1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4 */
5#include <linux/bitops.h>
6#include <linux/clk.h>
7#include <linux/delay.h>
8#include <linux/dmaengine.h>
9#include <linux/dma-mapping.h>
10#include <linux/dma/qcom_adm.h>
11#include <linux/dma/qcom_bam_dma.h>
12#include <linux/module.h>
13#include <linux/mtd/partitions.h>
14#include <linux/mtd/rawnand.h>
15#include <linux/of.h>
16#include <linux/platform_device.h>
17#include <linux/slab.h>
18
19/* NANDc reg offsets */
20#define NAND_FLASH_CMD 0x00
21#define NAND_ADDR0 0x04
22#define NAND_ADDR1 0x08
23#define NAND_FLASH_CHIP_SELECT 0x0c
24#define NAND_EXEC_CMD 0x10
25#define NAND_FLASH_STATUS 0x14
26#define NAND_BUFFER_STATUS 0x18
27#define NAND_DEV0_CFG0 0x20
28#define NAND_DEV0_CFG1 0x24
29#define NAND_DEV0_ECC_CFG 0x28
30#define NAND_AUTO_STATUS_EN 0x2c
31#define NAND_DEV1_CFG0 0x30
32#define NAND_DEV1_CFG1 0x34
33#define NAND_READ_ID 0x40
34#define NAND_READ_STATUS 0x44
35#define NAND_DEV_CMD0 0xa0
36#define NAND_DEV_CMD1 0xa4
37#define NAND_DEV_CMD2 0xa8
38#define NAND_DEV_CMD_VLD 0xac
39#define SFLASHC_BURST_CFG 0xe0
40#define NAND_ERASED_CW_DETECT_CFG 0xe8
41#define NAND_ERASED_CW_DETECT_STATUS 0xec
42#define NAND_EBI2_ECC_BUF_CFG 0xf0
43#define FLASH_BUF_ACC 0x100
44
45#define NAND_CTRL 0xf00
46#define NAND_VERSION 0xf08
47#define NAND_READ_LOCATION_0 0xf20
48#define NAND_READ_LOCATION_1 0xf24
49#define NAND_READ_LOCATION_2 0xf28
50#define NAND_READ_LOCATION_3 0xf2c
51#define NAND_READ_LOCATION_LAST_CW_0 0xf40
52#define NAND_READ_LOCATION_LAST_CW_1 0xf44
53#define NAND_READ_LOCATION_LAST_CW_2 0xf48
54#define NAND_READ_LOCATION_LAST_CW_3 0xf4c
55
56/* dummy register offsets, used by write_reg_dma */
57#define NAND_DEV_CMD1_RESTORE 0xdead
58#define NAND_DEV_CMD_VLD_RESTORE 0xbeef
59
60/* NAND_FLASH_CMD bits */
61#define PAGE_ACC BIT(4)
62#define LAST_PAGE BIT(5)
63
64/* NAND_FLASH_CHIP_SELECT bits */
65#define NAND_DEV_SEL 0
66#define DM_EN BIT(2)
67
68/* NAND_FLASH_STATUS bits */
69#define FS_OP_ERR BIT(4)
70#define FS_READY_BSY_N BIT(5)
71#define FS_MPU_ERR BIT(8)
72#define FS_DEVICE_STS_ERR BIT(16)
73#define FS_DEVICE_WP BIT(23)
74
75/* NAND_BUFFER_STATUS bits */
76#define BS_UNCORRECTABLE_BIT BIT(8)
77#define BS_CORRECTABLE_ERR_MSK 0x1f
78
79/* NAND_DEVn_CFG0 bits */
80#define DISABLE_STATUS_AFTER_WRITE 4
81#define CW_PER_PAGE 6
82#define UD_SIZE_BYTES 9
83#define UD_SIZE_BYTES_MASK GENMASK(18, 9)
84#define ECC_PARITY_SIZE_BYTES_RS 19
85#define SPARE_SIZE_BYTES 23
86#define SPARE_SIZE_BYTES_MASK GENMASK(26, 23)
87#define NUM_ADDR_CYCLES 27
88#define STATUS_BFR_READ 30
89#define SET_RD_MODE_AFTER_STATUS 31
90
91/* NAND_DEVn_CFG0 bits */
92#define DEV0_CFG1_ECC_DISABLE 0
93#define WIDE_FLASH 1
94#define NAND_RECOVERY_CYCLES 2
95#define CS_ACTIVE_BSY 5
96#define BAD_BLOCK_BYTE_NUM 6
97#define BAD_BLOCK_IN_SPARE_AREA 16
98#define WR_RD_BSY_GAP 17
99#define ENABLE_BCH_ECC 27
100
101/* NAND_DEV0_ECC_CFG bits */
102#define ECC_CFG_ECC_DISABLE 0
103#define ECC_SW_RESET 1
104#define ECC_MODE 4
105#define ECC_PARITY_SIZE_BYTES_BCH 8
106#define ECC_NUM_DATA_BYTES 16
107#define ECC_NUM_DATA_BYTES_MASK GENMASK(25, 16)
108#define ECC_FORCE_CLK_OPEN 30
109
110/* NAND_DEV_CMD1 bits */
111#define READ_ADDR 0
112
113/* NAND_DEV_CMD_VLD bits */
114#define READ_START_VLD BIT(0)
115#define READ_STOP_VLD BIT(1)
116#define WRITE_START_VLD BIT(2)
117#define ERASE_START_VLD BIT(3)
118#define SEQ_READ_START_VLD BIT(4)
119
120/* NAND_EBI2_ECC_BUF_CFG bits */
121#define NUM_STEPS 0
122
123/* NAND_ERASED_CW_DETECT_CFG bits */
124#define ERASED_CW_ECC_MASK 1
125#define AUTO_DETECT_RES 0
126#define MASK_ECC BIT(ERASED_CW_ECC_MASK)
127#define RESET_ERASED_DET BIT(AUTO_DETECT_RES)
128#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
129#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
130#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
131
132/* NAND_ERASED_CW_DETECT_STATUS bits */
133#define PAGE_ALL_ERASED BIT(7)
134#define CODEWORD_ALL_ERASED BIT(6)
135#define PAGE_ERASED BIT(5)
136#define CODEWORD_ERASED BIT(4)
137#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
138#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
139
140/* NAND_READ_LOCATION_n bits */
141#define READ_LOCATION_OFFSET 0
142#define READ_LOCATION_SIZE 16
143#define READ_LOCATION_LAST 31
144
145/* Version Mask */
146#define NAND_VERSION_MAJOR_MASK 0xf0000000
147#define NAND_VERSION_MAJOR_SHIFT 28
148#define NAND_VERSION_MINOR_MASK 0x0fff0000
149#define NAND_VERSION_MINOR_SHIFT 16
150
151/* NAND OP_CMDs */
152#define OP_PAGE_READ 0x2
153#define OP_PAGE_READ_WITH_ECC 0x3
154#define OP_PAGE_READ_WITH_ECC_SPARE 0x4
155#define OP_PAGE_READ_ONFI_READ 0x5
156#define OP_PROGRAM_PAGE 0x6
157#define OP_PAGE_PROGRAM_WITH_ECC 0x7
158#define OP_PROGRAM_PAGE_SPARE 0x9
159#define OP_BLOCK_ERASE 0xa
160#define OP_CHECK_STATUS 0xc
161#define OP_FETCH_ID 0xb
162#define OP_RESET_DEVICE 0xd
163
164/* Default Value for NAND_DEV_CMD_VLD */
165#define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \
166 ERASE_START_VLD | SEQ_READ_START_VLD)
167
168/* NAND_CTRL bits */
169#define BAM_MODE_EN BIT(0)
170
171/*
172 * the NAND controller performs reads/writes with ECC in 516 byte chunks.
173 * the driver calls the chunks 'step' or 'codeword' interchangeably
174 */
175#define NANDC_STEP_SIZE 512
176
177/*
178 * the largest page size we support is 8K, this will have 16 steps/codewords
179 * of 512 bytes each
180 */
181#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
182
183/* we read at most 3 registers per codeword scan */
184#define MAX_REG_RD (3 * MAX_NUM_STEPS)
185
186/* ECC modes supported by the controller */
187#define ECC_NONE BIT(0)
188#define ECC_RS_4BIT BIT(1)
189#define ECC_BCH_4BIT BIT(2)
190#define ECC_BCH_8BIT BIT(3)
191
192#define nandc_set_read_loc_first(chip, reg, cw_offset, read_size, is_last_read_loc) \
193nandc_set_reg(chip, reg, \
194 ((cw_offset) << READ_LOCATION_OFFSET) | \
195 ((read_size) << READ_LOCATION_SIZE) | \
196 ((is_last_read_loc) << READ_LOCATION_LAST))
197
198#define nandc_set_read_loc_last(chip, reg, cw_offset, read_size, is_last_read_loc) \
199nandc_set_reg(chip, reg, \
200 ((cw_offset) << READ_LOCATION_OFFSET) | \
201 ((read_size) << READ_LOCATION_SIZE) | \
202 ((is_last_read_loc) << READ_LOCATION_LAST))
203/*
204 * Returns the actual register address for all NAND_DEV_ registers
205 * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
206 */
207#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
208
209/* Returns the NAND register physical address */
210#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
211
212/* Returns the dma address for reg read buffer */
213#define reg_buf_dma_addr(chip, vaddr) \
214 ((chip)->reg_read_dma + \
215 ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf))
216
217#define QPIC_PER_CW_CMD_ELEMENTS 32
218#define QPIC_PER_CW_CMD_SGL 32
219#define QPIC_PER_CW_DATA_SGL 8
220
221#define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
222
223/*
224 * Flags used in DMA descriptor preparation helper functions
225 * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
226 */
227/* Don't set the EOT in current tx BAM sgl */
228#define NAND_BAM_NO_EOT BIT(0)
229/* Set the NWD flag in current BAM sgl */
230#define NAND_BAM_NWD BIT(1)
231/* Finish writing in the current BAM sgl and start writing in another BAM sgl */
232#define NAND_BAM_NEXT_SGL BIT(2)
233/*
234 * Erased codeword status is being used two times in single transfer so this
235 * flag will determine the current value of erased codeword status register
236 */
237#define NAND_ERASED_CW_SET BIT(4)
238
239#define MAX_ADDRESS_CYCLE 5
240
241/*
242 * This data type corresponds to the BAM transaction which will be used for all
243 * NAND transfers.
244 * @bam_ce - the array of BAM command elements
245 * @cmd_sgl - sgl for NAND BAM command pipe
246 * @data_sgl - sgl for NAND BAM consumer/producer pipe
247 * @last_data_desc - last DMA desc in data channel (tx/rx).
248 * @last_cmd_desc - last DMA desc in command channel.
249 * @txn_done - completion for NAND transfer.
250 * @bam_ce_pos - the index in bam_ce which is available for next sgl
251 * @bam_ce_start - the index in bam_ce which marks the start position ce
252 * for current sgl. It will be used for size calculation
253 * for current sgl
254 * @cmd_sgl_pos - current index in command sgl.
255 * @cmd_sgl_start - start index in command sgl.
256 * @tx_sgl_pos - current index in data sgl for tx.
257 * @tx_sgl_start - start index in data sgl for tx.
258 * @rx_sgl_pos - current index in data sgl for rx.
259 * @rx_sgl_start - start index in data sgl for rx.
260 * @wait_second_completion - wait for second DMA desc completion before making
261 * the NAND transfer completion.
262 */
263struct bam_transaction {
264 struct bam_cmd_element *bam_ce;
265 struct scatterlist *cmd_sgl;
266 struct scatterlist *data_sgl;
267 struct dma_async_tx_descriptor *last_data_desc;
268 struct dma_async_tx_descriptor *last_cmd_desc;
269 struct completion txn_done;
270 u32 bam_ce_pos;
271 u32 bam_ce_start;
272 u32 cmd_sgl_pos;
273 u32 cmd_sgl_start;
274 u32 tx_sgl_pos;
275 u32 tx_sgl_start;
276 u32 rx_sgl_pos;
277 u32 rx_sgl_start;
278 bool wait_second_completion;
279};
280
281/*
282 * This data type corresponds to the nand dma descriptor
283 * @dma_desc - low level DMA engine descriptor
284 * @list - list for desc_info
285 *
286 * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
287 * ADM
288 * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
289 * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
290 * @dir - DMA transfer direction
291 */
292struct desc_info {
293 struct dma_async_tx_descriptor *dma_desc;
294 struct list_head node;
295
296 union {
297 struct scatterlist adm_sgl;
298 struct {
299 struct scatterlist *bam_sgl;
300 int sgl_cnt;
301 };
302 };
303 enum dma_data_direction dir;
304};
305
306/*
307 * holds the current register values that we want to write. acts as a contiguous
308 * chunk of memory which we use to write the controller registers through DMA.
309 */
310struct nandc_regs {
311 __le32 cmd;
312 __le32 addr0;
313 __le32 addr1;
314 __le32 chip_sel;
315 __le32 exec;
316
317 __le32 cfg0;
318 __le32 cfg1;
319 __le32 ecc_bch_cfg;
320
321 __le32 clrflashstatus;
322 __le32 clrreadstatus;
323
324 __le32 cmd1;
325 __le32 vld;
326
327 __le32 orig_cmd1;
328 __le32 orig_vld;
329
330 __le32 ecc_buf_cfg;
331 __le32 read_location0;
332 __le32 read_location1;
333 __le32 read_location2;
334 __le32 read_location3;
335 __le32 read_location_last0;
336 __le32 read_location_last1;
337 __le32 read_location_last2;
338 __le32 read_location_last3;
339
340 __le32 erased_cw_detect_cfg_clr;
341 __le32 erased_cw_detect_cfg_set;
342};
343
344/*
345 * NAND controller data struct
346 *
347 * @dev: parent device
348 *
349 * @base: MMIO base
350 *
351 * @core_clk: controller clock
352 * @aon_clk: another controller clock
353 *
354 * @regs: a contiguous chunk of memory for DMA register
355 * writes. contains the register values to be
356 * written to controller
357 *
358 * @props: properties of current NAND controller,
359 * initialized via DT match data
360 *
361 * @controller: base controller structure
362 * @host_list: list containing all the chips attached to the
363 * controller
364 *
365 * @chan: dma channel
366 * @cmd_crci: ADM DMA CRCI for command flow control
367 * @data_crci: ADM DMA CRCI for data flow control
368 *
369 * @desc_list: DMA descriptor list (list of desc_infos)
370 *
371 * @data_buffer: our local DMA buffer for page read/writes,
372 * used when we can't use the buffer provided
373 * by upper layers directly
374 * @reg_read_buf: local buffer for reading back registers via DMA
375 *
376 * @base_phys: physical base address of controller registers
377 * @base_dma: dma base address of controller registers
378 * @reg_read_dma: contains dma address for register read buffer
379 *
380 * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf
381 * functions
382 * @max_cwperpage: maximum QPIC codewords required. calculated
383 * from all connected NAND devices pagesize
384 *
385 * @reg_read_pos: marker for data read in reg_read_buf
386 *
387 * @cmd1/vld: some fixed controller register values
388 *
389 * @exec_opwrite: flag to select correct number of code word
390 * while reading status
391 */
392struct qcom_nand_controller {
393 struct device *dev;
394
395 void __iomem *base;
396
397 struct clk *core_clk;
398 struct clk *aon_clk;
399
400 struct nandc_regs *regs;
401 struct bam_transaction *bam_txn;
402
403 const struct qcom_nandc_props *props;
404
405 struct nand_controller controller;
406 struct list_head host_list;
407
408 union {
409 /* will be used only by QPIC for BAM DMA */
410 struct {
411 struct dma_chan *tx_chan;
412 struct dma_chan *rx_chan;
413 struct dma_chan *cmd_chan;
414 };
415
416 /* will be used only by EBI2 for ADM DMA */
417 struct {
418 struct dma_chan *chan;
419 unsigned int cmd_crci;
420 unsigned int data_crci;
421 };
422 };
423
424 struct list_head desc_list;
425
426 u8 *data_buffer;
427 __le32 *reg_read_buf;
428
429 phys_addr_t base_phys;
430 dma_addr_t base_dma;
431 dma_addr_t reg_read_dma;
432
433 int buf_size;
434 int buf_count;
435 int buf_start;
436 unsigned int max_cwperpage;
437
438 int reg_read_pos;
439
440 u32 cmd1, vld;
441 bool exec_opwrite;
442};
443
444/*
445 * NAND special boot partitions
446 *
447 * @page_offset: offset of the partition where spare data is not protected
448 * by ECC (value in pages)
449 * @page_offset: size of the partition where spare data is not protected
450 * by ECC (value in pages)
451 */
452struct qcom_nand_boot_partition {
453 u32 page_offset;
454 u32 page_size;
455};
456
457/*
458 * Qcom op for each exec_op transfer
459 *
460 * @data_instr: data instruction pointer
461 * @data_instr_idx: data instruction index
462 * @rdy_timeout_ms: wait ready timeout in ms
463 * @rdy_delay_ns: Additional delay in ns
464 * @addr1_reg: Address1 register value
465 * @addr2_reg: Address2 register value
466 * @cmd_reg: CMD register value
467 * @flag: flag for misc instruction
468 */
469struct qcom_op {
470 const struct nand_op_instr *data_instr;
471 unsigned int data_instr_idx;
472 unsigned int rdy_timeout_ms;
473 unsigned int rdy_delay_ns;
474 u32 addr1_reg;
475 u32 addr2_reg;
476 u32 cmd_reg;
477 u8 flag;
478};
479
480/*
481 * NAND chip structure
482 *
483 * @boot_partitions: array of boot partitions where offset and size of the
484 * boot partitions are stored
485 *
486 * @chip: base NAND chip structure
487 * @node: list node to add itself to host_list in
488 * qcom_nand_controller
489 *
490 * @nr_boot_partitions: count of the boot partitions where spare data is not
491 * protected by ECC
492 *
493 * @cs: chip select value for this chip
494 * @cw_size: the number of bytes in a single step/codeword
495 * of a page, consisting of all data, ecc, spare
496 * and reserved bytes
497 * @cw_data: the number of bytes within a codeword protected
498 * by ECC
499 * @ecc_bytes_hw: ECC bytes used by controller hardware for this
500 * chip
501 *
502 * @last_command: keeps track of last command on this chip. used
503 * for reading correct status
504 *
505 * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for
506 * ecc/non-ecc mode for the current nand flash
507 * device
508 *
509 * @status: value to be returned if NAND_CMD_STATUS command
510 * is executed
511 * @codeword_fixup: keep track of the current layout used by
512 * the driver for read/write operation.
513 * @use_ecc: request the controller to use ECC for the
514 * upcoming read/write
515 * @bch_enabled: flag to tell whether BCH ECC mode is used
516 */
517struct qcom_nand_host {
518 struct qcom_nand_boot_partition *boot_partitions;
519
520 struct nand_chip chip;
521 struct list_head node;
522
523 int nr_boot_partitions;
524
525 int cs;
526 int cw_size;
527 int cw_data;
528 int ecc_bytes_hw;
529 int spare_bytes;
530 int bbm_size;
531
532 int last_command;
533
534 u32 cfg0, cfg1;
535 u32 cfg0_raw, cfg1_raw;
536 u32 ecc_buf_cfg;
537 u32 ecc_bch_cfg;
538 u32 clrflashstatus;
539 u32 clrreadstatus;
540
541 u8 status;
542 bool codeword_fixup;
543 bool use_ecc;
544 bool bch_enabled;
545};
546
547/*
548 * This data type corresponds to the NAND controller properties which varies
549 * among different NAND controllers.
550 * @ecc_modes - ecc mode for NAND
551 * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
552 * @is_bam - whether NAND controller is using BAM
553 * @is_qpic - whether NAND CTRL is part of qpic IP
554 * @qpic_v2 - flag to indicate QPIC IP version 2
555 * @use_codeword_fixup - whether NAND has different layout for boot partitions
556 */
557struct qcom_nandc_props {
558 u32 ecc_modes;
559 u32 dev_cmd_reg_start;
560 bool is_bam;
561 bool is_qpic;
562 bool qpic_v2;
563 bool use_codeword_fixup;
564};
565
566/* Frees the BAM transaction memory */
567static void free_bam_transaction(struct qcom_nand_controller *nandc)
568{
569 struct bam_transaction *bam_txn = nandc->bam_txn;
570
571 devm_kfree(dev: nandc->dev, p: bam_txn);
572}
573
574/* Allocates and Initializes the BAM transaction */
575static struct bam_transaction *
576alloc_bam_transaction(struct qcom_nand_controller *nandc)
577{
578 struct bam_transaction *bam_txn;
579 size_t bam_txn_size;
580 unsigned int num_cw = nandc->max_cwperpage;
581 void *bam_txn_buf;
582
583 bam_txn_size =
584 sizeof(*bam_txn) + num_cw *
585 ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
586 (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
587 (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
588
589 bam_txn_buf = devm_kzalloc(dev: nandc->dev, size: bam_txn_size, GFP_KERNEL);
590 if (!bam_txn_buf)
591 return NULL;
592
593 bam_txn = bam_txn_buf;
594 bam_txn_buf += sizeof(*bam_txn);
595
596 bam_txn->bam_ce = bam_txn_buf;
597 bam_txn_buf +=
598 sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
599
600 bam_txn->cmd_sgl = bam_txn_buf;
601 bam_txn_buf +=
602 sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
603
604 bam_txn->data_sgl = bam_txn_buf;
605
606 init_completion(x: &bam_txn->txn_done);
607
608 return bam_txn;
609}
610
611/* Clears the BAM transaction indexes */
612static void clear_bam_transaction(struct qcom_nand_controller *nandc)
613{
614 struct bam_transaction *bam_txn = nandc->bam_txn;
615
616 if (!nandc->props->is_bam)
617 return;
618
619 bam_txn->bam_ce_pos = 0;
620 bam_txn->bam_ce_start = 0;
621 bam_txn->cmd_sgl_pos = 0;
622 bam_txn->cmd_sgl_start = 0;
623 bam_txn->tx_sgl_pos = 0;
624 bam_txn->tx_sgl_start = 0;
625 bam_txn->rx_sgl_pos = 0;
626 bam_txn->rx_sgl_start = 0;
627 bam_txn->last_data_desc = NULL;
628 bam_txn->wait_second_completion = false;
629
630 sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
631 QPIC_PER_CW_CMD_SGL);
632 sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
633 QPIC_PER_CW_DATA_SGL);
634
635 reinit_completion(x: &bam_txn->txn_done);
636}
637
638/* Callback for DMA descriptor completion */
639static void qpic_bam_dma_done(void *data)
640{
641 struct bam_transaction *bam_txn = data;
642
643 /*
644 * In case of data transfer with NAND, 2 callbacks will be generated.
645 * One for command channel and another one for data channel.
646 * If current transaction has data descriptors
647 * (i.e. wait_second_completion is true), then set this to false
648 * and wait for second DMA descriptor completion.
649 */
650 if (bam_txn->wait_second_completion)
651 bam_txn->wait_second_completion = false;
652 else
653 complete(&bam_txn->txn_done);
654}
655
656static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
657{
658 return container_of(chip, struct qcom_nand_host, chip);
659}
660
661static inline struct qcom_nand_controller *
662get_qcom_nand_controller(struct nand_chip *chip)
663{
664 return container_of(chip->controller, struct qcom_nand_controller,
665 controller);
666}
667
668static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
669{
670 return ioread32(nandc->base + offset);
671}
672
673static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
674 u32 val)
675{
676 iowrite32(val, nandc->base + offset);
677}
678
679static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
680 bool is_cpu)
681{
682 if (!nandc->props->is_bam)
683 return;
684
685 if (is_cpu)
686 dma_sync_single_for_cpu(dev: nandc->dev, addr: nandc->reg_read_dma,
687 MAX_REG_RD *
688 sizeof(*nandc->reg_read_buf),
689 dir: DMA_FROM_DEVICE);
690 else
691 dma_sync_single_for_device(dev: nandc->dev, addr: nandc->reg_read_dma,
692 MAX_REG_RD *
693 sizeof(*nandc->reg_read_buf),
694 dir: DMA_FROM_DEVICE);
695}
696
697static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
698{
699 switch (offset) {
700 case NAND_FLASH_CMD:
701 return &regs->cmd;
702 case NAND_ADDR0:
703 return &regs->addr0;
704 case NAND_ADDR1:
705 return &regs->addr1;
706 case NAND_FLASH_CHIP_SELECT:
707 return &regs->chip_sel;
708 case NAND_EXEC_CMD:
709 return &regs->exec;
710 case NAND_FLASH_STATUS:
711 return &regs->clrflashstatus;
712 case NAND_DEV0_CFG0:
713 return &regs->cfg0;
714 case NAND_DEV0_CFG1:
715 return &regs->cfg1;
716 case NAND_DEV0_ECC_CFG:
717 return &regs->ecc_bch_cfg;
718 case NAND_READ_STATUS:
719 return &regs->clrreadstatus;
720 case NAND_DEV_CMD1:
721 return &regs->cmd1;
722 case NAND_DEV_CMD1_RESTORE:
723 return &regs->orig_cmd1;
724 case NAND_DEV_CMD_VLD:
725 return &regs->vld;
726 case NAND_DEV_CMD_VLD_RESTORE:
727 return &regs->orig_vld;
728 case NAND_EBI2_ECC_BUF_CFG:
729 return &regs->ecc_buf_cfg;
730 case NAND_READ_LOCATION_0:
731 return &regs->read_location0;
732 case NAND_READ_LOCATION_1:
733 return &regs->read_location1;
734 case NAND_READ_LOCATION_2:
735 return &regs->read_location2;
736 case NAND_READ_LOCATION_3:
737 return &regs->read_location3;
738 case NAND_READ_LOCATION_LAST_CW_0:
739 return &regs->read_location_last0;
740 case NAND_READ_LOCATION_LAST_CW_1:
741 return &regs->read_location_last1;
742 case NAND_READ_LOCATION_LAST_CW_2:
743 return &regs->read_location_last2;
744 case NAND_READ_LOCATION_LAST_CW_3:
745 return &regs->read_location_last3;
746 default:
747 return NULL;
748 }
749}
750
751static void nandc_set_reg(struct nand_chip *chip, int offset,
752 u32 val)
753{
754 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
755 struct nandc_regs *regs = nandc->regs;
756 __le32 *reg;
757
758 reg = offset_to_nandc_reg(regs, offset);
759
760 if (reg)
761 *reg = cpu_to_le32(val);
762}
763
764/* Helper to check the code word, whether it is last cw or not */
765static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw)
766{
767 return cw == (ecc->steps - 1);
768}
769
770/* helper to configure location register values */
771static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg,
772 int cw_offset, int read_size, int is_last_read_loc)
773{
774 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
775 struct nand_ecc_ctrl *ecc = &chip->ecc;
776 int reg_base = NAND_READ_LOCATION_0;
777
778 if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
779 reg_base = NAND_READ_LOCATION_LAST_CW_0;
780
781 reg_base += reg * 4;
782
783 if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
784 return nandc_set_read_loc_last(chip, reg_base, cw_offset,
785 read_size, is_last_read_loc);
786 else
787 return nandc_set_read_loc_first(chip, reg_base, cw_offset,
788 read_size, is_last_read_loc);
789}
790
791/* helper to configure address register values */
792static void set_address(struct qcom_nand_host *host, u16 column, int page)
793{
794 struct nand_chip *chip = &host->chip;
795
796 if (chip->options & NAND_BUSWIDTH_16)
797 column >>= 1;
798
799 nandc_set_reg(chip, NAND_ADDR0, val: page << 16 | column);
800 nandc_set_reg(chip, NAND_ADDR1, val: page >> 16 & 0xff);
801}
802
803/*
804 * update_rw_regs: set up read/write register values, these will be
805 * written to the NAND controller registers via DMA
806 *
807 * @num_cw: number of steps for the read/write operation
808 * @read: read or write operation
809 * @cw : which code word
810 */
811static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw)
812{
813 struct nand_chip *chip = &host->chip;
814 u32 cmd, cfg0, cfg1, ecc_bch_cfg;
815 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
816
817 if (read) {
818 if (host->use_ecc)
819 cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
820 else
821 cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
822 } else {
823 cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
824 }
825
826 if (host->use_ecc) {
827 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
828 (num_cw - 1) << CW_PER_PAGE;
829
830 cfg1 = host->cfg1;
831 ecc_bch_cfg = host->ecc_bch_cfg;
832 } else {
833 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
834 (num_cw - 1) << CW_PER_PAGE;
835
836 cfg1 = host->cfg1_raw;
837 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
838 }
839
840 nandc_set_reg(chip, NAND_FLASH_CMD, val: cmd);
841 nandc_set_reg(chip, NAND_DEV0_CFG0, val: cfg0);
842 nandc_set_reg(chip, NAND_DEV0_CFG1, val: cfg1);
843 nandc_set_reg(chip, NAND_DEV0_ECC_CFG, val: ecc_bch_cfg);
844 if (!nandc->props->qpic_v2)
845 nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, val: host->ecc_buf_cfg);
846 nandc_set_reg(chip, NAND_FLASH_STATUS, val: host->clrflashstatus);
847 nandc_set_reg(chip, NAND_READ_STATUS, val: host->clrreadstatus);
848 nandc_set_reg(chip, NAND_EXEC_CMD, val: 1);
849
850 if (read)
851 nandc_set_read_loc(chip, cw, reg: 0, cw_offset: 0, read_size: host->use_ecc ?
852 host->cw_data : host->cw_size, is_last_read_loc: 1);
853}
854
855/*
856 * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
857 * for BAM. This descriptor will be added in the NAND DMA descriptor queue
858 * which will be submitted to DMA engine.
859 */
860static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
861 struct dma_chan *chan,
862 unsigned long flags)
863{
864 struct desc_info *desc;
865 struct scatterlist *sgl;
866 unsigned int sgl_cnt;
867 int ret;
868 struct bam_transaction *bam_txn = nandc->bam_txn;
869 enum dma_transfer_direction dir_eng;
870 struct dma_async_tx_descriptor *dma_desc;
871
872 desc = kzalloc(size: sizeof(*desc), GFP_KERNEL);
873 if (!desc)
874 return -ENOMEM;
875
876 if (chan == nandc->cmd_chan) {
877 sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
878 sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
879 bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
880 dir_eng = DMA_MEM_TO_DEV;
881 desc->dir = DMA_TO_DEVICE;
882 } else if (chan == nandc->tx_chan) {
883 sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
884 sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
885 bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
886 dir_eng = DMA_MEM_TO_DEV;
887 desc->dir = DMA_TO_DEVICE;
888 } else {
889 sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
890 sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
891 bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
892 dir_eng = DMA_DEV_TO_MEM;
893 desc->dir = DMA_FROM_DEVICE;
894 }
895
896 sg_mark_end(sg: sgl + sgl_cnt - 1);
897 ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
898 if (ret == 0) {
899 dev_err(nandc->dev, "failure in mapping desc\n");
900 kfree(objp: desc);
901 return -ENOMEM;
902 }
903
904 desc->sgl_cnt = sgl_cnt;
905 desc->bam_sgl = sgl;
906
907 dma_desc = dmaengine_prep_slave_sg(chan, sgl, sg_len: sgl_cnt, dir: dir_eng,
908 flags);
909
910 if (!dma_desc) {
911 dev_err(nandc->dev, "failure in prep desc\n");
912 dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
913 kfree(objp: desc);
914 return -EINVAL;
915 }
916
917 desc->dma_desc = dma_desc;
918
919 /* update last data/command descriptor */
920 if (chan == nandc->cmd_chan)
921 bam_txn->last_cmd_desc = dma_desc;
922 else
923 bam_txn->last_data_desc = dma_desc;
924
925 list_add_tail(new: &desc->node, head: &nandc->desc_list);
926
927 return 0;
928}
929
930/*
931 * Prepares the command descriptor for BAM DMA which will be used for NAND
932 * register reads and writes. The command descriptor requires the command
933 * to be formed in command element type so this function uses the command
934 * element from bam transaction ce array and fills the same with required
935 * data. A single SGL can contain multiple command elements so
936 * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
937 * after the current command element.
938 */
939static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
940 int reg_off, const void *vaddr,
941 int size, unsigned int flags)
942{
943 int bam_ce_size;
944 int i, ret;
945 struct bam_cmd_element *bam_ce_buffer;
946 struct bam_transaction *bam_txn = nandc->bam_txn;
947
948 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
949
950 /* fill the command desc */
951 for (i = 0; i < size; i++) {
952 if (read)
953 bam_prep_ce(bam_ce: &bam_ce_buffer[i],
954 nandc_reg_phys(nandc, reg_off + 4 * i),
955 cmd: BAM_READ_COMMAND,
956 reg_buf_dma_addr(nandc,
957 (__le32 *)vaddr + i));
958 else
959 bam_prep_ce_le32(bam_ce: &bam_ce_buffer[i],
960 nandc_reg_phys(nandc, reg_off + 4 * i),
961 cmd: BAM_WRITE_COMMAND,
962 data: *((__le32 *)vaddr + i));
963 }
964
965 bam_txn->bam_ce_pos += size;
966
967 /* use the separate sgl after this command */
968 if (flags & NAND_BAM_NEXT_SGL) {
969 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
970 bam_ce_size = (bam_txn->bam_ce_pos -
971 bam_txn->bam_ce_start) *
972 sizeof(struct bam_cmd_element);
973 sg_set_buf(sg: &bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
974 buf: bam_ce_buffer, buflen: bam_ce_size);
975 bam_txn->cmd_sgl_pos++;
976 bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
977
978 if (flags & NAND_BAM_NWD) {
979 ret = prepare_bam_async_desc(nandc, chan: nandc->cmd_chan,
980 flags: DMA_PREP_FENCE |
981 DMA_PREP_CMD);
982 if (ret)
983 return ret;
984 }
985 }
986
987 return 0;
988}
989
990/*
991 * Prepares the data descriptor for BAM DMA which will be used for NAND
992 * data reads and writes.
993 */
994static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
995 const void *vaddr,
996 int size, unsigned int flags)
997{
998 int ret;
999 struct bam_transaction *bam_txn = nandc->bam_txn;
1000
1001 if (read) {
1002 sg_set_buf(sg: &bam_txn->data_sgl[bam_txn->rx_sgl_pos],
1003 buf: vaddr, buflen: size);
1004 bam_txn->rx_sgl_pos++;
1005 } else {
1006 sg_set_buf(sg: &bam_txn->data_sgl[bam_txn->tx_sgl_pos],
1007 buf: vaddr, buflen: size);
1008 bam_txn->tx_sgl_pos++;
1009
1010 /*
1011 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
1012 * is not set, form the DMA descriptor
1013 */
1014 if (!(flags & NAND_BAM_NO_EOT)) {
1015 ret = prepare_bam_async_desc(nandc, chan: nandc->tx_chan,
1016 flags: DMA_PREP_INTERRUPT);
1017 if (ret)
1018 return ret;
1019 }
1020 }
1021
1022 return 0;
1023}
1024
1025static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
1026 int reg_off, const void *vaddr, int size,
1027 bool flow_control)
1028{
1029 struct desc_info *desc;
1030 struct dma_async_tx_descriptor *dma_desc;
1031 struct scatterlist *sgl;
1032 struct dma_slave_config slave_conf;
1033 struct qcom_adm_peripheral_config periph_conf = {};
1034 enum dma_transfer_direction dir_eng;
1035 int ret;
1036
1037 desc = kzalloc(size: sizeof(*desc), GFP_KERNEL);
1038 if (!desc)
1039 return -ENOMEM;
1040
1041 sgl = &desc->adm_sgl;
1042
1043 sg_init_one(sgl, vaddr, size);
1044
1045 if (read) {
1046 dir_eng = DMA_DEV_TO_MEM;
1047 desc->dir = DMA_FROM_DEVICE;
1048 } else {
1049 dir_eng = DMA_MEM_TO_DEV;
1050 desc->dir = DMA_TO_DEVICE;
1051 }
1052
1053 ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
1054 if (ret == 0) {
1055 ret = -ENOMEM;
1056 goto err;
1057 }
1058
1059 memset(&slave_conf, 0x00, sizeof(slave_conf));
1060
1061 slave_conf.device_fc = flow_control;
1062 if (read) {
1063 slave_conf.src_maxburst = 16;
1064 slave_conf.src_addr = nandc->base_dma + reg_off;
1065 if (nandc->data_crci) {
1066 periph_conf.crci = nandc->data_crci;
1067 slave_conf.peripheral_config = &periph_conf;
1068 slave_conf.peripheral_size = sizeof(periph_conf);
1069 }
1070 } else {
1071 slave_conf.dst_maxburst = 16;
1072 slave_conf.dst_addr = nandc->base_dma + reg_off;
1073 if (nandc->cmd_crci) {
1074 periph_conf.crci = nandc->cmd_crci;
1075 slave_conf.peripheral_config = &periph_conf;
1076 slave_conf.peripheral_size = sizeof(periph_conf);
1077 }
1078 }
1079
1080 ret = dmaengine_slave_config(chan: nandc->chan, config: &slave_conf);
1081 if (ret) {
1082 dev_err(nandc->dev, "failed to configure dma channel\n");
1083 goto err;
1084 }
1085
1086 dma_desc = dmaengine_prep_slave_sg(chan: nandc->chan, sgl, sg_len: 1, dir: dir_eng, flags: 0);
1087 if (!dma_desc) {
1088 dev_err(nandc->dev, "failed to prepare desc\n");
1089 ret = -EINVAL;
1090 goto err;
1091 }
1092
1093 desc->dma_desc = dma_desc;
1094
1095 list_add_tail(new: &desc->node, head: &nandc->desc_list);
1096
1097 return 0;
1098err:
1099 kfree(objp: desc);
1100
1101 return ret;
1102}
1103
1104/*
1105 * read_reg_dma: prepares a descriptor to read a given number of
1106 * contiguous registers to the reg_read_buf pointer
1107 *
1108 * @first: offset of the first register in the contiguous block
1109 * @num_regs: number of registers to read
1110 * @flags: flags to control DMA descriptor preparation
1111 */
1112static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
1113 int num_regs, unsigned int flags)
1114{
1115 bool flow_control = false;
1116 void *vaddr;
1117
1118 vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
1119 nandc->reg_read_pos += num_regs;
1120
1121 if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
1122 first = dev_cmd_reg_addr(nandc, first);
1123
1124 if (nandc->props->is_bam)
1125 return prep_bam_dma_desc_cmd(nandc, read: true, reg_off: first, vaddr,
1126 size: num_regs, flags);
1127
1128 if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
1129 flow_control = true;
1130
1131 return prep_adm_dma_desc(nandc, read: true, reg_off: first, vaddr,
1132 size: num_regs * sizeof(u32), flow_control);
1133}
1134
1135/*
1136 * write_reg_dma: prepares a descriptor to write a given number of
1137 * contiguous registers
1138 *
1139 * @first: offset of the first register in the contiguous block
1140 * @num_regs: number of registers to write
1141 * @flags: flags to control DMA descriptor preparation
1142 */
1143static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1144 int num_regs, unsigned int flags)
1145{
1146 bool flow_control = false;
1147 struct nandc_regs *regs = nandc->regs;
1148 void *vaddr;
1149
1150 vaddr = offset_to_nandc_reg(regs, offset: first);
1151
1152 if (first == NAND_ERASED_CW_DETECT_CFG) {
1153 if (flags & NAND_ERASED_CW_SET)
1154 vaddr = &regs->erased_cw_detect_cfg_set;
1155 else
1156 vaddr = &regs->erased_cw_detect_cfg_clr;
1157 }
1158
1159 if (first == NAND_EXEC_CMD)
1160 flags |= NAND_BAM_NWD;
1161
1162 if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1163 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1164
1165 if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1166 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1167
1168 if (nandc->props->is_bam)
1169 return prep_bam_dma_desc_cmd(nandc, read: false, reg_off: first, vaddr,
1170 size: num_regs, flags);
1171
1172 if (first == NAND_FLASH_CMD)
1173 flow_control = true;
1174
1175 return prep_adm_dma_desc(nandc, read: false, reg_off: first, vaddr,
1176 size: num_regs * sizeof(u32), flow_control);
1177}
1178
1179/*
1180 * read_data_dma: prepares a DMA descriptor to transfer data from the
1181 * controller's internal buffer to the buffer 'vaddr'
1182 *
1183 * @reg_off: offset within the controller's data buffer
1184 * @vaddr: virtual address of the buffer we want to write to
1185 * @size: DMA transaction size in bytes
1186 * @flags: flags to control DMA descriptor preparation
1187 */
1188static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1189 const u8 *vaddr, int size, unsigned int flags)
1190{
1191 if (nandc->props->is_bam)
1192 return prep_bam_dma_desc_data(nandc, read: true, vaddr, size, flags);
1193
1194 return prep_adm_dma_desc(nandc, read: true, reg_off, vaddr, size, flow_control: false);
1195}
1196
1197/*
1198 * write_data_dma: prepares a DMA descriptor to transfer data from
1199 * 'vaddr' to the controller's internal buffer
1200 *
1201 * @reg_off: offset within the controller's data buffer
1202 * @vaddr: virtual address of the buffer we want to read from
1203 * @size: DMA transaction size in bytes
1204 * @flags: flags to control DMA descriptor preparation
1205 */
1206static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1207 const u8 *vaddr, int size, unsigned int flags)
1208{
1209 if (nandc->props->is_bam)
1210 return prep_bam_dma_desc_data(nandc, read: false, vaddr, size, flags);
1211
1212 return prep_adm_dma_desc(nandc, read: false, reg_off, vaddr, size, flow_control: false);
1213}
1214
1215/*
1216 * Helper to prepare DMA descriptors for configuring registers
1217 * before reading a NAND page.
1218 */
1219static void config_nand_page_read(struct nand_chip *chip)
1220{
1221 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1222
1223 write_reg_dma(nandc, NAND_ADDR0, num_regs: 2, flags: 0);
1224 write_reg_dma(nandc, NAND_DEV0_CFG0, num_regs: 3, flags: 0);
1225 if (!nandc->props->qpic_v2)
1226 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, num_regs: 1, flags: 0);
1227 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, num_regs: 1, flags: 0);
1228 write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, num_regs: 1,
1229 NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1230}
1231
1232/*
1233 * Helper to prepare DMA descriptors for configuring registers
1234 * before reading each codeword in NAND page.
1235 */
1236static void
1237config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw)
1238{
1239 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1240 struct nand_ecc_ctrl *ecc = &chip->ecc;
1241
1242 int reg = NAND_READ_LOCATION_0;
1243
1244 if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw))
1245 reg = NAND_READ_LOCATION_LAST_CW_0;
1246
1247 if (nandc->props->is_bam)
1248 write_reg_dma(nandc, first: reg, num_regs: 4, NAND_BAM_NEXT_SGL);
1249
1250 write_reg_dma(nandc, NAND_FLASH_CMD, num_regs: 1, NAND_BAM_NEXT_SGL);
1251 write_reg_dma(nandc, NAND_EXEC_CMD, num_regs: 1, NAND_BAM_NEXT_SGL);
1252
1253 if (use_ecc) {
1254 read_reg_dma(nandc, NAND_FLASH_STATUS, num_regs: 2, flags: 0);
1255 read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, num_regs: 1,
1256 NAND_BAM_NEXT_SGL);
1257 } else {
1258 read_reg_dma(nandc, NAND_FLASH_STATUS, num_regs: 1, NAND_BAM_NEXT_SGL);
1259 }
1260}
1261
1262/*
1263 * Helper to prepare dma descriptors to configure registers needed for reading a
1264 * single codeword in page
1265 */
1266static void
1267config_nand_single_cw_page_read(struct nand_chip *chip,
1268 bool use_ecc, int cw)
1269{
1270 config_nand_page_read(chip);
1271 config_nand_cw_read(chip, use_ecc, cw);
1272}
1273
1274/*
1275 * Helper to prepare DMA descriptors used to configure registers needed for
1276 * before writing a NAND page.
1277 */
1278static void config_nand_page_write(struct nand_chip *chip)
1279{
1280 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1281
1282 write_reg_dma(nandc, NAND_ADDR0, num_regs: 2, flags: 0);
1283 write_reg_dma(nandc, NAND_DEV0_CFG0, num_regs: 3, flags: 0);
1284 if (!nandc->props->qpic_v2)
1285 write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, num_regs: 1,
1286 NAND_BAM_NEXT_SGL);
1287}
1288
1289/*
1290 * Helper to prepare DMA descriptors for configuring registers
1291 * before writing each codeword in NAND page.
1292 */
1293static void config_nand_cw_write(struct nand_chip *chip)
1294{
1295 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1296
1297 write_reg_dma(nandc, NAND_FLASH_CMD, num_regs: 1, NAND_BAM_NEXT_SGL);
1298 write_reg_dma(nandc, NAND_EXEC_CMD, num_regs: 1, NAND_BAM_NEXT_SGL);
1299
1300 read_reg_dma(nandc, NAND_FLASH_STATUS, num_regs: 1, NAND_BAM_NEXT_SGL);
1301
1302 write_reg_dma(nandc, NAND_FLASH_STATUS, num_regs: 1, flags: 0);
1303 write_reg_dma(nandc, NAND_READ_STATUS, num_regs: 1, NAND_BAM_NEXT_SGL);
1304}
1305
1306/* helpers to submit/free our list of dma descriptors */
1307static int submit_descs(struct qcom_nand_controller *nandc)
1308{
1309 struct desc_info *desc, *n;
1310 dma_cookie_t cookie = 0;
1311 struct bam_transaction *bam_txn = nandc->bam_txn;
1312 int ret = 0;
1313
1314 if (nandc->props->is_bam) {
1315 if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1316 ret = prepare_bam_async_desc(nandc, chan: nandc->rx_chan, flags: 0);
1317 if (ret)
1318 goto err_unmap_free_desc;
1319 }
1320
1321 if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1322 ret = prepare_bam_async_desc(nandc, chan: nandc->tx_chan,
1323 flags: DMA_PREP_INTERRUPT);
1324 if (ret)
1325 goto err_unmap_free_desc;
1326 }
1327
1328 if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1329 ret = prepare_bam_async_desc(nandc, chan: nandc->cmd_chan,
1330 flags: DMA_PREP_CMD);
1331 if (ret)
1332 goto err_unmap_free_desc;
1333 }
1334 }
1335
1336 list_for_each_entry(desc, &nandc->desc_list, node)
1337 cookie = dmaengine_submit(desc: desc->dma_desc);
1338
1339 if (nandc->props->is_bam) {
1340 bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1341 bam_txn->last_cmd_desc->callback_param = bam_txn;
1342 if (bam_txn->last_data_desc) {
1343 bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1344 bam_txn->last_data_desc->callback_param = bam_txn;
1345 bam_txn->wait_second_completion = true;
1346 }
1347
1348 dma_async_issue_pending(chan: nandc->tx_chan);
1349 dma_async_issue_pending(chan: nandc->rx_chan);
1350 dma_async_issue_pending(chan: nandc->cmd_chan);
1351
1352 if (!wait_for_completion_timeout(x: &bam_txn->txn_done,
1353 QPIC_NAND_COMPLETION_TIMEOUT))
1354 ret = -ETIMEDOUT;
1355 } else {
1356 if (dma_sync_wait(chan: nandc->chan, cookie) != DMA_COMPLETE)
1357 ret = -ETIMEDOUT;
1358 }
1359
1360err_unmap_free_desc:
1361 /*
1362 * Unmap the dma sg_list and free the desc allocated by both
1363 * prepare_bam_async_desc() and prep_adm_dma_desc() functions.
1364 */
1365 list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1366 list_del(entry: &desc->node);
1367
1368 if (nandc->props->is_bam)
1369 dma_unmap_sg(nandc->dev, desc->bam_sgl,
1370 desc->sgl_cnt, desc->dir);
1371 else
1372 dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1373 desc->dir);
1374
1375 kfree(objp: desc);
1376 }
1377
1378 return ret;
1379}
1380
1381/* reset the register read buffer for next NAND operation */
1382static void clear_read_regs(struct qcom_nand_controller *nandc)
1383{
1384 nandc->reg_read_pos = 0;
1385 nandc_read_buffer_sync(nandc, is_cpu: false);
1386}
1387
1388/*
1389 * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1390 * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1391 *
1392 * when using RS ECC, the HW reports the same erros when reading an erased CW,
1393 * but it notifies that it is an erased CW by placing special characters at
1394 * certain offsets in the buffer.
1395 *
1396 * verify if the page is erased or not, and fix up the page for RS ECC by
1397 * replacing the special characters with 0xff.
1398 */
1399static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1400{
1401 u8 empty1, empty2;
1402
1403 /*
1404 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1405 * is erased by looking for 0x54s at offsets 3 and 175 from the
1406 * beginning of each codeword
1407 */
1408
1409 empty1 = data_buf[3];
1410 empty2 = data_buf[175];
1411
1412 /*
1413 * if the erased codework markers, if they exist override them with
1414 * 0xffs
1415 */
1416 if ((empty1 == 0x54 && empty2 == 0xff) ||
1417 (empty1 == 0xff && empty2 == 0x54)) {
1418 data_buf[3] = 0xff;
1419 data_buf[175] = 0xff;
1420 }
1421
1422 /*
1423 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1424 * restore the original values at the special offsets
1425 */
1426 if (memchr_inv(p: data_buf, c: 0xff, size: data_len)) {
1427 data_buf[3] = empty1;
1428 data_buf[175] = empty2;
1429
1430 return false;
1431 }
1432
1433 return true;
1434}
1435
1436struct read_stats {
1437 __le32 flash;
1438 __le32 buffer;
1439 __le32 erased_cw;
1440};
1441
1442/* reads back FLASH_STATUS register set by the controller */
1443static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1444{
1445 struct nand_chip *chip = &host->chip;
1446 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1447 int i;
1448
1449 nandc_read_buffer_sync(nandc, is_cpu: true);
1450
1451 for (i = 0; i < cw_cnt; i++) {
1452 u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1453
1454 if (flash & (FS_OP_ERR | FS_MPU_ERR))
1455 return -EIO;
1456 }
1457
1458 return 0;
1459}
1460
1461/* performs raw read for one codeword */
1462static int
1463qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1464 u8 *data_buf, u8 *oob_buf, int page, int cw)
1465{
1466 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1467 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1468 struct nand_ecc_ctrl *ecc = &chip->ecc;
1469 int data_size1, data_size2, oob_size1, oob_size2;
1470 int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1471 int raw_cw = cw;
1472
1473 nand_read_page_op(chip, page, offset_in_page: 0, NULL, len: 0);
1474 nandc->buf_count = 0;
1475 nandc->buf_start = 0;
1476 clear_read_regs(nandc);
1477 host->use_ecc = false;
1478
1479 if (nandc->props->qpic_v2)
1480 raw_cw = ecc->steps - 1;
1481
1482 clear_bam_transaction(nandc);
1483 set_address(host, column: host->cw_size * cw, page);
1484 update_rw_regs(host, num_cw: 1, read: true, cw: raw_cw);
1485 config_nand_page_read(chip);
1486
1487 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1488 oob_size1 = host->bbm_size;
1489
1490 if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) {
1491 data_size2 = ecc->size - data_size1 -
1492 ((ecc->steps - 1) * 4);
1493 oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1494 host->spare_bytes;
1495 } else {
1496 data_size2 = host->cw_data - data_size1;
1497 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1498 }
1499
1500 if (nandc->props->is_bam) {
1501 nandc_set_read_loc(chip, cw, reg: 0, cw_offset: read_loc, read_size: data_size1, is_last_read_loc: 0);
1502 read_loc += data_size1;
1503
1504 nandc_set_read_loc(chip, cw, reg: 1, cw_offset: read_loc, read_size: oob_size1, is_last_read_loc: 0);
1505 read_loc += oob_size1;
1506
1507 nandc_set_read_loc(chip, cw, reg: 2, cw_offset: read_loc, read_size: data_size2, is_last_read_loc: 0);
1508 read_loc += data_size2;
1509
1510 nandc_set_read_loc(chip, cw, reg: 3, cw_offset: read_loc, read_size: oob_size2, is_last_read_loc: 1);
1511 }
1512
1513 config_nand_cw_read(chip, use_ecc: false, cw: raw_cw);
1514
1515 read_data_dma(nandc, reg_off, vaddr: data_buf, size: data_size1, flags: 0);
1516 reg_off += data_size1;
1517
1518 read_data_dma(nandc, reg_off, vaddr: oob_buf, size: oob_size1, flags: 0);
1519 reg_off += oob_size1;
1520
1521 read_data_dma(nandc, reg_off, vaddr: data_buf + data_size1, size: data_size2, flags: 0);
1522 reg_off += data_size2;
1523
1524 read_data_dma(nandc, reg_off, vaddr: oob_buf + oob_size1, size: oob_size2, flags: 0);
1525
1526 ret = submit_descs(nandc);
1527 if (ret) {
1528 dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1529 return ret;
1530 }
1531
1532 return check_flash_errors(host, cw_cnt: 1);
1533}
1534
1535/*
1536 * Bitflips can happen in erased codewords also so this function counts the
1537 * number of 0 in each CW for which ECC engine returns the uncorrectable
1538 * error. The page will be assumed as erased if this count is less than or
1539 * equal to the ecc->strength for each CW.
1540 *
1541 * 1. Both DATA and OOB need to be checked for number of 0. The
1542 * top-level API can be called with only data buf or OOB buf so use
1543 * chip->data_buf if data buf is null and chip->oob_poi if oob buf
1544 * is null for copying the raw bytes.
1545 * 2. Perform raw read for all the CW which has uncorrectable errors.
1546 * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1547 * The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1548 * the number of bitflips in this area.
1549 */
1550static int
1551check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1552 u8 *oob_buf, unsigned long uncorrectable_cws,
1553 int page, unsigned int max_bitflips)
1554{
1555 struct nand_chip *chip = &host->chip;
1556 struct mtd_info *mtd = nand_to_mtd(chip);
1557 struct nand_ecc_ctrl *ecc = &chip->ecc;
1558 u8 *cw_data_buf, *cw_oob_buf;
1559 int cw, data_size, oob_size, ret;
1560
1561 if (!data_buf)
1562 data_buf = nand_get_data_buf(chip);
1563
1564 if (!oob_buf) {
1565 nand_get_data_buf(chip);
1566 oob_buf = chip->oob_poi;
1567 }
1568
1569 for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1570 if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) {
1571 data_size = ecc->size - ((ecc->steps - 1) * 4);
1572 oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1573 } else {
1574 data_size = host->cw_data;
1575 oob_size = host->ecc_bytes_hw;
1576 }
1577
1578 /* determine starting buffer address for current CW */
1579 cw_data_buf = data_buf + (cw * host->cw_data);
1580 cw_oob_buf = oob_buf + (cw * ecc->bytes);
1581
1582 ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf: cw_data_buf,
1583 oob_buf: cw_oob_buf, page, cw);
1584 if (ret)
1585 return ret;
1586
1587 /*
1588 * make sure it isn't an erased page reported
1589 * as not-erased by HW because of a few bitflips
1590 */
1591 ret = nand_check_erased_ecc_chunk(data: cw_data_buf, datalen: data_size,
1592 ecc: cw_oob_buf + host->bbm_size,
1593 ecclen: oob_size, NULL,
1594 extraooblen: 0, threshold: ecc->strength);
1595 if (ret < 0) {
1596 mtd->ecc_stats.failed++;
1597 } else {
1598 mtd->ecc_stats.corrected += ret;
1599 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1600 }
1601 }
1602
1603 return max_bitflips;
1604}
1605
1606/*
1607 * reads back status registers set by the controller to notify page read
1608 * errors. this is equivalent to what 'ecc->correct()' would do.
1609 */
1610static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1611 u8 *oob_buf, int page)
1612{
1613 struct nand_chip *chip = &host->chip;
1614 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1615 struct mtd_info *mtd = nand_to_mtd(chip);
1616 struct nand_ecc_ctrl *ecc = &chip->ecc;
1617 unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1618 struct read_stats *buf;
1619 bool flash_op_err = false, erased;
1620 int i;
1621 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1622
1623 buf = (struct read_stats *)nandc->reg_read_buf;
1624 nandc_read_buffer_sync(nandc, is_cpu: true);
1625
1626 for (i = 0; i < ecc->steps; i++, buf++) {
1627 u32 flash, buffer, erased_cw;
1628 int data_len, oob_len;
1629
1630 if (qcom_nandc_is_last_cw(ecc, cw: i)) {
1631 data_len = ecc->size - ((ecc->steps - 1) << 2);
1632 oob_len = ecc->steps << 2;
1633 } else {
1634 data_len = host->cw_data;
1635 oob_len = 0;
1636 }
1637
1638 flash = le32_to_cpu(buf->flash);
1639 buffer = le32_to_cpu(buf->buffer);
1640 erased_cw = le32_to_cpu(buf->erased_cw);
1641
1642 /*
1643 * Check ECC failure for each codeword. ECC failure can
1644 * happen in either of the following conditions
1645 * 1. If number of bitflips are greater than ECC engine
1646 * capability.
1647 * 2. If this codeword contains all 0xff for which erased
1648 * codeword detection check will be done.
1649 */
1650 if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1651 /*
1652 * For BCH ECC, ignore erased codeword errors, if
1653 * ERASED_CW bits are set.
1654 */
1655 if (host->bch_enabled) {
1656 erased = (erased_cw & ERASED_CW) == ERASED_CW;
1657 /*
1658 * For RS ECC, HW reports the erased CW by placing
1659 * special characters at certain offsets in the buffer.
1660 * These special characters will be valid only if
1661 * complete page is read i.e. data_buf is not NULL.
1662 */
1663 } else if (data_buf) {
1664 erased = erased_chunk_check_and_fixup(data_buf,
1665 data_len);
1666 } else {
1667 erased = false;
1668 }
1669
1670 if (!erased)
1671 uncorrectable_cws |= BIT(i);
1672 /*
1673 * Check if MPU or any other operational error (timeout,
1674 * device failure, etc.) happened for this codeword and
1675 * make flash_op_err true. If flash_op_err is set, then
1676 * EIO will be returned for page read.
1677 */
1678 } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1679 flash_op_err = true;
1680 /*
1681 * No ECC or operational errors happened. Check the number of
1682 * bits corrected and update the ecc_stats.corrected.
1683 */
1684 } else {
1685 unsigned int stat;
1686
1687 stat = buffer & BS_CORRECTABLE_ERR_MSK;
1688 mtd->ecc_stats.corrected += stat;
1689 max_bitflips = max(max_bitflips, stat);
1690 }
1691
1692 if (data_buf)
1693 data_buf += data_len;
1694 if (oob_buf)
1695 oob_buf += oob_len + ecc->bytes;
1696 }
1697
1698 if (flash_op_err)
1699 return -EIO;
1700
1701 if (!uncorrectable_cws)
1702 return max_bitflips;
1703
1704 return check_for_erased_page(host, data_buf: data_buf_start, oob_buf: oob_buf_start,
1705 uncorrectable_cws, page,
1706 max_bitflips);
1707}
1708
1709/*
1710 * helper to perform the actual page read operation, used by ecc->read_page(),
1711 * ecc->read_oob()
1712 */
1713static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1714 u8 *oob_buf, int page)
1715{
1716 struct nand_chip *chip = &host->chip;
1717 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1718 struct nand_ecc_ctrl *ecc = &chip->ecc;
1719 u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1720 int i, ret;
1721
1722 config_nand_page_read(chip);
1723
1724 /* queue cmd descs for each codeword */
1725 for (i = 0; i < ecc->steps; i++) {
1726 int data_size, oob_size;
1727
1728 if (qcom_nandc_is_last_cw(ecc, cw: i) && !host->codeword_fixup) {
1729 data_size = ecc->size - ((ecc->steps - 1) << 2);
1730 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1731 host->spare_bytes;
1732 } else {
1733 data_size = host->cw_data;
1734 oob_size = host->ecc_bytes_hw + host->spare_bytes;
1735 }
1736
1737 if (nandc->props->is_bam) {
1738 if (data_buf && oob_buf) {
1739 nandc_set_read_loc(chip, cw: i, reg: 0, cw_offset: 0, read_size: data_size, is_last_read_loc: 0);
1740 nandc_set_read_loc(chip, cw: i, reg: 1, cw_offset: data_size,
1741 read_size: oob_size, is_last_read_loc: 1);
1742 } else if (data_buf) {
1743 nandc_set_read_loc(chip, cw: i, reg: 0, cw_offset: 0, read_size: data_size, is_last_read_loc: 1);
1744 } else {
1745 nandc_set_read_loc(chip, cw: i, reg: 0, cw_offset: data_size,
1746 read_size: oob_size, is_last_read_loc: 1);
1747 }
1748 }
1749
1750 config_nand_cw_read(chip, use_ecc: true, cw: i);
1751
1752 if (data_buf)
1753 read_data_dma(nandc, FLASH_BUF_ACC, vaddr: data_buf,
1754 size: data_size, flags: 0);
1755
1756 /*
1757 * when ecc is enabled, the controller doesn't read the real
1758 * or dummy bad block markers in each chunk. To maintain a
1759 * consistent layout across RAW and ECC reads, we just
1760 * leave the real/dummy BBM offsets empty (i.e, filled with
1761 * 0xffs)
1762 */
1763 if (oob_buf) {
1764 int j;
1765
1766 for (j = 0; j < host->bbm_size; j++)
1767 *oob_buf++ = 0xff;
1768
1769 read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1770 vaddr: oob_buf, size: oob_size, flags: 0);
1771 }
1772
1773 if (data_buf)
1774 data_buf += data_size;
1775 if (oob_buf)
1776 oob_buf += oob_size;
1777 }
1778
1779 ret = submit_descs(nandc);
1780 if (ret) {
1781 dev_err(nandc->dev, "failure to read page/oob\n");
1782 return ret;
1783 }
1784
1785 return parse_read_errors(host, data_buf: data_buf_start, oob_buf: oob_buf_start, page);
1786}
1787
1788/*
1789 * a helper that copies the last step/codeword of a page (containing free oob)
1790 * into our local buffer
1791 */
1792static int copy_last_cw(struct qcom_nand_host *host, int page)
1793{
1794 struct nand_chip *chip = &host->chip;
1795 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1796 struct nand_ecc_ctrl *ecc = &chip->ecc;
1797 int size;
1798 int ret;
1799
1800 clear_read_regs(nandc);
1801
1802 size = host->use_ecc ? host->cw_data : host->cw_size;
1803
1804 /* prepare a clean read buffer */
1805 memset(nandc->data_buffer, 0xff, size);
1806
1807 set_address(host, column: host->cw_size * (ecc->steps - 1), page);
1808 update_rw_regs(host, num_cw: 1, read: true, cw: ecc->steps - 1);
1809
1810 config_nand_single_cw_page_read(chip, use_ecc: host->use_ecc, cw: ecc->steps - 1);
1811
1812 read_data_dma(nandc, FLASH_BUF_ACC, vaddr: nandc->data_buffer, size, flags: 0);
1813
1814 ret = submit_descs(nandc);
1815 if (ret)
1816 dev_err(nandc->dev, "failed to copy last codeword\n");
1817
1818 return ret;
1819}
1820
1821static bool qcom_nandc_is_boot_partition(struct qcom_nand_host *host, int page)
1822{
1823 struct qcom_nand_boot_partition *boot_partition;
1824 u32 start, end;
1825 int i;
1826
1827 /*
1828 * Since the frequent access will be to the non-boot partitions like rootfs,
1829 * optimize the page check by:
1830 *
1831 * 1. Checking if the page lies after the last boot partition.
1832 * 2. Checking from the boot partition end.
1833 */
1834
1835 /* First check the last boot partition */
1836 boot_partition = &host->boot_partitions[host->nr_boot_partitions - 1];
1837 start = boot_partition->page_offset;
1838 end = start + boot_partition->page_size;
1839
1840 /* Page is after the last boot partition end. This is NOT a boot partition */
1841 if (page > end)
1842 return false;
1843
1844 /* Actually check if it's a boot partition */
1845 if (page < end && page >= start)
1846 return true;
1847
1848 /* Check the other boot partitions starting from the second-last partition */
1849 for (i = host->nr_boot_partitions - 2; i >= 0; i--) {
1850 boot_partition = &host->boot_partitions[i];
1851 start = boot_partition->page_offset;
1852 end = start + boot_partition->page_size;
1853
1854 if (page < end && page >= start)
1855 return true;
1856 }
1857
1858 return false;
1859}
1860
1861static void qcom_nandc_codeword_fixup(struct qcom_nand_host *host, int page)
1862{
1863 bool codeword_fixup = qcom_nandc_is_boot_partition(host, page);
1864
1865 /* Skip conf write if we are already in the correct mode */
1866 if (codeword_fixup == host->codeword_fixup)
1867 return;
1868
1869 host->codeword_fixup = codeword_fixup;
1870
1871 host->cw_data = codeword_fixup ? 512 : 516;
1872 host->spare_bytes = host->cw_size - host->ecc_bytes_hw -
1873 host->bbm_size - host->cw_data;
1874
1875 host->cfg0 &= ~(SPARE_SIZE_BYTES_MASK | UD_SIZE_BYTES_MASK);
1876 host->cfg0 |= host->spare_bytes << SPARE_SIZE_BYTES |
1877 host->cw_data << UD_SIZE_BYTES;
1878
1879 host->ecc_bch_cfg &= ~ECC_NUM_DATA_BYTES_MASK;
1880 host->ecc_bch_cfg |= host->cw_data << ECC_NUM_DATA_BYTES;
1881 host->ecc_buf_cfg = (host->cw_data - 1) << NUM_STEPS;
1882}
1883
1884/* implements ecc->read_page() */
1885static int qcom_nandc_read_page(struct nand_chip *chip, u8 *buf,
1886 int oob_required, int page)
1887{
1888 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1889 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1890 struct nand_ecc_ctrl *ecc = &chip->ecc;
1891 u8 *data_buf, *oob_buf = NULL;
1892
1893 if (host->nr_boot_partitions)
1894 qcom_nandc_codeword_fixup(host, page);
1895
1896 nand_read_page_op(chip, page, offset_in_page: 0, NULL, len: 0);
1897 nandc->buf_count = 0;
1898 nandc->buf_start = 0;
1899 host->use_ecc = true;
1900 clear_read_regs(nandc);
1901 set_address(host, column: 0, page);
1902 update_rw_regs(host, num_cw: ecc->steps, read: true, cw: 0);
1903
1904 data_buf = buf;
1905 oob_buf = oob_required ? chip->oob_poi : NULL;
1906
1907 clear_bam_transaction(nandc);
1908
1909 return read_page_ecc(host, data_buf, oob_buf, page);
1910}
1911
1912/* implements ecc->read_page_raw() */
1913static int qcom_nandc_read_page_raw(struct nand_chip *chip, u8 *buf,
1914 int oob_required, int page)
1915{
1916 struct mtd_info *mtd = nand_to_mtd(chip);
1917 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1918 struct nand_ecc_ctrl *ecc = &chip->ecc;
1919 int cw, ret;
1920 u8 *data_buf = buf, *oob_buf = chip->oob_poi;
1921
1922 if (host->nr_boot_partitions)
1923 qcom_nandc_codeword_fixup(host, page);
1924
1925 for (cw = 0; cw < ecc->steps; cw++) {
1926 ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
1927 page, cw);
1928 if (ret)
1929 return ret;
1930
1931 data_buf += host->cw_data;
1932 oob_buf += ecc->bytes;
1933 }
1934
1935 return 0;
1936}
1937
1938/* implements ecc->read_oob() */
1939static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
1940{
1941 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1942 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1943 struct nand_ecc_ctrl *ecc = &chip->ecc;
1944
1945 if (host->nr_boot_partitions)
1946 qcom_nandc_codeword_fixup(host, page);
1947
1948 clear_read_regs(nandc);
1949 clear_bam_transaction(nandc);
1950
1951 host->use_ecc = true;
1952 set_address(host, column: 0, page);
1953 update_rw_regs(host, num_cw: ecc->steps, read: true, cw: 0);
1954
1955 return read_page_ecc(host, NULL, oob_buf: chip->oob_poi, page);
1956}
1957
1958/* implements ecc->write_page() */
1959static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf,
1960 int oob_required, int page)
1961{
1962 struct qcom_nand_host *host = to_qcom_nand_host(chip);
1963 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1964 struct nand_ecc_ctrl *ecc = &chip->ecc;
1965 u8 *data_buf, *oob_buf;
1966 int i, ret;
1967
1968 if (host->nr_boot_partitions)
1969 qcom_nandc_codeword_fixup(host, page);
1970
1971 nand_prog_page_begin_op(chip, page, offset_in_page: 0, NULL, len: 0);
1972
1973 set_address(host, column: 0, page);
1974 nandc->buf_count = 0;
1975 nandc->buf_start = 0;
1976 clear_read_regs(nandc);
1977 clear_bam_transaction(nandc);
1978
1979 data_buf = (u8 *)buf;
1980 oob_buf = chip->oob_poi;
1981
1982 host->use_ecc = true;
1983 update_rw_regs(host, num_cw: ecc->steps, read: false, cw: 0);
1984 config_nand_page_write(chip);
1985
1986 for (i = 0; i < ecc->steps; i++) {
1987 int data_size, oob_size;
1988
1989 if (qcom_nandc_is_last_cw(ecc, cw: i) && !host->codeword_fixup) {
1990 data_size = ecc->size - ((ecc->steps - 1) << 2);
1991 oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1992 host->spare_bytes;
1993 } else {
1994 data_size = host->cw_data;
1995 oob_size = ecc->bytes;
1996 }
1997
1998 write_data_dma(nandc, FLASH_BUF_ACC, vaddr: data_buf, size: data_size,
1999 flags: i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2000
2001 /*
2002 * when ECC is enabled, we don't really need to write anything
2003 * to oob for the first n - 1 codewords since these oob regions
2004 * just contain ECC bytes that's written by the controller
2005 * itself. For the last codeword, we skip the bbm positions and
2006 * write to the free oob area.
2007 */
2008 if (qcom_nandc_is_last_cw(ecc, cw: i)) {
2009 oob_buf += host->bbm_size;
2010
2011 write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2012 vaddr: oob_buf, size: oob_size, flags: 0);
2013 }
2014
2015 config_nand_cw_write(chip);
2016
2017 data_buf += data_size;
2018 oob_buf += oob_size;
2019 }
2020
2021 ret = submit_descs(nandc);
2022 if (ret) {
2023 dev_err(nandc->dev, "failure to write page\n");
2024 return ret;
2025 }
2026
2027 return nand_prog_page_end_op(chip);
2028}
2029
2030/* implements ecc->write_page_raw() */
2031static int qcom_nandc_write_page_raw(struct nand_chip *chip,
2032 const u8 *buf, int oob_required,
2033 int page)
2034{
2035 struct mtd_info *mtd = nand_to_mtd(chip);
2036 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2037 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2038 struct nand_ecc_ctrl *ecc = &chip->ecc;
2039 u8 *data_buf, *oob_buf;
2040 int i, ret;
2041
2042 if (host->nr_boot_partitions)
2043 qcom_nandc_codeword_fixup(host, page);
2044
2045 nand_prog_page_begin_op(chip, page, offset_in_page: 0, NULL, len: 0);
2046 clear_read_regs(nandc);
2047 clear_bam_transaction(nandc);
2048
2049 data_buf = (u8 *)buf;
2050 oob_buf = chip->oob_poi;
2051
2052 host->use_ecc = false;
2053 update_rw_regs(host, num_cw: ecc->steps, read: false, cw: 0);
2054 config_nand_page_write(chip);
2055
2056 for (i = 0; i < ecc->steps; i++) {
2057 int data_size1, data_size2, oob_size1, oob_size2;
2058 int reg_off = FLASH_BUF_ACC;
2059
2060 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2061 oob_size1 = host->bbm_size;
2062
2063 if (qcom_nandc_is_last_cw(ecc, cw: i) && !host->codeword_fixup) {
2064 data_size2 = ecc->size - data_size1 -
2065 ((ecc->steps - 1) << 2);
2066 oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2067 host->spare_bytes;
2068 } else {
2069 data_size2 = host->cw_data - data_size1;
2070 oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2071 }
2072
2073 write_data_dma(nandc, reg_off, vaddr: data_buf, size: data_size1,
2074 NAND_BAM_NO_EOT);
2075 reg_off += data_size1;
2076 data_buf += data_size1;
2077
2078 write_data_dma(nandc, reg_off, vaddr: oob_buf, size: oob_size1,
2079 NAND_BAM_NO_EOT);
2080 reg_off += oob_size1;
2081 oob_buf += oob_size1;
2082
2083 write_data_dma(nandc, reg_off, vaddr: data_buf, size: data_size2,
2084 NAND_BAM_NO_EOT);
2085 reg_off += data_size2;
2086 data_buf += data_size2;
2087
2088 write_data_dma(nandc, reg_off, vaddr: oob_buf, size: oob_size2, flags: 0);
2089 oob_buf += oob_size2;
2090
2091 config_nand_cw_write(chip);
2092 }
2093
2094 ret = submit_descs(nandc);
2095 if (ret) {
2096 dev_err(nandc->dev, "failure to write raw page\n");
2097 return ret;
2098 }
2099
2100 return nand_prog_page_end_op(chip);
2101}
2102
2103/*
2104 * implements ecc->write_oob()
2105 *
2106 * the NAND controller cannot write only data or only OOB within a codeword
2107 * since ECC is calculated for the combined codeword. So update the OOB from
2108 * chip->oob_poi, and pad the data area with OxFF before writing.
2109 */
2110static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
2111{
2112 struct mtd_info *mtd = nand_to_mtd(chip);
2113 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2114 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2115 struct nand_ecc_ctrl *ecc = &chip->ecc;
2116 u8 *oob = chip->oob_poi;
2117 int data_size, oob_size;
2118 int ret;
2119
2120 if (host->nr_boot_partitions)
2121 qcom_nandc_codeword_fixup(host, page);
2122
2123 host->use_ecc = true;
2124 clear_bam_transaction(nandc);
2125
2126 /* calculate the data and oob size for the last codeword/step */
2127 data_size = ecc->size - ((ecc->steps - 1) << 2);
2128 oob_size = mtd->oobavail;
2129
2130 memset(nandc->data_buffer, 0xff, host->cw_data);
2131 /* override new oob content to last codeword */
2132 mtd_ooblayout_get_databytes(mtd, databuf: nandc->data_buffer + data_size, oobbuf: oob,
2133 start: 0, nbytes: mtd->oobavail);
2134
2135 set_address(host, column: host->cw_size * (ecc->steps - 1), page);
2136 update_rw_regs(host, num_cw: 1, read: false, cw: 0);
2137
2138 config_nand_page_write(chip);
2139 write_data_dma(nandc, FLASH_BUF_ACC,
2140 vaddr: nandc->data_buffer, size: data_size + oob_size, flags: 0);
2141 config_nand_cw_write(chip);
2142
2143 ret = submit_descs(nandc);
2144 if (ret) {
2145 dev_err(nandc->dev, "failure to write oob\n");
2146 return ret;
2147 }
2148
2149 return nand_prog_page_end_op(chip);
2150}
2151
2152static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
2153{
2154 struct mtd_info *mtd = nand_to_mtd(chip);
2155 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2156 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2157 struct nand_ecc_ctrl *ecc = &chip->ecc;
2158 int page, ret, bbpos, bad = 0;
2159
2160 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2161
2162 /*
2163 * configure registers for a raw sub page read, the address is set to
2164 * the beginning of the last codeword, we don't care about reading ecc
2165 * portion of oob. we just want the first few bytes from this codeword
2166 * that contains the BBM
2167 */
2168 host->use_ecc = false;
2169
2170 clear_bam_transaction(nandc);
2171 ret = copy_last_cw(host, page);
2172 if (ret)
2173 goto err;
2174
2175 if (check_flash_errors(host, cw_cnt: 1)) {
2176 dev_warn(nandc->dev, "error when trying to read BBM\n");
2177 goto err;
2178 }
2179
2180 bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2181
2182 bad = nandc->data_buffer[bbpos] != 0xff;
2183
2184 if (chip->options & NAND_BUSWIDTH_16)
2185 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2186err:
2187 return bad;
2188}
2189
2190static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
2191{
2192 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2193 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2194 struct nand_ecc_ctrl *ecc = &chip->ecc;
2195 int page, ret;
2196
2197 clear_read_regs(nandc);
2198 clear_bam_transaction(nandc);
2199
2200 /*
2201 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2202 * we don't care about the rest of the content in the codeword since
2203 * we aren't going to use this block again
2204 */
2205 memset(nandc->data_buffer, 0x00, host->cw_size);
2206
2207 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2208
2209 /* prepare write */
2210 host->use_ecc = false;
2211 set_address(host, column: host->cw_size * (ecc->steps - 1), page);
2212 update_rw_regs(host, num_cw: 1, read: false, cw: ecc->steps - 1);
2213
2214 config_nand_page_write(chip);
2215 write_data_dma(nandc, FLASH_BUF_ACC,
2216 vaddr: nandc->data_buffer, size: host->cw_size, flags: 0);
2217 config_nand_cw_write(chip);
2218
2219 ret = submit_descs(nandc);
2220 if (ret) {
2221 dev_err(nandc->dev, "failure to update BBM\n");
2222 return ret;
2223 }
2224
2225 return nand_prog_page_end_op(chip);
2226}
2227
2228/*
2229 * NAND controller page layout info
2230 *
2231 * Layout with ECC enabled:
2232 *
2233 * |----------------------| |---------------------------------|
2234 * | xx.......yy| | *********xx.......yy|
2235 * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy|
2236 * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy|
2237 * | xx.......yy| | *********xx.......yy|
2238 * |----------------------| |---------------------------------|
2239 * codeword 1,2..n-1 codeword n
2240 * <---(528/532 Bytes)--> <-------(528/532 Bytes)--------->
2241 *
2242 * n = Number of codewords in the page
2243 * . = ECC bytes
2244 * * = Spare/free bytes
2245 * x = Unused byte(s)
2246 * y = Reserved byte(s)
2247 *
2248 * 2K page: n = 4, spare = 16 bytes
2249 * 4K page: n = 8, spare = 32 bytes
2250 * 8K page: n = 16, spare = 64 bytes
2251 *
2252 * the qcom nand controller operates at a sub page/codeword level. each
2253 * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2254 * the number of ECC bytes vary based on the ECC strength and the bus width.
2255 *
2256 * the first n - 1 codewords contains 516 bytes of user data, the remaining
2257 * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2258 * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2259 *
2260 * When we access a page with ECC enabled, the reserved bytes(s) are not
2261 * accessible at all. When reading, we fill up these unreadable positions
2262 * with 0xffs. When writing, the controller skips writing the inaccessible
2263 * bytes.
2264 *
2265 * Layout with ECC disabled:
2266 *
2267 * |------------------------------| |---------------------------------------|
2268 * | yy xx.......| | bb *********xx.......|
2269 * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..|
2270 * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......|
2271 * | yy xx.......| | bb *********xx.......|
2272 * |------------------------------| |---------------------------------------|
2273 * codeword 1,2..n-1 codeword n
2274 * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)----------->
2275 *
2276 * n = Number of codewords in the page
2277 * . = ECC bytes
2278 * * = Spare/free bytes
2279 * x = Unused byte(s)
2280 * y = Dummy Bad Bock byte(s)
2281 * b = Real Bad Block byte(s)
2282 * size1/size2 = function of codeword size and 'n'
2283 *
2284 * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2285 * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2286 * Block Markers. In the last codeword, this position contains the real BBM
2287 *
2288 * In order to have a consistent layout between RAW and ECC modes, we assume
2289 * the following OOB layout arrangement:
2290 *
2291 * |-----------| |--------------------|
2292 * |yyxx.......| |bb*********xx.......|
2293 * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..|
2294 * |yyxx.......| |bb*********xx.......|
2295 * |yyxx.......| |bb*********xx.......|
2296 * |-----------| |--------------------|
2297 * first n - 1 nth OOB region
2298 * OOB regions
2299 *
2300 * n = Number of codewords in the page
2301 * . = ECC bytes
2302 * * = FREE OOB bytes
2303 * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2304 * x = Unused byte(s)
2305 * b = Real bad block byte(s) (inaccessible when ECC enabled)
2306 *
2307 * This layout is read as is when ECC is disabled. When ECC is enabled, the
2308 * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2309 * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2310 * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2311 * the sum of the three).
2312 */
2313static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2314 struct mtd_oob_region *oobregion)
2315{
2316 struct nand_chip *chip = mtd_to_nand(mtd);
2317 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2318 struct nand_ecc_ctrl *ecc = &chip->ecc;
2319
2320 if (section > 1)
2321 return -ERANGE;
2322
2323 if (!section) {
2324 oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2325 host->bbm_size;
2326 oobregion->offset = 0;
2327 } else {
2328 oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2329 oobregion->offset = mtd->oobsize - oobregion->length;
2330 }
2331
2332 return 0;
2333}
2334
2335static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2336 struct mtd_oob_region *oobregion)
2337{
2338 struct nand_chip *chip = mtd_to_nand(mtd);
2339 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2340 struct nand_ecc_ctrl *ecc = &chip->ecc;
2341
2342 if (section)
2343 return -ERANGE;
2344
2345 oobregion->length = ecc->steps * 4;
2346 oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2347
2348 return 0;
2349}
2350
2351static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2352 .ecc = qcom_nand_ooblayout_ecc,
2353 .free = qcom_nand_ooblayout_free,
2354};
2355
2356static int
2357qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2358{
2359 return strength == 4 ? 12 : 16;
2360}
2361
2362NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2363 NANDC_STEP_SIZE, 4, 8);
2364
2365static int qcom_nand_attach_chip(struct nand_chip *chip)
2366{
2367 struct mtd_info *mtd = nand_to_mtd(chip);
2368 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2369 struct nand_ecc_ctrl *ecc = &chip->ecc;
2370 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2371 int cwperpage, bad_block_byte, ret;
2372 bool wide_bus;
2373 int ecc_mode = 1;
2374
2375 /* controller only supports 512 bytes data steps */
2376 ecc->size = NANDC_STEP_SIZE;
2377 wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2378 cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2379
2380 /*
2381 * Each CW has 4 available OOB bytes which will be protected with ECC
2382 * so remaining bytes can be used for ECC.
2383 */
2384 ret = nand_ecc_choose_conf(chip, caps: &qcom_nandc_ecc_caps,
2385 oobavail: mtd->oobsize - (cwperpage * 4));
2386 if (ret) {
2387 dev_err(nandc->dev, "No valid ECC settings possible\n");
2388 return ret;
2389 }
2390
2391 if (ecc->strength >= 8) {
2392 /* 8 bit ECC defaults to BCH ECC on all platforms */
2393 host->bch_enabled = true;
2394 ecc_mode = 1;
2395
2396 if (wide_bus) {
2397 host->ecc_bytes_hw = 14;
2398 host->spare_bytes = 0;
2399 host->bbm_size = 2;
2400 } else {
2401 host->ecc_bytes_hw = 13;
2402 host->spare_bytes = 2;
2403 host->bbm_size = 1;
2404 }
2405 } else {
2406 /*
2407 * if the controller supports BCH for 4 bit ECC, the controller
2408 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2409 * always 10 bytes
2410 */
2411 if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2412 /* BCH */
2413 host->bch_enabled = true;
2414 ecc_mode = 0;
2415
2416 if (wide_bus) {
2417 host->ecc_bytes_hw = 8;
2418 host->spare_bytes = 2;
2419 host->bbm_size = 2;
2420 } else {
2421 host->ecc_bytes_hw = 7;
2422 host->spare_bytes = 4;
2423 host->bbm_size = 1;
2424 }
2425 } else {
2426 /* RS */
2427 host->ecc_bytes_hw = 10;
2428
2429 if (wide_bus) {
2430 host->spare_bytes = 0;
2431 host->bbm_size = 2;
2432 } else {
2433 host->spare_bytes = 1;
2434 host->bbm_size = 1;
2435 }
2436 }
2437 }
2438
2439 /*
2440 * we consider ecc->bytes as the sum of all the non-data content in a
2441 * step. It gives us a clean representation of the oob area (even if
2442 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2443 * ECC and 12 bytes for 4 bit ECC
2444 */
2445 ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2446
2447 ecc->read_page = qcom_nandc_read_page;
2448 ecc->read_page_raw = qcom_nandc_read_page_raw;
2449 ecc->read_oob = qcom_nandc_read_oob;
2450 ecc->write_page = qcom_nandc_write_page;
2451 ecc->write_page_raw = qcom_nandc_write_page_raw;
2452 ecc->write_oob = qcom_nandc_write_oob;
2453
2454 ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2455
2456 mtd_set_ooblayout(mtd, ooblayout: &qcom_nand_ooblayout_ops);
2457 /* Free the initially allocated BAM transaction for reading the ONFI params */
2458 if (nandc->props->is_bam)
2459 free_bam_transaction(nandc);
2460
2461 nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2462 cwperpage);
2463
2464 /* Now allocate the BAM transaction based on updated max_cwperpage */
2465 if (nandc->props->is_bam) {
2466 nandc->bam_txn = alloc_bam_transaction(nandc);
2467 if (!nandc->bam_txn) {
2468 dev_err(nandc->dev,
2469 "failed to allocate bam transaction\n");
2470 return -ENOMEM;
2471 }
2472 }
2473
2474 /*
2475 * DATA_UD_BYTES varies based on whether the read/write command protects
2476 * spare data with ECC too. We protect spare data by default, so we set
2477 * it to main + spare data, which are 512 and 4 bytes respectively.
2478 */
2479 host->cw_data = 516;
2480
2481 /*
2482 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2483 * for 8 bit ECC
2484 */
2485 host->cw_size = host->cw_data + ecc->bytes;
2486 bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2487
2488 host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2489 | host->cw_data << UD_SIZE_BYTES
2490 | 0 << DISABLE_STATUS_AFTER_WRITE
2491 | 5 << NUM_ADDR_CYCLES
2492 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2493 | 0 << STATUS_BFR_READ
2494 | 1 << SET_RD_MODE_AFTER_STATUS
2495 | host->spare_bytes << SPARE_SIZE_BYTES;
2496
2497 host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2498 | 0 << CS_ACTIVE_BSY
2499 | bad_block_byte << BAD_BLOCK_BYTE_NUM
2500 | 0 << BAD_BLOCK_IN_SPARE_AREA
2501 | 2 << WR_RD_BSY_GAP
2502 | wide_bus << WIDE_FLASH
2503 | host->bch_enabled << ENABLE_BCH_ECC;
2504
2505 host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2506 | host->cw_size << UD_SIZE_BYTES
2507 | 5 << NUM_ADDR_CYCLES
2508 | 0 << SPARE_SIZE_BYTES;
2509
2510 host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2511 | 0 << CS_ACTIVE_BSY
2512 | 17 << BAD_BLOCK_BYTE_NUM
2513 | 1 << BAD_BLOCK_IN_SPARE_AREA
2514 | 2 << WR_RD_BSY_GAP
2515 | wide_bus << WIDE_FLASH
2516 | 1 << DEV0_CFG1_ECC_DISABLE;
2517
2518 host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2519 | 0 << ECC_SW_RESET
2520 | host->cw_data << ECC_NUM_DATA_BYTES
2521 | 1 << ECC_FORCE_CLK_OPEN
2522 | ecc_mode << ECC_MODE
2523 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2524
2525 if (!nandc->props->qpic_v2)
2526 host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2527
2528 host->clrflashstatus = FS_READY_BSY_N;
2529 host->clrreadstatus = 0xc0;
2530 nandc->regs->erased_cw_detect_cfg_clr =
2531 cpu_to_le32(CLR_ERASED_PAGE_DET);
2532 nandc->regs->erased_cw_detect_cfg_set =
2533 cpu_to_le32(SET_ERASED_PAGE_DET);
2534
2535 dev_dbg(nandc->dev,
2536 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2537 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2538 host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2539 cwperpage);
2540
2541 return 0;
2542}
2543
2544static int qcom_op_cmd_mapping(struct nand_chip *chip, u8 opcode,
2545 struct qcom_op *q_op)
2546{
2547 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2548 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2549 int cmd;
2550
2551 switch (opcode) {
2552 case NAND_CMD_RESET:
2553 cmd = OP_RESET_DEVICE;
2554 break;
2555 case NAND_CMD_READID:
2556 cmd = OP_FETCH_ID;
2557 break;
2558 case NAND_CMD_PARAM:
2559 if (nandc->props->qpic_v2)
2560 cmd = OP_PAGE_READ_ONFI_READ;
2561 else
2562 cmd = OP_PAGE_READ;
2563 break;
2564 case NAND_CMD_ERASE1:
2565 case NAND_CMD_ERASE2:
2566 cmd = OP_BLOCK_ERASE;
2567 break;
2568 case NAND_CMD_STATUS:
2569 cmd = OP_CHECK_STATUS;
2570 break;
2571 case NAND_CMD_PAGEPROG:
2572 cmd = OP_PROGRAM_PAGE;
2573 q_op->flag = OP_PROGRAM_PAGE;
2574 nandc->exec_opwrite = true;
2575 break;
2576 case NAND_CMD_READ0:
2577 case NAND_CMD_READSTART:
2578 if (host->use_ecc)
2579 cmd = OP_PAGE_READ_WITH_ECC;
2580 else
2581 cmd = OP_PAGE_READ;
2582 break;
2583 default:
2584 dev_err(nandc->dev, "Opcode not supported: %u\n", opcode);
2585 return -EOPNOTSUPP;
2586 }
2587
2588 return cmd;
2589}
2590
2591/* NAND framework ->exec_op() hooks and related helpers */
2592static int qcom_parse_instructions(struct nand_chip *chip,
2593 const struct nand_subop *subop,
2594 struct qcom_op *q_op)
2595{
2596 const struct nand_op_instr *instr = NULL;
2597 unsigned int op_id;
2598 int i, ret;
2599
2600 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
2601 unsigned int offset, naddrs;
2602 const u8 *addrs;
2603
2604 instr = &subop->instrs[op_id];
2605
2606 switch (instr->type) {
2607 case NAND_OP_CMD_INSTR:
2608 ret = qcom_op_cmd_mapping(chip, opcode: instr->ctx.cmd.opcode, q_op);
2609 if (ret < 0)
2610 return ret;
2611
2612 q_op->cmd_reg = ret;
2613 q_op->rdy_delay_ns = instr->delay_ns;
2614 break;
2615
2616 case NAND_OP_ADDR_INSTR:
2617 offset = nand_subop_get_addr_start_off(subop, op_id);
2618 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
2619 addrs = &instr->ctx.addr.addrs[offset];
2620
2621 for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
2622 q_op->addr1_reg |= addrs[i] << (i * 8);
2623
2624 if (naddrs > 4)
2625 q_op->addr2_reg |= addrs[4];
2626
2627 q_op->rdy_delay_ns = instr->delay_ns;
2628 break;
2629
2630 case NAND_OP_DATA_IN_INSTR:
2631 q_op->data_instr = instr;
2632 q_op->data_instr_idx = op_id;
2633 q_op->rdy_delay_ns = instr->delay_ns;
2634 fallthrough;
2635 case NAND_OP_DATA_OUT_INSTR:
2636 q_op->rdy_delay_ns = instr->delay_ns;
2637 break;
2638
2639 case NAND_OP_WAITRDY_INSTR:
2640 q_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
2641 q_op->rdy_delay_ns = instr->delay_ns;
2642 break;
2643 }
2644 }
2645
2646 return 0;
2647}
2648
2649static void qcom_delay_ns(unsigned int ns)
2650{
2651 if (!ns)
2652 return;
2653
2654 if (ns < 10000)
2655 ndelay(ns);
2656 else
2657 udelay(DIV_ROUND_UP(ns, 1000));
2658}
2659
2660static int qcom_wait_rdy_poll(struct nand_chip *chip, unsigned int time_ms)
2661{
2662 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2663 unsigned long start = jiffies + msecs_to_jiffies(m: time_ms);
2664 u32 flash;
2665
2666 nandc_read_buffer_sync(nandc, is_cpu: true);
2667
2668 do {
2669 flash = le32_to_cpu(nandc->reg_read_buf[0]);
2670 if (flash & FS_READY_BSY_N)
2671 return 0;
2672 cpu_relax();
2673 } while (time_after(start, jiffies));
2674
2675 dev_err(nandc->dev, "Timeout waiting for device to be ready:0x%08x\n", flash);
2676
2677 return -ETIMEDOUT;
2678}
2679
2680static int qcom_read_status_exec(struct nand_chip *chip,
2681 const struct nand_subop *subop)
2682{
2683 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2684 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2685 struct nand_ecc_ctrl *ecc = &chip->ecc;
2686 struct qcom_op q_op = {};
2687 const struct nand_op_instr *instr = NULL;
2688 unsigned int op_id = 0;
2689 unsigned int len = 0;
2690 int ret, num_cw, i;
2691 u32 flash_status;
2692
2693 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2694
2695 ret = qcom_parse_instructions(chip, subop, q_op: &q_op);
2696 if (ret)
2697 return ret;
2698
2699 num_cw = nandc->exec_opwrite ? ecc->steps : 1;
2700 nandc->exec_opwrite = false;
2701
2702 nandc->buf_count = 0;
2703 nandc->buf_start = 0;
2704 host->use_ecc = false;
2705
2706 clear_read_regs(nandc);
2707 clear_bam_transaction(nandc);
2708
2709 nandc_set_reg(chip, NAND_FLASH_CMD, val: q_op.cmd_reg);
2710 nandc_set_reg(chip, NAND_EXEC_CMD, val: 1);
2711
2712 write_reg_dma(nandc, NAND_FLASH_CMD, num_regs: 1, NAND_BAM_NEXT_SGL);
2713 write_reg_dma(nandc, NAND_EXEC_CMD, num_regs: 1, NAND_BAM_NEXT_SGL);
2714 read_reg_dma(nandc, NAND_FLASH_STATUS, num_regs: 1, NAND_BAM_NEXT_SGL);
2715
2716 ret = submit_descs(nandc);
2717 if (ret) {
2718 dev_err(nandc->dev, "failure in submitting status descriptor\n");
2719 goto err_out;
2720 }
2721
2722 nandc_read_buffer_sync(nandc, is_cpu: true);
2723
2724 for (i = 0; i < num_cw; i++) {
2725 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
2726
2727 if (flash_status & FS_MPU_ERR)
2728 host->status &= ~NAND_STATUS_WP;
2729
2730 if (flash_status & FS_OP_ERR ||
2731 (i == (num_cw - 1) && (flash_status & FS_DEVICE_STS_ERR)))
2732 host->status |= NAND_STATUS_FAIL;
2733 }
2734
2735 flash_status = host->status;
2736 instr = q_op.data_instr;
2737 op_id = q_op.data_instr_idx;
2738 len = nand_subop_get_data_len(subop, op_id);
2739 memcpy(instr->ctx.data.buf.in, &flash_status, len);
2740
2741err_out:
2742 return ret;
2743}
2744
2745static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
2746{
2747 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2748 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2749 struct qcom_op q_op = {};
2750 const struct nand_op_instr *instr = NULL;
2751 unsigned int op_id = 0;
2752 unsigned int len = 0;
2753 int ret;
2754
2755 ret = qcom_parse_instructions(chip, subop, q_op: &q_op);
2756 if (ret)
2757 return ret;
2758
2759 nandc->buf_count = 0;
2760 nandc->buf_start = 0;
2761 host->use_ecc = false;
2762
2763 clear_read_regs(nandc);
2764 clear_bam_transaction(nandc);
2765
2766 nandc_set_reg(chip, NAND_FLASH_CMD, val: q_op.cmd_reg);
2767 nandc_set_reg(chip, NAND_ADDR0, val: q_op.addr1_reg);
2768 nandc_set_reg(chip, NAND_ADDR1, val: q_op.addr2_reg);
2769 nandc_set_reg(chip, NAND_FLASH_CHIP_SELECT,
2770 val: nandc->props->is_bam ? 0 : DM_EN);
2771
2772 nandc_set_reg(chip, NAND_EXEC_CMD, val: 1);
2773
2774 write_reg_dma(nandc, NAND_FLASH_CMD, num_regs: 4, NAND_BAM_NEXT_SGL);
2775 write_reg_dma(nandc, NAND_EXEC_CMD, num_regs: 1, NAND_BAM_NEXT_SGL);
2776
2777 read_reg_dma(nandc, NAND_READ_ID, num_regs: 1, NAND_BAM_NEXT_SGL);
2778
2779 ret = submit_descs(nandc);
2780 if (ret) {
2781 dev_err(nandc->dev, "failure in submitting read id descriptor\n");
2782 goto err_out;
2783 }
2784
2785 instr = q_op.data_instr;
2786 op_id = q_op.data_instr_idx;
2787 len = nand_subop_get_data_len(subop, op_id);
2788
2789 nandc_read_buffer_sync(nandc, is_cpu: true);
2790 memcpy(instr->ctx.data.buf.in, nandc->reg_read_buf, len);
2791
2792err_out:
2793 return ret;
2794}
2795
2796static int qcom_misc_cmd_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
2797{
2798 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2799 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2800 struct qcom_op q_op = {};
2801 int ret;
2802 int instrs = 1;
2803
2804 ret = qcom_parse_instructions(chip, subop, q_op: &q_op);
2805 if (ret)
2806 return ret;
2807
2808 if (q_op.flag == OP_PROGRAM_PAGE) {
2809 goto wait_rdy;
2810 } else if (q_op.cmd_reg == OP_BLOCK_ERASE) {
2811 q_op.cmd_reg |= PAGE_ACC | LAST_PAGE;
2812 nandc_set_reg(chip, NAND_ADDR0, val: q_op.addr1_reg);
2813 nandc_set_reg(chip, NAND_ADDR1, val: q_op.addr2_reg);
2814 nandc_set_reg(chip, NAND_DEV0_CFG0,
2815 val: host->cfg0_raw & ~(7 << CW_PER_PAGE));
2816 nandc_set_reg(chip, NAND_DEV0_CFG1, val: host->cfg1_raw);
2817 instrs = 3;
2818 } else {
2819 return 0;
2820 }
2821
2822 nandc->buf_count = 0;
2823 nandc->buf_start = 0;
2824 host->use_ecc = false;
2825
2826 clear_read_regs(nandc);
2827 clear_bam_transaction(nandc);
2828
2829 nandc_set_reg(chip, NAND_FLASH_CMD, val: q_op.cmd_reg);
2830 nandc_set_reg(chip, NAND_EXEC_CMD, val: 1);
2831
2832 write_reg_dma(nandc, NAND_FLASH_CMD, num_regs: instrs, NAND_BAM_NEXT_SGL);
2833 (q_op.cmd_reg == OP_BLOCK_ERASE) ? write_reg_dma(nandc, NAND_DEV0_CFG0,
2834 num_regs: 2, NAND_BAM_NEXT_SGL) : read_reg_dma(nandc,
2835 NAND_FLASH_STATUS, num_regs: 1, NAND_BAM_NEXT_SGL);
2836
2837 write_reg_dma(nandc, NAND_EXEC_CMD, num_regs: 1, NAND_BAM_NEXT_SGL);
2838 read_reg_dma(nandc, NAND_FLASH_STATUS, num_regs: 1, NAND_BAM_NEXT_SGL);
2839
2840 ret = submit_descs(nandc);
2841 if (ret) {
2842 dev_err(nandc->dev, "failure in submitting misc descriptor\n");
2843 goto err_out;
2844 }
2845
2846wait_rdy:
2847 qcom_delay_ns(ns: q_op.rdy_delay_ns);
2848 ret = qcom_wait_rdy_poll(chip, time_ms: q_op.rdy_timeout_ms);
2849
2850err_out:
2851 return ret;
2852}
2853
2854static int qcom_param_page_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
2855{
2856 struct qcom_nand_host *host = to_qcom_nand_host(chip);
2857 struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2858 struct qcom_op q_op = {};
2859 const struct nand_op_instr *instr = NULL;
2860 unsigned int op_id = 0;
2861 unsigned int len = 0;
2862 int ret;
2863
2864 ret = qcom_parse_instructions(chip, subop, q_op: &q_op);
2865 if (ret)
2866 return ret;
2867
2868 q_op.cmd_reg |= PAGE_ACC | LAST_PAGE;
2869
2870 nandc->buf_count = 0;
2871 nandc->buf_start = 0;
2872 host->use_ecc = false;
2873 clear_read_regs(nandc);
2874 clear_bam_transaction(nandc);
2875
2876 nandc_set_reg(chip, NAND_FLASH_CMD, val: q_op.cmd_reg);
2877
2878 nandc_set_reg(chip, NAND_ADDR0, val: 0);
2879 nandc_set_reg(chip, NAND_ADDR1, val: 0);
2880 nandc_set_reg(chip, NAND_DEV0_CFG0, val: 0 << CW_PER_PAGE
2881 | 512 << UD_SIZE_BYTES
2882 | 5 << NUM_ADDR_CYCLES
2883 | 0 << SPARE_SIZE_BYTES);
2884 nandc_set_reg(chip, NAND_DEV0_CFG1, val: 7 << NAND_RECOVERY_CYCLES
2885 | 0 << CS_ACTIVE_BSY
2886 | 17 << BAD_BLOCK_BYTE_NUM
2887 | 1 << BAD_BLOCK_IN_SPARE_AREA
2888 | 2 << WR_RD_BSY_GAP
2889 | 0 << WIDE_FLASH
2890 | 1 << DEV0_CFG1_ECC_DISABLE);
2891 if (!nandc->props->qpic_v2)
2892 nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, val: 1 << ECC_CFG_ECC_DISABLE);
2893
2894 /* configure CMD1 and VLD for ONFI param probing in QPIC v1 */
2895 if (!nandc->props->qpic_v2) {
2896 nandc_set_reg(chip, NAND_DEV_CMD_VLD,
2897 val: (nandc->vld & ~READ_START_VLD));
2898 nandc_set_reg(chip, NAND_DEV_CMD1,
2899 val: (nandc->cmd1 & ~(0xFF << READ_ADDR))
2900 | NAND_CMD_PARAM << READ_ADDR);
2901 }
2902
2903 nandc_set_reg(chip, NAND_EXEC_CMD, val: 1);
2904
2905 if (!nandc->props->qpic_v2) {
2906 nandc_set_reg(chip, NAND_DEV_CMD1_RESTORE, val: nandc->cmd1);
2907 nandc_set_reg(chip, NAND_DEV_CMD_VLD_RESTORE, val: nandc->vld);
2908 }
2909
2910 instr = q_op.data_instr;
2911 op_id = q_op.data_instr_idx;
2912 len = nand_subop_get_data_len(subop, op_id);
2913
2914 nandc_set_read_loc(chip, cw: 0, reg: 0, cw_offset: 0, read_size: len, is_last_read_loc: 1);
2915
2916 if (!nandc->props->qpic_v2) {
2917 write_reg_dma(nandc, NAND_DEV_CMD_VLD, num_regs: 1, flags: 0);
2918 write_reg_dma(nandc, NAND_DEV_CMD1, num_regs: 1, NAND_BAM_NEXT_SGL);
2919 }
2920
2921 nandc->buf_count = len;
2922 memset(nandc->data_buffer, 0xff, nandc->buf_count);
2923
2924 config_nand_single_cw_page_read(chip, use_ecc: false, cw: 0);
2925
2926 read_data_dma(nandc, FLASH_BUF_ACC, vaddr: nandc->data_buffer,
2927 size: nandc->buf_count, flags: 0);
2928
2929 /* restore CMD1 and VLD regs */
2930 if (!nandc->props->qpic_v2) {
2931 write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, num_regs: 1, flags: 0);
2932 write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, num_regs: 1, NAND_BAM_NEXT_SGL);
2933 }
2934
2935 ret = submit_descs(nandc);
2936 if (ret) {
2937 dev_err(nandc->dev, "failure in submitting param page descriptor\n");
2938 goto err_out;
2939 }
2940
2941 ret = qcom_wait_rdy_poll(chip, time_ms: q_op.rdy_timeout_ms);
2942 if (ret)
2943 goto err_out;
2944
2945 memcpy(instr->ctx.data.buf.in, nandc->data_buffer, len);
2946
2947err_out:
2948 return ret;
2949}
2950
2951static const struct nand_op_parser qcom_op_parser = NAND_OP_PARSER(
2952 NAND_OP_PARSER_PATTERN(
2953 qcom_read_id_type_exec,
2954 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2955 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE),
2956 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2957 NAND_OP_PARSER_PATTERN(
2958 qcom_read_status_exec,
2959 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2960 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2961 NAND_OP_PARSER_PATTERN(
2962 qcom_param_page_type_exec,
2963 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2964 NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE),
2965 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2966 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 512)),
2967 NAND_OP_PARSER_PATTERN(
2968 qcom_misc_cmd_type_exec,
2969 NAND_OP_PARSER_PAT_CMD_ELEM(false),
2970 NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYCLE),
2971 NAND_OP_PARSER_PAT_CMD_ELEM(true),
2972 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2973 );
2974
2975static int qcom_check_op(struct nand_chip *chip,
2976 const struct nand_operation *op)
2977{
2978 const struct nand_op_instr *instr;
2979 int op_id;
2980
2981 for (op_id = 0; op_id < op->ninstrs; op_id++) {
2982 instr = &op->instrs[op_id];
2983
2984 switch (instr->type) {
2985 case NAND_OP_CMD_INSTR:
2986 if (instr->ctx.cmd.opcode != NAND_CMD_RESET &&
2987 instr->ctx.cmd.opcode != NAND_CMD_READID &&
2988 instr->ctx.cmd.opcode != NAND_CMD_PARAM &&
2989 instr->ctx.cmd.opcode != NAND_CMD_ERASE1 &&
2990 instr->ctx.cmd.opcode != NAND_CMD_ERASE2 &&
2991 instr->ctx.cmd.opcode != NAND_CMD_STATUS &&
2992 instr->ctx.cmd.opcode != NAND_CMD_PAGEPROG &&
2993 instr->ctx.cmd.opcode != NAND_CMD_READ0 &&
2994 instr->ctx.cmd.opcode != NAND_CMD_READSTART)
2995 return -EOPNOTSUPP;
2996 break;
2997 default:
2998 break;
2999 }
3000 }
3001
3002 return 0;
3003}
3004
3005static int qcom_nand_exec_op(struct nand_chip *chip,
3006 const struct nand_operation *op, bool check_only)
3007{
3008 if (check_only)
3009 return qcom_check_op(chip, op);
3010
3011 return nand_op_parser_exec_op(chip, parser: &qcom_op_parser, op, check_only);
3012}
3013
3014static const struct nand_controller_ops qcom_nandc_ops = {
3015 .attach_chip = qcom_nand_attach_chip,
3016 .exec_op = qcom_nand_exec_op,
3017};
3018
3019static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
3020{
3021 if (nandc->props->is_bam) {
3022 if (!dma_mapping_error(dev: nandc->dev, dma_addr: nandc->reg_read_dma))
3023 dma_unmap_single(nandc->dev, nandc->reg_read_dma,
3024 MAX_REG_RD *
3025 sizeof(*nandc->reg_read_buf),
3026 DMA_FROM_DEVICE);
3027
3028 if (nandc->tx_chan)
3029 dma_release_channel(chan: nandc->tx_chan);
3030
3031 if (nandc->rx_chan)
3032 dma_release_channel(chan: nandc->rx_chan);
3033
3034 if (nandc->cmd_chan)
3035 dma_release_channel(chan: nandc->cmd_chan);
3036 } else {
3037 if (nandc->chan)
3038 dma_release_channel(chan: nandc->chan);
3039 }
3040}
3041
3042static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
3043{
3044 int ret;
3045
3046 ret = dma_set_coherent_mask(dev: nandc->dev, DMA_BIT_MASK(32));
3047 if (ret) {
3048 dev_err(nandc->dev, "failed to set DMA mask\n");
3049 return ret;
3050 }
3051
3052 /*
3053 * we use the internal buffer for reading ONFI params, reading small
3054 * data like ID and status, and preforming read-copy-write operations
3055 * when writing to a codeword partially. 532 is the maximum possible
3056 * size of a codeword for our nand controller
3057 */
3058 nandc->buf_size = 532;
3059
3060 nandc->data_buffer = devm_kzalloc(dev: nandc->dev, size: nandc->buf_size, GFP_KERNEL);
3061 if (!nandc->data_buffer)
3062 return -ENOMEM;
3063
3064 nandc->regs = devm_kzalloc(dev: nandc->dev, size: sizeof(*nandc->regs), GFP_KERNEL);
3065 if (!nandc->regs)
3066 return -ENOMEM;
3067
3068 nandc->reg_read_buf = devm_kcalloc(dev: nandc->dev, MAX_REG_RD,
3069 size: sizeof(*nandc->reg_read_buf),
3070 GFP_KERNEL);
3071 if (!nandc->reg_read_buf)
3072 return -ENOMEM;
3073
3074 if (nandc->props->is_bam) {
3075 nandc->reg_read_dma =
3076 dma_map_single(nandc->dev, nandc->reg_read_buf,
3077 MAX_REG_RD *
3078 sizeof(*nandc->reg_read_buf),
3079 DMA_FROM_DEVICE);
3080 if (dma_mapping_error(dev: nandc->dev, dma_addr: nandc->reg_read_dma)) {
3081 dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
3082 return -EIO;
3083 }
3084
3085 nandc->tx_chan = dma_request_chan(dev: nandc->dev, name: "tx");
3086 if (IS_ERR(ptr: nandc->tx_chan)) {
3087 ret = PTR_ERR(ptr: nandc->tx_chan);
3088 nandc->tx_chan = NULL;
3089 dev_err_probe(dev: nandc->dev, err: ret,
3090 fmt: "tx DMA channel request failed\n");
3091 goto unalloc;
3092 }
3093
3094 nandc->rx_chan = dma_request_chan(dev: nandc->dev, name: "rx");
3095 if (IS_ERR(ptr: nandc->rx_chan)) {
3096 ret = PTR_ERR(ptr: nandc->rx_chan);
3097 nandc->rx_chan = NULL;
3098 dev_err_probe(dev: nandc->dev, err: ret,
3099 fmt: "rx DMA channel request failed\n");
3100 goto unalloc;
3101 }
3102
3103 nandc->cmd_chan = dma_request_chan(dev: nandc->dev, name: "cmd");
3104 if (IS_ERR(ptr: nandc->cmd_chan)) {
3105 ret = PTR_ERR(ptr: nandc->cmd_chan);
3106 nandc->cmd_chan = NULL;
3107 dev_err_probe(dev: nandc->dev, err: ret,
3108 fmt: "cmd DMA channel request failed\n");
3109 goto unalloc;
3110 }
3111
3112 /*
3113 * Initially allocate BAM transaction to read ONFI param page.
3114 * After detecting all the devices, this BAM transaction will
3115 * be freed and the next BAM transaction will be allocated with
3116 * maximum codeword size
3117 */
3118 nandc->max_cwperpage = 1;
3119 nandc->bam_txn = alloc_bam_transaction(nandc);
3120 if (!nandc->bam_txn) {
3121 dev_err(nandc->dev,
3122 "failed to allocate bam transaction\n");
3123 ret = -ENOMEM;
3124 goto unalloc;
3125 }
3126 } else {
3127 nandc->chan = dma_request_chan(dev: nandc->dev, name: "rxtx");
3128 if (IS_ERR(ptr: nandc->chan)) {
3129 ret = PTR_ERR(ptr: nandc->chan);
3130 nandc->chan = NULL;
3131 dev_err_probe(dev: nandc->dev, err: ret,
3132 fmt: "rxtx DMA channel request failed\n");
3133 return ret;
3134 }
3135 }
3136
3137 INIT_LIST_HEAD(list: &nandc->desc_list);
3138 INIT_LIST_HEAD(list: &nandc->host_list);
3139
3140 nand_controller_init(nfc: &nandc->controller);
3141 nandc->controller.ops = &qcom_nandc_ops;
3142
3143 return 0;
3144unalloc:
3145 qcom_nandc_unalloc(nandc);
3146 return ret;
3147}
3148
3149/* one time setup of a few nand controller registers */
3150static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
3151{
3152 u32 nand_ctrl;
3153
3154 /* kill onenand */
3155 if (!nandc->props->is_qpic)
3156 nandc_write(nandc, SFLASHC_BURST_CFG, val: 0);
3157
3158 if (!nandc->props->qpic_v2)
3159 nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
3160 NAND_DEV_CMD_VLD_VAL);
3161
3162 /* enable ADM or BAM DMA */
3163 if (nandc->props->is_bam) {
3164 nand_ctrl = nandc_read(nandc, NAND_CTRL);
3165
3166 /*
3167 *NAND_CTRL is an operational registers, and CPU
3168 * access to operational registers are read only
3169 * in BAM mode. So update the NAND_CTRL register
3170 * only if it is not in BAM mode. In most cases BAM
3171 * mode will be enabled in bootloader
3172 */
3173 if (!(nand_ctrl & BAM_MODE_EN))
3174 nandc_write(nandc, NAND_CTRL, val: nand_ctrl | BAM_MODE_EN);
3175 } else {
3176 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
3177 }
3178
3179 /* save the original values of these registers */
3180 if (!nandc->props->qpic_v2) {
3181 nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
3182 nandc->vld = NAND_DEV_CMD_VLD_VAL;
3183 }
3184
3185 return 0;
3186}
3187
3188static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL };
3189
3190static int qcom_nand_host_parse_boot_partitions(struct qcom_nand_controller *nandc,
3191 struct qcom_nand_host *host,
3192 struct device_node *dn)
3193{
3194 struct nand_chip *chip = &host->chip;
3195 struct mtd_info *mtd = nand_to_mtd(chip);
3196 struct qcom_nand_boot_partition *boot_partition;
3197 struct device *dev = nandc->dev;
3198 int partitions_count, i, j, ret;
3199
3200 if (!of_property_present(np: dn, propname: "qcom,boot-partitions"))
3201 return 0;
3202
3203 partitions_count = of_property_count_u32_elems(np: dn, propname: "qcom,boot-partitions");
3204 if (partitions_count <= 0) {
3205 dev_err(dev, "Error parsing boot partition\n");
3206 return partitions_count ? partitions_count : -EINVAL;
3207 }
3208
3209 host->nr_boot_partitions = partitions_count / 2;
3210 host->boot_partitions = devm_kcalloc(dev, n: host->nr_boot_partitions,
3211 size: sizeof(*host->boot_partitions), GFP_KERNEL);
3212 if (!host->boot_partitions) {
3213 host->nr_boot_partitions = 0;
3214 return -ENOMEM;
3215 }
3216
3217 for (i = 0, j = 0; i < host->nr_boot_partitions; i++, j += 2) {
3218 boot_partition = &host->boot_partitions[i];
3219
3220 ret = of_property_read_u32_index(np: dn, propname: "qcom,boot-partitions", index: j,
3221 out_value: &boot_partition->page_offset);
3222 if (ret) {
3223 dev_err(dev, "Error parsing boot partition offset at index %d\n", i);
3224 host->nr_boot_partitions = 0;
3225 return ret;
3226 }
3227
3228 if (boot_partition->page_offset % mtd->writesize) {
3229 dev_err(dev, "Boot partition offset not multiple of writesize at index %i\n",
3230 i);
3231 host->nr_boot_partitions = 0;
3232 return -EINVAL;
3233 }
3234 /* Convert offset to nand pages */
3235 boot_partition->page_offset /= mtd->writesize;
3236
3237 ret = of_property_read_u32_index(np: dn, propname: "qcom,boot-partitions", index: j + 1,
3238 out_value: &boot_partition->page_size);
3239 if (ret) {
3240 dev_err(dev, "Error parsing boot partition size at index %d\n", i);
3241 host->nr_boot_partitions = 0;
3242 return ret;
3243 }
3244
3245 if (boot_partition->page_size % mtd->writesize) {
3246 dev_err(dev, "Boot partition size not multiple of writesize at index %i\n",
3247 i);
3248 host->nr_boot_partitions = 0;
3249 return -EINVAL;
3250 }
3251 /* Convert size to nand pages */
3252 boot_partition->page_size /= mtd->writesize;
3253 }
3254
3255 return 0;
3256}
3257
3258static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
3259 struct qcom_nand_host *host,
3260 struct device_node *dn)
3261{
3262 struct nand_chip *chip = &host->chip;
3263 struct mtd_info *mtd = nand_to_mtd(chip);
3264 struct device *dev = nandc->dev;
3265 int ret;
3266
3267 ret = of_property_read_u32(np: dn, propname: "reg", out_value: &host->cs);
3268 if (ret) {
3269 dev_err(dev, "can't get chip-select\n");
3270 return -ENXIO;
3271 }
3272
3273 nand_set_flash_node(chip, np: dn);
3274 mtd->name = devm_kasprintf(dev, GFP_KERNEL, fmt: "qcom_nand.%d", host->cs);
3275 if (!mtd->name)
3276 return -ENOMEM;
3277
3278 mtd->owner = THIS_MODULE;
3279 mtd->dev.parent = dev;
3280
3281 /*
3282 * the bad block marker is readable only when we read the last codeword
3283 * of a page with ECC disabled. currently, the nand_base and nand_bbt
3284 * helpers don't allow us to read BB from a nand chip with ECC
3285 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
3286 * and block_markbad helpers until we permanently switch to using
3287 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
3288 */
3289 chip->legacy.block_bad = qcom_nandc_block_bad;
3290 chip->legacy.block_markbad = qcom_nandc_block_markbad;
3291
3292 chip->controller = &nandc->controller;
3293 chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA |
3294 NAND_SKIP_BBTSCAN;
3295
3296 /* set up initial status value */
3297 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
3298
3299 ret = nand_scan(chip, max_chips: 1);
3300 if (ret)
3301 return ret;
3302
3303 ret = mtd_device_parse_register(mtd, part_probe_types: probes, NULL, NULL, defnr_parts: 0);
3304 if (ret)
3305 goto err;
3306
3307 if (nandc->props->use_codeword_fixup) {
3308 ret = qcom_nand_host_parse_boot_partitions(nandc, host, dn);
3309 if (ret)
3310 goto err;
3311 }
3312
3313 return 0;
3314
3315err:
3316 nand_cleanup(chip);
3317 return ret;
3318}
3319
3320static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
3321{
3322 struct device *dev = nandc->dev;
3323 struct device_node *dn = dev->of_node, *child;
3324 struct qcom_nand_host *host;
3325 int ret = -ENODEV;
3326
3327 for_each_available_child_of_node(dn, child) {
3328 host = devm_kzalloc(dev, size: sizeof(*host), GFP_KERNEL);
3329 if (!host) {
3330 of_node_put(node: child);
3331 return -ENOMEM;
3332 }
3333
3334 ret = qcom_nand_host_init_and_register(nandc, host, dn: child);
3335 if (ret) {
3336 devm_kfree(dev, p: host);
3337 continue;
3338 }
3339
3340 list_add_tail(new: &host->node, head: &nandc->host_list);
3341 }
3342
3343 return ret;
3344}
3345
3346/* parse custom DT properties here */
3347static int qcom_nandc_parse_dt(struct platform_device *pdev)
3348{
3349 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3350 struct device_node *np = nandc->dev->of_node;
3351 int ret;
3352
3353 if (!nandc->props->is_bam) {
3354 ret = of_property_read_u32(np, propname: "qcom,cmd-crci",
3355 out_value: &nandc->cmd_crci);
3356 if (ret) {
3357 dev_err(nandc->dev, "command CRCI unspecified\n");
3358 return ret;
3359 }
3360
3361 ret = of_property_read_u32(np, propname: "qcom,data-crci",
3362 out_value: &nandc->data_crci);
3363 if (ret) {
3364 dev_err(nandc->dev, "data CRCI unspecified\n");
3365 return ret;
3366 }
3367 }
3368
3369 return 0;
3370}
3371
3372static int qcom_nandc_probe(struct platform_device *pdev)
3373{
3374 struct qcom_nand_controller *nandc;
3375 const void *dev_data;
3376 struct device *dev = &pdev->dev;
3377 struct resource *res;
3378 int ret;
3379
3380 nandc = devm_kzalloc(dev: &pdev->dev, size: sizeof(*nandc), GFP_KERNEL);
3381 if (!nandc)
3382 return -ENOMEM;
3383
3384 platform_set_drvdata(pdev, data: nandc);
3385 nandc->dev = dev;
3386
3387 dev_data = of_device_get_match_data(dev);
3388 if (!dev_data) {
3389 dev_err(&pdev->dev, "failed to get device data\n");
3390 return -ENODEV;
3391 }
3392
3393 nandc->props = dev_data;
3394
3395 nandc->core_clk = devm_clk_get(dev, id: "core");
3396 if (IS_ERR(ptr: nandc->core_clk))
3397 return PTR_ERR(ptr: nandc->core_clk);
3398
3399 nandc->aon_clk = devm_clk_get(dev, id: "aon");
3400 if (IS_ERR(ptr: nandc->aon_clk))
3401 return PTR_ERR(ptr: nandc->aon_clk);
3402
3403 ret = qcom_nandc_parse_dt(pdev);
3404 if (ret)
3405 return ret;
3406
3407 nandc->base = devm_platform_get_and_ioremap_resource(pdev, index: 0, res: &res);
3408 if (IS_ERR(ptr: nandc->base))
3409 return PTR_ERR(ptr: nandc->base);
3410
3411 nandc->base_phys = res->start;
3412 nandc->base_dma = dma_map_resource(dev, phys_addr: res->start,
3413 size: resource_size(res),
3414 dir: DMA_BIDIRECTIONAL, attrs: 0);
3415 if (dma_mapping_error(dev, dma_addr: nandc->base_dma))
3416 return -ENXIO;
3417
3418 ret = clk_prepare_enable(clk: nandc->core_clk);
3419 if (ret)
3420 goto err_core_clk;
3421
3422 ret = clk_prepare_enable(clk: nandc->aon_clk);
3423 if (ret)
3424 goto err_aon_clk;
3425
3426 ret = qcom_nandc_alloc(nandc);
3427 if (ret)
3428 goto err_nandc_alloc;
3429
3430 ret = qcom_nandc_setup(nandc);
3431 if (ret)
3432 goto err_setup;
3433
3434 ret = qcom_probe_nand_devices(nandc);
3435 if (ret)
3436 goto err_setup;
3437
3438 return 0;
3439
3440err_setup:
3441 qcom_nandc_unalloc(nandc);
3442err_nandc_alloc:
3443 clk_disable_unprepare(clk: nandc->aon_clk);
3444err_aon_clk:
3445 clk_disable_unprepare(clk: nandc->core_clk);
3446err_core_clk:
3447 dma_unmap_resource(dev, addr: nandc->base_dma, size: resource_size(res),
3448 dir: DMA_BIDIRECTIONAL, attrs: 0);
3449 return ret;
3450}
3451
3452static void qcom_nandc_remove(struct platform_device *pdev)
3453{
3454 struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3455 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3456 struct qcom_nand_host *host;
3457 struct nand_chip *chip;
3458 int ret;
3459
3460 list_for_each_entry(host, &nandc->host_list, node) {
3461 chip = &host->chip;
3462 ret = mtd_device_unregister(master: nand_to_mtd(chip));
3463 WARN_ON(ret);
3464 nand_cleanup(chip);
3465 }
3466
3467 qcom_nandc_unalloc(nandc);
3468
3469 clk_disable_unprepare(clk: nandc->aon_clk);
3470 clk_disable_unprepare(clk: nandc->core_clk);
3471
3472 dma_unmap_resource(dev: &pdev->dev, addr: nandc->base_dma, size: resource_size(res),
3473 dir: DMA_BIDIRECTIONAL, attrs: 0);
3474}
3475
3476static const struct qcom_nandc_props ipq806x_nandc_props = {
3477 .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3478 .is_bam = false,
3479 .use_codeword_fixup = true,
3480 .dev_cmd_reg_start = 0x0,
3481};
3482
3483static const struct qcom_nandc_props ipq4019_nandc_props = {
3484 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3485 .is_bam = true,
3486 .is_qpic = true,
3487 .dev_cmd_reg_start = 0x0,
3488};
3489
3490static const struct qcom_nandc_props ipq8074_nandc_props = {
3491 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3492 .is_bam = true,
3493 .is_qpic = true,
3494 .dev_cmd_reg_start = 0x7000,
3495};
3496
3497static const struct qcom_nandc_props sdx55_nandc_props = {
3498 .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3499 .is_bam = true,
3500 .is_qpic = true,
3501 .qpic_v2 = true,
3502 .dev_cmd_reg_start = 0x7000,
3503};
3504
3505/*
3506 * data will hold a struct pointer containing more differences once we support
3507 * more controller variants
3508 */
3509static const struct of_device_id qcom_nandc_of_match[] = {
3510 {
3511 .compatible = "qcom,ipq806x-nand",
3512 .data = &ipq806x_nandc_props,
3513 },
3514 {
3515 .compatible = "qcom,ipq4019-nand",
3516 .data = &ipq4019_nandc_props,
3517 },
3518 {
3519 .compatible = "qcom,ipq6018-nand",
3520 .data = &ipq8074_nandc_props,
3521 },
3522 {
3523 .compatible = "qcom,ipq8074-nand",
3524 .data = &ipq8074_nandc_props,
3525 },
3526 {
3527 .compatible = "qcom,sdx55-nand",
3528 .data = &sdx55_nandc_props,
3529 },
3530 {}
3531};
3532MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3533
3534static struct platform_driver qcom_nandc_driver = {
3535 .driver = {
3536 .name = "qcom-nandc",
3537 .of_match_table = qcom_nandc_of_match,
3538 },
3539 .probe = qcom_nandc_probe,
3540 .remove_new = qcom_nandc_remove,
3541};
3542module_platform_driver(qcom_nandc_driver);
3543
3544MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3545MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3546MODULE_LICENSE("GPL v2");
3547

source code of linux/drivers/mtd/nand/raw/qcom_nandc.c