_dynid_match(drv, guid);
700 if (!id)
701 id = hv_vmbus_dev_match(id: drv->id_table, guid);
702
703 /* driver_override will always match, send a dummy id */
704 if (!id && dev->driver_override)
705 id = &vmbus_device_null;
706
707 return id;
708}
709
710/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
711static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
712{
713 struct vmbus_dynid *dynid;
714
715 dynid = kzalloc(size: sizeof(*dynid), GFP_KERNEL);
716 if (!dynid)
717 return -ENOMEM;
718
719 dynid->id.guid = *guid;
720
721 spin_lock(lock: &drv->dynids.lock);
722 list_add_tail(new: &dynid->node, head: &drv->dynids.list);
723 spin_unlock(lock: &drv->dynids.lock);
724
725 return driver_attach(drv: &drv->driver);
726}
727
728static void vmbus_free_dynids(struct hv_driver *drv)
729{
730 struct vmbus_dynid *dynid, *n;
731
732 spin_lock(lock: &drv->dynids.lock);
733 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
734 list_del(entry: &dynid->node);
735 kfree(objp: dynid);
736 }
737 spin_unlock(lock: &drv->dynids.lock);
738}
739
740/*
741 * store_new_id - sysfs frontend to vmbus_add_dynid()
742 *
743 * Allow GUIDs to be added to an existing driver via sysfs.
744 */
745static ssize_t new_id_store(struct device_driver *driver, const char *buf,
746 size_t count)
747{
748 struct hv_driver *drv = drv_to_hv_drv(d: driver);
749 guid_t guid;
750 ssize_t retval;
751
752 retval = guid_parse(uuid: buf, u: &guid);
753 if (retval)
754 return retval;
755
756 if (hv_vmbus_dynid_match(drv, guid: &guid))
757 return -EEXIST;
758
759 retval = vmbus_add_dynid(drv, guid: &guid);
760 if (retval)
761 return retval;
762 return count;
763}
764static DRIVER_ATTR_WO(new_id);
765
766/*
767 * store_remove_id - remove a PCI device ID from this driver
768 *
769 * Removes a dynamic pci device ID to this driver.
770 */
771static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
772 size_t count)
773{
774 struct hv_driver *drv = drv_to_hv_drv(d: driver);
775 struct vmbus_dynid *dynid, *n;
776 guid_t guid;
777 ssize_t retval;
778
779 retval = guid_parse(uuid: buf, u: &guid);
780 if (retval)
781 return retval;
782
783 retval = -ENODEV;
784 spin_lock(lock: &drv->dynids.lock);
785 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
786 struct hv_vmbus_device_id *id = &dynid->id;
787
788 if (guid_equal(u1: &id->guid, u2: &guid)) {
789 list_del(entry: &dynid->node);
790 kfree(objp: dynid);
791 retval = count;
792 break;
793 }
794 }
795 spin_unlock(lock: &drv->dynids.lock);
796
797 return retval;
798}
799static DRIVER_ATTR_WO(remove_id);
800
801static struct attribute *vmbus_drv_attrs[] = {
802 &driver_attr_new_id.attr,
803 &driver_attr_remove_id.attr,
804 NULL,
805};
806ATTRIBUTE_GROUPS(vmbus_drv);
807
808
809/*
810 * vmbus_match - Attempt to match the specified device to the specified driver
811 */
812static int vmbus_match(struct device *device, struct device_driver *driver)
813{
814 struct hv_driver *drv = drv_to_hv_drv(d: driver);
815 struct hv_device *hv_dev = device_to_hv_device(device);
816
817 /* The hv_sock driver handles all hv_sock offers. */
818 if (is_hvsock_channel(c: hv_dev->channel))
819 return drv->hvsock;
820
821 if (hv_vmbus_get_id(drv, dev: hv_dev))
822 return 1;
823
824 return 0;
825}
826
827/*
828 * vmbus_probe - Add the new vmbus's child device
829 */
830static int vmbus_probe(struct device *child_device)
831{
832 int ret = 0;
833 struct hv_driver *drv =
834 drv_to_hv_drv(d: child_device->driver);
835 struct hv_device *dev = device_to_hv_device(child_device);
836 const struct hv_vmbus_device_id *dev_id;
837
838 dev_id = hv_vmbus_get_id(drv, dev);
839 if (drv->probe) {
840 ret = drv->probe(dev, dev_id);
841 if (ret != 0)
842 pr_err("probe failed for device %s (%d)\n",
843 dev_name(child_device), ret);
844
845 } else {
846 pr_err("probe not set for driver %s\n",
847 dev_name(child_device));
848 ret = -ENODEV;
849 }
850 return ret;
851}
852
853/*
854 * vmbus_dma_configure -- Configure DMA coherence for VMbus device
855 */
856static int vmbus_dma_configure(struct device *child_device)
857{
858 /*
859 * On ARM64, propagate the DMA coherence setting from the top level
860 * VMbus ACPI device to the child VMbus device being added here.
861 * On x86/x64 coherence is assumed and these calls have no effect.
862 */
863 hv_setup_dma_ops(dev: child_device,
864 coherent: device_get_dma_attr(dev: hv_dev) == DEV_DMA_COHERENT);
865 return 0;
866}
867
868/*
869 * vmbus_remove - Remove a vmbus device
870 */
871static void vmbus_remove(struct device *child_device)
872{
873 struct hv_driver *drv;
874 struct hv_device *dev = device_to_hv_device(child_device);
875
876 if (child_device->driver) {
877 drv = drv_to_hv_drv(d: child_device->driver);
878 if (drv->remove)
879 drv->remove(dev);
880 }
881}
882
883/*
884 * vmbus_shutdown - Shutdown a vmbus device
885 */
886static void vmbus_shutdown(struct device *child_device)
887{
888 struct hv_driver *drv;
889 struct hv_device *dev = device_to_hv_device(child_device);
890
891
892 /* The device may not be attached yet */
893 if (!child_device->driver)
894 return;
895
896 drv = drv_to_hv_drv(d: child_device->driver);
897
898 if (drv->shutdown)
899 drv->shutdown(dev);
900}
901
902#ifdef CONFIG_PM_SLEEP
903/*
904 * vmbus_suspend - Suspend a vmbus device
905 */
906static int vmbus_suspend(struct device *child_device)
907{
908 struct hv_driver *drv;
909 struct hv_device *dev = device_to_hv_device(child_device);
910
911 /* The device may not be attached yet */
912 if (!child_device->driver)
913 return 0;
914
915 drv = drv_to_hv_drv(d: child_device->driver);
916 if (!drv->suspend)
917 return -EOPNOTSUPP;
918
919 return drv->suspend(dev);
920}
921
922/*
923 * vmbus_resume - Resume a vmbus device
924 */
925static int vmbus_resume(struct device *child_device)
926{
927 struct hv_driver *drv;
928 struct hv_device *dev = device_to_hv_device(child_device);
929
930 /* The device may not be attached yet */
931 if (!child_device->driver)
932 return 0;
933
934 drv = drv_to_hv_drv(d: child_device->driver);
935 if (!drv->resume)
936 return -EOPNOTSUPP;
937
938 return drv->resume(dev);
939}
940#else
941#define vmbus_suspend NULL
942#define vmbus_resume NULL
943#endif /* CONFIG_PM_SLEEP */
944
945/*
946 * vmbus_device_release - Final callback release of the vmbus child device
947 */
948static void vmbus_device_release(struct device *device)
949{
950 struct hv_device *hv_dev = device_to_hv_device(device);
951 struct vmbus_channel *channel = hv_dev->channel;
952
953 hv_debug_rm_dev_dir(dev: hv_dev);
954
955 mutex_lock(&vmbus_connection.channel_mutex);
956 hv_process_channel_removal(channel);
957 mutex_unlock(lock: &vmbus_connection.channel_mutex);
958 kfree(objp: hv_dev);
959}
960
961/*
962 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
963 *
964 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
965 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
966 * is no way to wake up a Generation-2 VM.
967 *
968 * The other 4 ops are for hibernation.
969 */
970
971static const struct dev_pm_ops vmbus_pm = {
972 .suspend_noirq = NULL,
973 .resume_noirq = NULL,
974 .freeze_noirq = vmbus_suspend,
975 .thaw_noirq = vmbus_resume,
976 .poweroff_noirq = vmbus_suspend,
977 .restore_noirq = vmbus_resume,
978};
979
980/* The one and only one */
981static const struct bus_type hv_bus = {
982 .name = "vmbus",
983 .match = vmbus_match,
984 .shutdown = vmbus_shutdown,
985 .remove = vmbus_remove,
986 .probe = vmbus_probe,
987 .uevent = vmbus_uevent,
988 .dma_configure = vmbus_dma_configure,
989 .dev_groups = vmbus_dev_groups,
990 .drv_groups = vmbus_drv_groups,
991 .bus_groups = vmbus_bus_groups,
992 .pm = &vmbus_pm,
993};
994
995struct onmessage_work_context {
996 struct work_struct work;
997 struct {
998 struct hv_message_header header;
999 u8 payload[];
1000 } msg;
1001};
1002
1003static void vmbus_onmessage_work(struct work_struct *work)
1004{
1005 struct onmessage_work_context *ctx;
1006
1007 /* Do not process messages if we're in DISCONNECTED state */
1008 if (vmbus_connection.conn_state == DISCONNECTED)
1009 return;
1010
1011 ctx = container_of(work, struct onmessage_work_context,
1012 work);
1013 vmbus_onmessage(hdr: (struct vmbus_channel_message_header *)
1014 &ctx->msg.payload);
1015 kfree(objp: ctx);
1016}
1017
1018void vmbus_on_msg_dpc(unsigned long data)
1019{
1020 struct hv_per_cpu_context *hv_cpu = (void *)data;
1021 void *page_addr = hv_cpu->synic_message_page;
1022 struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1023 VMBUS_MESSAGE_SINT;
1024 struct vmbus_channel_message_header *hdr;
1025 enum vmbus_channel_message_type msgtype;
1026 const struct vmbus_channel_message_table_entry *entry;
1027 struct onmessage_work_context *ctx;
1028 __u8 payload_size;
1029 u32 message_type;
1030
1031 /*
1032 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1033 * it is being used in 'struct vmbus_channel_message_header' definition
1034 * which is supposed to match hypervisor ABI.
1035 */
1036 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1037
1038 /*
1039 * Since the message is in memory shared with the host, an erroneous or
1040 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1041 * or individual message handlers are executing; to prevent this, copy
1042 * the message into private memory.
1043 */
1044 memcpy(&msg_copy, msg, sizeof(struct hv_message));
1045
1046 message_type = msg_copy.header.message_type;
1047 if (message_type == HVMSG_NONE)
1048 /* no msg */
1049 return;
1050
1051 hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1052 msgtype = hdr->msgtype;
1053
1054 trace_vmbus_on_msg_dpc(hdr);
1055
1056 if (msgtype >= CHANNELMSG_COUNT) {
1057 WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1058 goto msg_handled;
1059 }
1060
1061 payload_size = msg_copy.header.payload_size;
1062 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1063 WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1064 goto msg_handled;
1065 }
1066
1067 entry = &channel_message_table[msgtype];
1068
1069 if (!entry->message_handler)
1070 goto msg_handled;
1071
1072 if (payload_size < entry->min_payload_len) {
1073 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1074 goto msg_handled;
1075 }
1076
1077 if (entry->handler_type == VMHT_BLOCKING) {
1078 ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
1079 if (ctx == NULL)
1080 return;
1081
1082 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1083 ctx->msg.header = msg_copy.header;
1084 memcpy(&ctx->msg.payload, msg_copy.u.payload, payload_size);
1085
1086 /*
1087 * The host can generate a rescind message while we
1088 * may still be handling the original offer. We deal with
1089 * this condition by relying on the synchronization provided
1090 * by offer_in_progress and by channel_mutex. See also the
1091 * inline comments in vmbus_onoffer_rescind().
1092 */
1093 switch (msgtype) {
1094 case CHANNELMSG_RESCIND_CHANNELOFFER:
1095 /*
1096 * If we are handling the rescind message;
1097 * schedule the work on the global work queue.
1098 *
1099 * The OFFER message and the RESCIND message should
1100 * not be handled by the same serialized work queue,
1101 * because the OFFER handler may call vmbus_open(),
1102 * which tries to open the channel by sending an
1103 * OPEN_CHANNEL message to the host and waits for
1104 * the host's response; however, if the host has
1105 * rescinded the channel before it receives the
1106 * OPEN_CHANNEL message, the host just silently
1107 * ignores the OPEN_CHANNEL message; as a result,
1108 * the guest's OFFER handler hangs for ever, if we
1109 * handle the RESCIND message in the same serialized
1110 * work queue: the RESCIND handler can not start to
1111 * run before the OFFER handler finishes.
1112 */
1113 if (vmbus_connection.ignore_any_offer_msg)
1114 break;
1115 queue_work(wq: vmbus_connection.rescind_work_queue, work: &ctx->work);
1116 break;
1117
1118 case CHANNELMSG_OFFERCHANNEL:
1119 /*
1120 * The host sends the offer message of a given channel
1121 * before sending the rescind message of the same
1122 * channel. These messages are sent to the guest's
1123 * connect CPU; the guest then starts processing them
1124 * in the tasklet handler on this CPU:
1125 *
1126 * VMBUS_CONNECT_CPU
1127 *
1128 * [vmbus_on_msg_dpc()]
1129 * atomic_inc() // CHANNELMSG_OFFERCHANNEL
1130 * queue_work()
1131 * ...
1132 * [vmbus_on_msg_dpc()]
1133 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER
1134 *
1135 * We rely on the memory-ordering properties of the
1136 * queue_work() and schedule_work() primitives, which
1137 * guarantee that the atomic increment will be visible
1138 * to the CPUs which will execute the offer & rescind
1139 * works by the time these works will start execution.
1140 */
1141 if (vmbus_connection.ignore_any_offer_msg)
1142 break;
1143 atomic_inc(v: &vmbus_connection.offer_in_progress);
1144 fallthrough;
1145
1146 default:
1147 queue_work(wq: vmbus_connection.work_queue, work: &ctx->work);
1148 }
1149 } else
1150 entry->message_handler(hdr);
1151
1152msg_handled:
1153 vmbus_signal_eom(msg, old_msg_type: message_type);
1154}
1155
1156#ifdef CONFIG_PM_SLEEP
1157/*
1158 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1159 * hibernation, because hv_sock connections can not persist across hibernation.
1160 */
1161static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1162{
1163 struct onmessage_work_context *ctx;
1164 struct vmbus_channel_rescind_offer *rescind;
1165
1166 WARN_ON(!is_hvsock_channel(channel));
1167
1168 /*
1169 * Allocation size is small and the allocation should really not fail,
1170 * otherwise the state of the hv_sock connections ends up in limbo.
1171 */
1172 ctx = kzalloc(size: sizeof(*ctx) + sizeof(*rescind),
1173 GFP_KERNEL | __GFP_NOFAIL);
1174
1175 /*
1176 * So far, these are not really used by Linux. Just set them to the
1177 * reasonable values conforming to the definitions of the fields.
1178 */
1179 ctx->msg.header.message_type = 1;
1180 ctx->msg.header.payload_size = sizeof(*rescind);
1181
1182 /* These values are actually used by Linux. */
1183 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1184 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1185 rescind->child_relid = channel->offermsg.child_relid;
1186
1187 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1188
1189 queue_work(wq: vmbus_connection.work_queue, work: &ctx->work);
1190}
1191#endif /* CONFIG_PM_SLEEP */
1192
1193/*
1194 * Schedule all channels with events pending
1195 */
1196static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1197{
1198 unsigned long *recv_int_page;
1199 u32 maxbits, relid;
1200
1201 /*
1202 * The event page can be directly checked to get the id of
1203 * the channel that has the interrupt pending.
1204 */
1205 void *page_addr = hv_cpu->synic_event_page;
1206 union hv_synic_event_flags *event
1207 = (union hv_synic_event_flags *)page_addr +
1208 VMBUS_MESSAGE_SINT;
1209
1210 maxbits = HV_EVENT_FLAGS_COUNT;
1211 recv_int_page = event->flags;
1212
1213 if (unlikely(!recv_int_page))
1214 return;
1215
1216 for_each_set_bit(relid, recv_int_page, maxbits) {
1217 void (*callback_fn)(void *context);
1218 struct vmbus_channel *channel;
1219
1220 if (!sync_test_and_clear_bit(nr: relid, addr: recv_int_page))
1221 continue;
1222
1223 /* Special case - vmbus channel protocol msg */
1224 if (relid == 0)
1225 continue;
1226
1227 /*
1228 * Pairs with the kfree_rcu() in vmbus_chan_release().
1229 * Guarantees that the channel data structure doesn't
1230 * get freed while the channel pointer below is being
1231 * dereferenced.
1232 */
1233 rcu_read_lock();
1234
1235 /* Find channel based on relid */
1236 channel = relid2channel(relid);
1237 if (channel == NULL)
1238 goto sched_unlock_rcu;
1239
1240 if (channel->rescind)
1241 goto sched_unlock_rcu;
1242
1243 /*
1244 * Make sure that the ring buffer data structure doesn't get
1245 * freed while we dereference the ring buffer pointer. Test
1246 * for the channel's onchannel_callback being NULL within a
1247 * sched_lock critical section. See also the inline comments
1248 * in vmbus_reset_channel_cb().
1249 */
1250 spin_lock(lock: &channel->sched_lock);
1251
1252 callback_fn = channel->onchannel_callback;
1253 if (unlikely(callback_fn == NULL))
1254 goto sched_unlock;
1255
1256 trace_vmbus_chan_sched(channel);
1257
1258 ++channel->interrupts;
1259
1260 switch (channel->callback_mode) {
1261 case HV_CALL_ISR:
1262 (*callback_fn)(channel->channel_callback_context);
1263 break;
1264
1265 case HV_CALL_BATCHED:
1266 hv_begin_read(rbi: &channel->inbound);
1267 fallthrough;
1268 case HV_CALL_DIRECT:
1269 tasklet_schedule(t: &channel->callback_event);
1270 }
1271
1272sched_unlock:
1273 spin_unlock(lock: &channel->sched_lock);
1274sched_unlock_rcu:
1275 rcu_read_unlock();
1276 }
1277}
1278
1279static void vmbus_isr(void)
1280{
1281 struct hv_per_cpu_context *hv_cpu
1282 = this_cpu_ptr(hv_context.cpu_context);
1283 void *page_addr;
1284 struct hv_message *msg;
1285
1286 vmbus_chan_sched(hv_cpu);
1287
1288 page_addr = hv_cpu->synic_message_page;
1289 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1290
1291 /* Check if there are actual msgs to be processed */
1292 if (msg->header.message_type != HVMSG_NONE) {
1293 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1294 hv_stimer0_isr();
1295 vmbus_signal_eom(msg, old_msg_type: HVMSG_TIMER_EXPIRED);
1296 } else
1297 tasklet_schedule(t: &hv_cpu->msg_dpc);
1298 }
1299
1300 add_interrupt_randomness(irq: vmbus_interrupt);
1301}
1302
1303static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1304{
1305 vmbus_isr();
1306 return IRQ_HANDLED;
1307}
1308
1309/*
1310 * vmbus_bus_init -Main vmbus driver initialization routine.
1311 *
1312 * Here, we
1313 * - initialize the vmbus driver context
1314 * - invoke the vmbus hv main init routine
1315 * - retrieve the channel offers
1316 */
1317static int vmbus_bus_init(void)
1318{
1319 int ret;
1320
1321 ret = hv_init();
1322 if (ret != 0) {
1323 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1324 return ret;
1325 }
1326
1327 ret = bus_register(bus: &hv_bus);
1328 if (ret)
1329 return ret;
1330
1331 /*
1332 * VMbus interrupts are best modeled as per-cpu interrupts. If
1333 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1334 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1335 * If not on such an architecture (e.g., x86/x64), then rely on
1336 * code in the arch-specific portion of the code tree to connect
1337 * the VMbus interrupt handler.
1338 */
1339
1340 if (vmbus_irq == -1) {
1341 hv_setup_vmbus_handler(handler: vmbus_isr);
1342 } else {
1343 vmbus_evt = alloc_percpu(long);
1344 ret = request_percpu_irq(irq: vmbus_irq, handler: vmbus_percpu_isr,
1345 devname: "Hyper-V VMbus", percpu_dev_id: vmbus_evt);
1346 if (ret) {
1347 pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1348 vmbus_irq, ret);
1349 free_percpu(pdata: vmbus_evt);
1350 goto err_setup;
1351 }
1352 }
1353
1354 ret = hv_synic_alloc();
1355 if (ret)
1356 goto err_alloc;
1357
1358 /*
1359 * Initialize the per-cpu interrupt state and stimer state.
1360 * Then connect to the host.
1361 */
1362 ret = cpuhp_setup_state(state: CPUHP_AP_ONLINE_DYN, name: "hyperv/vmbus:online",
1363 startup: hv_synic_init, teardown: hv_synic_cleanup);
1364 if (ret < 0)
1365 goto err_alloc;
1366 hyperv_cpuhp_online = ret;
1367
1368 ret = vmbus_connect();
1369 if (ret)
1370 goto err_connect;
1371
1372 /*
1373 * Always register the vmbus unload panic notifier because we
1374 * need to shut the VMbus channel connection on panic.
1375 */
1376 atomic_notifier_chain_register(nh: &panic_notifier_list,
1377 nb: &hyperv_panic_vmbus_unload_block);
1378
1379 vmbus_request_offers();
1380
1381 return 0;
1382
1383err_connect:
1384 cpuhp_remove_state(state: hyperv_cpuhp_online);
1385err_alloc:
1386 hv_synic_free();
1387 if (vmbus_irq == -1) {
1388 hv_remove_vmbus_handler();
1389 } else {
1390 free_percpu_irq(vmbus_irq, vmbus_evt);
1391 free_percpu(pdata: vmbus_evt);
1392 }
1393err_setup:
1394 bus_unregister(bus: &hv_bus);
1395 return ret;
1396}
1397
1398/**
1399 * __vmbus_driver_register() - Register a vmbus's driver
1400 * @hv_driver: Pointer to driver structure you want to register
1401 * @owner: owner module of the drv
1402 * @mod_name: module name string
1403 *
1404 * Registers the given driver with Linux through the 'driver_register()' call
1405 * and sets up the hyper-v vmbus handling for this driver.
1406 * It will return the state of the 'driver_register()' call.
1407 *
1408 */
1409int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1410{
1411 int ret;
1412
1413 pr_info("registering driver %s\n", hv_driver->name);
1414
1415 ret = vmbus_exists();
1416 if (ret < 0)
1417 return ret;
1418
1419 hv_driver->driver.name = hv_driver->name;
1420 hv_driver->driver.owner = owner;
1421 hv_driver->driver.mod_name = mod_name;
1422 hv_driver->driver.bus = &hv_bus;
1423
1424 spin_lock_init(&hv_driver->dynids.lock);
1425 INIT_LIST_HEAD(list: &hv_driver->dynids.list);
1426
1427 ret = driver_register(drv: &hv_driver->driver);
1428
1429 return ret;
1430}
1431EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1432
1433/**
1434 * vmbus_driver_unregister() - Unregister a vmbus's driver
1435 * @hv_driver: Pointer to driver structure you want to
1436 * un-register
1437 *
1438 * Un-register the given driver that was previous registered with a call to
1439 * vmbus_driver_register()
1440 */
1441void vmbus_driver_unregister(struct hv_driver *hv_driver)
1442{
1443 pr_info("unregistering driver %s\n", hv_driver->name);
1444
1445 if (!vmbus_exists()) {
1446 driver_unregister(drv: &hv_driver->driver);
1447 vmbus_free_dynids(drv: hv_driver);
1448 }
1449}
1450EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1451
1452
1453/*
1454 * Called when last reference to channel is gone.
1455 */
1456static void vmbus_chan_release(struct kobject *kobj)
1457{
1458 struct vmbus_channel *channel
1459 = container_of(kobj, struct vmbus_channel, kobj);
1460
1461 kfree_rcu(channel, rcu);
1462}
1463
1464struct vmbus_chan_attribute {
1465 struct attribute attr;
1466 ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1467 ssize_t (*store)(struct vmbus_channel *chan,
1468 const char *buf, size_t count);
1469};
1470#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1471 struct vmbus_chan_attribute chan_attr_##_name \
1472 = __ATTR(_name, _mode, _show, _store)
1473#define VMBUS_CHAN_ATTR_RW(_name) \
1474 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1475#define VMBUS_CHAN_ATTR_RO(_name) \
1476 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1477#define VMBUS_CHAN_ATTR_WO(_name) \
1478 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1479
1480static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1481 struct attribute *attr, char *buf)
1482{
1483 const struct vmbus_chan_attribute *attribute
1484 = container_of(attr, struct vmbus_chan_attribute, attr);
1485 struct vmbus_channel *chan
1486 = container_of(kobj, struct vmbus_channel, kobj);
1487
1488 if (!attribute->show)
1489 return -EIO;
1490
1491 return attribute->show(chan, buf);
1492}
1493
1494static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1495 struct attribute *attr, const char *buf,
1496 size_t count)
1497{
1498 const struct vmbus_chan_attribute *attribute
1499 = container_of(attr, struct vmbus_chan_attribute, attr);
1500 struct vmbus_channel *chan
1501 = container_of(kobj, struct vmbus_channel, kobj);
1502
1503 if (!attribute->store)
1504 return -EIO;
1505
1506 return attribute->store(chan, buf, count);
1507}
1508
1509static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1510 .show = vmbus_chan_attr_show,
1511 .store = vmbus_chan_attr_store,
1512};
1513
1514static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1515{
1516 struct hv_ring_buffer_info *rbi = &channel->outbound;
1517 ssize_t ret;
1518
1519 mutex_lock(&rbi->ring_buffer_mutex);
1520 if (!rbi->ring_buffer) {
1521 mutex_unlock(lock: &rbi->ring_buffer_mutex);
1522 return -EINVAL;
1523 }
1524
1525 ret = sprintf(buf, fmt: "%u\n", rbi->ring_buffer->interrupt_mask);
1526 mutex_unlock(lock: &rbi->ring_buffer_mutex);
1527 return ret;
1528}
1529static VMBUS_CHAN_ATTR_RO(out_mask);
1530
1531static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1532{
1533 struct hv_ring_buffer_info *rbi = &channel->inbound;
1534 ssize_t ret;
1535
1536 mutex_lock(&rbi->ring_buffer_mutex);
1537 if (!rbi->ring_buffer) {
1538 mutex_unlock(lock: &rbi->ring_buffer_mutex);
1539 return -EINVAL;
1540 }
1541
1542 ret = sprintf(buf, fmt: "%u\n", rbi->ring_buffer->interrupt_mask);
1543 mutex_unlock(lock: &rbi->ring_buffer_mutex);
1544 return ret;
1545}
1546static VMBUS_CHAN_ATTR_RO(in_mask);
1547
1548static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1549{
1550 struct hv_ring_buffer_info *rbi = &channel->inbound;
1551 ssize_t ret;
1552
1553 mutex_lock(&rbi->ring_buffer_mutex);
1554 if (!rbi->ring_buffer) {
1555 mutex_unlock(lock: &rbi->ring_buffer_mutex);
1556 return -EINVAL;
1557 }
1558
1559 ret = sprintf(buf, fmt: "%u\n", hv_get_bytes_to_read(rbi));
1560 mutex_unlock(lock: &rbi->ring_buffer_mutex);
1561 return ret;
1562}
1563static VMBUS_CHAN_ATTR_RO(read_avail);
1564
1565static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1566{
1567 struct hv_ring_buffer_info *rbi = &channel->outbound;
1568 ssize_t ret;
1569
1570 mutex_lock(&rbi->ring_buffer_mutex);
1571 if (!rbi->ring_buffer) {
1572 mutex_unlock(lock: &rbi->ring_buffer_mutex);
1573 return -EINVAL;
1574 }
1575
1576 ret = sprintf(buf, fmt: "%u\n", hv_get_bytes_to_write(rbi));
1577 mutex_unlock(lock: &rbi->ring_buffer_mutex);
1578 return ret;
1579}
1580static VMBUS_CHAN_ATTR_RO(write_avail);
1581
1582static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1583{
1584 return sprintf(buf, fmt: "%u\n", channel->target_cpu);
1585}
1586static ssize_t target_cpu_store(struct vmbus_channel *channel,
1587 const char *buf, size_t count)
1588{
1589 u32 target_cpu, origin_cpu;
1590 ssize_t ret = count;
1591
1592 if (vmbus_proto_version < VERSION_WIN10_V4_1)
1593 return -EIO;
1594
1595 if (sscanf(buf, "%uu", &target_cpu) != 1)
1596 return -EIO;
1597
1598 /* Validate target_cpu for the cpumask_test_cpu() operation below. */
1599 if (target_cpu >= nr_cpumask_bits)
1600 return -EINVAL;
1601
1602 if (!cpumask_test_cpu(cpu: target_cpu, cpumask: housekeeping_cpumask(type: HK_TYPE_MANAGED_IRQ)))
1603 return -EINVAL;
1604
1605 /* No CPUs should come up or down during this. */
1606 cpus_read_lock();
1607
1608 if (!cpu_online(cpu: target_cpu)) {
1609 cpus_read_unlock();
1610 return -EINVAL;
1611 }
1612
1613 /*
1614 * Synchronizes target_cpu_store() and channel closure:
1615 *
1616 * { Initially: state = CHANNEL_OPENED }
1617 *
1618 * CPU1 CPU2
1619 *
1620 * [target_cpu_store()] [vmbus_disconnect_ring()]
1621 *
1622 * LOCK channel_mutex LOCK channel_mutex
1623 * LOAD r1 = state LOAD r2 = state
1624 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED)
1625 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN
1626 * [...] SEND CLOSECHANNEL
1627 * UNLOCK channel_mutex UNLOCK channel_mutex
1628 *
1629 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1630 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1631 *
1632 * Note. The host processes the channel messages "sequentially", in
1633 * the order in which they are received on a per-partition basis.
1634 */
1635 mutex_lock(&vmbus_connection.channel_mutex);
1636
1637 /*
1638 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1639 * avoid sending the message and fail here for such channels.
1640 */
1641 if (channel->state != CHANNEL_OPENED_STATE) {
1642 ret = -EIO;
1643 goto cpu_store_unlock;
1644 }
1645
1646 origin_cpu = channel->target_cpu;
1647 if (target_cpu == origin_cpu)
1648 goto cpu_store_unlock;
1649
1650 if (vmbus_send_modifychannel(channel,
1651 target_vp: hv_cpu_number_to_vp_number(cpu_number: target_cpu))) {
1652 ret = -EIO;
1653 goto cpu_store_unlock;
1654 }
1655
1656 /*
1657 * For version before VERSION_WIN10_V5_3, the following warning holds:
1658 *
1659 * Warning. At this point, there is *no* guarantee that the host will
1660 * have successfully processed the vmbus_send_modifychannel() request.
1661 * See the header comment of vmbus_send_modifychannel() for more info.
1662 *
1663 * Lags in the processing of the above vmbus_send_modifychannel() can
1664 * result in missed interrupts if the "old" target CPU is taken offline
1665 * before Hyper-V starts sending interrupts to the "new" target CPU.
1666 * But apart from this offlining scenario, the code tolerates such
1667 * lags. It will function correctly even if a channel interrupt comes
1668 * in on a CPU that is different from the channel target_cpu value.
1669 */
1670
1671 channel->target_cpu = target_cpu;
1672
1673 /* See init_vp_index(). */
1674 if (hv_is_perf_channel(channel))
1675 hv_update_allocated_cpus(old_cpu: origin_cpu, new_cpu: target_cpu);
1676
1677 /* Currently set only for storvsc channels. */
1678 if (channel->change_target_cpu_callback) {
1679 (*channel->change_target_cpu_callback)(channel,
1680 origin_cpu, target_cpu);
1681 }
1682
1683cpu_store_unlock:
1684 mutex_unlock(lock: &vmbus_connection.channel_mutex);
1685 cpus_read_unlock();
1686 return ret;
1687}
1688static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1689
1690static ssize_t channel_pending_show(struct vmbus_channel *channel,
1691 char *buf)
1692{
1693 return sprintf(buf, fmt: "%d\n",
1694 channel_pending(channel,
1695 monitor_page: vmbus_connection.monitor_pages[1]));
1696}
1697static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1698
1699static ssize_t channel_latency_show(struct vmbus_channel *channel,
1700 char *buf)
1701{
1702 return sprintf(buf, fmt: "%d\n",
1703 channel_latency(channel,
1704 monitor_page: vmbus_connection.monitor_pages[1]));
1705}
1706static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1707
1708static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1709{
1710 return sprintf(buf, fmt: "%llu\n", channel->interrupts);
1711}
1712static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1713
1714static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1715{
1716 return sprintf(buf, fmt: "%llu\n", channel->sig_events);
1717}
1718static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1719
1720static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1721 char *buf)
1722{
1723 return sprintf(buf, fmt: "%llu\n",
1724 (unsigned long long)channel->intr_in_full);
1725}
1726static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1727
1728static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1729 char *buf)
1730{
1731 return sprintf(buf, fmt: "%llu\n",
1732 (unsigned long long)channel->intr_out_empty);
1733}
1734static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1735
1736static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1737 char *buf)
1738{
1739 return sprintf(buf, fmt: "%llu\n",
1740 (unsigned long long)channel->out_full_first);
1741}
1742static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1743
1744static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1745 char *buf)
1746{
1747 return sprintf(buf, fmt: "%llu\n",
1748 (unsigned long long)channel->out_full_total);
1749}
1750static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1751
1752static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1753 char *buf)
1754{
1755 return sprintf(buf, fmt: "%u\n", channel->offermsg.monitorid);
1756}
1757static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1758
1759static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1760 char *buf)
1761{
1762 return sprintf(buf, fmt: "%u\n",
1763 channel->offermsg.offer.sub_channel_index);
1764}
1765static VMBUS_CHAN_ATTR_RO(subchannel_id);
1766
1767static struct attribute *vmbus_chan_attrs[] = {
1768 &chan_attr_out_mask.attr,
1769 &chan_attr_in_mask.attr,
1770 &chan_attr_read_avail.attr,
1771 &chan_attr_write_avail.attr,
1772 &chan_attr_cpu.attr,
1773 &chan_attr_pending.attr,
1774 &chan_attr_latency.attr,
1775 &chan_attr_interrupts.attr,
1776 &chan_attr_events.attr,
1777 &chan_attr_intr_in_full.attr,
1778 &chan_attr_intr_out_empty.attr,
1779 &chan_attr_out_full_first.attr,
1780 &chan_attr_out_full_total.attr,
1781 &chan_attr_monitor_id.attr,
1782 &chan_attr_subchannel_id.attr,
1783 NULL
1784};
1785
1786/*
1787 * Channel-level attribute_group callback function. Returns the permission for
1788 * each attribute, and returns 0 if an attribute is not visible.
1789 */
1790static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1791 struct attribute *attr, int idx)
1792{
1793 const struct vmbus_channel *channel =
1794 container_of(kobj, struct vmbus_channel, kobj);
1795
1796 /* Hide the monitor attributes if the monitor mechanism is not used. */
1797 if (!channel->offermsg.monitor_allocated &&
1798 (attr == &chan_attr_pending.attr ||
1799 attr == &chan_attr_latency.attr ||
1800 attr == &chan_attr_monitor_id.attr))
1801 return 0;
1802
1803 return attr->mode;
1804}
1805
1806static struct attribute_group vmbus_chan_group = {
1807 .attrs = vmbus_chan_attrs,
1808 .is_visible = vmbus_chan_attr_is_visible
1809};
1810
1811static struct kobj_type vmbus_chan_ktype = {
1812 .sysfs_ops = &vmbus_chan_sysfs_ops,
1813 .release = vmbus_chan_release,
1814};
1815
1816/*
1817 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1818 */
1819int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1820{
1821 const struct device *device = &dev->device;
1822 struct kobject *kobj = &channel->kobj;
1823 u32 relid = channel->offermsg.child_relid;
1824 int ret;
1825
1826 kobj->kset = dev->channels_kset;
1827 ret = kobject_init_and_add(kobj, ktype: &vmbus_chan_ktype, NULL,
1828 fmt: "%u", relid);
1829 if (ret) {
1830 kobject_put(kobj);
1831 return ret;
1832 }
1833
1834 ret = sysfs_create_group(kobj, grp: &vmbus_chan_group);
1835
1836 if (ret) {
1837 /*
1838 * The calling functions' error handling paths will cleanup the
1839 * empty channel directory.
1840 */
1841 kobject_put(kobj);
1842 dev_err(device, "Unable to set up channel sysfs files\n");
1843 return ret;
1844 }
1845
1846 kobject_uevent(kobj, action: KOBJ_ADD);
1847
1848 return 0;
1849}
1850
1851/*
1852 * vmbus_remove_channel_attr_group - remove the channel's attribute group
1853 */
1854void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
1855{
1856 sysfs_remove_group(kobj: &channel->kobj, grp: &vmbus_chan_group);
1857}
1858
1859/*
1860 * vmbus_device_create - Creates and registers a new child device
1861 * on the vmbus.
1862 */
1863struct hv_device *vmbus_device_create(const guid_t *type,
1864 const guid_t *instance,
1865 struct vmbus_channel *channel)
1866{
1867 struct hv_device *child_device_obj;
1868
1869 child_device_obj = kzalloc(size: sizeof(struct hv_device), GFP_KERNEL);
1870 if (!child_device_obj) {
1871 pr_err("Unable to allocate device object for child device\n");
1872 return NULL;
1873 }
1874
1875 child_device_obj->channel = channel;
1876 guid_copy(dst: &child_device_obj->dev_type, src: type);
1877 guid_copy(dst: &child_device_obj->dev_instance, src: instance);
1878 child_device_obj->vendor_id = PCI_VENDOR_ID_MICROSOFT;
1879
1880 return child_device_obj;
1881}
1882
1883/*
1884 * vmbus_device_register - Register the child device
1885 */
1886int vmbus_device_register(struct hv_device *child_device_obj)
1887{
1888 struct kobject *kobj = &child_device_obj->device.kobj;
1889 int ret;
1890
1891 dev_set_name(dev: &child_device_obj->device, name: "%pUl",
1892 &child_device_obj->channel->offermsg.offer.if_instance);
1893
1894 child_device_obj->device.bus = &hv_bus;
1895 child_device_obj->device.parent = hv_dev;
1896 child_device_obj->device.release = vmbus_device_release;
1897
1898 child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
1899 child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
1900 dma_set_mask(dev: &child_device_obj->device, DMA_BIT_MASK(64));
1901
1902 /*
1903 * Register with the LDM. This will kick off the driver/device
1904 * binding...which will eventually call vmbus_match() and vmbus_probe()
1905 */
1906 ret = device_register(dev: &child_device_obj->device);
1907 if (ret) {
1908 pr_err("Unable to register child device\n");
1909 put_device(dev: &child_device_obj->device);
1910 return ret;
1911 }
1912
1913 child_device_obj->channels_kset = kset_create_and_add(name: "channels",
1914 NULL, parent_kobj: kobj);
1915 if (!child_device_obj->channels_kset) {
1916 ret = -ENOMEM;
1917 goto err_dev_unregister;
1918 }
1919
1920 ret = vmbus_add_channel_kobj(dev: child_device_obj,
1921 channel: child_device_obj->channel);
1922 if (ret) {
1923 pr_err("Unable to register primary channeln");
1924 goto err_kset_unregister;
1925 }
1926 hv_debug_add_dev_dir(dev: child_device_obj);
1927
1928 return 0;
1929
1930err_kset_unregister:
1931 kset_unregister(kset: child_device_obj->channels_kset);
1932
1933err_dev_unregister:
1934 device_unregister(dev: &child_device_obj->device);
1935 return ret;
1936}
1937
1938/*
1939 * vmbus_device_unregister - Remove the specified child device
1940 * from the vmbus.
1941 */
1942void vmbus_device_unregister(struct hv_device *device_obj)
1943{
1944 pr_debug("child device %s unregistered\n",
1945 dev_name(&device_obj->device));
1946
1947 kset_unregister(kset: device_obj->channels_kset);
1948
1949 /*
1950 * Kick off the process of unregistering the device.
1951 * This will call vmbus_remove() and eventually vmbus_device_release()
1952 */
1953 device_unregister(dev: &device_obj->device);
1954}
1955
1956#ifdef CONFIG_ACPI
1957/*
1958 * VMBUS is an acpi enumerated device. Get the information we
1959 * need from DSDT.
1960 */
1961static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
1962{
1963 resource_size_t start = 0;
1964 resource_size_t end = 0;
1965 struct resource *new_res;
1966 struct resource **old_res = &hyperv_mmio;
1967 struct resource **prev_res = NULL;
1968 struct resource r;
1969
1970 switch (res->type) {
1971
1972 /*
1973 * "Address" descriptors are for bus windows. Ignore
1974 * "memory" descriptors, which are for registers on
1975 * devices.
1976 */
1977 case ACPI_RESOURCE_TYPE_ADDRESS32:
1978 start = res->data.address32.address.minimum;
1979 end = res->data.address32.address.maximum;
1980 break;
1981
1982 case ACPI_RESOURCE_TYPE_ADDRESS64:
1983 start = res->data.address64.address.minimum;
1984 end = res->data.address64.address.maximum;
1985 break;
1986
1987 /*
1988 * The IRQ information is needed only on ARM64, which Hyper-V
1989 * sets up in the extended format. IRQ information is present
1990 * on x86/x64 in the non-extended format but it is not used by
1991 * Linux. So don't bother checking for the non-extended format.
1992 */
1993 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
1994 if (!acpi_dev_resource_interrupt(ares: res, index: 0, res: &r)) {
1995 pr_err("Unable to parse Hyper-V ACPI interrupt\n");
1996 return AE_ERROR;
1997 }
1998 /* ARM64 INTID for VMbus */
1999 vmbus_interrupt = res->data.extended_irq.interrupts[0];
2000 /* Linux IRQ number */
2001 vmbus_irq = r.start;
2002 return AE_OK;
2003
2004 default:
2005 /* Unused resource type */
2006 return AE_OK;
2007
2008 }
2009 /*
2010 * Ignore ranges that are below 1MB, as they're not
2011 * necessary or useful here.
2012 */
2013 if (end < 0x100000)
2014 return AE_OK;
2015
2016 new_res = kzalloc(size: sizeof(*new_res), GFP_ATOMIC);
2017 if (!new_res)
2018 return AE_NO_MEMORY;
2019
2020 /* If this range overlaps the virtual TPM, truncate it. */
2021 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2022 end = VTPM_BASE_ADDRESS;
2023
2024 new_res->name = "hyperv mmio";
2025 new_res->flags = IORESOURCE_MEM;
2026 new_res->start = start;
2027 new_res->end = end;
2028
2029 /*
2030 * If two ranges are adjacent, merge them.
2031 */
2032 do {
2033 if (!*old_res) {
2034 *old_res = new_res;
2035 break;
2036 }
2037
2038 if (((*old_res)->end + 1) == new_res->start) {
2039 (*old_res)->end = new_res->end;
2040 kfree(objp: new_res);
2041 break;
2042 }
2043
2044 if ((*old_res)->start == new_res->end + 1) {
2045 (*old_res)->start = new_res->start;
2046 kfree(objp: new_res);
2047 break;
2048 }
2049
2050 if ((*old_res)->start > new_res->end) {
2051 new_res->sibling = *old_res;
2052 if (prev_res)
2053 (*prev_res)->sibling = new_res;
2054 *old_res = new_res;
2055 break;
2056 }
2057
2058 prev_res = old_res;
2059 old_res = &(*old_res)->sibling;
2060
2061 } while (1);
2062
2063 return AE_OK;
2064}
2065#endif
2066
2067static void vmbus_mmio_remove(void)
2068{
2069 struct resource *cur_res;
2070 struct resource *next_res;
2071
2072 if (hyperv_mmio) {
2073 if (fb_mmio) {
2074 __release_region(hyperv_mmio, fb_mmio->start,
2075 resource_size(res: fb_mmio));
2076 fb_mmio = NULL;
2077 }
2078
2079 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2080 next_res = cur_res->sibling;
2081 kfree(objp: cur_res);
2082 }
2083 }
2084}
2085
2086static void __maybe_unused vmbus_reserve_fb(void)
2087{
2088 resource_size_t start = 0, size;
2089 struct pci_dev *pdev;
2090
2091 if (efi_enabled(EFI_BOOT)) {
2092 /* Gen2 VM: get FB base from EFI framebuffer */
2093 if (IS_ENABLED(CONFIG_SYSFB)) {
2094 start = screen_info.lfb_base;
2095 size = max_t(__u32, screen_info.lfb_size, 0x800000);
2096 }
2097 } else {
2098 /* Gen1 VM: get FB base from PCI */
2099 pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT,
2100 PCI_DEVICE_ID_HYPERV_VIDEO, NULL);
2101 if (!pdev)
2102 return;
2103
2104 if (pdev->resource[0].flags & IORESOURCE_MEM) {
2105 start = pci_resource_start(pdev, 0);
2106 size = pci_resource_len(pdev, 0);
2107 }
2108
2109 /*
2110 * Release the PCI device so hyperv_drm or hyperv_fb driver can
2111 * grab it later.
2112 */
2113 pci_dev_put(dev: pdev);
2114 }
2115
2116 if (!start)
2117 return;
2118
2119 /*
2120 * Make a claim for the frame buffer in the resource tree under the
2121 * first node, which will be the one below 4GB. The length seems to
2122 * be underreported, particularly in a Generation 1 VM. So start out
2123 * reserving a larger area and make it smaller until it succeeds.
2124 */
2125 for (; !fb_mmio && (size >= 0x100000); size >>= 1)
2126 fb_mmio = __request_region(hyperv_mmio, start, n: size, name: fb_mmio_name, flags: 0);
2127}
2128
2129/**
2130 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2131 * @new: If successful, supplied a pointer to the
2132 * allocated MMIO space.
2133 * @device_obj: Identifies the caller
2134 * @min: Minimum guest physical address of the
2135 * allocation
2136 * @max: Maximum guest physical address
2137 * @size: Size of the range to be allocated
2138 * @align: Alignment of the range to be allocated
2139 * @fb_overlap_ok: Whether this allocation can be allowed
2140 * to overlap the video frame buffer.
2141 *
2142 * This function walks the resources granted to VMBus by the
2143 * _CRS object in the ACPI namespace underneath the parent
2144 * "bridge" whether that's a root PCI bus in the Generation 1
2145 * case or a Module Device in the Generation 2 case. It then
2146 * attempts to allocate from the global MMIO pool in a way that
2147 * matches the constraints supplied in these parameters and by
2148 * that _CRS.
2149 *
2150 * Return: 0 on success, -errno on failure
2151 */
2152int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2153 resource_size_t min, resource_size_t max,
2154 resource_size_t size, resource_size_t align,
2155 bool fb_overlap_ok)
2156{
2157 struct resource *iter, *shadow;
2158 resource_size_t range_min, range_max, start, end;
2159 const char *dev_n = dev_name(dev: &device_obj->device);
2160 int retval;
2161
2162 retval = -ENXIO;
2163 mutex_lock(&hyperv_mmio_lock);
2164
2165 /*
2166 * If overlaps with frame buffers are allowed, then first attempt to
2167 * make the allocation from within the reserved region. Because it
2168 * is already reserved, no shadow allocation is necessary.
2169 */
2170 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2171 !(max < fb_mmio->start)) {
2172
2173 range_min = fb_mmio->start;
2174 range_max = fb_mmio->end;
2175 start = (range_min + align - 1) & ~(align - 1);
2176 for (; start + size - 1 <= range_max; start += align) {
2177 *new = request_mem_region_exclusive(start, size, dev_n);
2178 if (*new) {
2179 retval = 0;
2180 goto exit;
2181 }
2182 }
2183 }
2184
2185 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2186 if ((iter->start >= max) || (iter->end <= min))
2187 continue;
2188
2189 range_min = iter->start;
2190 range_max = iter->end;
2191 start = (range_min + align - 1) & ~(align - 1);
2192 for (; start + size - 1 <= range_max; start += align) {
2193 end = start + size - 1;
2194
2195 /* Skip the whole fb_mmio region if not fb_overlap_ok */
2196 if (!fb_overlap_ok && fb_mmio &&
2197 (((start >= fb_mmio->start) && (start <= fb_mmio->end)) ||
2198 ((end >= fb_mmio->start) && (end <= fb_mmio->end))))
2199 continue;
2200
2201 shadow = __request_region(iter, start, n: size, NULL,
2202 IORESOURCE_BUSY);
2203 if (!shadow)
2204 continue;
2205
2206 *new = request_mem_region_exclusive(start, size, dev_n);
2207 if (*new) {
2208 shadow->name = (char *)*new;
2209 retval = 0;
2210 goto exit;
2211 }
2212
2213 __release_region(iter, start, size);
2214 }
2215 }
2216
2217exit:
2218 mutex_unlock(lock: &hyperv_mmio_lock);
2219 return retval;
2220}
2221EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2222
2223/**
2224 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2225 * @start: Base address of region to release.
2226 * @size: Size of the range to be allocated
2227 *
2228 * This function releases anything requested by
2229 * vmbus_mmio_allocate().
2230 */
2231void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2232{
2233 struct resource *iter;
2234
2235 mutex_lock(&hyperv_mmio_lock);
2236 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2237 if ((iter->start >= start + size) || (iter->end <= start))
2238 continue;
2239
2240 __release_region(iter, start, size);
2241 }
2242 release_mem_region(start, size);
2243 mutex_unlock(lock: &hyperv_mmio_lock);
2244
2245}
2246EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2247
2248#ifdef CONFIG_ACPI
2249static int vmbus_acpi_add(struct platform_device *pdev)
2250{
2251 acpi_status result;
2252 int ret_val = -ENODEV;
2253 struct acpi_device *ancestor;
2254 struct acpi_device *device = ACPI_COMPANION(&pdev->dev);
2255
2256 hv_dev = &device->dev;
2257
2258 /*
2259 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2260 * method on the top level VMbus device in the DSDT. But devices
2261 * are hardware coherent in all current Hyper-V use cases, so fix
2262 * up the ACPI device to behave as if _CCA is present and indicates
2263 * hardware coherence.
2264 */
2265 ACPI_COMPANION_SET(&device->dev, device);
2266 if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2267 device_get_dma_attr(dev: &device->dev) == DEV_DMA_NOT_SUPPORTED) {
2268 pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2269 device->flags.cca_seen = true;
2270 device->flags.coherent_dma = true;
2271 }
2272
2273 result = acpi_walk_resources(device: device->handle, METHOD_NAME__CRS,
2274 user_function: vmbus_walk_resources, NULL);
2275
2276 if (ACPI_FAILURE(result))
2277 goto acpi_walk_err;
2278 /*
2279 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2280 * firmware) is the VMOD that has the mmio ranges. Get that.
2281 */
2282 for (ancestor = acpi_dev_parent(adev: device);
2283 ancestor && ancestor->handle != ACPI_ROOT_OBJECT;
2284 ancestor = acpi_dev_parent(adev: ancestor)) {
2285 result = acpi_walk_resources(device: ancestor->handle, METHOD_NAME__CRS,
2286 user_function: vmbus_walk_resources, NULL);
2287
2288 if (ACPI_FAILURE(result))
2289 continue;
2290 if (hyperv_mmio) {
2291 vmbus_reserve_fb();
2292 break;
2293 }
2294 }
2295 ret_val = 0;
2296
2297acpi_walk_err:
2298 if (ret_val)
2299 vmbus_mmio_remove();
2300 return ret_val;
2301}
2302#else
2303static int vmbus_acpi_add(struct platform_device *pdev)
2304{
2305 return 0;
2306}
2307#endif
2308
2309static int vmbus_device_add(struct platform_device *pdev)
2310{
2311 struct resource **cur_res = &hyperv_mmio;
2312 struct of_range range;
2313 struct of_range_parser parser;
2314 struct device_node *np = pdev->dev.of_node;
2315 int ret;
2316
2317 hv_dev = &pdev->dev;
2318
2319 ret = of_range_parser_init(parser: &parser, node: np);
2320 if (ret)
2321 return ret;
2322
2323 for_each_of_range(&parser, &range) {
2324 struct resource *res;
2325
2326 res = kzalloc(size: sizeof(*res), GFP_KERNEL);
2327 if (!res) {
2328 vmbus_mmio_remove();
2329 return -ENOMEM;
2330 }
2331
2332 res->name = "hyperv mmio";
2333 res->flags = range.flags;
2334 res->start = range.cpu_addr;
2335 res->end = range.cpu_addr + range.size;
2336
2337 *cur_res = res;
2338 cur_res = &res->sibling;
2339 }
2340
2341 return ret;
2342}
2343
2344static int vmbus_platform_driver_probe(struct platform_device *pdev)
2345{
2346 if (acpi_disabled)
2347 return vmbus_device_add(pdev);
2348 else
2349 return vmbus_acpi_add(pdev);
2350}
2351
2352static void vmbus_platform_driver_remove(struct platform_device *pdev)
2353{
2354 vmbus_mmio_remove();
2355}
2356
2357#ifdef CONFIG_PM_SLEEP
2358static int vmbus_bus_suspend(struct device *dev)
2359{
2360 struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(
2361 hv_context.cpu_context, VMBUS_CONNECT_CPU);
2362 struct vmbus_channel *channel, *sc;
2363
2364 tasklet_disable(t: &hv_cpu->msg_dpc);
2365 vmbus_connection.ignore_any_offer_msg = true;
2366 /* The tasklet_enable() takes care of providing a memory barrier */
2367 tasklet_enable(t: &hv_cpu->msg_dpc);
2368
2369 /* Drain all the workqueues as we are in suspend */
2370 drain_workqueue(wq: vmbus_connection.rescind_work_queue);
2371 drain_workqueue(wq: vmbus_connection.work_queue);
2372 drain_workqueue(wq: vmbus_connection.handle_primary_chan_wq);
2373 drain_workqueue(wq: vmbus_connection.handle_sub_chan_wq);
2374
2375 mutex_lock(&vmbus_connection.channel_mutex);
2376 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2377 if (!is_hvsock_channel(c: channel))
2378 continue;
2379
2380 vmbus_force_channel_rescinded(channel);
2381 }
2382 mutex_unlock(lock: &vmbus_connection.channel_mutex);
2383
2384 /*
2385 * Wait until all the sub-channels and hv_sock channels have been
2386 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2387 * they would conflict with the new sub-channels that will be created
2388 * in the resume path. hv_sock channels should also be destroyed, but
2389 * a hv_sock channel of an established hv_sock connection can not be
2390 * really destroyed since it may still be referenced by the userspace
2391 * application, so we just force the hv_sock channel to be rescinded
2392 * by vmbus_force_channel_rescinded(), and the userspace application
2393 * will thoroughly destroy the channel after hibernation.
2394 *
2395 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2396 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2397 */
2398 if (atomic_read(v: &vmbus_connection.nr_chan_close_on_suspend) > 0)
2399 wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2400
2401 if (atomic_read(v: &vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2402 pr_err("Can not suspend due to a previous failed resuming\n");
2403 return -EBUSY;
2404 }
2405
2406 mutex_lock(&vmbus_connection.channel_mutex);
2407
2408 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2409 /*
2410 * Remove the channel from the array of channels and invalidate
2411 * the channel's relid. Upon resume, vmbus_onoffer() will fix
2412 * up the relid (and other fields, if necessary) and add the
2413 * channel back to the array.
2414 */
2415 vmbus_channel_unmap_relid(channel);
2416 channel->offermsg.child_relid = INVALID_RELID;
2417
2418 if (is_hvsock_channel(c: channel)) {
2419 if (!channel->rescind) {
2420 pr_err("hv_sock channel not rescinded!\n");
2421 WARN_ON_ONCE(1);
2422 }
2423 continue;
2424 }
2425
2426 list_for_each_entry(sc, &channel->sc_list, sc_list) {
2427 pr_err("Sub-channel not deleted!\n");
2428 WARN_ON_ONCE(1);
2429 }
2430
2431 atomic_inc(v: &vmbus_connection.nr_chan_fixup_on_resume);
2432 }
2433
2434 mutex_unlock(lock: &vmbus_connection.channel_mutex);
2435
2436 vmbus_initiate_unload(crash: false);
2437
2438 /* Reset the event for the next resume. */
2439 reinit_completion(x: &vmbus_connection.ready_for_resume_event);
2440
2441 return 0;
2442}
2443
2444static int vmbus_bus_resume(struct device *dev)
2445{
2446 struct vmbus_channel_msginfo *msginfo;
2447 size_t msgsize;
2448 int ret;
2449
2450 vmbus_connection.ignore_any_offer_msg = false;
2451
2452 /*
2453 * We only use the 'vmbus_proto_version', which was in use before
2454 * hibernation, to re-negotiate with the host.
2455 */
2456 if (!vmbus_proto_version) {
2457 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2458 return -EINVAL;
2459 }
2460
2461 msgsize = sizeof(*msginfo) +
2462 sizeof(struct vmbus_channel_initiate_contact);
2463
2464 msginfo = kzalloc(size: msgsize, GFP_KERNEL);
2465
2466 if (msginfo == NULL)
2467 return -ENOMEM;
2468
2469 ret = vmbus_negotiate_version(msginfo, version: vmbus_proto_version);
2470
2471 kfree(objp: msginfo);
2472
2473 if (ret != 0)
2474 return ret;
2475
2476 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2477
2478 vmbus_request_offers();
2479
2480 if (wait_for_completion_timeout(
2481 x: &vmbus_connection.ready_for_resume_event, timeout: 10 * HZ) == 0)
2482 pr_err("Some vmbus device is missing after suspending?\n");
2483
2484 /* Reset the event for the next suspend. */
2485 reinit_completion(x: &vmbus_connection.ready_for_suspend_event);
2486
2487 return 0;
2488}
2489#else
2490#define vmbus_bus_suspend NULL
2491#define vmbus_bus_resume NULL
2492#endif /* CONFIG_PM_SLEEP */
2493
2494static const __maybe_unused struct of_device_id vmbus_of_match[] = {
2495 {
2496 .compatible = "microsoft,vmbus",
2497 },
2498 {
2499 /* sentinel */
2500 },
2501};
2502MODULE_DEVICE_TABLE(of, vmbus_of_match);
2503
2504static const __maybe_unused struct acpi_device_id vmbus_acpi_device_ids[] = {
2505 {"VMBUS", 0},
2506 {"VMBus", 0},
2507 {"", 0},
2508};
2509MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2510
2511/*
2512 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2513 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2514 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2515 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2516 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2517 * resume callback must also run via the "noirq" ops.
2518 *
2519 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2520 * earlier in this file before vmbus_pm.
2521 */
2522
2523static const struct dev_pm_ops vmbus_bus_pm = {
2524 .suspend_noirq = NULL,
2525 .resume_noirq = NULL,
2526 .freeze_noirq = vmbus_bus_suspend,
2527 .thaw_noirq = vmbus_bus_resume,
2528 .poweroff_noirq = vmbus_bus_suspend,
2529 .restore_noirq = vmbus_bus_resume
2530};
2531
2532static struct platform_driver vmbus_platform_driver = {
2533 .probe = vmbus_platform_driver_probe,
2534 .remove_new = vmbus_platform_driver_remove,
2535 .driver = {
2536 .name = "vmbus",
2537 .acpi_match_table = ACPI_PTR(vmbus_acpi_device_ids),
2538 .of_match_table = of_match_ptr(vmbus_of_match),
2539 .pm = &vmbus_bus_pm,
2540 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2541 }
2542};
2543
2544static void hv_kexec_handler(void)
2545{
2546 hv_stimer_global_cleanup();
2547 vmbus_initiate_unload(crash: false);
2548 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
2549 mb();
2550 cpuhp_remove_state(state: hyperv_cpuhp_online);
2551};
2552
2553static void hv_crash_handler(struct pt_regs *regs)
2554{
2555 int cpu;
2556
2557 vmbus_initiate_unload(crash: true);
2558 /*
2559 * In crash handler we can't schedule synic cleanup for all CPUs,
2560 * doing the cleanup for current CPU only. This should be sufficient
2561 * for kdump.
2562 */
2563 cpu = smp_processor_id();
2564 hv_stimer_cleanup(cpu);
2565 hv_synic_disable_regs(cpu);
2566};
2567
2568static int hv_synic_suspend(void)
2569{
2570 /*
2571 * When we reach here, all the non-boot CPUs have been offlined.
2572 * If we're in a legacy configuration where stimer Direct Mode is
2573 * not enabled, the stimers on the non-boot CPUs have been unbound
2574 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2575 * hv_stimer_cleanup() -> clockevents_unbind_device().
2576 *
2577 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2578 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2579 * 1) it's unnecessary as interrupts remain disabled between
2580 * syscore_suspend() and syscore_resume(): see create_image() and
2581 * resume_target_kernel()
2582 * 2) the stimer on CPU0 is automatically disabled later by
2583 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2584 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2585 * 3) a warning would be triggered if we call
2586 * clockevents_unbind_device(), which may sleep, in an
2587 * interrupts-disabled context.
2588 */
2589
2590 hv_synic_disable_regs(cpu: 0);
2591
2592 return 0;
2593}
2594
2595static void hv_synic_resume(void)
2596{
2597 hv_synic_enable_regs(cpu: 0);
2598
2599 /*
2600 * Note: we don't need to call hv_stimer_init(0), because the timer
2601 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2602 * automatically re-enabled in timekeeping_resume().
2603 */
2604}
2605
2606/* The callbacks run only on CPU0, with irqs_disabled. */
2607static struct syscore_ops hv_synic_syscore_ops = {
2608 .suspend = hv_synic_suspend,
2609 .resume = hv_synic_resume,
2610};
2611
2612static int __init hv_acpi_init(void)
2613{
2614 int ret;
2615
2616 if (!hv_is_hyperv_initialized())
2617 return -ENODEV;
2618
2619 if (hv_root_partition && !hv_nested)
2620 return 0;
2621
2622 /*
2623 * Get ACPI resources first.
2624 */
2625 ret = platform_driver_register(&vmbus_platform_driver);
2626 if (ret)
2627 return ret;
2628
2629 if (!hv_dev) {
2630 ret = -ENODEV;
2631 goto cleanup;
2632 }
2633
2634 /*
2635 * If we're on an architecture with a hardcoded hypervisor
2636 * vector (i.e. x86/x64), override the VMbus interrupt found
2637 * in the ACPI tables. Ensure vmbus_irq is not set since the
2638 * normal Linux IRQ mechanism is not used in this case.
2639 */
2640#ifdef HYPERVISOR_CALLBACK_VECTOR
2641 vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2642 vmbus_irq = -1;
2643#endif
2644
2645 hv_debug_init();
2646
2647 ret = vmbus_bus_init();
2648 if (ret)
2649 goto cleanup;
2650
2651 hv_setup_kexec_handler(handler: hv_kexec_handler);
2652 hv_setup_crash_handler(handler: hv_crash_handler);
2653
2654 register_syscore_ops(ops: &hv_synic_syscore_ops);
2655
2656 return 0;
2657
2658cleanup:
2659 platform_driver_unregister(&vmbus_platform_driver);
2660 hv_dev = NULL;
2661 return ret;
2662}
2663
2664static void __exit vmbus_exit(void)
2665{
2666 int cpu;
2667
2668 unregister_syscore_ops(ops: &hv_synic_syscore_ops);
2669
2670 hv_remove_kexec_handler();
2671 hv_remove_crash_handler();
2672 vmbus_connection.conn_state = DISCONNECTED;
2673 hv_stimer_global_cleanup();
2674 vmbus_disconnect();
2675 if (vmbus_irq == -1) {
2676 hv_remove_vmbus_handler();
2677 } else {
2678 free_percpu_irq(vmbus_irq, vmbus_evt);
2679 free_percpu(pdata: vmbus_evt);
2680 }
2681 for_each_online_cpu(cpu) {
2682 struct hv_per_cpu_context *hv_cpu
2683 = per_cpu_ptr(hv_context.cpu_context, cpu);
2684
2685 tasklet_kill(t: &hv_cpu->msg_dpc);
2686 }
2687 hv_debug_rm_all_dir();
2688
2689 vmbus_free_channels();
2690 kfree(objp: vmbus_connection.channels);
2691
2692 /*
2693 * The vmbus panic notifier is always registered, hence we should
2694 * also unconditionally unregister it here as well.
2695 */
2696 atomic_notifier_chain_unregister(nh: &panic_notifier_list,
2697 nb: &hyperv_panic_vmbus_unload_block);
2698
2699 bus_unregister(bus: &hv_bus);
2700
2701 cpuhp_remove_state(state: hyperv_cpuhp_online);
2702 hv_synic_free();
2703 platform_driver_unregister(&vmbus_platform_driver);
2704}
2705
2706
2707MODULE_LICENSE("GPL");
2708MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2709
2710subsys_initcall(hv_acpi_init);
2711module_exit(vmbus_exit);
2712

source code of linux/drivers/hv/vmbus_drv.c