1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Mellanox BlueField I2C bus driver
4 *
5 * Copyright (C) 2020 Mellanox Technologies, Ltd.
6 */
7
8#include <linux/acpi.h>
9#include <linux/bitfield.h>
10#include <linux/delay.h>
11#include <linux/err.h>
12#include <linux/interrupt.h>
13#include <linux/i2c.h>
14#include <linux/io.h>
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/mutex.h>
18#include <linux/of.h>
19#include <linux/platform_device.h>
20#include <linux/string.h>
21
22/* Defines what functionality is present. */
23#define MLXBF_I2C_FUNC_SMBUS_BLOCK \
24 (I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL)
25
26#define MLXBF_I2C_FUNC_SMBUS_DEFAULT \
27 (I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA | \
28 I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_I2C_BLOCK | \
29 I2C_FUNC_SMBUS_PROC_CALL)
30
31#define MLXBF_I2C_FUNC_ALL \
32 (MLXBF_I2C_FUNC_SMBUS_DEFAULT | MLXBF_I2C_FUNC_SMBUS_BLOCK | \
33 I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SLAVE)
34
35/* Shared resources info in BlueField platforms. */
36
37#define MLXBF_I2C_COALESCE_TYU_ADDR 0x02801300
38#define MLXBF_I2C_COALESCE_TYU_SIZE 0x010
39
40#define MLXBF_I2C_GPIO_TYU_ADDR 0x02802000
41#define MLXBF_I2C_GPIO_TYU_SIZE 0x100
42
43#define MLXBF_I2C_COREPLL_TYU_ADDR 0x02800358
44#define MLXBF_I2C_COREPLL_TYU_SIZE 0x008
45
46#define MLXBF_I2C_COREPLL_YU_ADDR 0x02800c30
47#define MLXBF_I2C_COREPLL_YU_SIZE 0x00c
48
49#define MLXBF_I2C_COREPLL_RSH_YU_ADDR 0x13409824
50#define MLXBF_I2C_COREPLL_RSH_YU_SIZE 0x00c
51
52#define MLXBF_I2C_SHARED_RES_MAX 3
53
54/*
55 * Note that the following SMBus, CAUSE, GPIO and PLL register addresses
56 * refer to their respective offsets relative to the corresponding
57 * memory-mapped region whose addresses are specified in either the DT or
58 * the ACPI tables or above.
59 */
60
61/*
62 * SMBus Master core clock frequency. Timing configurations are
63 * strongly dependent on the core clock frequency of the SMBus
64 * Master. Default value is set to 400MHz.
65 */
66#define MLXBF_I2C_TYU_PLL_OUT_FREQ (400 * 1000 * 1000)
67/* Reference clock for Bluefield - 156 MHz. */
68#define MLXBF_I2C_PLL_IN_FREQ 156250000ULL
69
70/* Constant used to determine the PLL frequency. */
71#define MLNXBF_I2C_COREPLL_CONST 16384ULL
72
73#define MLXBF_I2C_FREQUENCY_1GHZ 1000000000ULL
74
75/* PLL registers. */
76#define MLXBF_I2C_CORE_PLL_REG1 0x4
77#define MLXBF_I2C_CORE_PLL_REG2 0x8
78
79/* OR cause register. */
80#define MLXBF_I2C_CAUSE_OR_EVTEN0 0x14
81#define MLXBF_I2C_CAUSE_OR_CLEAR 0x18
82
83/* Arbiter Cause Register. */
84#define MLXBF_I2C_CAUSE_ARBITER 0x1c
85
86/*
87 * Cause Status flags. Note that those bits might be considered
88 * as interrupt enabled bits.
89 */
90
91/* Transaction ended with STOP. */
92#define MLXBF_I2C_CAUSE_TRANSACTION_ENDED BIT(0)
93/* Master arbitration lost. */
94#define MLXBF_I2C_CAUSE_M_ARBITRATION_LOST BIT(1)
95/* Unexpected start detected. */
96#define MLXBF_I2C_CAUSE_UNEXPECTED_START BIT(2)
97/* Unexpected stop detected. */
98#define MLXBF_I2C_CAUSE_UNEXPECTED_STOP BIT(3)
99/* Wait for transfer continuation. */
100#define MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA BIT(4)
101/* Failed to generate STOP. */
102#define MLXBF_I2C_CAUSE_PUT_STOP_FAILED BIT(5)
103/* Failed to generate START. */
104#define MLXBF_I2C_CAUSE_PUT_START_FAILED BIT(6)
105/* Clock toggle completed. */
106#define MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE BIT(7)
107/* Transfer timeout occurred. */
108#define MLXBF_I2C_CAUSE_M_FW_TIMEOUT BIT(8)
109/* Master busy bit reset. */
110#define MLXBF_I2C_CAUSE_M_GW_BUSY_FALL BIT(9)
111
112#define MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK GENMASK(9, 0)
113
114#define MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR \
115 (MLXBF_I2C_CAUSE_M_ARBITRATION_LOST | \
116 MLXBF_I2C_CAUSE_UNEXPECTED_START | \
117 MLXBF_I2C_CAUSE_UNEXPECTED_STOP | \
118 MLXBF_I2C_CAUSE_PUT_STOP_FAILED | \
119 MLXBF_I2C_CAUSE_PUT_START_FAILED | \
120 MLXBF_I2C_CAUSE_CLK_TOGGLE_DONE | \
121 MLXBF_I2C_CAUSE_M_FW_TIMEOUT)
122
123/*
124 * Slave cause status flags. Note that those bits might be considered
125 * as interrupt enabled bits.
126 */
127
128/* Write transaction received successfully. */
129#define MLXBF_I2C_CAUSE_WRITE_SUCCESS BIT(0)
130/* Read transaction received, waiting for response. */
131#define MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE BIT(13)
132/* Slave busy bit reset. */
133#define MLXBF_I2C_CAUSE_S_GW_BUSY_FALL BIT(18)
134
135/* Cause coalesce registers. */
136#define MLXBF_I2C_CAUSE_COALESCE_0 0x00
137
138#define MLXBF_I2C_CAUSE_TYU_SLAVE_BIT 3
139#define MLXBF_I2C_CAUSE_YU_SLAVE_BIT 1
140
141/* Functional enable register. */
142#define MLXBF_I2C_GPIO_0_FUNC_EN_0 0x28
143/* Force OE enable register. */
144#define MLXBF_I2C_GPIO_0_FORCE_OE_EN 0x30
145/*
146 * Note that Smbus GWs are on GPIOs 30:25. Two pins are used to control
147 * SDA/SCL lines:
148 *
149 * SMBUS GW0 -> bits[26:25]
150 * SMBUS GW1 -> bits[28:27]
151 * SMBUS GW2 -> bits[30:29]
152 */
153#define MLXBF_I2C_GPIO_SMBUS_GW_PINS(num) (25 + ((num) << 1))
154
155/* Note that gw_id can be 0,1 or 2. */
156#define MLXBF_I2C_GPIO_SMBUS_GW_MASK(num) \
157 (0xffffffff & (~(0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num))))
158
159#define MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(num, val) \
160 ((val) & MLXBF_I2C_GPIO_SMBUS_GW_MASK(num))
161
162#define MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(num, val) \
163 ((val) | (0x3 << MLXBF_I2C_GPIO_SMBUS_GW_PINS(num)))
164
165/*
166 * Defines SMBus operating frequency and core clock frequency.
167 * According to ADB files, default values are compliant to 100KHz SMBus
168 * @ 400MHz core clock. The driver should be able to calculate core
169 * frequency based on PLL parameters.
170 */
171#define MLXBF_I2C_COREPLL_FREQ MLXBF_I2C_TYU_PLL_OUT_FREQ
172
173/* Core PLL TYU configuration. */
174#define MLXBF_I2C_COREPLL_CORE_F_TYU_MASK GENMASK(15, 3)
175#define MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK GENMASK(19, 16)
176#define MLXBF_I2C_COREPLL_CORE_R_TYU_MASK GENMASK(25, 20)
177
178/* Core PLL YU configuration. */
179#define MLXBF_I2C_COREPLL_CORE_F_YU_MASK GENMASK(25, 0)
180#define MLXBF_I2C_COREPLL_CORE_OD_YU_MASK GENMASK(3, 0)
181#define MLXBF_I2C_COREPLL_CORE_R_YU_MASK GENMASK(31, 26)
182
183/* SMBus timing parameters. */
184#define MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH 0x00
185#define MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE 0x04
186#define MLXBF_I2C_SMBUS_TIMER_THOLD 0x08
187#define MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP 0x0c
188#define MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA 0x10
189#define MLXBF_I2C_SMBUS_THIGH_MAX_TBUF 0x14
190#define MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT 0x18
191
192#define MLXBF_I2C_SHIFT_0 0
193#define MLXBF_I2C_SHIFT_8 8
194#define MLXBF_I2C_SHIFT_16 16
195#define MLXBF_I2C_SHIFT_24 24
196
197#define MLXBF_I2C_MASK_8 GENMASK(7, 0)
198#define MLXBF_I2C_MASK_16 GENMASK(15, 0)
199
200#define MLXBF_I2C_MST_ADDR_OFFSET 0x200
201
202/* SMBus Master GW. */
203#define MLXBF_I2C_SMBUS_MASTER_GW 0x0
204/* Number of bytes received and sent. */
205#define MLXBF_I2C_YU_SMBUS_RS_BYTES 0x100
206#define MLXBF_I2C_RSH_YU_SMBUS_RS_BYTES 0x10c
207/* Packet error check (PEC) value. */
208#define MLXBF_I2C_SMBUS_MASTER_PEC 0x104
209/* Status bits (ACK/NACK/FW Timeout). */
210#define MLXBF_I2C_SMBUS_MASTER_STATUS 0x108
211/* SMbus Master Finite State Machine. */
212#define MLXBF_I2C_YU_SMBUS_MASTER_FSM 0x110
213#define MLXBF_I2C_RSH_YU_SMBUS_MASTER_FSM 0x100
214
215/* SMBus master GW control bits offset in MLXBF_I2C_SMBUS_MASTER_GW[31:3]. */
216#define MLXBF_I2C_MASTER_LOCK_BIT BIT(31) /* Lock bit. */
217#define MLXBF_I2C_MASTER_BUSY_BIT BIT(30) /* Busy bit. */
218#define MLXBF_I2C_MASTER_START_BIT BIT(29) /* Control start. */
219#define MLXBF_I2C_MASTER_CTL_WRITE_BIT BIT(28) /* Control write phase. */
220#define MLXBF_I2C_MASTER_CTL_READ_BIT BIT(19) /* Control read phase. */
221#define MLXBF_I2C_MASTER_STOP_BIT BIT(3) /* Control stop. */
222
223#define MLXBF_I2C_MASTER_ENABLE \
224 (MLXBF_I2C_MASTER_LOCK_BIT | MLXBF_I2C_MASTER_BUSY_BIT | \
225 MLXBF_I2C_MASTER_START_BIT | MLXBF_I2C_MASTER_STOP_BIT)
226
227#define MLXBF_I2C_MASTER_ENABLE_WRITE \
228 (MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_WRITE_BIT)
229
230#define MLXBF_I2C_MASTER_ENABLE_READ \
231 (MLXBF_I2C_MASTER_ENABLE | MLXBF_I2C_MASTER_CTL_READ_BIT)
232
233#define MLXBF_I2C_MASTER_WRITE_SHIFT 21 /* Control write bytes */
234#define MLXBF_I2C_MASTER_SEND_PEC_SHIFT 20 /* Send PEC byte when set to 1 */
235#define MLXBF_I2C_MASTER_PARSE_EXP_SHIFT 11 /* Control parse expected bytes */
236#define MLXBF_I2C_MASTER_SLV_ADDR_SHIFT 12 /* Slave address */
237#define MLXBF_I2C_MASTER_READ_SHIFT 4 /* Control read bytes */
238
239/* SMBus master GW Data descriptor. */
240#define MLXBF_I2C_MASTER_DATA_DESC_ADDR 0x80
241#define MLXBF_I2C_MASTER_DATA_DESC_SIZE 0x80 /* Size in bytes. */
242
243/* Maximum bytes to read/write per SMBus transaction. */
244#define MLXBF_I2C_MASTER_DATA_R_LENGTH MLXBF_I2C_MASTER_DATA_DESC_SIZE
245#define MLXBF_I2C_MASTER_DATA_W_LENGTH (MLXBF_I2C_MASTER_DATA_DESC_SIZE - 1)
246
247/* All bytes were transmitted. */
248#define MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE BIT(0)
249/* NACK received. */
250#define MLXBF_I2C_SMBUS_STATUS_NACK_RCV BIT(1)
251/* Slave's byte count >128 bytes. */
252#define MLXBF_I2C_SMBUS_STATUS_READ_ERR BIT(2)
253/* Timeout occurred. */
254#define MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT BIT(3)
255
256#define MLXBF_I2C_SMBUS_MASTER_STATUS_MASK GENMASK(3, 0)
257
258#define MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR \
259 (MLXBF_I2C_SMBUS_STATUS_NACK_RCV | \
260 MLXBF_I2C_SMBUS_STATUS_READ_ERR | \
261 MLXBF_I2C_SMBUS_STATUS_FW_TIMEOUT)
262
263#define MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK BIT(31)
264#define MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK BIT(15)
265
266#define MLXBF_I2C_SLV_ADDR_OFFSET 0x400
267
268/* SMBus slave GW. */
269#define MLXBF_I2C_SMBUS_SLAVE_GW 0x0
270/* Number of bytes received and sent from/to master. */
271#define MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES 0x100
272/* Packet error check (PEC) value. */
273#define MLXBF_I2C_SMBUS_SLAVE_PEC 0x104
274/* SMBus slave Finite State Machine (FSM). */
275#define MLXBF_I2C_SMBUS_SLAVE_FSM 0x110
276/*
277 * Should be set when all raised causes handled, and cleared by HW on
278 * every new cause.
279 */
280#define MLXBF_I2C_SMBUS_SLAVE_READY 0x12c
281
282/* SMBus slave GW control bits offset in MLXBF_I2C_SMBUS_SLAVE_GW[31:19]. */
283#define MLXBF_I2C_SLAVE_BUSY_BIT BIT(30) /* Busy bit. */
284#define MLXBF_I2C_SLAVE_WRITE_BIT BIT(29) /* Control write enable. */
285
286#define MLXBF_I2C_SLAVE_ENABLE \
287 (MLXBF_I2C_SLAVE_BUSY_BIT | MLXBF_I2C_SLAVE_WRITE_BIT)
288
289#define MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT 22 /* Number of bytes to write. */
290#define MLXBF_I2C_SLAVE_SEND_PEC_SHIFT 21 /* Send PEC byte shift. */
291
292/* SMBus slave GW Data descriptor. */
293#define MLXBF_I2C_SLAVE_DATA_DESC_ADDR 0x80
294#define MLXBF_I2C_SLAVE_DATA_DESC_SIZE 0x80 /* Size in bytes. */
295
296/* SMbus slave configuration registers. */
297#define MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG 0x114
298#define MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT 16
299#define MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT BIT(7)
300#define MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK GENMASK(6, 0)
301
302/*
303 * Timeout is given in microsends. Note also that timeout handling is not
304 * exact.
305 */
306#define MLXBF_I2C_SMBUS_TIMEOUT (300 * 1000) /* 300ms */
307#define MLXBF_I2C_SMBUS_LOCK_POLL_TIMEOUT (300 * 1000) /* 300ms */
308
309/* Polling frequency in microseconds. */
310#define MLXBF_I2C_POLL_FREQ_IN_USEC 200
311
312#define MLXBF_I2C_SMBUS_OP_CNT_1 1
313#define MLXBF_I2C_SMBUS_OP_CNT_2 2
314#define MLXBF_I2C_SMBUS_OP_CNT_3 3
315#define MLXBF_I2C_SMBUS_MAX_OP_CNT MLXBF_I2C_SMBUS_OP_CNT_3
316
317/* Helper macro to define an I2C resource parameters. */
318#define MLXBF_I2C_RES_PARAMS(addr, size, str) \
319 { \
320 .start = (addr), \
321 .end = (addr) + (size) - 1, \
322 .name = (str) \
323 }
324
325enum {
326 MLXBF_I2C_TIMING_100KHZ = 100000,
327 MLXBF_I2C_TIMING_400KHZ = 400000,
328 MLXBF_I2C_TIMING_1000KHZ = 1000000,
329};
330
331enum {
332 MLXBF_I2C_F_READ = BIT(0),
333 MLXBF_I2C_F_WRITE = BIT(1),
334 MLXBF_I2C_F_NORESTART = BIT(3),
335 MLXBF_I2C_F_SMBUS_OPERATION = BIT(4),
336 MLXBF_I2C_F_SMBUS_BLOCK = BIT(5),
337 MLXBF_I2C_F_SMBUS_PEC = BIT(6),
338 MLXBF_I2C_F_SMBUS_PROCESS_CALL = BIT(7),
339};
340
341/* Mellanox BlueField chip type. */
342enum mlxbf_i2c_chip_type {
343 MLXBF_I2C_CHIP_TYPE_1, /* Mellanox BlueField-1 chip. */
344 MLXBF_I2C_CHIP_TYPE_2, /* Mellanox BlueField-2 chip. */
345 MLXBF_I2C_CHIP_TYPE_3 /* Mellanox BlueField-3 chip. */
346};
347
348/* List of chip resources that are being accessed by the driver. */
349enum {
350 MLXBF_I2C_SMBUS_RES,
351 MLXBF_I2C_MST_CAUSE_RES,
352 MLXBF_I2C_SLV_CAUSE_RES,
353 MLXBF_I2C_COALESCE_RES,
354 MLXBF_I2C_SMBUS_TIMER_RES,
355 MLXBF_I2C_SMBUS_MST_RES,
356 MLXBF_I2C_SMBUS_SLV_RES,
357 MLXBF_I2C_COREPLL_RES,
358 MLXBF_I2C_GPIO_RES,
359 MLXBF_I2C_END_RES
360};
361
362/* Encapsulates timing parameters. */
363struct mlxbf_i2c_timings {
364 u16 scl_high; /* Clock high period. */
365 u16 scl_low; /* Clock low period. */
366 u8 sda_rise; /* Data rise time. */
367 u8 sda_fall; /* Data fall time. */
368 u8 scl_rise; /* Clock rise time. */
369 u8 scl_fall; /* Clock fall time. */
370 u16 hold_start; /* Hold time after (REPEATED) START. */
371 u16 hold_data; /* Data hold time. */
372 u16 setup_start; /* REPEATED START condition setup time. */
373 u16 setup_stop; /* STOP condition setup time. */
374 u16 setup_data; /* Data setup time. */
375 u16 pad; /* Padding. */
376 u16 buf; /* Bus free time between STOP and START. */
377 u16 thigh_max; /* Thigh max. */
378 u32 timeout; /* Detect clock low timeout. */
379};
380
381struct mlxbf_i2c_smbus_operation {
382 u32 flags;
383 u32 length; /* Buffer length in bytes. */
384 u8 *buffer;
385};
386
387struct mlxbf_i2c_smbus_request {
388 u8 slave;
389 u8 operation_cnt;
390 struct mlxbf_i2c_smbus_operation operation[MLXBF_I2C_SMBUS_MAX_OP_CNT];
391};
392
393struct mlxbf_i2c_resource {
394 void __iomem *io;
395 struct resource *params;
396 struct mutex *lock; /* Mutex to protect mlxbf_i2c_resource. */
397 u8 type;
398};
399
400struct mlxbf_i2c_chip_info {
401 enum mlxbf_i2c_chip_type type;
402 /* Chip shared resources that are being used by the I2C controller. */
403 struct mlxbf_i2c_resource *shared_res[MLXBF_I2C_SHARED_RES_MAX];
404
405 /* Callback to calculate the core PLL frequency. */
406 u64 (*calculate_freq)(struct mlxbf_i2c_resource *corepll_res);
407
408 /* Registers' address offset */
409 u32 smbus_master_rs_bytes_off;
410 u32 smbus_master_fsm_off;
411};
412
413struct mlxbf_i2c_priv {
414 const struct mlxbf_i2c_chip_info *chip;
415 struct i2c_adapter adap;
416 struct mlxbf_i2c_resource *smbus;
417 struct mlxbf_i2c_resource *timer;
418 struct mlxbf_i2c_resource *mst;
419 struct mlxbf_i2c_resource *slv;
420 struct mlxbf_i2c_resource *mst_cause;
421 struct mlxbf_i2c_resource *slv_cause;
422 struct mlxbf_i2c_resource *coalesce;
423 u64 frequency; /* Core frequency in Hz. */
424 int bus; /* Physical bus identifier. */
425 int irq;
426 struct i2c_client *slave[MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT];
427 u32 resource_version;
428};
429
430/* Core PLL frequency. */
431static u64 mlxbf_i2c_corepll_frequency;
432
433static struct resource mlxbf_i2c_coalesce_tyu_params =
434 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COALESCE_TYU_ADDR,
435 MLXBF_I2C_COALESCE_TYU_SIZE,
436 "COALESCE_MEM");
437static struct resource mlxbf_i2c_corepll_tyu_params =
438 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_TYU_ADDR,
439 MLXBF_I2C_COREPLL_TYU_SIZE,
440 "COREPLL_MEM");
441static struct resource mlxbf_i2c_corepll_yu_params =
442 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_YU_ADDR,
443 MLXBF_I2C_COREPLL_YU_SIZE,
444 "COREPLL_MEM");
445static struct resource mlxbf_i2c_corepll_rsh_yu_params =
446 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_COREPLL_RSH_YU_ADDR,
447 MLXBF_I2C_COREPLL_RSH_YU_SIZE,
448 "COREPLL_MEM");
449static struct resource mlxbf_i2c_gpio_tyu_params =
450 MLXBF_I2C_RES_PARAMS(MLXBF_I2C_GPIO_TYU_ADDR,
451 MLXBF_I2C_GPIO_TYU_SIZE,
452 "GPIO_MEM");
453
454static struct mutex mlxbf_i2c_coalesce_lock;
455static struct mutex mlxbf_i2c_corepll_lock;
456static struct mutex mlxbf_i2c_gpio_lock;
457
458static struct mlxbf_i2c_resource mlxbf_i2c_coalesce_res[] = {
459 [MLXBF_I2C_CHIP_TYPE_1] = {
460 .params = &mlxbf_i2c_coalesce_tyu_params,
461 .lock = &mlxbf_i2c_coalesce_lock,
462 .type = MLXBF_I2C_COALESCE_RES
463 },
464 {}
465};
466
467static struct mlxbf_i2c_resource mlxbf_i2c_corepll_res[] = {
468 [MLXBF_I2C_CHIP_TYPE_1] = {
469 .params = &mlxbf_i2c_corepll_tyu_params,
470 .lock = &mlxbf_i2c_corepll_lock,
471 .type = MLXBF_I2C_COREPLL_RES
472 },
473 [MLXBF_I2C_CHIP_TYPE_2] = {
474 .params = &mlxbf_i2c_corepll_yu_params,
475 .lock = &mlxbf_i2c_corepll_lock,
476 .type = MLXBF_I2C_COREPLL_RES,
477 },
478 [MLXBF_I2C_CHIP_TYPE_3] = {
479 .params = &mlxbf_i2c_corepll_rsh_yu_params,
480 .lock = &mlxbf_i2c_corepll_lock,
481 .type = MLXBF_I2C_COREPLL_RES,
482 }
483};
484
485static struct mlxbf_i2c_resource mlxbf_i2c_gpio_res[] = {
486 [MLXBF_I2C_CHIP_TYPE_1] = {
487 .params = &mlxbf_i2c_gpio_tyu_params,
488 .lock = &mlxbf_i2c_gpio_lock,
489 .type = MLXBF_I2C_GPIO_RES
490 },
491 {}
492};
493
494static u8 mlxbf_i2c_bus_count;
495
496static struct mutex mlxbf_i2c_bus_lock;
497
498/*
499 * Function to poll a set of bits at a specific address; it checks whether
500 * the bits are equal to zero when eq_zero is set to 'true', and not equal
501 * to zero when eq_zero is set to 'false'.
502 * Note that the timeout is given in microseconds.
503 */
504static u32 mlxbf_i2c_poll(void __iomem *io, u32 addr, u32 mask,
505 bool eq_zero, u32 timeout)
506{
507 u32 bits;
508
509 timeout = (timeout / MLXBF_I2C_POLL_FREQ_IN_USEC) + 1;
510
511 do {
512 bits = readl(addr: io + addr) & mask;
513 if (eq_zero ? bits == 0 : bits != 0)
514 return eq_zero ? 1 : bits;
515 udelay(MLXBF_I2C_POLL_FREQ_IN_USEC);
516 } while (timeout-- != 0);
517
518 return 0;
519}
520
521/*
522 * SW must make sure that the SMBus Master GW is idle before starting
523 * a transaction. Accordingly, this function polls the Master FSM stop
524 * bit; it returns false when the bit is asserted, true if not.
525 */
526static bool mlxbf_i2c_smbus_master_wait_for_idle(struct mlxbf_i2c_priv *priv)
527{
528 u32 mask = MLXBF_I2C_SMBUS_MASTER_FSM_STOP_MASK;
529 u32 addr = priv->chip->smbus_master_fsm_off;
530 u32 timeout = MLXBF_I2C_SMBUS_TIMEOUT;
531
532 if (mlxbf_i2c_poll(io: priv->mst->io, addr, mask, eq_zero: true, timeout))
533 return true;
534
535 return false;
536}
537
538/*
539 * wait for the lock to be released before acquiring it.
540 */
541static bool mlxbf_i2c_smbus_master_lock(struct mlxbf_i2c_priv *priv)
542{
543 if (mlxbf_i2c_poll(io: priv->mst->io, MLXBF_I2C_SMBUS_MASTER_GW,
544 MLXBF_I2C_MASTER_LOCK_BIT, eq_zero: true,
545 MLXBF_I2C_SMBUS_LOCK_POLL_TIMEOUT))
546 return true;
547
548 return false;
549}
550
551static void mlxbf_i2c_smbus_master_unlock(struct mlxbf_i2c_priv *priv)
552{
553 /* Clear the gw to clear the lock */
554 writel(val: 0, addr: priv->mst->io + MLXBF_I2C_SMBUS_MASTER_GW);
555}
556
557static bool mlxbf_i2c_smbus_transaction_success(u32 master_status,
558 u32 cause_status)
559{
560 /*
561 * When transaction ended with STOP, all bytes were transmitted,
562 * and no NACK received, then the transaction ended successfully.
563 * On the other hand, when the GW is configured with the stop bit
564 * de-asserted then the SMBus expects the following GW configuration
565 * for transfer continuation.
566 */
567 if ((cause_status & MLXBF_I2C_CAUSE_WAIT_FOR_FW_DATA) ||
568 ((cause_status & MLXBF_I2C_CAUSE_TRANSACTION_ENDED) &&
569 (master_status & MLXBF_I2C_SMBUS_STATUS_BYTE_CNT_DONE) &&
570 !(master_status & MLXBF_I2C_SMBUS_STATUS_NACK_RCV)))
571 return true;
572
573 return false;
574}
575
576/*
577 * Poll SMBus master status and return transaction status,
578 * i.e. whether succeeded or failed. I2C and SMBus fault codes
579 * are returned as negative numbers from most calls, with zero
580 * or some positive number indicating a non-fault return.
581 */
582static int mlxbf_i2c_smbus_check_status(struct mlxbf_i2c_priv *priv)
583{
584 u32 master_status_bits;
585 u32 cause_status_bits;
586
587 /*
588 * GW busy bit is raised by the driver and cleared by the HW
589 * when the transaction is completed. The busy bit is a good
590 * indicator of transaction status. So poll the busy bit, and
591 * then read the cause and master status bits to determine if
592 * errors occurred during the transaction.
593 */
594 mlxbf_i2c_poll(io: priv->mst->io, MLXBF_I2C_SMBUS_MASTER_GW,
595 MLXBF_I2C_MASTER_BUSY_BIT, eq_zero: true,
596 MLXBF_I2C_SMBUS_TIMEOUT);
597
598 /* Read cause status bits. */
599 cause_status_bits = readl(addr: priv->mst_cause->io +
600 MLXBF_I2C_CAUSE_ARBITER);
601 cause_status_bits &= MLXBF_I2C_CAUSE_MASTER_ARBITER_BITS_MASK;
602
603 /*
604 * Parse both Cause and Master GW bits, then return transaction status.
605 */
606
607 master_status_bits = readl(addr: priv->mst->io +
608 MLXBF_I2C_SMBUS_MASTER_STATUS);
609 master_status_bits &= MLXBF_I2C_SMBUS_MASTER_STATUS_MASK;
610
611 if (mlxbf_i2c_smbus_transaction_success(master_status: master_status_bits,
612 cause_status: cause_status_bits))
613 return 0;
614
615 /*
616 * In case of timeout on GW busy, the ISR will clear busy bit but
617 * transaction ended bits cause will not be set so the transaction
618 * fails. Then, we must check Master GW status bits.
619 */
620 if ((master_status_bits & MLXBF_I2C_SMBUS_MASTER_STATUS_ERROR) &&
621 (cause_status_bits & (MLXBF_I2C_CAUSE_TRANSACTION_ENDED |
622 MLXBF_I2C_CAUSE_M_GW_BUSY_FALL)))
623 return -EIO;
624
625 if (cause_status_bits & MLXBF_I2C_CAUSE_MASTER_STATUS_ERROR)
626 return -EAGAIN;
627
628 return -ETIMEDOUT;
629}
630
631static void mlxbf_i2c_smbus_write_data(struct mlxbf_i2c_priv *priv,
632 const u8 *data, u8 length, u32 addr,
633 bool is_master)
634{
635 u8 offset, aligned_length;
636 u32 data32;
637
638 aligned_length = round_up(length, 4);
639
640 /*
641 * Copy data bytes from 4-byte aligned source buffer.
642 * Data copied to the Master GW Data Descriptor MUST be shifted
643 * left so the data starts at the MSB of the descriptor registers
644 * as required by the underlying hardware. Enable byte swapping
645 * when writing data bytes to the 32 * 32-bit HW Data registers
646 * a.k.a Master GW Data Descriptor.
647 */
648 for (offset = 0; offset < aligned_length; offset += sizeof(u32)) {
649 data32 = *((u32 *)(data + offset));
650 if (is_master)
651 iowrite32be(data32, priv->mst->io + addr + offset);
652 else
653 iowrite32be(data32, priv->slv->io + addr + offset);
654 }
655}
656
657static void mlxbf_i2c_smbus_read_data(struct mlxbf_i2c_priv *priv,
658 u8 *data, u8 length, u32 addr,
659 bool is_master)
660{
661 u32 data32, mask;
662 u8 byte, offset;
663
664 mask = sizeof(u32) - 1;
665
666 /*
667 * Data bytes in the Master GW Data Descriptor are shifted left
668 * so the data starts at the MSB of the descriptor registers as
669 * set by the underlying hardware. Enable byte swapping while
670 * reading data bytes from the 32 * 32-bit HW Data registers
671 * a.k.a Master GW Data Descriptor.
672 */
673
674 for (offset = 0; offset < (length & ~mask); offset += sizeof(u32)) {
675 if (is_master)
676 data32 = ioread32be(priv->mst->io + addr + offset);
677 else
678 data32 = ioread32be(priv->slv->io + addr + offset);
679 *((u32 *)(data + offset)) = data32;
680 }
681
682 if (!(length & mask))
683 return;
684
685 if (is_master)
686 data32 = ioread32be(priv->mst->io + addr + offset);
687 else
688 data32 = ioread32be(priv->slv->io + addr + offset);
689
690 for (byte = 0; byte < (length & mask); byte++) {
691 data[offset + byte] = data32 & GENMASK(7, 0);
692 data32 = ror32(word: data32, MLXBF_I2C_SHIFT_8);
693 }
694}
695
696static int mlxbf_i2c_smbus_enable(struct mlxbf_i2c_priv *priv, u8 slave,
697 u8 len, u8 block_en, u8 pec_en, bool read)
698{
699 u32 command;
700
701 /* Set Master GW control word. */
702 if (read) {
703 command = MLXBF_I2C_MASTER_ENABLE_READ;
704 command |= rol32(word: len, MLXBF_I2C_MASTER_READ_SHIFT);
705 } else {
706 command = MLXBF_I2C_MASTER_ENABLE_WRITE;
707 command |= rol32(word: len, MLXBF_I2C_MASTER_WRITE_SHIFT);
708 }
709 command |= rol32(word: slave, MLXBF_I2C_MASTER_SLV_ADDR_SHIFT);
710 command |= rol32(word: block_en, MLXBF_I2C_MASTER_PARSE_EXP_SHIFT);
711 command |= rol32(word: pec_en, MLXBF_I2C_MASTER_SEND_PEC_SHIFT);
712
713 /* Clear status bits. */
714 writel(val: 0x0, addr: priv->mst->io + MLXBF_I2C_SMBUS_MASTER_STATUS);
715 /* Set the cause data. */
716 writel(val: ~0x0, addr: priv->mst_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
717 /* Zero PEC byte. */
718 writel(val: 0x0, addr: priv->mst->io + MLXBF_I2C_SMBUS_MASTER_PEC);
719 /* Zero byte count. */
720 writel(val: 0x0, addr: priv->mst->io + priv->chip->smbus_master_rs_bytes_off);
721
722 /* GW activation. */
723 writel(val: command, addr: priv->mst->io + MLXBF_I2C_SMBUS_MASTER_GW);
724
725 /*
726 * Poll master status and check status bits. An ACK is sent when
727 * completing writing data to the bus (Master 'byte_count_done' bit
728 * is set to 1).
729 */
730 return mlxbf_i2c_smbus_check_status(priv);
731}
732
733static int
734mlxbf_i2c_smbus_start_transaction(struct mlxbf_i2c_priv *priv,
735 struct mlxbf_i2c_smbus_request *request)
736{
737 u8 data_desc[MLXBF_I2C_MASTER_DATA_DESC_SIZE] = { 0 };
738 u8 op_idx, data_idx, data_len, write_len, read_len;
739 struct mlxbf_i2c_smbus_operation *operation;
740 u8 read_en, write_en, block_en, pec_en;
741 u8 slave, flags, addr;
742 u8 *read_buf;
743 int ret = 0;
744
745 if (request->operation_cnt > MLXBF_I2C_SMBUS_MAX_OP_CNT)
746 return -EINVAL;
747
748 read_buf = NULL;
749 data_idx = 0;
750 read_en = 0;
751 write_en = 0;
752 write_len = 0;
753 read_len = 0;
754 block_en = 0;
755 pec_en = 0;
756 slave = request->slave & GENMASK(6, 0);
757 addr = slave << 1;
758
759 /*
760 * Try to acquire the smbus gw lock before any reads of the GW register since
761 * a read sets the lock.
762 */
763 if (WARN_ON(!mlxbf_i2c_smbus_master_lock(priv)))
764 return -EBUSY;
765
766 /* Check whether the HW is idle */
767 if (WARN_ON(!mlxbf_i2c_smbus_master_wait_for_idle(priv))) {
768 ret = -EBUSY;
769 goto out_unlock;
770 }
771
772 /* Set first byte. */
773 data_desc[data_idx++] = addr;
774
775 for (op_idx = 0; op_idx < request->operation_cnt; op_idx++) {
776 operation = &request->operation[op_idx];
777 flags = operation->flags;
778
779 /*
780 * Note that read and write operations might be handled by a
781 * single command. If the MLXBF_I2C_F_SMBUS_OPERATION is set
782 * then write command byte and set the optional SMBus specific
783 * bits such as block_en and pec_en. These bits MUST be
784 * submitted by the first operation only.
785 */
786 if (op_idx == 0 && flags & MLXBF_I2C_F_SMBUS_OPERATION) {
787 block_en = flags & MLXBF_I2C_F_SMBUS_BLOCK;
788 pec_en = flags & MLXBF_I2C_F_SMBUS_PEC;
789 }
790
791 if (flags & MLXBF_I2C_F_WRITE) {
792 write_en = 1;
793 write_len += operation->length;
794 if (data_idx + operation->length >
795 MLXBF_I2C_MASTER_DATA_DESC_SIZE) {
796 ret = -ENOBUFS;
797 goto out_unlock;
798 }
799 memcpy(data_desc + data_idx,
800 operation->buffer, operation->length);
801 data_idx += operation->length;
802 }
803 /*
804 * We assume that read operations are performed only once per
805 * SMBus transaction. *TBD* protect this statement so it won't
806 * be executed twice? or return an error if we try to read more
807 * than once?
808 */
809 if (flags & MLXBF_I2C_F_READ) {
810 read_en = 1;
811 /* Subtract 1 as required by HW. */
812 read_len = operation->length - 1;
813 read_buf = operation->buffer;
814 }
815 }
816
817 /* Set Master GW data descriptor. */
818 data_len = write_len + 1; /* Add one byte of the slave address. */
819 /*
820 * Note that data_len cannot be 0. Indeed, the slave address byte
821 * must be written to the data registers.
822 */
823 mlxbf_i2c_smbus_write_data(priv, data: (const u8 *)data_desc, length: data_len,
824 MLXBF_I2C_MASTER_DATA_DESC_ADDR, is_master: true);
825
826 if (write_en) {
827 ret = mlxbf_i2c_smbus_enable(priv, slave, len: write_len, block_en,
828 pec_en, read: 0);
829 if (ret)
830 goto out_unlock;
831 }
832
833 if (read_en) {
834 /* Write slave address to Master GW data descriptor. */
835 mlxbf_i2c_smbus_write_data(priv, data: (const u8 *)&addr, length: 1,
836 MLXBF_I2C_MASTER_DATA_DESC_ADDR, is_master: true);
837 ret = mlxbf_i2c_smbus_enable(priv, slave, len: read_len, block_en,
838 pec_en, read: 1);
839 if (!ret) {
840 /* Get Master GW data descriptor. */
841 mlxbf_i2c_smbus_read_data(priv, data: data_desc, length: read_len + 1,
842 MLXBF_I2C_MASTER_DATA_DESC_ADDR, is_master: true);
843
844 /* Get data from Master GW data descriptor. */
845 memcpy(read_buf, data_desc, read_len + 1);
846 }
847
848 /*
849 * After a read operation the SMBus FSM ps (present state)
850 * needs to be 'manually' reset. This should be removed in
851 * next tag integration.
852 */
853 writel(MLXBF_I2C_SMBUS_MASTER_FSM_PS_STATE_MASK,
854 addr: priv->mst->io + priv->chip->smbus_master_fsm_off);
855 }
856
857out_unlock:
858 mlxbf_i2c_smbus_master_unlock(priv);
859
860 return ret;
861}
862
863/* I2C SMBus protocols. */
864
865static void
866mlxbf_i2c_smbus_quick_command(struct mlxbf_i2c_smbus_request *request,
867 u8 read)
868{
869 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
870
871 request->operation[0].length = 0;
872 request->operation[0].flags = MLXBF_I2C_F_WRITE;
873 request->operation[0].flags |= read ? MLXBF_I2C_F_READ : 0;
874}
875
876static void mlxbf_i2c_smbus_byte_func(struct mlxbf_i2c_smbus_request *request,
877 u8 *data, bool read, bool pec_check)
878{
879 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_1;
880
881 request->operation[0].length = 1;
882 request->operation[0].length += pec_check;
883
884 request->operation[0].flags = MLXBF_I2C_F_SMBUS_OPERATION;
885 request->operation[0].flags |= read ?
886 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
887 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
888
889 request->operation[0].buffer = data;
890}
891
892static void
893mlxbf_i2c_smbus_data_byte_func(struct mlxbf_i2c_smbus_request *request,
894 u8 *command, u8 *data, bool read, bool pec_check)
895{
896 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
897
898 request->operation[0].length = 1;
899 request->operation[0].flags =
900 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
901 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
902 request->operation[0].buffer = command;
903
904 request->operation[1].length = 1;
905 request->operation[1].length += pec_check;
906 request->operation[1].flags = read ?
907 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
908 request->operation[1].buffer = data;
909}
910
911static void
912mlxbf_i2c_smbus_data_word_func(struct mlxbf_i2c_smbus_request *request,
913 u8 *command, u8 *data, bool read, bool pec_check)
914{
915 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
916
917 request->operation[0].length = 1;
918 request->operation[0].flags =
919 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
920 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
921 request->operation[0].buffer = command;
922
923 request->operation[1].length = 2;
924 request->operation[1].length += pec_check;
925 request->operation[1].flags = read ?
926 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
927 request->operation[1].buffer = data;
928}
929
930static void
931mlxbf_i2c_smbus_i2c_block_func(struct mlxbf_i2c_smbus_request *request,
932 u8 *command, u8 *data, u8 *data_len, bool read,
933 bool pec_check)
934{
935 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
936
937 request->operation[0].length = 1;
938 request->operation[0].flags =
939 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
940 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
941 request->operation[0].buffer = command;
942
943 /*
944 * As specified in the standard, the max number of bytes to read/write
945 * per block operation is 32 bytes. In Golan code, the controller can
946 * read up to 128 bytes and write up to 127 bytes.
947 */
948 request->operation[1].length =
949 (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
950 I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
951 request->operation[1].flags = read ?
952 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
953 /*
954 * Skip the first data byte, which corresponds to the number of bytes
955 * to read/write.
956 */
957 request->operation[1].buffer = data + 1;
958
959 *data_len = request->operation[1].length;
960
961 /* Set the number of byte to read. This will be used by userspace. */
962 if (read)
963 data[0] = *data_len;
964}
965
966static void mlxbf_i2c_smbus_block_func(struct mlxbf_i2c_smbus_request *request,
967 u8 *command, u8 *data, u8 *data_len,
968 bool read, bool pec_check)
969{
970 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_2;
971
972 request->operation[0].length = 1;
973 request->operation[0].flags =
974 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
975 request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
976 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
977 request->operation[0].buffer = command;
978
979 request->operation[1].length =
980 (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
981 I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
982 request->operation[1].flags = read ?
983 MLXBF_I2C_F_READ : MLXBF_I2C_F_WRITE;
984 request->operation[1].buffer = data + 1;
985
986 *data_len = request->operation[1].length;
987
988 /* Set the number of bytes to read. This will be used by userspace. */
989 if (read)
990 data[0] = *data_len;
991}
992
993static void
994mlxbf_i2c_smbus_process_call_func(struct mlxbf_i2c_smbus_request *request,
995 u8 *command, u8 *data, bool pec_check)
996{
997 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
998
999 request->operation[0].length = 1;
1000 request->operation[0].flags =
1001 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
1002 request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
1003 request->operation[0].flags |= pec_check ? MLXBF_I2C_F_SMBUS_PEC : 0;
1004 request->operation[0].buffer = command;
1005
1006 request->operation[1].length = 2;
1007 request->operation[1].flags = MLXBF_I2C_F_WRITE;
1008 request->operation[1].buffer = data;
1009
1010 request->operation[2].length = 3;
1011 request->operation[2].flags = MLXBF_I2C_F_READ;
1012 request->operation[2].buffer = data;
1013}
1014
1015static void
1016mlxbf_i2c_smbus_blk_process_call_func(struct mlxbf_i2c_smbus_request *request,
1017 u8 *command, u8 *data, u8 *data_len,
1018 bool pec_check)
1019{
1020 u32 length;
1021
1022 request->operation_cnt = MLXBF_I2C_SMBUS_OP_CNT_3;
1023
1024 request->operation[0].length = 1;
1025 request->operation[0].flags =
1026 MLXBF_I2C_F_SMBUS_OPERATION | MLXBF_I2C_F_WRITE;
1027 request->operation[0].flags |= MLXBF_I2C_F_SMBUS_BLOCK;
1028 request->operation[0].flags |= (pec_check) ? MLXBF_I2C_F_SMBUS_PEC : 0;
1029 request->operation[0].buffer = command;
1030
1031 length = (*data_len + pec_check > I2C_SMBUS_BLOCK_MAX) ?
1032 I2C_SMBUS_BLOCK_MAX : *data_len + pec_check;
1033
1034 request->operation[1].length = length - pec_check;
1035 request->operation[1].flags = MLXBF_I2C_F_WRITE;
1036 request->operation[1].buffer = data;
1037
1038 request->operation[2].length = length;
1039 request->operation[2].flags = MLXBF_I2C_F_READ;
1040 request->operation[2].buffer = data;
1041
1042 *data_len = length; /* including PEC byte. */
1043}
1044
1045/* Initialization functions. */
1046
1047static bool mlxbf_i2c_has_chip_type(struct mlxbf_i2c_priv *priv, u8 type)
1048{
1049 return priv->chip->type == type;
1050}
1051
1052static struct mlxbf_i2c_resource *
1053mlxbf_i2c_get_shared_resource(struct mlxbf_i2c_priv *priv, u8 type)
1054{
1055 const struct mlxbf_i2c_chip_info *chip = priv->chip;
1056 struct mlxbf_i2c_resource *res;
1057 u8 res_idx = 0;
1058
1059 for (res_idx = 0; res_idx < MLXBF_I2C_SHARED_RES_MAX; res_idx++) {
1060 res = chip->shared_res[res_idx];
1061 if (res && res->type == type)
1062 return res;
1063 }
1064
1065 return NULL;
1066}
1067
1068static int mlxbf_i2c_init_resource(struct platform_device *pdev,
1069 struct mlxbf_i2c_resource **res,
1070 u8 type)
1071{
1072 struct mlxbf_i2c_resource *tmp_res;
1073 struct device *dev = &pdev->dev;
1074
1075 if (!res || *res || type >= MLXBF_I2C_END_RES)
1076 return -EINVAL;
1077
1078 tmp_res = devm_kzalloc(dev, size: sizeof(struct mlxbf_i2c_resource),
1079 GFP_KERNEL);
1080 if (!tmp_res)
1081 return -ENOMEM;
1082
1083 tmp_res->io = devm_platform_get_and_ioremap_resource(pdev, index: type, res: &tmp_res->params);
1084 if (IS_ERR(ptr: tmp_res->io)) {
1085 devm_kfree(dev, p: tmp_res);
1086 return PTR_ERR(ptr: tmp_res->io);
1087 }
1088
1089 tmp_res->type = type;
1090
1091 *res = tmp_res;
1092
1093 return 0;
1094}
1095
1096static u32 mlxbf_i2c_get_ticks(struct mlxbf_i2c_priv *priv, u64 nanoseconds,
1097 bool minimum)
1098{
1099 u64 frequency;
1100 u32 ticks;
1101
1102 /*
1103 * Compute ticks as follow:
1104 *
1105 * Ticks
1106 * Time = --------- x 10^9 => Ticks = Time x Frequency x 10^-9
1107 * Frequency
1108 */
1109 frequency = priv->frequency;
1110 ticks = (nanoseconds * frequency) / MLXBF_I2C_FREQUENCY_1GHZ;
1111 /*
1112 * The number of ticks is rounded down and if minimum is equal to 1
1113 * then add one tick.
1114 */
1115 if (minimum)
1116 ticks++;
1117
1118 return ticks;
1119}
1120
1121static u32 mlxbf_i2c_set_timer(struct mlxbf_i2c_priv *priv, u64 nsec, bool opt,
1122 u32 mask, u8 shift)
1123{
1124 u32 val = (mlxbf_i2c_get_ticks(priv, nanoseconds: nsec, minimum: opt) & mask) << shift;
1125
1126 return val;
1127}
1128
1129static void mlxbf_i2c_set_timings(struct mlxbf_i2c_priv *priv,
1130 const struct mlxbf_i2c_timings *timings)
1131{
1132 u32 timer;
1133
1134 timer = mlxbf_i2c_set_timer(priv, nsec: timings->scl_high,
1135 opt: false, MLXBF_I2C_MASK_16,
1136 MLXBF_I2C_SHIFT_0);
1137 timer |= mlxbf_i2c_set_timer(priv, nsec: timings->scl_low,
1138 opt: false, MLXBF_I2C_MASK_16,
1139 MLXBF_I2C_SHIFT_16);
1140 writel(val: timer, addr: priv->timer->io +
1141 MLXBF_I2C_SMBUS_TIMER_SCL_LOW_SCL_HIGH);
1142
1143 timer = mlxbf_i2c_set_timer(priv, nsec: timings->sda_rise, opt: false,
1144 MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_0);
1145 timer |= mlxbf_i2c_set_timer(priv, nsec: timings->sda_fall, opt: false,
1146 MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_8);
1147 timer |= mlxbf_i2c_set_timer(priv, nsec: timings->scl_rise, opt: false,
1148 MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_16);
1149 timer |= mlxbf_i2c_set_timer(priv, nsec: timings->scl_fall, opt: false,
1150 MLXBF_I2C_MASK_8, MLXBF_I2C_SHIFT_24);
1151 writel(val: timer, addr: priv->timer->io +
1152 MLXBF_I2C_SMBUS_TIMER_FALL_RISE_SPIKE);
1153
1154 timer = mlxbf_i2c_set_timer(priv, nsec: timings->hold_start, opt: true,
1155 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1156 timer |= mlxbf_i2c_set_timer(priv, nsec: timings->hold_data, opt: true,
1157 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1158 writel(val: timer, addr: priv->timer->io + MLXBF_I2C_SMBUS_TIMER_THOLD);
1159
1160 timer = mlxbf_i2c_set_timer(priv, nsec: timings->setup_start, opt: true,
1161 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1162 timer |= mlxbf_i2c_set_timer(priv, nsec: timings->setup_stop, opt: true,
1163 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1164 writel(val: timer, addr: priv->timer->io +
1165 MLXBF_I2C_SMBUS_TIMER_TSETUP_START_STOP);
1166
1167 timer = mlxbf_i2c_set_timer(priv, nsec: timings->setup_data, opt: true,
1168 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1169 writel(val: timer, addr: priv->timer->io + MLXBF_I2C_SMBUS_TIMER_TSETUP_DATA);
1170
1171 timer = mlxbf_i2c_set_timer(priv, nsec: timings->buf, opt: false,
1172 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_0);
1173 timer |= mlxbf_i2c_set_timer(priv, nsec: timings->thigh_max, opt: false,
1174 MLXBF_I2C_MASK_16, MLXBF_I2C_SHIFT_16);
1175 writel(val: timer, addr: priv->timer->io + MLXBF_I2C_SMBUS_THIGH_MAX_TBUF);
1176
1177 timer = timings->timeout;
1178 writel(val: timer, addr: priv->timer->io + MLXBF_I2C_SMBUS_SCL_LOW_TIMEOUT);
1179}
1180
1181enum mlxbf_i2c_timings_config {
1182 MLXBF_I2C_TIMING_CONFIG_100KHZ,
1183 MLXBF_I2C_TIMING_CONFIG_400KHZ,
1184 MLXBF_I2C_TIMING_CONFIG_1000KHZ,
1185};
1186
1187/*
1188 * Note that the mlxbf_i2c_timings->timeout value is not related to the
1189 * bus frequency, it is impacted by the time it takes the driver to
1190 * complete data transmission before transaction abort.
1191 */
1192static const struct mlxbf_i2c_timings mlxbf_i2c_timings[] = {
1193 [MLXBF_I2C_TIMING_CONFIG_100KHZ] = {
1194 .scl_high = 4810,
1195 .scl_low = 5000,
1196 .hold_start = 4000,
1197 .setup_start = 4800,
1198 .setup_stop = 4000,
1199 .setup_data = 250,
1200 .sda_rise = 50,
1201 .sda_fall = 50,
1202 .scl_rise = 50,
1203 .scl_fall = 50,
1204 .hold_data = 300,
1205 .buf = 20000,
1206 .thigh_max = 5000,
1207 .timeout = 106500
1208 },
1209 [MLXBF_I2C_TIMING_CONFIG_400KHZ] = {
1210 .scl_high = 1011,
1211 .scl_low = 1300,
1212 .hold_start = 600,
1213 .setup_start = 700,
1214 .setup_stop = 600,
1215 .setup_data = 100,
1216 .sda_rise = 50,
1217 .sda_fall = 50,
1218 .scl_rise = 50,
1219 .scl_fall = 50,
1220 .hold_data = 300,
1221 .buf = 20000,
1222 .thigh_max = 5000,
1223 .timeout = 106500
1224 },
1225 [MLXBF_I2C_TIMING_CONFIG_1000KHZ] = {
1226 .scl_high = 600,
1227 .scl_low = 1300,
1228 .hold_start = 600,
1229 .setup_start = 600,
1230 .setup_stop = 600,
1231 .setup_data = 100,
1232 .sda_rise = 50,
1233 .sda_fall = 50,
1234 .scl_rise = 50,
1235 .scl_fall = 50,
1236 .hold_data = 300,
1237 .buf = 20000,
1238 .thigh_max = 5000,
1239 .timeout = 106500
1240 }
1241};
1242
1243static int mlxbf_i2c_init_timings(struct platform_device *pdev,
1244 struct mlxbf_i2c_priv *priv)
1245{
1246 enum mlxbf_i2c_timings_config config_idx;
1247 struct device *dev = &pdev->dev;
1248 u32 config_khz;
1249
1250 int ret;
1251
1252 ret = device_property_read_u32(dev, propname: "clock-frequency", val: &config_khz);
1253 if (ret < 0)
1254 config_khz = I2C_MAX_STANDARD_MODE_FREQ;
1255
1256 switch (config_khz) {
1257 default:
1258 /* Default settings is 100 KHz. */
1259 pr_warn("Illegal value %d: defaulting to 100 KHz\n",
1260 config_khz);
1261 fallthrough;
1262 case I2C_MAX_STANDARD_MODE_FREQ:
1263 config_idx = MLXBF_I2C_TIMING_CONFIG_100KHZ;
1264 break;
1265
1266 case I2C_MAX_FAST_MODE_FREQ:
1267 config_idx = MLXBF_I2C_TIMING_CONFIG_400KHZ;
1268 break;
1269
1270 case I2C_MAX_FAST_MODE_PLUS_FREQ:
1271 config_idx = MLXBF_I2C_TIMING_CONFIG_1000KHZ;
1272 break;
1273 }
1274
1275 mlxbf_i2c_set_timings(priv, timings: &mlxbf_i2c_timings[config_idx]);
1276
1277 return 0;
1278}
1279
1280static int mlxbf_i2c_get_gpio(struct platform_device *pdev,
1281 struct mlxbf_i2c_priv *priv)
1282{
1283 struct mlxbf_i2c_resource *gpio_res;
1284 struct device *dev = &pdev->dev;
1285 struct resource *params;
1286 resource_size_t size;
1287
1288 gpio_res = mlxbf_i2c_get_shared_resource(priv, type: MLXBF_I2C_GPIO_RES);
1289 if (!gpio_res)
1290 return -EPERM;
1291
1292 /*
1293 * The GPIO region in TYU space is shared among I2C busses.
1294 * This function MUST be serialized to avoid racing when
1295 * claiming the memory region and/or setting up the GPIO.
1296 */
1297 lockdep_assert_held(gpio_res->lock);
1298
1299 /* Check whether the memory map exist. */
1300 if (gpio_res->io)
1301 return 0;
1302
1303 params = gpio_res->params;
1304 size = resource_size(res: params);
1305
1306 if (!devm_request_mem_region(dev, params->start, size, params->name))
1307 return -EFAULT;
1308
1309 gpio_res->io = devm_ioremap(dev, offset: params->start, size);
1310 if (!gpio_res->io) {
1311 devm_release_mem_region(dev, params->start, size);
1312 return -ENOMEM;
1313 }
1314
1315 return 0;
1316}
1317
1318static int mlxbf_i2c_release_gpio(struct platform_device *pdev,
1319 struct mlxbf_i2c_priv *priv)
1320{
1321 struct mlxbf_i2c_resource *gpio_res;
1322 struct device *dev = &pdev->dev;
1323 struct resource *params;
1324
1325 gpio_res = mlxbf_i2c_get_shared_resource(priv, type: MLXBF_I2C_GPIO_RES);
1326 if (!gpio_res)
1327 return 0;
1328
1329 mutex_lock(gpio_res->lock);
1330
1331 if (gpio_res->io) {
1332 /* Release the GPIO resource. */
1333 params = gpio_res->params;
1334 devm_iounmap(dev, addr: gpio_res->io);
1335 devm_release_mem_region(dev, params->start,
1336 resource_size(params));
1337 }
1338
1339 mutex_unlock(lock: gpio_res->lock);
1340
1341 return 0;
1342}
1343
1344static int mlxbf_i2c_get_corepll(struct platform_device *pdev,
1345 struct mlxbf_i2c_priv *priv)
1346{
1347 struct mlxbf_i2c_resource *corepll_res;
1348 struct device *dev = &pdev->dev;
1349 struct resource *params;
1350 resource_size_t size;
1351
1352 corepll_res = mlxbf_i2c_get_shared_resource(priv,
1353 type: MLXBF_I2C_COREPLL_RES);
1354 if (!corepll_res)
1355 return -EPERM;
1356
1357 /*
1358 * The COREPLL region in TYU space is shared among I2C busses.
1359 * This function MUST be serialized to avoid racing when
1360 * claiming the memory region.
1361 */
1362 lockdep_assert_held(corepll_res->lock);
1363
1364 /* Check whether the memory map exist. */
1365 if (corepll_res->io)
1366 return 0;
1367
1368 params = corepll_res->params;
1369 size = resource_size(res: params);
1370
1371 if (!devm_request_mem_region(dev, params->start, size, params->name))
1372 return -EFAULT;
1373
1374 corepll_res->io = devm_ioremap(dev, offset: params->start, size);
1375 if (!corepll_res->io) {
1376 devm_release_mem_region(dev, params->start, size);
1377 return -ENOMEM;
1378 }
1379
1380 return 0;
1381}
1382
1383static int mlxbf_i2c_release_corepll(struct platform_device *pdev,
1384 struct mlxbf_i2c_priv *priv)
1385{
1386 struct mlxbf_i2c_resource *corepll_res;
1387 struct device *dev = &pdev->dev;
1388 struct resource *params;
1389
1390 corepll_res = mlxbf_i2c_get_shared_resource(priv,
1391 type: MLXBF_I2C_COREPLL_RES);
1392
1393 mutex_lock(corepll_res->lock);
1394
1395 if (corepll_res->io) {
1396 /* Release the CorePLL resource. */
1397 params = corepll_res->params;
1398 devm_iounmap(dev, addr: corepll_res->io);
1399 devm_release_mem_region(dev, params->start,
1400 resource_size(params));
1401 }
1402
1403 mutex_unlock(lock: corepll_res->lock);
1404
1405 return 0;
1406}
1407
1408static int mlxbf_i2c_init_master(struct platform_device *pdev,
1409 struct mlxbf_i2c_priv *priv)
1410{
1411 struct mlxbf_i2c_resource *gpio_res;
1412 struct device *dev = &pdev->dev;
1413 u32 config_reg;
1414 int ret;
1415
1416 /* This configuration is only needed for BlueField 1. */
1417 if (!mlxbf_i2c_has_chip_type(priv, type: MLXBF_I2C_CHIP_TYPE_1))
1418 return 0;
1419
1420 gpio_res = mlxbf_i2c_get_shared_resource(priv, type: MLXBF_I2C_GPIO_RES);
1421 if (!gpio_res)
1422 return -EPERM;
1423
1424 /*
1425 * The GPIO region in TYU space is shared among I2C busses.
1426 * This function MUST be serialized to avoid racing when
1427 * claiming the memory region and/or setting up the GPIO.
1428 */
1429
1430 mutex_lock(gpio_res->lock);
1431
1432 ret = mlxbf_i2c_get_gpio(pdev, priv);
1433 if (ret < 0) {
1434 dev_err(dev, "Failed to get gpio resource");
1435 mutex_unlock(lock: gpio_res->lock);
1436 return ret;
1437 }
1438
1439 /*
1440 * TYU - Configuration for GPIO pins. Those pins must be asserted in
1441 * MLXBF_I2C_GPIO_0_FUNC_EN_0, i.e. GPIO 0 is controlled by HW, and must
1442 * be reset in MLXBF_I2C_GPIO_0_FORCE_OE_EN, i.e. GPIO_OE will be driven
1443 * instead of HW_OE.
1444 * For now, we do not reset the GPIO state when the driver is removed.
1445 * First, it is not necessary to disable the bus since we are using
1446 * the same busses. Then, some busses might be shared among Linux and
1447 * platform firmware; disabling the bus might compromise the system
1448 * functionality.
1449 */
1450 config_reg = readl(addr: gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1451 config_reg = MLXBF_I2C_GPIO_SMBUS_GW_ASSERT_PINS(priv->bus,
1452 config_reg);
1453 writel(val: config_reg, addr: gpio_res->io + MLXBF_I2C_GPIO_0_FUNC_EN_0);
1454
1455 config_reg = readl(addr: gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1456 config_reg = MLXBF_I2C_GPIO_SMBUS_GW_RESET_PINS(priv->bus,
1457 config_reg);
1458 writel(val: config_reg, addr: gpio_res->io + MLXBF_I2C_GPIO_0_FORCE_OE_EN);
1459
1460 mutex_unlock(lock: gpio_res->lock);
1461
1462 return 0;
1463}
1464
1465static u64 mlxbf_i2c_calculate_freq_from_tyu(struct mlxbf_i2c_resource *corepll_res)
1466{
1467 u64 core_frequency;
1468 u8 core_od, core_r;
1469 u32 corepll_val;
1470 u16 core_f;
1471
1472 corepll_val = readl(addr: corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1473
1474 /* Get Core PLL configuration bits. */
1475 core_f = FIELD_GET(MLXBF_I2C_COREPLL_CORE_F_TYU_MASK, corepll_val);
1476 core_od = FIELD_GET(MLXBF_I2C_COREPLL_CORE_OD_TYU_MASK, corepll_val);
1477 core_r = FIELD_GET(MLXBF_I2C_COREPLL_CORE_R_TYU_MASK, corepll_val);
1478
1479 /*
1480 * Compute PLL output frequency as follow:
1481 *
1482 * CORE_F + 1
1483 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1484 * (CORE_R + 1) * (CORE_OD + 1)
1485 *
1486 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1487 * and PadFrequency, respectively.
1488 */
1489 core_frequency = MLXBF_I2C_PLL_IN_FREQ * (++core_f);
1490 core_frequency /= (++core_r) * (++core_od);
1491
1492 return core_frequency;
1493}
1494
1495static u64 mlxbf_i2c_calculate_freq_from_yu(struct mlxbf_i2c_resource *corepll_res)
1496{
1497 u32 corepll_reg1_val, corepll_reg2_val;
1498 u64 corepll_frequency;
1499 u8 core_od, core_r;
1500 u32 core_f;
1501
1502 corepll_reg1_val = readl(addr: corepll_res->io + MLXBF_I2C_CORE_PLL_REG1);
1503 corepll_reg2_val = readl(addr: corepll_res->io + MLXBF_I2C_CORE_PLL_REG2);
1504
1505 /* Get Core PLL configuration bits */
1506 core_f = FIELD_GET(MLXBF_I2C_COREPLL_CORE_F_YU_MASK, corepll_reg1_val);
1507 core_r = FIELD_GET(MLXBF_I2C_COREPLL_CORE_R_YU_MASK, corepll_reg1_val);
1508 core_od = FIELD_GET(MLXBF_I2C_COREPLL_CORE_OD_YU_MASK, corepll_reg2_val);
1509
1510 /*
1511 * Compute PLL output frequency as follow:
1512 *
1513 * CORE_F / 16384
1514 * PLL_OUT_FREQ = PLL_IN_FREQ * ----------------------------
1515 * (CORE_R + 1) * (CORE_OD + 1)
1516 *
1517 * Where PLL_OUT_FREQ and PLL_IN_FREQ refer to CoreFrequency
1518 * and PadFrequency, respectively.
1519 */
1520 corepll_frequency = (MLXBF_I2C_PLL_IN_FREQ * core_f) / MLNXBF_I2C_COREPLL_CONST;
1521 corepll_frequency /= (++core_r) * (++core_od);
1522
1523 return corepll_frequency;
1524}
1525
1526static int mlxbf_i2c_calculate_corepll_freq(struct platform_device *pdev,
1527 struct mlxbf_i2c_priv *priv)
1528{
1529 const struct mlxbf_i2c_chip_info *chip = priv->chip;
1530 struct mlxbf_i2c_resource *corepll_res;
1531 struct device *dev = &pdev->dev;
1532 u64 *freq = &priv->frequency;
1533 int ret;
1534
1535 corepll_res = mlxbf_i2c_get_shared_resource(priv,
1536 type: MLXBF_I2C_COREPLL_RES);
1537 if (!corepll_res)
1538 return -EPERM;
1539
1540 /*
1541 * First, check whether the TYU core Clock frequency is set.
1542 * The TYU core frequency is the same for all I2C busses; when
1543 * the first device gets probed the frequency is determined and
1544 * stored into a globally visible variable. So, first of all,
1545 * check whether the frequency is already set. Here, we assume
1546 * that the frequency is expected to be greater than 0.
1547 */
1548 mutex_lock(corepll_res->lock);
1549 if (!mlxbf_i2c_corepll_frequency) {
1550 if (!chip->calculate_freq) {
1551 mutex_unlock(lock: corepll_res->lock);
1552 return -EPERM;
1553 }
1554
1555 ret = mlxbf_i2c_get_corepll(pdev, priv);
1556 if (ret < 0) {
1557 dev_err(dev, "Failed to get corePLL resource");
1558 mutex_unlock(lock: corepll_res->lock);
1559 return ret;
1560 }
1561
1562 mlxbf_i2c_corepll_frequency = chip->calculate_freq(corepll_res);
1563 }
1564 mutex_unlock(lock: corepll_res->lock);
1565
1566 *freq = mlxbf_i2c_corepll_frequency;
1567
1568 return 0;
1569}
1570
1571static int mlxbf_i2c_slave_enable(struct mlxbf_i2c_priv *priv,
1572 struct i2c_client *slave)
1573{
1574 u8 reg, reg_cnt, byte, addr_tmp;
1575 u32 slave_reg, slave_reg_tmp;
1576
1577 if (!priv)
1578 return -EPERM;
1579
1580 reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1581
1582 /*
1583 * Read the slave registers. There are 4 * 32-bit slave registers.
1584 * Each slave register can hold up to 4 * 8-bit slave configuration:
1585 * 1) A 7-bit address
1586 * 2) And a status bit (1 if enabled, 0 if not).
1587 * Look for the next available slave register slot.
1588 */
1589 for (reg = 0; reg < reg_cnt; reg++) {
1590 slave_reg = readl(addr: priv->slv->io +
1591 MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1592 /*
1593 * Each register holds 4 slave addresses. So, we have to keep
1594 * the byte order consistent with the value read in order to
1595 * update the register correctly, if needed.
1596 */
1597 slave_reg_tmp = slave_reg;
1598 for (byte = 0; byte < 4; byte++) {
1599 addr_tmp = slave_reg_tmp & GENMASK(7, 0);
1600
1601 /*
1602 * If an enable bit is not set in the
1603 * MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG register, then the
1604 * slave address slot associated with that bit is
1605 * free. So set the enable bit and write the
1606 * slave address bits.
1607 */
1608 if (!(addr_tmp & MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT)) {
1609 slave_reg &= ~(MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK << (byte * 8));
1610 slave_reg |= (slave->addr << (byte * 8));
1611 slave_reg |= MLXBF_I2C_SMBUS_SLAVE_ADDR_EN_BIT << (byte * 8);
1612 writel(val: slave_reg, addr: priv->slv->io +
1613 MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1614 (reg * 0x4));
1615
1616 /*
1617 * Set the slave at the corresponding index.
1618 */
1619 priv->slave[(reg * 4) + byte] = slave;
1620
1621 return 0;
1622 }
1623
1624 /* Parse next byte. */
1625 slave_reg_tmp >>= 8;
1626 }
1627 }
1628
1629 return -EBUSY;
1630}
1631
1632static int mlxbf_i2c_slave_disable(struct mlxbf_i2c_priv *priv, u8 addr)
1633{
1634 u8 addr_tmp, reg, reg_cnt, byte;
1635 u32 slave_reg, slave_reg_tmp;
1636
1637 reg_cnt = MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT >> 2;
1638
1639 /*
1640 * Read the slave registers. There are 4 * 32-bit slave registers.
1641 * Each slave register can hold up to 4 * 8-bit slave configuration:
1642 * 1) A 7-bit address
1643 * 2) And a status bit (1 if enabled, 0 if not).
1644 * Check if addr is present in the registers.
1645 */
1646 for (reg = 0; reg < reg_cnt; reg++) {
1647 slave_reg = readl(addr: priv->slv->io +
1648 MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG + reg * 0x4);
1649
1650 /* Check whether the address slots are empty. */
1651 if (!slave_reg)
1652 continue;
1653
1654 /*
1655 * Check if addr matches any of the 4 slave addresses
1656 * in the register.
1657 */
1658 slave_reg_tmp = slave_reg;
1659 for (byte = 0; byte < 4; byte++) {
1660 addr_tmp = slave_reg_tmp & MLXBF_I2C_SMBUS_SLAVE_ADDR_MASK;
1661 /*
1662 * Parse slave address bytes and check whether the
1663 * slave address already exists.
1664 */
1665 if (addr_tmp == addr) {
1666 /* Clear the slave address slot. */
1667 slave_reg &= ~(GENMASK(7, 0) << (byte * 8));
1668 writel(val: slave_reg, addr: priv->slv->io +
1669 MLXBF_I2C_SMBUS_SLAVE_ADDR_CFG +
1670 (reg * 0x4));
1671 /* Free slave at the corresponding index */
1672 priv->slave[(reg * 4) + byte] = NULL;
1673
1674 return 0;
1675 }
1676
1677 /* Parse next byte. */
1678 slave_reg_tmp >>= 8;
1679 }
1680 }
1681
1682 return -ENXIO;
1683}
1684
1685static int mlxbf_i2c_init_coalesce(struct platform_device *pdev,
1686 struct mlxbf_i2c_priv *priv)
1687{
1688 struct mlxbf_i2c_resource *coalesce_res;
1689 struct resource *params;
1690 resource_size_t size;
1691 int ret = 0;
1692
1693 /*
1694 * Unlike BlueField-1 platform, the coalesce registers is a dedicated
1695 * resource in the next generations of BlueField.
1696 */
1697 if (mlxbf_i2c_has_chip_type(priv, type: MLXBF_I2C_CHIP_TYPE_1)) {
1698 coalesce_res = mlxbf_i2c_get_shared_resource(priv,
1699 type: MLXBF_I2C_COALESCE_RES);
1700 if (!coalesce_res)
1701 return -EPERM;
1702
1703 /*
1704 * The Cause Coalesce group in TYU space is shared among
1705 * I2C busses. This function MUST be serialized to avoid
1706 * racing when claiming the memory region.
1707 */
1708 lockdep_assert_held(mlxbf_i2c_gpio_res->lock);
1709
1710 /* Check whether the memory map exist. */
1711 if (coalesce_res->io) {
1712 priv->coalesce = coalesce_res;
1713 return 0;
1714 }
1715
1716 params = coalesce_res->params;
1717 size = resource_size(res: params);
1718
1719 if (!request_mem_region(params->start, size, params->name))
1720 return -EFAULT;
1721
1722 coalesce_res->io = ioremap(offset: params->start, size);
1723 if (!coalesce_res->io) {
1724 release_mem_region(params->start, size);
1725 return -ENOMEM;
1726 }
1727
1728 priv->coalesce = coalesce_res;
1729
1730 } else {
1731 ret = mlxbf_i2c_init_resource(pdev, res: &priv->coalesce,
1732 type: MLXBF_I2C_COALESCE_RES);
1733 }
1734
1735 return ret;
1736}
1737
1738static int mlxbf_i2c_release_coalesce(struct platform_device *pdev,
1739 struct mlxbf_i2c_priv *priv)
1740{
1741 struct mlxbf_i2c_resource *coalesce_res;
1742 struct device *dev = &pdev->dev;
1743 struct resource *params;
1744 resource_size_t size;
1745
1746 coalesce_res = priv->coalesce;
1747
1748 if (coalesce_res->io) {
1749 params = coalesce_res->params;
1750 size = resource_size(res: params);
1751 if (mlxbf_i2c_has_chip_type(priv, type: MLXBF_I2C_CHIP_TYPE_1)) {
1752 mutex_lock(coalesce_res->lock);
1753 iounmap(addr: coalesce_res->io);
1754 release_mem_region(params->start, size);
1755 mutex_unlock(lock: coalesce_res->lock);
1756 } else {
1757 devm_release_mem_region(dev, params->start, size);
1758 }
1759 }
1760
1761 return 0;
1762}
1763
1764static int mlxbf_i2c_init_slave(struct platform_device *pdev,
1765 struct mlxbf_i2c_priv *priv)
1766{
1767 struct device *dev = &pdev->dev;
1768 u32 int_reg;
1769 int ret;
1770
1771 /* Reset FSM. */
1772 writel(val: 0, addr: priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_FSM);
1773
1774 /*
1775 * Enable slave cause interrupt bits. Drive
1776 * MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE and
1777 * MLXBF_I2C_CAUSE_WRITE_SUCCESS, these are enabled when an external
1778 * masters issue a Read and Write, respectively. But, clear all
1779 * interrupts first.
1780 */
1781 writel(val: ~0, addr: priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1782 int_reg = MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE;
1783 int_reg |= MLXBF_I2C_CAUSE_WRITE_SUCCESS;
1784 writel(val: int_reg, addr: priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_EVTEN0);
1785
1786 /* Finally, set the 'ready' bit to start handling transactions. */
1787 writel(val: 0x1, addr: priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1788
1789 /* Initialize the cause coalesce resource. */
1790 ret = mlxbf_i2c_init_coalesce(pdev, priv);
1791 if (ret < 0) {
1792 dev_err(dev, "failed to initialize cause coalesce\n");
1793 return ret;
1794 }
1795
1796 return 0;
1797}
1798
1799static bool mlxbf_i2c_has_coalesce(struct mlxbf_i2c_priv *priv, bool *read,
1800 bool *write)
1801{
1802 const struct mlxbf_i2c_chip_info *chip = priv->chip;
1803 u32 coalesce0_reg, cause_reg;
1804 u8 slave_shift, is_set;
1805
1806 *write = false;
1807 *read = false;
1808
1809 slave_shift = chip->type != MLXBF_I2C_CHIP_TYPE_1 ?
1810 MLXBF_I2C_CAUSE_YU_SLAVE_BIT :
1811 priv->bus + MLXBF_I2C_CAUSE_TYU_SLAVE_BIT;
1812
1813 coalesce0_reg = readl(addr: priv->coalesce->io + MLXBF_I2C_CAUSE_COALESCE_0);
1814 is_set = coalesce0_reg & (1 << slave_shift);
1815
1816 if (!is_set)
1817 return false;
1818
1819 /* Check the source of the interrupt, i.e. whether a Read or Write. */
1820 cause_reg = readl(addr: priv->slv_cause->io + MLXBF_I2C_CAUSE_ARBITER);
1821 if (cause_reg & MLXBF_I2C_CAUSE_READ_WAIT_FW_RESPONSE)
1822 *read = true;
1823 else if (cause_reg & MLXBF_I2C_CAUSE_WRITE_SUCCESS)
1824 *write = true;
1825
1826 /* Clear cause bits. */
1827 writel(val: ~0x0, addr: priv->slv_cause->io + MLXBF_I2C_CAUSE_OR_CLEAR);
1828
1829 return true;
1830}
1831
1832static bool mlxbf_i2c_slave_wait_for_idle(struct mlxbf_i2c_priv *priv,
1833 u32 timeout)
1834{
1835 u32 mask = MLXBF_I2C_CAUSE_S_GW_BUSY_FALL;
1836 u32 addr = MLXBF_I2C_CAUSE_ARBITER;
1837
1838 if (mlxbf_i2c_poll(io: priv->slv_cause->io, addr, mask, eq_zero: false, timeout))
1839 return true;
1840
1841 return false;
1842}
1843
1844static struct i2c_client *mlxbf_i2c_get_slave_from_addr(
1845 struct mlxbf_i2c_priv *priv, u8 addr)
1846{
1847 int i;
1848
1849 for (i = 0; i < MLXBF_I2C_SMBUS_SLAVE_ADDR_CNT; i++) {
1850 if (!priv->slave[i])
1851 continue;
1852
1853 if (priv->slave[i]->addr == addr)
1854 return priv->slave[i];
1855 }
1856
1857 return NULL;
1858}
1859
1860/*
1861 * Send byte to 'external' smbus master. This function is executed when
1862 * an external smbus master wants to read data from the BlueField.
1863 */
1864static int mlxbf_i2c_irq_send(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1865{
1866 u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1867 u8 write_size, pec_en, addr, value, byte_cnt;
1868 struct i2c_client *slave;
1869 u32 control32, data32;
1870 int ret = 0;
1871
1872 /*
1873 * Read the first byte received from the external master to
1874 * determine the slave address. This byte is located in the
1875 * first data descriptor register of the slave GW.
1876 */
1877 data32 = ioread32be(priv->slv->io +
1878 MLXBF_I2C_SLAVE_DATA_DESC_ADDR);
1879 addr = (data32 & GENMASK(7, 0)) >> 1;
1880
1881 /*
1882 * Check if the slave address received in the data descriptor register
1883 * matches any of the slave addresses registered. If there is a match,
1884 * set the slave.
1885 */
1886 slave = mlxbf_i2c_get_slave_from_addr(priv, addr);
1887 if (!slave) {
1888 ret = -ENXIO;
1889 goto clear_csr;
1890 }
1891
1892 /*
1893 * An I2C read can consist of a WRITE bit transaction followed by
1894 * a READ bit transaction. Indeed, slave devices often expect
1895 * the slave address to be followed by the internal address.
1896 * So, write the internal address byte first, and then, send the
1897 * requested data to the master.
1898 */
1899 if (recv_bytes > 1) {
1900 i2c_slave_event(client: slave, event: I2C_SLAVE_WRITE_REQUESTED, val: &value);
1901 value = (data32 >> 8) & GENMASK(7, 0);
1902 ret = i2c_slave_event(client: slave, event: I2C_SLAVE_WRITE_RECEIVED,
1903 val: &value);
1904 i2c_slave_event(client: slave, event: I2C_SLAVE_STOP, val: &value);
1905
1906 if (ret < 0)
1907 goto clear_csr;
1908 }
1909
1910 /*
1911 * Send data to the master. Currently, the driver supports
1912 * READ_BYTE, READ_WORD and BLOCK READ protocols. The
1913 * hardware can send up to 128 bytes per transfer which is
1914 * the total size of the data registers.
1915 */
1916 i2c_slave_event(client: slave, event: I2C_SLAVE_READ_REQUESTED, val: &value);
1917
1918 for (byte_cnt = 0; byte_cnt < MLXBF_I2C_SLAVE_DATA_DESC_SIZE; byte_cnt++) {
1919 data_desc[byte_cnt] = value;
1920 i2c_slave_event(client: slave, event: I2C_SLAVE_READ_PROCESSED, val: &value);
1921 }
1922
1923 /* Send a stop condition to the backend. */
1924 i2c_slave_event(client: slave, event: I2C_SLAVE_STOP, val: &value);
1925
1926 /* Set the number of bytes to write to master. */
1927 write_size = (byte_cnt - 1) & 0x7f;
1928
1929 /* Write data to Slave GW data descriptor. */
1930 mlxbf_i2c_smbus_write_data(priv, data: data_desc, length: byte_cnt,
1931 MLXBF_I2C_SLAVE_DATA_DESC_ADDR, is_master: false);
1932
1933 pec_en = 0; /* Disable PEC since it is not supported. */
1934
1935 /* Prepare control word. */
1936 control32 = MLXBF_I2C_SLAVE_ENABLE;
1937 control32 |= rol32(word: write_size, MLXBF_I2C_SLAVE_WRITE_BYTES_SHIFT);
1938 control32 |= rol32(word: pec_en, MLXBF_I2C_SLAVE_SEND_PEC_SHIFT);
1939
1940 writel(val: control32, addr: priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_GW);
1941
1942 /*
1943 * Wait until the transfer is completed; the driver will wait
1944 * until the GW is idle, a cause will rise on fall of GW busy.
1945 */
1946 mlxbf_i2c_slave_wait_for_idle(priv, MLXBF_I2C_SMBUS_TIMEOUT);
1947
1948clear_csr:
1949 /* Release the Slave GW. */
1950 writel(val: 0x0, addr: priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
1951 writel(val: 0x0, addr: priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
1952 writel(val: 0x1, addr: priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_READY);
1953
1954 return ret;
1955}
1956
1957/*
1958 * Receive bytes from 'external' smbus master. This function is executed when
1959 * an external smbus master wants to write data to the BlueField.
1960 */
1961static int mlxbf_i2c_irq_recv(struct mlxbf_i2c_priv *priv, u8 recv_bytes)
1962{
1963 u8 data_desc[MLXBF_I2C_SLAVE_DATA_DESC_SIZE] = { 0 };
1964 struct i2c_client *slave;
1965 u8 value, byte, addr;
1966 int ret = 0;
1967
1968 /* Read data from Slave GW data descriptor. */
1969 mlxbf_i2c_smbus_read_data(priv, data: data_desc, length: recv_bytes,
1970 MLXBF_I2C_SLAVE_DATA_DESC_ADDR, is_master: false);
1971 addr = data_desc[0] >> 1;
1972
1973 /*
1974 * Check if the slave address received in the data descriptor register
1975 * matches any of the slave addresses registered.
1976 */
1977 slave = mlxbf_i2c_get_slave_from_addr(priv, addr);
1978 if (!slave) {
1979 ret = -EINVAL;
1980 goto clear_csr;
1981 }
1982
1983 /*
1984 * Notify the slave backend that an smbus master wants to write data
1985 * to the BlueField.
1986 */
1987 i2c_slave_event(client: slave, event: I2C_SLAVE_WRITE_REQUESTED, val: &value);
1988
1989 /* Send the received data to the slave backend. */
1990 for (byte = 1; byte < recv_bytes; byte++) {
1991 value = data_desc[byte];
1992 ret = i2c_slave_event(client: slave, event: I2C_SLAVE_WRITE_RECEIVED,
1993 val: &value);
1994 if (ret < 0)
1995 break;
1996 }
1997
1998 /*
1999 * Send a stop event to the slave backend, to signal
2000 * the end of the write transactions.
2001 */
2002 i2c_slave_event(client: slave, event: I2C_SLAVE_STOP, val: &value);
2003
2004clear_csr:
2005 /* Release the Slave GW. */
2006 writel(val: 0x0, addr: priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2007 writel(val: 0x0, addr: priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_PEC);
2008 writel(val: 0x1, addr: priv->slv->io + MLXBF_I2C_SMBUS_SLAVE_READY);
2009
2010 return ret;
2011}
2012
2013static irqreturn_t mlxbf_i2c_irq(int irq, void *ptr)
2014{
2015 struct mlxbf_i2c_priv *priv = ptr;
2016 bool read, write, irq_is_set;
2017 u32 rw_bytes_reg;
2018 u8 recv_bytes;
2019
2020 /*
2021 * Read TYU interrupt register and determine the source of the
2022 * interrupt. Based on the source of the interrupt one of the
2023 * following actions are performed:
2024 * - Receive data and send response to master.
2025 * - Send data and release slave GW.
2026 *
2027 * Handle read/write transaction only. CRmaster and Iarp requests
2028 * are ignored for now.
2029 */
2030 irq_is_set = mlxbf_i2c_has_coalesce(priv, read: &read, write: &write);
2031 if (!irq_is_set || (!read && !write)) {
2032 /* Nothing to do here, interrupt was not from this device. */
2033 return IRQ_NONE;
2034 }
2035
2036 /*
2037 * The MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES includes the number of
2038 * bytes from/to master. These are defined by 8-bits each. If the lower
2039 * 8 bits are set, then the master expect to read N bytes from the
2040 * slave, if the higher 8 bits are sent then the slave expect N bytes
2041 * from the master.
2042 */
2043 rw_bytes_reg = readl(addr: priv->slv->io +
2044 MLXBF_I2C_SMBUS_SLAVE_RS_MASTER_BYTES);
2045 recv_bytes = (rw_bytes_reg >> 8) & GENMASK(7, 0);
2046
2047 /*
2048 * For now, the slave supports 128 bytes transfer. Discard remaining
2049 * data bytes if the master wrote more than
2050 * MLXBF_I2C_SLAVE_DATA_DESC_SIZE, i.e, the actual size of the slave
2051 * data descriptor.
2052 *
2053 * Note that we will never expect to transfer more than 128 bytes; as
2054 * specified in the SMBus standard, block transactions cannot exceed
2055 * 32 bytes.
2056 */
2057 recv_bytes = recv_bytes > MLXBF_I2C_SLAVE_DATA_DESC_SIZE ?
2058 MLXBF_I2C_SLAVE_DATA_DESC_SIZE : recv_bytes;
2059
2060 if (read)
2061 mlxbf_i2c_irq_send(priv, recv_bytes);
2062 else
2063 mlxbf_i2c_irq_recv(priv, recv_bytes);
2064
2065 return IRQ_HANDLED;
2066}
2067
2068/* Return negative errno on error. */
2069static s32 mlxbf_i2c_smbus_xfer(struct i2c_adapter *adap, u16 addr,
2070 unsigned short flags, char read_write,
2071 u8 command, int size,
2072 union i2c_smbus_data *data)
2073{
2074 struct mlxbf_i2c_smbus_request request = { 0 };
2075 struct mlxbf_i2c_priv *priv;
2076 bool read, pec;
2077 u8 byte_cnt;
2078
2079 request.slave = addr;
2080
2081 read = (read_write == I2C_SMBUS_READ);
2082 pec = flags & I2C_FUNC_SMBUS_PEC;
2083
2084 switch (size) {
2085 case I2C_SMBUS_QUICK:
2086 mlxbf_i2c_smbus_quick_command(request: &request, read);
2087 dev_dbg(&adap->dev, "smbus quick, slave 0x%02x\n", addr);
2088 break;
2089
2090 case I2C_SMBUS_BYTE:
2091 mlxbf_i2c_smbus_byte_func(request: &request,
2092 data: read ? &data->byte : &command, read,
2093 pec_check: pec);
2094 dev_dbg(&adap->dev, "smbus %s byte, slave 0x%02x.\n",
2095 read ? "read" : "write", addr);
2096 break;
2097
2098 case I2C_SMBUS_BYTE_DATA:
2099 mlxbf_i2c_smbus_data_byte_func(request: &request, command: &command, data: &data->byte,
2100 read, pec_check: pec);
2101 dev_dbg(&adap->dev, "smbus %s byte data at 0x%02x, slave 0x%02x.\n",
2102 read ? "read" : "write", command, addr);
2103 break;
2104
2105 case I2C_SMBUS_WORD_DATA:
2106 mlxbf_i2c_smbus_data_word_func(request: &request, command: &command,
2107 data: (u8 *)&data->word, read, pec_check: pec);
2108 dev_dbg(&adap->dev, "smbus %s word data at 0x%02x, slave 0x%02x.\n",
2109 read ? "read" : "write", command, addr);
2110 break;
2111
2112 case I2C_SMBUS_I2C_BLOCK_DATA:
2113 byte_cnt = data->block[0];
2114 mlxbf_i2c_smbus_i2c_block_func(request: &request, command: &command, data: data->block,
2115 data_len: &byte_cnt, read, pec_check: pec);
2116 dev_dbg(&adap->dev, "i2c %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2117 read ? "read" : "write", byte_cnt, command, addr);
2118 break;
2119
2120 case I2C_SMBUS_BLOCK_DATA:
2121 byte_cnt = read ? I2C_SMBUS_BLOCK_MAX : data->block[0];
2122 mlxbf_i2c_smbus_block_func(request: &request, command: &command, data: data->block,
2123 data_len: &byte_cnt, read, pec_check: pec);
2124 dev_dbg(&adap->dev, "smbus %s block data, %d bytes at 0x%02x, slave 0x%02x.\n",
2125 read ? "read" : "write", byte_cnt, command, addr);
2126 break;
2127
2128 case I2C_FUNC_SMBUS_PROC_CALL:
2129 mlxbf_i2c_smbus_process_call_func(request: &request, command: &command,
2130 data: (u8 *)&data->word, pec_check: pec);
2131 dev_dbg(&adap->dev, "process call, wr/rd at 0x%02x, slave 0x%02x.\n",
2132 command, addr);
2133 break;
2134
2135 case I2C_FUNC_SMBUS_BLOCK_PROC_CALL:
2136 byte_cnt = data->block[0];
2137 mlxbf_i2c_smbus_blk_process_call_func(request: &request, command: &command,
2138 data: data->block, data_len: &byte_cnt,
2139 pec_check: pec);
2140 dev_dbg(&adap->dev, "block process call, wr/rd %d bytes, slave 0x%02x.\n",
2141 byte_cnt, addr);
2142 break;
2143
2144 default:
2145 dev_dbg(&adap->dev, "Unsupported I2C/SMBus command %d\n",
2146 size);
2147 return -EOPNOTSUPP;
2148 }
2149
2150 priv = i2c_get_adapdata(adap);
2151
2152 return mlxbf_i2c_smbus_start_transaction(priv, request: &request);
2153}
2154
2155static int mlxbf_i2c_reg_slave(struct i2c_client *slave)
2156{
2157 struct mlxbf_i2c_priv *priv = i2c_get_adapdata(adap: slave->adapter);
2158 struct device *dev = &slave->dev;
2159 int ret;
2160
2161 /*
2162 * Do not support ten bit chip address and do not use Packet Error
2163 * Checking (PEC).
2164 */
2165 if (slave->flags & (I2C_CLIENT_TEN | I2C_CLIENT_PEC)) {
2166 dev_err(dev, "SMBus PEC and 10 bit address not supported\n");
2167 return -EAFNOSUPPORT;
2168 }
2169
2170 ret = mlxbf_i2c_slave_enable(priv, slave);
2171 if (ret)
2172 dev_err(dev, "Surpassed max number of registered slaves allowed\n");
2173
2174 return 0;
2175}
2176
2177static int mlxbf_i2c_unreg_slave(struct i2c_client *slave)
2178{
2179 struct mlxbf_i2c_priv *priv = i2c_get_adapdata(adap: slave->adapter);
2180 struct device *dev = &slave->dev;
2181 int ret;
2182
2183 /*
2184 * Unregister slave by:
2185 * 1) Disabling the slave address in hardware
2186 * 2) Freeing priv->slave at the corresponding index
2187 */
2188 ret = mlxbf_i2c_slave_disable(priv, addr: slave->addr);
2189 if (ret)
2190 dev_err(dev, "Unable to find slave 0x%x\n", slave->addr);
2191
2192 return ret;
2193}
2194
2195static u32 mlxbf_i2c_functionality(struct i2c_adapter *adap)
2196{
2197 return MLXBF_I2C_FUNC_ALL;
2198}
2199
2200static struct mlxbf_i2c_chip_info mlxbf_i2c_chip[] = {
2201 [MLXBF_I2C_CHIP_TYPE_1] = {
2202 .type = MLXBF_I2C_CHIP_TYPE_1,
2203 .shared_res = {
2204 [0] = &mlxbf_i2c_coalesce_res[MLXBF_I2C_CHIP_TYPE_1],
2205 [1] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_1],
2206 [2] = &mlxbf_i2c_gpio_res[MLXBF_I2C_CHIP_TYPE_1]
2207 },
2208 .calculate_freq = mlxbf_i2c_calculate_freq_from_tyu,
2209 .smbus_master_rs_bytes_off = MLXBF_I2C_YU_SMBUS_RS_BYTES,
2210 .smbus_master_fsm_off = MLXBF_I2C_YU_SMBUS_MASTER_FSM
2211 },
2212 [MLXBF_I2C_CHIP_TYPE_2] = {
2213 .type = MLXBF_I2C_CHIP_TYPE_2,
2214 .shared_res = {
2215 [0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_2]
2216 },
2217 .calculate_freq = mlxbf_i2c_calculate_freq_from_yu,
2218 .smbus_master_rs_bytes_off = MLXBF_I2C_YU_SMBUS_RS_BYTES,
2219 .smbus_master_fsm_off = MLXBF_I2C_YU_SMBUS_MASTER_FSM
2220 },
2221 [MLXBF_I2C_CHIP_TYPE_3] = {
2222 .type = MLXBF_I2C_CHIP_TYPE_3,
2223 .shared_res = {
2224 [0] = &mlxbf_i2c_corepll_res[MLXBF_I2C_CHIP_TYPE_3]
2225 },
2226 .calculate_freq = mlxbf_i2c_calculate_freq_from_yu,
2227 .smbus_master_rs_bytes_off = MLXBF_I2C_RSH_YU_SMBUS_RS_BYTES,
2228 .smbus_master_fsm_off = MLXBF_I2C_RSH_YU_SMBUS_MASTER_FSM
2229 }
2230};
2231
2232static const struct i2c_algorithm mlxbf_i2c_algo = {
2233 .smbus_xfer = mlxbf_i2c_smbus_xfer,
2234 .functionality = mlxbf_i2c_functionality,
2235 .reg_slave = mlxbf_i2c_reg_slave,
2236 .unreg_slave = mlxbf_i2c_unreg_slave,
2237};
2238
2239static struct i2c_adapter_quirks mlxbf_i2c_quirks = {
2240 .max_read_len = MLXBF_I2C_MASTER_DATA_R_LENGTH,
2241 .max_write_len = MLXBF_I2C_MASTER_DATA_W_LENGTH,
2242};
2243
2244static const struct acpi_device_id mlxbf_i2c_acpi_ids[] = {
2245 { "MLNXBF03", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_1] },
2246 { "MLNXBF23", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_2] },
2247 { "MLNXBF31", (kernel_ulong_t)&mlxbf_i2c_chip[MLXBF_I2C_CHIP_TYPE_3] },
2248 {},
2249};
2250
2251MODULE_DEVICE_TABLE(acpi, mlxbf_i2c_acpi_ids);
2252
2253static int mlxbf_i2c_acpi_probe(struct device *dev, struct mlxbf_i2c_priv *priv)
2254{
2255 const struct acpi_device_id *aid;
2256 u64 bus_id;
2257 int ret;
2258
2259 if (acpi_disabled)
2260 return -ENOENT;
2261
2262 aid = acpi_match_device(ids: mlxbf_i2c_acpi_ids, dev);
2263 if (!aid)
2264 return -ENODEV;
2265
2266 priv->chip = (struct mlxbf_i2c_chip_info *)aid->driver_data;
2267
2268 ret = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), integer: &bus_id);
2269 if (ret) {
2270 dev_err(dev, "Cannot retrieve UID\n");
2271 return ret;
2272 }
2273
2274 priv->bus = bus_id;
2275
2276 return 0;
2277}
2278
2279static int mlxbf_i2c_probe(struct platform_device *pdev)
2280{
2281 struct device *dev = &pdev->dev;
2282 struct mlxbf_i2c_priv *priv;
2283 struct i2c_adapter *adap;
2284 u32 resource_version;
2285 int irq, ret;
2286
2287 priv = devm_kzalloc(dev, size: sizeof(struct mlxbf_i2c_priv), GFP_KERNEL);
2288 if (!priv)
2289 return -ENOMEM;
2290
2291 ret = mlxbf_i2c_acpi_probe(dev, priv);
2292 if (ret < 0)
2293 return ret;
2294
2295 /* This property allows the driver to stay backward compatible with older
2296 * ACPI tables.
2297 * Starting BlueField-3 SoC, the "smbus" resource was broken down into 3
2298 * separate resources "timer", "master" and "slave".
2299 */
2300 if (device_property_read_u32(dev, propname: "resource_version", val: &resource_version))
2301 resource_version = 0;
2302
2303 priv->resource_version = resource_version;
2304
2305 if (priv->chip->type < MLXBF_I2C_CHIP_TYPE_3 && resource_version == 0) {
2306 priv->timer = devm_kzalloc(dev, size: sizeof(struct mlxbf_i2c_resource), GFP_KERNEL);
2307 if (!priv->timer)
2308 return -ENOMEM;
2309
2310 priv->mst = devm_kzalloc(dev, size: sizeof(struct mlxbf_i2c_resource), GFP_KERNEL);
2311 if (!priv->mst)
2312 return -ENOMEM;
2313
2314 priv->slv = devm_kzalloc(dev, size: sizeof(struct mlxbf_i2c_resource), GFP_KERNEL);
2315 if (!priv->slv)
2316 return -ENOMEM;
2317
2318 ret = mlxbf_i2c_init_resource(pdev, res: &priv->smbus,
2319 type: MLXBF_I2C_SMBUS_RES);
2320 if (ret < 0)
2321 return dev_err_probe(dev, err: ret, fmt: "Cannot fetch smbus resource info");
2322
2323 priv->timer->io = priv->smbus->io;
2324 priv->mst->io = priv->smbus->io + MLXBF_I2C_MST_ADDR_OFFSET;
2325 priv->slv->io = priv->smbus->io + MLXBF_I2C_SLV_ADDR_OFFSET;
2326 } else {
2327 ret = mlxbf_i2c_init_resource(pdev, res: &priv->timer,
2328 type: MLXBF_I2C_SMBUS_TIMER_RES);
2329 if (ret < 0)
2330 return dev_err_probe(dev, err: ret, fmt: "Cannot fetch timer resource info");
2331
2332 ret = mlxbf_i2c_init_resource(pdev, res: &priv->mst,
2333 type: MLXBF_I2C_SMBUS_MST_RES);
2334 if (ret < 0)
2335 return dev_err_probe(dev, err: ret, fmt: "Cannot fetch master resource info");
2336
2337 ret = mlxbf_i2c_init_resource(pdev, res: &priv->slv,
2338 type: MLXBF_I2C_SMBUS_SLV_RES);
2339 if (ret < 0)
2340 return dev_err_probe(dev, err: ret, fmt: "Cannot fetch slave resource info");
2341 }
2342
2343 ret = mlxbf_i2c_init_resource(pdev, res: &priv->mst_cause,
2344 type: MLXBF_I2C_MST_CAUSE_RES);
2345 if (ret < 0)
2346 return dev_err_probe(dev, err: ret, fmt: "Cannot fetch cause master resource info");
2347
2348 ret = mlxbf_i2c_init_resource(pdev, res: &priv->slv_cause,
2349 type: MLXBF_I2C_SLV_CAUSE_RES);
2350 if (ret < 0)
2351 return dev_err_probe(dev, err: ret, fmt: "Cannot fetch cause slave resource info");
2352
2353 adap = &priv->adap;
2354 adap->owner = THIS_MODULE;
2355 adap->class = I2C_CLASS_HWMON;
2356 adap->algo = &mlxbf_i2c_algo;
2357 adap->quirks = &mlxbf_i2c_quirks;
2358 adap->dev.parent = dev;
2359 adap->dev.of_node = dev->of_node;
2360 adap->nr = priv->bus;
2361
2362 snprintf(buf: adap->name, size: sizeof(adap->name), fmt: "i2c%d", adap->nr);
2363 i2c_set_adapdata(adap, data: priv);
2364
2365 /* Read Core PLL frequency. */
2366 ret = mlxbf_i2c_calculate_corepll_freq(pdev, priv);
2367 if (ret < 0) {
2368 dev_err(dev, "cannot get core clock frequency\n");
2369 /* Set to default value. */
2370 priv->frequency = MLXBF_I2C_COREPLL_FREQ;
2371 }
2372
2373 /*
2374 * Initialize master.
2375 * Note that a physical bus might be shared among Linux and firmware
2376 * (e.g., ATF). Thus, the bus should be initialized and ready and
2377 * bus initialization would be unnecessary. This requires additional
2378 * knowledge about physical busses. But, since an extra initialization
2379 * does not really hurt, then keep the code as is.
2380 */
2381 ret = mlxbf_i2c_init_master(pdev, priv);
2382 if (ret < 0)
2383 return dev_err_probe(dev, err: ret, fmt: "failed to initialize smbus master %d",
2384 priv->bus);
2385
2386 mlxbf_i2c_init_timings(pdev, priv);
2387
2388 mlxbf_i2c_init_slave(pdev, priv);
2389
2390 irq = platform_get_irq(pdev, 0);
2391 if (irq < 0)
2392 return irq;
2393 ret = devm_request_irq(dev, irq, handler: mlxbf_i2c_irq,
2394 IRQF_SHARED | IRQF_PROBE_SHARED,
2395 devname: dev_name(dev), dev_id: priv);
2396 if (ret < 0)
2397 return dev_err_probe(dev, err: ret, fmt: "Cannot get irq %d\n", irq);
2398
2399 priv->irq = irq;
2400
2401 platform_set_drvdata(pdev, data: priv);
2402
2403 ret = i2c_add_numbered_adapter(adap);
2404 if (ret < 0)
2405 return ret;
2406
2407 mutex_lock(&mlxbf_i2c_bus_lock);
2408 mlxbf_i2c_bus_count++;
2409 mutex_unlock(lock: &mlxbf_i2c_bus_lock);
2410
2411 return 0;
2412}
2413
2414static void mlxbf_i2c_remove(struct platform_device *pdev)
2415{
2416 struct mlxbf_i2c_priv *priv = platform_get_drvdata(pdev);
2417 struct device *dev = &pdev->dev;
2418 struct resource *params;
2419
2420 if (priv->chip->type < MLXBF_I2C_CHIP_TYPE_3 && priv->resource_version == 0) {
2421 params = priv->smbus->params;
2422 devm_release_mem_region(dev, params->start, resource_size(params));
2423 } else {
2424 params = priv->timer->params;
2425 devm_release_mem_region(dev, params->start, resource_size(params));
2426
2427 params = priv->mst->params;
2428 devm_release_mem_region(dev, params->start, resource_size(params));
2429
2430 params = priv->slv->params;
2431 devm_release_mem_region(dev, params->start, resource_size(params));
2432 }
2433
2434 params = priv->mst_cause->params;
2435 devm_release_mem_region(dev, params->start, resource_size(params));
2436
2437 params = priv->slv_cause->params;
2438 devm_release_mem_region(dev, params->start, resource_size(params));
2439
2440 /*
2441 * Release shared resources. This should be done when releasing
2442 * the I2C controller.
2443 */
2444 mutex_lock(&mlxbf_i2c_bus_lock);
2445 if (--mlxbf_i2c_bus_count == 0) {
2446 mlxbf_i2c_release_coalesce(pdev, priv);
2447 mlxbf_i2c_release_corepll(pdev, priv);
2448 mlxbf_i2c_release_gpio(pdev, priv);
2449 }
2450 mutex_unlock(lock: &mlxbf_i2c_bus_lock);
2451
2452 devm_free_irq(dev, irq: priv->irq, dev_id: priv);
2453
2454 i2c_del_adapter(adap: &priv->adap);
2455}
2456
2457static struct platform_driver mlxbf_i2c_driver = {
2458 .probe = mlxbf_i2c_probe,
2459 .remove_new = mlxbf_i2c_remove,
2460 .driver = {
2461 .name = "i2c-mlxbf",
2462 .acpi_match_table = ACPI_PTR(mlxbf_i2c_acpi_ids),
2463 },
2464};
2465
2466static int __init mlxbf_i2c_init(void)
2467{
2468 mutex_init(&mlxbf_i2c_coalesce_lock);
2469 mutex_init(&mlxbf_i2c_corepll_lock);
2470 mutex_init(&mlxbf_i2c_gpio_lock);
2471
2472 mutex_init(&mlxbf_i2c_bus_lock);
2473
2474 return platform_driver_register(&mlxbf_i2c_driver);
2475}
2476module_init(mlxbf_i2c_init);
2477
2478static void __exit mlxbf_i2c_exit(void)
2479{
2480 platform_driver_unregister(&mlxbf_i2c_driver);
2481
2482 mutex_destroy(lock: &mlxbf_i2c_bus_lock);
2483
2484 mutex_destroy(lock: &mlxbf_i2c_gpio_lock);
2485 mutex_destroy(lock: &mlxbf_i2c_corepll_lock);
2486 mutex_destroy(lock: &mlxbf_i2c_coalesce_lock);
2487}
2488module_exit(mlxbf_i2c_exit);
2489
2490MODULE_DESCRIPTION("Mellanox BlueField I2C bus driver");
2491MODULE_AUTHOR("Khalil Blaiech <kblaiech@nvidia.com>");
2492MODULE_AUTHOR("Asmaa Mnebhi <asmaa@nvidia.com>");
2493MODULE_LICENSE("GPL v2");
2494

source code of linux/drivers/i2c/busses/i2c-mlxbf.c