1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid1.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 *
7 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 *
9 * RAID-1 management functions.
10 *
11 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 *
13 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 *
16 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17 * bitmapped intelligence in resync:
18 *
19 * - bitmap marked during normal i/o
20 * - bitmap used to skip nondirty blocks during sync
21 *
22 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23 * - persistent bitmap code
24 */
25
26#include <linux/slab.h>
27#include <linux/delay.h>
28#include <linux/blkdev.h>
29#include <linux/module.h>
30#include <linux/seq_file.h>
31#include <linux/ratelimit.h>
32#include <linux/interval_tree_generic.h>
33
34#include <trace/events/block.h>
35
36#include "md.h"
37#include "raid1.h"
38#include "md-bitmap.h"
39
40#define UNSUPPORTED_MDDEV_FLAGS \
41 ((1L << MD_HAS_JOURNAL) | \
42 (1L << MD_JOURNAL_CLEAN) | \
43 (1L << MD_HAS_PPL) | \
44 (1L << MD_HAS_MULTIPLE_PPLS))
45
46static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48
49#define raid1_log(md, fmt, args...) \
50 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51
52#include "raid1-10.c"
53
54#define START(node) ((node)->start)
55#define LAST(node) ((node)->last)
56INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 START, LAST, static inline, raid1_rb);
58
59static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 struct serial_info *si, int idx)
61{
62 unsigned long flags;
63 int ret = 0;
64 sector_t lo = r1_bio->sector;
65 sector_t hi = lo + r1_bio->sectors;
66 struct serial_in_rdev *serial = &rdev->serial[idx];
67
68 spin_lock_irqsave(&serial->serial_lock, flags);
69 /* collision happened */
70 if (raid1_rb_iter_first(root: &serial->serial_rb, start: lo, last: hi))
71 ret = -EBUSY;
72 else {
73 si->start = lo;
74 si->last = hi;
75 raid1_rb_insert(node: si, root: &serial->serial_rb);
76 }
77 spin_unlock_irqrestore(lock: &serial->serial_lock, flags);
78
79 return ret;
80}
81
82static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83{
84 struct mddev *mddev = rdev->mddev;
85 struct serial_info *si;
86 int idx = sector_to_idx(sector: r1_bio->sector);
87 struct serial_in_rdev *serial = &rdev->serial[idx];
88
89 if (WARN_ON(!mddev->serial_info_pool))
90 return;
91 si = mempool_alloc(pool: mddev->serial_info_pool, GFP_NOIO);
92 wait_event(serial->serial_io_wait,
93 check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94}
95
96static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97{
98 struct serial_info *si;
99 unsigned long flags;
100 int found = 0;
101 struct mddev *mddev = rdev->mddev;
102 int idx = sector_to_idx(sector: lo);
103 struct serial_in_rdev *serial = &rdev->serial[idx];
104
105 spin_lock_irqsave(&serial->serial_lock, flags);
106 for (si = raid1_rb_iter_first(root: &serial->serial_rb, start: lo, last: hi);
107 si; si = raid1_rb_iter_next(node: si, start: lo, last: hi)) {
108 if (si->start == lo && si->last == hi) {
109 raid1_rb_remove(node: si, root: &serial->serial_rb);
110 mempool_free(element: si, pool: mddev->serial_info_pool);
111 found = 1;
112 break;
113 }
114 }
115 if (!found)
116 WARN(1, "The write IO is not recorded for serialization\n");
117 spin_unlock_irqrestore(lock: &serial->serial_lock, flags);
118 wake_up(&serial->serial_io_wait);
119}
120
121/*
122 * for resync bio, r1bio pointer can be retrieved from the per-bio
123 * 'struct resync_pages'.
124 */
125static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126{
127 return get_resync_pages(bio)->raid_bio;
128}
129
130static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131{
132 struct pool_info *pi = data;
133 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134
135 /* allocate a r1bio with room for raid_disks entries in the bios array */
136 return kzalloc(size, flags: gfp_flags);
137}
138
139#define RESYNC_DEPTH 32
140#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145
146static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147{
148 struct pool_info *pi = data;
149 struct r1bio *r1_bio;
150 struct bio *bio;
151 int need_pages;
152 int j;
153 struct resync_pages *rps;
154
155 r1_bio = r1bio_pool_alloc(gfp_flags, data: pi);
156 if (!r1_bio)
157 return NULL;
158
159 rps = kmalloc_array(n: pi->raid_disks, size: sizeof(struct resync_pages),
160 flags: gfp_flags);
161 if (!rps)
162 goto out_free_r1bio;
163
164 /*
165 * Allocate bios : 1 for reading, n-1 for writing
166 */
167 for (j = pi->raid_disks ; j-- ; ) {
168 bio = bio_kmalloc(RESYNC_PAGES, gfp_mask: gfp_flags);
169 if (!bio)
170 goto out_free_bio;
171 bio_init(bio, NULL, table: bio->bi_inline_vecs, RESYNC_PAGES, opf: 0);
172 r1_bio->bios[j] = bio;
173 }
174 /*
175 * Allocate RESYNC_PAGES data pages and attach them to
176 * the first bio.
177 * If this is a user-requested check/repair, allocate
178 * RESYNC_PAGES for each bio.
179 */
180 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
181 need_pages = pi->raid_disks;
182 else
183 need_pages = 1;
184 for (j = 0; j < pi->raid_disks; j++) {
185 struct resync_pages *rp = &rps[j];
186
187 bio = r1_bio->bios[j];
188
189 if (j < need_pages) {
190 if (resync_alloc_pages(rp, gfp_flags))
191 goto out_free_pages;
192 } else {
193 memcpy(rp, &rps[0], sizeof(*rp));
194 resync_get_all_pages(rp);
195 }
196
197 rp->raid_bio = r1_bio;
198 bio->bi_private = rp;
199 }
200
201 r1_bio->master_bio = NULL;
202
203 return r1_bio;
204
205out_free_pages:
206 while (--j >= 0)
207 resync_free_pages(rp: &rps[j]);
208
209out_free_bio:
210 while (++j < pi->raid_disks) {
211 bio_uninit(r1_bio->bios[j]);
212 kfree(objp: r1_bio->bios[j]);
213 }
214 kfree(objp: rps);
215
216out_free_r1bio:
217 rbio_pool_free(rbio: r1_bio, data);
218 return NULL;
219}
220
221static void r1buf_pool_free(void *__r1_bio, void *data)
222{
223 struct pool_info *pi = data;
224 int i;
225 struct r1bio *r1bio = __r1_bio;
226 struct resync_pages *rp = NULL;
227
228 for (i = pi->raid_disks; i--; ) {
229 rp = get_resync_pages(bio: r1bio->bios[i]);
230 resync_free_pages(rp);
231 bio_uninit(r1bio->bios[i]);
232 kfree(objp: r1bio->bios[i]);
233 }
234
235 /* resync pages array stored in the 1st bio's .bi_private */
236 kfree(objp: rp);
237
238 rbio_pool_free(rbio: r1bio, data);
239}
240
241static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
242{
243 int i;
244
245 for (i = 0; i < conf->raid_disks * 2; i++) {
246 struct bio **bio = r1_bio->bios + i;
247 if (!BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
250 }
251}
252
253static void free_r1bio(struct r1bio *r1_bio)
254{
255 struct r1conf *conf = r1_bio->mddev->private;
256
257 put_all_bios(conf, r1_bio);
258 mempool_free(element: r1_bio, pool: &conf->r1bio_pool);
259}
260
261static void put_buf(struct r1bio *r1_bio)
262{
263 struct r1conf *conf = r1_bio->mddev->private;
264 sector_t sect = r1_bio->sector;
265 int i;
266
267 for (i = 0; i < conf->raid_disks * 2; i++) {
268 struct bio *bio = r1_bio->bios[i];
269 if (bio->bi_end_io)
270 rdev_dec_pending(rdev: conf->mirrors[i].rdev, mddev: r1_bio->mddev);
271 }
272
273 mempool_free(element: r1_bio, pool: &conf->r1buf_pool);
274
275 lower_barrier(conf, sector_nr: sect);
276}
277
278static void reschedule_retry(struct r1bio *r1_bio)
279{
280 unsigned long flags;
281 struct mddev *mddev = r1_bio->mddev;
282 struct r1conf *conf = mddev->private;
283 int idx;
284
285 idx = sector_to_idx(sector: r1_bio->sector);
286 spin_lock_irqsave(&conf->device_lock, flags);
287 list_add(new: &r1_bio->retry_list, head: &conf->retry_list);
288 atomic_inc(v: &conf->nr_queued[idx]);
289 spin_unlock_irqrestore(lock: &conf->device_lock, flags);
290
291 wake_up(&conf->wait_barrier);
292 md_wakeup_thread(thread: mddev->thread);
293}
294
295/*
296 * raid_end_bio_io() is called when we have finished servicing a mirrored
297 * operation and are ready to return a success/failure code to the buffer
298 * cache layer.
299 */
300static void call_bio_endio(struct r1bio *r1_bio)
301{
302 struct bio *bio = r1_bio->master_bio;
303
304 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
305 bio->bi_status = BLK_STS_IOERR;
306
307 bio_endio(bio);
308}
309
310static void raid_end_bio_io(struct r1bio *r1_bio)
311{
312 struct bio *bio = r1_bio->master_bio;
313 struct r1conf *conf = r1_bio->mddev->private;
314 sector_t sector = r1_bio->sector;
315
316 /* if nobody has done the final endio yet, do it now */
317 if (!test_and_set_bit(nr: R1BIO_Returned, addr: &r1_bio->state)) {
318 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
319 (bio_data_dir(bio) == WRITE) ? "write" : "read",
320 (unsigned long long) bio->bi_iter.bi_sector,
321 (unsigned long long) bio_end_sector(bio) - 1);
322
323 call_bio_endio(r1_bio);
324 }
325
326 free_r1bio(r1_bio);
327 /*
328 * Wake up any possible resync thread that waits for the device
329 * to go idle. All I/Os, even write-behind writes, are done.
330 */
331 allow_barrier(conf, sector_nr: sector);
332}
333
334/*
335 * Update disk head position estimator based on IRQ completion info.
336 */
337static inline void update_head_pos(int disk, struct r1bio *r1_bio)
338{
339 struct r1conf *conf = r1_bio->mddev->private;
340
341 conf->mirrors[disk].head_position =
342 r1_bio->sector + (r1_bio->sectors);
343}
344
345/*
346 * Find the disk number which triggered given bio
347 */
348static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
349{
350 int mirror;
351 struct r1conf *conf = r1_bio->mddev->private;
352 int raid_disks = conf->raid_disks;
353
354 for (mirror = 0; mirror < raid_disks * 2; mirror++)
355 if (r1_bio->bios[mirror] == bio)
356 break;
357
358 BUG_ON(mirror == raid_disks * 2);
359 update_head_pos(disk: mirror, r1_bio);
360
361 return mirror;
362}
363
364static void raid1_end_read_request(struct bio *bio)
365{
366 int uptodate = !bio->bi_status;
367 struct r1bio *r1_bio = bio->bi_private;
368 struct r1conf *conf = r1_bio->mddev->private;
369 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
370
371 /*
372 * this branch is our 'one mirror IO has finished' event handler:
373 */
374 update_head_pos(disk: r1_bio->read_disk, r1_bio);
375
376 if (uptodate)
377 set_bit(nr: R1BIO_Uptodate, addr: &r1_bio->state);
378 else if (test_bit(FailFast, &rdev->flags) &&
379 test_bit(R1BIO_FailFast, &r1_bio->state))
380 /* This was a fail-fast read so we definitely
381 * want to retry */
382 ;
383 else {
384 /* If all other devices have failed, we want to return
385 * the error upwards rather than fail the last device.
386 * Here we redefine "uptodate" to mean "Don't want to retry"
387 */
388 unsigned long flags;
389 spin_lock_irqsave(&conf->device_lock, flags);
390 if (r1_bio->mddev->degraded == conf->raid_disks ||
391 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
392 test_bit(In_sync, &rdev->flags)))
393 uptodate = 1;
394 spin_unlock_irqrestore(lock: &conf->device_lock, flags);
395 }
396
397 if (uptodate) {
398 raid_end_bio_io(r1_bio);
399 rdev_dec_pending(rdev, mddev: conf->mddev);
400 } else {
401 /*
402 * oops, read error:
403 */
404 pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
405 mdname(conf->mddev),
406 rdev->bdev,
407 (unsigned long long)r1_bio->sector);
408 set_bit(nr: R1BIO_ReadError, addr: &r1_bio->state);
409 reschedule_retry(r1_bio);
410 /* don't drop the reference on read_disk yet */
411 }
412}
413
414static void close_write(struct r1bio *r1_bio)
415{
416 /* it really is the end of this request */
417 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
418 bio_free_pages(bio: r1_bio->behind_master_bio);
419 bio_put(r1_bio->behind_master_bio);
420 r1_bio->behind_master_bio = NULL;
421 }
422 /* clear the bitmap if all writes complete successfully */
423 md_bitmap_endwrite(bitmap: r1_bio->mddev->bitmap, offset: r1_bio->sector,
424 sectors: r1_bio->sectors,
425 success: !test_bit(R1BIO_Degraded, &r1_bio->state),
426 test_bit(R1BIO_BehindIO, &r1_bio->state));
427 md_write_end(mddev: r1_bio->mddev);
428}
429
430static void r1_bio_write_done(struct r1bio *r1_bio)
431{
432 if (!atomic_dec_and_test(v: &r1_bio->remaining))
433 return;
434
435 if (test_bit(R1BIO_WriteError, &r1_bio->state))
436 reschedule_retry(r1_bio);
437 else {
438 close_write(r1_bio);
439 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
440 reschedule_retry(r1_bio);
441 else
442 raid_end_bio_io(r1_bio);
443 }
444}
445
446static void raid1_end_write_request(struct bio *bio)
447{
448 struct r1bio *r1_bio = bio->bi_private;
449 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
450 struct r1conf *conf = r1_bio->mddev->private;
451 struct bio *to_put = NULL;
452 int mirror = find_bio_disk(r1_bio, bio);
453 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
454 bool discard_error;
455 sector_t lo = r1_bio->sector;
456 sector_t hi = r1_bio->sector + r1_bio->sectors;
457
458 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
459
460 /*
461 * 'one mirror IO has finished' event handler:
462 */
463 if (bio->bi_status && !discard_error) {
464 set_bit(nr: WriteErrorSeen, addr: &rdev->flags);
465 if (!test_and_set_bit(nr: WantReplacement, addr: &rdev->flags))
466 set_bit(nr: MD_RECOVERY_NEEDED, addr: &
467 conf->mddev->recovery);
468
469 if (test_bit(FailFast, &rdev->flags) &&
470 (bio->bi_opf & MD_FAILFAST) &&
471 /* We never try FailFast to WriteMostly devices */
472 !test_bit(WriteMostly, &rdev->flags)) {
473 md_error(mddev: r1_bio->mddev, rdev);
474 }
475
476 /*
477 * When the device is faulty, it is not necessary to
478 * handle write error.
479 */
480 if (!test_bit(Faulty, &rdev->flags))
481 set_bit(nr: R1BIO_WriteError, addr: &r1_bio->state);
482 else {
483 /* Fail the request */
484 set_bit(nr: R1BIO_Degraded, addr: &r1_bio->state);
485 /* Finished with this branch */
486 r1_bio->bios[mirror] = NULL;
487 to_put = bio;
488 }
489 } else {
490 /*
491 * Set R1BIO_Uptodate in our master bio, so that we
492 * will return a good error code for to the higher
493 * levels even if IO on some other mirrored buffer
494 * fails.
495 *
496 * The 'master' represents the composite IO operation
497 * to user-side. So if something waits for IO, then it
498 * will wait for the 'master' bio.
499 */
500 sector_t first_bad;
501 int bad_sectors;
502
503 r1_bio->bios[mirror] = NULL;
504 to_put = bio;
505 /*
506 * Do not set R1BIO_Uptodate if the current device is
507 * rebuilding or Faulty. This is because we cannot use
508 * such device for properly reading the data back (we could
509 * potentially use it, if the current write would have felt
510 * before rdev->recovery_offset, but for simplicity we don't
511 * check this here.
512 */
513 if (test_bit(In_sync, &rdev->flags) &&
514 !test_bit(Faulty, &rdev->flags))
515 set_bit(nr: R1BIO_Uptodate, addr: &r1_bio->state);
516
517 /* Maybe we can clear some bad blocks. */
518 if (is_badblock(rdev, s: r1_bio->sector, sectors: r1_bio->sectors,
519 first_bad: &first_bad, bad_sectors: &bad_sectors) && !discard_error) {
520 r1_bio->bios[mirror] = IO_MADE_GOOD;
521 set_bit(nr: R1BIO_MadeGood, addr: &r1_bio->state);
522 }
523 }
524
525 if (behind) {
526 if (test_bit(CollisionCheck, &rdev->flags))
527 remove_serial(rdev, lo, hi);
528 if (test_bit(WriteMostly, &rdev->flags))
529 atomic_dec(v: &r1_bio->behind_remaining);
530
531 /*
532 * In behind mode, we ACK the master bio once the I/O
533 * has safely reached all non-writemostly
534 * disks. Setting the Returned bit ensures that this
535 * gets done only once -- we don't ever want to return
536 * -EIO here, instead we'll wait
537 */
538 if (atomic_read(v: &r1_bio->behind_remaining) >= (atomic_read(v: &r1_bio->remaining)-1) &&
539 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
540 /* Maybe we can return now */
541 if (!test_and_set_bit(nr: R1BIO_Returned, addr: &r1_bio->state)) {
542 struct bio *mbio = r1_bio->master_bio;
543 pr_debug("raid1: behind end write sectors"
544 " %llu-%llu\n",
545 (unsigned long long) mbio->bi_iter.bi_sector,
546 (unsigned long long) bio_end_sector(mbio) - 1);
547 call_bio_endio(r1_bio);
548 }
549 }
550 } else if (rdev->mddev->serialize_policy)
551 remove_serial(rdev, lo, hi);
552 if (r1_bio->bios[mirror] == NULL)
553 rdev_dec_pending(rdev, mddev: conf->mddev);
554
555 /*
556 * Let's see if all mirrored write operations have finished
557 * already.
558 */
559 r1_bio_write_done(r1_bio);
560
561 if (to_put)
562 bio_put(to_put);
563}
564
565static sector_t align_to_barrier_unit_end(sector_t start_sector,
566 sector_t sectors)
567{
568 sector_t len;
569
570 WARN_ON(sectors == 0);
571 /*
572 * len is the number of sectors from start_sector to end of the
573 * barrier unit which start_sector belongs to.
574 */
575 len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
576 start_sector;
577
578 if (len > sectors)
579 len = sectors;
580
581 return len;
582}
583
584/*
585 * This routine returns the disk from which the requested read should
586 * be done. There is a per-array 'next expected sequential IO' sector
587 * number - if this matches on the next IO then we use the last disk.
588 * There is also a per-disk 'last know head position' sector that is
589 * maintained from IRQ contexts, both the normal and the resync IO
590 * completion handlers update this position correctly. If there is no
591 * perfect sequential match then we pick the disk whose head is closest.
592 *
593 * If there are 2 mirrors in the same 2 devices, performance degrades
594 * because position is mirror, not device based.
595 *
596 * The rdev for the device selected will have nr_pending incremented.
597 */
598static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
599{
600 const sector_t this_sector = r1_bio->sector;
601 int sectors;
602 int best_good_sectors;
603 int best_disk, best_dist_disk, best_pending_disk;
604 int has_nonrot_disk;
605 int disk;
606 sector_t best_dist;
607 unsigned int min_pending;
608 struct md_rdev *rdev;
609 int choose_first;
610 int choose_next_idle;
611
612 rcu_read_lock();
613 /*
614 * Check if we can balance. We can balance on the whole
615 * device if no resync is going on, or below the resync window.
616 * We take the first readable disk when above the resync window.
617 */
618 retry:
619 sectors = r1_bio->sectors;
620 best_disk = -1;
621 best_dist_disk = -1;
622 best_dist = MaxSector;
623 best_pending_disk = -1;
624 min_pending = UINT_MAX;
625 best_good_sectors = 0;
626 has_nonrot_disk = 0;
627 choose_next_idle = 0;
628 clear_bit(nr: R1BIO_FailFast, addr: &r1_bio->state);
629
630 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
631 (mddev_is_clustered(mddev: conf->mddev) &&
632 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
633 this_sector + sectors)))
634 choose_first = 1;
635 else
636 choose_first = 0;
637
638 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
639 sector_t dist;
640 sector_t first_bad;
641 int bad_sectors;
642 unsigned int pending;
643 bool nonrot;
644
645 rdev = rcu_dereference(conf->mirrors[disk].rdev);
646 if (r1_bio->bios[disk] == IO_BLOCKED
647 || rdev == NULL
648 || test_bit(Faulty, &rdev->flags))
649 continue;
650 if (!test_bit(In_sync, &rdev->flags) &&
651 rdev->recovery_offset < this_sector + sectors)
652 continue;
653 if (test_bit(WriteMostly, &rdev->flags)) {
654 /* Don't balance among write-mostly, just
655 * use the first as a last resort */
656 if (best_dist_disk < 0) {
657 if (is_badblock(rdev, s: this_sector, sectors,
658 first_bad: &first_bad, bad_sectors: &bad_sectors)) {
659 if (first_bad <= this_sector)
660 /* Cannot use this */
661 continue;
662 best_good_sectors = first_bad - this_sector;
663 } else
664 best_good_sectors = sectors;
665 best_dist_disk = disk;
666 best_pending_disk = disk;
667 }
668 continue;
669 }
670 /* This is a reasonable device to use. It might
671 * even be best.
672 */
673 if (is_badblock(rdev, s: this_sector, sectors,
674 first_bad: &first_bad, bad_sectors: &bad_sectors)) {
675 if (best_dist < MaxSector)
676 /* already have a better device */
677 continue;
678 if (first_bad <= this_sector) {
679 /* cannot read here. If this is the 'primary'
680 * device, then we must not read beyond
681 * bad_sectors from another device..
682 */
683 bad_sectors -= (this_sector - first_bad);
684 if (choose_first && sectors > bad_sectors)
685 sectors = bad_sectors;
686 if (best_good_sectors > sectors)
687 best_good_sectors = sectors;
688
689 } else {
690 sector_t good_sectors = first_bad - this_sector;
691 if (good_sectors > best_good_sectors) {
692 best_good_sectors = good_sectors;
693 best_disk = disk;
694 }
695 if (choose_first)
696 break;
697 }
698 continue;
699 } else {
700 if ((sectors > best_good_sectors) && (best_disk >= 0))
701 best_disk = -1;
702 best_good_sectors = sectors;
703 }
704
705 if (best_disk >= 0)
706 /* At least two disks to choose from so failfast is OK */
707 set_bit(nr: R1BIO_FailFast, addr: &r1_bio->state);
708
709 nonrot = bdev_nonrot(bdev: rdev->bdev);
710 has_nonrot_disk |= nonrot;
711 pending = atomic_read(v: &rdev->nr_pending);
712 dist = abs(this_sector - conf->mirrors[disk].head_position);
713 if (choose_first) {
714 best_disk = disk;
715 break;
716 }
717 /* Don't change to another disk for sequential reads */
718 if (conf->mirrors[disk].next_seq_sect == this_sector
719 || dist == 0) {
720 int opt_iosize = bdev_io_opt(bdev: rdev->bdev) >> 9;
721 struct raid1_info *mirror = &conf->mirrors[disk];
722
723 best_disk = disk;
724 /*
725 * If buffered sequential IO size exceeds optimal
726 * iosize, check if there is idle disk. If yes, choose
727 * the idle disk. read_balance could already choose an
728 * idle disk before noticing it's a sequential IO in
729 * this disk. This doesn't matter because this disk
730 * will idle, next time it will be utilized after the
731 * first disk has IO size exceeds optimal iosize. In
732 * this way, iosize of the first disk will be optimal
733 * iosize at least. iosize of the second disk might be
734 * small, but not a big deal since when the second disk
735 * starts IO, the first disk is likely still busy.
736 */
737 if (nonrot && opt_iosize > 0 &&
738 mirror->seq_start != MaxSector &&
739 mirror->next_seq_sect > opt_iosize &&
740 mirror->next_seq_sect - opt_iosize >=
741 mirror->seq_start) {
742 choose_next_idle = 1;
743 continue;
744 }
745 break;
746 }
747
748 if (choose_next_idle)
749 continue;
750
751 if (min_pending > pending) {
752 min_pending = pending;
753 best_pending_disk = disk;
754 }
755
756 if (dist < best_dist) {
757 best_dist = dist;
758 best_dist_disk = disk;
759 }
760 }
761
762 /*
763 * If all disks are rotational, choose the closest disk. If any disk is
764 * non-rotational, choose the disk with less pending request even the
765 * disk is rotational, which might/might not be optimal for raids with
766 * mixed ratation/non-rotational disks depending on workload.
767 */
768 if (best_disk == -1) {
769 if (has_nonrot_disk || min_pending == 0)
770 best_disk = best_pending_disk;
771 else
772 best_disk = best_dist_disk;
773 }
774
775 if (best_disk >= 0) {
776 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
777 if (!rdev)
778 goto retry;
779 atomic_inc(v: &rdev->nr_pending);
780 sectors = best_good_sectors;
781
782 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
783 conf->mirrors[best_disk].seq_start = this_sector;
784
785 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
786 }
787 rcu_read_unlock();
788 *max_sectors = sectors;
789
790 return best_disk;
791}
792
793static void wake_up_barrier(struct r1conf *conf)
794{
795 if (wq_has_sleeper(wq_head: &conf->wait_barrier))
796 wake_up(&conf->wait_barrier);
797}
798
799static void flush_bio_list(struct r1conf *conf, struct bio *bio)
800{
801 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
802 raid1_prepare_flush_writes(bitmap: conf->mddev->bitmap);
803 wake_up_barrier(conf);
804
805 while (bio) { /* submit pending writes */
806 struct bio *next = bio->bi_next;
807
808 raid1_submit_write(bio);
809 bio = next;
810 cond_resched();
811 }
812}
813
814static void flush_pending_writes(struct r1conf *conf)
815{
816 /* Any writes that have been queued but are awaiting
817 * bitmap updates get flushed here.
818 */
819 spin_lock_irq(lock: &conf->device_lock);
820
821 if (conf->pending_bio_list.head) {
822 struct blk_plug plug;
823 struct bio *bio;
824
825 bio = bio_list_get(bl: &conf->pending_bio_list);
826 spin_unlock_irq(lock: &conf->device_lock);
827
828 /*
829 * As this is called in a wait_event() loop (see freeze_array),
830 * current->state might be TASK_UNINTERRUPTIBLE which will
831 * cause a warning when we prepare to wait again. As it is
832 * rare that this path is taken, it is perfectly safe to force
833 * us to go around the wait_event() loop again, so the warning
834 * is a false-positive. Silence the warning by resetting
835 * thread state
836 */
837 __set_current_state(TASK_RUNNING);
838 blk_start_plug(&plug);
839 flush_bio_list(conf, bio);
840 blk_finish_plug(&plug);
841 } else
842 spin_unlock_irq(lock: &conf->device_lock);
843}
844
845/* Barriers....
846 * Sometimes we need to suspend IO while we do something else,
847 * either some resync/recovery, or reconfigure the array.
848 * To do this we raise a 'barrier'.
849 * The 'barrier' is a counter that can be raised multiple times
850 * to count how many activities are happening which preclude
851 * normal IO.
852 * We can only raise the barrier if there is no pending IO.
853 * i.e. if nr_pending == 0.
854 * We choose only to raise the barrier if no-one is waiting for the
855 * barrier to go down. This means that as soon as an IO request
856 * is ready, no other operations which require a barrier will start
857 * until the IO request has had a chance.
858 *
859 * So: regular IO calls 'wait_barrier'. When that returns there
860 * is no backgroup IO happening, It must arrange to call
861 * allow_barrier when it has finished its IO.
862 * backgroup IO calls must call raise_barrier. Once that returns
863 * there is no normal IO happeing. It must arrange to call
864 * lower_barrier when the particular background IO completes.
865 *
866 * If resync/recovery is interrupted, returns -EINTR;
867 * Otherwise, returns 0.
868 */
869static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
870{
871 int idx = sector_to_idx(sector: sector_nr);
872
873 spin_lock_irq(lock: &conf->resync_lock);
874
875 /* Wait until no block IO is waiting */
876 wait_event_lock_irq(conf->wait_barrier,
877 !atomic_read(&conf->nr_waiting[idx]),
878 conf->resync_lock);
879
880 /* block any new IO from starting */
881 atomic_inc(v: &conf->barrier[idx]);
882 /*
883 * In raise_barrier() we firstly increase conf->barrier[idx] then
884 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
885 * increase conf->nr_pending[idx] then check conf->barrier[idx].
886 * A memory barrier here to make sure conf->nr_pending[idx] won't
887 * be fetched before conf->barrier[idx] is increased. Otherwise
888 * there will be a race between raise_barrier() and _wait_barrier().
889 */
890 smp_mb__after_atomic();
891
892 /* For these conditions we must wait:
893 * A: while the array is in frozen state
894 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
895 * existing in corresponding I/O barrier bucket.
896 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
897 * max resync count which allowed on current I/O barrier bucket.
898 */
899 wait_event_lock_irq(conf->wait_barrier,
900 (!conf->array_frozen &&
901 !atomic_read(&conf->nr_pending[idx]) &&
902 atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
903 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
904 conf->resync_lock);
905
906 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
907 atomic_dec(v: &conf->barrier[idx]);
908 spin_unlock_irq(lock: &conf->resync_lock);
909 wake_up(&conf->wait_barrier);
910 return -EINTR;
911 }
912
913 atomic_inc(v: &conf->nr_sync_pending);
914 spin_unlock_irq(lock: &conf->resync_lock);
915
916 return 0;
917}
918
919static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
920{
921 int idx = sector_to_idx(sector: sector_nr);
922
923 BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
924
925 atomic_dec(v: &conf->barrier[idx]);
926 atomic_dec(v: &conf->nr_sync_pending);
927 wake_up(&conf->wait_barrier);
928}
929
930static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
931{
932 bool ret = true;
933
934 /*
935 * We need to increase conf->nr_pending[idx] very early here,
936 * then raise_barrier() can be blocked when it waits for
937 * conf->nr_pending[idx] to be 0. Then we can avoid holding
938 * conf->resync_lock when there is no barrier raised in same
939 * barrier unit bucket. Also if the array is frozen, I/O
940 * should be blocked until array is unfrozen.
941 */
942 atomic_inc(v: &conf->nr_pending[idx]);
943 /*
944 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
945 * check conf->barrier[idx]. In raise_barrier() we firstly increase
946 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
947 * barrier is necessary here to make sure conf->barrier[idx] won't be
948 * fetched before conf->nr_pending[idx] is increased. Otherwise there
949 * will be a race between _wait_barrier() and raise_barrier().
950 */
951 smp_mb__after_atomic();
952
953 /*
954 * Don't worry about checking two atomic_t variables at same time
955 * here. If during we check conf->barrier[idx], the array is
956 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
957 * 0, it is safe to return and make the I/O continue. Because the
958 * array is frozen, all I/O returned here will eventually complete
959 * or be queued, no race will happen. See code comment in
960 * frozen_array().
961 */
962 if (!READ_ONCE(conf->array_frozen) &&
963 !atomic_read(v: &conf->barrier[idx]))
964 return ret;
965
966 /*
967 * After holding conf->resync_lock, conf->nr_pending[idx]
968 * should be decreased before waiting for barrier to drop.
969 * Otherwise, we may encounter a race condition because
970 * raise_barrer() might be waiting for conf->nr_pending[idx]
971 * to be 0 at same time.
972 */
973 spin_lock_irq(lock: &conf->resync_lock);
974 atomic_inc(v: &conf->nr_waiting[idx]);
975 atomic_dec(v: &conf->nr_pending[idx]);
976 /*
977 * In case freeze_array() is waiting for
978 * get_unqueued_pending() == extra
979 */
980 wake_up_barrier(conf);
981 /* Wait for the barrier in same barrier unit bucket to drop. */
982
983 /* Return false when nowait flag is set */
984 if (nowait) {
985 ret = false;
986 } else {
987 wait_event_lock_irq(conf->wait_barrier,
988 !conf->array_frozen &&
989 !atomic_read(&conf->barrier[idx]),
990 conf->resync_lock);
991 atomic_inc(v: &conf->nr_pending[idx]);
992 }
993
994 atomic_dec(v: &conf->nr_waiting[idx]);
995 spin_unlock_irq(lock: &conf->resync_lock);
996 return ret;
997}
998
999static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1000{
1001 int idx = sector_to_idx(sector: sector_nr);
1002 bool ret = true;
1003
1004 /*
1005 * Very similar to _wait_barrier(). The difference is, for read
1006 * I/O we don't need wait for sync I/O, but if the whole array
1007 * is frozen, the read I/O still has to wait until the array is
1008 * unfrozen. Since there is no ordering requirement with
1009 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1010 */
1011 atomic_inc(v: &conf->nr_pending[idx]);
1012
1013 if (!READ_ONCE(conf->array_frozen))
1014 return ret;
1015
1016 spin_lock_irq(lock: &conf->resync_lock);
1017 atomic_inc(v: &conf->nr_waiting[idx]);
1018 atomic_dec(v: &conf->nr_pending[idx]);
1019 /*
1020 * In case freeze_array() is waiting for
1021 * get_unqueued_pending() == extra
1022 */
1023 wake_up_barrier(conf);
1024 /* Wait for array to be unfrozen */
1025
1026 /* Return false when nowait flag is set */
1027 if (nowait) {
1028 /* Return false when nowait flag is set */
1029 ret = false;
1030 } else {
1031 wait_event_lock_irq(conf->wait_barrier,
1032 !conf->array_frozen,
1033 conf->resync_lock);
1034 atomic_inc(v: &conf->nr_pending[idx]);
1035 }
1036
1037 atomic_dec(v: &conf->nr_waiting[idx]);
1038 spin_unlock_irq(lock: &conf->resync_lock);
1039 return ret;
1040}
1041
1042static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
1043{
1044 int idx = sector_to_idx(sector: sector_nr);
1045
1046 return _wait_barrier(conf, idx, nowait);
1047}
1048
1049static void _allow_barrier(struct r1conf *conf, int idx)
1050{
1051 atomic_dec(v: &conf->nr_pending[idx]);
1052 wake_up_barrier(conf);
1053}
1054
1055static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1056{
1057 int idx = sector_to_idx(sector: sector_nr);
1058
1059 _allow_barrier(conf, idx);
1060}
1061
1062/* conf->resync_lock should be held */
1063static int get_unqueued_pending(struct r1conf *conf)
1064{
1065 int idx, ret;
1066
1067 ret = atomic_read(v: &conf->nr_sync_pending);
1068 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1069 ret += atomic_read(v: &conf->nr_pending[idx]) -
1070 atomic_read(v: &conf->nr_queued[idx]);
1071
1072 return ret;
1073}
1074
1075static void freeze_array(struct r1conf *conf, int extra)
1076{
1077 /* Stop sync I/O and normal I/O and wait for everything to
1078 * go quiet.
1079 * This is called in two situations:
1080 * 1) management command handlers (reshape, remove disk, quiesce).
1081 * 2) one normal I/O request failed.
1082
1083 * After array_frozen is set to 1, new sync IO will be blocked at
1084 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1085 * or wait_read_barrier(). The flying I/Os will either complete or be
1086 * queued. When everything goes quite, there are only queued I/Os left.
1087
1088 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1089 * barrier bucket index which this I/O request hits. When all sync and
1090 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1091 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1092 * in handle_read_error(), we may call freeze_array() before trying to
1093 * fix the read error. In this case, the error read I/O is not queued,
1094 * so get_unqueued_pending() == 1.
1095 *
1096 * Therefore before this function returns, we need to wait until
1097 * get_unqueued_pendings(conf) gets equal to extra. For
1098 * normal I/O context, extra is 1, in rested situations extra is 0.
1099 */
1100 spin_lock_irq(lock: &conf->resync_lock);
1101 conf->array_frozen = 1;
1102 raid1_log(conf->mddev, "wait freeze");
1103 wait_event_lock_irq_cmd(
1104 conf->wait_barrier,
1105 get_unqueued_pending(conf) == extra,
1106 conf->resync_lock,
1107 flush_pending_writes(conf));
1108 spin_unlock_irq(lock: &conf->resync_lock);
1109}
1110static void unfreeze_array(struct r1conf *conf)
1111{
1112 /* reverse the effect of the freeze */
1113 spin_lock_irq(lock: &conf->resync_lock);
1114 conf->array_frozen = 0;
1115 spin_unlock_irq(lock: &conf->resync_lock);
1116 wake_up(&conf->wait_barrier);
1117}
1118
1119static void alloc_behind_master_bio(struct r1bio *r1_bio,
1120 struct bio *bio)
1121{
1122 int size = bio->bi_iter.bi_size;
1123 unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1124 int i = 0;
1125 struct bio *behind_bio = NULL;
1126
1127 behind_bio = bio_alloc_bioset(NULL, nr_vecs: vcnt, opf: 0, GFP_NOIO,
1128 bs: &r1_bio->mddev->bio_set);
1129 if (!behind_bio)
1130 return;
1131
1132 /* discard op, we don't support writezero/writesame yet */
1133 if (!bio_has_data(bio)) {
1134 behind_bio->bi_iter.bi_size = size;
1135 goto skip_copy;
1136 }
1137
1138 while (i < vcnt && size) {
1139 struct page *page;
1140 int len = min_t(int, PAGE_SIZE, size);
1141
1142 page = alloc_page(GFP_NOIO);
1143 if (unlikely(!page))
1144 goto free_pages;
1145
1146 if (!bio_add_page(bio: behind_bio, page, len, off: 0)) {
1147 put_page(page);
1148 goto free_pages;
1149 }
1150
1151 size -= len;
1152 i++;
1153 }
1154
1155 bio_copy_data(dst: behind_bio, src: bio);
1156skip_copy:
1157 r1_bio->behind_master_bio = behind_bio;
1158 set_bit(nr: R1BIO_BehindIO, addr: &r1_bio->state);
1159
1160 return;
1161
1162free_pages:
1163 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1164 bio->bi_iter.bi_size);
1165 bio_free_pages(bio: behind_bio);
1166 bio_put(behind_bio);
1167}
1168
1169static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1170{
1171 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1172 cb);
1173 struct mddev *mddev = plug->cb.data;
1174 struct r1conf *conf = mddev->private;
1175 struct bio *bio;
1176
1177 if (from_schedule) {
1178 spin_lock_irq(lock: &conf->device_lock);
1179 bio_list_merge(bl: &conf->pending_bio_list, bl2: &plug->pending);
1180 spin_unlock_irq(lock: &conf->device_lock);
1181 wake_up_barrier(conf);
1182 md_wakeup_thread(thread: mddev->thread);
1183 kfree(objp: plug);
1184 return;
1185 }
1186
1187 /* we aren't scheduling, so we can do the write-out directly. */
1188 bio = bio_list_get(bl: &plug->pending);
1189 flush_bio_list(conf, bio);
1190 kfree(objp: plug);
1191}
1192
1193static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1194{
1195 r1_bio->master_bio = bio;
1196 r1_bio->sectors = bio_sectors(bio);
1197 r1_bio->state = 0;
1198 r1_bio->mddev = mddev;
1199 r1_bio->sector = bio->bi_iter.bi_sector;
1200}
1201
1202static inline struct r1bio *
1203alloc_r1bio(struct mddev *mddev, struct bio *bio)
1204{
1205 struct r1conf *conf = mddev->private;
1206 struct r1bio *r1_bio;
1207
1208 r1_bio = mempool_alloc(pool: &conf->r1bio_pool, GFP_NOIO);
1209 /* Ensure no bio records IO_BLOCKED */
1210 memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1211 init_r1bio(r1_bio, mddev, bio);
1212 return r1_bio;
1213}
1214
1215static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1216 int max_read_sectors, struct r1bio *r1_bio)
1217{
1218 struct r1conf *conf = mddev->private;
1219 struct raid1_info *mirror;
1220 struct bio *read_bio;
1221 struct bitmap *bitmap = mddev->bitmap;
1222 const enum req_op op = bio_op(bio);
1223 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1224 int max_sectors;
1225 int rdisk;
1226 bool r1bio_existed = !!r1_bio;
1227 char b[BDEVNAME_SIZE];
1228
1229 /*
1230 * If r1_bio is set, we are blocking the raid1d thread
1231 * so there is a tiny risk of deadlock. So ask for
1232 * emergency memory if needed.
1233 */
1234 gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1235
1236 if (r1bio_existed) {
1237 /* Need to get the block device name carefully */
1238 struct md_rdev *rdev;
1239 rcu_read_lock();
1240 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1241 if (rdev)
1242 snprintf(buf: b, size: sizeof(b), fmt: "%pg", rdev->bdev);
1243 else
1244 strcpy(p: b, q: "???");
1245 rcu_read_unlock();
1246 }
1247
1248 /*
1249 * Still need barrier for READ in case that whole
1250 * array is frozen.
1251 */
1252 if (!wait_read_barrier(conf, sector_nr: bio->bi_iter.bi_sector,
1253 nowait: bio->bi_opf & REQ_NOWAIT)) {
1254 bio_wouldblock_error(bio);
1255 return;
1256 }
1257
1258 if (!r1_bio)
1259 r1_bio = alloc_r1bio(mddev, bio);
1260 else
1261 init_r1bio(r1_bio, mddev, bio);
1262 r1_bio->sectors = max_read_sectors;
1263
1264 /*
1265 * make_request() can abort the operation when read-ahead is being
1266 * used and no empty request is available.
1267 */
1268 rdisk = read_balance(conf, r1_bio, max_sectors: &max_sectors);
1269
1270 if (rdisk < 0) {
1271 /* couldn't find anywhere to read from */
1272 if (r1bio_existed) {
1273 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1274 mdname(mddev),
1275 b,
1276 (unsigned long long)r1_bio->sector);
1277 }
1278 raid_end_bio_io(r1_bio);
1279 return;
1280 }
1281 mirror = conf->mirrors + rdisk;
1282
1283 if (r1bio_existed)
1284 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
1285 mdname(mddev),
1286 (unsigned long long)r1_bio->sector,
1287 mirror->rdev->bdev);
1288
1289 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1290 bitmap) {
1291 /*
1292 * Reading from a write-mostly device must take care not to
1293 * over-take any writes that are 'behind'
1294 */
1295 raid1_log(mddev, "wait behind writes");
1296 wait_event(bitmap->behind_wait,
1297 atomic_read(&bitmap->behind_writes) == 0);
1298 }
1299
1300 if (max_sectors < bio_sectors(bio)) {
1301 struct bio *split = bio_split(bio, sectors: max_sectors,
1302 gfp, bs: &conf->bio_split);
1303 bio_chain(split, bio);
1304 submit_bio_noacct(bio);
1305 bio = split;
1306 r1_bio->master_bio = bio;
1307 r1_bio->sectors = max_sectors;
1308 }
1309
1310 r1_bio->read_disk = rdisk;
1311 if (!r1bio_existed) {
1312 md_account_bio(mddev, bio: &bio);
1313 r1_bio->master_bio = bio;
1314 }
1315 read_bio = bio_alloc_clone(bdev: mirror->rdev->bdev, bio_src: bio, gfp,
1316 bs: &mddev->bio_set);
1317
1318 r1_bio->bios[rdisk] = read_bio;
1319
1320 read_bio->bi_iter.bi_sector = r1_bio->sector +
1321 mirror->rdev->data_offset;
1322 read_bio->bi_end_io = raid1_end_read_request;
1323 read_bio->bi_opf = op | do_sync;
1324 if (test_bit(FailFast, &mirror->rdev->flags) &&
1325 test_bit(R1BIO_FailFast, &r1_bio->state))
1326 read_bio->bi_opf |= MD_FAILFAST;
1327 read_bio->bi_private = r1_bio;
1328
1329 if (mddev->gendisk)
1330 trace_block_bio_remap(bio: read_bio, dev: disk_devt(disk: mddev->gendisk),
1331 from: r1_bio->sector);
1332
1333 submit_bio_noacct(bio: read_bio);
1334}
1335
1336static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1337 int max_write_sectors)
1338{
1339 struct r1conf *conf = mddev->private;
1340 struct r1bio *r1_bio;
1341 int i, disks;
1342 struct bitmap *bitmap = mddev->bitmap;
1343 unsigned long flags;
1344 struct md_rdev *blocked_rdev;
1345 int first_clone;
1346 int max_sectors;
1347 bool write_behind = false;
1348 bool is_discard = (bio_op(bio) == REQ_OP_DISCARD);
1349
1350 if (mddev_is_clustered(mddev) &&
1351 md_cluster_ops->area_resyncing(mddev, WRITE,
1352 bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1353
1354 DEFINE_WAIT(w);
1355 if (bio->bi_opf & REQ_NOWAIT) {
1356 bio_wouldblock_error(bio);
1357 return;
1358 }
1359 for (;;) {
1360 prepare_to_wait(wq_head: &conf->wait_barrier,
1361 wq_entry: &w, TASK_IDLE);
1362 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1363 bio->bi_iter.bi_sector,
1364 bio_end_sector(bio)))
1365 break;
1366 schedule();
1367 }
1368 finish_wait(wq_head: &conf->wait_barrier, wq_entry: &w);
1369 }
1370
1371 /*
1372 * Register the new request and wait if the reconstruction
1373 * thread has put up a bar for new requests.
1374 * Continue immediately if no resync is active currently.
1375 */
1376 if (!wait_barrier(conf, sector_nr: bio->bi_iter.bi_sector,
1377 nowait: bio->bi_opf & REQ_NOWAIT)) {
1378 bio_wouldblock_error(bio);
1379 return;
1380 }
1381
1382 retry_write:
1383 r1_bio = alloc_r1bio(mddev, bio);
1384 r1_bio->sectors = max_write_sectors;
1385
1386 /* first select target devices under rcu_lock and
1387 * inc refcount on their rdev. Record them by setting
1388 * bios[x] to bio
1389 * If there are known/acknowledged bad blocks on any device on
1390 * which we have seen a write error, we want to avoid writing those
1391 * blocks.
1392 * This potentially requires several writes to write around
1393 * the bad blocks. Each set of writes gets it's own r1bio
1394 * with a set of bios attached.
1395 */
1396
1397 disks = conf->raid_disks * 2;
1398 blocked_rdev = NULL;
1399 rcu_read_lock();
1400 max_sectors = r1_bio->sectors;
1401 for (i = 0; i < disks; i++) {
1402 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1403
1404 /*
1405 * The write-behind io is only attempted on drives marked as
1406 * write-mostly, which means we could allocate write behind
1407 * bio later.
1408 */
1409 if (!is_discard && rdev && test_bit(WriteMostly, &rdev->flags))
1410 write_behind = true;
1411
1412 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1413 atomic_inc(v: &rdev->nr_pending);
1414 blocked_rdev = rdev;
1415 break;
1416 }
1417 r1_bio->bios[i] = NULL;
1418 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1419 if (i < conf->raid_disks)
1420 set_bit(nr: R1BIO_Degraded, addr: &r1_bio->state);
1421 continue;
1422 }
1423
1424 atomic_inc(v: &rdev->nr_pending);
1425 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1426 sector_t first_bad;
1427 int bad_sectors;
1428 int is_bad;
1429
1430 is_bad = is_badblock(rdev, s: r1_bio->sector, sectors: max_sectors,
1431 first_bad: &first_bad, bad_sectors: &bad_sectors);
1432 if (is_bad < 0) {
1433 /* mustn't write here until the bad block is
1434 * acknowledged*/
1435 set_bit(nr: BlockedBadBlocks, addr: &rdev->flags);
1436 blocked_rdev = rdev;
1437 break;
1438 }
1439 if (is_bad && first_bad <= r1_bio->sector) {
1440 /* Cannot write here at all */
1441 bad_sectors -= (r1_bio->sector - first_bad);
1442 if (bad_sectors < max_sectors)
1443 /* mustn't write more than bad_sectors
1444 * to other devices yet
1445 */
1446 max_sectors = bad_sectors;
1447 rdev_dec_pending(rdev, mddev);
1448 /* We don't set R1BIO_Degraded as that
1449 * only applies if the disk is
1450 * missing, so it might be re-added,
1451 * and we want to know to recover this
1452 * chunk.
1453 * In this case the device is here,
1454 * and the fact that this chunk is not
1455 * in-sync is recorded in the bad
1456 * block log
1457 */
1458 continue;
1459 }
1460 if (is_bad) {
1461 int good_sectors = first_bad - r1_bio->sector;
1462 if (good_sectors < max_sectors)
1463 max_sectors = good_sectors;
1464 }
1465 }
1466 r1_bio->bios[i] = bio;
1467 }
1468 rcu_read_unlock();
1469
1470 if (unlikely(blocked_rdev)) {
1471 /* Wait for this device to become unblocked */
1472 int j;
1473
1474 for (j = 0; j < i; j++)
1475 if (r1_bio->bios[j])
1476 rdev_dec_pending(rdev: conf->mirrors[j].rdev, mddev);
1477 free_r1bio(r1_bio);
1478 allow_barrier(conf, sector_nr: bio->bi_iter.bi_sector);
1479
1480 if (bio->bi_opf & REQ_NOWAIT) {
1481 bio_wouldblock_error(bio);
1482 return;
1483 }
1484 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1485 md_wait_for_blocked_rdev(rdev: blocked_rdev, mddev);
1486 wait_barrier(conf, sector_nr: bio->bi_iter.bi_sector, nowait: false);
1487 goto retry_write;
1488 }
1489
1490 /*
1491 * When using a bitmap, we may call alloc_behind_master_bio below.
1492 * alloc_behind_master_bio allocates a copy of the data payload a page
1493 * at a time and thus needs a new bio that can fit the whole payload
1494 * this bio in page sized chunks.
1495 */
1496 if (write_behind && bitmap)
1497 max_sectors = min_t(int, max_sectors,
1498 BIO_MAX_VECS * (PAGE_SIZE >> 9));
1499 if (max_sectors < bio_sectors(bio)) {
1500 struct bio *split = bio_split(bio, sectors: max_sectors,
1501 GFP_NOIO, bs: &conf->bio_split);
1502 bio_chain(split, bio);
1503 submit_bio_noacct(bio);
1504 bio = split;
1505 r1_bio->master_bio = bio;
1506 r1_bio->sectors = max_sectors;
1507 }
1508
1509 md_account_bio(mddev, bio: &bio);
1510 r1_bio->master_bio = bio;
1511 atomic_set(v: &r1_bio->remaining, i: 1);
1512 atomic_set(v: &r1_bio->behind_remaining, i: 0);
1513
1514 first_clone = 1;
1515
1516 for (i = 0; i < disks; i++) {
1517 struct bio *mbio = NULL;
1518 struct md_rdev *rdev = conf->mirrors[i].rdev;
1519 if (!r1_bio->bios[i])
1520 continue;
1521
1522 if (first_clone) {
1523 /* do behind I/O ?
1524 * Not if there are too many, or cannot
1525 * allocate memory, or a reader on WriteMostly
1526 * is waiting for behind writes to flush */
1527 if (bitmap && write_behind &&
1528 (atomic_read(v: &bitmap->behind_writes)
1529 < mddev->bitmap_info.max_write_behind) &&
1530 !waitqueue_active(wq_head: &bitmap->behind_wait)) {
1531 alloc_behind_master_bio(r1_bio, bio);
1532 }
1533
1534 md_bitmap_startwrite(bitmap, offset: r1_bio->sector, sectors: r1_bio->sectors,
1535 test_bit(R1BIO_BehindIO, &r1_bio->state));
1536 first_clone = 0;
1537 }
1538
1539 if (r1_bio->behind_master_bio) {
1540 mbio = bio_alloc_clone(bdev: rdev->bdev,
1541 bio_src: r1_bio->behind_master_bio,
1542 GFP_NOIO, bs: &mddev->bio_set);
1543 if (test_bit(CollisionCheck, &rdev->flags))
1544 wait_for_serialization(rdev, r1_bio);
1545 if (test_bit(WriteMostly, &rdev->flags))
1546 atomic_inc(v: &r1_bio->behind_remaining);
1547 } else {
1548 mbio = bio_alloc_clone(bdev: rdev->bdev, bio_src: bio, GFP_NOIO,
1549 bs: &mddev->bio_set);
1550
1551 if (mddev->serialize_policy)
1552 wait_for_serialization(rdev, r1_bio);
1553 }
1554
1555 r1_bio->bios[i] = mbio;
1556
1557 mbio->bi_iter.bi_sector = (r1_bio->sector + rdev->data_offset);
1558 mbio->bi_end_io = raid1_end_write_request;
1559 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1560 if (test_bit(FailFast, &rdev->flags) &&
1561 !test_bit(WriteMostly, &rdev->flags) &&
1562 conf->raid_disks - mddev->degraded > 1)
1563 mbio->bi_opf |= MD_FAILFAST;
1564 mbio->bi_private = r1_bio;
1565
1566 atomic_inc(v: &r1_bio->remaining);
1567
1568 if (mddev->gendisk)
1569 trace_block_bio_remap(bio: mbio, dev: disk_devt(disk: mddev->gendisk),
1570 from: r1_bio->sector);
1571 /* flush_pending_writes() needs access to the rdev so...*/
1572 mbio->bi_bdev = (void *)rdev;
1573 if (!raid1_add_bio_to_plug(mddev, bio: mbio, unplug: raid1_unplug, copies: disks)) {
1574 spin_lock_irqsave(&conf->device_lock, flags);
1575 bio_list_add(bl: &conf->pending_bio_list, bio: mbio);
1576 spin_unlock_irqrestore(lock: &conf->device_lock, flags);
1577 md_wakeup_thread(thread: mddev->thread);
1578 }
1579 }
1580
1581 r1_bio_write_done(r1_bio);
1582
1583 /* In case raid1d snuck in to freeze_array */
1584 wake_up_barrier(conf);
1585}
1586
1587static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1588{
1589 sector_t sectors;
1590
1591 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1592 && md_flush_request(mddev, bio))
1593 return true;
1594
1595 /*
1596 * There is a limit to the maximum size, but
1597 * the read/write handler might find a lower limit
1598 * due to bad blocks. To avoid multiple splits,
1599 * we pass the maximum number of sectors down
1600 * and let the lower level perform the split.
1601 */
1602 sectors = align_to_barrier_unit_end(
1603 start_sector: bio->bi_iter.bi_sector, bio_sectors(bio));
1604
1605 if (bio_data_dir(bio) == READ)
1606 raid1_read_request(mddev, bio, max_read_sectors: sectors, NULL);
1607 else {
1608 if (!md_write_start(mddev,bi: bio))
1609 return false;
1610 raid1_write_request(mddev, bio, max_write_sectors: sectors);
1611 }
1612 return true;
1613}
1614
1615static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1616{
1617 struct r1conf *conf = mddev->private;
1618 int i;
1619
1620 seq_printf(m: seq, fmt: " [%d/%d] [", conf->raid_disks,
1621 conf->raid_disks - mddev->degraded);
1622 rcu_read_lock();
1623 for (i = 0; i < conf->raid_disks; i++) {
1624 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1625 seq_printf(m: seq, fmt: "%s",
1626 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1627 }
1628 rcu_read_unlock();
1629 seq_printf(m: seq, fmt: "]");
1630}
1631
1632/**
1633 * raid1_error() - RAID1 error handler.
1634 * @mddev: affected md device.
1635 * @rdev: member device to fail.
1636 *
1637 * The routine acknowledges &rdev failure and determines new @mddev state.
1638 * If it failed, then:
1639 * - &MD_BROKEN flag is set in &mddev->flags.
1640 * - recovery is disabled.
1641 * Otherwise, it must be degraded:
1642 * - recovery is interrupted.
1643 * - &mddev->degraded is bumped.
1644 *
1645 * @rdev is marked as &Faulty excluding case when array is failed and
1646 * &mddev->fail_last_dev is off.
1647 */
1648static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1649{
1650 struct r1conf *conf = mddev->private;
1651 unsigned long flags;
1652
1653 spin_lock_irqsave(&conf->device_lock, flags);
1654
1655 if (test_bit(In_sync, &rdev->flags) &&
1656 (conf->raid_disks - mddev->degraded) == 1) {
1657 set_bit(nr: MD_BROKEN, addr: &mddev->flags);
1658
1659 if (!mddev->fail_last_dev) {
1660 conf->recovery_disabled = mddev->recovery_disabled;
1661 spin_unlock_irqrestore(lock: &conf->device_lock, flags);
1662 return;
1663 }
1664 }
1665 set_bit(nr: Blocked, addr: &rdev->flags);
1666 if (test_and_clear_bit(nr: In_sync, addr: &rdev->flags))
1667 mddev->degraded++;
1668 set_bit(nr: Faulty, addr: &rdev->flags);
1669 spin_unlock_irqrestore(lock: &conf->device_lock, flags);
1670 /*
1671 * if recovery is running, make sure it aborts.
1672 */
1673 set_bit(nr: MD_RECOVERY_INTR, addr: &mddev->recovery);
1674 set_mask_bits(&mddev->sb_flags, 0,
1675 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1676 pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
1677 "md/raid1:%s: Operation continuing on %d devices.\n",
1678 mdname(mddev), rdev->bdev,
1679 mdname(mddev), conf->raid_disks - mddev->degraded);
1680}
1681
1682static void print_conf(struct r1conf *conf)
1683{
1684 int i;
1685
1686 pr_debug("RAID1 conf printout:\n");
1687 if (!conf) {
1688 pr_debug("(!conf)\n");
1689 return;
1690 }
1691 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1692 conf->raid_disks);
1693
1694 rcu_read_lock();
1695 for (i = 0; i < conf->raid_disks; i++) {
1696 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1697 if (rdev)
1698 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
1699 i, !test_bit(In_sync, &rdev->flags),
1700 !test_bit(Faulty, &rdev->flags),
1701 rdev->bdev);
1702 }
1703 rcu_read_unlock();
1704}
1705
1706static void close_sync(struct r1conf *conf)
1707{
1708 int idx;
1709
1710 for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1711 _wait_barrier(conf, idx, nowait: false);
1712 _allow_barrier(conf, idx);
1713 }
1714
1715 mempool_exit(pool: &conf->r1buf_pool);
1716}
1717
1718static int raid1_spare_active(struct mddev *mddev)
1719{
1720 int i;
1721 struct r1conf *conf = mddev->private;
1722 int count = 0;
1723 unsigned long flags;
1724
1725 /*
1726 * Find all failed disks within the RAID1 configuration
1727 * and mark them readable.
1728 * Called under mddev lock, so rcu protection not needed.
1729 * device_lock used to avoid races with raid1_end_read_request
1730 * which expects 'In_sync' flags and ->degraded to be consistent.
1731 */
1732 spin_lock_irqsave(&conf->device_lock, flags);
1733 for (i = 0; i < conf->raid_disks; i++) {
1734 struct md_rdev *rdev = conf->mirrors[i].rdev;
1735 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1736 if (repl
1737 && !test_bit(Candidate, &repl->flags)
1738 && repl->recovery_offset == MaxSector
1739 && !test_bit(Faulty, &repl->flags)
1740 && !test_and_set_bit(nr: In_sync, addr: &repl->flags)) {
1741 /* replacement has just become active */
1742 if (!rdev ||
1743 !test_and_clear_bit(nr: In_sync, addr: &rdev->flags))
1744 count++;
1745 if (rdev) {
1746 /* Replaced device not technically
1747 * faulty, but we need to be sure
1748 * it gets removed and never re-added
1749 */
1750 set_bit(nr: Faulty, addr: &rdev->flags);
1751 sysfs_notify_dirent_safe(
1752 sd: rdev->sysfs_state);
1753 }
1754 }
1755 if (rdev
1756 && rdev->recovery_offset == MaxSector
1757 && !test_bit(Faulty, &rdev->flags)
1758 && !test_and_set_bit(nr: In_sync, addr: &rdev->flags)) {
1759 count++;
1760 sysfs_notify_dirent_safe(sd: rdev->sysfs_state);
1761 }
1762 }
1763 mddev->degraded -= count;
1764 spin_unlock_irqrestore(lock: &conf->device_lock, flags);
1765
1766 print_conf(conf);
1767 return count;
1768}
1769
1770static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1771{
1772 struct r1conf *conf = mddev->private;
1773 int err = -EEXIST;
1774 int mirror = 0, repl_slot = -1;
1775 struct raid1_info *p;
1776 int first = 0;
1777 int last = conf->raid_disks - 1;
1778
1779 if (mddev->recovery_disabled == conf->recovery_disabled)
1780 return -EBUSY;
1781
1782 if (md_integrity_add_rdev(rdev, mddev))
1783 return -ENXIO;
1784
1785 if (rdev->raid_disk >= 0)
1786 first = last = rdev->raid_disk;
1787
1788 /*
1789 * find the disk ... but prefer rdev->saved_raid_disk
1790 * if possible.
1791 */
1792 if (rdev->saved_raid_disk >= 0 &&
1793 rdev->saved_raid_disk >= first &&
1794 rdev->saved_raid_disk < conf->raid_disks &&
1795 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1796 first = last = rdev->saved_raid_disk;
1797
1798 for (mirror = first; mirror <= last; mirror++) {
1799 p = conf->mirrors + mirror;
1800 if (!p->rdev) {
1801 if (mddev->gendisk)
1802 disk_stack_limits(disk: mddev->gendisk, bdev: rdev->bdev,
1803 offset: rdev->data_offset << 9);
1804
1805 p->head_position = 0;
1806 rdev->raid_disk = mirror;
1807 err = 0;
1808 /* As all devices are equivalent, we don't need a full recovery
1809 * if this was recently any drive of the array
1810 */
1811 if (rdev->saved_raid_disk < 0)
1812 conf->fullsync = 1;
1813 rcu_assign_pointer(p->rdev, rdev);
1814 break;
1815 }
1816 if (test_bit(WantReplacement, &p->rdev->flags) &&
1817 p[conf->raid_disks].rdev == NULL && repl_slot < 0)
1818 repl_slot = mirror;
1819 }
1820
1821 if (err && repl_slot >= 0) {
1822 /* Add this device as a replacement */
1823 p = conf->mirrors + repl_slot;
1824 clear_bit(nr: In_sync, addr: &rdev->flags);
1825 set_bit(nr: Replacement, addr: &rdev->flags);
1826 rdev->raid_disk = repl_slot;
1827 err = 0;
1828 conf->fullsync = 1;
1829 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1830 }
1831
1832 print_conf(conf);
1833 return err;
1834}
1835
1836static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1837{
1838 struct r1conf *conf = mddev->private;
1839 int err = 0;
1840 int number = rdev->raid_disk;
1841 struct raid1_info *p = conf->mirrors + number;
1842
1843 if (unlikely(number >= conf->raid_disks))
1844 goto abort;
1845
1846 if (rdev != p->rdev)
1847 p = conf->mirrors + conf->raid_disks + number;
1848
1849 print_conf(conf);
1850 if (rdev == p->rdev) {
1851 if (test_bit(In_sync, &rdev->flags) ||
1852 atomic_read(v: &rdev->nr_pending)) {
1853 err = -EBUSY;
1854 goto abort;
1855 }
1856 /* Only remove non-faulty devices if recovery
1857 * is not possible.
1858 */
1859 if (!test_bit(Faulty, &rdev->flags) &&
1860 mddev->recovery_disabled != conf->recovery_disabled &&
1861 mddev->degraded < conf->raid_disks) {
1862 err = -EBUSY;
1863 goto abort;
1864 }
1865 p->rdev = NULL;
1866 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1867 synchronize_rcu();
1868 if (atomic_read(v: &rdev->nr_pending)) {
1869 /* lost the race, try later */
1870 err = -EBUSY;
1871 p->rdev = rdev;
1872 goto abort;
1873 }
1874 }
1875 if (conf->mirrors[conf->raid_disks + number].rdev) {
1876 /* We just removed a device that is being replaced.
1877 * Move down the replacement. We drain all IO before
1878 * doing this to avoid confusion.
1879 */
1880 struct md_rdev *repl =
1881 conf->mirrors[conf->raid_disks + number].rdev;
1882 freeze_array(conf, extra: 0);
1883 if (atomic_read(v: &repl->nr_pending)) {
1884 /* It means that some queued IO of retry_list
1885 * hold repl. Thus, we cannot set replacement
1886 * as NULL, avoiding rdev NULL pointer
1887 * dereference in sync_request_write and
1888 * handle_write_finished.
1889 */
1890 err = -EBUSY;
1891 unfreeze_array(conf);
1892 goto abort;
1893 }
1894 clear_bit(nr: Replacement, addr: &repl->flags);
1895 p->rdev = repl;
1896 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1897 unfreeze_array(conf);
1898 }
1899
1900 clear_bit(nr: WantReplacement, addr: &rdev->flags);
1901 err = md_integrity_register(mddev);
1902 }
1903abort:
1904
1905 print_conf(conf);
1906 return err;
1907}
1908
1909static void end_sync_read(struct bio *bio)
1910{
1911 struct r1bio *r1_bio = get_resync_r1bio(bio);
1912
1913 update_head_pos(disk: r1_bio->read_disk, r1_bio);
1914
1915 /*
1916 * we have read a block, now it needs to be re-written,
1917 * or re-read if the read failed.
1918 * We don't do much here, just schedule handling by raid1d
1919 */
1920 if (!bio->bi_status)
1921 set_bit(nr: R1BIO_Uptodate, addr: &r1_bio->state);
1922
1923 if (atomic_dec_and_test(v: &r1_bio->remaining))
1924 reschedule_retry(r1_bio);
1925}
1926
1927static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1928{
1929 sector_t sync_blocks = 0;
1930 sector_t s = r1_bio->sector;
1931 long sectors_to_go = r1_bio->sectors;
1932
1933 /* make sure these bits don't get cleared. */
1934 do {
1935 md_bitmap_end_sync(bitmap: mddev->bitmap, offset: s, blocks: &sync_blocks, aborted: 1);
1936 s += sync_blocks;
1937 sectors_to_go -= sync_blocks;
1938 } while (sectors_to_go > 0);
1939}
1940
1941static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1942{
1943 if (atomic_dec_and_test(v: &r1_bio->remaining)) {
1944 struct mddev *mddev = r1_bio->mddev;
1945 int s = r1_bio->sectors;
1946
1947 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1948 test_bit(R1BIO_WriteError, &r1_bio->state))
1949 reschedule_retry(r1_bio);
1950 else {
1951 put_buf(r1_bio);
1952 md_done_sync(mddev, blocks: s, ok: uptodate);
1953 }
1954 }
1955}
1956
1957static void end_sync_write(struct bio *bio)
1958{
1959 int uptodate = !bio->bi_status;
1960 struct r1bio *r1_bio = get_resync_r1bio(bio);
1961 struct mddev *mddev = r1_bio->mddev;
1962 struct r1conf *conf = mddev->private;
1963 sector_t first_bad;
1964 int bad_sectors;
1965 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1966
1967 if (!uptodate) {
1968 abort_sync_write(mddev, r1_bio);
1969 set_bit(nr: WriteErrorSeen, addr: &rdev->flags);
1970 if (!test_and_set_bit(nr: WantReplacement, addr: &rdev->flags))
1971 set_bit(nr: MD_RECOVERY_NEEDED, addr: &
1972 mddev->recovery);
1973 set_bit(nr: R1BIO_WriteError, addr: &r1_bio->state);
1974 } else if (is_badblock(rdev, s: r1_bio->sector, sectors: r1_bio->sectors,
1975 first_bad: &first_bad, bad_sectors: &bad_sectors) &&
1976 !is_badblock(rdev: conf->mirrors[r1_bio->read_disk].rdev,
1977 s: r1_bio->sector,
1978 sectors: r1_bio->sectors,
1979 first_bad: &first_bad, bad_sectors: &bad_sectors)
1980 )
1981 set_bit(nr: R1BIO_MadeGood, addr: &r1_bio->state);
1982
1983 put_sync_write_buf(r1_bio, uptodate);
1984}
1985
1986static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1987 int sectors, struct page *page, int rw)
1988{
1989 if (sync_page_io(rdev, sector, size: sectors << 9, page, opf: rw, metadata_op: false))
1990 /* success */
1991 return 1;
1992 if (rw == WRITE) {
1993 set_bit(nr: WriteErrorSeen, addr: &rdev->flags);
1994 if (!test_and_set_bit(nr: WantReplacement,
1995 addr: &rdev->flags))
1996 set_bit(nr: MD_RECOVERY_NEEDED, addr: &
1997 rdev->mddev->recovery);
1998 }
1999 /* need to record an error - either for the block or the device */
2000 if (!rdev_set_badblocks(rdev, s: sector, sectors, is_new: 0))
2001 md_error(mddev: rdev->mddev, rdev);
2002 return 0;
2003}
2004
2005static int fix_sync_read_error(struct r1bio *r1_bio)
2006{
2007 /* Try some synchronous reads of other devices to get
2008 * good data, much like with normal read errors. Only
2009 * read into the pages we already have so we don't
2010 * need to re-issue the read request.
2011 * We don't need to freeze the array, because being in an
2012 * active sync request, there is no normal IO, and
2013 * no overlapping syncs.
2014 * We don't need to check is_badblock() again as we
2015 * made sure that anything with a bad block in range
2016 * will have bi_end_io clear.
2017 */
2018 struct mddev *mddev = r1_bio->mddev;
2019 struct r1conf *conf = mddev->private;
2020 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2021 struct page **pages = get_resync_pages(bio)->pages;
2022 sector_t sect = r1_bio->sector;
2023 int sectors = r1_bio->sectors;
2024 int idx = 0;
2025 struct md_rdev *rdev;
2026
2027 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2028 if (test_bit(FailFast, &rdev->flags)) {
2029 /* Don't try recovering from here - just fail it
2030 * ... unless it is the last working device of course */
2031 md_error(mddev, rdev);
2032 if (test_bit(Faulty, &rdev->flags))
2033 /* Don't try to read from here, but make sure
2034 * put_buf does it's thing
2035 */
2036 bio->bi_end_io = end_sync_write;
2037 }
2038
2039 while(sectors) {
2040 int s = sectors;
2041 int d = r1_bio->read_disk;
2042 int success = 0;
2043 int start;
2044
2045 if (s > (PAGE_SIZE>>9))
2046 s = PAGE_SIZE >> 9;
2047 do {
2048 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2049 /* No rcu protection needed here devices
2050 * can only be removed when no resync is
2051 * active, and resync is currently active
2052 */
2053 rdev = conf->mirrors[d].rdev;
2054 if (sync_page_io(rdev, sector: sect, size: s<<9,
2055 page: pages[idx],
2056 opf: REQ_OP_READ, metadata_op: false)) {
2057 success = 1;
2058 break;
2059 }
2060 }
2061 d++;
2062 if (d == conf->raid_disks * 2)
2063 d = 0;
2064 } while (!success && d != r1_bio->read_disk);
2065
2066 if (!success) {
2067 int abort = 0;
2068 /* Cannot read from anywhere, this block is lost.
2069 * Record a bad block on each device. If that doesn't
2070 * work just disable and interrupt the recovery.
2071 * Don't fail devices as that won't really help.
2072 */
2073 pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
2074 mdname(mddev), bio->bi_bdev,
2075 (unsigned long long)r1_bio->sector);
2076 for (d = 0; d < conf->raid_disks * 2; d++) {
2077 rdev = conf->mirrors[d].rdev;
2078 if (!rdev || test_bit(Faulty, &rdev->flags))
2079 continue;
2080 if (!rdev_set_badblocks(rdev, s: sect, sectors: s, is_new: 0))
2081 abort = 1;
2082 }
2083 if (abort) {
2084 conf->recovery_disabled =
2085 mddev->recovery_disabled;
2086 set_bit(nr: MD_RECOVERY_INTR, addr: &mddev->recovery);
2087 md_done_sync(mddev, blocks: r1_bio->sectors, ok: 0);
2088 put_buf(r1_bio);
2089 return 0;
2090 }
2091 /* Try next page */
2092 sectors -= s;
2093 sect += s;
2094 idx++;
2095 continue;
2096 }
2097
2098 start = d;
2099 /* write it back and re-read */
2100 while (d != r1_bio->read_disk) {
2101 if (d == 0)
2102 d = conf->raid_disks * 2;
2103 d--;
2104 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2105 continue;
2106 rdev = conf->mirrors[d].rdev;
2107 if (r1_sync_page_io(rdev, sector: sect, sectors: s,
2108 page: pages[idx],
2109 WRITE) == 0) {
2110 r1_bio->bios[d]->bi_end_io = NULL;
2111 rdev_dec_pending(rdev, mddev);
2112 }
2113 }
2114 d = start;
2115 while (d != r1_bio->read_disk) {
2116 if (d == 0)
2117 d = conf->raid_disks * 2;
2118 d--;
2119 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2120 continue;
2121 rdev = conf->mirrors[d].rdev;
2122 if (r1_sync_page_io(rdev, sector: sect, sectors: s,
2123 page: pages[idx],
2124 READ) != 0)
2125 atomic_add(i: s, v: &rdev->corrected_errors);
2126 }
2127 sectors -= s;
2128 sect += s;
2129 idx ++;
2130 }
2131 set_bit(nr: R1BIO_Uptodate, addr: &r1_bio->state);
2132 bio->bi_status = 0;
2133 return 1;
2134}
2135
2136static void process_checks(struct r1bio *r1_bio)
2137{
2138 /* We have read all readable devices. If we haven't
2139 * got the block, then there is no hope left.
2140 * If we have, then we want to do a comparison
2141 * and skip the write if everything is the same.
2142 * If any blocks failed to read, then we need to
2143 * attempt an over-write
2144 */
2145 struct mddev *mddev = r1_bio->mddev;
2146 struct r1conf *conf = mddev->private;
2147 int primary;
2148 int i;
2149 int vcnt;
2150
2151 /* Fix variable parts of all bios */
2152 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2153 for (i = 0; i < conf->raid_disks * 2; i++) {
2154 blk_status_t status;
2155 struct bio *b = r1_bio->bios[i];
2156 struct resync_pages *rp = get_resync_pages(bio: b);
2157 if (b->bi_end_io != end_sync_read)
2158 continue;
2159 /* fixup the bio for reuse, but preserve errno */
2160 status = b->bi_status;
2161 bio_reset(bio: b, bdev: conf->mirrors[i].rdev->bdev, opf: REQ_OP_READ);
2162 b->bi_status = status;
2163 b->bi_iter.bi_sector = r1_bio->sector +
2164 conf->mirrors[i].rdev->data_offset;
2165 b->bi_end_io = end_sync_read;
2166 rp->raid_bio = r1_bio;
2167 b->bi_private = rp;
2168
2169 /* initialize bvec table again */
2170 md_bio_reset_resync_pages(bio: b, rp, size: r1_bio->sectors << 9);
2171 }
2172 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2173 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2174 !r1_bio->bios[primary]->bi_status) {
2175 r1_bio->bios[primary]->bi_end_io = NULL;
2176 rdev_dec_pending(rdev: conf->mirrors[primary].rdev, mddev);
2177 break;
2178 }
2179 r1_bio->read_disk = primary;
2180 for (i = 0; i < conf->raid_disks * 2; i++) {
2181 int j = 0;
2182 struct bio *pbio = r1_bio->bios[primary];
2183 struct bio *sbio = r1_bio->bios[i];
2184 blk_status_t status = sbio->bi_status;
2185 struct page **ppages = get_resync_pages(bio: pbio)->pages;
2186 struct page **spages = get_resync_pages(bio: sbio)->pages;
2187 struct bio_vec *bi;
2188 int page_len[RESYNC_PAGES] = { 0 };
2189 struct bvec_iter_all iter_all;
2190
2191 if (sbio->bi_end_io != end_sync_read)
2192 continue;
2193 /* Now we can 'fixup' the error value */
2194 sbio->bi_status = 0;
2195
2196 bio_for_each_segment_all(bi, sbio, iter_all)
2197 page_len[j++] = bi->bv_len;
2198
2199 if (!status) {
2200 for (j = vcnt; j-- ; ) {
2201 if (memcmp(page_address(ppages[j]),
2202 page_address(spages[j]),
2203 size: page_len[j]))
2204 break;
2205 }
2206 } else
2207 j = 0;
2208 if (j >= 0)
2209 atomic64_add(i: r1_bio->sectors, v: &mddev->resync_mismatches);
2210 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2211 && !status)) {
2212 /* No need to write to this device. */
2213 sbio->bi_end_io = NULL;
2214 rdev_dec_pending(rdev: conf->mirrors[i].rdev, mddev);
2215 continue;
2216 }
2217
2218 bio_copy_data(dst: sbio, src: pbio);
2219 }
2220}
2221
2222static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2223{
2224 struct r1conf *conf = mddev->private;
2225 int i;
2226 int disks = conf->raid_disks * 2;
2227 struct bio *wbio;
2228
2229 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2230 /* ouch - failed to read all of that. */
2231 if (!fix_sync_read_error(r1_bio))
2232 return;
2233
2234 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2235 process_checks(r1_bio);
2236
2237 /*
2238 * schedule writes
2239 */
2240 atomic_set(v: &r1_bio->remaining, i: 1);
2241 for (i = 0; i < disks ; i++) {
2242 wbio = r1_bio->bios[i];
2243 if (wbio->bi_end_io == NULL ||
2244 (wbio->bi_end_io == end_sync_read &&
2245 (i == r1_bio->read_disk ||
2246 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2247 continue;
2248 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2249 abort_sync_write(mddev, r1_bio);
2250 continue;
2251 }
2252
2253 wbio->bi_opf = REQ_OP_WRITE;
2254 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2255 wbio->bi_opf |= MD_FAILFAST;
2256
2257 wbio->bi_end_io = end_sync_write;
2258 atomic_inc(v: &r1_bio->remaining);
2259 md_sync_acct(bdev: conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2260
2261 submit_bio_noacct(bio: wbio);
2262 }
2263
2264 put_sync_write_buf(r1_bio, uptodate: 1);
2265}
2266
2267/*
2268 * This is a kernel thread which:
2269 *
2270 * 1. Retries failed read operations on working mirrors.
2271 * 2. Updates the raid superblock when problems encounter.
2272 * 3. Performs writes following reads for array synchronising.
2273 */
2274
2275static void fix_read_error(struct r1conf *conf, int read_disk,
2276 sector_t sect, int sectors)
2277{
2278 struct mddev *mddev = conf->mddev;
2279 while(sectors) {
2280 int s = sectors;
2281 int d = read_disk;
2282 int success = 0;
2283 int start;
2284 struct md_rdev *rdev;
2285
2286 if (s > (PAGE_SIZE>>9))
2287 s = PAGE_SIZE >> 9;
2288
2289 do {
2290 sector_t first_bad;
2291 int bad_sectors;
2292
2293 rcu_read_lock();
2294 rdev = rcu_dereference(conf->mirrors[d].rdev);
2295 if (rdev &&
2296 (test_bit(In_sync, &rdev->flags) ||
2297 (!test_bit(Faulty, &rdev->flags) &&
2298 rdev->recovery_offset >= sect + s)) &&
2299 is_badblock(rdev, s: sect, sectors: s,
2300 first_bad: &first_bad, bad_sectors: &bad_sectors) == 0) {
2301 atomic_inc(v: &rdev->nr_pending);
2302 rcu_read_unlock();
2303 if (sync_page_io(rdev, sector: sect, size: s<<9,
2304 page: conf->tmppage, opf: REQ_OP_READ, metadata_op: false))
2305 success = 1;
2306 rdev_dec_pending(rdev, mddev);
2307 if (success)
2308 break;
2309 } else
2310 rcu_read_unlock();
2311 d++;
2312 if (d == conf->raid_disks * 2)
2313 d = 0;
2314 } while (d != read_disk);
2315
2316 if (!success) {
2317 /* Cannot read from anywhere - mark it bad */
2318 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2319 if (!rdev_set_badblocks(rdev, s: sect, sectors: s, is_new: 0))
2320 md_error(mddev, rdev);
2321 break;
2322 }
2323 /* write it back and re-read */
2324 start = d;
2325 while (d != read_disk) {
2326 if (d==0)
2327 d = conf->raid_disks * 2;
2328 d--;
2329 rcu_read_lock();
2330 rdev = rcu_dereference(conf->mirrors[d].rdev);
2331 if (rdev &&
2332 !test_bit(Faulty, &rdev->flags)) {
2333 atomic_inc(v: &rdev->nr_pending);
2334 rcu_read_unlock();
2335 r1_sync_page_io(rdev, sector: sect, sectors: s,
2336 page: conf->tmppage, WRITE);
2337 rdev_dec_pending(rdev, mddev);
2338 } else
2339 rcu_read_unlock();
2340 }
2341 d = start;
2342 while (d != read_disk) {
2343 if (d==0)
2344 d = conf->raid_disks * 2;
2345 d--;
2346 rcu_read_lock();
2347 rdev = rcu_dereference(conf->mirrors[d].rdev);
2348 if (rdev &&
2349 !test_bit(Faulty, &rdev->flags)) {
2350 atomic_inc(v: &rdev->nr_pending);
2351 rcu_read_unlock();
2352 if (r1_sync_page_io(rdev, sector: sect, sectors: s,
2353 page: conf->tmppage, READ)) {
2354 atomic_add(i: s, v: &rdev->corrected_errors);
2355 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
2356 mdname(mddev), s,
2357 (unsigned long long)(sect +
2358 rdev->data_offset),
2359 rdev->bdev);
2360 }
2361 rdev_dec_pending(rdev, mddev);
2362 } else
2363 rcu_read_unlock();
2364 }
2365 sectors -= s;
2366 sect += s;
2367 }
2368}
2369
2370static int narrow_write_error(struct r1bio *r1_bio, int i)
2371{
2372 struct mddev *mddev = r1_bio->mddev;
2373 struct r1conf *conf = mddev->private;
2374 struct md_rdev *rdev = conf->mirrors[i].rdev;
2375
2376 /* bio has the data to be written to device 'i' where
2377 * we just recently had a write error.
2378 * We repeatedly clone the bio and trim down to one block,
2379 * then try the write. Where the write fails we record
2380 * a bad block.
2381 * It is conceivable that the bio doesn't exactly align with
2382 * blocks. We must handle this somehow.
2383 *
2384 * We currently own a reference on the rdev.
2385 */
2386
2387 int block_sectors;
2388 sector_t sector;
2389 int sectors;
2390 int sect_to_write = r1_bio->sectors;
2391 int ok = 1;
2392
2393 if (rdev->badblocks.shift < 0)
2394 return 0;
2395
2396 block_sectors = roundup(1 << rdev->badblocks.shift,
2397 bdev_logical_block_size(rdev->bdev) >> 9);
2398 sector = r1_bio->sector;
2399 sectors = ((sector + block_sectors)
2400 & ~(sector_t)(block_sectors - 1))
2401 - sector;
2402
2403 while (sect_to_write) {
2404 struct bio *wbio;
2405 if (sectors > sect_to_write)
2406 sectors = sect_to_write;
2407 /* Write at 'sector' for 'sectors'*/
2408
2409 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2410 wbio = bio_alloc_clone(bdev: rdev->bdev,
2411 bio_src: r1_bio->behind_master_bio,
2412 GFP_NOIO, bs: &mddev->bio_set);
2413 } else {
2414 wbio = bio_alloc_clone(bdev: rdev->bdev, bio_src: r1_bio->master_bio,
2415 GFP_NOIO, bs: &mddev->bio_set);
2416 }
2417
2418 wbio->bi_opf = REQ_OP_WRITE;
2419 wbio->bi_iter.bi_sector = r1_bio->sector;
2420 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2421
2422 bio_trim(bio: wbio, offset: sector - r1_bio->sector, size: sectors);
2423 wbio->bi_iter.bi_sector += rdev->data_offset;
2424
2425 if (submit_bio_wait(bio: wbio) < 0)
2426 /* failure! */
2427 ok = rdev_set_badblocks(rdev, s: sector,
2428 sectors, is_new: 0)
2429 && ok;
2430
2431 bio_put(wbio);
2432 sect_to_write -= sectors;
2433 sector += sectors;
2434 sectors = block_sectors;
2435 }
2436 return ok;
2437}
2438
2439static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2440{
2441 int m;
2442 int s = r1_bio->sectors;
2443 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2444 struct md_rdev *rdev = conf->mirrors[m].rdev;
2445 struct bio *bio = r1_bio->bios[m];
2446 if (bio->bi_end_io == NULL)
2447 continue;
2448 if (!bio->bi_status &&
2449 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2450 rdev_clear_badblocks(rdev, s: r1_bio->sector, sectors: s, is_new: 0);
2451 }
2452 if (bio->bi_status &&
2453 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2454 if (!rdev_set_badblocks(rdev, s: r1_bio->sector, sectors: s, is_new: 0))
2455 md_error(mddev: conf->mddev, rdev);
2456 }
2457 }
2458 put_buf(r1_bio);
2459 md_done_sync(mddev: conf->mddev, blocks: s, ok: 1);
2460}
2461
2462static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2463{
2464 int m, idx;
2465 bool fail = false;
2466
2467 for (m = 0; m < conf->raid_disks * 2 ; m++)
2468 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2469 struct md_rdev *rdev = conf->mirrors[m].rdev;
2470 rdev_clear_badblocks(rdev,
2471 s: r1_bio->sector,
2472 sectors: r1_bio->sectors, is_new: 0);
2473 rdev_dec_pending(rdev, mddev: conf->mddev);
2474 } else if (r1_bio->bios[m] != NULL) {
2475 /* This drive got a write error. We need to
2476 * narrow down and record precise write
2477 * errors.
2478 */
2479 fail = true;
2480 if (!narrow_write_error(r1_bio, i: m)) {
2481 md_error(mddev: conf->mddev,
2482 rdev: conf->mirrors[m].rdev);
2483 /* an I/O failed, we can't clear the bitmap */
2484 set_bit(nr: R1BIO_Degraded, addr: &r1_bio->state);
2485 }
2486 rdev_dec_pending(rdev: conf->mirrors[m].rdev,
2487 mddev: conf->mddev);
2488 }
2489 if (fail) {
2490 spin_lock_irq(lock: &conf->device_lock);
2491 list_add(new: &r1_bio->retry_list, head: &conf->bio_end_io_list);
2492 idx = sector_to_idx(sector: r1_bio->sector);
2493 atomic_inc(v: &conf->nr_queued[idx]);
2494 spin_unlock_irq(lock: &conf->device_lock);
2495 /*
2496 * In case freeze_array() is waiting for condition
2497 * get_unqueued_pending() == extra to be true.
2498 */
2499 wake_up(&conf->wait_barrier);
2500 md_wakeup_thread(thread: conf->mddev->thread);
2501 } else {
2502 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2503 close_write(r1_bio);
2504 raid_end_bio_io(r1_bio);
2505 }
2506}
2507
2508static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2509{
2510 struct mddev *mddev = conf->mddev;
2511 struct bio *bio;
2512 struct md_rdev *rdev;
2513 sector_t sector;
2514
2515 clear_bit(nr: R1BIO_ReadError, addr: &r1_bio->state);
2516 /* we got a read error. Maybe the drive is bad. Maybe just
2517 * the block and we can fix it.
2518 * We freeze all other IO, and try reading the block from
2519 * other devices. When we find one, we re-write
2520 * and check it that fixes the read error.
2521 * This is all done synchronously while the array is
2522 * frozen
2523 */
2524
2525 bio = r1_bio->bios[r1_bio->read_disk];
2526 bio_put(bio);
2527 r1_bio->bios[r1_bio->read_disk] = NULL;
2528
2529 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2530 if (mddev->ro == 0
2531 && !test_bit(FailFast, &rdev->flags)) {
2532 freeze_array(conf, extra: 1);
2533 fix_read_error(conf, read_disk: r1_bio->read_disk,
2534 sect: r1_bio->sector, sectors: r1_bio->sectors);
2535 unfreeze_array(conf);
2536 } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2537 md_error(mddev, rdev);
2538 } else {
2539 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2540 }
2541
2542 rdev_dec_pending(rdev, mddev: conf->mddev);
2543 sector = r1_bio->sector;
2544 bio = r1_bio->master_bio;
2545
2546 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2547 r1_bio->state = 0;
2548 raid1_read_request(mddev, bio, max_read_sectors: r1_bio->sectors, r1_bio);
2549 allow_barrier(conf, sector_nr: sector);
2550}
2551
2552static void raid1d(struct md_thread *thread)
2553{
2554 struct mddev *mddev = thread->mddev;
2555 struct r1bio *r1_bio;
2556 unsigned long flags;
2557 struct r1conf *conf = mddev->private;
2558 struct list_head *head = &conf->retry_list;
2559 struct blk_plug plug;
2560 int idx;
2561
2562 md_check_recovery(mddev);
2563
2564 if (!list_empty_careful(head: &conf->bio_end_io_list) &&
2565 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2566 LIST_HEAD(tmp);
2567 spin_lock_irqsave(&conf->device_lock, flags);
2568 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2569 list_splice_init(list: &conf->bio_end_io_list, head: &tmp);
2570 spin_unlock_irqrestore(lock: &conf->device_lock, flags);
2571 while (!list_empty(head: &tmp)) {
2572 r1_bio = list_first_entry(&tmp, struct r1bio,
2573 retry_list);
2574 list_del(entry: &r1_bio->retry_list);
2575 idx = sector_to_idx(sector: r1_bio->sector);
2576 atomic_dec(v: &conf->nr_queued[idx]);
2577 if (mddev->degraded)
2578 set_bit(nr: R1BIO_Degraded, addr: &r1_bio->state);
2579 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2580 close_write(r1_bio);
2581 raid_end_bio_io(r1_bio);
2582 }
2583 }
2584
2585 blk_start_plug(&plug);
2586 for (;;) {
2587
2588 flush_pending_writes(conf);
2589
2590 spin_lock_irqsave(&conf->device_lock, flags);
2591 if (list_empty(head)) {
2592 spin_unlock_irqrestore(lock: &conf->device_lock, flags);
2593 break;
2594 }
2595 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2596 list_del(entry: head->prev);
2597 idx = sector_to_idx(sector: r1_bio->sector);
2598 atomic_dec(v: &conf->nr_queued[idx]);
2599 spin_unlock_irqrestore(lock: &conf->device_lock, flags);
2600
2601 mddev = r1_bio->mddev;
2602 conf = mddev->private;
2603 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2604 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2605 test_bit(R1BIO_WriteError, &r1_bio->state))
2606 handle_sync_write_finished(conf, r1_bio);
2607 else
2608 sync_request_write(mddev, r1_bio);
2609 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2610 test_bit(R1BIO_WriteError, &r1_bio->state))
2611 handle_write_finished(conf, r1_bio);
2612 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2613 handle_read_error(conf, r1_bio);
2614 else
2615 WARN_ON_ONCE(1);
2616
2617 cond_resched();
2618 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2619 md_check_recovery(mddev);
2620 }
2621 blk_finish_plug(&plug);
2622}
2623
2624static int init_resync(struct r1conf *conf)
2625{
2626 int buffs;
2627
2628 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2629 BUG_ON(mempool_initialized(&conf->r1buf_pool));
2630
2631 return mempool_init(pool: &conf->r1buf_pool, min_nr: buffs, alloc_fn: r1buf_pool_alloc,
2632 free_fn: r1buf_pool_free, pool_data: conf->poolinfo);
2633}
2634
2635static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2636{
2637 struct r1bio *r1bio = mempool_alloc(pool: &conf->r1buf_pool, GFP_NOIO);
2638 struct resync_pages *rps;
2639 struct bio *bio;
2640 int i;
2641
2642 for (i = conf->poolinfo->raid_disks; i--; ) {
2643 bio = r1bio->bios[i];
2644 rps = bio->bi_private;
2645 bio_reset(bio, NULL, opf: 0);
2646 bio->bi_private = rps;
2647 }
2648 r1bio->master_bio = NULL;
2649 return r1bio;
2650}
2651
2652/*
2653 * perform a "sync" on one "block"
2654 *
2655 * We need to make sure that no normal I/O request - particularly write
2656 * requests - conflict with active sync requests.
2657 *
2658 * This is achieved by tracking pending requests and a 'barrier' concept
2659 * that can be installed to exclude normal IO requests.
2660 */
2661
2662static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2663 int *skipped)
2664{
2665 struct r1conf *conf = mddev->private;
2666 struct r1bio *r1_bio;
2667 struct bio *bio;
2668 sector_t max_sector, nr_sectors;
2669 int disk = -1;
2670 int i;
2671 int wonly = -1;
2672 int write_targets = 0, read_targets = 0;
2673 sector_t sync_blocks;
2674 int still_degraded = 0;
2675 int good_sectors = RESYNC_SECTORS;
2676 int min_bad = 0; /* number of sectors that are bad in all devices */
2677 int idx = sector_to_idx(sector: sector_nr);
2678 int page_idx = 0;
2679
2680 if (!mempool_initialized(pool: &conf->r1buf_pool))
2681 if (init_resync(conf))
2682 return 0;
2683
2684 max_sector = mddev->dev_sectors;
2685 if (sector_nr >= max_sector) {
2686 /* If we aborted, we need to abort the
2687 * sync on the 'current' bitmap chunk (there will
2688 * only be one in raid1 resync.
2689 * We can find the current addess in mddev->curr_resync
2690 */
2691 if (mddev->curr_resync < max_sector) /* aborted */
2692 md_bitmap_end_sync(bitmap: mddev->bitmap, offset: mddev->curr_resync,
2693 blocks: &sync_blocks, aborted: 1);
2694 else /* completed sync */
2695 conf->fullsync = 0;
2696
2697 md_bitmap_close_sync(bitmap: mddev->bitmap);
2698 close_sync(conf);
2699
2700 if (mddev_is_clustered(mddev)) {
2701 conf->cluster_sync_low = 0;
2702 conf->cluster_sync_high = 0;
2703 }
2704 return 0;
2705 }
2706
2707 if (mddev->bitmap == NULL &&
2708 mddev->recovery_cp == MaxSector &&
2709 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2710 conf->fullsync == 0) {
2711 *skipped = 1;
2712 return max_sector - sector_nr;
2713 }
2714 /* before building a request, check if we can skip these blocks..
2715 * This call the bitmap_start_sync doesn't actually record anything
2716 */
2717 if (!md_bitmap_start_sync(bitmap: mddev->bitmap, offset: sector_nr, blocks: &sync_blocks, degraded: 1) &&
2718 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2719 /* We can skip this block, and probably several more */
2720 *skipped = 1;
2721 return sync_blocks;
2722 }
2723
2724 /*
2725 * If there is non-resync activity waiting for a turn, then let it
2726 * though before starting on this new sync request.
2727 */
2728 if (atomic_read(v: &conf->nr_waiting[idx]))
2729 schedule_timeout_uninterruptible(timeout: 1);
2730
2731 /* we are incrementing sector_nr below. To be safe, we check against
2732 * sector_nr + two times RESYNC_SECTORS
2733 */
2734
2735 md_bitmap_cond_end_sync(bitmap: mddev->bitmap, sector: sector_nr,
2736 force: mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2737
2738
2739 if (raise_barrier(conf, sector_nr))
2740 return 0;
2741
2742 r1_bio = raid1_alloc_init_r1buf(conf);
2743
2744 rcu_read_lock();
2745 /*
2746 * If we get a correctably read error during resync or recovery,
2747 * we might want to read from a different device. So we
2748 * flag all drives that could conceivably be read from for READ,
2749 * and any others (which will be non-In_sync devices) for WRITE.
2750 * If a read fails, we try reading from something else for which READ
2751 * is OK.
2752 */
2753
2754 r1_bio->mddev = mddev;
2755 r1_bio->sector = sector_nr;
2756 r1_bio->state = 0;
2757 set_bit(nr: R1BIO_IsSync, addr: &r1_bio->state);
2758 /* make sure good_sectors won't go across barrier unit boundary */
2759 good_sectors = align_to_barrier_unit_end(start_sector: sector_nr, sectors: good_sectors);
2760
2761 for (i = 0; i < conf->raid_disks * 2; i++) {
2762 struct md_rdev *rdev;
2763 bio = r1_bio->bios[i];
2764
2765 rdev = rcu_dereference(conf->mirrors[i].rdev);
2766 if (rdev == NULL ||
2767 test_bit(Faulty, &rdev->flags)) {
2768 if (i < conf->raid_disks)
2769 still_degraded = 1;
2770 } else if (!test_bit(In_sync, &rdev->flags)) {
2771 bio->bi_opf = REQ_OP_WRITE;
2772 bio->bi_end_io = end_sync_write;
2773 write_targets ++;
2774 } else {
2775 /* may need to read from here */
2776 sector_t first_bad = MaxSector;
2777 int bad_sectors;
2778
2779 if (is_badblock(rdev, s: sector_nr, sectors: good_sectors,
2780 first_bad: &first_bad, bad_sectors: &bad_sectors)) {
2781 if (first_bad > sector_nr)
2782 good_sectors = first_bad - sector_nr;
2783 else {
2784 bad_sectors -= (sector_nr - first_bad);
2785 if (min_bad == 0 ||
2786 min_bad > bad_sectors)
2787 min_bad = bad_sectors;
2788 }
2789 }
2790 if (sector_nr < first_bad) {
2791 if (test_bit(WriteMostly, &rdev->flags)) {
2792 if (wonly < 0)
2793 wonly = i;
2794 } else {
2795 if (disk < 0)
2796 disk = i;
2797 }
2798 bio->bi_opf = REQ_OP_READ;
2799 bio->bi_end_io = end_sync_read;
2800 read_targets++;
2801 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2802 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2803 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2804 /*
2805 * The device is suitable for reading (InSync),
2806 * but has bad block(s) here. Let's try to correct them,
2807 * if we are doing resync or repair. Otherwise, leave
2808 * this device alone for this sync request.
2809 */
2810 bio->bi_opf = REQ_OP_WRITE;
2811 bio->bi_end_io = end_sync_write;
2812 write_targets++;
2813 }
2814 }
2815 if (rdev && bio->bi_end_io) {
2816 atomic_inc(v: &rdev->nr_pending);
2817 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2818 bio_set_dev(bio, bdev: rdev->bdev);
2819 if (test_bit(FailFast, &rdev->flags))
2820 bio->bi_opf |= MD_FAILFAST;
2821 }
2822 }
2823 rcu_read_unlock();
2824 if (disk < 0)
2825 disk = wonly;
2826 r1_bio->read_disk = disk;
2827
2828 if (read_targets == 0 && min_bad > 0) {
2829 /* These sectors are bad on all InSync devices, so we
2830 * need to mark them bad on all write targets
2831 */
2832 int ok = 1;
2833 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2834 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2835 struct md_rdev *rdev = conf->mirrors[i].rdev;
2836 ok = rdev_set_badblocks(rdev, s: sector_nr,
2837 sectors: min_bad, is_new: 0
2838 ) && ok;
2839 }
2840 set_bit(nr: MD_SB_CHANGE_DEVS, addr: &mddev->sb_flags);
2841 *skipped = 1;
2842 put_buf(r1_bio);
2843
2844 if (!ok) {
2845 /* Cannot record the badblocks, so need to
2846 * abort the resync.
2847 * If there are multiple read targets, could just
2848 * fail the really bad ones ???
2849 */
2850 conf->recovery_disabled = mddev->recovery_disabled;
2851 set_bit(nr: MD_RECOVERY_INTR, addr: &mddev->recovery);
2852 return 0;
2853 } else
2854 return min_bad;
2855
2856 }
2857 if (min_bad > 0 && min_bad < good_sectors) {
2858 /* only resync enough to reach the next bad->good
2859 * transition */
2860 good_sectors = min_bad;
2861 }
2862
2863 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2864 /* extra read targets are also write targets */
2865 write_targets += read_targets-1;
2866
2867 if (write_targets == 0 || read_targets == 0) {
2868 /* There is nowhere to write, so all non-sync
2869 * drives must be failed - so we are finished
2870 */
2871 sector_t rv;
2872 if (min_bad > 0)
2873 max_sector = sector_nr + min_bad;
2874 rv = max_sector - sector_nr;
2875 *skipped = 1;
2876 put_buf(r1_bio);
2877 return rv;
2878 }
2879
2880 if (max_sector > mddev->resync_max)
2881 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2882 if (max_sector > sector_nr + good_sectors)
2883 max_sector = sector_nr + good_sectors;
2884 nr_sectors = 0;
2885 sync_blocks = 0;
2886 do {
2887 struct page *page;
2888 int len = PAGE_SIZE;
2889 if (sector_nr + (len>>9) > max_sector)
2890 len = (max_sector - sector_nr) << 9;
2891 if (len == 0)
2892 break;
2893 if (sync_blocks == 0) {
2894 if (!md_bitmap_start_sync(bitmap: mddev->bitmap, offset: sector_nr,
2895 blocks: &sync_blocks, degraded: still_degraded) &&
2896 !conf->fullsync &&
2897 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2898 break;
2899 if ((len >> 9) > sync_blocks)
2900 len = sync_blocks<<9;
2901 }
2902
2903 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2904 struct resync_pages *rp;
2905
2906 bio = r1_bio->bios[i];
2907 rp = get_resync_pages(bio);
2908 if (bio->bi_end_io) {
2909 page = resync_fetch_page(rp, idx: page_idx);
2910
2911 /*
2912 * won't fail because the vec table is big
2913 * enough to hold all these pages
2914 */
2915 __bio_add_page(bio, page, len, off: 0);
2916 }
2917 }
2918 nr_sectors += len>>9;
2919 sector_nr += len>>9;
2920 sync_blocks -= (len>>9);
2921 } while (++page_idx < RESYNC_PAGES);
2922
2923 r1_bio->sectors = nr_sectors;
2924
2925 if (mddev_is_clustered(mddev) &&
2926 conf->cluster_sync_high < sector_nr + nr_sectors) {
2927 conf->cluster_sync_low = mddev->curr_resync_completed;
2928 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2929 /* Send resync message */
2930 md_cluster_ops->resync_info_update(mddev,
2931 conf->cluster_sync_low,
2932 conf->cluster_sync_high);
2933 }
2934
2935 /* For a user-requested sync, we read all readable devices and do a
2936 * compare
2937 */
2938 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2939 atomic_set(v: &r1_bio->remaining, i: read_targets);
2940 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2941 bio = r1_bio->bios[i];
2942 if (bio->bi_end_io == end_sync_read) {
2943 read_targets--;
2944 md_sync_acct_bio(bio, nr_sectors);
2945 if (read_targets == 1)
2946 bio->bi_opf &= ~MD_FAILFAST;
2947 submit_bio_noacct(bio);
2948 }
2949 }
2950 } else {
2951 atomic_set(v: &r1_bio->remaining, i: 1);
2952 bio = r1_bio->bios[r1_bio->read_disk];
2953 md_sync_acct_bio(bio, nr_sectors);
2954 if (read_targets == 1)
2955 bio->bi_opf &= ~MD_FAILFAST;
2956 submit_bio_noacct(bio);
2957 }
2958 return nr_sectors;
2959}
2960
2961static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2962{
2963 if (sectors)
2964 return sectors;
2965
2966 return mddev->dev_sectors;
2967}
2968
2969static struct r1conf *setup_conf(struct mddev *mddev)
2970{
2971 struct r1conf *conf;
2972 int i;
2973 struct raid1_info *disk;
2974 struct md_rdev *rdev;
2975 int err = -ENOMEM;
2976
2977 conf = kzalloc(size: sizeof(struct r1conf), GFP_KERNEL);
2978 if (!conf)
2979 goto abort;
2980
2981 conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2982 size: sizeof(atomic_t), GFP_KERNEL);
2983 if (!conf->nr_pending)
2984 goto abort;
2985
2986 conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2987 size: sizeof(atomic_t), GFP_KERNEL);
2988 if (!conf->nr_waiting)
2989 goto abort;
2990
2991 conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2992 size: sizeof(atomic_t), GFP_KERNEL);
2993 if (!conf->nr_queued)
2994 goto abort;
2995
2996 conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2997 size: sizeof(atomic_t), GFP_KERNEL);
2998 if (!conf->barrier)
2999 goto abort;
3000
3001 conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3002 mddev->raid_disks, 2),
3003 GFP_KERNEL);
3004 if (!conf->mirrors)
3005 goto abort;
3006
3007 conf->tmppage = alloc_page(GFP_KERNEL);
3008 if (!conf->tmppage)
3009 goto abort;
3010
3011 conf->poolinfo = kzalloc(size: sizeof(*conf->poolinfo), GFP_KERNEL);
3012 if (!conf->poolinfo)
3013 goto abort;
3014 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
3015 err = mempool_init(pool: &conf->r1bio_pool, NR_RAID_BIOS, alloc_fn: r1bio_pool_alloc,
3016 free_fn: rbio_pool_free, pool_data: conf->poolinfo);
3017 if (err)
3018 goto abort;
3019
3020 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, flags: 0);
3021 if (err)
3022 goto abort;
3023
3024 conf->poolinfo->mddev = mddev;
3025
3026 err = -EINVAL;
3027 spin_lock_init(&conf->device_lock);
3028 rdev_for_each(rdev, mddev) {
3029 int disk_idx = rdev->raid_disk;
3030 if (disk_idx >= mddev->raid_disks
3031 || disk_idx < 0)
3032 continue;
3033 if (test_bit(Replacement, &rdev->flags))
3034 disk = conf->mirrors + mddev->raid_disks + disk_idx;
3035 else
3036 disk = conf->mirrors + disk_idx;
3037
3038 if (disk->rdev)
3039 goto abort;
3040 disk->rdev = rdev;
3041 disk->head_position = 0;
3042 disk->seq_start = MaxSector;
3043 }
3044 conf->raid_disks = mddev->raid_disks;
3045 conf->mddev = mddev;
3046 INIT_LIST_HEAD(list: &conf->retry_list);
3047 INIT_LIST_HEAD(list: &conf->bio_end_io_list);
3048
3049 spin_lock_init(&conf->resync_lock);
3050 init_waitqueue_head(&conf->wait_barrier);
3051
3052 bio_list_init(bl: &conf->pending_bio_list);
3053 conf->recovery_disabled = mddev->recovery_disabled - 1;
3054
3055 err = -EIO;
3056 for (i = 0; i < conf->raid_disks * 2; i++) {
3057
3058 disk = conf->mirrors + i;
3059
3060 if (i < conf->raid_disks &&
3061 disk[conf->raid_disks].rdev) {
3062 /* This slot has a replacement. */
3063 if (!disk->rdev) {
3064 /* No original, just make the replacement
3065 * a recovering spare
3066 */
3067 disk->rdev =
3068 disk[conf->raid_disks].rdev;
3069 disk[conf->raid_disks].rdev = NULL;
3070 } else if (!test_bit(In_sync, &disk->rdev->flags))
3071 /* Original is not in_sync - bad */
3072 goto abort;
3073 }
3074
3075 if (!disk->rdev ||
3076 !test_bit(In_sync, &disk->rdev->flags)) {
3077 disk->head_position = 0;
3078 if (disk->rdev &&
3079 (disk->rdev->saved_raid_disk < 0))
3080 conf->fullsync = 1;
3081 }
3082 }
3083
3084 err = -ENOMEM;
3085 rcu_assign_pointer(conf->thread,
3086 md_register_thread(raid1d, mddev, "raid1"));
3087 if (!conf->thread)
3088 goto abort;
3089
3090 return conf;
3091
3092 abort:
3093 if (conf) {
3094 mempool_exit(pool: &conf->r1bio_pool);
3095 kfree(objp: conf->mirrors);
3096 safe_put_page(p: conf->tmppage);
3097 kfree(objp: conf->poolinfo);
3098 kfree(objp: conf->nr_pending);
3099 kfree(objp: conf->nr_waiting);
3100 kfree(objp: conf->nr_queued);
3101 kfree(objp: conf->barrier);
3102 bioset_exit(&conf->bio_split);
3103 kfree(objp: conf);
3104 }
3105 return ERR_PTR(error: err);
3106}
3107
3108static void raid1_free(struct mddev *mddev, void *priv);
3109static int raid1_run(struct mddev *mddev)
3110{
3111 struct r1conf *conf;
3112 int i;
3113 struct md_rdev *rdev;
3114 int ret;
3115
3116 if (mddev->level != 1) {
3117 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3118 mdname(mddev), mddev->level);
3119 return -EIO;
3120 }
3121 if (mddev->reshape_position != MaxSector) {
3122 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3123 mdname(mddev));
3124 return -EIO;
3125 }
3126
3127 /*
3128 * copy the already verified devices into our private RAID1
3129 * bookkeeping area. [whatever we allocate in run(),
3130 * should be freed in raid1_free()]
3131 */
3132 if (mddev->private == NULL)
3133 conf = setup_conf(mddev);
3134 else
3135 conf = mddev->private;
3136
3137 if (IS_ERR(ptr: conf))
3138 return PTR_ERR(ptr: conf);
3139
3140 if (mddev->queue)
3141 blk_queue_max_write_zeroes_sectors(q: mddev->queue, max_write_same_sectors: 0);
3142
3143 rdev_for_each(rdev, mddev) {
3144 if (!mddev->gendisk)
3145 continue;
3146 disk_stack_limits(disk: mddev->gendisk, bdev: rdev->bdev,
3147 offset: rdev->data_offset << 9);
3148 }
3149
3150 mddev->degraded = 0;
3151 for (i = 0; i < conf->raid_disks; i++)
3152 if (conf->mirrors[i].rdev == NULL ||
3153 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3154 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3155 mddev->degraded++;
3156 /*
3157 * RAID1 needs at least one disk in active
3158 */
3159 if (conf->raid_disks - mddev->degraded < 1) {
3160 md_unregister_thread(mddev, threadp: &conf->thread);
3161 ret = -EINVAL;
3162 goto abort;
3163 }
3164
3165 if (conf->raid_disks - mddev->degraded == 1)
3166 mddev->recovery_cp = MaxSector;
3167
3168 if (mddev->recovery_cp != MaxSector)
3169 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3170 mdname(mddev));
3171 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3172 mdname(mddev), mddev->raid_disks - mddev->degraded,
3173 mddev->raid_disks);
3174
3175 /*
3176 * Ok, everything is just fine now
3177 */
3178 rcu_assign_pointer(mddev->thread, conf->thread);
3179 rcu_assign_pointer(conf->thread, NULL);
3180 mddev->private = conf;
3181 set_bit(nr: MD_FAILFAST_SUPPORTED, addr: &mddev->flags);
3182
3183 md_set_array_sectors(mddev, array_sectors: raid1_size(mddev, sectors: 0, raid_disks: 0));
3184
3185 ret = md_integrity_register(mddev);
3186 if (ret) {
3187 md_unregister_thread(mddev, threadp: &mddev->thread);
3188 goto abort;
3189 }
3190 return 0;
3191
3192abort:
3193 raid1_free(mddev, priv: conf);
3194 return ret;
3195}
3196
3197static void raid1_free(struct mddev *mddev, void *priv)
3198{
3199 struct r1conf *conf = priv;
3200
3201 mempool_exit(pool: &conf->r1bio_pool);
3202 kfree(objp: conf->mirrors);
3203 safe_put_page(p: conf->tmppage);
3204 kfree(objp: conf->poolinfo);
3205 kfree(objp: conf->nr_pending);
3206 kfree(objp: conf->nr_waiting);
3207 kfree(objp: conf->nr_queued);
3208 kfree(objp: conf->barrier);
3209 bioset_exit(&conf->bio_split);
3210 kfree(objp: conf);
3211}
3212
3213static int raid1_resize(struct mddev *mddev, sector_t sectors)
3214{
3215 /* no resync is happening, and there is enough space
3216 * on all devices, so we can resize.
3217 * We need to make sure resync covers any new space.
3218 * If the array is shrinking we should possibly wait until
3219 * any io in the removed space completes, but it hardly seems
3220 * worth it.
3221 */
3222 sector_t newsize = raid1_size(mddev, sectors, raid_disks: 0);
3223 if (mddev->external_size &&
3224 mddev->array_sectors > newsize)
3225 return -EINVAL;
3226 if (mddev->bitmap) {
3227 int ret = md_bitmap_resize(bitmap: mddev->bitmap, blocks: newsize, chunksize: 0, init: 0);
3228 if (ret)
3229 return ret;
3230 }
3231 md_set_array_sectors(mddev, array_sectors: newsize);
3232 if (sectors > mddev->dev_sectors &&
3233 mddev->recovery_cp > mddev->dev_sectors) {
3234 mddev->recovery_cp = mddev->dev_sectors;
3235 set_bit(nr: MD_RECOVERY_NEEDED, addr: &mddev->recovery);
3236 }
3237 mddev->dev_sectors = sectors;
3238 mddev->resync_max_sectors = sectors;
3239 return 0;
3240}
3241
3242static int raid1_reshape(struct mddev *mddev)
3243{
3244 /* We need to:
3245 * 1/ resize the r1bio_pool
3246 * 2/ resize conf->mirrors
3247 *
3248 * We allocate a new r1bio_pool if we can.
3249 * Then raise a device barrier and wait until all IO stops.
3250 * Then resize conf->mirrors and swap in the new r1bio pool.
3251 *
3252 * At the same time, we "pack" the devices so that all the missing
3253 * devices have the higher raid_disk numbers.
3254 */
3255 mempool_t newpool, oldpool;
3256 struct pool_info *newpoolinfo;
3257 struct raid1_info *newmirrors;
3258 struct r1conf *conf = mddev->private;
3259 int cnt, raid_disks;
3260 unsigned long flags;
3261 int d, d2;
3262 int ret;
3263
3264 memset(&newpool, 0, sizeof(newpool));
3265 memset(&oldpool, 0, sizeof(oldpool));
3266
3267 /* Cannot change chunk_size, layout, or level */
3268 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3269 mddev->layout != mddev->new_layout ||
3270 mddev->level != mddev->new_level) {
3271 mddev->new_chunk_sectors = mddev->chunk_sectors;
3272 mddev->new_layout = mddev->layout;
3273 mddev->new_level = mddev->level;
3274 return -EINVAL;
3275 }
3276
3277 if (!mddev_is_clustered(mddev))
3278 md_allow_write(mddev);
3279
3280 raid_disks = mddev->raid_disks + mddev->delta_disks;
3281
3282 if (raid_disks < conf->raid_disks) {
3283 cnt=0;
3284 for (d= 0; d < conf->raid_disks; d++)
3285 if (conf->mirrors[d].rdev)
3286 cnt++;
3287 if (cnt > raid_disks)
3288 return -EBUSY;
3289 }
3290
3291 newpoolinfo = kmalloc(size: sizeof(*newpoolinfo), GFP_KERNEL);
3292 if (!newpoolinfo)
3293 return -ENOMEM;
3294 newpoolinfo->mddev = mddev;
3295 newpoolinfo->raid_disks = raid_disks * 2;
3296
3297 ret = mempool_init(pool: &newpool, NR_RAID_BIOS, alloc_fn: r1bio_pool_alloc,
3298 free_fn: rbio_pool_free, pool_data: newpoolinfo);
3299 if (ret) {
3300 kfree(objp: newpoolinfo);
3301 return ret;
3302 }
3303 newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3304 raid_disks, 2),
3305 GFP_KERNEL);
3306 if (!newmirrors) {
3307 kfree(objp: newpoolinfo);
3308 mempool_exit(pool: &newpool);
3309 return -ENOMEM;
3310 }
3311
3312 freeze_array(conf, extra: 0);
3313
3314 /* ok, everything is stopped */
3315 oldpool = conf->r1bio_pool;
3316 conf->r1bio_pool = newpool;
3317
3318 for (d = d2 = 0; d < conf->raid_disks; d++) {
3319 struct md_rdev *rdev = conf->mirrors[d].rdev;
3320 if (rdev && rdev->raid_disk != d2) {
3321 sysfs_unlink_rdev(mddev, rdev);
3322 rdev->raid_disk = d2;
3323 sysfs_unlink_rdev(mddev, rdev);
3324 if (sysfs_link_rdev(mddev, rdev))
3325 pr_warn("md/raid1:%s: cannot register rd%d\n",
3326 mdname(mddev), rdev->raid_disk);
3327 }
3328 if (rdev)
3329 newmirrors[d2++].rdev = rdev;
3330 }
3331 kfree(objp: conf->mirrors);
3332 conf->mirrors = newmirrors;
3333 kfree(objp: conf->poolinfo);
3334 conf->poolinfo = newpoolinfo;
3335
3336 spin_lock_irqsave(&conf->device_lock, flags);
3337 mddev->degraded += (raid_disks - conf->raid_disks);
3338 spin_unlock_irqrestore(lock: &conf->device_lock, flags);
3339 conf->raid_disks = mddev->raid_disks = raid_disks;
3340 mddev->delta_disks = 0;
3341
3342 unfreeze_array(conf);
3343
3344 set_bit(nr: MD_RECOVERY_RECOVER, addr: &mddev->recovery);
3345 set_bit(nr: MD_RECOVERY_NEEDED, addr: &mddev->recovery);
3346 md_wakeup_thread(thread: mddev->thread);
3347
3348 mempool_exit(pool: &oldpool);
3349 return 0;
3350}
3351
3352static void raid1_quiesce(struct mddev *mddev, int quiesce)
3353{
3354 struct r1conf *conf = mddev->private;
3355
3356 if (quiesce)
3357 freeze_array(conf, extra: 0);
3358 else
3359 unfreeze_array(conf);
3360}
3361
3362static void *raid1_takeover(struct mddev *mddev)
3363{
3364 /* raid1 can take over:
3365 * raid5 with 2 devices, any layout or chunk size
3366 */
3367 if (mddev->level == 5 && mddev->raid_disks == 2) {
3368 struct r1conf *conf;
3369 mddev->new_level = 1;
3370 mddev->new_layout = 0;
3371 mddev->new_chunk_sectors = 0;
3372 conf = setup_conf(mddev);
3373 if (!IS_ERR(ptr: conf)) {
3374 /* Array must appear to be quiesced */
3375 conf->array_frozen = 1;
3376 mddev_clear_unsupported_flags(mddev,
3377 UNSUPPORTED_MDDEV_FLAGS);
3378 }
3379 return conf;
3380 }
3381 return ERR_PTR(error: -EINVAL);
3382}
3383
3384static struct md_personality raid1_personality =
3385{
3386 .name = "raid1",
3387 .level = 1,
3388 .owner = THIS_MODULE,
3389 .make_request = raid1_make_request,
3390 .run = raid1_run,
3391 .free = raid1_free,
3392 .status = raid1_status,
3393 .error_handler = raid1_error,
3394 .hot_add_disk = raid1_add_disk,
3395 .hot_remove_disk= raid1_remove_disk,
3396 .spare_active = raid1_spare_active,
3397 .sync_request = raid1_sync_request,
3398 .resize = raid1_resize,
3399 .size = raid1_size,
3400 .check_reshape = raid1_reshape,
3401 .quiesce = raid1_quiesce,
3402 .takeover = raid1_takeover,
3403};
3404
3405static int __init raid_init(void)
3406{
3407 return register_md_personality(p: &raid1_personality);
3408}
3409
3410static void raid_exit(void)
3411{
3412 unregister_md_personality(p: &raid1_personality);
3413}
3414
3415module_init(raid_init);
3416module_exit(raid_exit);
3417MODULE_LICENSE("GPL");
3418MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3419MODULE_ALIAS("md-personality-3"); /* RAID1 */
3420MODULE_ALIAS("md-raid1");
3421MODULE_ALIAS("md-level-1");
3422

source code of linux/drivers/md/raid1.c