1 | // SPDX-License-Identifier: GPL-2.0-only |
---|---|
2 | /* |
3 | * Copyright (c) 2016, The Linux Foundation. All rights reserved. |
4 | */ |
5 | #include <linux/bitops.h> |
6 | #include <linux/clk.h> |
7 | #include <linux/delay.h> |
8 | #include <linux/dmaengine.h> |
9 | #include <linux/dma-mapping.h> |
10 | #include <linux/dma/qcom_adm.h> |
11 | #include <linux/dma/qcom_bam_dma.h> |
12 | #include <linux/module.h> |
13 | #include <linux/mtd/partitions.h> |
14 | #include <linux/mtd/rawnand.h> |
15 | #include <linux/of.h> |
16 | #include <linux/platform_device.h> |
17 | #include <linux/slab.h> |
18 | #include <linux/mtd/nand-qpic-common.h> |
19 | |
20 | /* |
21 | * NAND special boot partitions |
22 | * |
23 | * @page_offset: offset of the partition where spare data is not protected |
24 | * by ECC (value in pages) |
25 | * @page_offset: size of the partition where spare data is not protected |
26 | * by ECC (value in pages) |
27 | */ |
28 | struct qcom_nand_boot_partition { |
29 | u32 page_offset; |
30 | u32 page_size; |
31 | }; |
32 | |
33 | /* |
34 | * Qcom op for each exec_op transfer |
35 | * |
36 | * @data_instr: data instruction pointer |
37 | * @data_instr_idx: data instruction index |
38 | * @rdy_timeout_ms: wait ready timeout in ms |
39 | * @rdy_delay_ns: Additional delay in ns |
40 | * @addr1_reg: Address1 register value |
41 | * @addr2_reg: Address2 register value |
42 | * @cmd_reg: CMD register value |
43 | * @flag: flag for misc instruction |
44 | */ |
45 | struct qcom_op { |
46 | const struct nand_op_instr *data_instr; |
47 | unsigned int data_instr_idx; |
48 | unsigned int rdy_timeout_ms; |
49 | unsigned int rdy_delay_ns; |
50 | __le32 addr1_reg; |
51 | __le32 addr2_reg; |
52 | __le32 cmd_reg; |
53 | u8 flag; |
54 | }; |
55 | |
56 | /* |
57 | * NAND chip structure |
58 | * |
59 | * @boot_partitions: array of boot partitions where offset and size of the |
60 | * boot partitions are stored |
61 | * |
62 | * @chip: base NAND chip structure |
63 | * @node: list node to add itself to host_list in |
64 | * qcom_nand_controller |
65 | * |
66 | * @nr_boot_partitions: count of the boot partitions where spare data is not |
67 | * protected by ECC |
68 | * |
69 | * @cs: chip select value for this chip |
70 | * @cw_size: the number of bytes in a single step/codeword |
71 | * of a page, consisting of all data, ecc, spare |
72 | * and reserved bytes |
73 | * @cw_data: the number of bytes within a codeword protected |
74 | * by ECC |
75 | * @ecc_bytes_hw: ECC bytes used by controller hardware for this |
76 | * chip |
77 | * |
78 | * @last_command: keeps track of last command on this chip. used |
79 | * for reading correct status |
80 | * |
81 | * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for |
82 | * ecc/non-ecc mode for the current nand flash |
83 | * device |
84 | * |
85 | * @status: value to be returned if NAND_CMD_STATUS command |
86 | * is executed |
87 | * @codeword_fixup: keep track of the current layout used by |
88 | * the driver for read/write operation. |
89 | * @use_ecc: request the controller to use ECC for the |
90 | * upcoming read/write |
91 | * @bch_enabled: flag to tell whether BCH ECC mode is used |
92 | */ |
93 | struct qcom_nand_host { |
94 | struct qcom_nand_boot_partition *boot_partitions; |
95 | |
96 | struct nand_chip chip; |
97 | struct list_head node; |
98 | |
99 | int nr_boot_partitions; |
100 | |
101 | int cs; |
102 | int cw_size; |
103 | int cw_data; |
104 | int ecc_bytes_hw; |
105 | int spare_bytes; |
106 | int bbm_size; |
107 | |
108 | int last_command; |
109 | |
110 | u32 cfg0, cfg1; |
111 | u32 cfg0_raw, cfg1_raw; |
112 | u32 ecc_buf_cfg; |
113 | u32 ecc_bch_cfg; |
114 | u32 clrflashstatus; |
115 | u32 clrreadstatus; |
116 | |
117 | u8 status; |
118 | bool codeword_fixup; |
119 | bool use_ecc; |
120 | bool bch_enabled; |
121 | }; |
122 | |
123 | static struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) |
124 | { |
125 | return container_of(chip, struct qcom_nand_host, chip); |
126 | } |
127 | |
128 | static struct qcom_nand_controller * |
129 | get_qcom_nand_controller(struct nand_chip *chip) |
130 | { |
131 | return (struct qcom_nand_controller *) |
132 | ((u8 *)chip->controller - sizeof(struct qcom_nand_controller)); |
133 | } |
134 | |
135 | static u32 nandc_read(struct qcom_nand_controller *nandc, int offset) |
136 | { |
137 | return ioread32(nandc->base + offset); |
138 | } |
139 | |
140 | static void nandc_write(struct qcom_nand_controller *nandc, int offset, |
141 | u32 val) |
142 | { |
143 | iowrite32(val, nandc->base + offset); |
144 | } |
145 | |
146 | /* Helper to check whether this is the last CW or not */ |
147 | static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw) |
148 | { |
149 | return cw == (ecc->steps - 1); |
150 | } |
151 | |
152 | /** |
153 | * nandc_set_read_loc_first() - to set read location first register |
154 | * @chip: NAND Private Flash Chip Data |
155 | * @reg_base: location register base |
156 | * @cw_offset: code word offset |
157 | * @read_size: code word read length |
158 | * @is_last_read_loc: is this the last read location |
159 | * |
160 | * This function will set location register value |
161 | */ |
162 | static void nandc_set_read_loc_first(struct nand_chip *chip, |
163 | int reg_base, u32 cw_offset, |
164 | u32 read_size, u32 is_last_read_loc) |
165 | { |
166 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
167 | __le32 locreg_val; |
168 | u32 val = FIELD_PREP(READ_LOCATION_OFFSET_MASK, cw_offset) | |
169 | FIELD_PREP(READ_LOCATION_SIZE_MASK, read_size) | |
170 | FIELD_PREP(READ_LOCATION_LAST_MASK, is_last_read_loc); |
171 | |
172 | locreg_val = cpu_to_le32(val); |
173 | |
174 | if (reg_base == NAND_READ_LOCATION_0) |
175 | nandc->regs->read_location0 = locreg_val; |
176 | else if (reg_base == NAND_READ_LOCATION_1) |
177 | nandc->regs->read_location1 = locreg_val; |
178 | else if (reg_base == NAND_READ_LOCATION_2) |
179 | nandc->regs->read_location2 = locreg_val; |
180 | else if (reg_base == NAND_READ_LOCATION_3) |
181 | nandc->regs->read_location3 = locreg_val; |
182 | } |
183 | |
184 | /** |
185 | * nandc_set_read_loc_last - to set read location last register |
186 | * @chip: NAND Private Flash Chip Data |
187 | * @reg_base: location register base |
188 | * @cw_offset: code word offset |
189 | * @read_size: code word read length |
190 | * @is_last_read_loc: is this the last read location |
191 | * |
192 | * This function will set location last register value |
193 | */ |
194 | static void nandc_set_read_loc_last(struct nand_chip *chip, |
195 | int reg_base, u32 cw_offset, |
196 | u32 read_size, u32 is_last_read_loc) |
197 | { |
198 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
199 | __le32 locreg_val; |
200 | u32 val = FIELD_PREP(READ_LOCATION_OFFSET_MASK, cw_offset) | |
201 | FIELD_PREP(READ_LOCATION_SIZE_MASK, read_size) | |
202 | FIELD_PREP(READ_LOCATION_LAST_MASK, is_last_read_loc); |
203 | |
204 | locreg_val = cpu_to_le32(val); |
205 | |
206 | if (reg_base == NAND_READ_LOCATION_LAST_CW_0) |
207 | nandc->regs->read_location_last0 = locreg_val; |
208 | else if (reg_base == NAND_READ_LOCATION_LAST_CW_1) |
209 | nandc->regs->read_location_last1 = locreg_val; |
210 | else if (reg_base == NAND_READ_LOCATION_LAST_CW_2) |
211 | nandc->regs->read_location_last2 = locreg_val; |
212 | else if (reg_base == NAND_READ_LOCATION_LAST_CW_3) |
213 | nandc->regs->read_location_last3 = locreg_val; |
214 | } |
215 | |
216 | /* helper to configure location register values */ |
217 | static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg, |
218 | u32 cw_offset, u32 read_size, u32 is_last_read_loc) |
219 | { |
220 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
221 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
222 | int reg_base = NAND_READ_LOCATION_0; |
223 | |
224 | if (nandc->props->qpic_version2 && qcom_nandc_is_last_cw(ecc, cw)) |
225 | reg_base = NAND_READ_LOCATION_LAST_CW_0; |
226 | |
227 | reg_base += reg * 4; |
228 | |
229 | if (nandc->props->qpic_version2 && qcom_nandc_is_last_cw(ecc, cw)) |
230 | return nandc_set_read_loc_last(chip, reg_base, cw_offset, |
231 | read_size, is_last_read_loc); |
232 | else |
233 | return nandc_set_read_loc_first(chip, reg_base, cw_offset, |
234 | read_size, is_last_read_loc); |
235 | } |
236 | |
237 | /* helper to configure address register values */ |
238 | static void set_address(struct qcom_nand_host *host, u16 column, int page) |
239 | { |
240 | struct nand_chip *chip = &host->chip; |
241 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
242 | |
243 | if (chip->options & NAND_BUSWIDTH_16) |
244 | column >>= 1; |
245 | |
246 | nandc->regs->addr0 = cpu_to_le32(page << 16 | column); |
247 | nandc->regs->addr1 = cpu_to_le32(page >> 16 & 0xff); |
248 | } |
249 | |
250 | /* |
251 | * update_rw_regs: set up read/write register values, these will be |
252 | * written to the NAND controller registers via DMA |
253 | * |
254 | * @num_cw: number of steps for the read/write operation |
255 | * @read: read or write operation |
256 | * @cw : which code word |
257 | */ |
258 | static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw) |
259 | { |
260 | struct nand_chip *chip = &host->chip; |
261 | __le32 cmd, cfg0, cfg1, ecc_bch_cfg; |
262 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
263 | |
264 | if (read) { |
265 | if (host->use_ecc) |
266 | cmd = cpu_to_le32(OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE); |
267 | else |
268 | cmd = cpu_to_le32(OP_PAGE_READ | PAGE_ACC | LAST_PAGE); |
269 | } else { |
270 | cmd = cpu_to_le32(OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE); |
271 | } |
272 | |
273 | if (host->use_ecc) { |
274 | cfg0 = cpu_to_le32((host->cfg0 & ~CW_PER_PAGE_MASK) | |
275 | FIELD_PREP(CW_PER_PAGE_MASK, (num_cw - 1))); |
276 | |
277 | cfg1 = cpu_to_le32(host->cfg1); |
278 | ecc_bch_cfg = cpu_to_le32(host->ecc_bch_cfg); |
279 | } else { |
280 | cfg0 = cpu_to_le32((host->cfg0_raw & ~CW_PER_PAGE_MASK) | |
281 | FIELD_PREP(CW_PER_PAGE_MASK, (num_cw - 1))); |
282 | |
283 | cfg1 = cpu_to_le32(host->cfg1_raw); |
284 | ecc_bch_cfg = cpu_to_le32(ECC_CFG_ECC_DISABLE); |
285 | } |
286 | |
287 | nandc->regs->cmd = cmd; |
288 | nandc->regs->cfg0 = cfg0; |
289 | nandc->regs->cfg1 = cfg1; |
290 | nandc->regs->ecc_bch_cfg = ecc_bch_cfg; |
291 | |
292 | if (!nandc->props->qpic_version2) |
293 | nandc->regs->ecc_buf_cfg = cpu_to_le32(host->ecc_buf_cfg); |
294 | |
295 | nandc->regs->clrflashstatus = cpu_to_le32(host->clrflashstatus); |
296 | nandc->regs->clrreadstatus = cpu_to_le32(host->clrreadstatus); |
297 | nandc->regs->exec = cpu_to_le32(1); |
298 | |
299 | if (read) |
300 | nandc_set_read_loc(chip, cw, reg: 0, cw_offset: 0, read_size: host->use_ecc ? |
301 | host->cw_data : host->cw_size, is_last_read_loc: 1); |
302 | } |
303 | |
304 | /* |
305 | * Helper to prepare DMA descriptors for configuring registers |
306 | * before reading a NAND page. |
307 | */ |
308 | static void config_nand_page_read(struct nand_chip *chip) |
309 | { |
310 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
311 | |
312 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->addr0, NAND_ADDR0, num_regs: 2, flags: 0); |
313 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->cfg0, NAND_DEV0_CFG0, num_regs: 3, flags: 0); |
314 | if (!nandc->props->qpic_version2) |
315 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, num_regs: 1, flags: 0); |
316 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->erased_cw_detect_cfg_clr, |
317 | NAND_ERASED_CW_DETECT_CFG, num_regs: 1, flags: 0); |
318 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->erased_cw_detect_cfg_set, |
319 | NAND_ERASED_CW_DETECT_CFG, num_regs: 1, NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); |
320 | } |
321 | |
322 | /* |
323 | * Helper to prepare DMA descriptors for configuring registers |
324 | * before reading each codeword in NAND page. |
325 | */ |
326 | static void |
327 | config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw) |
328 | { |
329 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
330 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
331 | |
332 | __le32 *reg = &nandc->regs->read_location0; |
333 | |
334 | if (nandc->props->qpic_version2 && qcom_nandc_is_last_cw(ecc, cw)) |
335 | reg = &nandc->regs->read_location_last0; |
336 | |
337 | if (nandc->props->supports_bam) |
338 | qcom_write_reg_dma(nandc, vaddr: reg, NAND_READ_LOCATION_0, num_regs: 4, NAND_BAM_NEXT_SGL); |
339 | |
340 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->cmd, NAND_FLASH_CMD, num_regs: 1, NAND_BAM_NEXT_SGL); |
341 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->exec, NAND_EXEC_CMD, num_regs: 1, NAND_BAM_NEXT_SGL); |
342 | |
343 | if (use_ecc) { |
344 | qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, num_regs: 2, flags: 0); |
345 | qcom_read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, num_regs: 1, |
346 | NAND_BAM_NEXT_SGL); |
347 | } else { |
348 | qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, num_regs: 1, NAND_BAM_NEXT_SGL); |
349 | } |
350 | } |
351 | |
352 | /* |
353 | * Helper to prepare dma descriptors to configure registers needed for reading a |
354 | * single codeword in page |
355 | */ |
356 | static void |
357 | config_nand_single_cw_page_read(struct nand_chip *chip, |
358 | bool use_ecc, int cw) |
359 | { |
360 | config_nand_page_read(chip); |
361 | config_nand_cw_read(chip, use_ecc, cw); |
362 | } |
363 | |
364 | /* |
365 | * Helper to prepare DMA descriptors used to configure registers needed for |
366 | * before writing a NAND page. |
367 | */ |
368 | static void config_nand_page_write(struct nand_chip *chip) |
369 | { |
370 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
371 | |
372 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->addr0, NAND_ADDR0, num_regs: 2, flags: 0); |
373 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->cfg0, NAND_DEV0_CFG0, num_regs: 3, flags: 0); |
374 | if (!nandc->props->qpic_version2) |
375 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, num_regs: 1, |
376 | NAND_BAM_NEXT_SGL); |
377 | } |
378 | |
379 | /* |
380 | * Helper to prepare DMA descriptors for configuring registers |
381 | * before writing each codeword in NAND page. |
382 | */ |
383 | static void config_nand_cw_write(struct nand_chip *chip) |
384 | { |
385 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
386 | |
387 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->cmd, NAND_FLASH_CMD, num_regs: 1, NAND_BAM_NEXT_SGL); |
388 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->exec, NAND_EXEC_CMD, num_regs: 1, NAND_BAM_NEXT_SGL); |
389 | |
390 | qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, num_regs: 1, NAND_BAM_NEXT_SGL); |
391 | |
392 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->clrflashstatus, NAND_FLASH_STATUS, num_regs: 1, flags: 0); |
393 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->clrreadstatus, NAND_READ_STATUS, num_regs: 1, |
394 | NAND_BAM_NEXT_SGL); |
395 | } |
396 | |
397 | /* |
398 | * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read |
399 | * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS. |
400 | * |
401 | * when using RS ECC, the HW reports the same erros when reading an erased CW, |
402 | * but it notifies that it is an erased CW by placing special characters at |
403 | * certain offsets in the buffer. |
404 | * |
405 | * verify if the page is erased or not, and fix up the page for RS ECC by |
406 | * replacing the special characters with 0xff. |
407 | */ |
408 | static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len) |
409 | { |
410 | u8 empty1, empty2; |
411 | |
412 | /* |
413 | * an erased page flags an error in NAND_FLASH_STATUS, check if the page |
414 | * is erased by looking for 0x54s at offsets 3 and 175 from the |
415 | * beginning of each codeword |
416 | */ |
417 | |
418 | empty1 = data_buf[3]; |
419 | empty2 = data_buf[175]; |
420 | |
421 | /* |
422 | * if the erased codework markers, if they exist override them with |
423 | * 0xffs |
424 | */ |
425 | if ((empty1 == 0x54 && empty2 == 0xff) || |
426 | (empty1 == 0xff && empty2 == 0x54)) { |
427 | data_buf[3] = 0xff; |
428 | data_buf[175] = 0xff; |
429 | } |
430 | |
431 | /* |
432 | * check if the entire chunk contains 0xffs or not. if it doesn't, then |
433 | * restore the original values at the special offsets |
434 | */ |
435 | if (memchr_inv(p: data_buf, c: 0xff, size: data_len)) { |
436 | data_buf[3] = empty1; |
437 | data_buf[175] = empty2; |
438 | |
439 | return false; |
440 | } |
441 | |
442 | return true; |
443 | } |
444 | |
445 | struct read_stats { |
446 | __le32 flash; |
447 | __le32 buffer; |
448 | __le32 erased_cw; |
449 | }; |
450 | |
451 | /* reads back FLASH_STATUS register set by the controller */ |
452 | static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt) |
453 | { |
454 | struct nand_chip *chip = &host->chip; |
455 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
456 | int i; |
457 | |
458 | qcom_nandc_dev_to_mem(nandc, is_cpu: true); |
459 | |
460 | for (i = 0; i < cw_cnt; i++) { |
461 | u32 flash = le32_to_cpu(nandc->reg_read_buf[i]); |
462 | |
463 | if (flash & (FS_OP_ERR | FS_MPU_ERR)) |
464 | return -EIO; |
465 | } |
466 | |
467 | return 0; |
468 | } |
469 | |
470 | /* performs raw read for one codeword */ |
471 | static int |
472 | qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip, |
473 | u8 *data_buf, u8 *oob_buf, int page, int cw) |
474 | { |
475 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
476 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
477 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
478 | int data_size1, data_size2, oob_size1, oob_size2; |
479 | int ret, reg_off = FLASH_BUF_ACC, read_loc = 0; |
480 | int raw_cw = cw; |
481 | |
482 | nand_read_page_op(chip, page, offset_in_page: 0, NULL, len: 0); |
483 | nandc->buf_count = 0; |
484 | nandc->buf_start = 0; |
485 | qcom_clear_read_regs(nandc); |
486 | host->use_ecc = false; |
487 | |
488 | if (nandc->props->qpic_version2) |
489 | raw_cw = ecc->steps - 1; |
490 | |
491 | qcom_clear_bam_transaction(nandc); |
492 | set_address(host, column: host->cw_size * cw, page); |
493 | update_rw_regs(host, num_cw: 1, read: true, cw: raw_cw); |
494 | config_nand_page_read(chip); |
495 | |
496 | data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); |
497 | oob_size1 = host->bbm_size; |
498 | |
499 | if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) { |
500 | data_size2 = ecc->size - data_size1 - |
501 | ((ecc->steps - 1) * 4); |
502 | oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw + |
503 | host->spare_bytes; |
504 | } else { |
505 | data_size2 = host->cw_data - data_size1; |
506 | oob_size2 = host->ecc_bytes_hw + host->spare_bytes; |
507 | } |
508 | |
509 | if (nandc->props->supports_bam) { |
510 | nandc_set_read_loc(chip, cw, reg: 0, cw_offset: read_loc, read_size: data_size1, is_last_read_loc: 0); |
511 | read_loc += data_size1; |
512 | |
513 | nandc_set_read_loc(chip, cw, reg: 1, cw_offset: read_loc, read_size: oob_size1, is_last_read_loc: 0); |
514 | read_loc += oob_size1; |
515 | |
516 | nandc_set_read_loc(chip, cw, reg: 2, cw_offset: read_loc, read_size: data_size2, is_last_read_loc: 0); |
517 | read_loc += data_size2; |
518 | |
519 | nandc_set_read_loc(chip, cw, reg: 3, cw_offset: read_loc, read_size: oob_size2, is_last_read_loc: 1); |
520 | } |
521 | |
522 | config_nand_cw_read(chip, use_ecc: false, cw: raw_cw); |
523 | |
524 | qcom_read_data_dma(nandc, reg_off, vaddr: data_buf, size: data_size1, flags: 0); |
525 | reg_off += data_size1; |
526 | |
527 | qcom_read_data_dma(nandc, reg_off, vaddr: oob_buf, size: oob_size1, flags: 0); |
528 | reg_off += oob_size1; |
529 | |
530 | qcom_read_data_dma(nandc, reg_off, vaddr: data_buf + data_size1, size: data_size2, flags: 0); |
531 | reg_off += data_size2; |
532 | |
533 | qcom_read_data_dma(nandc, reg_off, vaddr: oob_buf + oob_size1, size: oob_size2, flags: 0); |
534 | |
535 | ret = qcom_submit_descs(nandc); |
536 | if (ret) { |
537 | dev_err(nandc->dev, "failure to read raw cw %d\n", cw); |
538 | return ret; |
539 | } |
540 | |
541 | return check_flash_errors(host, cw_cnt: 1); |
542 | } |
543 | |
544 | /* |
545 | * Bitflips can happen in erased codewords also so this function counts the |
546 | * number of 0 in each CW for which ECC engine returns the uncorrectable |
547 | * error. The page will be assumed as erased if this count is less than or |
548 | * equal to the ecc->strength for each CW. |
549 | * |
550 | * 1. Both DATA and OOB need to be checked for number of 0. The |
551 | * top-level API can be called with only data buf or OOB buf so use |
552 | * chip->data_buf if data buf is null and chip->oob_poi if oob buf |
553 | * is null for copying the raw bytes. |
554 | * 2. Perform raw read for all the CW which has uncorrectable errors. |
555 | * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes. |
556 | * The BBM and spare bytes bit flip won’t affect the ECC so don’t check |
557 | * the number of bitflips in this area. |
558 | */ |
559 | static int |
560 | check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf, |
561 | u8 *oob_buf, unsigned long uncorrectable_cws, |
562 | int page, unsigned int max_bitflips) |
563 | { |
564 | struct nand_chip *chip = &host->chip; |
565 | struct mtd_info *mtd = nand_to_mtd(chip); |
566 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
567 | u8 *cw_data_buf, *cw_oob_buf; |
568 | int cw, data_size, oob_size, ret; |
569 | |
570 | if (!data_buf) |
571 | data_buf = nand_get_data_buf(chip); |
572 | |
573 | if (!oob_buf) { |
574 | nand_get_data_buf(chip); |
575 | oob_buf = chip->oob_poi; |
576 | } |
577 | |
578 | for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) { |
579 | if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) { |
580 | data_size = ecc->size - ((ecc->steps - 1) * 4); |
581 | oob_size = (ecc->steps * 4) + host->ecc_bytes_hw; |
582 | } else { |
583 | data_size = host->cw_data; |
584 | oob_size = host->ecc_bytes_hw; |
585 | } |
586 | |
587 | /* determine starting buffer address for current CW */ |
588 | cw_data_buf = data_buf + (cw * host->cw_data); |
589 | cw_oob_buf = oob_buf + (cw * ecc->bytes); |
590 | |
591 | ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf: cw_data_buf, |
592 | oob_buf: cw_oob_buf, page, cw); |
593 | if (ret) |
594 | return ret; |
595 | |
596 | /* |
597 | * make sure it isn't an erased page reported |
598 | * as not-erased by HW because of a few bitflips |
599 | */ |
600 | ret = nand_check_erased_ecc_chunk(data: cw_data_buf, datalen: data_size, |
601 | ecc: cw_oob_buf + host->bbm_size, |
602 | ecclen: oob_size, NULL, |
603 | extraooblen: 0, threshold: ecc->strength); |
604 | if (ret < 0) { |
605 | mtd->ecc_stats.failed++; |
606 | } else { |
607 | mtd->ecc_stats.corrected += ret; |
608 | max_bitflips = max_t(unsigned int, max_bitflips, ret); |
609 | } |
610 | } |
611 | |
612 | return max_bitflips; |
613 | } |
614 | |
615 | /* |
616 | * reads back status registers set by the controller to notify page read |
617 | * errors. this is equivalent to what 'ecc->correct()' would do. |
618 | */ |
619 | static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf, |
620 | u8 *oob_buf, int page) |
621 | { |
622 | struct nand_chip *chip = &host->chip; |
623 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
624 | struct mtd_info *mtd = nand_to_mtd(chip); |
625 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
626 | unsigned int max_bitflips = 0, uncorrectable_cws = 0; |
627 | struct read_stats *buf; |
628 | bool flash_op_err = false, erased; |
629 | int i; |
630 | u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; |
631 | |
632 | buf = (struct read_stats *)nandc->reg_read_buf; |
633 | qcom_nandc_dev_to_mem(nandc, is_cpu: true); |
634 | |
635 | for (i = 0; i < ecc->steps; i++, buf++) { |
636 | u32 flash, buffer, erased_cw; |
637 | int data_len, oob_len; |
638 | |
639 | if (qcom_nandc_is_last_cw(ecc, cw: i)) { |
640 | data_len = ecc->size - ((ecc->steps - 1) << 2); |
641 | oob_len = ecc->steps << 2; |
642 | } else { |
643 | data_len = host->cw_data; |
644 | oob_len = 0; |
645 | } |
646 | |
647 | flash = le32_to_cpu(buf->flash); |
648 | buffer = le32_to_cpu(buf->buffer); |
649 | erased_cw = le32_to_cpu(buf->erased_cw); |
650 | |
651 | /* |
652 | * Check ECC failure for each codeword. ECC failure can |
653 | * happen in either of the following conditions |
654 | * 1. If number of bitflips are greater than ECC engine |
655 | * capability. |
656 | * 2. If this codeword contains all 0xff for which erased |
657 | * codeword detection check will be done. |
658 | */ |
659 | if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) { |
660 | /* |
661 | * For BCH ECC, ignore erased codeword errors, if |
662 | * ERASED_CW bits are set. |
663 | */ |
664 | if (host->bch_enabled) { |
665 | erased = (erased_cw & ERASED_CW) == ERASED_CW; |
666 | /* |
667 | * For RS ECC, HW reports the erased CW by placing |
668 | * special characters at certain offsets in the buffer. |
669 | * These special characters will be valid only if |
670 | * complete page is read i.e. data_buf is not NULL. |
671 | */ |
672 | } else if (data_buf) { |
673 | erased = erased_chunk_check_and_fixup(data_buf, |
674 | data_len); |
675 | } else { |
676 | erased = false; |
677 | } |
678 | |
679 | if (!erased) |
680 | uncorrectable_cws |= BIT(i); |
681 | /* |
682 | * Check if MPU or any other operational error (timeout, |
683 | * device failure, etc.) happened for this codeword and |
684 | * make flash_op_err true. If flash_op_err is set, then |
685 | * EIO will be returned for page read. |
686 | */ |
687 | } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) { |
688 | flash_op_err = true; |
689 | /* |
690 | * No ECC or operational errors happened. Check the number of |
691 | * bits corrected and update the ecc_stats.corrected. |
692 | */ |
693 | } else { |
694 | unsigned int stat; |
695 | |
696 | stat = buffer & BS_CORRECTABLE_ERR_MSK; |
697 | mtd->ecc_stats.corrected += stat; |
698 | max_bitflips = max(max_bitflips, stat); |
699 | } |
700 | |
701 | if (data_buf) |
702 | data_buf += data_len; |
703 | if (oob_buf) |
704 | oob_buf += oob_len + ecc->bytes; |
705 | } |
706 | |
707 | if (flash_op_err) |
708 | return -EIO; |
709 | |
710 | if (!uncorrectable_cws) |
711 | return max_bitflips; |
712 | |
713 | return check_for_erased_page(host, data_buf: data_buf_start, oob_buf: oob_buf_start, |
714 | uncorrectable_cws, page, |
715 | max_bitflips); |
716 | } |
717 | |
718 | /* |
719 | * helper to perform the actual page read operation, used by ecc->read_page(), |
720 | * ecc->read_oob() |
721 | */ |
722 | static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, |
723 | u8 *oob_buf, int page) |
724 | { |
725 | struct nand_chip *chip = &host->chip; |
726 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
727 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
728 | u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; |
729 | int i, ret; |
730 | |
731 | config_nand_page_read(chip); |
732 | |
733 | /* queue cmd descs for each codeword */ |
734 | for (i = 0; i < ecc->steps; i++) { |
735 | int data_size, oob_size; |
736 | |
737 | if (qcom_nandc_is_last_cw(ecc, cw: i) && !host->codeword_fixup) { |
738 | data_size = ecc->size - ((ecc->steps - 1) << 2); |
739 | oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + |
740 | host->spare_bytes; |
741 | } else { |
742 | data_size = host->cw_data; |
743 | oob_size = host->ecc_bytes_hw + host->spare_bytes; |
744 | } |
745 | |
746 | if (nandc->props->supports_bam) { |
747 | if (data_buf && oob_buf) { |
748 | nandc_set_read_loc(chip, cw: i, reg: 0, cw_offset: 0, read_size: data_size, is_last_read_loc: 0); |
749 | nandc_set_read_loc(chip, cw: i, reg: 1, cw_offset: data_size, |
750 | read_size: oob_size, is_last_read_loc: 1); |
751 | } else if (data_buf) { |
752 | nandc_set_read_loc(chip, cw: i, reg: 0, cw_offset: 0, read_size: data_size, is_last_read_loc: 1); |
753 | } else { |
754 | nandc_set_read_loc(chip, cw: i, reg: 0, cw_offset: data_size, |
755 | read_size: oob_size, is_last_read_loc: 1); |
756 | } |
757 | } |
758 | |
759 | config_nand_cw_read(chip, use_ecc: true, cw: i); |
760 | |
761 | if (data_buf) |
762 | qcom_read_data_dma(nandc, FLASH_BUF_ACC, vaddr: data_buf, |
763 | size: data_size, flags: 0); |
764 | |
765 | /* |
766 | * when ecc is enabled, the controller doesn't read the real |
767 | * or dummy bad block markers in each chunk. To maintain a |
768 | * consistent layout across RAW and ECC reads, we just |
769 | * leave the real/dummy BBM offsets empty (i.e, filled with |
770 | * 0xffs) |
771 | */ |
772 | if (oob_buf) { |
773 | int j; |
774 | |
775 | for (j = 0; j < host->bbm_size; j++) |
776 | *oob_buf++ = 0xff; |
777 | |
778 | qcom_read_data_dma(nandc, FLASH_BUF_ACC + data_size, |
779 | vaddr: oob_buf, size: oob_size, flags: 0); |
780 | } |
781 | |
782 | if (data_buf) |
783 | data_buf += data_size; |
784 | if (oob_buf) |
785 | oob_buf += oob_size; |
786 | } |
787 | |
788 | ret = qcom_submit_descs(nandc); |
789 | if (ret) { |
790 | dev_err(nandc->dev, "failure to read page/oob\n"); |
791 | return ret; |
792 | } |
793 | |
794 | return parse_read_errors(host, data_buf: data_buf_start, oob_buf: oob_buf_start, page); |
795 | } |
796 | |
797 | /* |
798 | * a helper that copies the last step/codeword of a page (containing free oob) |
799 | * into our local buffer |
800 | */ |
801 | static int copy_last_cw(struct qcom_nand_host *host, int page) |
802 | { |
803 | struct nand_chip *chip = &host->chip; |
804 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
805 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
806 | int size; |
807 | int ret; |
808 | |
809 | qcom_clear_read_regs(nandc); |
810 | |
811 | size = host->use_ecc ? host->cw_data : host->cw_size; |
812 | |
813 | /* prepare a clean read buffer */ |
814 | memset(nandc->data_buffer, 0xff, size); |
815 | |
816 | set_address(host, column: host->cw_size * (ecc->steps - 1), page); |
817 | update_rw_regs(host, num_cw: 1, read: true, cw: ecc->steps - 1); |
818 | |
819 | config_nand_single_cw_page_read(chip, use_ecc: host->use_ecc, cw: ecc->steps - 1); |
820 | |
821 | qcom_read_data_dma(nandc, FLASH_BUF_ACC, vaddr: nandc->data_buffer, size, flags: 0); |
822 | |
823 | ret = qcom_submit_descs(nandc); |
824 | if (ret) |
825 | dev_err(nandc->dev, "failed to copy last codeword\n"); |
826 | |
827 | return ret; |
828 | } |
829 | |
830 | static bool qcom_nandc_is_boot_partition(struct qcom_nand_host *host, int page) |
831 | { |
832 | struct qcom_nand_boot_partition *boot_partition; |
833 | u32 start, end; |
834 | int i; |
835 | |
836 | /* |
837 | * Since the frequent access will be to the non-boot partitions like rootfs, |
838 | * optimize the page check by: |
839 | * |
840 | * 1. Checking if the page lies after the last boot partition. |
841 | * 2. Checking from the boot partition end. |
842 | */ |
843 | |
844 | /* First check the last boot partition */ |
845 | boot_partition = &host->boot_partitions[host->nr_boot_partitions - 1]; |
846 | start = boot_partition->page_offset; |
847 | end = start + boot_partition->page_size; |
848 | |
849 | /* Page is after the last boot partition end. This is NOT a boot partition */ |
850 | if (page > end) |
851 | return false; |
852 | |
853 | /* Actually check if it's a boot partition */ |
854 | if (page < end && page >= start) |
855 | return true; |
856 | |
857 | /* Check the other boot partitions starting from the second-last partition */ |
858 | for (i = host->nr_boot_partitions - 2; i >= 0; i--) { |
859 | boot_partition = &host->boot_partitions[i]; |
860 | start = boot_partition->page_offset; |
861 | end = start + boot_partition->page_size; |
862 | |
863 | if (page < end && page >= start) |
864 | return true; |
865 | } |
866 | |
867 | return false; |
868 | } |
869 | |
870 | static void qcom_nandc_codeword_fixup(struct qcom_nand_host *host, int page) |
871 | { |
872 | bool codeword_fixup = qcom_nandc_is_boot_partition(host, page); |
873 | |
874 | /* Skip conf write if we are already in the correct mode */ |
875 | if (codeword_fixup == host->codeword_fixup) |
876 | return; |
877 | |
878 | host->codeword_fixup = codeword_fixup; |
879 | |
880 | host->cw_data = codeword_fixup ? 512 : 516; |
881 | host->spare_bytes = host->cw_size - host->ecc_bytes_hw - |
882 | host->bbm_size - host->cw_data; |
883 | |
884 | host->cfg0 &= ~(SPARE_SIZE_BYTES_MASK | UD_SIZE_BYTES_MASK); |
885 | host->cfg0 |= FIELD_PREP(SPARE_SIZE_BYTES_MASK, host->spare_bytes) | |
886 | FIELD_PREP(UD_SIZE_BYTES_MASK, host->cw_data); |
887 | |
888 | host->ecc_bch_cfg &= ~ECC_NUM_DATA_BYTES_MASK; |
889 | host->ecc_bch_cfg |= FIELD_PREP(ECC_NUM_DATA_BYTES_MASK, host->cw_data); |
890 | host->ecc_buf_cfg = FIELD_PREP(NUM_STEPS_MASK, host->cw_data - 1); |
891 | } |
892 | |
893 | /* implements ecc->read_page() */ |
894 | static int qcom_nandc_read_page(struct nand_chip *chip, u8 *buf, |
895 | int oob_required, int page) |
896 | { |
897 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
898 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
899 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
900 | u8 *data_buf, *oob_buf = NULL; |
901 | |
902 | if (host->nr_boot_partitions) |
903 | qcom_nandc_codeword_fixup(host, page); |
904 | |
905 | nand_read_page_op(chip, page, offset_in_page: 0, NULL, len: 0); |
906 | nandc->buf_count = 0; |
907 | nandc->buf_start = 0; |
908 | host->use_ecc = true; |
909 | qcom_clear_read_regs(nandc); |
910 | set_address(host, column: 0, page); |
911 | update_rw_regs(host, num_cw: ecc->steps, read: true, cw: 0); |
912 | |
913 | data_buf = buf; |
914 | oob_buf = oob_required ? chip->oob_poi : NULL; |
915 | |
916 | qcom_clear_bam_transaction(nandc); |
917 | |
918 | return read_page_ecc(host, data_buf, oob_buf, page); |
919 | } |
920 | |
921 | /* implements ecc->read_page_raw() */ |
922 | static int qcom_nandc_read_page_raw(struct nand_chip *chip, u8 *buf, |
923 | int oob_required, int page) |
924 | { |
925 | struct mtd_info *mtd = nand_to_mtd(chip); |
926 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
927 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
928 | int cw, ret; |
929 | u8 *data_buf = buf, *oob_buf = chip->oob_poi; |
930 | |
931 | if (host->nr_boot_partitions) |
932 | qcom_nandc_codeword_fixup(host, page); |
933 | |
934 | for (cw = 0; cw < ecc->steps; cw++) { |
935 | ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf, |
936 | page, cw); |
937 | if (ret) |
938 | return ret; |
939 | |
940 | data_buf += host->cw_data; |
941 | oob_buf += ecc->bytes; |
942 | } |
943 | |
944 | return 0; |
945 | } |
946 | |
947 | /* implements ecc->read_oob() */ |
948 | static int qcom_nandc_read_oob(struct nand_chip *chip, int page) |
949 | { |
950 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
951 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
952 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
953 | |
954 | if (host->nr_boot_partitions) |
955 | qcom_nandc_codeword_fixup(host, page); |
956 | |
957 | qcom_clear_read_regs(nandc); |
958 | qcom_clear_bam_transaction(nandc); |
959 | |
960 | host->use_ecc = true; |
961 | set_address(host, column: 0, page); |
962 | update_rw_regs(host, num_cw: ecc->steps, read: true, cw: 0); |
963 | |
964 | return read_page_ecc(host, NULL, oob_buf: chip->oob_poi, page); |
965 | } |
966 | |
967 | /* implements ecc->write_page() */ |
968 | static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf, |
969 | int oob_required, int page) |
970 | { |
971 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
972 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
973 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
974 | u8 *data_buf, *oob_buf; |
975 | int i, ret; |
976 | |
977 | if (host->nr_boot_partitions) |
978 | qcom_nandc_codeword_fixup(host, page); |
979 | |
980 | nand_prog_page_begin_op(chip, page, offset_in_page: 0, NULL, len: 0); |
981 | |
982 | set_address(host, column: 0, page); |
983 | nandc->buf_count = 0; |
984 | nandc->buf_start = 0; |
985 | qcom_clear_read_regs(nandc); |
986 | qcom_clear_bam_transaction(nandc); |
987 | |
988 | data_buf = (u8 *)buf; |
989 | oob_buf = chip->oob_poi; |
990 | |
991 | host->use_ecc = true; |
992 | update_rw_regs(host, num_cw: ecc->steps, read: false, cw: 0); |
993 | config_nand_page_write(chip); |
994 | |
995 | for (i = 0; i < ecc->steps; i++) { |
996 | int data_size, oob_size; |
997 | |
998 | if (qcom_nandc_is_last_cw(ecc, cw: i) && !host->codeword_fixup) { |
999 | data_size = ecc->size - ((ecc->steps - 1) << 2); |
1000 | oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + |
1001 | host->spare_bytes; |
1002 | } else { |
1003 | data_size = host->cw_data; |
1004 | oob_size = ecc->bytes; |
1005 | } |
1006 | |
1007 | qcom_write_data_dma(nandc, FLASH_BUF_ACC, vaddr: data_buf, size: data_size, |
1008 | flags: i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0); |
1009 | |
1010 | /* |
1011 | * when ECC is enabled, we don't really need to write anything |
1012 | * to oob for the first n - 1 codewords since these oob regions |
1013 | * just contain ECC bytes that's written by the controller |
1014 | * itself. For the last codeword, we skip the bbm positions and |
1015 | * write to the free oob area. |
1016 | */ |
1017 | if (qcom_nandc_is_last_cw(ecc, cw: i)) { |
1018 | oob_buf += host->bbm_size; |
1019 | |
1020 | qcom_write_data_dma(nandc, FLASH_BUF_ACC + data_size, |
1021 | vaddr: oob_buf, size: oob_size, flags: 0); |
1022 | } |
1023 | |
1024 | config_nand_cw_write(chip); |
1025 | |
1026 | data_buf += data_size; |
1027 | oob_buf += oob_size; |
1028 | } |
1029 | |
1030 | ret = qcom_submit_descs(nandc); |
1031 | if (ret) { |
1032 | dev_err(nandc->dev, "failure to write page\n"); |
1033 | return ret; |
1034 | } |
1035 | |
1036 | return nand_prog_page_end_op(chip); |
1037 | } |
1038 | |
1039 | /* implements ecc->write_page_raw() */ |
1040 | static int qcom_nandc_write_page_raw(struct nand_chip *chip, |
1041 | const u8 *buf, int oob_required, |
1042 | int page) |
1043 | { |
1044 | struct mtd_info *mtd = nand_to_mtd(chip); |
1045 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
1046 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
1047 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
1048 | u8 *data_buf, *oob_buf; |
1049 | int i, ret; |
1050 | |
1051 | if (host->nr_boot_partitions) |
1052 | qcom_nandc_codeword_fixup(host, page); |
1053 | |
1054 | nand_prog_page_begin_op(chip, page, offset_in_page: 0, NULL, len: 0); |
1055 | qcom_clear_read_regs(nandc); |
1056 | qcom_clear_bam_transaction(nandc); |
1057 | |
1058 | data_buf = (u8 *)buf; |
1059 | oob_buf = chip->oob_poi; |
1060 | |
1061 | host->use_ecc = false; |
1062 | update_rw_regs(host, num_cw: ecc->steps, read: false, cw: 0); |
1063 | config_nand_page_write(chip); |
1064 | |
1065 | for (i = 0; i < ecc->steps; i++) { |
1066 | int data_size1, data_size2, oob_size1, oob_size2; |
1067 | int reg_off = FLASH_BUF_ACC; |
1068 | |
1069 | data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); |
1070 | oob_size1 = host->bbm_size; |
1071 | |
1072 | if (qcom_nandc_is_last_cw(ecc, cw: i) && !host->codeword_fixup) { |
1073 | data_size2 = ecc->size - data_size1 - |
1074 | ((ecc->steps - 1) << 2); |
1075 | oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + |
1076 | host->spare_bytes; |
1077 | } else { |
1078 | data_size2 = host->cw_data - data_size1; |
1079 | oob_size2 = host->ecc_bytes_hw + host->spare_bytes; |
1080 | } |
1081 | |
1082 | qcom_write_data_dma(nandc, reg_off, vaddr: data_buf, size: data_size1, |
1083 | NAND_BAM_NO_EOT); |
1084 | reg_off += data_size1; |
1085 | data_buf += data_size1; |
1086 | |
1087 | qcom_write_data_dma(nandc, reg_off, vaddr: oob_buf, size: oob_size1, |
1088 | NAND_BAM_NO_EOT); |
1089 | reg_off += oob_size1; |
1090 | oob_buf += oob_size1; |
1091 | |
1092 | qcom_write_data_dma(nandc, reg_off, vaddr: data_buf, size: data_size2, |
1093 | NAND_BAM_NO_EOT); |
1094 | reg_off += data_size2; |
1095 | data_buf += data_size2; |
1096 | |
1097 | qcom_write_data_dma(nandc, reg_off, vaddr: oob_buf, size: oob_size2, flags: 0); |
1098 | oob_buf += oob_size2; |
1099 | |
1100 | config_nand_cw_write(chip); |
1101 | } |
1102 | |
1103 | ret = qcom_submit_descs(nandc); |
1104 | if (ret) { |
1105 | dev_err(nandc->dev, "failure to write raw page\n"); |
1106 | return ret; |
1107 | } |
1108 | |
1109 | return nand_prog_page_end_op(chip); |
1110 | } |
1111 | |
1112 | /* |
1113 | * implements ecc->write_oob() |
1114 | * |
1115 | * the NAND controller cannot write only data or only OOB within a codeword |
1116 | * since ECC is calculated for the combined codeword. So update the OOB from |
1117 | * chip->oob_poi, and pad the data area with OxFF before writing. |
1118 | */ |
1119 | static int qcom_nandc_write_oob(struct nand_chip *chip, int page) |
1120 | { |
1121 | struct mtd_info *mtd = nand_to_mtd(chip); |
1122 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
1123 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
1124 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
1125 | u8 *oob = chip->oob_poi; |
1126 | int data_size, oob_size; |
1127 | int ret; |
1128 | |
1129 | if (host->nr_boot_partitions) |
1130 | qcom_nandc_codeword_fixup(host, page); |
1131 | |
1132 | host->use_ecc = true; |
1133 | qcom_clear_bam_transaction(nandc); |
1134 | |
1135 | /* calculate the data and oob size for the last codeword/step */ |
1136 | data_size = ecc->size - ((ecc->steps - 1) << 2); |
1137 | oob_size = mtd->oobavail; |
1138 | |
1139 | memset(nandc->data_buffer, 0xff, host->cw_data); |
1140 | /* override new oob content to last codeword */ |
1141 | mtd_ooblayout_get_databytes(mtd, databuf: nandc->data_buffer + data_size, oobbuf: oob, |
1142 | start: 0, nbytes: mtd->oobavail); |
1143 | |
1144 | set_address(host, column: host->cw_size * (ecc->steps - 1), page); |
1145 | update_rw_regs(host, num_cw: 1, read: false, cw: 0); |
1146 | |
1147 | config_nand_page_write(chip); |
1148 | qcom_write_data_dma(nandc, FLASH_BUF_ACC, |
1149 | vaddr: nandc->data_buffer, size: data_size + oob_size, flags: 0); |
1150 | config_nand_cw_write(chip); |
1151 | |
1152 | ret = qcom_submit_descs(nandc); |
1153 | if (ret) { |
1154 | dev_err(nandc->dev, "failure to write oob\n"); |
1155 | return ret; |
1156 | } |
1157 | |
1158 | return nand_prog_page_end_op(chip); |
1159 | } |
1160 | |
1161 | static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs) |
1162 | { |
1163 | struct mtd_info *mtd = nand_to_mtd(chip); |
1164 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
1165 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
1166 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
1167 | int page, ret, bbpos, bad = 0; |
1168 | |
1169 | page = (int)(ofs >> chip->page_shift) & chip->pagemask; |
1170 | |
1171 | /* |
1172 | * configure registers for a raw sub page read, the address is set to |
1173 | * the beginning of the last codeword, we don't care about reading ecc |
1174 | * portion of oob. we just want the first few bytes from this codeword |
1175 | * that contains the BBM |
1176 | */ |
1177 | host->use_ecc = false; |
1178 | |
1179 | qcom_clear_bam_transaction(nandc); |
1180 | ret = copy_last_cw(host, page); |
1181 | if (ret) |
1182 | goto err; |
1183 | |
1184 | if (check_flash_errors(host, cw_cnt: 1)) { |
1185 | dev_warn(nandc->dev, "error when trying to read BBM\n"); |
1186 | goto err; |
1187 | } |
1188 | |
1189 | bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1); |
1190 | |
1191 | bad = nandc->data_buffer[bbpos] != 0xff; |
1192 | |
1193 | if (chip->options & NAND_BUSWIDTH_16) |
1194 | bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff); |
1195 | err: |
1196 | return bad; |
1197 | } |
1198 | |
1199 | static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs) |
1200 | { |
1201 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
1202 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
1203 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
1204 | int page, ret; |
1205 | |
1206 | qcom_clear_read_regs(nandc); |
1207 | qcom_clear_bam_transaction(nandc); |
1208 | |
1209 | /* |
1210 | * to mark the BBM as bad, we flash the entire last codeword with 0s. |
1211 | * we don't care about the rest of the content in the codeword since |
1212 | * we aren't going to use this block again |
1213 | */ |
1214 | memset(nandc->data_buffer, 0x00, host->cw_size); |
1215 | |
1216 | page = (int)(ofs >> chip->page_shift) & chip->pagemask; |
1217 | |
1218 | /* prepare write */ |
1219 | host->use_ecc = false; |
1220 | set_address(host, column: host->cw_size * (ecc->steps - 1), page); |
1221 | update_rw_regs(host, num_cw: 1, read: false, cw: ecc->steps - 1); |
1222 | |
1223 | config_nand_page_write(chip); |
1224 | qcom_write_data_dma(nandc, FLASH_BUF_ACC, |
1225 | vaddr: nandc->data_buffer, size: host->cw_size, flags: 0); |
1226 | config_nand_cw_write(chip); |
1227 | |
1228 | ret = qcom_submit_descs(nandc); |
1229 | if (ret) { |
1230 | dev_err(nandc->dev, "failure to update BBM\n"); |
1231 | return ret; |
1232 | } |
1233 | |
1234 | return nand_prog_page_end_op(chip); |
1235 | } |
1236 | |
1237 | /* |
1238 | * NAND controller page layout info |
1239 | * |
1240 | * Layout with ECC enabled: |
1241 | * |
1242 | * |----------------------| |---------------------------------| |
1243 | * | xx.......yy| | *********xx.......yy| |
1244 | * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| |
1245 | * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| |
1246 | * | xx.......yy| | *********xx.......yy| |
1247 | * |----------------------| |---------------------------------| |
1248 | * codeword 1,2..n-1 codeword n |
1249 | * <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> |
1250 | * |
1251 | * n = Number of codewords in the page |
1252 | * . = ECC bytes |
1253 | * * = Spare/free bytes |
1254 | * x = Unused byte(s) |
1255 | * y = Reserved byte(s) |
1256 | * |
1257 | * 2K page: n = 4, spare = 16 bytes |
1258 | * 4K page: n = 8, spare = 32 bytes |
1259 | * 8K page: n = 16, spare = 64 bytes |
1260 | * |
1261 | * the qcom nand controller operates at a sub page/codeword level. each |
1262 | * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. |
1263 | * the number of ECC bytes vary based on the ECC strength and the bus width. |
1264 | * |
1265 | * the first n - 1 codewords contains 516 bytes of user data, the remaining |
1266 | * 12/16 bytes consist of ECC and reserved data. The nth codeword contains |
1267 | * both user data and spare(oobavail) bytes that sum up to 516 bytes. |
1268 | * |
1269 | * When we access a page with ECC enabled, the reserved bytes(s) are not |
1270 | * accessible at all. When reading, we fill up these unreadable positions |
1271 | * with 0xffs. When writing, the controller skips writing the inaccessible |
1272 | * bytes. |
1273 | * |
1274 | * Layout with ECC disabled: |
1275 | * |
1276 | * |------------------------------| |---------------------------------------| |
1277 | * | yy xx.......| | bb *********xx.......| |
1278 | * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| |
1279 | * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| |
1280 | * | yy xx.......| | bb *********xx.......| |
1281 | * |------------------------------| |---------------------------------------| |
1282 | * codeword 1,2..n-1 codeword n |
1283 | * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> |
1284 | * |
1285 | * n = Number of codewords in the page |
1286 | * . = ECC bytes |
1287 | * * = Spare/free bytes |
1288 | * x = Unused byte(s) |
1289 | * y = Dummy Bad Bock byte(s) |
1290 | * b = Real Bad Block byte(s) |
1291 | * size1/size2 = function of codeword size and 'n' |
1292 | * |
1293 | * when the ECC block is disabled, one reserved byte (or two for 16 bit bus |
1294 | * width) is now accessible. For the first n - 1 codewords, these are dummy Bad |
1295 | * Block Markers. In the last codeword, this position contains the real BBM |
1296 | * |
1297 | * In order to have a consistent layout between RAW and ECC modes, we assume |
1298 | * the following OOB layout arrangement: |
1299 | * |
1300 | * |-----------| |--------------------| |
1301 | * |yyxx.......| |bb*********xx.......| |
1302 | * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| |
1303 | * |yyxx.......| |bb*********xx.......| |
1304 | * |yyxx.......| |bb*********xx.......| |
1305 | * |-----------| |--------------------| |
1306 | * first n - 1 nth OOB region |
1307 | * OOB regions |
1308 | * |
1309 | * n = Number of codewords in the page |
1310 | * . = ECC bytes |
1311 | * * = FREE OOB bytes |
1312 | * y = Dummy bad block byte(s) (inaccessible when ECC enabled) |
1313 | * x = Unused byte(s) |
1314 | * b = Real bad block byte(s) (inaccessible when ECC enabled) |
1315 | * |
1316 | * This layout is read as is when ECC is disabled. When ECC is enabled, the |
1317 | * inaccessible Bad Block byte(s) are ignored when we write to a page/oob, |
1318 | * and assumed as 0xffs when we read a page/oob. The ECC, unused and |
1319 | * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is |
1320 | * the sum of the three). |
1321 | */ |
1322 | static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section, |
1323 | struct mtd_oob_region *oobregion) |
1324 | { |
1325 | struct nand_chip *chip = mtd_to_nand(mtd); |
1326 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
1327 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
1328 | |
1329 | if (section > 1) |
1330 | return -ERANGE; |
1331 | |
1332 | if (!section) { |
1333 | oobregion->length = (ecc->bytes * (ecc->steps - 1)) + |
1334 | host->bbm_size; |
1335 | oobregion->offset = 0; |
1336 | } else { |
1337 | oobregion->length = host->ecc_bytes_hw + host->spare_bytes; |
1338 | oobregion->offset = mtd->oobsize - oobregion->length; |
1339 | } |
1340 | |
1341 | return 0; |
1342 | } |
1343 | |
1344 | static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section, |
1345 | struct mtd_oob_region *oobregion) |
1346 | { |
1347 | struct nand_chip *chip = mtd_to_nand(mtd); |
1348 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
1349 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
1350 | |
1351 | if (section) |
1352 | return -ERANGE; |
1353 | |
1354 | oobregion->length = ecc->steps * 4; |
1355 | oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size; |
1356 | |
1357 | return 0; |
1358 | } |
1359 | |
1360 | static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = { |
1361 | .ecc = qcom_nand_ooblayout_ecc, |
1362 | .free = qcom_nand_ooblayout_free, |
1363 | }; |
1364 | |
1365 | static int |
1366 | qcom_nandc_calc_ecc_bytes(int step_size, int strength) |
1367 | { |
1368 | return strength == 4 ? 12 : 16; |
1369 | } |
1370 | |
1371 | NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes, |
1372 | NANDC_STEP_SIZE, 4, 8); |
1373 | |
1374 | static int qcom_nand_attach_chip(struct nand_chip *chip) |
1375 | { |
1376 | struct mtd_info *mtd = nand_to_mtd(chip); |
1377 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
1378 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
1379 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
1380 | int cwperpage, bad_block_byte, ret; |
1381 | bool wide_bus; |
1382 | int ecc_mode = 1; |
1383 | |
1384 | /* controller only supports 512 bytes data steps */ |
1385 | ecc->size = NANDC_STEP_SIZE; |
1386 | wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; |
1387 | cwperpage = mtd->writesize / NANDC_STEP_SIZE; |
1388 | |
1389 | /* |
1390 | * Each CW has 4 available OOB bytes which will be protected with ECC |
1391 | * so remaining bytes can be used for ECC. |
1392 | */ |
1393 | ret = nand_ecc_choose_conf(chip, caps: &qcom_nandc_ecc_caps, |
1394 | oobavail: mtd->oobsize - (cwperpage * 4)); |
1395 | if (ret) { |
1396 | dev_err(nandc->dev, "No valid ECC settings possible\n"); |
1397 | return ret; |
1398 | } |
1399 | |
1400 | if (ecc->strength >= 8) { |
1401 | /* 8 bit ECC defaults to BCH ECC on all platforms */ |
1402 | host->bch_enabled = true; |
1403 | ecc_mode = 1; |
1404 | |
1405 | if (wide_bus) { |
1406 | host->ecc_bytes_hw = 14; |
1407 | host->spare_bytes = 0; |
1408 | host->bbm_size = 2; |
1409 | } else { |
1410 | host->ecc_bytes_hw = 13; |
1411 | host->spare_bytes = 2; |
1412 | host->bbm_size = 1; |
1413 | } |
1414 | } else { |
1415 | /* |
1416 | * if the controller supports BCH for 4 bit ECC, the controller |
1417 | * uses lesser bytes for ECC. If RS is used, the ECC bytes is |
1418 | * always 10 bytes |
1419 | */ |
1420 | if (nandc->props->ecc_modes & ECC_BCH_4BIT) { |
1421 | /* BCH */ |
1422 | host->bch_enabled = true; |
1423 | ecc_mode = 0; |
1424 | |
1425 | if (wide_bus) { |
1426 | host->ecc_bytes_hw = 8; |
1427 | host->spare_bytes = 2; |
1428 | host->bbm_size = 2; |
1429 | } else { |
1430 | host->ecc_bytes_hw = 7; |
1431 | host->spare_bytes = 4; |
1432 | host->bbm_size = 1; |
1433 | } |
1434 | } else { |
1435 | /* RS */ |
1436 | host->ecc_bytes_hw = 10; |
1437 | |
1438 | if (wide_bus) { |
1439 | host->spare_bytes = 0; |
1440 | host->bbm_size = 2; |
1441 | } else { |
1442 | host->spare_bytes = 1; |
1443 | host->bbm_size = 1; |
1444 | } |
1445 | } |
1446 | } |
1447 | |
1448 | /* |
1449 | * we consider ecc->bytes as the sum of all the non-data content in a |
1450 | * step. It gives us a clean representation of the oob area (even if |
1451 | * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit |
1452 | * ECC and 12 bytes for 4 bit ECC |
1453 | */ |
1454 | ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size; |
1455 | |
1456 | ecc->read_page = qcom_nandc_read_page; |
1457 | ecc->read_page_raw = qcom_nandc_read_page_raw; |
1458 | ecc->read_oob = qcom_nandc_read_oob; |
1459 | ecc->write_page = qcom_nandc_write_page; |
1460 | ecc->write_page_raw = qcom_nandc_write_page_raw; |
1461 | ecc->write_oob = qcom_nandc_write_oob; |
1462 | |
1463 | ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
1464 | |
1465 | mtd_set_ooblayout(mtd, ooblayout: &qcom_nand_ooblayout_ops); |
1466 | /* Free the initially allocated BAM transaction for reading the ONFI params */ |
1467 | if (nandc->props->supports_bam) |
1468 | qcom_free_bam_transaction(nandc); |
1469 | |
1470 | nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage, |
1471 | cwperpage); |
1472 | |
1473 | /* Now allocate the BAM transaction based on updated max_cwperpage */ |
1474 | if (nandc->props->supports_bam) { |
1475 | nandc->bam_txn = qcom_alloc_bam_transaction(nandc); |
1476 | if (!nandc->bam_txn) { |
1477 | dev_err(nandc->dev, |
1478 | "failed to allocate bam transaction\n"); |
1479 | return -ENOMEM; |
1480 | } |
1481 | } |
1482 | |
1483 | /* |
1484 | * DATA_UD_BYTES varies based on whether the read/write command protects |
1485 | * spare data with ECC too. We protect spare data by default, so we set |
1486 | * it to main + spare data, which are 512 and 4 bytes respectively. |
1487 | */ |
1488 | host->cw_data = 516; |
1489 | |
1490 | /* |
1491 | * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes |
1492 | * for 8 bit ECC |
1493 | */ |
1494 | host->cw_size = host->cw_data + ecc->bytes; |
1495 | bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1; |
1496 | |
1497 | host->cfg0 = FIELD_PREP(CW_PER_PAGE_MASK, (cwperpage - 1)) | |
1498 | FIELD_PREP(UD_SIZE_BYTES_MASK, host->cw_data) | |
1499 | FIELD_PREP(DISABLE_STATUS_AFTER_WRITE, 0) | |
1500 | FIELD_PREP(NUM_ADDR_CYCLES_MASK, 5) | |
1501 | FIELD_PREP(ECC_PARITY_SIZE_BYTES_RS, host->ecc_bytes_hw) | |
1502 | FIELD_PREP(STATUS_BFR_READ, 0) | |
1503 | FIELD_PREP(SET_RD_MODE_AFTER_STATUS, 1) | |
1504 | FIELD_PREP(SPARE_SIZE_BYTES_MASK, host->spare_bytes); |
1505 | |
1506 | host->cfg1 = FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 7) | |
1507 | FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, bad_block_byte) | |
1508 | FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 0) | |
1509 | FIELD_PREP(WR_RD_BSY_GAP_MASK, 2) | |
1510 | FIELD_PREP(WIDE_FLASH, wide_bus) | |
1511 | FIELD_PREP(ENABLE_BCH_ECC, host->bch_enabled); |
1512 | |
1513 | host->cfg0_raw = FIELD_PREP(CW_PER_PAGE_MASK, (cwperpage - 1)) | |
1514 | FIELD_PREP(UD_SIZE_BYTES_MASK, host->cw_size) | |
1515 | FIELD_PREP(NUM_ADDR_CYCLES_MASK, 5) | |
1516 | FIELD_PREP(SPARE_SIZE_BYTES_MASK, 0); |
1517 | |
1518 | host->cfg1_raw = FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 7) | |
1519 | FIELD_PREP(CS_ACTIVE_BSY, 0) | |
1520 | FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, 17) | |
1521 | FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 1) | |
1522 | FIELD_PREP(WR_RD_BSY_GAP_MASK, 2) | |
1523 | FIELD_PREP(WIDE_FLASH, wide_bus) | |
1524 | FIELD_PREP(DEV0_CFG1_ECC_DISABLE, 1); |
1525 | |
1526 | host->ecc_bch_cfg = FIELD_PREP(ECC_CFG_ECC_DISABLE, !host->bch_enabled) | |
1527 | FIELD_PREP(ECC_SW_RESET, 0) | |
1528 | FIELD_PREP(ECC_NUM_DATA_BYTES_MASK, host->cw_data) | |
1529 | FIELD_PREP(ECC_FORCE_CLK_OPEN, 1) | |
1530 | FIELD_PREP(ECC_MODE_MASK, ecc_mode) | |
1531 | FIELD_PREP(ECC_PARITY_SIZE_BYTES_BCH_MASK, host->ecc_bytes_hw); |
1532 | |
1533 | if (!nandc->props->qpic_version2) |
1534 | host->ecc_buf_cfg = FIELD_PREP(NUM_STEPS_MASK, 0x203); |
1535 | |
1536 | host->clrflashstatus = FS_READY_BSY_N; |
1537 | host->clrreadstatus = 0xc0; |
1538 | nandc->regs->erased_cw_detect_cfg_clr = |
1539 | cpu_to_le32(CLR_ERASED_PAGE_DET); |
1540 | nandc->regs->erased_cw_detect_cfg_set = |
1541 | cpu_to_le32(SET_ERASED_PAGE_DET); |
1542 | |
1543 | dev_dbg(nandc->dev, |
1544 | "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n", |
1545 | host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg, |
1546 | host->cw_size, host->cw_data, ecc->strength, ecc->bytes, |
1547 | cwperpage); |
1548 | |
1549 | return 0; |
1550 | } |
1551 | |
1552 | static int qcom_op_cmd_mapping(struct nand_chip *chip, u8 opcode, |
1553 | struct qcom_op *q_op) |
1554 | { |
1555 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
1556 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
1557 | int cmd; |
1558 | |
1559 | switch (opcode) { |
1560 | case NAND_CMD_RESET: |
1561 | cmd = OP_RESET_DEVICE; |
1562 | break; |
1563 | case NAND_CMD_READID: |
1564 | cmd = OP_FETCH_ID; |
1565 | break; |
1566 | case NAND_CMD_PARAM: |
1567 | if (nandc->props->qpic_version2) |
1568 | cmd = OP_PAGE_READ_ONFI_READ; |
1569 | else |
1570 | cmd = OP_PAGE_READ; |
1571 | break; |
1572 | case NAND_CMD_ERASE1: |
1573 | case NAND_CMD_ERASE2: |
1574 | cmd = OP_BLOCK_ERASE; |
1575 | break; |
1576 | case NAND_CMD_STATUS: |
1577 | cmd = OP_CHECK_STATUS; |
1578 | break; |
1579 | case NAND_CMD_PAGEPROG: |
1580 | cmd = OP_PROGRAM_PAGE; |
1581 | q_op->flag = OP_PROGRAM_PAGE; |
1582 | nandc->exec_opwrite = true; |
1583 | break; |
1584 | case NAND_CMD_READ0: |
1585 | case NAND_CMD_READSTART: |
1586 | if (host->use_ecc) |
1587 | cmd = OP_PAGE_READ_WITH_ECC; |
1588 | else |
1589 | cmd = OP_PAGE_READ; |
1590 | break; |
1591 | default: |
1592 | dev_err(nandc->dev, "Opcode not supported: %u\n", opcode); |
1593 | return -EOPNOTSUPP; |
1594 | } |
1595 | |
1596 | return cmd; |
1597 | } |
1598 | |
1599 | /* NAND framework ->exec_op() hooks and related helpers */ |
1600 | static int qcom_parse_instructions(struct nand_chip *chip, |
1601 | const struct nand_subop *subop, |
1602 | struct qcom_op *q_op) |
1603 | { |
1604 | const struct nand_op_instr *instr = NULL; |
1605 | unsigned int op_id; |
1606 | int i, ret; |
1607 | |
1608 | for (op_id = 0; op_id < subop->ninstrs; op_id++) { |
1609 | unsigned int offset, naddrs; |
1610 | const u8 *addrs; |
1611 | |
1612 | instr = &subop->instrs[op_id]; |
1613 | |
1614 | switch (instr->type) { |
1615 | case NAND_OP_CMD_INSTR: |
1616 | ret = qcom_op_cmd_mapping(chip, opcode: instr->ctx.cmd.opcode, q_op); |
1617 | if (ret < 0) |
1618 | return ret; |
1619 | |
1620 | q_op->cmd_reg = cpu_to_le32(ret); |
1621 | q_op->rdy_delay_ns = instr->delay_ns; |
1622 | break; |
1623 | |
1624 | case NAND_OP_ADDR_INSTR: |
1625 | offset = nand_subop_get_addr_start_off(subop, op_id); |
1626 | naddrs = nand_subop_get_num_addr_cyc(subop, op_id); |
1627 | addrs = &instr->ctx.addr.addrs[offset]; |
1628 | |
1629 | for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) |
1630 | q_op->addr1_reg |= cpu_to_le32(addrs[i] << (i * 8)); |
1631 | |
1632 | if (naddrs > 4) |
1633 | q_op->addr2_reg |= cpu_to_le32(addrs[4]); |
1634 | |
1635 | q_op->rdy_delay_ns = instr->delay_ns; |
1636 | break; |
1637 | |
1638 | case NAND_OP_DATA_IN_INSTR: |
1639 | q_op->data_instr = instr; |
1640 | q_op->data_instr_idx = op_id; |
1641 | q_op->rdy_delay_ns = instr->delay_ns; |
1642 | fallthrough; |
1643 | case NAND_OP_DATA_OUT_INSTR: |
1644 | q_op->rdy_delay_ns = instr->delay_ns; |
1645 | break; |
1646 | |
1647 | case NAND_OP_WAITRDY_INSTR: |
1648 | q_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; |
1649 | q_op->rdy_delay_ns = instr->delay_ns; |
1650 | break; |
1651 | } |
1652 | } |
1653 | |
1654 | return 0; |
1655 | } |
1656 | |
1657 | static void qcom_delay_ns(unsigned int ns) |
1658 | { |
1659 | if (!ns) |
1660 | return; |
1661 | |
1662 | if (ns < 10000) |
1663 | ndelay(ns); |
1664 | else |
1665 | udelay(DIV_ROUND_UP(ns, 1000)); |
1666 | } |
1667 | |
1668 | static int qcom_wait_rdy_poll(struct nand_chip *chip, unsigned int time_ms) |
1669 | { |
1670 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
1671 | unsigned long start = jiffies + msecs_to_jiffies(m: time_ms); |
1672 | u32 flash; |
1673 | |
1674 | qcom_nandc_dev_to_mem(nandc, is_cpu: true); |
1675 | |
1676 | do { |
1677 | flash = le32_to_cpu(nandc->reg_read_buf[0]); |
1678 | if (flash & FS_READY_BSY_N) |
1679 | return 0; |
1680 | cpu_relax(); |
1681 | } while (time_after(start, jiffies)); |
1682 | |
1683 | dev_err(nandc->dev, "Timeout waiting for device to be ready:0x%08x\n", flash); |
1684 | |
1685 | return -ETIMEDOUT; |
1686 | } |
1687 | |
1688 | static int qcom_read_status_exec(struct nand_chip *chip, |
1689 | const struct nand_subop *subop) |
1690 | { |
1691 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
1692 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
1693 | struct nand_ecc_ctrl *ecc = &chip->ecc; |
1694 | struct qcom_op q_op = {}; |
1695 | const struct nand_op_instr *instr = NULL; |
1696 | unsigned int op_id = 0; |
1697 | unsigned int len = 0; |
1698 | int ret, num_cw, i; |
1699 | u32 flash_status; |
1700 | |
1701 | host->status = NAND_STATUS_READY | NAND_STATUS_WP; |
1702 | |
1703 | ret = qcom_parse_instructions(chip, subop, q_op: &q_op); |
1704 | if (ret) |
1705 | return ret; |
1706 | |
1707 | num_cw = nandc->exec_opwrite ? ecc->steps : 1; |
1708 | nandc->exec_opwrite = false; |
1709 | |
1710 | nandc->buf_count = 0; |
1711 | nandc->buf_start = 0; |
1712 | host->use_ecc = false; |
1713 | |
1714 | qcom_clear_read_regs(nandc); |
1715 | qcom_clear_bam_transaction(nandc); |
1716 | |
1717 | nandc->regs->cmd = q_op.cmd_reg; |
1718 | nandc->regs->exec = cpu_to_le32(1); |
1719 | |
1720 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->cmd, NAND_FLASH_CMD, num_regs: 1, NAND_BAM_NEXT_SGL); |
1721 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->exec, NAND_EXEC_CMD, num_regs: 1, NAND_BAM_NEXT_SGL); |
1722 | qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, num_regs: 1, NAND_BAM_NEXT_SGL); |
1723 | |
1724 | ret = qcom_submit_descs(nandc); |
1725 | if (ret) { |
1726 | dev_err(nandc->dev, "failure in submitting status descriptor\n"); |
1727 | goto err_out; |
1728 | } |
1729 | |
1730 | qcom_nandc_dev_to_mem(nandc, is_cpu: true); |
1731 | |
1732 | for (i = 0; i < num_cw; i++) { |
1733 | flash_status = le32_to_cpu(nandc->reg_read_buf[i]); |
1734 | |
1735 | if (flash_status & FS_MPU_ERR) |
1736 | host->status &= ~NAND_STATUS_WP; |
1737 | |
1738 | if (flash_status & FS_OP_ERR || |
1739 | (i == (num_cw - 1) && (flash_status & FS_DEVICE_STS_ERR))) |
1740 | host->status |= NAND_STATUS_FAIL; |
1741 | } |
1742 | |
1743 | flash_status = host->status; |
1744 | instr = q_op.data_instr; |
1745 | op_id = q_op.data_instr_idx; |
1746 | len = nand_subop_get_data_len(subop, op_id); |
1747 | memcpy(instr->ctx.data.buf.in, &flash_status, len); |
1748 | |
1749 | err_out: |
1750 | return ret; |
1751 | } |
1752 | |
1753 | static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop) |
1754 | { |
1755 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
1756 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
1757 | struct qcom_op q_op = {}; |
1758 | const struct nand_op_instr *instr = NULL; |
1759 | unsigned int op_id = 0; |
1760 | unsigned int len = 0; |
1761 | int ret; |
1762 | |
1763 | ret = qcom_parse_instructions(chip, subop, q_op: &q_op); |
1764 | if (ret) |
1765 | return ret; |
1766 | |
1767 | nandc->buf_count = 0; |
1768 | nandc->buf_start = 0; |
1769 | host->use_ecc = false; |
1770 | |
1771 | qcom_clear_read_regs(nandc); |
1772 | qcom_clear_bam_transaction(nandc); |
1773 | |
1774 | nandc->regs->cmd = q_op.cmd_reg; |
1775 | nandc->regs->addr0 = q_op.addr1_reg; |
1776 | nandc->regs->addr1 = q_op.addr2_reg; |
1777 | nandc->regs->chip_sel = cpu_to_le32(nandc->props->supports_bam ? 0 : DM_EN); |
1778 | nandc->regs->exec = cpu_to_le32(1); |
1779 | |
1780 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->cmd, NAND_FLASH_CMD, num_regs: 4, NAND_BAM_NEXT_SGL); |
1781 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->exec, NAND_EXEC_CMD, num_regs: 1, NAND_BAM_NEXT_SGL); |
1782 | |
1783 | qcom_read_reg_dma(nandc, NAND_READ_ID, num_regs: 1, NAND_BAM_NEXT_SGL); |
1784 | |
1785 | ret = qcom_submit_descs(nandc); |
1786 | if (ret) { |
1787 | dev_err(nandc->dev, "failure in submitting read id descriptor\n"); |
1788 | goto err_out; |
1789 | } |
1790 | |
1791 | instr = q_op.data_instr; |
1792 | op_id = q_op.data_instr_idx; |
1793 | len = nand_subop_get_data_len(subop, op_id); |
1794 | |
1795 | qcom_nandc_dev_to_mem(nandc, is_cpu: true); |
1796 | memcpy(instr->ctx.data.buf.in, nandc->reg_read_buf, len); |
1797 | |
1798 | err_out: |
1799 | return ret; |
1800 | } |
1801 | |
1802 | static int qcom_misc_cmd_type_exec(struct nand_chip *chip, const struct nand_subop *subop) |
1803 | { |
1804 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
1805 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
1806 | struct qcom_op q_op = {}; |
1807 | int ret; |
1808 | int instrs = 1; |
1809 | |
1810 | ret = qcom_parse_instructions(chip, subop, q_op: &q_op); |
1811 | if (ret) |
1812 | return ret; |
1813 | |
1814 | if (q_op.flag == OP_PROGRAM_PAGE) { |
1815 | goto wait_rdy; |
1816 | } else if (q_op.cmd_reg == cpu_to_le32(OP_BLOCK_ERASE)) { |
1817 | q_op.cmd_reg |= cpu_to_le32(PAGE_ACC | LAST_PAGE); |
1818 | nandc->regs->addr0 = q_op.addr1_reg; |
1819 | nandc->regs->addr1 = q_op.addr2_reg; |
1820 | nandc->regs->cfg0 = cpu_to_le32(host->cfg0_raw & ~CW_PER_PAGE_MASK); |
1821 | nandc->regs->cfg1 = cpu_to_le32(host->cfg1_raw); |
1822 | instrs = 3; |
1823 | } else if (q_op.cmd_reg != cpu_to_le32(OP_RESET_DEVICE)) { |
1824 | return 0; |
1825 | } |
1826 | |
1827 | nandc->buf_count = 0; |
1828 | nandc->buf_start = 0; |
1829 | host->use_ecc = false; |
1830 | |
1831 | qcom_clear_read_regs(nandc); |
1832 | qcom_clear_bam_transaction(nandc); |
1833 | |
1834 | nandc->regs->cmd = q_op.cmd_reg; |
1835 | nandc->regs->exec = cpu_to_le32(1); |
1836 | |
1837 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->cmd, NAND_FLASH_CMD, num_regs: instrs, NAND_BAM_NEXT_SGL); |
1838 | if (q_op.cmd_reg == cpu_to_le32(OP_BLOCK_ERASE)) |
1839 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->cfg0, NAND_DEV0_CFG0, num_regs: 2, NAND_BAM_NEXT_SGL); |
1840 | |
1841 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->exec, NAND_EXEC_CMD, num_regs: 1, NAND_BAM_NEXT_SGL); |
1842 | qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, num_regs: 1, NAND_BAM_NEXT_SGL); |
1843 | |
1844 | ret = qcom_submit_descs(nandc); |
1845 | if (ret) { |
1846 | dev_err(nandc->dev, "failure in submitting misc descriptor\n"); |
1847 | goto err_out; |
1848 | } |
1849 | |
1850 | wait_rdy: |
1851 | qcom_delay_ns(ns: q_op.rdy_delay_ns); |
1852 | ret = qcom_wait_rdy_poll(chip, time_ms: q_op.rdy_timeout_ms); |
1853 | |
1854 | err_out: |
1855 | return ret; |
1856 | } |
1857 | |
1858 | static int qcom_param_page_type_exec(struct nand_chip *chip, const struct nand_subop *subop) |
1859 | { |
1860 | struct qcom_nand_host *host = to_qcom_nand_host(chip); |
1861 | struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); |
1862 | struct qcom_op q_op = {}; |
1863 | const struct nand_op_instr *instr = NULL; |
1864 | unsigned int op_id = 0; |
1865 | unsigned int len = 0; |
1866 | int ret, reg_base; |
1867 | |
1868 | reg_base = NAND_READ_LOCATION_0; |
1869 | |
1870 | if (nandc->props->qpic_version2) |
1871 | reg_base = NAND_READ_LOCATION_LAST_CW_0; |
1872 | |
1873 | ret = qcom_parse_instructions(chip, subop, q_op: &q_op); |
1874 | if (ret) |
1875 | return ret; |
1876 | |
1877 | q_op.cmd_reg |= cpu_to_le32(PAGE_ACC | LAST_PAGE); |
1878 | |
1879 | nandc->buf_count = 0; |
1880 | nandc->buf_start = 0; |
1881 | host->use_ecc = false; |
1882 | qcom_clear_read_regs(nandc); |
1883 | qcom_clear_bam_transaction(nandc); |
1884 | |
1885 | nandc->regs->cmd = q_op.cmd_reg; |
1886 | nandc->regs->addr0 = 0; |
1887 | nandc->regs->addr1 = 0; |
1888 | |
1889 | nandc->regs->cfg0 = cpu_to_le32(FIELD_PREP(CW_PER_PAGE_MASK, 0) | |
1890 | FIELD_PREP(UD_SIZE_BYTES_MASK, 512) | |
1891 | FIELD_PREP(NUM_ADDR_CYCLES_MASK, 5) | |
1892 | FIELD_PREP(SPARE_SIZE_BYTES_MASK, 0)); |
1893 | |
1894 | nandc->regs->cfg1 = cpu_to_le32(FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 7) | |
1895 | FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, 17) | |
1896 | FIELD_PREP(CS_ACTIVE_BSY, 0) | |
1897 | FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 1) | |
1898 | FIELD_PREP(WR_RD_BSY_GAP_MASK, 2) | |
1899 | FIELD_PREP(WIDE_FLASH, 0) | |
1900 | FIELD_PREP(DEV0_CFG1_ECC_DISABLE, 1)); |
1901 | |
1902 | if (!nandc->props->qpic_version2) |
1903 | nandc->regs->ecc_buf_cfg = cpu_to_le32(ECC_CFG_ECC_DISABLE); |
1904 | |
1905 | /* configure CMD1 and VLD for ONFI param probing in QPIC v1 */ |
1906 | if (!nandc->props->qpic_version2) { |
1907 | nandc->regs->vld = cpu_to_le32((nandc->vld & ~READ_START_VLD)); |
1908 | nandc->regs->cmd1 = cpu_to_le32((nandc->cmd1 & ~READ_ADDR_MASK) | |
1909 | FIELD_PREP(READ_ADDR_MASK, NAND_CMD_PARAM)); |
1910 | } |
1911 | |
1912 | nandc->regs->exec = cpu_to_le32(1); |
1913 | |
1914 | if (!nandc->props->qpic_version2) { |
1915 | nandc->regs->orig_cmd1 = cpu_to_le32(nandc->cmd1); |
1916 | nandc->regs->orig_vld = cpu_to_le32(nandc->vld); |
1917 | } |
1918 | |
1919 | instr = q_op.data_instr; |
1920 | op_id = q_op.data_instr_idx; |
1921 | len = nand_subop_get_data_len(subop, op_id); |
1922 | |
1923 | if (nandc->props->qpic_version2) |
1924 | nandc_set_read_loc_last(chip, reg_base, cw_offset: 0, read_size: len, is_last_read_loc: 1); |
1925 | else |
1926 | nandc_set_read_loc_first(chip, reg_base, cw_offset: 0, read_size: len, is_last_read_loc: 1); |
1927 | |
1928 | if (!nandc->props->qpic_version2) { |
1929 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->vld, NAND_DEV_CMD_VLD, num_regs: 1, flags: 0); |
1930 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->cmd1, NAND_DEV_CMD1, num_regs: 1, NAND_BAM_NEXT_SGL); |
1931 | } |
1932 | |
1933 | nandc->buf_count = 512; |
1934 | memset(nandc->data_buffer, 0xff, nandc->buf_count); |
1935 | |
1936 | config_nand_single_cw_page_read(chip, use_ecc: false, cw: 0); |
1937 | |
1938 | qcom_read_data_dma(nandc, FLASH_BUF_ACC, vaddr: nandc->data_buffer, |
1939 | size: nandc->buf_count, flags: 0); |
1940 | |
1941 | /* restore CMD1 and VLD regs */ |
1942 | if (!nandc->props->qpic_version2) { |
1943 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->orig_cmd1, NAND_DEV_CMD1_RESTORE, num_regs: 1, flags: 0); |
1944 | qcom_write_reg_dma(nandc, vaddr: &nandc->regs->orig_vld, NAND_DEV_CMD_VLD_RESTORE, num_regs: 1, |
1945 | NAND_BAM_NEXT_SGL); |
1946 | } |
1947 | |
1948 | ret = qcom_submit_descs(nandc); |
1949 | if (ret) { |
1950 | dev_err(nandc->dev, "failure in submitting param page descriptor\n"); |
1951 | goto err_out; |
1952 | } |
1953 | |
1954 | ret = qcom_wait_rdy_poll(chip, time_ms: q_op.rdy_timeout_ms); |
1955 | if (ret) |
1956 | goto err_out; |
1957 | |
1958 | memcpy(instr->ctx.data.buf.in, nandc->data_buffer, len); |
1959 | |
1960 | err_out: |
1961 | return ret; |
1962 | } |
1963 | |
1964 | static const struct nand_op_parser qcom_op_parser = NAND_OP_PARSER( |
1965 | NAND_OP_PARSER_PATTERN( |
1966 | qcom_read_id_type_exec, |
1967 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
1968 | NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE), |
1969 | NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), |
1970 | NAND_OP_PARSER_PATTERN( |
1971 | qcom_read_status_exec, |
1972 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
1973 | NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), |
1974 | NAND_OP_PARSER_PATTERN( |
1975 | qcom_param_page_type_exec, |
1976 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
1977 | NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE), |
1978 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), |
1979 | NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 512)), |
1980 | NAND_OP_PARSER_PATTERN( |
1981 | qcom_misc_cmd_type_exec, |
1982 | NAND_OP_PARSER_PAT_CMD_ELEM(false), |
1983 | NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYCLE), |
1984 | NAND_OP_PARSER_PAT_CMD_ELEM(true), |
1985 | NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), |
1986 | ); |
1987 | |
1988 | static int qcom_check_op(struct nand_chip *chip, |
1989 | const struct nand_operation *op) |
1990 | { |
1991 | const struct nand_op_instr *instr; |
1992 | int op_id; |
1993 | |
1994 | for (op_id = 0; op_id < op->ninstrs; op_id++) { |
1995 | instr = &op->instrs[op_id]; |
1996 | |
1997 | switch (instr->type) { |
1998 | case NAND_OP_CMD_INSTR: |
1999 | if (instr->ctx.cmd.opcode != NAND_CMD_RESET && |
2000 | instr->ctx.cmd.opcode != NAND_CMD_READID && |
2001 | instr->ctx.cmd.opcode != NAND_CMD_PARAM && |
2002 | instr->ctx.cmd.opcode != NAND_CMD_ERASE1 && |
2003 | instr->ctx.cmd.opcode != NAND_CMD_ERASE2 && |
2004 | instr->ctx.cmd.opcode != NAND_CMD_STATUS && |
2005 | instr->ctx.cmd.opcode != NAND_CMD_PAGEPROG && |
2006 | instr->ctx.cmd.opcode != NAND_CMD_READ0 && |
2007 | instr->ctx.cmd.opcode != NAND_CMD_READSTART) |
2008 | return -EOPNOTSUPP; |
2009 | break; |
2010 | default: |
2011 | break; |
2012 | } |
2013 | } |
2014 | |
2015 | return 0; |
2016 | } |
2017 | |
2018 | static int qcom_nand_exec_op(struct nand_chip *chip, |
2019 | const struct nand_operation *op, bool check_only) |
2020 | { |
2021 | if (check_only) |
2022 | return qcom_check_op(chip, op); |
2023 | |
2024 | return nand_op_parser_exec_op(chip, parser: &qcom_op_parser, op, check_only); |
2025 | } |
2026 | |
2027 | static const struct nand_controller_ops qcom_nandc_ops = { |
2028 | .attach_chip = qcom_nand_attach_chip, |
2029 | .exec_op = qcom_nand_exec_op, |
2030 | }; |
2031 | |
2032 | /* one time setup of a few nand controller registers */ |
2033 | static int qcom_nandc_setup(struct qcom_nand_controller *nandc) |
2034 | { |
2035 | u32 nand_ctrl; |
2036 | |
2037 | nand_controller_init(nfc: nandc->controller); |
2038 | nandc->controller->ops = &qcom_nandc_ops; |
2039 | |
2040 | /* kill onenand */ |
2041 | if (!nandc->props->nandc_part_of_qpic) |
2042 | nandc_write(nandc, SFLASHC_BURST_CFG, val: 0); |
2043 | |
2044 | if (!nandc->props->qpic_version2) |
2045 | nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD), |
2046 | NAND_DEV_CMD_VLD_VAL); |
2047 | |
2048 | /* enable ADM or BAM DMA */ |
2049 | if (nandc->props->supports_bam) { |
2050 | nand_ctrl = nandc_read(nandc, NAND_CTRL); |
2051 | |
2052 | /* |
2053 | *NAND_CTRL is an operational registers, and CPU |
2054 | * access to operational registers are read only |
2055 | * in BAM mode. So update the NAND_CTRL register |
2056 | * only if it is not in BAM mode. In most cases BAM |
2057 | * mode will be enabled in bootloader |
2058 | */ |
2059 | if (!(nand_ctrl & BAM_MODE_EN)) |
2060 | nandc_write(nandc, NAND_CTRL, val: nand_ctrl | BAM_MODE_EN); |
2061 | } else { |
2062 | nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); |
2063 | } |
2064 | |
2065 | /* save the original values of these registers */ |
2066 | if (!nandc->props->qpic_version2) { |
2067 | nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1)); |
2068 | nandc->vld = NAND_DEV_CMD_VLD_VAL; |
2069 | } |
2070 | |
2071 | return 0; |
2072 | } |
2073 | |
2074 | static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL }; |
2075 | |
2076 | static int qcom_nand_host_parse_boot_partitions(struct qcom_nand_controller *nandc, |
2077 | struct qcom_nand_host *host, |
2078 | struct device_node *dn) |
2079 | { |
2080 | struct nand_chip *chip = &host->chip; |
2081 | struct mtd_info *mtd = nand_to_mtd(chip); |
2082 | struct qcom_nand_boot_partition *boot_partition; |
2083 | struct device *dev = nandc->dev; |
2084 | int partitions_count, i, j, ret; |
2085 | |
2086 | if (!of_property_present(np: dn, propname: "qcom,boot-partitions")) |
2087 | return 0; |
2088 | |
2089 | partitions_count = of_property_count_u32_elems(np: dn, propname: "qcom,boot-partitions"); |
2090 | if (partitions_count <= 0) { |
2091 | dev_err(dev, "Error parsing boot partition\n"); |
2092 | return partitions_count ? partitions_count : -EINVAL; |
2093 | } |
2094 | |
2095 | host->nr_boot_partitions = partitions_count / 2; |
2096 | host->boot_partitions = devm_kcalloc(dev, n: host->nr_boot_partitions, |
2097 | size: sizeof(*host->boot_partitions), GFP_KERNEL); |
2098 | if (!host->boot_partitions) { |
2099 | host->nr_boot_partitions = 0; |
2100 | return -ENOMEM; |
2101 | } |
2102 | |
2103 | for (i = 0, j = 0; i < host->nr_boot_partitions; i++, j += 2) { |
2104 | boot_partition = &host->boot_partitions[i]; |
2105 | |
2106 | ret = of_property_read_u32_index(np: dn, propname: "qcom,boot-partitions", index: j, |
2107 | out_value: &boot_partition->page_offset); |
2108 | if (ret) { |
2109 | dev_err(dev, "Error parsing boot partition offset at index %d\n", i); |
2110 | host->nr_boot_partitions = 0; |
2111 | return ret; |
2112 | } |
2113 | |
2114 | if (boot_partition->page_offset % mtd->writesize) { |
2115 | dev_err(dev, "Boot partition offset not multiple of writesize at index %i\n", |
2116 | i); |
2117 | host->nr_boot_partitions = 0; |
2118 | return -EINVAL; |
2119 | } |
2120 | /* Convert offset to nand pages */ |
2121 | boot_partition->page_offset /= mtd->writesize; |
2122 | |
2123 | ret = of_property_read_u32_index(np: dn, propname: "qcom,boot-partitions", index: j + 1, |
2124 | out_value: &boot_partition->page_size); |
2125 | if (ret) { |
2126 | dev_err(dev, "Error parsing boot partition size at index %d\n", i); |
2127 | host->nr_boot_partitions = 0; |
2128 | return ret; |
2129 | } |
2130 | |
2131 | if (boot_partition->page_size % mtd->writesize) { |
2132 | dev_err(dev, "Boot partition size not multiple of writesize at index %i\n", |
2133 | i); |
2134 | host->nr_boot_partitions = 0; |
2135 | return -EINVAL; |
2136 | } |
2137 | /* Convert size to nand pages */ |
2138 | boot_partition->page_size /= mtd->writesize; |
2139 | } |
2140 | |
2141 | return 0; |
2142 | } |
2143 | |
2144 | static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc, |
2145 | struct qcom_nand_host *host, |
2146 | struct device_node *dn) |
2147 | { |
2148 | struct nand_chip *chip = &host->chip; |
2149 | struct mtd_info *mtd = nand_to_mtd(chip); |
2150 | struct device *dev = nandc->dev; |
2151 | int ret; |
2152 | |
2153 | ret = of_property_read_u32(np: dn, propname: "reg", out_value: &host->cs); |
2154 | if (ret) { |
2155 | dev_err(dev, "can't get chip-select\n"); |
2156 | return -ENXIO; |
2157 | } |
2158 | |
2159 | nand_set_flash_node(chip, np: dn); |
2160 | mtd->name = devm_kasprintf(dev, GFP_KERNEL, fmt: "qcom_nand.%d", host->cs); |
2161 | if (!mtd->name) |
2162 | return -ENOMEM; |
2163 | |
2164 | mtd->owner = THIS_MODULE; |
2165 | mtd->dev.parent = dev; |
2166 | |
2167 | /* |
2168 | * the bad block marker is readable only when we read the last codeword |
2169 | * of a page with ECC disabled. currently, the nand_base and nand_bbt |
2170 | * helpers don't allow us to read BB from a nand chip with ECC |
2171 | * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad |
2172 | * and block_markbad helpers until we permanently switch to using |
2173 | * MTD_OPS_RAW for all drivers (with the help of badblockbits) |
2174 | */ |
2175 | chip->legacy.block_bad = qcom_nandc_block_bad; |
2176 | chip->legacy.block_markbad = qcom_nandc_block_markbad; |
2177 | |
2178 | chip->controller = nandc->controller; |
2179 | chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | |
2180 | NAND_SKIP_BBTSCAN; |
2181 | |
2182 | /* set up initial status value */ |
2183 | host->status = NAND_STATUS_READY | NAND_STATUS_WP; |
2184 | |
2185 | ret = nand_scan(chip, max_chips: 1); |
2186 | if (ret) |
2187 | return ret; |
2188 | |
2189 | ret = mtd_device_parse_register(mtd, part_probe_types: probes, NULL, NULL, defnr_parts: 0); |
2190 | if (ret) |
2191 | goto err; |
2192 | |
2193 | if (nandc->props->use_codeword_fixup) { |
2194 | ret = qcom_nand_host_parse_boot_partitions(nandc, host, dn); |
2195 | if (ret) |
2196 | goto err; |
2197 | } |
2198 | |
2199 | return 0; |
2200 | |
2201 | err: |
2202 | nand_cleanup(chip); |
2203 | return ret; |
2204 | } |
2205 | |
2206 | static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc) |
2207 | { |
2208 | struct device *dev = nandc->dev; |
2209 | struct device_node *dn = dev->of_node, *child; |
2210 | struct qcom_nand_host *host; |
2211 | int ret = -ENODEV; |
2212 | |
2213 | for_each_available_child_of_node(dn, child) { |
2214 | host = devm_kzalloc(dev, size: sizeof(*host), GFP_KERNEL); |
2215 | if (!host) { |
2216 | of_node_put(node: child); |
2217 | return -ENOMEM; |
2218 | } |
2219 | |
2220 | ret = qcom_nand_host_init_and_register(nandc, host, dn: child); |
2221 | if (ret) { |
2222 | devm_kfree(dev, p: host); |
2223 | continue; |
2224 | } |
2225 | |
2226 | list_add_tail(new: &host->node, head: &nandc->host_list); |
2227 | } |
2228 | |
2229 | return ret; |
2230 | } |
2231 | |
2232 | /* parse custom DT properties here */ |
2233 | static int qcom_nandc_parse_dt(struct platform_device *pdev) |
2234 | { |
2235 | struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); |
2236 | struct device_node *np = nandc->dev->of_node; |
2237 | int ret; |
2238 | |
2239 | if (!nandc->props->supports_bam) { |
2240 | ret = of_property_read_u32(np, propname: "qcom,cmd-crci", |
2241 | out_value: &nandc->cmd_crci); |
2242 | if (ret) { |
2243 | dev_err(nandc->dev, "command CRCI unspecified\n"); |
2244 | return ret; |
2245 | } |
2246 | |
2247 | ret = of_property_read_u32(np, propname: "qcom,data-crci", |
2248 | out_value: &nandc->data_crci); |
2249 | if (ret) { |
2250 | dev_err(nandc->dev, "data CRCI unspecified\n"); |
2251 | return ret; |
2252 | } |
2253 | } |
2254 | |
2255 | return 0; |
2256 | } |
2257 | |
2258 | static int qcom_nandc_probe(struct platform_device *pdev) |
2259 | { |
2260 | struct qcom_nand_controller *nandc; |
2261 | struct nand_controller *controller; |
2262 | const void *dev_data; |
2263 | struct device *dev = &pdev->dev; |
2264 | struct resource *res; |
2265 | int ret; |
2266 | |
2267 | nandc = devm_kzalloc(dev: &pdev->dev, size: sizeof(*nandc) + sizeof(*controller), |
2268 | GFP_KERNEL); |
2269 | if (!nandc) |
2270 | return -ENOMEM; |
2271 | controller = (struct nand_controller *)&nandc[1]; |
2272 | |
2273 | platform_set_drvdata(pdev, data: nandc); |
2274 | nandc->dev = dev; |
2275 | nandc->controller = controller; |
2276 | |
2277 | dev_data = of_device_get_match_data(dev); |
2278 | if (!dev_data) { |
2279 | dev_err(&pdev->dev, "failed to get device data\n"); |
2280 | return -ENODEV; |
2281 | } |
2282 | |
2283 | nandc->props = dev_data; |
2284 | |
2285 | nandc->core_clk = devm_clk_get(dev, id: "core"); |
2286 | if (IS_ERR(ptr: nandc->core_clk)) |
2287 | return PTR_ERR(ptr: nandc->core_clk); |
2288 | |
2289 | nandc->aon_clk = devm_clk_get(dev, id: "aon"); |
2290 | if (IS_ERR(ptr: nandc->aon_clk)) |
2291 | return PTR_ERR(ptr: nandc->aon_clk); |
2292 | |
2293 | ret = qcom_nandc_parse_dt(pdev); |
2294 | if (ret) |
2295 | return ret; |
2296 | |
2297 | nandc->base = devm_platform_get_and_ioremap_resource(pdev, index: 0, res: &res); |
2298 | if (IS_ERR(ptr: nandc->base)) |
2299 | return PTR_ERR(ptr: nandc->base); |
2300 | |
2301 | nandc->base_phys = res->start; |
2302 | nandc->base_dma = dma_map_resource(dev, phys_addr: res->start, |
2303 | size: resource_size(res), |
2304 | dir: DMA_BIDIRECTIONAL, attrs: 0); |
2305 | if (dma_mapping_error(dev, dma_addr: nandc->base_dma)) |
2306 | return -ENXIO; |
2307 | |
2308 | ret = clk_prepare_enable(clk: nandc->core_clk); |
2309 | if (ret) |
2310 | goto err_core_clk; |
2311 | |
2312 | ret = clk_prepare_enable(clk: nandc->aon_clk); |
2313 | if (ret) |
2314 | goto err_aon_clk; |
2315 | |
2316 | ret = qcom_nandc_alloc(nandc); |
2317 | if (ret) |
2318 | goto err_nandc_alloc; |
2319 | |
2320 | ret = qcom_nandc_setup(nandc); |
2321 | if (ret) |
2322 | goto err_setup; |
2323 | |
2324 | ret = qcom_probe_nand_devices(nandc); |
2325 | if (ret) |
2326 | goto err_setup; |
2327 | |
2328 | return 0; |
2329 | |
2330 | err_setup: |
2331 | qcom_nandc_unalloc(nandc); |
2332 | err_nandc_alloc: |
2333 | clk_disable_unprepare(clk: nandc->aon_clk); |
2334 | err_aon_clk: |
2335 | clk_disable_unprepare(clk: nandc->core_clk); |
2336 | err_core_clk: |
2337 | dma_unmap_resource(dev, addr: nandc->base_dma, size: resource_size(res), |
2338 | dir: DMA_BIDIRECTIONAL, attrs: 0); |
2339 | return ret; |
2340 | } |
2341 | |
2342 | static void qcom_nandc_remove(struct platform_device *pdev) |
2343 | { |
2344 | struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); |
2345 | struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
2346 | struct qcom_nand_host *host; |
2347 | struct nand_chip *chip; |
2348 | int ret; |
2349 | |
2350 | list_for_each_entry(host, &nandc->host_list, node) { |
2351 | chip = &host->chip; |
2352 | ret = mtd_device_unregister(master: nand_to_mtd(chip)); |
2353 | WARN_ON(ret); |
2354 | nand_cleanup(chip); |
2355 | } |
2356 | |
2357 | qcom_nandc_unalloc(nandc); |
2358 | |
2359 | clk_disable_unprepare(clk: nandc->aon_clk); |
2360 | clk_disable_unprepare(clk: nandc->core_clk); |
2361 | |
2362 | dma_unmap_resource(dev: &pdev->dev, addr: nandc->base_dma, size: resource_size(res), |
2363 | dir: DMA_BIDIRECTIONAL, attrs: 0); |
2364 | } |
2365 | |
2366 | static const struct qcom_nandc_props ipq806x_nandc_props = { |
2367 | .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT), |
2368 | .supports_bam = false, |
2369 | .use_codeword_fixup = true, |
2370 | .dev_cmd_reg_start = 0x0, |
2371 | .bam_offset = 0x30000, |
2372 | }; |
2373 | |
2374 | static const struct qcom_nandc_props ipq4019_nandc_props = { |
2375 | .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), |
2376 | .supports_bam = true, |
2377 | .nandc_part_of_qpic = true, |
2378 | .dev_cmd_reg_start = 0x0, |
2379 | .bam_offset = 0x30000, |
2380 | }; |
2381 | |
2382 | static const struct qcom_nandc_props ipq8074_nandc_props = { |
2383 | .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), |
2384 | .supports_bam = true, |
2385 | .nandc_part_of_qpic = true, |
2386 | .dev_cmd_reg_start = 0x7000, |
2387 | .bam_offset = 0x30000, |
2388 | }; |
2389 | |
2390 | static const struct qcom_nandc_props sdx55_nandc_props = { |
2391 | .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), |
2392 | .supports_bam = true, |
2393 | .nandc_part_of_qpic = true, |
2394 | .qpic_version2 = true, |
2395 | .dev_cmd_reg_start = 0x7000, |
2396 | .bam_offset = 0x30000, |
2397 | }; |
2398 | |
2399 | /* |
2400 | * data will hold a struct pointer containing more differences once we support |
2401 | * more controller variants |
2402 | */ |
2403 | static const struct of_device_id qcom_nandc_of_match[] = { |
2404 | { |
2405 | .compatible = "qcom,ipq806x-nand", |
2406 | .data = &ipq806x_nandc_props, |
2407 | }, |
2408 | { |
2409 | .compatible = "qcom,ipq4019-nand", |
2410 | .data = &ipq4019_nandc_props, |
2411 | }, |
2412 | { |
2413 | .compatible = "qcom,ipq6018-nand", |
2414 | .data = &ipq8074_nandc_props, |
2415 | }, |
2416 | { |
2417 | .compatible = "qcom,ipq8074-nand", |
2418 | .data = &ipq8074_nandc_props, |
2419 | }, |
2420 | { |
2421 | .compatible = "qcom,sdx55-nand", |
2422 | .data = &sdx55_nandc_props, |
2423 | }, |
2424 | {} |
2425 | }; |
2426 | MODULE_DEVICE_TABLE(of, qcom_nandc_of_match); |
2427 | |
2428 | static struct platform_driver qcom_nandc_driver = { |
2429 | .driver = { |
2430 | .name = "qcom-nandc", |
2431 | .of_match_table = qcom_nandc_of_match, |
2432 | }, |
2433 | .probe = qcom_nandc_probe, |
2434 | .remove = qcom_nandc_remove, |
2435 | }; |
2436 | module_platform_driver(qcom_nandc_driver); |
2437 | |
2438 | MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>"); |
2439 | MODULE_DESCRIPTION("Qualcomm NAND Controller driver"); |
2440 | MODULE_LICENSE("GPL v2"); |
2441 |
Definitions
- qcom_nand_boot_partition
- qcom_op
- qcom_nand_host
- to_qcom_nand_host
- get_qcom_nand_controller
- nandc_read
- nandc_write
- qcom_nandc_is_last_cw
- nandc_set_read_loc_first
- nandc_set_read_loc_last
- nandc_set_read_loc
- set_address
- update_rw_regs
- config_nand_page_read
- config_nand_cw_read
- config_nand_single_cw_page_read
- config_nand_page_write
- config_nand_cw_write
- erased_chunk_check_and_fixup
- read_stats
- check_flash_errors
- qcom_nandc_read_cw_raw
- check_for_erased_page
- parse_read_errors
- read_page_ecc
- copy_last_cw
- qcom_nandc_is_boot_partition
- qcom_nandc_codeword_fixup
- qcom_nandc_read_page
- qcom_nandc_read_page_raw
- qcom_nandc_read_oob
- qcom_nandc_write_page
- qcom_nandc_write_page_raw
- qcom_nandc_write_oob
- qcom_nandc_block_bad
- qcom_nandc_block_markbad
- qcom_nand_ooblayout_ecc
- qcom_nand_ooblayout_free
- qcom_nand_ooblayout_ops
- qcom_nandc_calc_ecc_bytes
- qcom_nandc_ecc_caps
- qcom_nand_attach_chip
- qcom_op_cmd_mapping
- qcom_parse_instructions
- qcom_delay_ns
- qcom_wait_rdy_poll
- qcom_read_status_exec
- qcom_read_id_type_exec
- qcom_misc_cmd_type_exec
- qcom_param_page_type_exec
- qcom_op_parser
- qcom_check_op
- qcom_nand_exec_op
- qcom_nandc_ops
- qcom_nandc_setup
- probes
- qcom_nand_host_parse_boot_partitions
- qcom_nand_host_init_and_register
- qcom_probe_nand_devices
- qcom_nandc_parse_dt
- qcom_nandc_probe
- qcom_nandc_remove
- ipq806x_nandc_props
- ipq4019_nandc_props
- ipq8074_nandc_props
- sdx55_nandc_props
- qcom_nandc_of_match
Improve your Profiling and Debugging skills
Find out more