1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4/* ethtool support for igb */
5
6#include <linux/vmalloc.h>
7#include <linux/netdevice.h>
8#include <linux/pci.h>
9#include <linux/delay.h>
10#include <linux/interrupt.h>
11#include <linux/if_ether.h>
12#include <linux/ethtool.h>
13#include <linux/sched.h>
14#include <linux/slab.h>
15#include <linux/pm_runtime.h>
16#include <linux/highmem.h>
17#include <linux/mdio.h>
18
19#include "igb.h"
20
21struct igb_stats {
22 char stat_string[ETH_GSTRING_LEN];
23 int sizeof_stat;
24 int stat_offset;
25};
26
27#define IGB_STAT(_name, _stat) { \
28 .stat_string = _name, \
29 .sizeof_stat = sizeof_field(struct igb_adapter, _stat), \
30 .stat_offset = offsetof(struct igb_adapter, _stat) \
31}
32static const struct igb_stats igb_gstrings_stats[] = {
33 IGB_STAT("rx_packets", stats.gprc),
34 IGB_STAT("tx_packets", stats.gptc),
35 IGB_STAT("rx_bytes", stats.gorc),
36 IGB_STAT("tx_bytes", stats.gotc),
37 IGB_STAT("rx_broadcast", stats.bprc),
38 IGB_STAT("tx_broadcast", stats.bptc),
39 IGB_STAT("rx_multicast", stats.mprc),
40 IGB_STAT("tx_multicast", stats.mptc),
41 IGB_STAT("multicast", stats.mprc),
42 IGB_STAT("collisions", stats.colc),
43 IGB_STAT("rx_crc_errors", stats.crcerrs),
44 IGB_STAT("rx_no_buffer_count", stats.rnbc),
45 IGB_STAT("rx_missed_errors", stats.mpc),
46 IGB_STAT("tx_aborted_errors", stats.ecol),
47 IGB_STAT("tx_carrier_errors", stats.tncrs),
48 IGB_STAT("tx_window_errors", stats.latecol),
49 IGB_STAT("tx_abort_late_coll", stats.latecol),
50 IGB_STAT("tx_deferred_ok", stats.dc),
51 IGB_STAT("tx_single_coll_ok", stats.scc),
52 IGB_STAT("tx_multi_coll_ok", stats.mcc),
53 IGB_STAT("tx_timeout_count", tx_timeout_count),
54 IGB_STAT("rx_long_length_errors", stats.roc),
55 IGB_STAT("rx_short_length_errors", stats.ruc),
56 IGB_STAT("rx_align_errors", stats.algnerrc),
57 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
58 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
59 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
60 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
61 IGB_STAT("tx_flow_control_xon", stats.xontxc),
62 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
63 IGB_STAT("rx_long_byte_count", stats.gorc),
64 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
65 IGB_STAT("tx_smbus", stats.mgptc),
66 IGB_STAT("rx_smbus", stats.mgprc),
67 IGB_STAT("dropped_smbus", stats.mgpdc),
68 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
69 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
70 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
71 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
72 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
73 IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
74 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
75};
76
77#define IGB_NETDEV_STAT(_net_stat) { \
78 .stat_string = __stringify(_net_stat), \
79 .sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \
80 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
81}
82static const struct igb_stats igb_gstrings_net_stats[] = {
83 IGB_NETDEV_STAT(rx_errors),
84 IGB_NETDEV_STAT(tx_errors),
85 IGB_NETDEV_STAT(tx_dropped),
86 IGB_NETDEV_STAT(rx_length_errors),
87 IGB_NETDEV_STAT(rx_over_errors),
88 IGB_NETDEV_STAT(rx_frame_errors),
89 IGB_NETDEV_STAT(rx_fifo_errors),
90 IGB_NETDEV_STAT(tx_fifo_errors),
91 IGB_NETDEV_STAT(tx_heartbeat_errors)
92};
93
94#define IGB_GLOBAL_STATS_LEN \
95 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
96#define IGB_NETDEV_STATS_LEN \
97 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
98#define IGB_RX_QUEUE_STATS_LEN \
99 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
100
101#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
102
103#define IGB_QUEUE_STATS_LEN \
104 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
105 IGB_RX_QUEUE_STATS_LEN) + \
106 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
107 IGB_TX_QUEUE_STATS_LEN))
108#define IGB_STATS_LEN \
109 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
110
111enum igb_diagnostics_results {
112 TEST_REG = 0,
113 TEST_EEP,
114 TEST_IRQ,
115 TEST_LOOP,
116 TEST_LINK
117};
118
119static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
120 [TEST_REG] = "Register test (offline)",
121 [TEST_EEP] = "Eeprom test (offline)",
122 [TEST_IRQ] = "Interrupt test (offline)",
123 [TEST_LOOP] = "Loopback test (offline)",
124 [TEST_LINK] = "Link test (on/offline)"
125};
126#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
127
128static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
129#define IGB_PRIV_FLAGS_LEGACY_RX BIT(0)
130 "legacy-rx",
131};
132
133#define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
134
135static int igb_get_link_ksettings(struct net_device *netdev,
136 struct ethtool_link_ksettings *cmd)
137{
138 struct igb_adapter *adapter = netdev_priv(dev: netdev);
139 struct e1000_hw *hw = &adapter->hw;
140 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
141 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
142 u32 status;
143 u32 speed;
144 u32 supported, advertising;
145
146 status = pm_runtime_suspended(dev: &adapter->pdev->dev) ?
147 0 : rd32(E1000_STATUS);
148 if (hw->phy.media_type == e1000_media_type_copper) {
149
150 supported = (SUPPORTED_10baseT_Half |
151 SUPPORTED_10baseT_Full |
152 SUPPORTED_100baseT_Half |
153 SUPPORTED_100baseT_Full |
154 SUPPORTED_1000baseT_Full|
155 SUPPORTED_Autoneg |
156 SUPPORTED_TP |
157 SUPPORTED_Pause);
158 advertising = ADVERTISED_TP;
159
160 if (hw->mac.autoneg == 1) {
161 advertising |= ADVERTISED_Autoneg;
162 /* the e1000 autoneg seems to match ethtool nicely */
163 advertising |= hw->phy.autoneg_advertised;
164 }
165
166 cmd->base.port = PORT_TP;
167 cmd->base.phy_address = hw->phy.addr;
168 } else {
169 supported = (SUPPORTED_FIBRE |
170 SUPPORTED_1000baseKX_Full |
171 SUPPORTED_Autoneg |
172 SUPPORTED_Pause);
173 advertising = (ADVERTISED_FIBRE |
174 ADVERTISED_1000baseKX_Full);
175 if (hw->mac.type == e1000_i354) {
176 if ((hw->device_id ==
177 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
178 !(status & E1000_STATUS_2P5_SKU_OVER)) {
179 supported |= SUPPORTED_2500baseX_Full;
180 supported &= ~SUPPORTED_1000baseKX_Full;
181 advertising |= ADVERTISED_2500baseX_Full;
182 advertising &= ~ADVERTISED_1000baseKX_Full;
183 }
184 }
185 if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
186 supported |= SUPPORTED_100baseT_Full;
187 advertising |= ADVERTISED_100baseT_Full;
188 }
189 if (hw->mac.autoneg == 1)
190 advertising |= ADVERTISED_Autoneg;
191
192 cmd->base.port = PORT_FIBRE;
193 }
194 if (hw->mac.autoneg != 1)
195 advertising &= ~(ADVERTISED_Pause |
196 ADVERTISED_Asym_Pause);
197
198 switch (hw->fc.requested_mode) {
199 case e1000_fc_full:
200 advertising |= ADVERTISED_Pause;
201 break;
202 case e1000_fc_rx_pause:
203 advertising |= (ADVERTISED_Pause |
204 ADVERTISED_Asym_Pause);
205 break;
206 case e1000_fc_tx_pause:
207 advertising |= ADVERTISED_Asym_Pause;
208 break;
209 default:
210 advertising &= ~(ADVERTISED_Pause |
211 ADVERTISED_Asym_Pause);
212 }
213 if (status & E1000_STATUS_LU) {
214 if ((status & E1000_STATUS_2P5_SKU) &&
215 !(status & E1000_STATUS_2P5_SKU_OVER)) {
216 speed = SPEED_2500;
217 } else if (status & E1000_STATUS_SPEED_1000) {
218 speed = SPEED_1000;
219 } else if (status & E1000_STATUS_SPEED_100) {
220 speed = SPEED_100;
221 } else {
222 speed = SPEED_10;
223 }
224 if ((status & E1000_STATUS_FD) ||
225 hw->phy.media_type != e1000_media_type_copper)
226 cmd->base.duplex = DUPLEX_FULL;
227 else
228 cmd->base.duplex = DUPLEX_HALF;
229 } else {
230 speed = SPEED_UNKNOWN;
231 cmd->base.duplex = DUPLEX_UNKNOWN;
232 }
233 cmd->base.speed = speed;
234 if ((hw->phy.media_type == e1000_media_type_fiber) ||
235 hw->mac.autoneg)
236 cmd->base.autoneg = AUTONEG_ENABLE;
237 else
238 cmd->base.autoneg = AUTONEG_DISABLE;
239
240 /* MDI-X => 2; MDI =>1; Invalid =>0 */
241 if (hw->phy.media_type == e1000_media_type_copper)
242 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
243 ETH_TP_MDI;
244 else
245 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
246
247 if (hw->phy.mdix == AUTO_ALL_MODES)
248 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
249 else
250 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
251
252 ethtool_convert_legacy_u32_to_link_mode(dst: cmd->link_modes.supported,
253 legacy_u32: supported);
254 ethtool_convert_legacy_u32_to_link_mode(dst: cmd->link_modes.advertising,
255 legacy_u32: advertising);
256
257 return 0;
258}
259
260static int igb_set_link_ksettings(struct net_device *netdev,
261 const struct ethtool_link_ksettings *cmd)
262{
263 struct igb_adapter *adapter = netdev_priv(dev: netdev);
264 struct e1000_hw *hw = &adapter->hw;
265 u32 advertising;
266
267 /* When SoL/IDER sessions are active, autoneg/speed/duplex
268 * cannot be changed
269 */
270 if (igb_check_reset_block(hw)) {
271 dev_err(&adapter->pdev->dev,
272 "Cannot change link characteristics when SoL/IDER is active.\n");
273 return -EINVAL;
274 }
275
276 /* MDI setting is only allowed when autoneg enabled because
277 * some hardware doesn't allow MDI setting when speed or
278 * duplex is forced.
279 */
280 if (cmd->base.eth_tp_mdix_ctrl) {
281 if (hw->phy.media_type != e1000_media_type_copper)
282 return -EOPNOTSUPP;
283
284 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
285 (cmd->base.autoneg != AUTONEG_ENABLE)) {
286 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
287 return -EINVAL;
288 }
289 }
290
291 while (test_and_set_bit(nr: __IGB_RESETTING, addr: &adapter->state))
292 usleep_range(min: 1000, max: 2000);
293
294 ethtool_convert_link_mode_to_legacy_u32(legacy_u32: &advertising,
295 src: cmd->link_modes.advertising);
296
297 if (cmd->base.autoneg == AUTONEG_ENABLE) {
298 hw->mac.autoneg = 1;
299 if (hw->phy.media_type == e1000_media_type_fiber) {
300 hw->phy.autoneg_advertised = advertising |
301 ADVERTISED_FIBRE |
302 ADVERTISED_Autoneg;
303 switch (adapter->link_speed) {
304 case SPEED_2500:
305 hw->phy.autoneg_advertised =
306 ADVERTISED_2500baseX_Full;
307 break;
308 case SPEED_1000:
309 hw->phy.autoneg_advertised =
310 ADVERTISED_1000baseT_Full;
311 break;
312 case SPEED_100:
313 hw->phy.autoneg_advertised =
314 ADVERTISED_100baseT_Full;
315 break;
316 default:
317 break;
318 }
319 } else {
320 hw->phy.autoneg_advertised = advertising |
321 ADVERTISED_TP |
322 ADVERTISED_Autoneg;
323 }
324 advertising = hw->phy.autoneg_advertised;
325 if (adapter->fc_autoneg)
326 hw->fc.requested_mode = e1000_fc_default;
327 } else {
328 u32 speed = cmd->base.speed;
329 /* calling this overrides forced MDI setting */
330 if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
331 clear_bit(nr: __IGB_RESETTING, addr: &adapter->state);
332 return -EINVAL;
333 }
334 }
335
336 /* MDI-X => 2; MDI => 1; Auto => 3 */
337 if (cmd->base.eth_tp_mdix_ctrl) {
338 /* fix up the value for auto (3 => 0) as zero is mapped
339 * internally to auto
340 */
341 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
342 hw->phy.mdix = AUTO_ALL_MODES;
343 else
344 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
345 }
346
347 /* reset the link */
348 if (netif_running(dev: adapter->netdev)) {
349 igb_down(adapter);
350 igb_up(adapter);
351 } else
352 igb_reset(adapter);
353
354 clear_bit(nr: __IGB_RESETTING, addr: &adapter->state);
355 return 0;
356}
357
358static u32 igb_get_link(struct net_device *netdev)
359{
360 struct igb_adapter *adapter = netdev_priv(dev: netdev);
361 struct e1000_mac_info *mac = &adapter->hw.mac;
362
363 /* If the link is not reported up to netdev, interrupts are disabled,
364 * and so the physical link state may have changed since we last
365 * looked. Set get_link_status to make sure that the true link
366 * state is interrogated, rather than pulling a cached and possibly
367 * stale link state from the driver.
368 */
369 if (!netif_carrier_ok(dev: netdev))
370 mac->get_link_status = 1;
371
372 return igb_has_link(adapter);
373}
374
375static void igb_get_pauseparam(struct net_device *netdev,
376 struct ethtool_pauseparam *pause)
377{
378 struct igb_adapter *adapter = netdev_priv(dev: netdev);
379 struct e1000_hw *hw = &adapter->hw;
380
381 pause->autoneg =
382 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
383
384 if (hw->fc.current_mode == e1000_fc_rx_pause)
385 pause->rx_pause = 1;
386 else if (hw->fc.current_mode == e1000_fc_tx_pause)
387 pause->tx_pause = 1;
388 else if (hw->fc.current_mode == e1000_fc_full) {
389 pause->rx_pause = 1;
390 pause->tx_pause = 1;
391 }
392}
393
394static int igb_set_pauseparam(struct net_device *netdev,
395 struct ethtool_pauseparam *pause)
396{
397 struct igb_adapter *adapter = netdev_priv(dev: netdev);
398 struct e1000_hw *hw = &adapter->hw;
399 int retval = 0;
400 int i;
401
402 /* 100basefx does not support setting link flow control */
403 if (hw->dev_spec._82575.eth_flags.e100_base_fx)
404 return -EINVAL;
405
406 adapter->fc_autoneg = pause->autoneg;
407
408 while (test_and_set_bit(nr: __IGB_RESETTING, addr: &adapter->state))
409 usleep_range(min: 1000, max: 2000);
410
411 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
412 hw->fc.requested_mode = e1000_fc_default;
413 if (netif_running(dev: adapter->netdev)) {
414 igb_down(adapter);
415 igb_up(adapter);
416 } else {
417 igb_reset(adapter);
418 }
419 } else {
420 if (pause->rx_pause && pause->tx_pause)
421 hw->fc.requested_mode = e1000_fc_full;
422 else if (pause->rx_pause && !pause->tx_pause)
423 hw->fc.requested_mode = e1000_fc_rx_pause;
424 else if (!pause->rx_pause && pause->tx_pause)
425 hw->fc.requested_mode = e1000_fc_tx_pause;
426 else if (!pause->rx_pause && !pause->tx_pause)
427 hw->fc.requested_mode = e1000_fc_none;
428
429 hw->fc.current_mode = hw->fc.requested_mode;
430
431 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
432 igb_force_mac_fc(hw) : igb_setup_link(hw));
433
434 /* Make sure SRRCTL considers new fc settings for each ring */
435 for (i = 0; i < adapter->num_rx_queues; i++) {
436 struct igb_ring *ring = adapter->rx_ring[i];
437
438 igb_setup_srrctl(adapter, ring);
439 }
440 }
441
442 clear_bit(nr: __IGB_RESETTING, addr: &adapter->state);
443 return retval;
444}
445
446static u32 igb_get_msglevel(struct net_device *netdev)
447{
448 struct igb_adapter *adapter = netdev_priv(dev: netdev);
449 return adapter->msg_enable;
450}
451
452static void igb_set_msglevel(struct net_device *netdev, u32 data)
453{
454 struct igb_adapter *adapter = netdev_priv(dev: netdev);
455 adapter->msg_enable = data;
456}
457
458static int igb_get_regs_len(struct net_device *netdev)
459{
460#define IGB_REGS_LEN 740
461 return IGB_REGS_LEN * sizeof(u32);
462}
463
464static void igb_get_regs(struct net_device *netdev,
465 struct ethtool_regs *regs, void *p)
466{
467 struct igb_adapter *adapter = netdev_priv(dev: netdev);
468 struct e1000_hw *hw = &adapter->hw;
469 u32 *regs_buff = p;
470 u8 i;
471
472 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
473
474 regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
475
476 /* General Registers */
477 regs_buff[0] = rd32(E1000_CTRL);
478 regs_buff[1] = rd32(E1000_STATUS);
479 regs_buff[2] = rd32(E1000_CTRL_EXT);
480 regs_buff[3] = rd32(E1000_MDIC);
481 regs_buff[4] = rd32(E1000_SCTL);
482 regs_buff[5] = rd32(E1000_CONNSW);
483 regs_buff[6] = rd32(E1000_VET);
484 regs_buff[7] = rd32(E1000_LEDCTL);
485 regs_buff[8] = rd32(E1000_PBA);
486 regs_buff[9] = rd32(E1000_PBS);
487 regs_buff[10] = rd32(E1000_FRTIMER);
488 regs_buff[11] = rd32(E1000_TCPTIMER);
489
490 /* NVM Register */
491 regs_buff[12] = rd32(E1000_EECD);
492
493 /* Interrupt */
494 /* Reading EICS for EICR because they read the
495 * same but EICS does not clear on read
496 */
497 regs_buff[13] = rd32(E1000_EICS);
498 regs_buff[14] = rd32(E1000_EICS);
499 regs_buff[15] = rd32(E1000_EIMS);
500 regs_buff[16] = rd32(E1000_EIMC);
501 regs_buff[17] = rd32(E1000_EIAC);
502 regs_buff[18] = rd32(E1000_EIAM);
503 /* Reading ICS for ICR because they read the
504 * same but ICS does not clear on read
505 */
506 regs_buff[19] = rd32(E1000_ICS);
507 regs_buff[20] = rd32(E1000_ICS);
508 regs_buff[21] = rd32(E1000_IMS);
509 regs_buff[22] = rd32(E1000_IMC);
510 regs_buff[23] = rd32(E1000_IAC);
511 regs_buff[24] = rd32(E1000_IAM);
512 regs_buff[25] = rd32(E1000_IMIRVP);
513
514 /* Flow Control */
515 regs_buff[26] = rd32(E1000_FCAL);
516 regs_buff[27] = rd32(E1000_FCAH);
517 regs_buff[28] = rd32(E1000_FCTTV);
518 regs_buff[29] = rd32(E1000_FCRTL);
519 regs_buff[30] = rd32(E1000_FCRTH);
520 regs_buff[31] = rd32(E1000_FCRTV);
521
522 /* Receive */
523 regs_buff[32] = rd32(E1000_RCTL);
524 regs_buff[33] = rd32(E1000_RXCSUM);
525 regs_buff[34] = rd32(E1000_RLPML);
526 regs_buff[35] = rd32(E1000_RFCTL);
527 regs_buff[36] = rd32(E1000_MRQC);
528 regs_buff[37] = rd32(E1000_VT_CTL);
529
530 /* Transmit */
531 regs_buff[38] = rd32(E1000_TCTL);
532 regs_buff[39] = rd32(E1000_TCTL_EXT);
533 regs_buff[40] = rd32(E1000_TIPG);
534 regs_buff[41] = rd32(E1000_DTXCTL);
535
536 /* Wake Up */
537 regs_buff[42] = rd32(E1000_WUC);
538 regs_buff[43] = rd32(E1000_WUFC);
539 regs_buff[44] = rd32(E1000_WUS);
540 regs_buff[45] = rd32(E1000_IPAV);
541 regs_buff[46] = rd32(E1000_WUPL);
542
543 /* MAC */
544 regs_buff[47] = rd32(E1000_PCS_CFG0);
545 regs_buff[48] = rd32(E1000_PCS_LCTL);
546 regs_buff[49] = rd32(E1000_PCS_LSTAT);
547 regs_buff[50] = rd32(E1000_PCS_ANADV);
548 regs_buff[51] = rd32(E1000_PCS_LPAB);
549 regs_buff[52] = rd32(E1000_PCS_NPTX);
550 regs_buff[53] = rd32(E1000_PCS_LPABNP);
551
552 /* Statistics */
553 regs_buff[54] = adapter->stats.crcerrs;
554 regs_buff[55] = adapter->stats.algnerrc;
555 regs_buff[56] = adapter->stats.symerrs;
556 regs_buff[57] = adapter->stats.rxerrc;
557 regs_buff[58] = adapter->stats.mpc;
558 regs_buff[59] = adapter->stats.scc;
559 regs_buff[60] = adapter->stats.ecol;
560 regs_buff[61] = adapter->stats.mcc;
561 regs_buff[62] = adapter->stats.latecol;
562 regs_buff[63] = adapter->stats.colc;
563 regs_buff[64] = adapter->stats.dc;
564 regs_buff[65] = adapter->stats.tncrs;
565 regs_buff[66] = adapter->stats.sec;
566 regs_buff[67] = adapter->stats.htdpmc;
567 regs_buff[68] = adapter->stats.rlec;
568 regs_buff[69] = adapter->stats.xonrxc;
569 regs_buff[70] = adapter->stats.xontxc;
570 regs_buff[71] = adapter->stats.xoffrxc;
571 regs_buff[72] = adapter->stats.xofftxc;
572 regs_buff[73] = adapter->stats.fcruc;
573 regs_buff[74] = adapter->stats.prc64;
574 regs_buff[75] = adapter->stats.prc127;
575 regs_buff[76] = adapter->stats.prc255;
576 regs_buff[77] = adapter->stats.prc511;
577 regs_buff[78] = adapter->stats.prc1023;
578 regs_buff[79] = adapter->stats.prc1522;
579 regs_buff[80] = adapter->stats.gprc;
580 regs_buff[81] = adapter->stats.bprc;
581 regs_buff[82] = adapter->stats.mprc;
582 regs_buff[83] = adapter->stats.gptc;
583 regs_buff[84] = adapter->stats.gorc;
584 regs_buff[86] = adapter->stats.gotc;
585 regs_buff[88] = adapter->stats.rnbc;
586 regs_buff[89] = adapter->stats.ruc;
587 regs_buff[90] = adapter->stats.rfc;
588 regs_buff[91] = adapter->stats.roc;
589 regs_buff[92] = adapter->stats.rjc;
590 regs_buff[93] = adapter->stats.mgprc;
591 regs_buff[94] = adapter->stats.mgpdc;
592 regs_buff[95] = adapter->stats.mgptc;
593 regs_buff[96] = adapter->stats.tor;
594 regs_buff[98] = adapter->stats.tot;
595 regs_buff[100] = adapter->stats.tpr;
596 regs_buff[101] = adapter->stats.tpt;
597 regs_buff[102] = adapter->stats.ptc64;
598 regs_buff[103] = adapter->stats.ptc127;
599 regs_buff[104] = adapter->stats.ptc255;
600 regs_buff[105] = adapter->stats.ptc511;
601 regs_buff[106] = adapter->stats.ptc1023;
602 regs_buff[107] = adapter->stats.ptc1522;
603 regs_buff[108] = adapter->stats.mptc;
604 regs_buff[109] = adapter->stats.bptc;
605 regs_buff[110] = adapter->stats.tsctc;
606 regs_buff[111] = adapter->stats.iac;
607 regs_buff[112] = adapter->stats.rpthc;
608 regs_buff[113] = adapter->stats.hgptc;
609 regs_buff[114] = adapter->stats.hgorc;
610 regs_buff[116] = adapter->stats.hgotc;
611 regs_buff[118] = adapter->stats.lenerrs;
612 regs_buff[119] = adapter->stats.scvpc;
613 regs_buff[120] = adapter->stats.hrmpc;
614
615 for (i = 0; i < 4; i++)
616 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
617 for (i = 0; i < 4; i++)
618 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
619 for (i = 0; i < 4; i++)
620 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
621 for (i = 0; i < 4; i++)
622 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
623 for (i = 0; i < 4; i++)
624 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
625 for (i = 0; i < 4; i++)
626 regs_buff[141 + i] = rd32(E1000_RDH(i));
627 for (i = 0; i < 4; i++)
628 regs_buff[145 + i] = rd32(E1000_RDT(i));
629 for (i = 0; i < 4; i++)
630 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
631
632 for (i = 0; i < 10; i++)
633 regs_buff[153 + i] = rd32(E1000_EITR(i));
634 for (i = 0; i < 8; i++)
635 regs_buff[163 + i] = rd32(E1000_IMIR(i));
636 for (i = 0; i < 8; i++)
637 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
638 for (i = 0; i < 16; i++)
639 regs_buff[179 + i] = rd32(E1000_RAL(i));
640 for (i = 0; i < 16; i++)
641 regs_buff[195 + i] = rd32(E1000_RAH(i));
642
643 for (i = 0; i < 4; i++)
644 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
645 for (i = 0; i < 4; i++)
646 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
647 for (i = 0; i < 4; i++)
648 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
649 for (i = 0; i < 4; i++)
650 regs_buff[223 + i] = rd32(E1000_TDH(i));
651 for (i = 0; i < 4; i++)
652 regs_buff[227 + i] = rd32(E1000_TDT(i));
653 for (i = 0; i < 4; i++)
654 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
655 for (i = 0; i < 4; i++)
656 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
657 for (i = 0; i < 4; i++)
658 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
659 for (i = 0; i < 4; i++)
660 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
661
662 for (i = 0; i < 4; i++)
663 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
664 for (i = 0; i < 4; i++)
665 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
666 for (i = 0; i < 32; i++)
667 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
668 for (i = 0; i < 128; i++)
669 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
670 for (i = 0; i < 128; i++)
671 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
672 for (i = 0; i < 4; i++)
673 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
674
675 regs_buff[547] = rd32(E1000_TDFH);
676 regs_buff[548] = rd32(E1000_TDFT);
677 regs_buff[549] = rd32(E1000_TDFHS);
678 regs_buff[550] = rd32(E1000_TDFPC);
679
680 if (hw->mac.type > e1000_82580) {
681 regs_buff[551] = adapter->stats.o2bgptc;
682 regs_buff[552] = adapter->stats.b2ospc;
683 regs_buff[553] = adapter->stats.o2bspc;
684 regs_buff[554] = adapter->stats.b2ogprc;
685 }
686
687 if (hw->mac.type == e1000_82576) {
688 for (i = 0; i < 12; i++)
689 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
690 for (i = 0; i < 4; i++)
691 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
692 for (i = 0; i < 12; i++)
693 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
694 for (i = 0; i < 12; i++)
695 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
696 for (i = 0; i < 12; i++)
697 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
698 for (i = 0; i < 12; i++)
699 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
700 for (i = 0; i < 12; i++)
701 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
702 for (i = 0; i < 12; i++)
703 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
704
705 for (i = 0; i < 12; i++)
706 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
707 for (i = 0; i < 12; i++)
708 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
709 for (i = 0; i < 12; i++)
710 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
711 for (i = 0; i < 12; i++)
712 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
713 for (i = 0; i < 12; i++)
714 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
715 for (i = 0; i < 12; i++)
716 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
717 for (i = 0; i < 12; i++)
718 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
719 for (i = 0; i < 12; i++)
720 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
721 }
722
723 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
724 regs_buff[739] = rd32(E1000_I210_RR2DCDELAY);
725}
726
727static int igb_get_eeprom_len(struct net_device *netdev)
728{
729 struct igb_adapter *adapter = netdev_priv(dev: netdev);
730 return adapter->hw.nvm.word_size * 2;
731}
732
733static int igb_get_eeprom(struct net_device *netdev,
734 struct ethtool_eeprom *eeprom, u8 *bytes)
735{
736 struct igb_adapter *adapter = netdev_priv(dev: netdev);
737 struct e1000_hw *hw = &adapter->hw;
738 u16 *eeprom_buff;
739 int first_word, last_word;
740 int ret_val = 0;
741 u16 i;
742
743 if (eeprom->len == 0)
744 return -EINVAL;
745
746 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
747
748 first_word = eeprom->offset >> 1;
749 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
750
751 eeprom_buff = kmalloc_array(n: last_word - first_word + 1, size: sizeof(u16),
752 GFP_KERNEL);
753 if (!eeprom_buff)
754 return -ENOMEM;
755
756 if (hw->nvm.type == e1000_nvm_eeprom_spi)
757 ret_val = hw->nvm.ops.read(hw, first_word,
758 last_word - first_word + 1,
759 eeprom_buff);
760 else {
761 for (i = 0; i < last_word - first_word + 1; i++) {
762 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
763 &eeprom_buff[i]);
764 if (ret_val)
765 break;
766 }
767 }
768
769 /* Device's eeprom is always little-endian, word addressable */
770 for (i = 0; i < last_word - first_word + 1; i++)
771 le16_to_cpus(&eeprom_buff[i]);
772
773 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
774 eeprom->len);
775 kfree(objp: eeprom_buff);
776
777 return ret_val;
778}
779
780static int igb_set_eeprom(struct net_device *netdev,
781 struct ethtool_eeprom *eeprom, u8 *bytes)
782{
783 struct igb_adapter *adapter = netdev_priv(dev: netdev);
784 struct e1000_hw *hw = &adapter->hw;
785 u16 *eeprom_buff;
786 void *ptr;
787 int max_len, first_word, last_word, ret_val = 0;
788 u16 i;
789
790 if (eeprom->len == 0)
791 return -EOPNOTSUPP;
792
793 if ((hw->mac.type >= e1000_i210) &&
794 !igb_get_flash_presence_i210(hw)) {
795 return -EOPNOTSUPP;
796 }
797
798 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
799 return -EFAULT;
800
801 max_len = hw->nvm.word_size * 2;
802
803 first_word = eeprom->offset >> 1;
804 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
805 eeprom_buff = kmalloc(size: max_len, GFP_KERNEL);
806 if (!eeprom_buff)
807 return -ENOMEM;
808
809 ptr = (void *)eeprom_buff;
810
811 if (eeprom->offset & 1) {
812 /* need read/modify/write of first changed EEPROM word
813 * only the second byte of the word is being modified
814 */
815 ret_val = hw->nvm.ops.read(hw, first_word, 1,
816 &eeprom_buff[0]);
817 ptr++;
818 }
819 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
820 /* need read/modify/write of last changed EEPROM word
821 * only the first byte of the word is being modified
822 */
823 ret_val = hw->nvm.ops.read(hw, last_word, 1,
824 &eeprom_buff[last_word - first_word]);
825 if (ret_val)
826 goto out;
827 }
828
829 /* Device's eeprom is always little-endian, word addressable */
830 for (i = 0; i < last_word - first_word + 1; i++)
831 le16_to_cpus(&eeprom_buff[i]);
832
833 memcpy(ptr, bytes, eeprom->len);
834
835 for (i = 0; i < last_word - first_word + 1; i++)
836 cpu_to_le16s(&eeprom_buff[i]);
837
838 ret_val = hw->nvm.ops.write(hw, first_word,
839 last_word - first_word + 1, eeprom_buff);
840
841 /* Update the checksum if nvm write succeeded */
842 if (ret_val == 0)
843 hw->nvm.ops.update(hw);
844
845 igb_set_fw_version(adapter);
846out:
847 kfree(objp: eeprom_buff);
848 return ret_val;
849}
850
851static void igb_get_drvinfo(struct net_device *netdev,
852 struct ethtool_drvinfo *drvinfo)
853{
854 struct igb_adapter *adapter = netdev_priv(dev: netdev);
855
856 strscpy(p: drvinfo->driver, q: igb_driver_name, size: sizeof(drvinfo->driver));
857
858 /* EEPROM image version # is reported as firmware version # for
859 * 82575 controllers
860 */
861 strscpy(p: drvinfo->fw_version, q: adapter->fw_version,
862 size: sizeof(drvinfo->fw_version));
863 strscpy(p: drvinfo->bus_info, q: pci_name(pdev: adapter->pdev),
864 size: sizeof(drvinfo->bus_info));
865
866 drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
867}
868
869static void igb_get_ringparam(struct net_device *netdev,
870 struct ethtool_ringparam *ring,
871 struct kernel_ethtool_ringparam *kernel_ring,
872 struct netlink_ext_ack *extack)
873{
874 struct igb_adapter *adapter = netdev_priv(dev: netdev);
875
876 ring->rx_max_pending = IGB_MAX_RXD;
877 ring->tx_max_pending = IGB_MAX_TXD;
878 ring->rx_pending = adapter->rx_ring_count;
879 ring->tx_pending = adapter->tx_ring_count;
880}
881
882static int igb_set_ringparam(struct net_device *netdev,
883 struct ethtool_ringparam *ring,
884 struct kernel_ethtool_ringparam *kernel_ring,
885 struct netlink_ext_ack *extack)
886{
887 struct igb_adapter *adapter = netdev_priv(dev: netdev);
888 struct igb_ring *temp_ring;
889 int i, err = 0;
890 u16 new_rx_count, new_tx_count;
891
892 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
893 return -EINVAL;
894
895 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
896 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
897 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
898
899 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
900 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
901 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
902
903 if ((new_tx_count == adapter->tx_ring_count) &&
904 (new_rx_count == adapter->rx_ring_count)) {
905 /* nothing to do */
906 return 0;
907 }
908
909 while (test_and_set_bit(nr: __IGB_RESETTING, addr: &adapter->state))
910 usleep_range(min: 1000, max: 2000);
911
912 if (!netif_running(dev: adapter->netdev)) {
913 for (i = 0; i < adapter->num_tx_queues; i++)
914 adapter->tx_ring[i]->count = new_tx_count;
915 for (i = 0; i < adapter->num_rx_queues; i++)
916 adapter->rx_ring[i]->count = new_rx_count;
917 adapter->tx_ring_count = new_tx_count;
918 adapter->rx_ring_count = new_rx_count;
919 goto clear_reset;
920 }
921
922 if (adapter->num_tx_queues > adapter->num_rx_queues)
923 temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
924 adapter->num_tx_queues));
925 else
926 temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
927 adapter->num_rx_queues));
928
929 if (!temp_ring) {
930 err = -ENOMEM;
931 goto clear_reset;
932 }
933
934 igb_down(adapter);
935
936 /* We can't just free everything and then setup again,
937 * because the ISRs in MSI-X mode get passed pointers
938 * to the Tx and Rx ring structs.
939 */
940 if (new_tx_count != adapter->tx_ring_count) {
941 for (i = 0; i < adapter->num_tx_queues; i++) {
942 memcpy(&temp_ring[i], adapter->tx_ring[i],
943 sizeof(struct igb_ring));
944
945 temp_ring[i].count = new_tx_count;
946 err = igb_setup_tx_resources(&temp_ring[i]);
947 if (err) {
948 while (i) {
949 i--;
950 igb_free_tx_resources(&temp_ring[i]);
951 }
952 goto err_setup;
953 }
954 }
955
956 for (i = 0; i < adapter->num_tx_queues; i++) {
957 igb_free_tx_resources(adapter->tx_ring[i]);
958
959 memcpy(adapter->tx_ring[i], &temp_ring[i],
960 sizeof(struct igb_ring));
961 }
962
963 adapter->tx_ring_count = new_tx_count;
964 }
965
966 if (new_rx_count != adapter->rx_ring_count) {
967 for (i = 0; i < adapter->num_rx_queues; i++) {
968 memcpy(&temp_ring[i], adapter->rx_ring[i],
969 sizeof(struct igb_ring));
970
971 temp_ring[i].count = new_rx_count;
972 err = igb_setup_rx_resources(&temp_ring[i]);
973 if (err) {
974 while (i) {
975 i--;
976 igb_free_rx_resources(&temp_ring[i]);
977 }
978 goto err_setup;
979 }
980
981 }
982
983 for (i = 0; i < adapter->num_rx_queues; i++) {
984 igb_free_rx_resources(adapter->rx_ring[i]);
985
986 memcpy(adapter->rx_ring[i], &temp_ring[i],
987 sizeof(struct igb_ring));
988 }
989
990 adapter->rx_ring_count = new_rx_count;
991 }
992err_setup:
993 igb_up(adapter);
994 vfree(addr: temp_ring);
995clear_reset:
996 clear_bit(nr: __IGB_RESETTING, addr: &adapter->state);
997 return err;
998}
999
1000/* ethtool register test data */
1001struct igb_reg_test {
1002 u16 reg;
1003 u16 reg_offset;
1004 u16 array_len;
1005 u16 test_type;
1006 u32 mask;
1007 u32 write;
1008};
1009
1010/* In the hardware, registers are laid out either singly, in arrays
1011 * spaced 0x100 bytes apart, or in contiguous tables. We assume
1012 * most tests take place on arrays or single registers (handled
1013 * as a single-element array) and special-case the tables.
1014 * Table tests are always pattern tests.
1015 *
1016 * We also make provision for some required setup steps by specifying
1017 * registers to be written without any read-back testing.
1018 */
1019
1020#define PATTERN_TEST 1
1021#define SET_READ_TEST 2
1022#define WRITE_NO_TEST 3
1023#define TABLE32_TEST 4
1024#define TABLE64_TEST_LO 5
1025#define TABLE64_TEST_HI 6
1026
1027/* i210 reg test */
1028static struct igb_reg_test reg_test_i210[] = {
1029 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1030 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1031 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1032 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1033 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1034 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1035 /* RDH is read-only for i210, only test RDT. */
1036 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1037 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1038 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1039 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1040 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1041 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1042 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1043 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1044 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1045 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1046 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1047 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1048 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1049 0xFFFFFFFF, 0xFFFFFFFF },
1050 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1051 0x900FFFFF, 0xFFFFFFFF },
1052 { E1000_MTA, 0, 128, TABLE32_TEST,
1053 0xFFFFFFFF, 0xFFFFFFFF },
1054 { 0, 0, 0, 0, 0 }
1055};
1056
1057/* i350 reg test */
1058static struct igb_reg_test reg_test_i350[] = {
1059 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1060 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1061 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1062 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1063 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1064 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1065 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1066 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1067 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1068 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1069 /* RDH is read-only for i350, only test RDT. */
1070 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1071 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1072 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1073 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1074 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1075 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1076 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1078 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1079 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1080 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1081 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1082 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1083 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1084 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1085 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1086 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1087 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1088 0xFFFFFFFF, 0xFFFFFFFF },
1089 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1090 0xC3FFFFFF, 0xFFFFFFFF },
1091 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
1092 0xFFFFFFFF, 0xFFFFFFFF },
1093 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
1094 0xC3FFFFFF, 0xFFFFFFFF },
1095 { E1000_MTA, 0, 128, TABLE32_TEST,
1096 0xFFFFFFFF, 0xFFFFFFFF },
1097 { 0, 0, 0, 0 }
1098};
1099
1100/* 82580 reg test */
1101static struct igb_reg_test reg_test_82580[] = {
1102 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1103 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1104 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1105 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1106 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1107 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1108 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1109 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1110 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1111 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1112 /* RDH is read-only for 82580, only test RDT. */
1113 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1114 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1115 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1116 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1117 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1118 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1119 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1121 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1122 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1123 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1124 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1125 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1126 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1127 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1128 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1129 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1130 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1131 0xFFFFFFFF, 0xFFFFFFFF },
1132 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1133 0x83FFFFFF, 0xFFFFFFFF },
1134 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
1135 0xFFFFFFFF, 0xFFFFFFFF },
1136 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
1137 0x83FFFFFF, 0xFFFFFFFF },
1138 { E1000_MTA, 0, 128, TABLE32_TEST,
1139 0xFFFFFFFF, 0xFFFFFFFF },
1140 { 0, 0, 0, 0 }
1141};
1142
1143/* 82576 reg test */
1144static struct igb_reg_test reg_test_82576[] = {
1145 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1146 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1147 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1148 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1149 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1150 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1151 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1152 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1153 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1154 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1155 /* Enable all RX queues before testing. */
1156 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1157 E1000_RXDCTL_QUEUE_ENABLE },
1158 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1159 E1000_RXDCTL_QUEUE_ENABLE },
1160 /* RDH is read-only for 82576, only test RDT. */
1161 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1162 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1163 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1164 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1165 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1166 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1167 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1168 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1169 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1170 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1171 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1172 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1173 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1174 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1175 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1176 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1177 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1178 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1179 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1180 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1181 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1182 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1183 { 0, 0, 0, 0 }
1184};
1185
1186/* 82575 register test */
1187static struct igb_reg_test reg_test_82575[] = {
1188 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1189 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1190 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1191 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1192 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1193 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1194 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1195 /* Enable all four RX queues before testing. */
1196 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1197 E1000_RXDCTL_QUEUE_ENABLE },
1198 /* RDH is read-only for 82575, only test RDT. */
1199 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1200 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1201 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1202 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1203 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1204 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1205 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1206 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1207 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1208 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1209 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1210 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1211 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1212 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1213 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1214 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1215 { 0, 0, 0, 0 }
1216};
1217
1218static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1219 int reg, u32 mask, u32 write)
1220{
1221 struct e1000_hw *hw = &adapter->hw;
1222 u32 pat, val;
1223 static const u32 _test[] = {
1224 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1225 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1226 wr32(reg, (_test[pat] & write));
1227 val = rd32(reg) & mask;
1228 if (val != (_test[pat] & write & mask)) {
1229 dev_err(&adapter->pdev->dev,
1230 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1231 reg, val, (_test[pat] & write & mask));
1232 *data = reg;
1233 return true;
1234 }
1235 }
1236
1237 return false;
1238}
1239
1240static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1241 int reg, u32 mask, u32 write)
1242{
1243 struct e1000_hw *hw = &adapter->hw;
1244 u32 val;
1245
1246 wr32(reg, write & mask);
1247 val = rd32(reg);
1248 if ((write & mask) != (val & mask)) {
1249 dev_err(&adapter->pdev->dev,
1250 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1251 reg, (val & mask), (write & mask));
1252 *data = reg;
1253 return true;
1254 }
1255
1256 return false;
1257}
1258
1259#define REG_PATTERN_TEST(reg, mask, write) \
1260 do { \
1261 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1262 return 1; \
1263 } while (0)
1264
1265#define REG_SET_AND_CHECK(reg, mask, write) \
1266 do { \
1267 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1268 return 1; \
1269 } while (0)
1270
1271static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1272{
1273 struct e1000_hw *hw = &adapter->hw;
1274 struct igb_reg_test *test;
1275 u32 value, before, after;
1276 u32 i, toggle;
1277
1278 switch (adapter->hw.mac.type) {
1279 case e1000_i350:
1280 case e1000_i354:
1281 test = reg_test_i350;
1282 toggle = 0x7FEFF3FF;
1283 break;
1284 case e1000_i210:
1285 case e1000_i211:
1286 test = reg_test_i210;
1287 toggle = 0x7FEFF3FF;
1288 break;
1289 case e1000_82580:
1290 test = reg_test_82580;
1291 toggle = 0x7FEFF3FF;
1292 break;
1293 case e1000_82576:
1294 test = reg_test_82576;
1295 toggle = 0x7FFFF3FF;
1296 break;
1297 default:
1298 test = reg_test_82575;
1299 toggle = 0x7FFFF3FF;
1300 break;
1301 }
1302
1303 /* Because the status register is such a special case,
1304 * we handle it separately from the rest of the register
1305 * tests. Some bits are read-only, some toggle, and some
1306 * are writable on newer MACs.
1307 */
1308 before = rd32(E1000_STATUS);
1309 value = (rd32(E1000_STATUS) & toggle);
1310 wr32(E1000_STATUS, toggle);
1311 after = rd32(E1000_STATUS) & toggle;
1312 if (value != after) {
1313 dev_err(&adapter->pdev->dev,
1314 "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1315 after, value);
1316 *data = 1;
1317 return 1;
1318 }
1319 /* restore previous status */
1320 wr32(E1000_STATUS, before);
1321
1322 /* Perform the remainder of the register test, looping through
1323 * the test table until we either fail or reach the null entry.
1324 */
1325 while (test->reg) {
1326 for (i = 0; i < test->array_len; i++) {
1327 switch (test->test_type) {
1328 case PATTERN_TEST:
1329 REG_PATTERN_TEST(test->reg +
1330 (i * test->reg_offset),
1331 test->mask,
1332 test->write);
1333 break;
1334 case SET_READ_TEST:
1335 REG_SET_AND_CHECK(test->reg +
1336 (i * test->reg_offset),
1337 test->mask,
1338 test->write);
1339 break;
1340 case WRITE_NO_TEST:
1341 writel(val: test->write,
1342 addr: (adapter->hw.hw_addr + test->reg)
1343 + (i * test->reg_offset));
1344 break;
1345 case TABLE32_TEST:
1346 REG_PATTERN_TEST(test->reg + (i * 4),
1347 test->mask,
1348 test->write);
1349 break;
1350 case TABLE64_TEST_LO:
1351 REG_PATTERN_TEST(test->reg + (i * 8),
1352 test->mask,
1353 test->write);
1354 break;
1355 case TABLE64_TEST_HI:
1356 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1357 test->mask,
1358 test->write);
1359 break;
1360 }
1361 }
1362 test++;
1363 }
1364
1365 *data = 0;
1366 return 0;
1367}
1368
1369static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1370{
1371 struct e1000_hw *hw = &adapter->hw;
1372
1373 *data = 0;
1374
1375 /* Validate eeprom on all parts but flashless */
1376 switch (hw->mac.type) {
1377 case e1000_i210:
1378 case e1000_i211:
1379 if (igb_get_flash_presence_i210(hw)) {
1380 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1381 *data = 2;
1382 }
1383 break;
1384 default:
1385 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1386 *data = 2;
1387 break;
1388 }
1389
1390 return *data;
1391}
1392
1393static irqreturn_t igb_test_intr(int irq, void *data)
1394{
1395 struct igb_adapter *adapter = (struct igb_adapter *) data;
1396 struct e1000_hw *hw = &adapter->hw;
1397
1398 adapter->test_icr |= rd32(E1000_ICR);
1399
1400 return IRQ_HANDLED;
1401}
1402
1403static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1404{
1405 struct e1000_hw *hw = &adapter->hw;
1406 struct net_device *netdev = adapter->netdev;
1407 u32 mask, ics_mask, i = 0, shared_int = true;
1408 u32 irq = adapter->pdev->irq;
1409
1410 *data = 0;
1411
1412 /* Hook up test interrupt handler just for this test */
1413 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1414 if (request_irq(irq: adapter->msix_entries[0].vector,
1415 handler: igb_test_intr, flags: 0, name: netdev->name, dev: adapter)) {
1416 *data = 1;
1417 return -1;
1418 }
1419 wr32(E1000_IVAR_MISC, E1000_IVAR_VALID << 8);
1420 wr32(E1000_EIMS, BIT(0));
1421 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1422 shared_int = false;
1423 if (request_irq(irq,
1424 handler: igb_test_intr, flags: 0, name: netdev->name, dev: adapter)) {
1425 *data = 1;
1426 return -1;
1427 }
1428 } else if (!request_irq(irq, handler: igb_test_intr, IRQF_PROBE_SHARED,
1429 name: netdev->name, dev: adapter)) {
1430 shared_int = false;
1431 } else if (request_irq(irq, handler: igb_test_intr, IRQF_SHARED,
1432 name: netdev->name, dev: adapter)) {
1433 *data = 1;
1434 return -1;
1435 }
1436 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1437 (shared_int ? "shared" : "unshared"));
1438
1439 /* Disable all the interrupts */
1440 wr32(E1000_IMC, ~0);
1441 wrfl();
1442 usleep_range(min: 10000, max: 11000);
1443
1444 /* Define all writable bits for ICS */
1445 switch (hw->mac.type) {
1446 case e1000_82575:
1447 ics_mask = 0x37F47EDD;
1448 break;
1449 case e1000_82576:
1450 ics_mask = 0x77D4FBFD;
1451 break;
1452 case e1000_82580:
1453 ics_mask = 0x77DCFED5;
1454 break;
1455 case e1000_i350:
1456 case e1000_i354:
1457 case e1000_i210:
1458 case e1000_i211:
1459 ics_mask = 0x77DCFED5;
1460 break;
1461 default:
1462 ics_mask = 0x7FFFFFFF;
1463 break;
1464 }
1465
1466 /* Test each interrupt */
1467 for (; i < 31; i++) {
1468 /* Interrupt to test */
1469 mask = BIT(i);
1470
1471 if (!(mask & ics_mask))
1472 continue;
1473
1474 if (!shared_int) {
1475 /* Disable the interrupt to be reported in
1476 * the cause register and then force the same
1477 * interrupt and see if one gets posted. If
1478 * an interrupt was posted to the bus, the
1479 * test failed.
1480 */
1481 adapter->test_icr = 0;
1482
1483 /* Flush any pending interrupts */
1484 wr32(E1000_ICR, ~0);
1485
1486 wr32(E1000_IMC, mask);
1487 wr32(E1000_ICS, mask);
1488 wrfl();
1489 usleep_range(min: 10000, max: 11000);
1490
1491 if (adapter->test_icr & mask) {
1492 *data = 3;
1493 break;
1494 }
1495 }
1496
1497 /* Enable the interrupt to be reported in
1498 * the cause register and then force the same
1499 * interrupt and see if one gets posted. If
1500 * an interrupt was not posted to the bus, the
1501 * test failed.
1502 */
1503 adapter->test_icr = 0;
1504
1505 /* Flush any pending interrupts */
1506 wr32(E1000_ICR, ~0);
1507
1508 wr32(E1000_IMS, mask);
1509 wr32(E1000_ICS, mask);
1510 wrfl();
1511 usleep_range(min: 10000, max: 11000);
1512
1513 if (!(adapter->test_icr & mask)) {
1514 *data = 4;
1515 break;
1516 }
1517
1518 if (!shared_int) {
1519 /* Disable the other interrupts to be reported in
1520 * the cause register and then force the other
1521 * interrupts and see if any get posted. If
1522 * an interrupt was posted to the bus, the
1523 * test failed.
1524 */
1525 adapter->test_icr = 0;
1526
1527 /* Flush any pending interrupts */
1528 wr32(E1000_ICR, ~0);
1529
1530 wr32(E1000_IMC, ~mask);
1531 wr32(E1000_ICS, ~mask);
1532 wrfl();
1533 usleep_range(min: 10000, max: 11000);
1534
1535 if (adapter->test_icr & mask) {
1536 *data = 5;
1537 break;
1538 }
1539 }
1540 }
1541
1542 /* Disable all the interrupts */
1543 wr32(E1000_IMC, ~0);
1544 wrfl();
1545 usleep_range(min: 10000, max: 11000);
1546
1547 /* Unhook test interrupt handler */
1548 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1549 free_irq(adapter->msix_entries[0].vector, adapter);
1550 else
1551 free_irq(irq, adapter);
1552
1553 return *data;
1554}
1555
1556static void igb_free_desc_rings(struct igb_adapter *adapter)
1557{
1558 igb_free_tx_resources(&adapter->test_tx_ring);
1559 igb_free_rx_resources(&adapter->test_rx_ring);
1560}
1561
1562static int igb_setup_desc_rings(struct igb_adapter *adapter)
1563{
1564 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1565 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1566 struct e1000_hw *hw = &adapter->hw;
1567 int ret_val;
1568
1569 /* Setup Tx descriptor ring and Tx buffers */
1570 tx_ring->count = IGB_DEFAULT_TXD;
1571 tx_ring->dev = &adapter->pdev->dev;
1572 tx_ring->netdev = adapter->netdev;
1573 tx_ring->reg_idx = adapter->vfs_allocated_count;
1574
1575 if (igb_setup_tx_resources(tx_ring)) {
1576 ret_val = 1;
1577 goto err_nomem;
1578 }
1579
1580 igb_setup_tctl(adapter);
1581 igb_configure_tx_ring(adapter, tx_ring);
1582
1583 /* Setup Rx descriptor ring and Rx buffers */
1584 rx_ring->count = IGB_DEFAULT_RXD;
1585 rx_ring->dev = &adapter->pdev->dev;
1586 rx_ring->netdev = adapter->netdev;
1587 rx_ring->reg_idx = adapter->vfs_allocated_count;
1588
1589 if (igb_setup_rx_resources(rx_ring)) {
1590 ret_val = 3;
1591 goto err_nomem;
1592 }
1593
1594 /* set the default queue to queue 0 of PF */
1595 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1596
1597 /* enable receive ring */
1598 igb_setup_rctl(adapter);
1599 igb_configure_rx_ring(adapter, rx_ring);
1600
1601 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(ring: rx_ring));
1602
1603 return 0;
1604
1605err_nomem:
1606 igb_free_desc_rings(adapter);
1607 return ret_val;
1608}
1609
1610static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1611{
1612 struct e1000_hw *hw = &adapter->hw;
1613
1614 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1615 igb_write_phy_reg(hw, offset: 29, data: 0x001F);
1616 igb_write_phy_reg(hw, offset: 30, data: 0x8FFC);
1617 igb_write_phy_reg(hw, offset: 29, data: 0x001A);
1618 igb_write_phy_reg(hw, offset: 30, data: 0x8FF0);
1619}
1620
1621static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1622{
1623 struct e1000_hw *hw = &adapter->hw;
1624 u32 ctrl_reg = 0;
1625
1626 hw->mac.autoneg = false;
1627
1628 if (hw->phy.type == e1000_phy_m88) {
1629 if (hw->phy.id != I210_I_PHY_ID) {
1630 /* Auto-MDI/MDIX Off */
1631 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, data: 0x0808);
1632 /* reset to update Auto-MDI/MDIX */
1633 igb_write_phy_reg(hw, PHY_CONTROL, data: 0x9140);
1634 /* autoneg off */
1635 igb_write_phy_reg(hw, PHY_CONTROL, data: 0x8140);
1636 } else {
1637 /* force 1000, set loopback */
1638 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, data: 0);
1639 igb_write_phy_reg(hw, PHY_CONTROL, data: 0x4140);
1640 }
1641 } else if (hw->phy.type == e1000_phy_82580) {
1642 /* enable MII loopback */
1643 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, data: 0x8041);
1644 }
1645
1646 /* add small delay to avoid loopback test failure */
1647 msleep(msecs: 50);
1648
1649 /* force 1000, set loopback */
1650 igb_write_phy_reg(hw, PHY_CONTROL, data: 0x4140);
1651
1652 /* Now set up the MAC to the same speed/duplex as the PHY. */
1653 ctrl_reg = rd32(E1000_CTRL);
1654 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1655 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1656 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1657 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1658 E1000_CTRL_FD | /* Force Duplex to FULL */
1659 E1000_CTRL_SLU); /* Set link up enable bit */
1660
1661 if (hw->phy.type == e1000_phy_m88)
1662 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1663
1664 wr32(E1000_CTRL, ctrl_reg);
1665
1666 /* Disable the receiver on the PHY so when a cable is plugged in, the
1667 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1668 */
1669 if (hw->phy.type == e1000_phy_m88)
1670 igb_phy_disable_receiver(adapter);
1671
1672 msleep(msecs: 500);
1673 return 0;
1674}
1675
1676static int igb_set_phy_loopback(struct igb_adapter *adapter)
1677{
1678 return igb_integrated_phy_loopback(adapter);
1679}
1680
1681static int igb_setup_loopback_test(struct igb_adapter *adapter)
1682{
1683 struct e1000_hw *hw = &adapter->hw;
1684 u32 reg;
1685
1686 reg = rd32(E1000_CTRL_EXT);
1687
1688 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1689 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1690 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1691 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1692 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1693 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1694 (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1695 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1696 /* Enable DH89xxCC MPHY for near end loopback */
1697 reg = rd32(E1000_MPHY_ADDR_CTL);
1698 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1699 E1000_MPHY_PCS_CLK_REG_OFFSET;
1700 wr32(E1000_MPHY_ADDR_CTL, reg);
1701
1702 reg = rd32(E1000_MPHY_DATA);
1703 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1704 wr32(E1000_MPHY_DATA, reg);
1705 }
1706
1707 reg = rd32(E1000_RCTL);
1708 reg |= E1000_RCTL_LBM_TCVR;
1709 wr32(E1000_RCTL, reg);
1710
1711 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1712
1713 reg = rd32(E1000_CTRL);
1714 reg &= ~(E1000_CTRL_RFCE |
1715 E1000_CTRL_TFCE |
1716 E1000_CTRL_LRST);
1717 reg |= E1000_CTRL_SLU |
1718 E1000_CTRL_FD;
1719 wr32(E1000_CTRL, reg);
1720
1721 /* Unset switch control to serdes energy detect */
1722 reg = rd32(E1000_CONNSW);
1723 reg &= ~E1000_CONNSW_ENRGSRC;
1724 wr32(E1000_CONNSW, reg);
1725
1726 /* Unset sigdetect for SERDES loopback on
1727 * 82580 and newer devices.
1728 */
1729 if (hw->mac.type >= e1000_82580) {
1730 reg = rd32(E1000_PCS_CFG0);
1731 reg |= E1000_PCS_CFG_IGN_SD;
1732 wr32(E1000_PCS_CFG0, reg);
1733 }
1734
1735 /* Set PCS register for forced speed */
1736 reg = rd32(E1000_PCS_LCTL);
1737 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1738 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1739 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1740 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1741 E1000_PCS_LCTL_FSD | /* Force Speed */
1742 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1743 wr32(E1000_PCS_LCTL, reg);
1744
1745 return 0;
1746 }
1747
1748 return igb_set_phy_loopback(adapter);
1749}
1750
1751static void igb_loopback_cleanup(struct igb_adapter *adapter)
1752{
1753 struct e1000_hw *hw = &adapter->hw;
1754 u32 rctl;
1755 u16 phy_reg;
1756
1757 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1758 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1759 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1760 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1761 (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1762 u32 reg;
1763
1764 /* Disable near end loopback on DH89xxCC */
1765 reg = rd32(E1000_MPHY_ADDR_CTL);
1766 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1767 E1000_MPHY_PCS_CLK_REG_OFFSET;
1768 wr32(E1000_MPHY_ADDR_CTL, reg);
1769
1770 reg = rd32(E1000_MPHY_DATA);
1771 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1772 wr32(E1000_MPHY_DATA, reg);
1773 }
1774
1775 rctl = rd32(E1000_RCTL);
1776 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1777 wr32(E1000_RCTL, rctl);
1778
1779 hw->mac.autoneg = true;
1780 igb_read_phy_reg(hw, PHY_CONTROL, data: &phy_reg);
1781 if (phy_reg & MII_CR_LOOPBACK) {
1782 phy_reg &= ~MII_CR_LOOPBACK;
1783 igb_write_phy_reg(hw, PHY_CONTROL, data: phy_reg);
1784 igb_phy_sw_reset(hw);
1785 }
1786}
1787
1788static void igb_create_lbtest_frame(struct sk_buff *skb,
1789 unsigned int frame_size)
1790{
1791 memset(skb->data, 0xFF, frame_size);
1792 frame_size /= 2;
1793 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1794 skb->data[frame_size + 10] = 0xBE;
1795 skb->data[frame_size + 12] = 0xAF;
1796}
1797
1798static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1799 unsigned int frame_size)
1800{
1801 unsigned char *data;
1802 bool match = true;
1803
1804 frame_size >>= 1;
1805
1806 data = kmap_local_page(page: rx_buffer->page);
1807
1808 if (data[3] != 0xFF ||
1809 data[frame_size + 10] != 0xBE ||
1810 data[frame_size + 12] != 0xAF)
1811 match = false;
1812
1813 kunmap_local(data);
1814
1815 return match;
1816}
1817
1818static int igb_clean_test_rings(struct igb_ring *rx_ring,
1819 struct igb_ring *tx_ring,
1820 unsigned int size)
1821{
1822 union e1000_adv_rx_desc *rx_desc;
1823 struct igb_rx_buffer *rx_buffer_info;
1824 struct igb_tx_buffer *tx_buffer_info;
1825 u16 rx_ntc, tx_ntc, count = 0;
1826
1827 /* initialize next to clean and descriptor values */
1828 rx_ntc = rx_ring->next_to_clean;
1829 tx_ntc = tx_ring->next_to_clean;
1830 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1831
1832 while (rx_desc->wb.upper.length) {
1833 /* check Rx buffer */
1834 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1835
1836 /* sync Rx buffer for CPU read */
1837 dma_sync_single_for_cpu(dev: rx_ring->dev,
1838 addr: rx_buffer_info->dma,
1839 size,
1840 dir: DMA_FROM_DEVICE);
1841
1842 /* verify contents of skb */
1843 if (igb_check_lbtest_frame(rx_buffer: rx_buffer_info, frame_size: size))
1844 count++;
1845
1846 /* sync Rx buffer for device write */
1847 dma_sync_single_for_device(dev: rx_ring->dev,
1848 addr: rx_buffer_info->dma,
1849 size,
1850 dir: DMA_FROM_DEVICE);
1851
1852 /* unmap buffer on Tx side */
1853 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1854
1855 /* Free all the Tx ring sk_buffs */
1856 dev_kfree_skb_any(skb: tx_buffer_info->skb);
1857
1858 /* unmap skb header data */
1859 dma_unmap_single(tx_ring->dev,
1860 dma_unmap_addr(tx_buffer_info, dma),
1861 dma_unmap_len(tx_buffer_info, len),
1862 DMA_TO_DEVICE);
1863 dma_unmap_len_set(tx_buffer_info, len, 0);
1864
1865 /* increment Rx/Tx next to clean counters */
1866 rx_ntc++;
1867 if (rx_ntc == rx_ring->count)
1868 rx_ntc = 0;
1869 tx_ntc++;
1870 if (tx_ntc == tx_ring->count)
1871 tx_ntc = 0;
1872
1873 /* fetch next descriptor */
1874 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1875 }
1876
1877 netdev_tx_reset_queue(q: txring_txq(tx_ring));
1878
1879 /* re-map buffers to ring, store next to clean values */
1880 igb_alloc_rx_buffers(rx_ring, count);
1881 rx_ring->next_to_clean = rx_ntc;
1882 tx_ring->next_to_clean = tx_ntc;
1883
1884 return count;
1885}
1886
1887static int igb_run_loopback_test(struct igb_adapter *adapter)
1888{
1889 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1890 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1891 u16 i, j, lc, good_cnt;
1892 int ret_val = 0;
1893 unsigned int size = IGB_RX_HDR_LEN;
1894 netdev_tx_t tx_ret_val;
1895 struct sk_buff *skb;
1896
1897 /* allocate test skb */
1898 skb = alloc_skb(size, GFP_KERNEL);
1899 if (!skb)
1900 return 11;
1901
1902 /* place data into test skb */
1903 igb_create_lbtest_frame(skb, frame_size: size);
1904 skb_put(skb, len: size);
1905
1906 /* Calculate the loop count based on the largest descriptor ring
1907 * The idea is to wrap the largest ring a number of times using 64
1908 * send/receive pairs during each loop
1909 */
1910
1911 if (rx_ring->count <= tx_ring->count)
1912 lc = ((tx_ring->count / 64) * 2) + 1;
1913 else
1914 lc = ((rx_ring->count / 64) * 2) + 1;
1915
1916 for (j = 0; j <= lc; j++) { /* loop count loop */
1917 /* reset count of good packets */
1918 good_cnt = 0;
1919
1920 /* place 64 packets on the transmit queue*/
1921 for (i = 0; i < 64; i++) {
1922 skb_get(skb);
1923 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1924 if (tx_ret_val == NETDEV_TX_OK)
1925 good_cnt++;
1926 }
1927
1928 if (good_cnt != 64) {
1929 ret_val = 12;
1930 break;
1931 }
1932
1933 /* allow 200 milliseconds for packets to go from Tx to Rx */
1934 msleep(msecs: 200);
1935
1936 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1937 if (good_cnt != 64) {
1938 ret_val = 13;
1939 break;
1940 }
1941 } /* end loop count loop */
1942
1943 /* free the original skb */
1944 kfree_skb(skb);
1945
1946 return ret_val;
1947}
1948
1949static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1950{
1951 /* PHY loopback cannot be performed if SoL/IDER
1952 * sessions are active
1953 */
1954 if (igb_check_reset_block(hw: &adapter->hw)) {
1955 dev_err(&adapter->pdev->dev,
1956 "Cannot do PHY loopback test when SoL/IDER is active.\n");
1957 *data = 0;
1958 goto out;
1959 }
1960
1961 if (adapter->hw.mac.type == e1000_i354) {
1962 dev_info(&adapter->pdev->dev,
1963 "Loopback test not supported on i354.\n");
1964 *data = 0;
1965 goto out;
1966 }
1967 *data = igb_setup_desc_rings(adapter);
1968 if (*data)
1969 goto out;
1970 *data = igb_setup_loopback_test(adapter);
1971 if (*data)
1972 goto err_loopback;
1973 *data = igb_run_loopback_test(adapter);
1974 igb_loopback_cleanup(adapter);
1975
1976err_loopback:
1977 igb_free_desc_rings(adapter);
1978out:
1979 return *data;
1980}
1981
1982static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1983{
1984 struct e1000_hw *hw = &adapter->hw;
1985 *data = 0;
1986 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1987 int i = 0;
1988
1989 hw->mac.serdes_has_link = false;
1990
1991 /* On some blade server designs, link establishment
1992 * could take as long as 2-3 minutes
1993 */
1994 do {
1995 hw->mac.ops.check_for_link(&adapter->hw);
1996 if (hw->mac.serdes_has_link)
1997 return *data;
1998 msleep(msecs: 20);
1999 } while (i++ < 3750);
2000
2001 *data = 1;
2002 } else {
2003 hw->mac.ops.check_for_link(&adapter->hw);
2004 if (hw->mac.autoneg)
2005 msleep(msecs: 5000);
2006
2007 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
2008 *data = 1;
2009 }
2010 return *data;
2011}
2012
2013static void igb_diag_test(struct net_device *netdev,
2014 struct ethtool_test *eth_test, u64 *data)
2015{
2016 struct igb_adapter *adapter = netdev_priv(dev: netdev);
2017 u16 autoneg_advertised;
2018 u8 forced_speed_duplex, autoneg;
2019 bool if_running = netif_running(dev: netdev);
2020
2021 set_bit(nr: __IGB_TESTING, addr: &adapter->state);
2022
2023 /* can't do offline tests on media switching devices */
2024 if (adapter->hw.dev_spec._82575.mas_capable)
2025 eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2026 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2027 /* Offline tests */
2028
2029 /* save speed, duplex, autoneg settings */
2030 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2031 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2032 autoneg = adapter->hw.mac.autoneg;
2033
2034 dev_info(&adapter->pdev->dev, "offline testing starting\n");
2035
2036 /* power up link for link test */
2037 igb_power_up_link(adapter);
2038
2039 /* Link test performed before hardware reset so autoneg doesn't
2040 * interfere with test result
2041 */
2042 if (igb_link_test(adapter, data: &data[TEST_LINK]))
2043 eth_test->flags |= ETH_TEST_FL_FAILED;
2044
2045 if (if_running)
2046 /* indicate we're in test mode */
2047 igb_close(netdev);
2048 else
2049 igb_reset(adapter);
2050
2051 if (igb_reg_test(adapter, data: &data[TEST_REG]))
2052 eth_test->flags |= ETH_TEST_FL_FAILED;
2053
2054 igb_reset(adapter);
2055 if (igb_eeprom_test(adapter, data: &data[TEST_EEP]))
2056 eth_test->flags |= ETH_TEST_FL_FAILED;
2057
2058 igb_reset(adapter);
2059 if (igb_intr_test(adapter, data: &data[TEST_IRQ]))
2060 eth_test->flags |= ETH_TEST_FL_FAILED;
2061
2062 igb_reset(adapter);
2063 /* power up link for loopback test */
2064 igb_power_up_link(adapter);
2065 if (igb_loopback_test(adapter, data: &data[TEST_LOOP]))
2066 eth_test->flags |= ETH_TEST_FL_FAILED;
2067
2068 /* restore speed, duplex, autoneg settings */
2069 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2070 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2071 adapter->hw.mac.autoneg = autoneg;
2072
2073 /* force this routine to wait until autoneg complete/timeout */
2074 adapter->hw.phy.autoneg_wait_to_complete = true;
2075 igb_reset(adapter);
2076 adapter->hw.phy.autoneg_wait_to_complete = false;
2077
2078 clear_bit(nr: __IGB_TESTING, addr: &adapter->state);
2079 if (if_running)
2080 igb_open(netdev);
2081 } else {
2082 dev_info(&adapter->pdev->dev, "online testing starting\n");
2083
2084 /* PHY is powered down when interface is down */
2085 if (if_running && igb_link_test(adapter, data: &data[TEST_LINK]))
2086 eth_test->flags |= ETH_TEST_FL_FAILED;
2087 else
2088 data[TEST_LINK] = 0;
2089
2090 /* Online tests aren't run; pass by default */
2091 data[TEST_REG] = 0;
2092 data[TEST_EEP] = 0;
2093 data[TEST_IRQ] = 0;
2094 data[TEST_LOOP] = 0;
2095
2096 clear_bit(nr: __IGB_TESTING, addr: &adapter->state);
2097 }
2098 msleep_interruptible(msecs: 4 * 1000);
2099}
2100
2101static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2102{
2103 struct igb_adapter *adapter = netdev_priv(dev: netdev);
2104
2105 wol->wolopts = 0;
2106
2107 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2108 return;
2109
2110 wol->supported = WAKE_UCAST | WAKE_MCAST |
2111 WAKE_BCAST | WAKE_MAGIC |
2112 WAKE_PHY;
2113
2114 /* apply any specific unsupported masks here */
2115 switch (adapter->hw.device_id) {
2116 default:
2117 break;
2118 }
2119
2120 if (adapter->wol & E1000_WUFC_EX)
2121 wol->wolopts |= WAKE_UCAST;
2122 if (adapter->wol & E1000_WUFC_MC)
2123 wol->wolopts |= WAKE_MCAST;
2124 if (adapter->wol & E1000_WUFC_BC)
2125 wol->wolopts |= WAKE_BCAST;
2126 if (adapter->wol & E1000_WUFC_MAG)
2127 wol->wolopts |= WAKE_MAGIC;
2128 if (adapter->wol & E1000_WUFC_LNKC)
2129 wol->wolopts |= WAKE_PHY;
2130}
2131
2132static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2133{
2134 struct igb_adapter *adapter = netdev_priv(dev: netdev);
2135
2136 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER))
2137 return -EOPNOTSUPP;
2138
2139 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2140 return wol->wolopts ? -EOPNOTSUPP : 0;
2141
2142 /* these settings will always override what we currently have */
2143 adapter->wol = 0;
2144
2145 if (wol->wolopts & WAKE_UCAST)
2146 adapter->wol |= E1000_WUFC_EX;
2147 if (wol->wolopts & WAKE_MCAST)
2148 adapter->wol |= E1000_WUFC_MC;
2149 if (wol->wolopts & WAKE_BCAST)
2150 adapter->wol |= E1000_WUFC_BC;
2151 if (wol->wolopts & WAKE_MAGIC)
2152 adapter->wol |= E1000_WUFC_MAG;
2153 if (wol->wolopts & WAKE_PHY)
2154 adapter->wol |= E1000_WUFC_LNKC;
2155 device_set_wakeup_enable(dev: &adapter->pdev->dev, enable: adapter->wol);
2156
2157 return 0;
2158}
2159
2160/* bit defines for adapter->led_status */
2161#define IGB_LED_ON 0
2162
2163static int igb_set_phys_id(struct net_device *netdev,
2164 enum ethtool_phys_id_state state)
2165{
2166 struct igb_adapter *adapter = netdev_priv(dev: netdev);
2167 struct e1000_hw *hw = &adapter->hw;
2168
2169 switch (state) {
2170 case ETHTOOL_ID_ACTIVE:
2171 igb_blink_led(hw);
2172 return 2;
2173 case ETHTOOL_ID_ON:
2174 igb_blink_led(hw);
2175 break;
2176 case ETHTOOL_ID_OFF:
2177 igb_led_off(hw);
2178 break;
2179 case ETHTOOL_ID_INACTIVE:
2180 igb_led_off(hw);
2181 clear_bit(IGB_LED_ON, addr: &adapter->led_status);
2182 igb_cleanup_led(hw);
2183 break;
2184 }
2185
2186 return 0;
2187}
2188
2189static int igb_set_coalesce(struct net_device *netdev,
2190 struct ethtool_coalesce *ec,
2191 struct kernel_ethtool_coalesce *kernel_coal,
2192 struct netlink_ext_ack *extack)
2193{
2194 struct igb_adapter *adapter = netdev_priv(dev: netdev);
2195 int i;
2196
2197 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2198 ((ec->rx_coalesce_usecs > 3) &&
2199 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2200 (ec->rx_coalesce_usecs == 2))
2201 return -EINVAL;
2202
2203 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2204 ((ec->tx_coalesce_usecs > 3) &&
2205 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2206 (ec->tx_coalesce_usecs == 2))
2207 return -EINVAL;
2208
2209 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2210 return -EINVAL;
2211
2212 /* If ITR is disabled, disable DMAC */
2213 if (ec->rx_coalesce_usecs == 0) {
2214 if (adapter->flags & IGB_FLAG_DMAC)
2215 adapter->flags &= ~IGB_FLAG_DMAC;
2216 }
2217
2218 /* convert to rate of irq's per second */
2219 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2220 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2221 else
2222 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2223
2224 /* convert to rate of irq's per second */
2225 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2226 adapter->tx_itr_setting = adapter->rx_itr_setting;
2227 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2228 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2229 else
2230 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2231
2232 for (i = 0; i < adapter->num_q_vectors; i++) {
2233 struct igb_q_vector *q_vector = adapter->q_vector[i];
2234 q_vector->tx.work_limit = adapter->tx_work_limit;
2235 if (q_vector->rx.ring)
2236 q_vector->itr_val = adapter->rx_itr_setting;
2237 else
2238 q_vector->itr_val = adapter->tx_itr_setting;
2239 if (q_vector->itr_val && q_vector->itr_val <= 3)
2240 q_vector->itr_val = IGB_START_ITR;
2241 q_vector->set_itr = 1;
2242 }
2243
2244 return 0;
2245}
2246
2247static int igb_get_coalesce(struct net_device *netdev,
2248 struct ethtool_coalesce *ec,
2249 struct kernel_ethtool_coalesce *kernel_coal,
2250 struct netlink_ext_ack *extack)
2251{
2252 struct igb_adapter *adapter = netdev_priv(dev: netdev);
2253
2254 if (adapter->rx_itr_setting <= 3)
2255 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2256 else
2257 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2258
2259 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2260 if (adapter->tx_itr_setting <= 3)
2261 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2262 else
2263 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2264 }
2265
2266 return 0;
2267}
2268
2269static int igb_nway_reset(struct net_device *netdev)
2270{
2271 struct igb_adapter *adapter = netdev_priv(dev: netdev);
2272 if (netif_running(dev: netdev))
2273 igb_reinit_locked(adapter);
2274 return 0;
2275}
2276
2277static int igb_get_sset_count(struct net_device *netdev, int sset)
2278{
2279 switch (sset) {
2280 case ETH_SS_STATS:
2281 return IGB_STATS_LEN;
2282 case ETH_SS_TEST:
2283 return IGB_TEST_LEN;
2284 case ETH_SS_PRIV_FLAGS:
2285 return IGB_PRIV_FLAGS_STR_LEN;
2286 default:
2287 return -ENOTSUPP;
2288 }
2289}
2290
2291static void igb_get_ethtool_stats(struct net_device *netdev,
2292 struct ethtool_stats *stats, u64 *data)
2293{
2294 struct igb_adapter *adapter = netdev_priv(dev: netdev);
2295 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2296 unsigned int start;
2297 struct igb_ring *ring;
2298 int i, j;
2299 char *p;
2300
2301 spin_lock(lock: &adapter->stats64_lock);
2302 igb_update_stats(adapter);
2303
2304 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2305 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2306 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2307 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2308 }
2309 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2310 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2311 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2312 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2313 }
2314 for (j = 0; j < adapter->num_tx_queues; j++) {
2315 u64 restart2;
2316
2317 ring = adapter->tx_ring[j];
2318 do {
2319 start = u64_stats_fetch_begin(syncp: &ring->tx_syncp);
2320 data[i] = ring->tx_stats.packets;
2321 data[i+1] = ring->tx_stats.bytes;
2322 data[i+2] = ring->tx_stats.restart_queue;
2323 } while (u64_stats_fetch_retry(syncp: &ring->tx_syncp, start));
2324 do {
2325 start = u64_stats_fetch_begin(syncp: &ring->tx_syncp2);
2326 restart2 = ring->tx_stats.restart_queue2;
2327 } while (u64_stats_fetch_retry(syncp: &ring->tx_syncp2, start));
2328 data[i+2] += restart2;
2329
2330 i += IGB_TX_QUEUE_STATS_LEN;
2331 }
2332 for (j = 0; j < adapter->num_rx_queues; j++) {
2333 ring = adapter->rx_ring[j];
2334 do {
2335 start = u64_stats_fetch_begin(syncp: &ring->rx_syncp);
2336 data[i] = ring->rx_stats.packets;
2337 data[i+1] = ring->rx_stats.bytes;
2338 data[i+2] = ring->rx_stats.drops;
2339 data[i+3] = ring->rx_stats.csum_err;
2340 data[i+4] = ring->rx_stats.alloc_failed;
2341 } while (u64_stats_fetch_retry(syncp: &ring->rx_syncp, start));
2342 i += IGB_RX_QUEUE_STATS_LEN;
2343 }
2344 spin_unlock(lock: &adapter->stats64_lock);
2345}
2346
2347static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2348{
2349 struct igb_adapter *adapter = netdev_priv(dev: netdev);
2350 u8 *p = data;
2351 int i;
2352
2353 switch (stringset) {
2354 case ETH_SS_TEST:
2355 memcpy(data, igb_gstrings_test, sizeof(igb_gstrings_test));
2356 break;
2357 case ETH_SS_STATS:
2358 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++)
2359 ethtool_sprintf(data: &p, fmt: "%s",
2360 igb_gstrings_stats[i].stat_string);
2361 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++)
2362 ethtool_sprintf(data: &p, fmt: "%s",
2363 igb_gstrings_net_stats[i].stat_string);
2364 for (i = 0; i < adapter->num_tx_queues; i++) {
2365 ethtool_sprintf(data: &p, fmt: "tx_queue_%u_packets", i);
2366 ethtool_sprintf(data: &p, fmt: "tx_queue_%u_bytes", i);
2367 ethtool_sprintf(data: &p, fmt: "tx_queue_%u_restart", i);
2368 }
2369 for (i = 0; i < adapter->num_rx_queues; i++) {
2370 ethtool_sprintf(data: &p, fmt: "rx_queue_%u_packets", i);
2371 ethtool_sprintf(data: &p, fmt: "rx_queue_%u_bytes", i);
2372 ethtool_sprintf(data: &p, fmt: "rx_queue_%u_drops", i);
2373 ethtool_sprintf(data: &p, fmt: "rx_queue_%u_csum_err", i);
2374 ethtool_sprintf(data: &p, fmt: "rx_queue_%u_alloc_failed", i);
2375 }
2376 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2377 break;
2378 case ETH_SS_PRIV_FLAGS:
2379 memcpy(data, igb_priv_flags_strings,
2380 IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2381 break;
2382 }
2383}
2384
2385static int igb_get_ts_info(struct net_device *dev,
2386 struct ethtool_ts_info *info)
2387{
2388 struct igb_adapter *adapter = netdev_priv(dev);
2389
2390 if (adapter->ptp_clock)
2391 info->phc_index = ptp_clock_index(ptp: adapter->ptp_clock);
2392 else
2393 info->phc_index = -1;
2394
2395 switch (adapter->hw.mac.type) {
2396 case e1000_82575:
2397 info->so_timestamping =
2398 SOF_TIMESTAMPING_TX_SOFTWARE |
2399 SOF_TIMESTAMPING_RX_SOFTWARE |
2400 SOF_TIMESTAMPING_SOFTWARE;
2401 return 0;
2402 case e1000_82576:
2403 case e1000_82580:
2404 case e1000_i350:
2405 case e1000_i354:
2406 case e1000_i210:
2407 case e1000_i211:
2408 info->so_timestamping =
2409 SOF_TIMESTAMPING_TX_SOFTWARE |
2410 SOF_TIMESTAMPING_RX_SOFTWARE |
2411 SOF_TIMESTAMPING_SOFTWARE |
2412 SOF_TIMESTAMPING_TX_HARDWARE |
2413 SOF_TIMESTAMPING_RX_HARDWARE |
2414 SOF_TIMESTAMPING_RAW_HARDWARE;
2415
2416 info->tx_types =
2417 BIT(HWTSTAMP_TX_OFF) |
2418 BIT(HWTSTAMP_TX_ON);
2419
2420 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2421
2422 /* 82576 does not support timestamping all packets. */
2423 if (adapter->hw.mac.type >= e1000_82580)
2424 info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2425 else
2426 info->rx_filters |=
2427 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2428 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2429 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2430
2431 return 0;
2432 default:
2433 return -EOPNOTSUPP;
2434 }
2435}
2436
2437#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2438static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2439 struct ethtool_rxnfc *cmd)
2440{
2441 struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2442 struct igb_nfc_filter *rule = NULL;
2443
2444 /* report total rule count */
2445 cmd->data = IGB_MAX_RXNFC_FILTERS;
2446
2447 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2448 if (fsp->location <= rule->sw_idx)
2449 break;
2450 }
2451
2452 if (!rule || fsp->location != rule->sw_idx)
2453 return -EINVAL;
2454
2455 if (rule->filter.match_flags) {
2456 fsp->flow_type = ETHER_FLOW;
2457 fsp->ring_cookie = rule->action;
2458 if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2459 fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2460 fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2461 }
2462 if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2463 fsp->flow_type |= FLOW_EXT;
2464 fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2465 fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2466 }
2467 if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2468 ether_addr_copy(dst: fsp->h_u.ether_spec.h_dest,
2469 src: rule->filter.dst_addr);
2470 /* As we only support matching by the full
2471 * mask, return the mask to userspace
2472 */
2473 eth_broadcast_addr(addr: fsp->m_u.ether_spec.h_dest);
2474 }
2475 if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2476 ether_addr_copy(dst: fsp->h_u.ether_spec.h_source,
2477 src: rule->filter.src_addr);
2478 /* As we only support matching by the full
2479 * mask, return the mask to userspace
2480 */
2481 eth_broadcast_addr(addr: fsp->m_u.ether_spec.h_source);
2482 }
2483
2484 return 0;
2485 }
2486 return -EINVAL;
2487}
2488
2489static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2490 struct ethtool_rxnfc *cmd,
2491 u32 *rule_locs)
2492{
2493 struct igb_nfc_filter *rule;
2494 int cnt = 0;
2495
2496 /* report total rule count */
2497 cmd->data = IGB_MAX_RXNFC_FILTERS;
2498
2499 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2500 if (cnt == cmd->rule_cnt)
2501 return -EMSGSIZE;
2502 rule_locs[cnt] = rule->sw_idx;
2503 cnt++;
2504 }
2505
2506 cmd->rule_cnt = cnt;
2507
2508 return 0;
2509}
2510
2511static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2512 struct ethtool_rxnfc *cmd)
2513{
2514 cmd->data = 0;
2515
2516 /* Report default options for RSS on igb */
2517 switch (cmd->flow_type) {
2518 case TCP_V4_FLOW:
2519 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2520 fallthrough;
2521 case UDP_V4_FLOW:
2522 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2523 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2524 fallthrough;
2525 case SCTP_V4_FLOW:
2526 case AH_ESP_V4_FLOW:
2527 case AH_V4_FLOW:
2528 case ESP_V4_FLOW:
2529 case IPV4_FLOW:
2530 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2531 break;
2532 case TCP_V6_FLOW:
2533 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2534 fallthrough;
2535 case UDP_V6_FLOW:
2536 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2537 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2538 fallthrough;
2539 case SCTP_V6_FLOW:
2540 case AH_ESP_V6_FLOW:
2541 case AH_V6_FLOW:
2542 case ESP_V6_FLOW:
2543 case IPV6_FLOW:
2544 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2545 break;
2546 default:
2547 return -EINVAL;
2548 }
2549
2550 return 0;
2551}
2552
2553static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2554 u32 *rule_locs)
2555{
2556 struct igb_adapter *adapter = netdev_priv(dev);
2557 int ret = -EOPNOTSUPP;
2558
2559 switch (cmd->cmd) {
2560 case ETHTOOL_GRXRINGS:
2561 cmd->data = adapter->num_rx_queues;
2562 ret = 0;
2563 break;
2564 case ETHTOOL_GRXCLSRLCNT:
2565 cmd->rule_cnt = adapter->nfc_filter_count;
2566 ret = 0;
2567 break;
2568 case ETHTOOL_GRXCLSRULE:
2569 ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2570 break;
2571 case ETHTOOL_GRXCLSRLALL:
2572 ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2573 break;
2574 case ETHTOOL_GRXFH:
2575 ret = igb_get_rss_hash_opts(adapter, cmd);
2576 break;
2577 default:
2578 break;
2579 }
2580
2581 return ret;
2582}
2583
2584#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2585 IGB_FLAG_RSS_FIELD_IPV6_UDP)
2586static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2587 struct ethtool_rxnfc *nfc)
2588{
2589 u32 flags = adapter->flags;
2590
2591 /* RSS does not support anything other than hashing
2592 * to queues on src and dst IPs and ports
2593 */
2594 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2595 RXH_L4_B_0_1 | RXH_L4_B_2_3))
2596 return -EINVAL;
2597
2598 switch (nfc->flow_type) {
2599 case TCP_V4_FLOW:
2600 case TCP_V6_FLOW:
2601 if (!(nfc->data & RXH_IP_SRC) ||
2602 !(nfc->data & RXH_IP_DST) ||
2603 !(nfc->data & RXH_L4_B_0_1) ||
2604 !(nfc->data & RXH_L4_B_2_3))
2605 return -EINVAL;
2606 break;
2607 case UDP_V4_FLOW:
2608 if (!(nfc->data & RXH_IP_SRC) ||
2609 !(nfc->data & RXH_IP_DST))
2610 return -EINVAL;
2611 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2612 case 0:
2613 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2614 break;
2615 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2616 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2617 break;
2618 default:
2619 return -EINVAL;
2620 }
2621 break;
2622 case UDP_V6_FLOW:
2623 if (!(nfc->data & RXH_IP_SRC) ||
2624 !(nfc->data & RXH_IP_DST))
2625 return -EINVAL;
2626 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2627 case 0:
2628 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2629 break;
2630 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2631 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2632 break;
2633 default:
2634 return -EINVAL;
2635 }
2636 break;
2637 case AH_ESP_V4_FLOW:
2638 case AH_V4_FLOW:
2639 case ESP_V4_FLOW:
2640 case SCTP_V4_FLOW:
2641 case AH_ESP_V6_FLOW:
2642 case AH_V6_FLOW:
2643 case ESP_V6_FLOW:
2644 case SCTP_V6_FLOW:
2645 if (!(nfc->data & RXH_IP_SRC) ||
2646 !(nfc->data & RXH_IP_DST) ||
2647 (nfc->data & RXH_L4_B_0_1) ||
2648 (nfc->data & RXH_L4_B_2_3))
2649 return -EINVAL;
2650 break;
2651 default:
2652 return -EINVAL;
2653 }
2654
2655 /* if we changed something we need to update flags */
2656 if (flags != adapter->flags) {
2657 struct e1000_hw *hw = &adapter->hw;
2658 u32 mrqc = rd32(E1000_MRQC);
2659
2660 if ((flags & UDP_RSS_FLAGS) &&
2661 !(adapter->flags & UDP_RSS_FLAGS))
2662 dev_err(&adapter->pdev->dev,
2663 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2664
2665 adapter->flags = flags;
2666
2667 /* Perform hash on these packet types */
2668 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2669 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2670 E1000_MRQC_RSS_FIELD_IPV6 |
2671 E1000_MRQC_RSS_FIELD_IPV6_TCP;
2672
2673 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2674 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2675
2676 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2677 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2678
2679 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2680 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2681
2682 wr32(E1000_MRQC, mrqc);
2683 }
2684
2685 return 0;
2686}
2687
2688static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2689 struct igb_nfc_filter *input)
2690{
2691 struct e1000_hw *hw = &adapter->hw;
2692 u8 i;
2693 u32 etqf;
2694 u16 etype;
2695
2696 /* find an empty etype filter register */
2697 for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2698 if (!adapter->etype_bitmap[i])
2699 break;
2700 }
2701 if (i == MAX_ETYPE_FILTER) {
2702 dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2703 return -EINVAL;
2704 }
2705
2706 adapter->etype_bitmap[i] = true;
2707
2708 etqf = rd32(E1000_ETQF(i));
2709 etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2710
2711 etqf |= E1000_ETQF_FILTER_ENABLE;
2712 etqf &= ~E1000_ETQF_ETYPE_MASK;
2713 etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2714
2715 etqf &= ~E1000_ETQF_QUEUE_MASK;
2716 etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2717 & E1000_ETQF_QUEUE_MASK);
2718 etqf |= E1000_ETQF_QUEUE_ENABLE;
2719
2720 wr32(E1000_ETQF(i), etqf);
2721
2722 input->etype_reg_index = i;
2723
2724 return 0;
2725}
2726
2727static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2728 struct igb_nfc_filter *input)
2729{
2730 struct e1000_hw *hw = &adapter->hw;
2731 u8 vlan_priority;
2732 u16 queue_index;
2733 u32 vlapqf;
2734
2735 vlapqf = rd32(E1000_VLAPQF);
2736 vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2737 >> VLAN_PRIO_SHIFT;
2738 queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2739
2740 /* check whether this vlan prio is already set */
2741 if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2742 (queue_index != input->action)) {
2743 dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2744 return -EEXIST;
2745 }
2746
2747 vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2748 vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2749
2750 wr32(E1000_VLAPQF, vlapqf);
2751
2752 return 0;
2753}
2754
2755int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2756{
2757 struct e1000_hw *hw = &adapter->hw;
2758 int err = -EINVAL;
2759
2760 if (hw->mac.type == e1000_i210 &&
2761 !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2762 dev_err(&adapter->pdev->dev,
2763 "i210 doesn't support flow classification rules specifying only source addresses.\n");
2764 return -EOPNOTSUPP;
2765 }
2766
2767 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2768 err = igb_rxnfc_write_etype_filter(adapter, input);
2769 if (err)
2770 return err;
2771 }
2772
2773 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2774 err = igb_add_mac_steering_filter(adapter,
2775 addr: input->filter.dst_addr,
2776 queue: input->action, flags: 0);
2777 err = min_t(int, err, 0);
2778 if (err)
2779 return err;
2780 }
2781
2782 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2783 err = igb_add_mac_steering_filter(adapter,
2784 addr: input->filter.src_addr,
2785 queue: input->action,
2786 IGB_MAC_STATE_SRC_ADDR);
2787 err = min_t(int, err, 0);
2788 if (err)
2789 return err;
2790 }
2791
2792 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2793 err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2794
2795 return err;
2796}
2797
2798static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2799 u16 reg_index)
2800{
2801 struct e1000_hw *hw = &adapter->hw;
2802 u32 etqf = rd32(E1000_ETQF(reg_index));
2803
2804 etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2805 etqf &= ~E1000_ETQF_QUEUE_MASK;
2806 etqf &= ~E1000_ETQF_FILTER_ENABLE;
2807
2808 wr32(E1000_ETQF(reg_index), etqf);
2809
2810 adapter->etype_bitmap[reg_index] = false;
2811}
2812
2813static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2814 u16 vlan_tci)
2815{
2816 struct e1000_hw *hw = &adapter->hw;
2817 u8 vlan_priority;
2818 u32 vlapqf;
2819
2820 vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2821
2822 vlapqf = rd32(E1000_VLAPQF);
2823 vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2824 vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2825 E1000_VLAPQF_QUEUE_MASK);
2826
2827 wr32(E1000_VLAPQF, vlapqf);
2828}
2829
2830int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2831{
2832 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2833 igb_clear_etype_filter_regs(adapter,
2834 reg_index: input->etype_reg_index);
2835
2836 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2837 igb_clear_vlan_prio_filter(adapter,
2838 ntohs(input->filter.vlan_tci));
2839
2840 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2841 igb_del_mac_steering_filter(adapter, addr: input->filter.src_addr,
2842 queue: input->action,
2843 IGB_MAC_STATE_SRC_ADDR);
2844
2845 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2846 igb_del_mac_steering_filter(adapter, addr: input->filter.dst_addr,
2847 queue: input->action, flags: 0);
2848
2849 return 0;
2850}
2851
2852static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2853 struct igb_nfc_filter *input,
2854 u16 sw_idx)
2855{
2856 struct igb_nfc_filter *rule, *parent;
2857 int err = -EINVAL;
2858
2859 parent = NULL;
2860 rule = NULL;
2861
2862 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2863 /* hash found, or no matching entry */
2864 if (rule->sw_idx >= sw_idx)
2865 break;
2866 parent = rule;
2867 }
2868
2869 /* if there is an old rule occupying our place remove it */
2870 if (rule && (rule->sw_idx == sw_idx)) {
2871 if (!input)
2872 err = igb_erase_filter(adapter, input: rule);
2873
2874 hlist_del(n: &rule->nfc_node);
2875 kfree(objp: rule);
2876 adapter->nfc_filter_count--;
2877 }
2878
2879 /* If no input this was a delete, err should be 0 if a rule was
2880 * successfully found and removed from the list else -EINVAL
2881 */
2882 if (!input)
2883 return err;
2884
2885 /* initialize node */
2886 INIT_HLIST_NODE(h: &input->nfc_node);
2887
2888 /* add filter to the list */
2889 if (parent)
2890 hlist_add_behind(n: &input->nfc_node, prev: &parent->nfc_node);
2891 else
2892 hlist_add_head(n: &input->nfc_node, h: &adapter->nfc_filter_list);
2893
2894 /* update counts */
2895 adapter->nfc_filter_count++;
2896
2897 return 0;
2898}
2899
2900static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2901 struct ethtool_rxnfc *cmd)
2902{
2903 struct net_device *netdev = adapter->netdev;
2904 struct ethtool_rx_flow_spec *fsp =
2905 (struct ethtool_rx_flow_spec *)&cmd->fs;
2906 struct igb_nfc_filter *input, *rule;
2907 int err = 0;
2908
2909 if (!(netdev->hw_features & NETIF_F_NTUPLE))
2910 return -EOPNOTSUPP;
2911
2912 /* Don't allow programming if the action is a queue greater than
2913 * the number of online Rx queues.
2914 */
2915 if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2916 (fsp->ring_cookie >= adapter->num_rx_queues)) {
2917 dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2918 return -EINVAL;
2919 }
2920
2921 /* Don't allow indexes to exist outside of available space */
2922 if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2923 dev_err(&adapter->pdev->dev, "Location out of range\n");
2924 return -EINVAL;
2925 }
2926
2927 if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2928 return -EINVAL;
2929
2930 input = kzalloc(size: sizeof(*input), GFP_KERNEL);
2931 if (!input)
2932 return -ENOMEM;
2933
2934 if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2935 input->filter.etype = fsp->h_u.ether_spec.h_proto;
2936 input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2937 }
2938
2939 /* Only support matching addresses by the full mask */
2940 if (is_broadcast_ether_addr(addr: fsp->m_u.ether_spec.h_source)) {
2941 input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2942 ether_addr_copy(dst: input->filter.src_addr,
2943 src: fsp->h_u.ether_spec.h_source);
2944 }
2945
2946 /* Only support matching addresses by the full mask */
2947 if (is_broadcast_ether_addr(addr: fsp->m_u.ether_spec.h_dest)) {
2948 input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2949 ether_addr_copy(dst: input->filter.dst_addr,
2950 src: fsp->h_u.ether_spec.h_dest);
2951 }
2952
2953 if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2954 if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2955 err = -EINVAL;
2956 goto err_out;
2957 }
2958 input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2959 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2960 }
2961
2962 input->action = fsp->ring_cookie;
2963 input->sw_idx = fsp->location;
2964
2965 spin_lock(lock: &adapter->nfc_lock);
2966
2967 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2968 if (!memcmp(p: &input->filter, q: &rule->filter,
2969 size: sizeof(input->filter))) {
2970 err = -EEXIST;
2971 dev_err(&adapter->pdev->dev,
2972 "ethtool: this filter is already set\n");
2973 goto err_out_w_lock;
2974 }
2975 }
2976
2977 err = igb_add_filter(adapter, input);
2978 if (err)
2979 goto err_out_w_lock;
2980
2981 err = igb_update_ethtool_nfc_entry(adapter, input, sw_idx: input->sw_idx);
2982 if (err)
2983 goto err_out_input_filter;
2984
2985 spin_unlock(lock: &adapter->nfc_lock);
2986 return 0;
2987
2988err_out_input_filter:
2989 igb_erase_filter(adapter, input);
2990err_out_w_lock:
2991 spin_unlock(lock: &adapter->nfc_lock);
2992err_out:
2993 kfree(objp: input);
2994 return err;
2995}
2996
2997static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2998 struct ethtool_rxnfc *cmd)
2999{
3000 struct ethtool_rx_flow_spec *fsp =
3001 (struct ethtool_rx_flow_spec *)&cmd->fs;
3002 int err;
3003
3004 spin_lock(lock: &adapter->nfc_lock);
3005 err = igb_update_ethtool_nfc_entry(adapter, NULL, sw_idx: fsp->location);
3006 spin_unlock(lock: &adapter->nfc_lock);
3007
3008 return err;
3009}
3010
3011static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3012{
3013 struct igb_adapter *adapter = netdev_priv(dev);
3014 int ret = -EOPNOTSUPP;
3015
3016 switch (cmd->cmd) {
3017 case ETHTOOL_SRXFH:
3018 ret = igb_set_rss_hash_opt(adapter, nfc: cmd);
3019 break;
3020 case ETHTOOL_SRXCLSRLINS:
3021 ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3022 break;
3023 case ETHTOOL_SRXCLSRLDEL:
3024 ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3025 break;
3026 default:
3027 break;
3028 }
3029
3030 return ret;
3031}
3032
3033static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
3034{
3035 struct igb_adapter *adapter = netdev_priv(dev: netdev);
3036 struct e1000_hw *hw = &adapter->hw;
3037 u32 ret_val;
3038 u16 phy_data;
3039
3040 if ((hw->mac.type < e1000_i350) ||
3041 (hw->phy.media_type != e1000_media_type_copper))
3042 return -EOPNOTSUPP;
3043
3044 edata->supported = (SUPPORTED_1000baseT_Full |
3045 SUPPORTED_100baseT_Full);
3046 if (!hw->dev_spec._82575.eee_disable)
3047 edata->advertised =
3048 mmd_eee_adv_to_ethtool_adv_t(eee_adv: adapter->eee_advert);
3049
3050 /* The IPCNFG and EEER registers are not supported on I354. */
3051 if (hw->mac.type == e1000_i354) {
3052 igb_get_eee_status_i354(hw, status: (bool *)&edata->eee_active);
3053 } else {
3054 u32 eeer;
3055
3056 eeer = rd32(E1000_EEER);
3057
3058 /* EEE status on negotiated link */
3059 if (eeer & E1000_EEER_EEE_NEG)
3060 edata->eee_active = true;
3061
3062 if (eeer & E1000_EEER_TX_LPI_EN)
3063 edata->tx_lpi_enabled = true;
3064 }
3065
3066 /* EEE Link Partner Advertised */
3067 switch (hw->mac.type) {
3068 case e1000_i350:
3069 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3070 data: &phy_data);
3071 if (ret_val)
3072 return -ENODATA;
3073
3074 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(eee_adv: phy_data);
3075 break;
3076 case e1000_i354:
3077 case e1000_i210:
3078 case e1000_i211:
3079 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3080 E1000_EEE_LP_ADV_DEV_I210,
3081 data: &phy_data);
3082 if (ret_val)
3083 return -ENODATA;
3084
3085 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(eee_adv: phy_data);
3086
3087 break;
3088 default:
3089 break;
3090 }
3091
3092 edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3093
3094 if ((hw->mac.type == e1000_i354) &&
3095 (edata->eee_enabled))
3096 edata->tx_lpi_enabled = true;
3097
3098 /* Report correct negotiated EEE status for devices that
3099 * wrongly report EEE at half-duplex
3100 */
3101 if (adapter->link_duplex == HALF_DUPLEX) {
3102 edata->eee_enabled = false;
3103 edata->eee_active = false;
3104 edata->tx_lpi_enabled = false;
3105 edata->advertised &= ~edata->advertised;
3106 }
3107
3108 return 0;
3109}
3110
3111static int igb_set_eee(struct net_device *netdev,
3112 struct ethtool_eee *edata)
3113{
3114 struct igb_adapter *adapter = netdev_priv(dev: netdev);
3115 struct e1000_hw *hw = &adapter->hw;
3116 struct ethtool_eee eee_curr;
3117 bool adv1g_eee = true, adv100m_eee = true;
3118 s32 ret_val;
3119
3120 if ((hw->mac.type < e1000_i350) ||
3121 (hw->phy.media_type != e1000_media_type_copper))
3122 return -EOPNOTSUPP;
3123
3124 memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3125
3126 ret_val = igb_get_eee(netdev, edata: &eee_curr);
3127 if (ret_val)
3128 return ret_val;
3129
3130 if (eee_curr.eee_enabled) {
3131 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3132 dev_err(&adapter->pdev->dev,
3133 "Setting EEE tx-lpi is not supported\n");
3134 return -EINVAL;
3135 }
3136
3137 /* Tx LPI timer is not implemented currently */
3138 if (edata->tx_lpi_timer) {
3139 dev_err(&adapter->pdev->dev,
3140 "Setting EEE Tx LPI timer is not supported\n");
3141 return -EINVAL;
3142 }
3143
3144 if (!edata->advertised || (edata->advertised &
3145 ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3146 dev_err(&adapter->pdev->dev,
3147 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3148 return -EINVAL;
3149 }
3150 adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3151 adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3152
3153 } else if (!edata->eee_enabled) {
3154 dev_err(&adapter->pdev->dev,
3155 "Setting EEE options are not supported with EEE disabled\n");
3156 return -EINVAL;
3157 }
3158
3159 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(adv: edata->advertised);
3160 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3161 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3162 adapter->flags |= IGB_FLAG_EEE;
3163
3164 /* reset link */
3165 if (netif_running(dev: netdev))
3166 igb_reinit_locked(adapter);
3167 else
3168 igb_reset(adapter);
3169 }
3170
3171 if (hw->mac.type == e1000_i354)
3172 ret_val = igb_set_eee_i354(hw, adv1G: adv1g_eee, adv100M: adv100m_eee);
3173 else
3174 ret_val = igb_set_eee_i350(hw, adv1G: adv1g_eee, adv100M: adv100m_eee);
3175
3176 if (ret_val) {
3177 dev_err(&adapter->pdev->dev,
3178 "Problem setting EEE advertisement options\n");
3179 return -EINVAL;
3180 }
3181
3182 return 0;
3183}
3184
3185static int igb_get_module_info(struct net_device *netdev,
3186 struct ethtool_modinfo *modinfo)
3187{
3188 struct igb_adapter *adapter = netdev_priv(dev: netdev);
3189 struct e1000_hw *hw = &adapter->hw;
3190 u32 status = 0;
3191 u16 sff8472_rev, addr_mode;
3192 bool page_swap = false;
3193
3194 if ((hw->phy.media_type == e1000_media_type_copper) ||
3195 (hw->phy.media_type == e1000_media_type_unknown))
3196 return -EOPNOTSUPP;
3197
3198 /* Check whether we support SFF-8472 or not */
3199 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, data: &sff8472_rev);
3200 if (status)
3201 return -EIO;
3202
3203 /* addressing mode is not supported */
3204 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, data: &addr_mode);
3205 if (status)
3206 return -EIO;
3207
3208 /* addressing mode is not supported */
3209 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3210 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3211 page_swap = true;
3212 }
3213
3214 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3215 /* We have an SFP, but it does not support SFF-8472 */
3216 modinfo->type = ETH_MODULE_SFF_8079;
3217 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3218 } else {
3219 /* We have an SFP which supports a revision of SFF-8472 */
3220 modinfo->type = ETH_MODULE_SFF_8472;
3221 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3222 }
3223
3224 return 0;
3225}
3226
3227static int igb_get_module_eeprom(struct net_device *netdev,
3228 struct ethtool_eeprom *ee, u8 *data)
3229{
3230 struct igb_adapter *adapter = netdev_priv(dev: netdev);
3231 struct e1000_hw *hw = &adapter->hw;
3232 u32 status = 0;
3233 u16 *dataword;
3234 u16 first_word, last_word;
3235 int i = 0;
3236
3237 if (ee->len == 0)
3238 return -EINVAL;
3239
3240 first_word = ee->offset >> 1;
3241 last_word = (ee->offset + ee->len - 1) >> 1;
3242
3243 dataword = kmalloc_array(n: last_word - first_word + 1, size: sizeof(u16),
3244 GFP_KERNEL);
3245 if (!dataword)
3246 return -ENOMEM;
3247
3248 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3249 for (i = 0; i < last_word - first_word + 1; i++) {
3250 status = igb_read_phy_reg_i2c(hw, offset: (first_word + i) * 2,
3251 data: &dataword[i]);
3252 if (status) {
3253 /* Error occurred while reading module */
3254 kfree(objp: dataword);
3255 return -EIO;
3256 }
3257
3258 be16_to_cpus(&dataword[i]);
3259 }
3260
3261 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3262 kfree(objp: dataword);
3263
3264 return 0;
3265}
3266
3267static int igb_ethtool_begin(struct net_device *netdev)
3268{
3269 struct igb_adapter *adapter = netdev_priv(dev: netdev);
3270 pm_runtime_get_sync(dev: &adapter->pdev->dev);
3271 return 0;
3272}
3273
3274static void igb_ethtool_complete(struct net_device *netdev)
3275{
3276 struct igb_adapter *adapter = netdev_priv(dev: netdev);
3277 pm_runtime_put(dev: &adapter->pdev->dev);
3278}
3279
3280static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3281{
3282 return IGB_RETA_SIZE;
3283}
3284
3285static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3286 u8 *hfunc)
3287{
3288 struct igb_adapter *adapter = netdev_priv(dev: netdev);
3289 int i;
3290
3291 if (hfunc)
3292 *hfunc = ETH_RSS_HASH_TOP;
3293 if (!indir)
3294 return 0;
3295 for (i = 0; i < IGB_RETA_SIZE; i++)
3296 indir[i] = adapter->rss_indir_tbl[i];
3297
3298 return 0;
3299}
3300
3301void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3302{
3303 struct e1000_hw *hw = &adapter->hw;
3304 u32 reg = E1000_RETA(0);
3305 u32 shift = 0;
3306 int i = 0;
3307
3308 switch (hw->mac.type) {
3309 case e1000_82575:
3310 shift = 6;
3311 break;
3312 case e1000_82576:
3313 /* 82576 supports 2 RSS queues for SR-IOV */
3314 if (adapter->vfs_allocated_count)
3315 shift = 3;
3316 break;
3317 default:
3318 break;
3319 }
3320
3321 while (i < IGB_RETA_SIZE) {
3322 u32 val = 0;
3323 int j;
3324
3325 for (j = 3; j >= 0; j--) {
3326 val <<= 8;
3327 val |= adapter->rss_indir_tbl[i + j];
3328 }
3329
3330 wr32(reg, val << shift);
3331 reg += 4;
3332 i += 4;
3333 }
3334}
3335
3336static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3337 const u8 *key, const u8 hfunc)
3338{
3339 struct igb_adapter *adapter = netdev_priv(dev: netdev);
3340 struct e1000_hw *hw = &adapter->hw;
3341 int i;
3342 u32 num_queues;
3343
3344 /* We do not allow change in unsupported parameters */
3345 if (key ||
3346 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3347 return -EOPNOTSUPP;
3348 if (!indir)
3349 return 0;
3350
3351 num_queues = adapter->rss_queues;
3352
3353 switch (hw->mac.type) {
3354 case e1000_82576:
3355 /* 82576 supports 2 RSS queues for SR-IOV */
3356 if (adapter->vfs_allocated_count)
3357 num_queues = 2;
3358 break;
3359 default:
3360 break;
3361 }
3362
3363 /* Verify user input. */
3364 for (i = 0; i < IGB_RETA_SIZE; i++)
3365 if (indir[i] >= num_queues)
3366 return -EINVAL;
3367
3368
3369 for (i = 0; i < IGB_RETA_SIZE; i++)
3370 adapter->rss_indir_tbl[i] = indir[i];
3371
3372 igb_write_rss_indir_tbl(adapter);
3373
3374 return 0;
3375}
3376
3377static unsigned int igb_max_channels(struct igb_adapter *adapter)
3378{
3379 return igb_get_max_rss_queues(adapter);
3380}
3381
3382static void igb_get_channels(struct net_device *netdev,
3383 struct ethtool_channels *ch)
3384{
3385 struct igb_adapter *adapter = netdev_priv(dev: netdev);
3386
3387 /* Report maximum channels */
3388 ch->max_combined = igb_max_channels(adapter);
3389
3390 /* Report info for other vector */
3391 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3392 ch->max_other = NON_Q_VECTORS;
3393 ch->other_count = NON_Q_VECTORS;
3394 }
3395
3396 ch->combined_count = adapter->rss_queues;
3397}
3398
3399static int igb_set_channels(struct net_device *netdev,
3400 struct ethtool_channels *ch)
3401{
3402 struct igb_adapter *adapter = netdev_priv(dev: netdev);
3403 unsigned int count = ch->combined_count;
3404 unsigned int max_combined = 0;
3405
3406 /* Verify they are not requesting separate vectors */
3407 if (!count || ch->rx_count || ch->tx_count)
3408 return -EINVAL;
3409
3410 /* Verify other_count is valid and has not been changed */
3411 if (ch->other_count != NON_Q_VECTORS)
3412 return -EINVAL;
3413
3414 /* Verify the number of channels doesn't exceed hw limits */
3415 max_combined = igb_max_channels(adapter);
3416 if (count > max_combined)
3417 return -EINVAL;
3418
3419 if (count != adapter->rss_queues) {
3420 adapter->rss_queues = count;
3421 igb_set_flag_queue_pairs(adapter, max_combined);
3422
3423 /* Hardware has to reinitialize queues and interrupts to
3424 * match the new configuration.
3425 */
3426 return igb_reinit_queues(adapter);
3427 }
3428
3429 return 0;
3430}
3431
3432static u32 igb_get_priv_flags(struct net_device *netdev)
3433{
3434 struct igb_adapter *adapter = netdev_priv(dev: netdev);
3435 u32 priv_flags = 0;
3436
3437 if (adapter->flags & IGB_FLAG_RX_LEGACY)
3438 priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3439
3440 return priv_flags;
3441}
3442
3443static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3444{
3445 struct igb_adapter *adapter = netdev_priv(dev: netdev);
3446 unsigned int flags = adapter->flags;
3447
3448 flags &= ~IGB_FLAG_RX_LEGACY;
3449 if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3450 flags |= IGB_FLAG_RX_LEGACY;
3451
3452 if (flags != adapter->flags) {
3453 adapter->flags = flags;
3454
3455 /* reset interface to repopulate queues */
3456 if (netif_running(dev: netdev))
3457 igb_reinit_locked(adapter);
3458 }
3459
3460 return 0;
3461}
3462
3463static const struct ethtool_ops igb_ethtool_ops = {
3464 .supported_coalesce_params = ETHTOOL_COALESCE_USECS,
3465 .get_drvinfo = igb_get_drvinfo,
3466 .get_regs_len = igb_get_regs_len,
3467 .get_regs = igb_get_regs,
3468 .get_wol = igb_get_wol,
3469 .set_wol = igb_set_wol,
3470 .get_msglevel = igb_get_msglevel,
3471 .set_msglevel = igb_set_msglevel,
3472 .nway_reset = igb_nway_reset,
3473 .get_link = igb_get_link,
3474 .get_eeprom_len = igb_get_eeprom_len,
3475 .get_eeprom = igb_get_eeprom,
3476 .set_eeprom = igb_set_eeprom,
3477 .get_ringparam = igb_get_ringparam,
3478 .set_ringparam = igb_set_ringparam,
3479 .get_pauseparam = igb_get_pauseparam,
3480 .set_pauseparam = igb_set_pauseparam,
3481 .self_test = igb_diag_test,
3482 .get_strings = igb_get_strings,
3483 .set_phys_id = igb_set_phys_id,
3484 .get_sset_count = igb_get_sset_count,
3485 .get_ethtool_stats = igb_get_ethtool_stats,
3486 .get_coalesce = igb_get_coalesce,
3487 .set_coalesce = igb_set_coalesce,
3488 .get_ts_info = igb_get_ts_info,
3489 .get_rxnfc = igb_get_rxnfc,
3490 .set_rxnfc = igb_set_rxnfc,
3491 .get_eee = igb_get_eee,
3492 .set_eee = igb_set_eee,
3493 .get_module_info = igb_get_module_info,
3494 .get_module_eeprom = igb_get_module_eeprom,
3495 .get_rxfh_indir_size = igb_get_rxfh_indir_size,
3496 .get_rxfh = igb_get_rxfh,
3497 .set_rxfh = igb_set_rxfh,
3498 .get_channels = igb_get_channels,
3499 .set_channels = igb_set_channels,
3500 .get_priv_flags = igb_get_priv_flags,
3501 .set_priv_flags = igb_set_priv_flags,
3502 .begin = igb_ethtool_begin,
3503 .complete = igb_ethtool_complete,
3504 .get_link_ksettings = igb_get_link_ksettings,
3505 .set_link_ksettings = igb_set_link_ksettings,
3506};
3507
3508void igb_set_ethtool_ops(struct net_device *netdev)
3509{
3510 netdev->ethtool_ops = &igb_ethtool_ops;
3511}
3512

source code of linux/drivers/net/ethernet/intel/igb/igb_ethtool.c