1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Handles the M-Systems DiskOnChip G3 chip
4 *
5 * Copyright (C) 2011 Robert Jarzmik
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/errno.h>
11#include <linux/of.h>
12#include <linux/platform_device.h>
13#include <linux/string.h>
14#include <linux/slab.h>
15#include <linux/io.h>
16#include <linux/delay.h>
17#include <linux/mtd/mtd.h>
18#include <linux/mtd/partitions.h>
19#include <linux/bitmap.h>
20#include <linux/bitrev.h>
21#include <linux/bch.h>
22
23#include <linux/debugfs.h>
24#include <linux/seq_file.h>
25
26#define CREATE_TRACE_POINTS
27#include "docg3.h"
28
29/*
30 * This driver handles the DiskOnChip G3 flash memory.
31 *
32 * As no specification is available from M-Systems/Sandisk, this drivers lacks
33 * several functions available on the chip, as :
34 * - IPL write
35 *
36 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
37 * the driver assumes a 16bits data bus.
38 *
39 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
40 * - a 1 byte Hamming code stored in the OOB for each page
41 * - a 7 bytes BCH code stored in the OOB for each page
42 * The BCH ECC is :
43 * - BCH is in GF(2^14)
44 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes
45 * + 1 hamming byte)
46 * - BCH can correct up to 4 bits (t = 4)
47 * - BCH syndroms are calculated in hardware, and checked in hardware as well
48 *
49 */
50
51static unsigned int reliable_mode;
52module_param(reliable_mode, uint, 0);
53MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
54 "2=reliable) : MLC normal operations are in normal mode");
55
56static int docg3_ooblayout_ecc(struct mtd_info *mtd, int section,
57 struct mtd_oob_region *oobregion)
58{
59 if (section)
60 return -ERANGE;
61
62 /* byte 7 is Hamming ECC, byte 8-14 are BCH ECC */
63 oobregion->offset = 7;
64 oobregion->length = 8;
65
66 return 0;
67}
68
69static int docg3_ooblayout_free(struct mtd_info *mtd, int section,
70 struct mtd_oob_region *oobregion)
71{
72 if (section > 1)
73 return -ERANGE;
74
75 /* free bytes: byte 0 until byte 6, byte 15 */
76 if (!section) {
77 oobregion->offset = 0;
78 oobregion->length = 7;
79 } else {
80 oobregion->offset = 15;
81 oobregion->length = 1;
82 }
83
84 return 0;
85}
86
87static const struct mtd_ooblayout_ops nand_ooblayout_docg3_ops = {
88 .ecc = docg3_ooblayout_ecc,
89 .free = docg3_ooblayout_free,
90};
91
92static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
93{
94 u8 val = readb(addr: docg3->cascade->base + reg);
95
96 trace_docg3_io(op: 0, width: 8, reg, val: (int)val);
97 return val;
98}
99
100static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
101{
102 u16 val = readw(addr: docg3->cascade->base + reg);
103
104 trace_docg3_io(op: 0, width: 16, reg, val: (int)val);
105 return val;
106}
107
108static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
109{
110 writeb(val, addr: docg3->cascade->base + reg);
111 trace_docg3_io(op: 1, width: 8, reg, val);
112}
113
114static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
115{
116 writew(val, addr: docg3->cascade->base + reg);
117 trace_docg3_io(op: 1, width: 16, reg, val);
118}
119
120static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
121{
122 doc_writeb(docg3, val: cmd, DOC_FLASHCOMMAND);
123}
124
125static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
126{
127 doc_writeb(docg3, val: seq, DOC_FLASHSEQUENCE);
128}
129
130static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
131{
132 doc_writeb(docg3, val: addr, DOC_FLASHADDRESS);
133}
134
135static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL };
136
137static int doc_register_readb(struct docg3 *docg3, int reg)
138{
139 u8 val;
140
141 doc_writew(docg3, val: reg, DOC_READADDRESS);
142 val = doc_readb(docg3, reg);
143 doc_vdbg("Read register %04x : %02x\n", reg, val);
144 return val;
145}
146
147static int doc_register_readw(struct docg3 *docg3, int reg)
148{
149 u16 val;
150
151 doc_writew(docg3, val: reg, DOC_READADDRESS);
152 val = doc_readw(docg3, reg);
153 doc_vdbg("Read register %04x : %04x\n", reg, val);
154 return val;
155}
156
157/**
158 * doc_delay - delay docg3 operations
159 * @docg3: the device
160 * @nbNOPs: the number of NOPs to issue
161 *
162 * As no specification is available, the right timings between chip commands are
163 * unknown. The only available piece of information are the observed nops on a
164 * working docg3 chip.
165 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
166 * friendlier msleep() functions or blocking mdelay().
167 */
168static void doc_delay(struct docg3 *docg3, int nbNOPs)
169{
170 int i;
171
172 doc_vdbg("NOP x %d\n", nbNOPs);
173 for (i = 0; i < nbNOPs; i++)
174 doc_writeb(docg3, val: 0, DOC_NOP);
175}
176
177static int is_prot_seq_error(struct docg3 *docg3)
178{
179 int ctrl;
180
181 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
182 return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
183}
184
185static int doc_is_ready(struct docg3 *docg3)
186{
187 int ctrl;
188
189 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
190 return ctrl & DOC_CTRL_FLASHREADY;
191}
192
193static int doc_wait_ready(struct docg3 *docg3)
194{
195 int maxWaitCycles = 100;
196
197 do {
198 doc_delay(docg3, nbNOPs: 4);
199 cpu_relax();
200 } while (!doc_is_ready(docg3) && maxWaitCycles--);
201 doc_delay(docg3, nbNOPs: 2);
202 if (maxWaitCycles > 0)
203 return 0;
204 else
205 return -EIO;
206}
207
208static int doc_reset_seq(struct docg3 *docg3)
209{
210 int ret;
211
212 doc_writeb(docg3, val: 0x10, DOC_FLASHCONTROL);
213 doc_flash_sequence(docg3, DOC_SEQ_RESET);
214 doc_flash_command(docg3, DOC_CMD_RESET);
215 doc_delay(docg3, nbNOPs: 2);
216 ret = doc_wait_ready(docg3);
217
218 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
219 return ret;
220}
221
222/**
223 * doc_read_data_area - Read data from data area
224 * @docg3: the device
225 * @buf: the buffer to fill in (might be NULL is dummy reads)
226 * @len: the length to read
227 * @first: first time read, DOC_READADDRESS should be set
228 *
229 * Reads bytes from flash data. Handles the single byte / even bytes reads.
230 */
231static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
232 int first)
233{
234 int i, cdr, len4;
235 u16 data16, *dst16;
236 u8 data8, *dst8;
237
238 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
239 cdr = len & 0x1;
240 len4 = len - cdr;
241
242 if (first)
243 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
244 dst16 = buf;
245 for (i = 0; i < len4; i += 2) {
246 data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
247 if (dst16) {
248 *dst16 = data16;
249 dst16++;
250 }
251 }
252
253 if (cdr) {
254 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
255 DOC_READADDRESS);
256 doc_delay(docg3, nbNOPs: 1);
257 dst8 = (u8 *)dst16;
258 for (i = 0; i < cdr; i++) {
259 data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
260 if (dst8) {
261 *dst8 = data8;
262 dst8++;
263 }
264 }
265 }
266}
267
268/**
269 * doc_write_data_area - Write data into data area
270 * @docg3: the device
271 * @buf: the buffer to get input bytes from
272 * @len: the length to write
273 *
274 * Writes bytes into flash data. Handles the single byte / even bytes writes.
275 */
276static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
277{
278 int i, cdr, len4;
279 u16 *src16;
280 u8 *src8;
281
282 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
283 cdr = len & 0x3;
284 len4 = len - cdr;
285
286 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
287 src16 = (u16 *)buf;
288 for (i = 0; i < len4; i += 2) {
289 doc_writew(docg3, val: *src16, DOC_IOSPACE_DATA);
290 src16++;
291 }
292
293 src8 = (u8 *)src16;
294 for (i = 0; i < cdr; i++) {
295 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
296 DOC_READADDRESS);
297 doc_writeb(docg3, val: *src8, DOC_IOSPACE_DATA);
298 src8++;
299 }
300}
301
302/**
303 * doc_set_reliable_mode - Sets the flash to normal or reliable data mode
304 * @docg3: the device
305 *
306 * The reliable data mode is a bit slower than the fast mode, but less errors
307 * occur. Entering the reliable mode cannot be done without entering the fast
308 * mode first.
309 *
310 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
311 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
312 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
313 * result, which is a logical and between bytes from page 0 and page 1 (which is
314 * consistent with the fact that writing to a page is _clearing_ bits of that
315 * page).
316 */
317static void doc_set_reliable_mode(struct docg3 *docg3)
318{
319 static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
320
321 doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
322 switch (docg3->reliable) {
323 case 0:
324 break;
325 case 1:
326 doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
327 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
328 break;
329 case 2:
330 doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
331 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
332 doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
333 break;
334 default:
335 doc_err("doc_set_reliable_mode(): invalid mode\n");
336 break;
337 }
338 doc_delay(docg3, nbNOPs: 2);
339}
340
341/**
342 * doc_set_asic_mode - Set the ASIC mode
343 * @docg3: the device
344 * @mode: the mode
345 *
346 * The ASIC can work in 3 modes :
347 * - RESET: all registers are zeroed
348 * - NORMAL: receives and handles commands
349 * - POWERDOWN: minimal poweruse, flash parts shut off
350 */
351static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
352{
353 int i;
354
355 for (i = 0; i < 12; i++)
356 doc_readb(docg3, DOC_IOSPACE_IPL);
357
358 mode |= DOC_ASICMODE_MDWREN;
359 doc_dbg("doc_set_asic_mode(%02x)\n", mode);
360 doc_writeb(docg3, val: mode, DOC_ASICMODE);
361 doc_writeb(docg3, val: ~mode, DOC_ASICMODECONFIRM);
362 doc_delay(docg3, nbNOPs: 1);
363}
364
365/**
366 * doc_set_device_id - Sets the devices id for cascaded G3 chips
367 * @docg3: the device
368 * @id: the chip to select (amongst 0, 1, 2, 3)
369 *
370 * There can be 4 cascaded G3 chips. This function selects the one which will
371 * should be the active one.
372 */
373static void doc_set_device_id(struct docg3 *docg3, int id)
374{
375 u8 ctrl;
376
377 doc_dbg("doc_set_device_id(%d)\n", id);
378 doc_writeb(docg3, val: id, DOC_DEVICESELECT);
379 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
380
381 ctrl &= ~DOC_CTRL_VIOLATION;
382 ctrl |= DOC_CTRL_CE;
383 doc_writeb(docg3, val: ctrl, DOC_FLASHCONTROL);
384}
385
386/**
387 * doc_set_extra_page_mode - Change flash page layout
388 * @docg3: the device
389 *
390 * Normally, the flash page is split into the data (512 bytes) and the out of
391 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
392 * leveling counters are stored. To access this last area of 4 bytes, a special
393 * mode must be input to the flash ASIC.
394 *
395 * Returns 0 if no error occurred, -EIO else.
396 */
397static int doc_set_extra_page_mode(struct docg3 *docg3)
398{
399 int fctrl;
400
401 doc_dbg("doc_set_extra_page_mode()\n");
402 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
403 doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
404 doc_delay(docg3, nbNOPs: 2);
405
406 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
407 if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
408 return -EIO;
409 else
410 return 0;
411}
412
413/**
414 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
415 * @docg3: the device
416 * @sector: the sector
417 */
418static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
419{
420 doc_delay(docg3, nbNOPs: 1);
421 doc_flash_address(docg3, addr: sector & 0xff);
422 doc_flash_address(docg3, addr: (sector >> 8) & 0xff);
423 doc_flash_address(docg3, addr: (sector >> 16) & 0xff);
424 doc_delay(docg3, nbNOPs: 1);
425}
426
427/**
428 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
429 * @docg3: the device
430 * @sector: the sector
431 * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
432 */
433static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
434{
435 ofs = ofs >> 2;
436 doc_delay(docg3, nbNOPs: 1);
437 doc_flash_address(docg3, addr: ofs & 0xff);
438 doc_flash_address(docg3, addr: sector & 0xff);
439 doc_flash_address(docg3, addr: (sector >> 8) & 0xff);
440 doc_flash_address(docg3, addr: (sector >> 16) & 0xff);
441 doc_delay(docg3, nbNOPs: 1);
442}
443
444/**
445 * doc_read_seek - Set both flash planes to the specified block, page for reading
446 * @docg3: the device
447 * @block0: the first plane block index
448 * @block1: the second plane block index
449 * @page: the page index within the block
450 * @wear: if true, read will occur on the 4 extra bytes of the wear area
451 * @ofs: offset in page to read
452 *
453 * Programs the flash even and odd planes to the specific block and page.
454 * Alternatively, programs the flash to the wear area of the specified page.
455 */
456static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
457 int wear, int ofs)
458{
459 int sector, ret = 0;
460
461 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
462 block0, block1, page, ofs, wear);
463
464 if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
465 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
466 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
467 doc_delay(docg3, nbNOPs: 2);
468 } else {
469 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
470 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
471 doc_delay(docg3, nbNOPs: 2);
472 }
473
474 doc_set_reliable_mode(docg3);
475 if (wear)
476 ret = doc_set_extra_page_mode(docg3);
477 if (ret)
478 goto out;
479
480 doc_flash_sequence(docg3, DOC_SEQ_READ);
481 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
482 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
483 doc_setup_addr_sector(docg3, sector);
484
485 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
486 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
487 doc_setup_addr_sector(docg3, sector);
488 doc_delay(docg3, nbNOPs: 1);
489
490out:
491 return ret;
492}
493
494/**
495 * doc_write_seek - Set both flash planes to the specified block, page for writing
496 * @docg3: the device
497 * @block0: the first plane block index
498 * @block1: the second plane block index
499 * @page: the page index within the block
500 * @ofs: offset in page to write
501 *
502 * Programs the flash even and odd planes to the specific block and page.
503 * Alternatively, programs the flash to the wear area of the specified page.
504 */
505static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
506 int ofs)
507{
508 int ret = 0, sector;
509
510 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
511 block0, block1, page, ofs);
512
513 doc_set_reliable_mode(docg3);
514
515 if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
516 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
517 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
518 doc_delay(docg3, nbNOPs: 2);
519 } else {
520 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
521 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
522 doc_delay(docg3, nbNOPs: 2);
523 }
524
525 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
526 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
527
528 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
529 doc_setup_writeaddr_sector(docg3, sector, ofs);
530
531 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
532 doc_delay(docg3, nbNOPs: 2);
533 ret = doc_wait_ready(docg3);
534 if (ret)
535 goto out;
536
537 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
538 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
539 doc_setup_writeaddr_sector(docg3, sector, ofs);
540 doc_delay(docg3, nbNOPs: 1);
541
542out:
543 return ret;
544}
545
546
547/**
548 * doc_read_page_ecc_init - Initialize hardware ECC engine
549 * @docg3: the device
550 * @len: the number of bytes covered by the ECC (BCH covered)
551 *
552 * The function does initialize the hardware ECC engine to compute the Hamming
553 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
554 *
555 * Return 0 if succeeded, -EIO on error
556 */
557static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
558{
559 doc_writew(docg3, DOC_ECCCONF0_READ_MODE
560 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
561 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
562 DOC_ECCCONF0);
563 doc_delay(docg3, nbNOPs: 4);
564 doc_register_readb(docg3, DOC_FLASHCONTROL);
565 return doc_wait_ready(docg3);
566}
567
568/**
569 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
570 * @docg3: the device
571 * @len: the number of bytes covered by the ECC (BCH covered)
572 *
573 * The function does initialize the hardware ECC engine to compute the Hamming
574 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
575 *
576 * Return 0 if succeeded, -EIO on error
577 */
578static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
579{
580 doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
581 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
582 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
583 DOC_ECCCONF0);
584 doc_delay(docg3, nbNOPs: 4);
585 doc_register_readb(docg3, DOC_FLASHCONTROL);
586 return doc_wait_ready(docg3);
587}
588
589/**
590 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
591 * @docg3: the device
592 *
593 * Disables the hardware ECC generator and checker, for unchecked reads (as when
594 * reading OOB only or write status byte).
595 */
596static void doc_ecc_disable(struct docg3 *docg3)
597{
598 doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
599 doc_delay(docg3, nbNOPs: 4);
600}
601
602/**
603 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
604 * @docg3: the device
605 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
606 *
607 * This function programs the ECC hardware to compute the hamming code on the
608 * last provided N bytes to the hardware generator.
609 */
610static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
611{
612 u8 ecc_conf1;
613
614 ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
615 ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
616 ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
617 doc_writeb(docg3, val: ecc_conf1, DOC_ECCCONF1);
618}
619
620/**
621 * doc_ecc_bch_fix_data - Fix if need be read data from flash
622 * @docg3: the device
623 * @buf: the buffer of read data (512 + 7 + 1 bytes)
624 * @hwecc: the hardware calculated ECC.
625 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
626 * area data, and calc_ecc the ECC calculated by the hardware generator.
627 *
628 * Checks if the received data matches the ECC, and if an error is detected,
629 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3
630 * understands the (data, ecc, syndroms) in an inverted order in comparison to
631 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
632 * bit6 and bit 1, ...) for all ECC data.
633 *
634 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
635 * algorithm is used to decode this. However the hw operates on page
636 * data in a bit order that is the reverse of that of the bch alg,
637 * requiring that the bits be reversed on the result. Thanks to Ivan
638 * Djelic for his analysis.
639 *
640 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
641 * errors were detected and cannot be fixed.
642 */
643static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
644{
645 u8 ecc[DOC_ECC_BCH_SIZE];
646 int errorpos[DOC_ECC_BCH_T], i, numerrs;
647
648 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
649 ecc[i] = bitrev8(hwecc[i]);
650 numerrs = bch_decode(bch: docg3->cascade->bch, NULL,
651 DOC_ECC_BCH_COVERED_BYTES,
652 NULL, calc_ecc: ecc, NULL, errloc: errorpos);
653 BUG_ON(numerrs == -EINVAL);
654 if (numerrs < 0)
655 goto out;
656
657 for (i = 0; i < numerrs; i++)
658 errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
659 for (i = 0; i < numerrs; i++)
660 if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
661 /* error is located in data, correct it */
662 change_bit(nr: errorpos[i], addr: buf);
663out:
664 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
665 return numerrs;
666}
667
668
669/**
670 * doc_read_page_prepare - Prepares reading data from a flash page
671 * @docg3: the device
672 * @block0: the first plane block index on flash memory
673 * @block1: the second plane block index on flash memory
674 * @page: the page index in the block
675 * @offset: the offset in the page (must be a multiple of 4)
676 *
677 * Prepares the page to be read in the flash memory :
678 * - tell ASIC to map the flash pages
679 * - tell ASIC to be in read mode
680 *
681 * After a call to this method, a call to doc_read_page_finish is mandatory,
682 * to end the read cycle of the flash.
683 *
684 * Read data from a flash page. The length to be read must be between 0 and
685 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
686 * the extra bytes reading is not implemented).
687 *
688 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
689 * in two steps:
690 * - one read of 512 bytes at offset 0
691 * - one read of 512 bytes at offset 512 + 16
692 *
693 * Returns 0 if successful, -EIO if a read error occurred.
694 */
695static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
696 int page, int offset)
697{
698 int wear_area = 0, ret = 0;
699
700 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
701 block0, block1, page, offset);
702 if (offset >= DOC_LAYOUT_WEAR_OFFSET)
703 wear_area = 1;
704 if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
705 return -EINVAL;
706
707 doc_set_device_id(docg3, id: docg3->device_id);
708 ret = doc_reset_seq(docg3);
709 if (ret)
710 goto err;
711
712 /* Program the flash address block and page */
713 ret = doc_read_seek(docg3, block0, block1, page, wear: wear_area, ofs: offset);
714 if (ret)
715 goto err;
716
717 doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
718 doc_delay(docg3, nbNOPs: 2);
719 doc_wait_ready(docg3);
720
721 doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
722 doc_delay(docg3, nbNOPs: 1);
723 if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
724 offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
725 doc_flash_address(docg3, addr: offset >> 2);
726 doc_delay(docg3, nbNOPs: 1);
727 doc_wait_ready(docg3);
728
729 doc_flash_command(docg3, DOC_CMD_READ_FLASH);
730
731 return 0;
732err:
733 doc_writeb(docg3, val: 0, DOC_DATAEND);
734 doc_delay(docg3, nbNOPs: 2);
735 return -EIO;
736}
737
738/**
739 * doc_read_page_getbytes - Reads bytes from a prepared page
740 * @docg3: the device
741 * @len: the number of bytes to be read (must be a multiple of 4)
742 * @buf: the buffer to be filled in (or NULL is forget bytes)
743 * @first: 1 if first time read, DOC_READADDRESS should be set
744 * @last_odd: 1 if last read ended up on an odd byte
745 *
746 * Reads bytes from a prepared page. There is a trickery here : if the last read
747 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
748 * planes, the first byte must be read apart. If a word (16bit) read was used,
749 * the read would return the byte of plane 2 as low *and* high endian, which
750 * will mess the read.
751 *
752 */
753static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
754 int first, int last_odd)
755{
756 if (last_odd && len > 0) {
757 doc_read_data_area(docg3, buf, len: 1, first);
758 doc_read_data_area(docg3, buf: buf ? buf + 1 : buf, len: len - 1, first: 0);
759 } else {
760 doc_read_data_area(docg3, buf, len, first);
761 }
762 doc_delay(docg3, nbNOPs: 2);
763 return len;
764}
765
766/**
767 * doc_write_page_putbytes - Writes bytes into a prepared page
768 * @docg3: the device
769 * @len: the number of bytes to be written
770 * @buf: the buffer of input bytes
771 *
772 */
773static void doc_write_page_putbytes(struct docg3 *docg3, int len,
774 const u_char *buf)
775{
776 doc_write_data_area(docg3, buf, len);
777 doc_delay(docg3, nbNOPs: 2);
778}
779
780/**
781 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
782 * @docg3: the device
783 * @hwecc: the array of 7 integers where the hardware ecc will be stored
784 */
785static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
786{
787 int i;
788
789 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
790 hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
791}
792
793/**
794 * doc_page_finish - Ends reading/writing of a flash page
795 * @docg3: the device
796 */
797static void doc_page_finish(struct docg3 *docg3)
798{
799 doc_writeb(docg3, val: 0, DOC_DATAEND);
800 doc_delay(docg3, nbNOPs: 2);
801}
802
803/**
804 * doc_read_page_finish - Ends reading of a flash page
805 * @docg3: the device
806 *
807 * As a side effect, resets the chip selector to 0. This ensures that after each
808 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
809 * reboot will boot on floor 0, where the IPL is.
810 */
811static void doc_read_page_finish(struct docg3 *docg3)
812{
813 doc_page_finish(docg3);
814 doc_set_device_id(docg3, id: 0);
815}
816
817/**
818 * calc_block_sector - Calculate blocks, pages and ofs.
819 *
820 * @from: offset in flash
821 * @block0: first plane block index calculated
822 * @block1: second plane block index calculated
823 * @page: page calculated
824 * @ofs: offset in page
825 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
826 * reliable mode.
827 *
828 * The calculation is based on the reliable/normal mode. In normal mode, the 64
829 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
830 * clones, only 32 pages per block are available.
831 */
832static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
833 int *ofs, int reliable)
834{
835 uint sector, pages_biblock;
836
837 pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
838 if (reliable == 1 || reliable == 2)
839 pages_biblock /= 2;
840
841 sector = from / DOC_LAYOUT_PAGE_SIZE;
842 *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
843 *block1 = *block0 + 1;
844 *page = sector % pages_biblock;
845 *page /= DOC_LAYOUT_NBPLANES;
846 if (reliable == 1 || reliable == 2)
847 *page *= 2;
848 if (sector % 2)
849 *ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
850 else
851 *ofs = 0;
852}
853
854/**
855 * doc_read_oob - Read out of band bytes from flash
856 * @mtd: the device
857 * @from: the offset from first block and first page, in bytes, aligned on page
858 * size
859 * @ops: the mtd oob structure
860 *
861 * Reads flash memory OOB area of pages.
862 *
863 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
864 */
865static int doc_read_oob(struct mtd_info *mtd, loff_t from,
866 struct mtd_oob_ops *ops)
867{
868 struct docg3 *docg3 = mtd->priv;
869 int block0, block1, page, ret, skip, ofs = 0;
870 u8 *oobbuf = ops->oobbuf;
871 u8 *buf = ops->datbuf;
872 size_t len, ooblen, nbdata, nboob;
873 u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
874 struct mtd_ecc_stats old_stats;
875 int max_bitflips = 0;
876
877 if (buf)
878 len = ops->len;
879 else
880 len = 0;
881 if (oobbuf)
882 ooblen = ops->ooblen;
883 else
884 ooblen = 0;
885
886 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
887 oobbuf += ops->ooboffs;
888
889 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
890 from, ops->mode, buf, len, oobbuf, ooblen);
891 if (ooblen % DOC_LAYOUT_OOB_SIZE)
892 return -EINVAL;
893
894 ops->oobretlen = 0;
895 ops->retlen = 0;
896 ret = 0;
897 skip = from % DOC_LAYOUT_PAGE_SIZE;
898 mutex_lock(&docg3->cascade->lock);
899 old_stats = mtd->ecc_stats;
900 while (ret >= 0 && (len > 0 || ooblen > 0)) {
901 calc_block_sector(from: from - skip, block0: &block0, block1: &block1, page: &page, ofs: &ofs,
902 reliable: docg3->reliable);
903 nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
904 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
905 ret = doc_read_page_prepare(docg3, block0, block1, page, offset: ofs);
906 if (ret < 0)
907 goto out;
908 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
909 if (ret < 0)
910 goto err_in_read;
911 ret = doc_read_page_getbytes(docg3, len: skip, NULL, first: 1, last_odd: 0);
912 if (ret < skip)
913 goto err_in_read;
914 ret = doc_read_page_getbytes(docg3, len: nbdata, buf, first: 0, last_odd: skip % 2);
915 if (ret < nbdata)
916 goto err_in_read;
917 doc_read_page_getbytes(docg3,
918 DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
919 NULL, first: 0, last_odd: (skip + nbdata) % 2);
920 ret = doc_read_page_getbytes(docg3, len: nboob, buf: oobbuf, first: 0, last_odd: 0);
921 if (ret < nboob)
922 goto err_in_read;
923 doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
924 NULL, first: 0, last_odd: nboob % 2);
925
926 doc_get_bch_hw_ecc(docg3, hwecc);
927 eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
928
929 if (nboob >= DOC_LAYOUT_OOB_SIZE) {
930 doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf);
931 doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
932 doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8);
933 doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
934 }
935 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
936 doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc);
937
938 ret = -EIO;
939 if (is_prot_seq_error(docg3))
940 goto err_in_read;
941 ret = 0;
942 if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
943 (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
944 (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
945 (ops->mode != MTD_OPS_RAW) &&
946 (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
947 ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
948 if (ret < 0) {
949 mtd->ecc_stats.failed++;
950 ret = -EBADMSG;
951 }
952 if (ret > 0) {
953 mtd->ecc_stats.corrected += ret;
954 max_bitflips = max(max_bitflips, ret);
955 ret = max_bitflips;
956 }
957 }
958
959 doc_read_page_finish(docg3);
960 ops->retlen += nbdata;
961 ops->oobretlen += nboob;
962 buf += nbdata;
963 oobbuf += nboob;
964 len -= nbdata;
965 ooblen -= nboob;
966 from += DOC_LAYOUT_PAGE_SIZE;
967 skip = 0;
968 }
969
970out:
971 if (ops->stats) {
972 ops->stats->uncorrectable_errors +=
973 mtd->ecc_stats.failed - old_stats.failed;
974 ops->stats->corrected_bitflips +=
975 mtd->ecc_stats.corrected - old_stats.corrected;
976 }
977 mutex_unlock(lock: &docg3->cascade->lock);
978 return ret;
979err_in_read:
980 doc_read_page_finish(docg3);
981 goto out;
982}
983
984static int doc_reload_bbt(struct docg3 *docg3)
985{
986 int block = DOC_LAYOUT_BLOCK_BBT;
987 int ret = 0, nbpages, page;
988 u_char *buf = docg3->bbt;
989
990 nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
991 for (page = 0; !ret && (page < nbpages); page++) {
992 ret = doc_read_page_prepare(docg3, block0: block, block1: block + 1,
993 page: page + DOC_LAYOUT_PAGE_BBT, offset: 0);
994 if (!ret)
995 ret = doc_read_page_ecc_init(docg3,
996 DOC_LAYOUT_PAGE_SIZE);
997 if (!ret)
998 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
999 buf, first: 1, last_odd: 0);
1000 buf += DOC_LAYOUT_PAGE_SIZE;
1001 }
1002 doc_read_page_finish(docg3);
1003 return ret;
1004}
1005
1006/**
1007 * doc_block_isbad - Checks whether a block is good or not
1008 * @mtd: the device
1009 * @from: the offset to find the correct block
1010 *
1011 * Returns 1 if block is bad, 0 if block is good
1012 */
1013static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1014{
1015 struct docg3 *docg3 = mtd->priv;
1016 int block0, block1, page, ofs, is_good;
1017
1018 calc_block_sector(from, block0: &block0, block1: &block1, page: &page, ofs: &ofs,
1019 reliable: docg3->reliable);
1020 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1021 from, block0, block1, page, ofs);
1022
1023 if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1024 return 0;
1025 if (block1 > docg3->max_block)
1026 return -EINVAL;
1027
1028 is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1029 return !is_good;
1030}
1031
1032#if 0
1033/**
1034 * doc_get_erase_count - Get block erase count
1035 * @docg3: the device
1036 * @from: the offset in which the block is.
1037 *
1038 * Get the number of times a block was erased. The number is the maximum of
1039 * erase times between first and second plane (which should be equal normally).
1040 *
1041 * Returns The number of erases, or -EINVAL or -EIO on error.
1042 */
1043static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1044{
1045 u8 buf[DOC_LAYOUT_WEAR_SIZE];
1046 int ret, plane1_erase_count, plane2_erase_count;
1047 int block0, block1, page, ofs;
1048
1049 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1050 if (from % DOC_LAYOUT_PAGE_SIZE)
1051 return -EINVAL;
1052 calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
1053 if (block1 > docg3->max_block)
1054 return -EINVAL;
1055
1056 ret = doc_reset_seq(docg3);
1057 if (!ret)
1058 ret = doc_read_page_prepare(docg3, block0, block1, page,
1059 ofs + DOC_LAYOUT_WEAR_OFFSET, 0);
1060 if (!ret)
1061 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
1062 buf, 1, 0);
1063 doc_read_page_finish(docg3);
1064
1065 if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1066 return -EIO;
1067 plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1068 | ((u8)(~buf[5]) << 16);
1069 plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1070 | ((u8)(~buf[7]) << 16);
1071
1072 return max(plane1_erase_count, plane2_erase_count);
1073}
1074#endif
1075
1076/**
1077 * doc_get_op_status - get erase/write operation status
1078 * @docg3: the device
1079 *
1080 * Queries the status from the chip, and returns it
1081 *
1082 * Returns the status (bits DOC_PLANES_STATUS_*)
1083 */
1084static int doc_get_op_status(struct docg3 *docg3)
1085{
1086 u8 status;
1087
1088 doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1089 doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1090 doc_delay(docg3, nbNOPs: 5);
1091
1092 doc_ecc_disable(docg3);
1093 doc_read_data_area(docg3, buf: &status, len: 1, first: 1);
1094 return status;
1095}
1096
1097/**
1098 * doc_write_erase_wait_status - wait for write or erase completion
1099 * @docg3: the device
1100 *
1101 * Wait for the chip to be ready again after erase or write operation, and check
1102 * erase/write status.
1103 *
1104 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
1105 * timeout
1106 */
1107static int doc_write_erase_wait_status(struct docg3 *docg3)
1108{
1109 int i, status, ret = 0;
1110
1111 for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1112 msleep(msecs: 20);
1113 if (!doc_is_ready(docg3)) {
1114 doc_dbg("Timeout reached and the chip is still not ready\n");
1115 ret = -EAGAIN;
1116 goto out;
1117 }
1118
1119 status = doc_get_op_status(docg3);
1120 if (status & DOC_PLANES_STATUS_FAIL) {
1121 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1122 status);
1123 ret = -EIO;
1124 }
1125
1126out:
1127 doc_page_finish(docg3);
1128 return ret;
1129}
1130
1131/**
1132 * doc_erase_block - Erase a couple of blocks
1133 * @docg3: the device
1134 * @block0: the first block to erase (leftmost plane)
1135 * @block1: the second block to erase (rightmost plane)
1136 *
1137 * Erase both blocks, and return operation status
1138 *
1139 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1140 * ready for too long
1141 */
1142static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1143{
1144 int ret, sector;
1145
1146 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1147 ret = doc_reset_seq(docg3);
1148 if (ret)
1149 return -EIO;
1150
1151 doc_set_reliable_mode(docg3);
1152 doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1153
1154 sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1155 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1156 doc_setup_addr_sector(docg3, sector);
1157 sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1158 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1159 doc_setup_addr_sector(docg3, sector);
1160 doc_delay(docg3, nbNOPs: 1);
1161
1162 doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1163 doc_delay(docg3, nbNOPs: 2);
1164
1165 if (is_prot_seq_error(docg3)) {
1166 doc_err("Erase blocks %d,%d error\n", block0, block1);
1167 return -EIO;
1168 }
1169
1170 return doc_write_erase_wait_status(docg3);
1171}
1172
1173/**
1174 * doc_erase - Erase a portion of the chip
1175 * @mtd: the device
1176 * @info: the erase info
1177 *
1178 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1179 * split into 2 pages of 512 bytes on 2 contiguous blocks.
1180 *
1181 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
1182 * issue
1183 */
1184static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1185{
1186 struct docg3 *docg3 = mtd->priv;
1187 uint64_t len;
1188 int block0, block1, page, ret = 0, ofs = 0;
1189
1190 doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
1191
1192 calc_block_sector(from: info->addr + info->len, block0: &block0, block1: &block1, page: &page,
1193 ofs: &ofs, reliable: docg3->reliable);
1194 if (info->addr + info->len > mtd->size || page || ofs)
1195 return -EINVAL;
1196
1197 calc_block_sector(from: info->addr, block0: &block0, block1: &block1, page: &page, ofs: &ofs,
1198 reliable: docg3->reliable);
1199 mutex_lock(&docg3->cascade->lock);
1200 doc_set_device_id(docg3, id: docg3->device_id);
1201 doc_set_reliable_mode(docg3);
1202 for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1203 ret = doc_erase_block(docg3, block0, block1);
1204 block0 += 2;
1205 block1 += 2;
1206 }
1207 mutex_unlock(lock: &docg3->cascade->lock);
1208
1209 return ret;
1210}
1211
1212/**
1213 * doc_write_page - Write a single page to the chip
1214 * @docg3: the device
1215 * @to: the offset from first block and first page, in bytes, aligned on page
1216 * size
1217 * @buf: buffer to get bytes from
1218 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1219 * written)
1220 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1221 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1222 * remaining ones are filled with hardware Hamming and BCH
1223 * computations. Its value is not meaningfull is oob == NULL.
1224 *
1225 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1226 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1227 * BCH generator if autoecc is not null.
1228 *
1229 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1230 */
1231static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1232 const u_char *oob, int autoecc)
1233{
1234 int block0, block1, page, ret, ofs = 0;
1235 u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
1236
1237 doc_dbg("doc_write_page(to=%lld)\n", to);
1238 calc_block_sector(from: to, block0: &block0, block1: &block1, page: &page, ofs: &ofs, reliable: docg3->reliable);
1239
1240 doc_set_device_id(docg3, id: docg3->device_id);
1241 ret = doc_reset_seq(docg3);
1242 if (ret)
1243 goto err;
1244
1245 /* Program the flash address block and page */
1246 ret = doc_write_seek(docg3, block0, block1, page, ofs);
1247 if (ret)
1248 goto err;
1249
1250 doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
1251 doc_delay(docg3, nbNOPs: 2);
1252 doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1253
1254 if (oob && autoecc) {
1255 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, buf: oob);
1256 doc_delay(docg3, nbNOPs: 2);
1257 oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1258
1259 hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1260 doc_delay(docg3, nbNOPs: 2);
1261 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1262 buf: &hamming);
1263 doc_delay(docg3, nbNOPs: 2);
1264
1265 doc_get_bch_hw_ecc(docg3, hwecc);
1266 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, buf: hwecc);
1267 doc_delay(docg3, nbNOPs: 2);
1268
1269 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, buf: oob);
1270 }
1271 if (oob && !autoecc)
1272 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, buf: oob);
1273
1274 doc_delay(docg3, nbNOPs: 2);
1275 doc_page_finish(docg3);
1276 doc_delay(docg3, nbNOPs: 2);
1277 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1278 doc_delay(docg3, nbNOPs: 2);
1279
1280 /*
1281 * The wait status will perform another doc_page_finish() call, but that
1282 * seems to please the docg3, so leave it.
1283 */
1284 ret = doc_write_erase_wait_status(docg3);
1285 return ret;
1286err:
1287 doc_read_page_finish(docg3);
1288 return ret;
1289}
1290
1291/**
1292 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1293 * @ops: the oob operations
1294 *
1295 * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1296 */
1297static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1298{
1299 int autoecc;
1300
1301 switch (ops->mode) {
1302 case MTD_OPS_PLACE_OOB:
1303 case MTD_OPS_AUTO_OOB:
1304 autoecc = 1;
1305 break;
1306 case MTD_OPS_RAW:
1307 autoecc = 0;
1308 break;
1309 default:
1310 autoecc = -EINVAL;
1311 }
1312 return autoecc;
1313}
1314
1315/**
1316 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1317 * @dst: the target 16 bytes OOB buffer
1318 * @oobsrc: the source 8 bytes non-ECC OOB buffer
1319 *
1320 */
1321static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1322{
1323 memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1324 dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1325}
1326
1327/**
1328 * doc_backup_oob - Backup OOB into docg3 structure
1329 * @docg3: the device
1330 * @to: the page offset in the chip
1331 * @ops: the OOB size and buffer
1332 *
1333 * As the docg3 should write a page with its OOB in one pass, and some userland
1334 * applications do write_oob() to setup the OOB and then write(), store the OOB
1335 * into a temporary storage. This is very dangerous, as 2 concurrent
1336 * applications could store an OOB, and then write their pages (which will
1337 * result into one having its OOB corrupted).
1338 *
1339 * The only reliable way would be for userland to call doc_write_oob() with both
1340 * the page data _and_ the OOB area.
1341 *
1342 * Returns 0 if success, -EINVAL if ops content invalid
1343 */
1344static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1345 struct mtd_oob_ops *ops)
1346{
1347 int ooblen = ops->ooblen, autoecc;
1348
1349 if (ooblen != DOC_LAYOUT_OOB_SIZE)
1350 return -EINVAL;
1351 autoecc = doc_guess_autoecc(ops);
1352 if (autoecc < 0)
1353 return autoecc;
1354
1355 docg3->oob_write_ofs = to;
1356 docg3->oob_autoecc = autoecc;
1357 if (ops->mode == MTD_OPS_AUTO_OOB) {
1358 doc_fill_autooob(dst: docg3->oob_write_buf, oobsrc: ops->oobbuf);
1359 ops->oobretlen = 8;
1360 } else {
1361 memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1362 ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1363 }
1364 return 0;
1365}
1366
1367/**
1368 * doc_write_oob - Write out of band bytes to flash
1369 * @mtd: the device
1370 * @ofs: the offset from first block and first page, in bytes, aligned on page
1371 * size
1372 * @ops: the mtd oob structure
1373 *
1374 * Either write OOB data into a temporary buffer, for the subsequent write
1375 * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1376 * as well, issue the page write.
1377 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1378 * still be filled in if asked for).
1379 *
1380 * Returns 0 is successful, EINVAL if length is not 14 bytes
1381 */
1382static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1383 struct mtd_oob_ops *ops)
1384{
1385 struct docg3 *docg3 = mtd->priv;
1386 int ret, autoecc, oobdelta;
1387 u8 *oobbuf = ops->oobbuf;
1388 u8 *buf = ops->datbuf;
1389 size_t len, ooblen;
1390 u8 oob[DOC_LAYOUT_OOB_SIZE];
1391
1392 if (buf)
1393 len = ops->len;
1394 else
1395 len = 0;
1396 if (oobbuf)
1397 ooblen = ops->ooblen;
1398 else
1399 ooblen = 0;
1400
1401 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1402 oobbuf += ops->ooboffs;
1403
1404 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1405 ofs, ops->mode, buf, len, oobbuf, ooblen);
1406 switch (ops->mode) {
1407 case MTD_OPS_PLACE_OOB:
1408 case MTD_OPS_RAW:
1409 oobdelta = mtd->oobsize;
1410 break;
1411 case MTD_OPS_AUTO_OOB:
1412 oobdelta = mtd->oobavail;
1413 break;
1414 default:
1415 return -EINVAL;
1416 }
1417 if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1418 (ofs % DOC_LAYOUT_PAGE_SIZE))
1419 return -EINVAL;
1420 if (len && ooblen &&
1421 (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1422 return -EINVAL;
1423
1424 ops->oobretlen = 0;
1425 ops->retlen = 0;
1426 ret = 0;
1427 if (len == 0 && ooblen == 0)
1428 return -EINVAL;
1429 if (len == 0 && ooblen > 0)
1430 return doc_backup_oob(docg3, to: ofs, ops);
1431
1432 autoecc = doc_guess_autoecc(ops);
1433 if (autoecc < 0)
1434 return autoecc;
1435
1436 mutex_lock(&docg3->cascade->lock);
1437 while (!ret && len > 0) {
1438 memset(oob, 0, sizeof(oob));
1439 if (ofs == docg3->oob_write_ofs)
1440 memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1441 else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1442 doc_fill_autooob(dst: oob, oobsrc: oobbuf);
1443 else if (ooblen > 0)
1444 memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1445 ret = doc_write_page(docg3, to: ofs, buf, oob, autoecc);
1446
1447 ofs += DOC_LAYOUT_PAGE_SIZE;
1448 len -= DOC_LAYOUT_PAGE_SIZE;
1449 buf += DOC_LAYOUT_PAGE_SIZE;
1450 if (ooblen) {
1451 oobbuf += oobdelta;
1452 ooblen -= oobdelta;
1453 ops->oobretlen += oobdelta;
1454 }
1455 ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1456 }
1457
1458 doc_set_device_id(docg3, id: 0);
1459 mutex_unlock(lock: &docg3->cascade->lock);
1460 return ret;
1461}
1462
1463static struct docg3 *sysfs_dev2docg3(struct device *dev,
1464 struct device_attribute *attr)
1465{
1466 int floor;
1467 struct mtd_info **docg3_floors = dev_get_drvdata(dev);
1468
1469 floor = attr->attr.name[1] - '0';
1470 if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1471 return NULL;
1472 else
1473 return docg3_floors[floor]->priv;
1474}
1475
1476static ssize_t dps0_is_key_locked(struct device *dev,
1477 struct device_attribute *attr, char *buf)
1478{
1479 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1480 int dps0;
1481
1482 mutex_lock(&docg3->cascade->lock);
1483 doc_set_device_id(docg3, id: docg3->device_id);
1484 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1485 doc_set_device_id(docg3, id: 0);
1486 mutex_unlock(lock: &docg3->cascade->lock);
1487
1488 return sprintf(buf, fmt: "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1489}
1490
1491static ssize_t dps1_is_key_locked(struct device *dev,
1492 struct device_attribute *attr, char *buf)
1493{
1494 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1495 int dps1;
1496
1497 mutex_lock(&docg3->cascade->lock);
1498 doc_set_device_id(docg3, id: docg3->device_id);
1499 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1500 doc_set_device_id(docg3, id: 0);
1501 mutex_unlock(lock: &docg3->cascade->lock);
1502
1503 return sprintf(buf, fmt: "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1504}
1505
1506static ssize_t dps0_insert_key(struct device *dev,
1507 struct device_attribute *attr,
1508 const char *buf, size_t count)
1509{
1510 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1511 int i;
1512
1513 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1514 return -EINVAL;
1515
1516 mutex_lock(&docg3->cascade->lock);
1517 doc_set_device_id(docg3, id: docg3->device_id);
1518 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1519 doc_writeb(docg3, val: buf[i], DOC_DPS0_KEY);
1520 doc_set_device_id(docg3, id: 0);
1521 mutex_unlock(lock: &docg3->cascade->lock);
1522 return count;
1523}
1524
1525static ssize_t dps1_insert_key(struct device *dev,
1526 struct device_attribute *attr,
1527 const char *buf, size_t count)
1528{
1529 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1530 int i;
1531
1532 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1533 return -EINVAL;
1534
1535 mutex_lock(&docg3->cascade->lock);
1536 doc_set_device_id(docg3, id: docg3->device_id);
1537 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1538 doc_writeb(docg3, val: buf[i], DOC_DPS1_KEY);
1539 doc_set_device_id(docg3, id: 0);
1540 mutex_unlock(lock: &docg3->cascade->lock);
1541 return count;
1542}
1543
1544#define FLOOR_SYSFS(id) { \
1545 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1546 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1547 __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \
1548 __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \
1549}
1550
1551static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1552 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1553};
1554
1555static int doc_register_sysfs(struct platform_device *pdev,
1556 struct docg3_cascade *cascade)
1557{
1558 struct device *dev = &pdev->dev;
1559 int floor;
1560 int ret;
1561 int i;
1562
1563 for (floor = 0;
1564 floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1565 floor++) {
1566 for (i = 0; i < 4; i++) {
1567 ret = device_create_file(device: dev, entry: &doc_sys_attrs[floor][i]);
1568 if (ret)
1569 goto remove_files;
1570 }
1571 }
1572
1573 return 0;
1574
1575remove_files:
1576 do {
1577 while (--i >= 0)
1578 device_remove_file(dev, attr: &doc_sys_attrs[floor][i]);
1579 i = 4;
1580 } while (--floor >= 0);
1581
1582 return ret;
1583}
1584
1585static void doc_unregister_sysfs(struct platform_device *pdev,
1586 struct docg3_cascade *cascade)
1587{
1588 struct device *dev = &pdev->dev;
1589 int floor, i;
1590
1591 for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1592 floor++)
1593 for (i = 0; i < 4; i++)
1594 device_remove_file(dev, attr: &doc_sys_attrs[floor][i]);
1595}
1596
1597/*
1598 * Debug sysfs entries
1599 */
1600static int flashcontrol_show(struct seq_file *s, void *p)
1601{
1602 struct docg3 *docg3 = s->private;
1603
1604 u8 fctrl;
1605
1606 mutex_lock(&docg3->cascade->lock);
1607 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1608 mutex_unlock(lock: &docg3->cascade->lock);
1609
1610 seq_printf(m: s, fmt: "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1611 fctrl,
1612 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1613 fctrl & DOC_CTRL_CE ? "active" : "inactive",
1614 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1615 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1616 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1617
1618 return 0;
1619}
1620DEFINE_SHOW_ATTRIBUTE(flashcontrol);
1621
1622static int asic_mode_show(struct seq_file *s, void *p)
1623{
1624 struct docg3 *docg3 = s->private;
1625
1626 int pctrl, mode;
1627
1628 mutex_lock(&docg3->cascade->lock);
1629 pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1630 mode = pctrl & 0x03;
1631 mutex_unlock(lock: &docg3->cascade->lock);
1632
1633 seq_printf(m: s,
1634 fmt: "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1635 pctrl,
1636 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1637 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1638 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1639 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1640 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1641 mode >> 1, mode & 0x1);
1642
1643 switch (mode) {
1644 case DOC_ASICMODE_RESET:
1645 seq_puts(m: s, s: "reset");
1646 break;
1647 case DOC_ASICMODE_NORMAL:
1648 seq_puts(m: s, s: "normal");
1649 break;
1650 case DOC_ASICMODE_POWERDOWN:
1651 seq_puts(m: s, s: "powerdown");
1652 break;
1653 }
1654 seq_puts(m: s, s: ")\n");
1655 return 0;
1656}
1657DEFINE_SHOW_ATTRIBUTE(asic_mode);
1658
1659static int device_id_show(struct seq_file *s, void *p)
1660{
1661 struct docg3 *docg3 = s->private;
1662 int id;
1663
1664 mutex_lock(&docg3->cascade->lock);
1665 id = doc_register_readb(docg3, DOC_DEVICESELECT);
1666 mutex_unlock(lock: &docg3->cascade->lock);
1667
1668 seq_printf(m: s, fmt: "DeviceId = %d\n", id);
1669 return 0;
1670}
1671DEFINE_SHOW_ATTRIBUTE(device_id);
1672
1673static int protection_show(struct seq_file *s, void *p)
1674{
1675 struct docg3 *docg3 = s->private;
1676 int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1677
1678 mutex_lock(&docg3->cascade->lock);
1679 protect = doc_register_readb(docg3, DOC_PROTECTION);
1680 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1681 dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1682 dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1683 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1684 dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1685 dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
1686 mutex_unlock(lock: &docg3->cascade->lock);
1687
1688 seq_printf(m: s, fmt: "Protection = 0x%02x (", protect);
1689 if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1690 seq_puts(m: s, s: "FOUNDRY_OTP_LOCK,");
1691 if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1692 seq_puts(m: s, s: "CUSTOMER_OTP_LOCK,");
1693 if (protect & DOC_PROTECT_LOCK_INPUT)
1694 seq_puts(m: s, s: "LOCK_INPUT,");
1695 if (protect & DOC_PROTECT_STICKY_LOCK)
1696 seq_puts(m: s, s: "STICKY_LOCK,");
1697 if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1698 seq_puts(m: s, s: "PROTECTION ON,");
1699 if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1700 seq_puts(m: s, s: "IPL_DOWNLOAD_LOCK,");
1701 if (protect & DOC_PROTECT_PROTECTION_ERROR)
1702 seq_puts(m: s, s: "PROTECT_ERR,");
1703 else
1704 seq_puts(m: s, s: "NO_PROTECT_ERR");
1705 seq_puts(m: s, s: ")\n");
1706
1707 seq_printf(m: s, fmt: "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1708 dps0, dps0_low, dps0_high,
1709 !!(dps0 & DOC_DPS_OTP_PROTECTED),
1710 !!(dps0 & DOC_DPS_READ_PROTECTED),
1711 !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1712 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1713 !!(dps0 & DOC_DPS_KEY_OK));
1714 seq_printf(m: s, fmt: "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1715 dps1, dps1_low, dps1_high,
1716 !!(dps1 & DOC_DPS_OTP_PROTECTED),
1717 !!(dps1 & DOC_DPS_READ_PROTECTED),
1718 !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1719 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1720 !!(dps1 & DOC_DPS_KEY_OK));
1721 return 0;
1722}
1723DEFINE_SHOW_ATTRIBUTE(protection);
1724
1725static void __init doc_dbg_register(struct mtd_info *floor)
1726{
1727 struct dentry *root = floor->dbg.dfs_dir;
1728 struct docg3 *docg3 = floor->priv;
1729
1730 if (IS_ERR_OR_NULL(ptr: root)) {
1731 if (IS_ENABLED(CONFIG_DEBUG_FS) &&
1732 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1733 dev_warn(floor->dev.parent,
1734 "CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
1735 return;
1736 }
1737
1738 debugfs_create_file(name: "docg3_flashcontrol", S_IRUSR, parent: root, data: docg3,
1739 fops: &flashcontrol_fops);
1740 debugfs_create_file(name: "docg3_asic_mode", S_IRUSR, parent: root, data: docg3,
1741 fops: &asic_mode_fops);
1742 debugfs_create_file(name: "docg3_device_id", S_IRUSR, parent: root, data: docg3,
1743 fops: &device_id_fops);
1744 debugfs_create_file(name: "docg3_protection", S_IRUSR, parent: root, data: docg3,
1745 fops: &protection_fops);
1746}
1747
1748/**
1749 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1750 * @chip_id: The chip ID of the supported chip
1751 * @mtd: The structure to fill
1752 */
1753static int __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1754{
1755 struct docg3 *docg3 = mtd->priv;
1756 int cfg;
1757
1758 cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1759 docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
1760 docg3->reliable = reliable_mode;
1761
1762 switch (chip_id) {
1763 case DOC_CHIPID_G3:
1764 mtd->name = devm_kasprintf(dev: docg3->dev, GFP_KERNEL, fmt: "docg3.%d",
1765 docg3->device_id);
1766 if (!mtd->name)
1767 return -ENOMEM;
1768 docg3->max_block = 2047;
1769 break;
1770 }
1771 mtd->type = MTD_NANDFLASH;
1772 mtd->flags = MTD_CAP_NANDFLASH;
1773 mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
1774 if (docg3->reliable == 2)
1775 mtd->size /= 2;
1776 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
1777 if (docg3->reliable == 2)
1778 mtd->erasesize /= 2;
1779 mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
1780 mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1781 mtd->_erase = doc_erase;
1782 mtd->_read_oob = doc_read_oob;
1783 mtd->_write_oob = doc_write_oob;
1784 mtd->_block_isbad = doc_block_isbad;
1785 mtd_set_ooblayout(mtd, ooblayout: &nand_ooblayout_docg3_ops);
1786 mtd->oobavail = 8;
1787 mtd->ecc_strength = DOC_ECC_BCH_T;
1788
1789 return 0;
1790}
1791
1792/**
1793 * doc_probe_device - Check if a device is available
1794 * @cascade: the cascade of chips this devices will belong to
1795 * @floor: the floor of the probed device
1796 * @dev: the device
1797 *
1798 * Checks whether a device at the specified IO range, and floor is available.
1799 *
1800 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1801 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1802 * launched.
1803 */
1804static struct mtd_info * __init
1805doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
1806{
1807 int ret, bbt_nbpages;
1808 u16 chip_id, chip_id_inv;
1809 struct docg3 *docg3;
1810 struct mtd_info *mtd;
1811
1812 ret = -ENOMEM;
1813 docg3 = kzalloc(size: sizeof(struct docg3), GFP_KERNEL);
1814 if (!docg3)
1815 goto nomem1;
1816 mtd = kzalloc(size: sizeof(struct mtd_info), GFP_KERNEL);
1817 if (!mtd)
1818 goto nomem2;
1819 mtd->priv = docg3;
1820 mtd->dev.parent = dev;
1821 bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1822 8 * DOC_LAYOUT_PAGE_SIZE);
1823 docg3->bbt = kcalloc(DOC_LAYOUT_PAGE_SIZE, size: bbt_nbpages, GFP_KERNEL);
1824 if (!docg3->bbt)
1825 goto nomem3;
1826
1827 docg3->dev = dev;
1828 docg3->device_id = floor;
1829 docg3->cascade = cascade;
1830 doc_set_device_id(docg3, id: docg3->device_id);
1831 if (!floor)
1832 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
1833 doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1834
1835 chip_id = doc_register_readw(docg3, DOC_CHIPID);
1836 chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1837
1838 ret = 0;
1839 if (chip_id != (u16)(~chip_id_inv)) {
1840 goto nomem4;
1841 }
1842
1843 switch (chip_id) {
1844 case DOC_CHIPID_G3:
1845 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1846 docg3->cascade->base, floor);
1847 break;
1848 default:
1849 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
1850 goto nomem4;
1851 }
1852
1853 ret = doc_set_driver_info(chip_id, mtd);
1854 if (ret)
1855 goto nomem4;
1856
1857 doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1858 doc_reload_bbt(docg3);
1859 return mtd;
1860
1861nomem4:
1862 kfree(objp: docg3->bbt);
1863nomem3:
1864 kfree(objp: mtd);
1865nomem2:
1866 kfree(objp: docg3);
1867nomem1:
1868 return ret ? ERR_PTR(error: ret) : NULL;
1869}
1870
1871/**
1872 * doc_release_device - Release a docg3 floor
1873 * @mtd: the device
1874 */
1875static void doc_release_device(struct mtd_info *mtd)
1876{
1877 struct docg3 *docg3 = mtd->priv;
1878
1879 mtd_device_unregister(master: mtd);
1880 kfree(objp: docg3->bbt);
1881 kfree(objp: docg3);
1882 kfree(objp: mtd);
1883}
1884
1885/**
1886 * docg3_resume - Awakens docg3 floor
1887 * @pdev: platfrom device
1888 *
1889 * Returns 0 (always successful)
1890 */
1891static int docg3_resume(struct platform_device *pdev)
1892{
1893 int i;
1894 struct docg3_cascade *cascade;
1895 struct mtd_info **docg3_floors, *mtd;
1896 struct docg3 *docg3;
1897
1898 cascade = platform_get_drvdata(pdev);
1899 docg3_floors = cascade->floors;
1900 mtd = docg3_floors[0];
1901 docg3 = mtd->priv;
1902
1903 doc_dbg("docg3_resume()\n");
1904 for (i = 0; i < 12; i++)
1905 doc_readb(docg3, DOC_IOSPACE_IPL);
1906 return 0;
1907}
1908
1909/**
1910 * docg3_suspend - Put in low power mode the docg3 floor
1911 * @pdev: platform device
1912 * @state: power state
1913 *
1914 * Shuts off most of docg3 circuitery to lower power consumption.
1915 *
1916 * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1917 */
1918static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1919{
1920 int floor, i;
1921 struct docg3_cascade *cascade;
1922 struct mtd_info **docg3_floors, *mtd;
1923 struct docg3 *docg3;
1924 u8 ctrl, pwr_down;
1925
1926 cascade = platform_get_drvdata(pdev);
1927 docg3_floors = cascade->floors;
1928 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1929 mtd = docg3_floors[floor];
1930 if (!mtd)
1931 continue;
1932 docg3 = mtd->priv;
1933
1934 doc_writeb(docg3, val: floor, DOC_DEVICESELECT);
1935 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1936 ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
1937 doc_writeb(docg3, val: ctrl, DOC_FLASHCONTROL);
1938
1939 for (i = 0; i < 10; i++) {
1940 usleep_range(min: 3000, max: 4000);
1941 pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
1942 if (pwr_down & DOC_POWERDOWN_READY)
1943 break;
1944 }
1945 if (pwr_down & DOC_POWERDOWN_READY) {
1946 doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
1947 floor);
1948 } else {
1949 doc_err("docg3_suspend(): floor %d powerdown failed\n",
1950 floor);
1951 return -EIO;
1952 }
1953 }
1954
1955 mtd = docg3_floors[0];
1956 docg3 = mtd->priv;
1957 doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
1958 return 0;
1959}
1960
1961/**
1962 * docg3_probe - Probe the IO space for a DiskOnChip G3 chip
1963 * @pdev: platform device
1964 *
1965 * Probes for a G3 chip at the specified IO space in the platform data
1966 * ressources. The floor 0 must be available.
1967 *
1968 * Returns 0 on success, -ENOMEM, -ENXIO on error
1969 */
1970static int __init docg3_probe(struct platform_device *pdev)
1971{
1972 struct device *dev = &pdev->dev;
1973 struct mtd_info *mtd;
1974 struct resource *ress;
1975 void __iomem *base;
1976 int ret, floor;
1977 struct docg3_cascade *cascade;
1978
1979 ret = -ENXIO;
1980 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1981 if (!ress) {
1982 dev_err(dev, "No I/O memory resource defined\n");
1983 return ret;
1984 }
1985
1986 ret = -ENOMEM;
1987 base = devm_ioremap(dev, offset: ress->start, DOC_IOSPACE_SIZE);
1988 if (!base) {
1989 dev_err(dev, "devm_ioremap dev failed\n");
1990 return ret;
1991 }
1992
1993 cascade = devm_kcalloc(dev, DOC_MAX_NBFLOORS, size: sizeof(*cascade),
1994 GFP_KERNEL);
1995 if (!cascade)
1996 return ret;
1997 cascade->base = base;
1998 mutex_init(&cascade->lock);
1999 cascade->bch = bch_init(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
2000 DOC_ECC_BCH_PRIMPOLY, swap_bits: false);
2001 if (!cascade->bch)
2002 return ret;
2003
2004 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2005 mtd = doc_probe_device(cascade, floor, dev);
2006 if (IS_ERR(ptr: mtd)) {
2007 ret = PTR_ERR(ptr: mtd);
2008 goto err_probe;
2009 }
2010 if (!mtd) {
2011 if (floor == 0)
2012 goto notfound;
2013 else
2014 continue;
2015 }
2016 cascade->floors[floor] = mtd;
2017 ret = mtd_device_parse_register(mtd, part_probe_types: part_probes, NULL, NULL,
2018 defnr_parts: 0);
2019 if (ret)
2020 goto err_probe;
2021
2022 doc_dbg_register(floor: cascade->floors[floor]);
2023 }
2024
2025 ret = doc_register_sysfs(pdev, cascade);
2026 if (ret)
2027 goto err_probe;
2028
2029 platform_set_drvdata(pdev, data: cascade);
2030 return 0;
2031
2032notfound:
2033 ret = -ENODEV;
2034 dev_info(dev, "No supported DiskOnChip found\n");
2035err_probe:
2036 bch_free(bch: cascade->bch);
2037 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2038 if (cascade->floors[floor])
2039 doc_release_device(mtd: cascade->floors[floor]);
2040 return ret;
2041}
2042
2043/**
2044 * docg3_release - Release the driver
2045 * @pdev: the platform device
2046 *
2047 * Returns 0
2048 */
2049static void docg3_release(struct platform_device *pdev)
2050{
2051 struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2052 struct docg3 *docg3 = cascade->floors[0]->priv;
2053 int floor;
2054
2055 doc_unregister_sysfs(pdev, cascade);
2056 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2057 if (cascade->floors[floor])
2058 doc_release_device(mtd: cascade->floors[floor]);
2059
2060 bch_free(bch: docg3->cascade->bch);
2061}
2062
2063#ifdef CONFIG_OF
2064static const struct of_device_id docg3_dt_ids[] = {
2065 { .compatible = "m-systems,diskonchip-g3" },
2066 {}
2067};
2068MODULE_DEVICE_TABLE(of, docg3_dt_ids);
2069#endif
2070
2071static struct platform_driver g3_driver = {
2072 .driver = {
2073 .name = "docg3",
2074 .of_match_table = of_match_ptr(docg3_dt_ids),
2075 },
2076 .suspend = docg3_suspend,
2077 .resume = docg3_resume,
2078 .remove_new = docg3_release,
2079};
2080
2081module_platform_driver_probe(g3_driver, docg3_probe);
2082
2083MODULE_LICENSE("GPL");
2084MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2085MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
2086

source code of linux/drivers/mtd/devices/docg3.c