1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | #include <linux/debugfs.h> |
3 | #include <linux/delay.h> |
4 | #include <linux/gpio/consumer.h> |
5 | #include <linux/hwmon.h> |
6 | #include <linux/i2c.h> |
7 | #include <linux/interrupt.h> |
8 | #include <linux/jiffies.h> |
9 | #include <linux/mdio/mdio-i2c.h> |
10 | #include <linux/module.h> |
11 | #include <linux/mutex.h> |
12 | #include <linux/of.h> |
13 | #include <linux/phy.h> |
14 | #include <linux/platform_device.h> |
15 | #include <linux/rtnetlink.h> |
16 | #include <linux/slab.h> |
17 | #include <linux/workqueue.h> |
18 | |
19 | #include "sfp.h" |
20 | #include "swphy.h" |
21 | |
22 | enum { |
23 | GPIO_MODDEF0, |
24 | GPIO_LOS, |
25 | GPIO_TX_FAULT, |
26 | GPIO_TX_DISABLE, |
27 | GPIO_RS0, |
28 | GPIO_RS1, |
29 | GPIO_MAX, |
30 | |
31 | SFP_F_PRESENT = BIT(GPIO_MODDEF0), |
32 | SFP_F_LOS = BIT(GPIO_LOS), |
33 | SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), |
34 | SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), |
35 | SFP_F_RS0 = BIT(GPIO_RS0), |
36 | SFP_F_RS1 = BIT(GPIO_RS1), |
37 | |
38 | SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, |
39 | |
40 | SFP_E_INSERT = 0, |
41 | SFP_E_REMOVE, |
42 | SFP_E_DEV_ATTACH, |
43 | SFP_E_DEV_DETACH, |
44 | SFP_E_DEV_DOWN, |
45 | SFP_E_DEV_UP, |
46 | SFP_E_TX_FAULT, |
47 | SFP_E_TX_CLEAR, |
48 | SFP_E_LOS_HIGH, |
49 | SFP_E_LOS_LOW, |
50 | SFP_E_TIMEOUT, |
51 | |
52 | SFP_MOD_EMPTY = 0, |
53 | SFP_MOD_ERROR, |
54 | SFP_MOD_PROBE, |
55 | SFP_MOD_WAITDEV, |
56 | SFP_MOD_HPOWER, |
57 | SFP_MOD_WAITPWR, |
58 | SFP_MOD_PRESENT, |
59 | |
60 | SFP_DEV_DETACHED = 0, |
61 | SFP_DEV_DOWN, |
62 | SFP_DEV_UP, |
63 | |
64 | SFP_S_DOWN = 0, |
65 | SFP_S_FAIL, |
66 | SFP_S_WAIT, |
67 | SFP_S_INIT, |
68 | SFP_S_INIT_PHY, |
69 | SFP_S_INIT_TX_FAULT, |
70 | SFP_S_WAIT_LOS, |
71 | SFP_S_LINK_UP, |
72 | SFP_S_TX_FAULT, |
73 | SFP_S_REINIT, |
74 | SFP_S_TX_DISABLE, |
75 | }; |
76 | |
77 | static const char * const mod_state_strings[] = { |
78 | [SFP_MOD_EMPTY] = "empty", |
79 | [SFP_MOD_ERROR] = "error", |
80 | [SFP_MOD_PROBE] = "probe", |
81 | [SFP_MOD_WAITDEV] = "waitdev", |
82 | [SFP_MOD_HPOWER] = "hpower", |
83 | [SFP_MOD_WAITPWR] = "waitpwr", |
84 | [SFP_MOD_PRESENT] = "present", |
85 | }; |
86 | |
87 | static const char *mod_state_to_str(unsigned short mod_state) |
88 | { |
89 | if (mod_state >= ARRAY_SIZE(mod_state_strings)) |
90 | return "Unknown module state"; |
91 | return mod_state_strings[mod_state]; |
92 | } |
93 | |
94 | static const char * const dev_state_strings[] = { |
95 | [SFP_DEV_DETACHED] = "detached", |
96 | [SFP_DEV_DOWN] = "down", |
97 | [SFP_DEV_UP] = "up", |
98 | }; |
99 | |
100 | static const char *dev_state_to_str(unsigned short dev_state) |
101 | { |
102 | if (dev_state >= ARRAY_SIZE(dev_state_strings)) |
103 | return "Unknown device state"; |
104 | return dev_state_strings[dev_state]; |
105 | } |
106 | |
107 | static const char * const event_strings[] = { |
108 | [SFP_E_INSERT] = "insert", |
109 | [SFP_E_REMOVE] = "remove", |
110 | [SFP_E_DEV_ATTACH] = "dev_attach", |
111 | [SFP_E_DEV_DETACH] = "dev_detach", |
112 | [SFP_E_DEV_DOWN] = "dev_down", |
113 | [SFP_E_DEV_UP] = "dev_up", |
114 | [SFP_E_TX_FAULT] = "tx_fault", |
115 | [SFP_E_TX_CLEAR] = "tx_clear", |
116 | [SFP_E_LOS_HIGH] = "los_high", |
117 | [SFP_E_LOS_LOW] = "los_low", |
118 | [SFP_E_TIMEOUT] = "timeout", |
119 | }; |
120 | |
121 | static const char *event_to_str(unsigned short event) |
122 | { |
123 | if (event >= ARRAY_SIZE(event_strings)) |
124 | return "Unknown event"; |
125 | return event_strings[event]; |
126 | } |
127 | |
128 | static const char * const sm_state_strings[] = { |
129 | [SFP_S_DOWN] = "down", |
130 | [SFP_S_FAIL] = "fail", |
131 | [SFP_S_WAIT] = "wait", |
132 | [SFP_S_INIT] = "init", |
133 | [SFP_S_INIT_PHY] = "init_phy", |
134 | [SFP_S_INIT_TX_FAULT] = "init_tx_fault", |
135 | [SFP_S_WAIT_LOS] = "wait_los", |
136 | [SFP_S_LINK_UP] = "link_up", |
137 | [SFP_S_TX_FAULT] = "tx_fault", |
138 | [SFP_S_REINIT] = "reinit", |
139 | [SFP_S_TX_DISABLE] = "tx_disable", |
140 | }; |
141 | |
142 | static const char *sm_state_to_str(unsigned short sm_state) |
143 | { |
144 | if (sm_state >= ARRAY_SIZE(sm_state_strings)) |
145 | return "Unknown state"; |
146 | return sm_state_strings[sm_state]; |
147 | } |
148 | |
149 | static const char *gpio_names[] = { |
150 | "mod-def0", |
151 | "los", |
152 | "tx-fault", |
153 | "tx-disable", |
154 | "rate-select0", |
155 | "rate-select1", |
156 | }; |
157 | |
158 | static const enum gpiod_flags gpio_flags[] = { |
159 | GPIOD_IN, |
160 | GPIOD_IN, |
161 | GPIOD_IN, |
162 | GPIOD_ASIS, |
163 | GPIOD_ASIS, |
164 | GPIOD_ASIS, |
165 | }; |
166 | |
167 | /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a |
168 | * non-cooled module to initialise its laser safety circuitry. We wait |
169 | * an initial T_WAIT period before we check the tx fault to give any PHY |
170 | * on board (for a copper SFP) time to initialise. |
171 | */ |
172 | #define T_WAIT msecs_to_jiffies(50) |
173 | #define T_START_UP msecs_to_jiffies(300) |
174 | #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) |
175 | |
176 | /* t_reset is the time required to assert the TX_DISABLE signal to reset |
177 | * an indicated TX_FAULT. |
178 | */ |
179 | #define T_RESET_US 10 |
180 | #define T_FAULT_RECOVER msecs_to_jiffies(1000) |
181 | |
182 | /* N_FAULT_INIT is the number of recovery attempts at module initialisation |
183 | * time. If the TX_FAULT signal is not deasserted after this number of |
184 | * attempts at clearing it, we decide that the module is faulty. |
185 | * N_FAULT is the same but after the module has initialised. |
186 | */ |
187 | #define N_FAULT_INIT 5 |
188 | #define N_FAULT 5 |
189 | |
190 | /* T_PHY_RETRY is the time interval between attempts to probe the PHY. |
191 | * R_PHY_RETRY is the number of attempts. |
192 | */ |
193 | #define T_PHY_RETRY msecs_to_jiffies(50) |
194 | #define R_PHY_RETRY 25 |
195 | |
196 | /* SFP module presence detection is poor: the three MOD DEF signals are |
197 | * the same length on the PCB, which means it's possible for MOD DEF 0 to |
198 | * connect before the I2C bus on MOD DEF 1/2. |
199 | * |
200 | * The SFF-8472 specifies t_serial ("Time from power on until module is |
201 | * ready for data transmission over the two wire serial bus.") as 300ms. |
202 | */ |
203 | #define T_SERIAL msecs_to_jiffies(300) |
204 | #define T_HPOWER_LEVEL msecs_to_jiffies(300) |
205 | #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) |
206 | #define R_PROBE_RETRY_INIT 10 |
207 | #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) |
208 | #define R_PROBE_RETRY_SLOW 12 |
209 | |
210 | /* SFP modules appear to always have their PHY configured for bus address |
211 | * 0x56 (which with mdio-i2c, translates to a PHY address of 22). |
212 | * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface |
213 | * via address 0x51 (mdio-i2c will use RollBall protocol on this address). |
214 | */ |
215 | #define SFP_PHY_ADDR 22 |
216 | #define SFP_PHY_ADDR_ROLLBALL 17 |
217 | |
218 | /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM |
219 | * at a time. Some SFP modules and also some Linux I2C drivers do not like |
220 | * reads longer than 16 bytes. |
221 | */ |
222 | #define SFP_EEPROM_BLOCK_SIZE 16 |
223 | |
224 | struct sff_data { |
225 | unsigned int gpios; |
226 | bool (*module_supported)(const struct sfp_eeprom_id *id); |
227 | }; |
228 | |
229 | struct sfp { |
230 | struct device *dev; |
231 | struct i2c_adapter *i2c; |
232 | struct mii_bus *i2c_mii; |
233 | struct sfp_bus *sfp_bus; |
234 | enum mdio_i2c_proto mdio_protocol; |
235 | struct phy_device *mod_phy; |
236 | const struct sff_data *type; |
237 | size_t i2c_max_block_size; |
238 | size_t i2c_block_size; |
239 | u32 max_power_mW; |
240 | |
241 | unsigned int (*get_state)(struct sfp *); |
242 | void (*set_state)(struct sfp *, unsigned int); |
243 | int (*read)(struct sfp *, bool, u8, void *, size_t); |
244 | int (*write)(struct sfp *, bool, u8, void *, size_t); |
245 | |
246 | struct gpio_desc *gpio[GPIO_MAX]; |
247 | int gpio_irq[GPIO_MAX]; |
248 | |
249 | bool need_poll; |
250 | |
251 | /* Access rules: |
252 | * state_hw_drive: st_mutex held |
253 | * state_hw_mask: st_mutex held |
254 | * state_soft_mask: st_mutex held |
255 | * state: st_mutex held unless reading input bits |
256 | */ |
257 | struct mutex st_mutex; /* Protects state */ |
258 | unsigned int state_hw_drive; |
259 | unsigned int state_hw_mask; |
260 | unsigned int state_soft_mask; |
261 | unsigned int state_ignore_mask; |
262 | unsigned int state; |
263 | |
264 | struct delayed_work poll; |
265 | struct delayed_work timeout; |
266 | struct mutex sm_mutex; /* Protects state machine */ |
267 | unsigned char sm_mod_state; |
268 | unsigned char sm_mod_tries_init; |
269 | unsigned char sm_mod_tries; |
270 | unsigned char sm_dev_state; |
271 | unsigned short sm_state; |
272 | unsigned char sm_fault_retries; |
273 | unsigned char sm_phy_retries; |
274 | |
275 | struct sfp_eeprom_id id; |
276 | unsigned int module_power_mW; |
277 | unsigned int module_t_start_up; |
278 | unsigned int module_t_wait; |
279 | unsigned int phy_t_retry; |
280 | |
281 | unsigned int rate_kbd; |
282 | unsigned int rs_threshold_kbd; |
283 | unsigned int rs_state_mask; |
284 | |
285 | bool have_a2; |
286 | |
287 | const struct sfp_quirk *quirk; |
288 | |
289 | #if IS_ENABLED(CONFIG_HWMON) |
290 | struct sfp_diag diag; |
291 | struct delayed_work hwmon_probe; |
292 | unsigned int hwmon_tries; |
293 | struct device *hwmon_dev; |
294 | char *hwmon_name; |
295 | #endif |
296 | |
297 | #if IS_ENABLED(CONFIG_DEBUG_FS) |
298 | struct dentry *debugfs_dir; |
299 | #endif |
300 | }; |
301 | |
302 | static bool sff_module_supported(const struct sfp_eeprom_id *id) |
303 | { |
304 | return id->base.phys_id == SFF8024_ID_SFF_8472 && |
305 | id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; |
306 | } |
307 | |
308 | static const struct sff_data sff_data = { |
309 | .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, |
310 | .module_supported = sff_module_supported, |
311 | }; |
312 | |
313 | static bool sfp_module_supported(const struct sfp_eeprom_id *id) |
314 | { |
315 | if (id->base.phys_id == SFF8024_ID_SFP && |
316 | id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) |
317 | return true; |
318 | |
319 | /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored |
320 | * phys id SFF instead of SFP. Therefore mark this module explicitly |
321 | * as supported based on vendor name and pn match. |
322 | */ |
323 | if (id->base.phys_id == SFF8024_ID_SFF_8472 && |
324 | id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && |
325 | !memcmp(p: id->base.vendor_name, q: "UBNT ", size: 16) && |
326 | !memcmp(p: id->base.vendor_pn, q: "UF-INSTANT ", size: 16)) |
327 | return true; |
328 | |
329 | return false; |
330 | } |
331 | |
332 | static const struct sff_data sfp_data = { |
333 | .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | |
334 | SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, |
335 | .module_supported = sfp_module_supported, |
336 | }; |
337 | |
338 | static const struct of_device_id sfp_of_match[] = { |
339 | { .compatible = "sff,sff", .data = &sff_data, }, |
340 | { .compatible = "sff,sfp", .data = &sfp_data, }, |
341 | { }, |
342 | }; |
343 | MODULE_DEVICE_TABLE(of, sfp_of_match); |
344 | |
345 | static void sfp_fixup_long_startup(struct sfp *sfp) |
346 | { |
347 | sfp->module_t_start_up = T_START_UP_BAD_GPON; |
348 | } |
349 | |
350 | static void sfp_fixup_ignore_los(struct sfp *sfp) |
351 | { |
352 | /* This forces LOS to zero, so we ignore transitions */ |
353 | sfp->state_ignore_mask |= SFP_F_LOS; |
354 | /* Make sure that LOS options are clear */ |
355 | sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED | |
356 | SFP_OPTIONS_LOS_NORMAL); |
357 | } |
358 | |
359 | static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) |
360 | { |
361 | sfp->state_ignore_mask |= SFP_F_TX_FAULT; |
362 | } |
363 | |
364 | static void sfp_fixup_nokia(struct sfp *sfp) |
365 | { |
366 | sfp_fixup_long_startup(sfp); |
367 | sfp_fixup_ignore_los(sfp); |
368 | } |
369 | |
370 | // For 10GBASE-T short-reach modules |
371 | static void sfp_fixup_10gbaset_30m(struct sfp *sfp) |
372 | { |
373 | sfp->id.base.connector = SFF8024_CONNECTOR_RJ45; |
374 | sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR; |
375 | } |
376 | |
377 | static void sfp_fixup_rollball(struct sfp *sfp) |
378 | { |
379 | sfp->mdio_protocol = MDIO_I2C_ROLLBALL; |
380 | |
381 | /* RollBall modules may disallow access to PHY registers for up to 25 |
382 | * seconds, and the reads return 0xffff before that. Increase the time |
383 | * between PHY probe retries from 50ms to 1s so that we will wait for |
384 | * the PHY for a sufficient amount of time. |
385 | */ |
386 | sfp->phy_t_retry = msecs_to_jiffies(m: 1000); |
387 | } |
388 | |
389 | static void sfp_fixup_rollball_wait4s(struct sfp *sfp) |
390 | { |
391 | sfp_fixup_rollball(sfp); |
392 | |
393 | /* The RollBall fixup is not enough for FS modules, the PHY chip inside |
394 | * them does not return 0xffff for PHY ID registers in all MMDs for the |
395 | * while initializing. They need a 4 second wait before accessing PHY. |
396 | */ |
397 | sfp->module_t_wait = msecs_to_jiffies(m: 4000); |
398 | } |
399 | |
400 | static void sfp_fixup_fs_10gt(struct sfp *sfp) |
401 | { |
402 | sfp_fixup_10gbaset_30m(sfp); |
403 | sfp_fixup_rollball_wait4s(sfp); |
404 | } |
405 | |
406 | static void sfp_fixup_halny_gsfp(struct sfp *sfp) |
407 | { |
408 | /* Ignore the TX_FAULT and LOS signals on this module. |
409 | * these are possibly used for other purposes on this |
410 | * module, e.g. a serial port. |
411 | */ |
412 | sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); |
413 | } |
414 | |
415 | static void sfp_fixup_rollball_cc(struct sfp *sfp) |
416 | { |
417 | sfp_fixup_rollball(sfp); |
418 | |
419 | /* Some RollBall SFPs may have wrong (zero) extended compliance code |
420 | * burned in EEPROM. For PHY probing we need the correct one. |
421 | */ |
422 | sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; |
423 | } |
424 | |
425 | static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, |
426 | unsigned long *modes, |
427 | unsigned long *interfaces) |
428 | { |
429 | linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); |
430 | __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); |
431 | } |
432 | |
433 | static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, |
434 | unsigned long *modes, |
435 | unsigned long *interfaces) |
436 | { |
437 | linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes); |
438 | } |
439 | |
440 | static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, |
441 | unsigned long *modes, |
442 | unsigned long *interfaces) |
443 | { |
444 | /* Copper 2.5G SFP */ |
445 | linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes); |
446 | __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); |
447 | sfp_quirk_disable_autoneg(id, modes, interfaces); |
448 | } |
449 | |
450 | static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, |
451 | unsigned long *modes, |
452 | unsigned long *interfaces) |
453 | { |
454 | /* Ubiquiti U-Fiber Instant module claims that support all transceiver |
455 | * types including 10G Ethernet which is not truth. So clear all claimed |
456 | * modes and set only one mode which module supports: 1000baseX_Full. |
457 | */ |
458 | linkmode_zero(dst: modes); |
459 | linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); |
460 | } |
461 | |
462 | #define SFP_QUIRK(_v, _p, _m, _f) \ |
463 | { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } |
464 | #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) |
465 | #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) |
466 | |
467 | static const struct sfp_quirk sfp_quirks[] = { |
468 | // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly |
469 | // report 2500MBd NRZ in their EEPROM |
470 | SFP_QUIRK("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex, |
471 | sfp_fixup_ignore_tx_fault), |
472 | |
473 | // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd |
474 | // NRZ in their EEPROM |
475 | SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, |
476 | sfp_fixup_nokia), |
477 | |
478 | // Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball |
479 | // protocol to talk to the PHY and needs 4 sec wait before probing the |
480 | // PHY. |
481 | SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt), |
482 | |
483 | // Fiberstore SFP-2.5G-T and SFP-10GM-T uses Rollball protocol to talk |
484 | // to the PHY and needs 4 sec wait before probing the PHY. |
485 | SFP_QUIRK_F("FS", "SFP-2.5G-T", sfp_fixup_rollball_wait4s), |
486 | SFP_QUIRK_F("FS", "SFP-10GM-T", sfp_fixup_rollball_wait4s), |
487 | |
488 | // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd |
489 | // NRZ in their EEPROM |
490 | SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex, |
491 | sfp_fixup_ignore_tx_fault), |
492 | |
493 | SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), |
494 | |
495 | // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports |
496 | // 2600MBd in their EERPOM |
497 | SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex), |
498 | |
499 | // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in |
500 | // their EEPROM |
501 | SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, |
502 | sfp_fixup_ignore_tx_fault), |
503 | |
504 | // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report |
505 | // 2500MBd NRZ in their EEPROM |
506 | SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), |
507 | |
508 | SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), |
509 | |
510 | // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the |
511 | // Rollball protocol to talk to the PHY. |
512 | SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt), |
513 | SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt), |
514 | |
515 | // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator |
516 | SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault), |
517 | |
518 | SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), |
519 | SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g), |
520 | SFP_QUIRK_M("OEM", "SFP-2.5G-BX10-D", sfp_quirk_2500basex), |
521 | SFP_QUIRK_M("OEM", "SFP-2.5G-BX10-U", sfp_quirk_2500basex), |
522 | SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), |
523 | SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), |
524 | SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball), |
525 | SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), |
526 | SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), |
527 | }; |
528 | |
529 | static size_t sfp_strlen(const char *str, size_t maxlen) |
530 | { |
531 | size_t size, i; |
532 | |
533 | /* Trailing characters should be filled with space chars, but |
534 | * some manufacturers can't read SFF-8472 and use NUL. |
535 | */ |
536 | for (i = 0, size = 0; i < maxlen; i++) |
537 | if (str[i] != ' ' && str[i] != '\0') |
538 | size = i + 1; |
539 | |
540 | return size; |
541 | } |
542 | |
543 | static bool sfp_match(const char *qs, const char *str, size_t len) |
544 | { |
545 | if (!qs) |
546 | return true; |
547 | if (strlen(qs) != len) |
548 | return false; |
549 | return !strncmp(qs, str, len); |
550 | } |
551 | |
552 | static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) |
553 | { |
554 | const struct sfp_quirk *q; |
555 | unsigned int i; |
556 | size_t vs, ps; |
557 | |
558 | vs = sfp_strlen(str: id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); |
559 | ps = sfp_strlen(str: id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); |
560 | |
561 | for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) |
562 | if (sfp_match(qs: q->vendor, str: id->base.vendor_name, len: vs) && |
563 | sfp_match(qs: q->part, str: id->base.vendor_pn, len: ps)) |
564 | return q; |
565 | |
566 | return NULL; |
567 | } |
568 | |
569 | static unsigned long poll_jiffies; |
570 | |
571 | static unsigned int sfp_gpio_get_state(struct sfp *sfp) |
572 | { |
573 | unsigned int i, state, v; |
574 | |
575 | for (i = state = 0; i < GPIO_MAX; i++) { |
576 | if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) |
577 | continue; |
578 | |
579 | v = gpiod_get_value_cansleep(desc: sfp->gpio[i]); |
580 | if (v) |
581 | state |= BIT(i); |
582 | } |
583 | |
584 | return state; |
585 | } |
586 | |
587 | static unsigned int sff_gpio_get_state(struct sfp *sfp) |
588 | { |
589 | return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; |
590 | } |
591 | |
592 | static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) |
593 | { |
594 | unsigned int drive; |
595 | |
596 | if (state & SFP_F_PRESENT) |
597 | /* If the module is present, drive the requested signals */ |
598 | drive = sfp->state_hw_drive; |
599 | else |
600 | /* Otherwise, let them float to the pull-ups */ |
601 | drive = 0; |
602 | |
603 | if (sfp->gpio[GPIO_TX_DISABLE]) { |
604 | if (drive & SFP_F_TX_DISABLE) |
605 | gpiod_direction_output(desc: sfp->gpio[GPIO_TX_DISABLE], |
606 | value: state & SFP_F_TX_DISABLE); |
607 | else |
608 | gpiod_direction_input(desc: sfp->gpio[GPIO_TX_DISABLE]); |
609 | } |
610 | |
611 | if (sfp->gpio[GPIO_RS0]) { |
612 | if (drive & SFP_F_RS0) |
613 | gpiod_direction_output(desc: sfp->gpio[GPIO_RS0], |
614 | value: state & SFP_F_RS0); |
615 | else |
616 | gpiod_direction_input(desc: sfp->gpio[GPIO_RS0]); |
617 | } |
618 | |
619 | if (sfp->gpio[GPIO_RS1]) { |
620 | if (drive & SFP_F_RS1) |
621 | gpiod_direction_output(desc: sfp->gpio[GPIO_RS1], |
622 | value: state & SFP_F_RS1); |
623 | else |
624 | gpiod_direction_input(desc: sfp->gpio[GPIO_RS1]); |
625 | } |
626 | } |
627 | |
628 | static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, |
629 | size_t len) |
630 | { |
631 | struct i2c_msg msgs[2]; |
632 | u8 bus_addr = a2 ? 0x51 : 0x50; |
633 | size_t block_size = sfp->i2c_block_size; |
634 | size_t this_len; |
635 | int ret; |
636 | |
637 | msgs[0].addr = bus_addr; |
638 | msgs[0].flags = 0; |
639 | msgs[0].len = 1; |
640 | msgs[0].buf = &dev_addr; |
641 | msgs[1].addr = bus_addr; |
642 | msgs[1].flags = I2C_M_RD; |
643 | msgs[1].len = len; |
644 | msgs[1].buf = buf; |
645 | |
646 | while (len) { |
647 | this_len = len; |
648 | if (this_len > block_size) |
649 | this_len = block_size; |
650 | |
651 | msgs[1].len = this_len; |
652 | |
653 | ret = i2c_transfer(adap: sfp->i2c, msgs, ARRAY_SIZE(msgs)); |
654 | if (ret < 0) |
655 | return ret; |
656 | |
657 | if (ret != ARRAY_SIZE(msgs)) |
658 | break; |
659 | |
660 | msgs[1].buf += this_len; |
661 | dev_addr += this_len; |
662 | len -= this_len; |
663 | } |
664 | |
665 | return msgs[1].buf - (u8 *)buf; |
666 | } |
667 | |
668 | static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, |
669 | size_t len) |
670 | { |
671 | struct i2c_msg msgs[1]; |
672 | u8 bus_addr = a2 ? 0x51 : 0x50; |
673 | int ret; |
674 | |
675 | msgs[0].addr = bus_addr; |
676 | msgs[0].flags = 0; |
677 | msgs[0].len = 1 + len; |
678 | msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); |
679 | if (!msgs[0].buf) |
680 | return -ENOMEM; |
681 | |
682 | msgs[0].buf[0] = dev_addr; |
683 | memcpy(&msgs[0].buf[1], buf, len); |
684 | |
685 | ret = i2c_transfer(adap: sfp->i2c, msgs, ARRAY_SIZE(msgs)); |
686 | |
687 | kfree(objp: msgs[0].buf); |
688 | |
689 | if (ret < 0) |
690 | return ret; |
691 | |
692 | return ret == ARRAY_SIZE(msgs) ? len : 0; |
693 | } |
694 | |
695 | static int sfp_smbus_byte_read(struct sfp *sfp, bool a2, u8 dev_addr, |
696 | void *buf, size_t len) |
697 | { |
698 | union i2c_smbus_data smbus_data; |
699 | u8 bus_addr = a2 ? 0x51 : 0x50; |
700 | u8 *data = buf; |
701 | int ret; |
702 | |
703 | while (len) { |
704 | ret = i2c_smbus_xfer(adapter: sfp->i2c, addr: bus_addr, flags: 0, |
705 | I2C_SMBUS_READ, command: dev_addr, |
706 | I2C_SMBUS_BYTE_DATA, data: &smbus_data); |
707 | if (ret < 0) |
708 | return ret; |
709 | |
710 | *data = smbus_data.byte; |
711 | |
712 | len--; |
713 | data++; |
714 | dev_addr++; |
715 | } |
716 | |
717 | return data - (u8 *)buf; |
718 | } |
719 | |
720 | static int sfp_smbus_byte_write(struct sfp *sfp, bool a2, u8 dev_addr, |
721 | void *buf, size_t len) |
722 | { |
723 | union i2c_smbus_data smbus_data; |
724 | u8 bus_addr = a2 ? 0x51 : 0x50; |
725 | u8 *data = buf; |
726 | int ret; |
727 | |
728 | while (len) { |
729 | smbus_data.byte = *data; |
730 | ret = i2c_smbus_xfer(adapter: sfp->i2c, addr: bus_addr, flags: 0, |
731 | I2C_SMBUS_WRITE, command: dev_addr, |
732 | I2C_SMBUS_BYTE_DATA, data: &smbus_data); |
733 | if (ret) |
734 | return ret; |
735 | |
736 | len--; |
737 | data++; |
738 | dev_addr++; |
739 | } |
740 | |
741 | return 0; |
742 | } |
743 | |
744 | static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) |
745 | { |
746 | sfp->i2c = i2c; |
747 | |
748 | if (i2c_check_functionality(adap: i2c, I2C_FUNC_I2C)) { |
749 | sfp->read = sfp_i2c_read; |
750 | sfp->write = sfp_i2c_write; |
751 | sfp->i2c_max_block_size = SFP_EEPROM_BLOCK_SIZE; |
752 | } else if (i2c_check_functionality(adap: i2c, I2C_FUNC_SMBUS_BYTE_DATA)) { |
753 | sfp->read = sfp_smbus_byte_read; |
754 | sfp->write = sfp_smbus_byte_write; |
755 | sfp->i2c_max_block_size = 1; |
756 | } else { |
757 | sfp->i2c = NULL; |
758 | return -EINVAL; |
759 | } |
760 | |
761 | return 0; |
762 | } |
763 | |
764 | static int sfp_i2c_mdiobus_create(struct sfp *sfp) |
765 | { |
766 | struct mii_bus *i2c_mii; |
767 | int ret; |
768 | |
769 | i2c_mii = mdio_i2c_alloc(parent: sfp->dev, i2c: sfp->i2c, protocol: sfp->mdio_protocol); |
770 | if (IS_ERR(ptr: i2c_mii)) |
771 | return PTR_ERR(ptr: i2c_mii); |
772 | |
773 | i2c_mii->name = "SFP I2C Bus"; |
774 | i2c_mii->phy_mask = ~0; |
775 | |
776 | ret = mdiobus_register(i2c_mii); |
777 | if (ret < 0) { |
778 | mdiobus_free(bus: i2c_mii); |
779 | return ret; |
780 | } |
781 | |
782 | sfp->i2c_mii = i2c_mii; |
783 | |
784 | return 0; |
785 | } |
786 | |
787 | static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) |
788 | { |
789 | mdiobus_unregister(bus: sfp->i2c_mii); |
790 | sfp->i2c_mii = NULL; |
791 | } |
792 | |
793 | /* Interface */ |
794 | static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) |
795 | { |
796 | return sfp->read(sfp, a2, addr, buf, len); |
797 | } |
798 | |
799 | static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) |
800 | { |
801 | return sfp->write(sfp, a2, addr, buf, len); |
802 | } |
803 | |
804 | static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) |
805 | { |
806 | int ret; |
807 | u8 old, v; |
808 | |
809 | ret = sfp_read(sfp, a2, addr, buf: &old, len: sizeof(old)); |
810 | if (ret != sizeof(old)) |
811 | return ret; |
812 | |
813 | v = (old & ~mask) | (val & mask); |
814 | if (v == old) |
815 | return sizeof(v); |
816 | |
817 | return sfp_write(sfp, a2, addr, buf: &v, len: sizeof(v)); |
818 | } |
819 | |
820 | static unsigned int sfp_soft_get_state(struct sfp *sfp) |
821 | { |
822 | unsigned int state = 0; |
823 | u8 status; |
824 | int ret; |
825 | |
826 | ret = sfp_read(sfp, a2: true, addr: SFP_STATUS, buf: &status, len: sizeof(status)); |
827 | if (ret == sizeof(status)) { |
828 | if (status & SFP_STATUS_RX_LOS) |
829 | state |= SFP_F_LOS; |
830 | if (status & SFP_STATUS_TX_FAULT) |
831 | state |= SFP_F_TX_FAULT; |
832 | } else { |
833 | dev_err_ratelimited(sfp->dev, |
834 | "failed to read SFP soft status: %pe\n", |
835 | ERR_PTR(ret)); |
836 | /* Preserve the current state */ |
837 | state = sfp->state; |
838 | } |
839 | |
840 | return state & sfp->state_soft_mask; |
841 | } |
842 | |
843 | static void sfp_soft_set_state(struct sfp *sfp, unsigned int state, |
844 | unsigned int soft) |
845 | { |
846 | u8 mask = 0; |
847 | u8 val = 0; |
848 | |
849 | if (soft & SFP_F_TX_DISABLE) |
850 | mask |= SFP_STATUS_TX_DISABLE_FORCE; |
851 | if (state & SFP_F_TX_DISABLE) |
852 | val |= SFP_STATUS_TX_DISABLE_FORCE; |
853 | |
854 | if (soft & SFP_F_RS0) |
855 | mask |= SFP_STATUS_RS0_SELECT; |
856 | if (state & SFP_F_RS0) |
857 | val |= SFP_STATUS_RS0_SELECT; |
858 | |
859 | if (mask) |
860 | sfp_modify_u8(sfp, a2: true, addr: SFP_STATUS, mask, val); |
861 | |
862 | val = mask = 0; |
863 | if (soft & SFP_F_RS1) |
864 | mask |= SFP_EXT_STATUS_RS1_SELECT; |
865 | if (state & SFP_F_RS1) |
866 | val |= SFP_EXT_STATUS_RS1_SELECT; |
867 | |
868 | if (mask) |
869 | sfp_modify_u8(sfp, a2: true, addr: SFP_EXT_STATUS, mask, val); |
870 | } |
871 | |
872 | static void sfp_soft_start_poll(struct sfp *sfp) |
873 | { |
874 | const struct sfp_eeprom_id *id = &sfp->id; |
875 | unsigned int mask = 0; |
876 | |
877 | if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) |
878 | mask |= SFP_F_TX_DISABLE; |
879 | if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) |
880 | mask |= SFP_F_TX_FAULT; |
881 | if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) |
882 | mask |= SFP_F_LOS; |
883 | if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT) |
884 | mask |= sfp->rs_state_mask; |
885 | |
886 | mutex_lock(&sfp->st_mutex); |
887 | // Poll the soft state for hardware pins we want to ignore |
888 | sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask & |
889 | mask; |
890 | |
891 | if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && |
892 | !sfp->need_poll) |
893 | mod_delayed_work(wq: system_wq, dwork: &sfp->poll, delay: poll_jiffies); |
894 | mutex_unlock(lock: &sfp->st_mutex); |
895 | } |
896 | |
897 | static void sfp_soft_stop_poll(struct sfp *sfp) |
898 | { |
899 | mutex_lock(&sfp->st_mutex); |
900 | sfp->state_soft_mask = 0; |
901 | mutex_unlock(lock: &sfp->st_mutex); |
902 | } |
903 | |
904 | /* sfp_get_state() - must be called with st_mutex held, or in the |
905 | * initialisation path. |
906 | */ |
907 | static unsigned int sfp_get_state(struct sfp *sfp) |
908 | { |
909 | unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); |
910 | unsigned int state; |
911 | |
912 | state = sfp->get_state(sfp) & sfp->state_hw_mask; |
913 | if (state & SFP_F_PRESENT && soft) |
914 | state |= sfp_soft_get_state(sfp); |
915 | |
916 | return state; |
917 | } |
918 | |
919 | /* sfp_set_state() - must be called with st_mutex held, or in the |
920 | * initialisation path. |
921 | */ |
922 | static void sfp_set_state(struct sfp *sfp, unsigned int state) |
923 | { |
924 | unsigned int soft; |
925 | |
926 | sfp->set_state(sfp, state); |
927 | |
928 | soft = sfp->state_soft_mask & SFP_F_OUTPUTS; |
929 | if (state & SFP_F_PRESENT && soft) |
930 | sfp_soft_set_state(sfp, state, soft); |
931 | } |
932 | |
933 | static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set) |
934 | { |
935 | mutex_lock(&sfp->st_mutex); |
936 | sfp->state = (sfp->state & ~mask) | set; |
937 | sfp_set_state(sfp, state: sfp->state); |
938 | mutex_unlock(lock: &sfp->st_mutex); |
939 | } |
940 | |
941 | static unsigned int sfp_check(void *buf, size_t len) |
942 | { |
943 | u8 *p, check; |
944 | |
945 | for (p = buf, check = 0; len; p++, len--) |
946 | check += *p; |
947 | |
948 | return check; |
949 | } |
950 | |
951 | /* hwmon */ |
952 | #if IS_ENABLED(CONFIG_HWMON) |
953 | static umode_t sfp_hwmon_is_visible(const void *data, |
954 | enum hwmon_sensor_types type, |
955 | u32 attr, int channel) |
956 | { |
957 | const struct sfp *sfp = data; |
958 | |
959 | switch (type) { |
960 | case hwmon_temp: |
961 | switch (attr) { |
962 | case hwmon_temp_min_alarm: |
963 | case hwmon_temp_max_alarm: |
964 | case hwmon_temp_lcrit_alarm: |
965 | case hwmon_temp_crit_alarm: |
966 | case hwmon_temp_min: |
967 | case hwmon_temp_max: |
968 | case hwmon_temp_lcrit: |
969 | case hwmon_temp_crit: |
970 | if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) |
971 | return 0; |
972 | fallthrough; |
973 | case hwmon_temp_input: |
974 | case hwmon_temp_label: |
975 | return 0444; |
976 | default: |
977 | return 0; |
978 | } |
979 | case hwmon_in: |
980 | switch (attr) { |
981 | case hwmon_in_min_alarm: |
982 | case hwmon_in_max_alarm: |
983 | case hwmon_in_lcrit_alarm: |
984 | case hwmon_in_crit_alarm: |
985 | case hwmon_in_min: |
986 | case hwmon_in_max: |
987 | case hwmon_in_lcrit: |
988 | case hwmon_in_crit: |
989 | if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) |
990 | return 0; |
991 | fallthrough; |
992 | case hwmon_in_input: |
993 | case hwmon_in_label: |
994 | return 0444; |
995 | default: |
996 | return 0; |
997 | } |
998 | case hwmon_curr: |
999 | switch (attr) { |
1000 | case hwmon_curr_min_alarm: |
1001 | case hwmon_curr_max_alarm: |
1002 | case hwmon_curr_lcrit_alarm: |
1003 | case hwmon_curr_crit_alarm: |
1004 | case hwmon_curr_min: |
1005 | case hwmon_curr_max: |
1006 | case hwmon_curr_lcrit: |
1007 | case hwmon_curr_crit: |
1008 | if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) |
1009 | return 0; |
1010 | fallthrough; |
1011 | case hwmon_curr_input: |
1012 | case hwmon_curr_label: |
1013 | return 0444; |
1014 | default: |
1015 | return 0; |
1016 | } |
1017 | case hwmon_power: |
1018 | /* External calibration of receive power requires |
1019 | * floating point arithmetic. Doing that in the kernel |
1020 | * is not easy, so just skip it. If the module does |
1021 | * not require external calibration, we can however |
1022 | * show receiver power, since FP is then not needed. |
1023 | */ |
1024 | if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && |
1025 | channel == 1) |
1026 | return 0; |
1027 | switch (attr) { |
1028 | case hwmon_power_min_alarm: |
1029 | case hwmon_power_max_alarm: |
1030 | case hwmon_power_lcrit_alarm: |
1031 | case hwmon_power_crit_alarm: |
1032 | case hwmon_power_min: |
1033 | case hwmon_power_max: |
1034 | case hwmon_power_lcrit: |
1035 | case hwmon_power_crit: |
1036 | if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) |
1037 | return 0; |
1038 | fallthrough; |
1039 | case hwmon_power_input: |
1040 | case hwmon_power_label: |
1041 | return 0444; |
1042 | default: |
1043 | return 0; |
1044 | } |
1045 | default: |
1046 | return 0; |
1047 | } |
1048 | } |
1049 | |
1050 | static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) |
1051 | { |
1052 | __be16 val; |
1053 | int err; |
1054 | |
1055 | err = sfp_read(sfp, a2: true, addr: reg, buf: &val, len: sizeof(val)); |
1056 | if (err < 0) |
1057 | return err; |
1058 | |
1059 | *value = be16_to_cpu(val); |
1060 | |
1061 | return 0; |
1062 | } |
1063 | |
1064 | static void sfp_hwmon_to_rx_power(long *value) |
1065 | { |
1066 | *value = DIV_ROUND_CLOSEST(*value, 10); |
1067 | } |
1068 | |
1069 | static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, |
1070 | long *value) |
1071 | { |
1072 | if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) |
1073 | *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; |
1074 | } |
1075 | |
1076 | static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) |
1077 | { |
1078 | sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), |
1079 | be16_to_cpu(sfp->diag.cal_t_offset), value); |
1080 | |
1081 | if (*value >= 0x8000) |
1082 | *value -= 0x10000; |
1083 | |
1084 | *value = DIV_ROUND_CLOSEST(*value * 1000, 256); |
1085 | } |
1086 | |
1087 | static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) |
1088 | { |
1089 | sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), |
1090 | be16_to_cpu(sfp->diag.cal_v_offset), value); |
1091 | |
1092 | *value = DIV_ROUND_CLOSEST(*value, 10); |
1093 | } |
1094 | |
1095 | static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) |
1096 | { |
1097 | sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), |
1098 | be16_to_cpu(sfp->diag.cal_txi_offset), value); |
1099 | |
1100 | *value = DIV_ROUND_CLOSEST(*value, 500); |
1101 | } |
1102 | |
1103 | static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) |
1104 | { |
1105 | sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), |
1106 | be16_to_cpu(sfp->diag.cal_txpwr_offset), value); |
1107 | |
1108 | *value = DIV_ROUND_CLOSEST(*value, 10); |
1109 | } |
1110 | |
1111 | static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) |
1112 | { |
1113 | int err; |
1114 | |
1115 | err = sfp_hwmon_read_sensor(sfp, reg, value); |
1116 | if (err < 0) |
1117 | return err; |
1118 | |
1119 | sfp_hwmon_calibrate_temp(sfp, value); |
1120 | |
1121 | return 0; |
1122 | } |
1123 | |
1124 | static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) |
1125 | { |
1126 | int err; |
1127 | |
1128 | err = sfp_hwmon_read_sensor(sfp, reg, value); |
1129 | if (err < 0) |
1130 | return err; |
1131 | |
1132 | sfp_hwmon_calibrate_vcc(sfp, value); |
1133 | |
1134 | return 0; |
1135 | } |
1136 | |
1137 | static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) |
1138 | { |
1139 | int err; |
1140 | |
1141 | err = sfp_hwmon_read_sensor(sfp, reg, value); |
1142 | if (err < 0) |
1143 | return err; |
1144 | |
1145 | sfp_hwmon_calibrate_bias(sfp, value); |
1146 | |
1147 | return 0; |
1148 | } |
1149 | |
1150 | static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) |
1151 | { |
1152 | int err; |
1153 | |
1154 | err = sfp_hwmon_read_sensor(sfp, reg, value); |
1155 | if (err < 0) |
1156 | return err; |
1157 | |
1158 | sfp_hwmon_calibrate_tx_power(sfp, value); |
1159 | |
1160 | return 0; |
1161 | } |
1162 | |
1163 | static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) |
1164 | { |
1165 | int err; |
1166 | |
1167 | err = sfp_hwmon_read_sensor(sfp, reg, value); |
1168 | if (err < 0) |
1169 | return err; |
1170 | |
1171 | sfp_hwmon_to_rx_power(value); |
1172 | |
1173 | return 0; |
1174 | } |
1175 | |
1176 | static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) |
1177 | { |
1178 | u8 status; |
1179 | int err; |
1180 | |
1181 | switch (attr) { |
1182 | case hwmon_temp_input: |
1183 | return sfp_hwmon_read_temp(sfp, reg: SFP_TEMP, value); |
1184 | |
1185 | case hwmon_temp_lcrit: |
1186 | *value = be16_to_cpu(sfp->diag.temp_low_alarm); |
1187 | sfp_hwmon_calibrate_temp(sfp, value); |
1188 | return 0; |
1189 | |
1190 | case hwmon_temp_min: |
1191 | *value = be16_to_cpu(sfp->diag.temp_low_warn); |
1192 | sfp_hwmon_calibrate_temp(sfp, value); |
1193 | return 0; |
1194 | case hwmon_temp_max: |
1195 | *value = be16_to_cpu(sfp->diag.temp_high_warn); |
1196 | sfp_hwmon_calibrate_temp(sfp, value); |
1197 | return 0; |
1198 | |
1199 | case hwmon_temp_crit: |
1200 | *value = be16_to_cpu(sfp->diag.temp_high_alarm); |
1201 | sfp_hwmon_calibrate_temp(sfp, value); |
1202 | return 0; |
1203 | |
1204 | case hwmon_temp_lcrit_alarm: |
1205 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status)); |
1206 | if (err < 0) |
1207 | return err; |
1208 | |
1209 | *value = !!(status & SFP_ALARM0_TEMP_LOW); |
1210 | return 0; |
1211 | |
1212 | case hwmon_temp_min_alarm: |
1213 | err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status)); |
1214 | if (err < 0) |
1215 | return err; |
1216 | |
1217 | *value = !!(status & SFP_WARN0_TEMP_LOW); |
1218 | return 0; |
1219 | |
1220 | case hwmon_temp_max_alarm: |
1221 | err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status)); |
1222 | if (err < 0) |
1223 | return err; |
1224 | |
1225 | *value = !!(status & SFP_WARN0_TEMP_HIGH); |
1226 | return 0; |
1227 | |
1228 | case hwmon_temp_crit_alarm: |
1229 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status)); |
1230 | if (err < 0) |
1231 | return err; |
1232 | |
1233 | *value = !!(status & SFP_ALARM0_TEMP_HIGH); |
1234 | return 0; |
1235 | default: |
1236 | return -EOPNOTSUPP; |
1237 | } |
1238 | |
1239 | return -EOPNOTSUPP; |
1240 | } |
1241 | |
1242 | static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) |
1243 | { |
1244 | u8 status; |
1245 | int err; |
1246 | |
1247 | switch (attr) { |
1248 | case hwmon_in_input: |
1249 | return sfp_hwmon_read_vcc(sfp, reg: SFP_VCC, value); |
1250 | |
1251 | case hwmon_in_lcrit: |
1252 | *value = be16_to_cpu(sfp->diag.volt_low_alarm); |
1253 | sfp_hwmon_calibrate_vcc(sfp, value); |
1254 | return 0; |
1255 | |
1256 | case hwmon_in_min: |
1257 | *value = be16_to_cpu(sfp->diag.volt_low_warn); |
1258 | sfp_hwmon_calibrate_vcc(sfp, value); |
1259 | return 0; |
1260 | |
1261 | case hwmon_in_max: |
1262 | *value = be16_to_cpu(sfp->diag.volt_high_warn); |
1263 | sfp_hwmon_calibrate_vcc(sfp, value); |
1264 | return 0; |
1265 | |
1266 | case hwmon_in_crit: |
1267 | *value = be16_to_cpu(sfp->diag.volt_high_alarm); |
1268 | sfp_hwmon_calibrate_vcc(sfp, value); |
1269 | return 0; |
1270 | |
1271 | case hwmon_in_lcrit_alarm: |
1272 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status)); |
1273 | if (err < 0) |
1274 | return err; |
1275 | |
1276 | *value = !!(status & SFP_ALARM0_VCC_LOW); |
1277 | return 0; |
1278 | |
1279 | case hwmon_in_min_alarm: |
1280 | err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status)); |
1281 | if (err < 0) |
1282 | return err; |
1283 | |
1284 | *value = !!(status & SFP_WARN0_VCC_LOW); |
1285 | return 0; |
1286 | |
1287 | case hwmon_in_max_alarm: |
1288 | err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status)); |
1289 | if (err < 0) |
1290 | return err; |
1291 | |
1292 | *value = !!(status & SFP_WARN0_VCC_HIGH); |
1293 | return 0; |
1294 | |
1295 | case hwmon_in_crit_alarm: |
1296 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status)); |
1297 | if (err < 0) |
1298 | return err; |
1299 | |
1300 | *value = !!(status & SFP_ALARM0_VCC_HIGH); |
1301 | return 0; |
1302 | default: |
1303 | return -EOPNOTSUPP; |
1304 | } |
1305 | |
1306 | return -EOPNOTSUPP; |
1307 | } |
1308 | |
1309 | static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) |
1310 | { |
1311 | u8 status; |
1312 | int err; |
1313 | |
1314 | switch (attr) { |
1315 | case hwmon_curr_input: |
1316 | return sfp_hwmon_read_bias(sfp, reg: SFP_TX_BIAS, value); |
1317 | |
1318 | case hwmon_curr_lcrit: |
1319 | *value = be16_to_cpu(sfp->diag.bias_low_alarm); |
1320 | sfp_hwmon_calibrate_bias(sfp, value); |
1321 | return 0; |
1322 | |
1323 | case hwmon_curr_min: |
1324 | *value = be16_to_cpu(sfp->diag.bias_low_warn); |
1325 | sfp_hwmon_calibrate_bias(sfp, value); |
1326 | return 0; |
1327 | |
1328 | case hwmon_curr_max: |
1329 | *value = be16_to_cpu(sfp->diag.bias_high_warn); |
1330 | sfp_hwmon_calibrate_bias(sfp, value); |
1331 | return 0; |
1332 | |
1333 | case hwmon_curr_crit: |
1334 | *value = be16_to_cpu(sfp->diag.bias_high_alarm); |
1335 | sfp_hwmon_calibrate_bias(sfp, value); |
1336 | return 0; |
1337 | |
1338 | case hwmon_curr_lcrit_alarm: |
1339 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status)); |
1340 | if (err < 0) |
1341 | return err; |
1342 | |
1343 | *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); |
1344 | return 0; |
1345 | |
1346 | case hwmon_curr_min_alarm: |
1347 | err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status)); |
1348 | if (err < 0) |
1349 | return err; |
1350 | |
1351 | *value = !!(status & SFP_WARN0_TX_BIAS_LOW); |
1352 | return 0; |
1353 | |
1354 | case hwmon_curr_max_alarm: |
1355 | err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status)); |
1356 | if (err < 0) |
1357 | return err; |
1358 | |
1359 | *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); |
1360 | return 0; |
1361 | |
1362 | case hwmon_curr_crit_alarm: |
1363 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status)); |
1364 | if (err < 0) |
1365 | return err; |
1366 | |
1367 | *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); |
1368 | return 0; |
1369 | default: |
1370 | return -EOPNOTSUPP; |
1371 | } |
1372 | |
1373 | return -EOPNOTSUPP; |
1374 | } |
1375 | |
1376 | static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) |
1377 | { |
1378 | u8 status; |
1379 | int err; |
1380 | |
1381 | switch (attr) { |
1382 | case hwmon_power_input: |
1383 | return sfp_hwmon_read_tx_power(sfp, reg: SFP_TX_POWER, value); |
1384 | |
1385 | case hwmon_power_lcrit: |
1386 | *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); |
1387 | sfp_hwmon_calibrate_tx_power(sfp, value); |
1388 | return 0; |
1389 | |
1390 | case hwmon_power_min: |
1391 | *value = be16_to_cpu(sfp->diag.txpwr_low_warn); |
1392 | sfp_hwmon_calibrate_tx_power(sfp, value); |
1393 | return 0; |
1394 | |
1395 | case hwmon_power_max: |
1396 | *value = be16_to_cpu(sfp->diag.txpwr_high_warn); |
1397 | sfp_hwmon_calibrate_tx_power(sfp, value); |
1398 | return 0; |
1399 | |
1400 | case hwmon_power_crit: |
1401 | *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); |
1402 | sfp_hwmon_calibrate_tx_power(sfp, value); |
1403 | return 0; |
1404 | |
1405 | case hwmon_power_lcrit_alarm: |
1406 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status)); |
1407 | if (err < 0) |
1408 | return err; |
1409 | |
1410 | *value = !!(status & SFP_ALARM0_TXPWR_LOW); |
1411 | return 0; |
1412 | |
1413 | case hwmon_power_min_alarm: |
1414 | err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status)); |
1415 | if (err < 0) |
1416 | return err; |
1417 | |
1418 | *value = !!(status & SFP_WARN0_TXPWR_LOW); |
1419 | return 0; |
1420 | |
1421 | case hwmon_power_max_alarm: |
1422 | err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status)); |
1423 | if (err < 0) |
1424 | return err; |
1425 | |
1426 | *value = !!(status & SFP_WARN0_TXPWR_HIGH); |
1427 | return 0; |
1428 | |
1429 | case hwmon_power_crit_alarm: |
1430 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status)); |
1431 | if (err < 0) |
1432 | return err; |
1433 | |
1434 | *value = !!(status & SFP_ALARM0_TXPWR_HIGH); |
1435 | return 0; |
1436 | default: |
1437 | return -EOPNOTSUPP; |
1438 | } |
1439 | |
1440 | return -EOPNOTSUPP; |
1441 | } |
1442 | |
1443 | static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) |
1444 | { |
1445 | u8 status; |
1446 | int err; |
1447 | |
1448 | switch (attr) { |
1449 | case hwmon_power_input: |
1450 | return sfp_hwmon_read_rx_power(sfp, reg: SFP_RX_POWER, value); |
1451 | |
1452 | case hwmon_power_lcrit: |
1453 | *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); |
1454 | sfp_hwmon_to_rx_power(value); |
1455 | return 0; |
1456 | |
1457 | case hwmon_power_min: |
1458 | *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); |
1459 | sfp_hwmon_to_rx_power(value); |
1460 | return 0; |
1461 | |
1462 | case hwmon_power_max: |
1463 | *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); |
1464 | sfp_hwmon_to_rx_power(value); |
1465 | return 0; |
1466 | |
1467 | case hwmon_power_crit: |
1468 | *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); |
1469 | sfp_hwmon_to_rx_power(value); |
1470 | return 0; |
1471 | |
1472 | case hwmon_power_lcrit_alarm: |
1473 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM1, buf: &status, len: sizeof(status)); |
1474 | if (err < 0) |
1475 | return err; |
1476 | |
1477 | *value = !!(status & SFP_ALARM1_RXPWR_LOW); |
1478 | return 0; |
1479 | |
1480 | case hwmon_power_min_alarm: |
1481 | err = sfp_read(sfp, a2: true, addr: SFP_WARN1, buf: &status, len: sizeof(status)); |
1482 | if (err < 0) |
1483 | return err; |
1484 | |
1485 | *value = !!(status & SFP_WARN1_RXPWR_LOW); |
1486 | return 0; |
1487 | |
1488 | case hwmon_power_max_alarm: |
1489 | err = sfp_read(sfp, a2: true, addr: SFP_WARN1, buf: &status, len: sizeof(status)); |
1490 | if (err < 0) |
1491 | return err; |
1492 | |
1493 | *value = !!(status & SFP_WARN1_RXPWR_HIGH); |
1494 | return 0; |
1495 | |
1496 | case hwmon_power_crit_alarm: |
1497 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM1, buf: &status, len: sizeof(status)); |
1498 | if (err < 0) |
1499 | return err; |
1500 | |
1501 | *value = !!(status & SFP_ALARM1_RXPWR_HIGH); |
1502 | return 0; |
1503 | default: |
1504 | return -EOPNOTSUPP; |
1505 | } |
1506 | |
1507 | return -EOPNOTSUPP; |
1508 | } |
1509 | |
1510 | static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, |
1511 | u32 attr, int channel, long *value) |
1512 | { |
1513 | struct sfp *sfp = dev_get_drvdata(dev); |
1514 | |
1515 | switch (type) { |
1516 | case hwmon_temp: |
1517 | return sfp_hwmon_temp(sfp, attr, value); |
1518 | case hwmon_in: |
1519 | return sfp_hwmon_vcc(sfp, attr, value); |
1520 | case hwmon_curr: |
1521 | return sfp_hwmon_bias(sfp, attr, value); |
1522 | case hwmon_power: |
1523 | switch (channel) { |
1524 | case 0: |
1525 | return sfp_hwmon_tx_power(sfp, attr, value); |
1526 | case 1: |
1527 | return sfp_hwmon_rx_power(sfp, attr, value); |
1528 | default: |
1529 | return -EOPNOTSUPP; |
1530 | } |
1531 | default: |
1532 | return -EOPNOTSUPP; |
1533 | } |
1534 | } |
1535 | |
1536 | static const char *const sfp_hwmon_power_labels[] = { |
1537 | "TX_power", |
1538 | "RX_power", |
1539 | }; |
1540 | |
1541 | static int sfp_hwmon_read_string(struct device *dev, |
1542 | enum hwmon_sensor_types type, |
1543 | u32 attr, int channel, const char **str) |
1544 | { |
1545 | switch (type) { |
1546 | case hwmon_curr: |
1547 | switch (attr) { |
1548 | case hwmon_curr_label: |
1549 | *str = "bias"; |
1550 | return 0; |
1551 | default: |
1552 | return -EOPNOTSUPP; |
1553 | } |
1554 | break; |
1555 | case hwmon_temp: |
1556 | switch (attr) { |
1557 | case hwmon_temp_label: |
1558 | *str = "temperature"; |
1559 | return 0; |
1560 | default: |
1561 | return -EOPNOTSUPP; |
1562 | } |
1563 | break; |
1564 | case hwmon_in: |
1565 | switch (attr) { |
1566 | case hwmon_in_label: |
1567 | *str = "VCC"; |
1568 | return 0; |
1569 | default: |
1570 | return -EOPNOTSUPP; |
1571 | } |
1572 | break; |
1573 | case hwmon_power: |
1574 | switch (attr) { |
1575 | case hwmon_power_label: |
1576 | *str = sfp_hwmon_power_labels[channel]; |
1577 | return 0; |
1578 | default: |
1579 | return -EOPNOTSUPP; |
1580 | } |
1581 | break; |
1582 | default: |
1583 | return -EOPNOTSUPP; |
1584 | } |
1585 | |
1586 | return -EOPNOTSUPP; |
1587 | } |
1588 | |
1589 | static const struct hwmon_ops sfp_hwmon_ops = { |
1590 | .is_visible = sfp_hwmon_is_visible, |
1591 | .read = sfp_hwmon_read, |
1592 | .read_string = sfp_hwmon_read_string, |
1593 | }; |
1594 | |
1595 | static const struct hwmon_channel_info * const sfp_hwmon_info[] = { |
1596 | HWMON_CHANNEL_INFO(chip, |
1597 | HWMON_C_REGISTER_TZ), |
1598 | HWMON_CHANNEL_INFO(in, |
1599 | HWMON_I_INPUT | |
1600 | HWMON_I_MAX | HWMON_I_MIN | |
1601 | HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | |
1602 | HWMON_I_CRIT | HWMON_I_LCRIT | |
1603 | HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | |
1604 | HWMON_I_LABEL), |
1605 | HWMON_CHANNEL_INFO(temp, |
1606 | HWMON_T_INPUT | |
1607 | HWMON_T_MAX | HWMON_T_MIN | |
1608 | HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | |
1609 | HWMON_T_CRIT | HWMON_T_LCRIT | |
1610 | HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | |
1611 | HWMON_T_LABEL), |
1612 | HWMON_CHANNEL_INFO(curr, |
1613 | HWMON_C_INPUT | |
1614 | HWMON_C_MAX | HWMON_C_MIN | |
1615 | HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | |
1616 | HWMON_C_CRIT | HWMON_C_LCRIT | |
1617 | HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | |
1618 | HWMON_C_LABEL), |
1619 | HWMON_CHANNEL_INFO(power, |
1620 | /* Transmit power */ |
1621 | HWMON_P_INPUT | |
1622 | HWMON_P_MAX | HWMON_P_MIN | |
1623 | HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | |
1624 | HWMON_P_CRIT | HWMON_P_LCRIT | |
1625 | HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | |
1626 | HWMON_P_LABEL, |
1627 | /* Receive power */ |
1628 | HWMON_P_INPUT | |
1629 | HWMON_P_MAX | HWMON_P_MIN | |
1630 | HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | |
1631 | HWMON_P_CRIT | HWMON_P_LCRIT | |
1632 | HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | |
1633 | HWMON_P_LABEL), |
1634 | NULL, |
1635 | }; |
1636 | |
1637 | static const struct hwmon_chip_info sfp_hwmon_chip_info = { |
1638 | .ops = &sfp_hwmon_ops, |
1639 | .info = sfp_hwmon_info, |
1640 | }; |
1641 | |
1642 | static void sfp_hwmon_probe(struct work_struct *work) |
1643 | { |
1644 | struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); |
1645 | int err; |
1646 | |
1647 | /* hwmon interface needs to access 16bit registers in atomic way to |
1648 | * guarantee coherency of the diagnostic monitoring data. If it is not |
1649 | * possible to guarantee coherency because EEPROM is broken in such way |
1650 | * that does not support atomic 16bit read operation then we have to |
1651 | * skip registration of hwmon device. |
1652 | */ |
1653 | if (sfp->i2c_block_size < 2) { |
1654 | dev_info(sfp->dev, |
1655 | "skipping hwmon device registration\n"); |
1656 | dev_info(sfp->dev, |
1657 | "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); |
1658 | return; |
1659 | } |
1660 | |
1661 | err = sfp_read(sfp, a2: true, addr: 0, buf: &sfp->diag, len: sizeof(sfp->diag)); |
1662 | if (err < 0) { |
1663 | if (sfp->hwmon_tries--) { |
1664 | mod_delayed_work(wq: system_wq, dwork: &sfp->hwmon_probe, |
1665 | T_PROBE_RETRY_SLOW); |
1666 | } else { |
1667 | dev_warn(sfp->dev, "hwmon probe failed: %pe\n", |
1668 | ERR_PTR(err)); |
1669 | } |
1670 | return; |
1671 | } |
1672 | |
1673 | sfp->hwmon_name = hwmon_sanitize_name(name: dev_name(dev: sfp->dev)); |
1674 | if (IS_ERR(ptr: sfp->hwmon_name)) { |
1675 | dev_err(sfp->dev, "out of memory for hwmon name\n"); |
1676 | return; |
1677 | } |
1678 | |
1679 | sfp->hwmon_dev = hwmon_device_register_with_info(dev: sfp->dev, |
1680 | name: sfp->hwmon_name, drvdata: sfp, |
1681 | info: &sfp_hwmon_chip_info, |
1682 | NULL); |
1683 | if (IS_ERR(ptr: sfp->hwmon_dev)) |
1684 | dev_err(sfp->dev, "failed to register hwmon device: %ld\n", |
1685 | PTR_ERR(sfp->hwmon_dev)); |
1686 | } |
1687 | |
1688 | static int sfp_hwmon_insert(struct sfp *sfp) |
1689 | { |
1690 | if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) { |
1691 | mod_delayed_work(wq: system_wq, dwork: &sfp->hwmon_probe, delay: 1); |
1692 | sfp->hwmon_tries = R_PROBE_RETRY_SLOW; |
1693 | } |
1694 | |
1695 | return 0; |
1696 | } |
1697 | |
1698 | static void sfp_hwmon_remove(struct sfp *sfp) |
1699 | { |
1700 | cancel_delayed_work_sync(dwork: &sfp->hwmon_probe); |
1701 | if (!IS_ERR_OR_NULL(ptr: sfp->hwmon_dev)) { |
1702 | hwmon_device_unregister(dev: sfp->hwmon_dev); |
1703 | sfp->hwmon_dev = NULL; |
1704 | kfree(objp: sfp->hwmon_name); |
1705 | } |
1706 | } |
1707 | |
1708 | static int sfp_hwmon_init(struct sfp *sfp) |
1709 | { |
1710 | INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); |
1711 | |
1712 | return 0; |
1713 | } |
1714 | |
1715 | static void sfp_hwmon_exit(struct sfp *sfp) |
1716 | { |
1717 | cancel_delayed_work_sync(dwork: &sfp->hwmon_probe); |
1718 | } |
1719 | #else |
1720 | static int sfp_hwmon_insert(struct sfp *sfp) |
1721 | { |
1722 | return 0; |
1723 | } |
1724 | |
1725 | static void sfp_hwmon_remove(struct sfp *sfp) |
1726 | { |
1727 | } |
1728 | |
1729 | static int sfp_hwmon_init(struct sfp *sfp) |
1730 | { |
1731 | return 0; |
1732 | } |
1733 | |
1734 | static void sfp_hwmon_exit(struct sfp *sfp) |
1735 | { |
1736 | } |
1737 | #endif |
1738 | |
1739 | /* Helpers */ |
1740 | static void sfp_module_tx_disable(struct sfp *sfp) |
1741 | { |
1742 | dev_dbg(sfp->dev, "tx disable %u -> %u\n", |
1743 | sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); |
1744 | sfp_mod_state(sfp, mask: SFP_F_TX_DISABLE, set: SFP_F_TX_DISABLE); |
1745 | } |
1746 | |
1747 | static void sfp_module_tx_enable(struct sfp *sfp) |
1748 | { |
1749 | dev_dbg(sfp->dev, "tx disable %u -> %u\n", |
1750 | sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); |
1751 | sfp_mod_state(sfp, mask: SFP_F_TX_DISABLE, set: 0); |
1752 | } |
1753 | |
1754 | #if IS_ENABLED(CONFIG_DEBUG_FS) |
1755 | static int sfp_debug_state_show(struct seq_file *s, void *data) |
1756 | { |
1757 | struct sfp *sfp = s->private; |
1758 | |
1759 | seq_printf(m: s, fmt: "Module state: %s\n", |
1760 | mod_state_to_str(mod_state: sfp->sm_mod_state)); |
1761 | seq_printf(m: s, fmt: "Module probe attempts: %d %d\n", |
1762 | R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, |
1763 | R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); |
1764 | seq_printf(m: s, fmt: "Device state: %s\n", |
1765 | dev_state_to_str(dev_state: sfp->sm_dev_state)); |
1766 | seq_printf(m: s, fmt: "Main state: %s\n", |
1767 | sm_state_to_str(sm_state: sfp->sm_state)); |
1768 | seq_printf(m: s, fmt: "Fault recovery remaining retries: %d\n", |
1769 | sfp->sm_fault_retries); |
1770 | seq_printf(m: s, fmt: "PHY probe remaining retries: %d\n", |
1771 | sfp->sm_phy_retries); |
1772 | seq_printf(m: s, fmt: "Signalling rate: %u kBd\n", sfp->rate_kbd); |
1773 | seq_printf(m: s, fmt: "Rate select threshold: %u kBd\n", |
1774 | sfp->rs_threshold_kbd); |
1775 | seq_printf(m: s, fmt: "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); |
1776 | seq_printf(m: s, fmt: "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); |
1777 | seq_printf(m: s, fmt: "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); |
1778 | seq_printf(m: s, fmt: "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); |
1779 | seq_printf(m: s, fmt: "rs0: %d\n", !!(sfp->state & SFP_F_RS0)); |
1780 | seq_printf(m: s, fmt: "rs1: %d\n", !!(sfp->state & SFP_F_RS1)); |
1781 | return 0; |
1782 | } |
1783 | DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); |
1784 | |
1785 | static void sfp_debugfs_init(struct sfp *sfp) |
1786 | { |
1787 | sfp->debugfs_dir = debugfs_create_dir(name: dev_name(dev: sfp->dev), NULL); |
1788 | |
1789 | debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, |
1790 | &sfp_debug_state_fops); |
1791 | } |
1792 | |
1793 | static void sfp_debugfs_exit(struct sfp *sfp) |
1794 | { |
1795 | debugfs_remove_recursive(dentry: sfp->debugfs_dir); |
1796 | } |
1797 | #else |
1798 | static void sfp_debugfs_init(struct sfp *sfp) |
1799 | { |
1800 | } |
1801 | |
1802 | static void sfp_debugfs_exit(struct sfp *sfp) |
1803 | { |
1804 | } |
1805 | #endif |
1806 | |
1807 | static void sfp_module_tx_fault_reset(struct sfp *sfp) |
1808 | { |
1809 | unsigned int state; |
1810 | |
1811 | mutex_lock(&sfp->st_mutex); |
1812 | state = sfp->state; |
1813 | if (!(state & SFP_F_TX_DISABLE)) { |
1814 | sfp_set_state(sfp, state: state | SFP_F_TX_DISABLE); |
1815 | |
1816 | udelay(T_RESET_US); |
1817 | |
1818 | sfp_set_state(sfp, state); |
1819 | } |
1820 | mutex_unlock(lock: &sfp->st_mutex); |
1821 | } |
1822 | |
1823 | /* SFP state machine */ |
1824 | static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) |
1825 | { |
1826 | if (timeout) |
1827 | mod_delayed_work(wq: system_power_efficient_wq, dwork: &sfp->timeout, |
1828 | delay: timeout); |
1829 | else |
1830 | cancel_delayed_work(dwork: &sfp->timeout); |
1831 | } |
1832 | |
1833 | static void sfp_sm_next(struct sfp *sfp, unsigned int state, |
1834 | unsigned int timeout) |
1835 | { |
1836 | sfp->sm_state = state; |
1837 | sfp_sm_set_timer(sfp, timeout); |
1838 | } |
1839 | |
1840 | static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, |
1841 | unsigned int timeout) |
1842 | { |
1843 | sfp->sm_mod_state = state; |
1844 | sfp_sm_set_timer(sfp, timeout); |
1845 | } |
1846 | |
1847 | static void sfp_sm_phy_detach(struct sfp *sfp) |
1848 | { |
1849 | sfp_remove_phy(bus: sfp->sfp_bus); |
1850 | phy_device_remove(phydev: sfp->mod_phy); |
1851 | phy_device_free(phydev: sfp->mod_phy); |
1852 | sfp->mod_phy = NULL; |
1853 | } |
1854 | |
1855 | static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) |
1856 | { |
1857 | struct phy_device *phy; |
1858 | int err; |
1859 | |
1860 | phy = get_phy_device(bus: sfp->i2c_mii, addr, is_c45); |
1861 | if (phy == ERR_PTR(error: -ENODEV)) |
1862 | return PTR_ERR(ptr: phy); |
1863 | if (IS_ERR(ptr: phy)) { |
1864 | dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); |
1865 | return PTR_ERR(ptr: phy); |
1866 | } |
1867 | |
1868 | /* Mark this PHY as being on a SFP module */ |
1869 | phy->is_on_sfp_module = true; |
1870 | |
1871 | err = phy_device_register(phy); |
1872 | if (err) { |
1873 | phy_device_free(phydev: phy); |
1874 | dev_err(sfp->dev, "phy_device_register failed: %pe\n", |
1875 | ERR_PTR(err)); |
1876 | return err; |
1877 | } |
1878 | |
1879 | err = sfp_add_phy(bus: sfp->sfp_bus, phydev: phy); |
1880 | if (err) { |
1881 | phy_device_remove(phydev: phy); |
1882 | phy_device_free(phydev: phy); |
1883 | dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); |
1884 | return err; |
1885 | } |
1886 | |
1887 | sfp->mod_phy = phy; |
1888 | |
1889 | return 0; |
1890 | } |
1891 | |
1892 | static void sfp_sm_link_up(struct sfp *sfp) |
1893 | { |
1894 | sfp_link_up(bus: sfp->sfp_bus); |
1895 | sfp_sm_next(sfp, state: SFP_S_LINK_UP, timeout: 0); |
1896 | } |
1897 | |
1898 | static void sfp_sm_link_down(struct sfp *sfp) |
1899 | { |
1900 | sfp_link_down(bus: sfp->sfp_bus); |
1901 | } |
1902 | |
1903 | static void sfp_sm_link_check_los(struct sfp *sfp) |
1904 | { |
1905 | const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); |
1906 | const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); |
1907 | __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); |
1908 | bool los = false; |
1909 | |
1910 | /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL |
1911 | * are set, we assume that no LOS signal is available. If both are |
1912 | * set, we assume LOS is not implemented (and is meaningless.) |
1913 | */ |
1914 | if (los_options == los_inverted) |
1915 | los = !(sfp->state & SFP_F_LOS); |
1916 | else if (los_options == los_normal) |
1917 | los = !!(sfp->state & SFP_F_LOS); |
1918 | |
1919 | if (los) |
1920 | sfp_sm_next(sfp, state: SFP_S_WAIT_LOS, timeout: 0); |
1921 | else |
1922 | sfp_sm_link_up(sfp); |
1923 | } |
1924 | |
1925 | static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) |
1926 | { |
1927 | const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); |
1928 | const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); |
1929 | __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); |
1930 | |
1931 | return (los_options == los_inverted && event == SFP_E_LOS_LOW) || |
1932 | (los_options == los_normal && event == SFP_E_LOS_HIGH); |
1933 | } |
1934 | |
1935 | static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) |
1936 | { |
1937 | const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); |
1938 | const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); |
1939 | __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); |
1940 | |
1941 | return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || |
1942 | (los_options == los_normal && event == SFP_E_LOS_LOW); |
1943 | } |
1944 | |
1945 | static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) |
1946 | { |
1947 | if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { |
1948 | dev_err(sfp->dev, |
1949 | "module persistently indicates fault, disabling\n"); |
1950 | sfp_sm_next(sfp, state: SFP_S_TX_DISABLE, timeout: 0); |
1951 | } else { |
1952 | if (warn) |
1953 | dev_err(sfp->dev, "module transmit fault indicated\n"); |
1954 | |
1955 | sfp_sm_next(sfp, state: next_state, T_FAULT_RECOVER); |
1956 | } |
1957 | } |
1958 | |
1959 | static int sfp_sm_add_mdio_bus(struct sfp *sfp) |
1960 | { |
1961 | if (sfp->mdio_protocol != MDIO_I2C_NONE) |
1962 | return sfp_i2c_mdiobus_create(sfp); |
1963 | |
1964 | return 0; |
1965 | } |
1966 | |
1967 | /* Probe a SFP for a PHY device if the module supports copper - the PHY |
1968 | * normally sits at I2C bus address 0x56, and may either be a clause 22 |
1969 | * or clause 45 PHY. |
1970 | * |
1971 | * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with |
1972 | * negotiation enabled, but some may be in 1000base-X - which is for the |
1973 | * PHY driver to determine. |
1974 | * |
1975 | * Clause 45 copper SFP+ modules (10G) appear to switch their interface |
1976 | * mode according to the negotiated line speed. |
1977 | */ |
1978 | static int sfp_sm_probe_for_phy(struct sfp *sfp) |
1979 | { |
1980 | int err = 0; |
1981 | |
1982 | switch (sfp->mdio_protocol) { |
1983 | case MDIO_I2C_NONE: |
1984 | break; |
1985 | |
1986 | case MDIO_I2C_MARVELL_C22: |
1987 | err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, is_c45: false); |
1988 | break; |
1989 | |
1990 | case MDIO_I2C_C45: |
1991 | err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, is_c45: true); |
1992 | break; |
1993 | |
1994 | case MDIO_I2C_ROLLBALL: |
1995 | err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, is_c45: true); |
1996 | break; |
1997 | } |
1998 | |
1999 | return err; |
2000 | } |
2001 | |
2002 | static int sfp_module_parse_power(struct sfp *sfp) |
2003 | { |
2004 | u32 power_mW = 1000; |
2005 | bool supports_a2; |
2006 | |
2007 | if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && |
2008 | sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) |
2009 | power_mW = 1500; |
2010 | /* Added in Rev 11.9, but there is no compliance code for this */ |
2011 | if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && |
2012 | sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) |
2013 | power_mW = 2000; |
2014 | |
2015 | /* Power level 1 modules (max. 1W) are always supported. */ |
2016 | if (power_mW <= 1000) { |
2017 | sfp->module_power_mW = power_mW; |
2018 | return 0; |
2019 | } |
2020 | |
2021 | supports_a2 = sfp->id.ext.sff8472_compliance != |
2022 | SFP_SFF8472_COMPLIANCE_NONE || |
2023 | sfp->id.ext.diagmon & SFP_DIAGMON_DDM; |
2024 | |
2025 | if (power_mW > sfp->max_power_mW) { |
2026 | /* Module power specification exceeds the allowed maximum. */ |
2027 | if (!supports_a2) { |
2028 | /* The module appears not to implement bus address |
2029 | * 0xa2, so assume that the module powers up in the |
2030 | * indicated mode. |
2031 | */ |
2032 | dev_err(sfp->dev, |
2033 | "Host does not support %u.%uW modules\n", |
2034 | power_mW / 1000, (power_mW / 100) % 10); |
2035 | return -EINVAL; |
2036 | } else { |
2037 | dev_warn(sfp->dev, |
2038 | "Host does not support %u.%uW modules, module left in power mode 1\n", |
2039 | power_mW / 1000, (power_mW / 100) % 10); |
2040 | return 0; |
2041 | } |
2042 | } |
2043 | |
2044 | if (!supports_a2) { |
2045 | /* The module power level is below the host maximum and the |
2046 | * module appears not to implement bus address 0xa2, so assume |
2047 | * that the module powers up in the indicated mode. |
2048 | */ |
2049 | return 0; |
2050 | } |
2051 | |
2052 | /* If the module requires a higher power mode, but also requires |
2053 | * an address change sequence, warn the user that the module may |
2054 | * not be functional. |
2055 | */ |
2056 | if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { |
2057 | dev_warn(sfp->dev, |
2058 | "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", |
2059 | power_mW / 1000, (power_mW / 100) % 10); |
2060 | return 0; |
2061 | } |
2062 | |
2063 | sfp->module_power_mW = power_mW; |
2064 | |
2065 | return 0; |
2066 | } |
2067 | |
2068 | static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) |
2069 | { |
2070 | int err; |
2071 | |
2072 | err = sfp_modify_u8(sfp, a2: true, addr: SFP_EXT_STATUS, |
2073 | mask: SFP_EXT_STATUS_PWRLVL_SELECT, |
2074 | val: enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); |
2075 | if (err != sizeof(u8)) { |
2076 | dev_err(sfp->dev, "failed to %sable high power: %pe\n", |
2077 | enable ? "en": "dis", ERR_PTR(err)); |
2078 | return -EAGAIN; |
2079 | } |
2080 | |
2081 | if (enable) |
2082 | dev_info(sfp->dev, "Module switched to %u.%uW power level\n", |
2083 | sfp->module_power_mW / 1000, |
2084 | (sfp->module_power_mW / 100) % 10); |
2085 | |
2086 | return 0; |
2087 | } |
2088 | |
2089 | static void sfp_module_parse_rate_select(struct sfp *sfp) |
2090 | { |
2091 | u8 rate_id; |
2092 | |
2093 | sfp->rs_threshold_kbd = 0; |
2094 | sfp->rs_state_mask = 0; |
2095 | |
2096 | if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT))) |
2097 | /* No support for RateSelect */ |
2098 | return; |
2099 | |
2100 | /* Default to INF-8074 RateSelect operation. The signalling threshold |
2101 | * rate is not well specified, so always select "Full Bandwidth", but |
2102 | * SFF-8079 reveals that it is understood that RS0 will be low for |
2103 | * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between. |
2104 | * This method exists prior to SFF-8472. |
2105 | */ |
2106 | sfp->rs_state_mask = SFP_F_RS0; |
2107 | sfp->rs_threshold_kbd = 1594; |
2108 | |
2109 | /* Parse the rate identifier, which is complicated due to history: |
2110 | * SFF-8472 rev 9.5 marks this field as reserved. |
2111 | * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472 |
2112 | * compliance is not required. |
2113 | * SFF-8472 rev 10.2 defines this field using values 0..4 |
2114 | * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079 |
2115 | * and even values. |
2116 | */ |
2117 | rate_id = sfp->id.base.rate_id; |
2118 | if (rate_id == 0) |
2119 | /* Unspecified */ |
2120 | return; |
2121 | |
2122 | /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0, |
2123 | * and allocated value 3 to SFF-8431 independent tx/rx rate select. |
2124 | * Convert this to a SFF-8472 rev 11.0 rate identifier. |
2125 | */ |
2126 | if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && |
2127 | sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 && |
2128 | rate_id == 3) |
2129 | rate_id = SFF_RID_8431; |
2130 | |
2131 | if (rate_id & SFF_RID_8079) { |
2132 | /* SFF-8079 RateSelect / Application Select in conjunction with |
2133 | * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield |
2134 | * with only bit 0 used, which takes precedence over SFF-8472. |
2135 | */ |
2136 | if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) { |
2137 | /* SFF-8079 Part 1 - rate selection between Fibre |
2138 | * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0 |
2139 | * is high for 2125, so we have to subtract 1 to |
2140 | * include it. |
2141 | */ |
2142 | sfp->rs_threshold_kbd = 2125 - 1; |
2143 | sfp->rs_state_mask = SFP_F_RS0; |
2144 | } |
2145 | return; |
2146 | } |
2147 | |
2148 | /* SFF-8472 rev 9.5 does not define the rate identifier */ |
2149 | if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5) |
2150 | return; |
2151 | |
2152 | /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will |
2153 | * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id. |
2154 | */ |
2155 | switch (rate_id) { |
2156 | case SFF_RID_8431_RX_ONLY: |
2157 | sfp->rs_threshold_kbd = 4250; |
2158 | sfp->rs_state_mask = SFP_F_RS0; |
2159 | break; |
2160 | |
2161 | case SFF_RID_8431_TX_ONLY: |
2162 | sfp->rs_threshold_kbd = 4250; |
2163 | sfp->rs_state_mask = SFP_F_RS1; |
2164 | break; |
2165 | |
2166 | case SFF_RID_8431: |
2167 | sfp->rs_threshold_kbd = 4250; |
2168 | sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; |
2169 | break; |
2170 | |
2171 | case SFF_RID_10G8G: |
2172 | sfp->rs_threshold_kbd = 9000; |
2173 | sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; |
2174 | break; |
2175 | } |
2176 | } |
2177 | |
2178 | /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL |
2179 | * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do |
2180 | * not support multibyte reads from the EEPROM. Each multi-byte read |
2181 | * operation returns just one byte of EEPROM followed by zeros. There is |
2182 | * no way to identify which modules are using Realtek RTL8672 and RTL9601C |
2183 | * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor |
2184 | * name and vendor id into EEPROM, so there is even no way to detect if |
2185 | * module is V-SOL V2801F. Therefore check for those zeros in the read |
2186 | * data and then based on check switch to reading EEPROM to one byte |
2187 | * at a time. |
2188 | */ |
2189 | static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) |
2190 | { |
2191 | size_t i, block_size = sfp->i2c_block_size; |
2192 | |
2193 | /* Already using byte IO */ |
2194 | if (block_size == 1) |
2195 | return false; |
2196 | |
2197 | for (i = 1; i < len; i += block_size) { |
2198 | if (memchr_inv(p: buf + i, c: '\0', min(block_size - 1, len - i))) |
2199 | return false; |
2200 | } |
2201 | return true; |
2202 | } |
2203 | |
2204 | static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) |
2205 | { |
2206 | u8 check; |
2207 | int err; |
2208 | |
2209 | if (id->base.phys_id != SFF8024_ID_SFF_8472 || |
2210 | id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || |
2211 | id->base.connector != SFF8024_CONNECTOR_LC) { |
2212 | dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); |
2213 | id->base.phys_id = SFF8024_ID_SFF_8472; |
2214 | id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; |
2215 | id->base.connector = SFF8024_CONNECTOR_LC; |
2216 | err = sfp_write(sfp, a2: false, addr: SFP_PHYS_ID, buf: &id->base, len: 3); |
2217 | if (err != 3) { |
2218 | dev_err(sfp->dev, |
2219 | "Failed to rewrite module EEPROM: %pe\n", |
2220 | ERR_PTR(err)); |
2221 | return err; |
2222 | } |
2223 | |
2224 | /* Cotsworks modules have been found to require a delay between write operations. */ |
2225 | mdelay(50); |
2226 | |
2227 | /* Update base structure checksum */ |
2228 | check = sfp_check(buf: &id->base, len: sizeof(id->base) - 1); |
2229 | err = sfp_write(sfp, a2: false, addr: SFP_CC_BASE, buf: &check, len: 1); |
2230 | if (err != 1) { |
2231 | dev_err(sfp->dev, |
2232 | "Failed to update base structure checksum in fiber module EEPROM: %pe\n", |
2233 | ERR_PTR(err)); |
2234 | return err; |
2235 | } |
2236 | } |
2237 | return 0; |
2238 | } |
2239 | |
2240 | static int sfp_module_parse_sff8472(struct sfp *sfp) |
2241 | { |
2242 | /* If the module requires address swap mode, warn about it */ |
2243 | if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) |
2244 | dev_warn(sfp->dev, |
2245 | "module address swap to access page 0xA2 is not supported.\n"); |
2246 | else |
2247 | sfp->have_a2 = true; |
2248 | |
2249 | return 0; |
2250 | } |
2251 | |
2252 | static int sfp_sm_mod_probe(struct sfp *sfp, bool report) |
2253 | { |
2254 | /* SFP module inserted - read I2C data */ |
2255 | struct sfp_eeprom_id id; |
2256 | bool cotsworks_sfbg; |
2257 | unsigned int mask; |
2258 | bool cotsworks; |
2259 | u8 check; |
2260 | int ret; |
2261 | |
2262 | sfp->i2c_block_size = sfp->i2c_max_block_size; |
2263 | |
2264 | ret = sfp_read(sfp, a2: false, addr: 0, buf: &id.base, len: sizeof(id.base)); |
2265 | if (ret < 0) { |
2266 | if (report) |
2267 | dev_err(sfp->dev, "failed to read EEPROM: %pe\n", |
2268 | ERR_PTR(ret)); |
2269 | return -EAGAIN; |
2270 | } |
2271 | |
2272 | if (ret != sizeof(id.base)) { |
2273 | dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); |
2274 | return -EAGAIN; |
2275 | } |
2276 | |
2277 | /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from |
2278 | * address 0x51 is just one byte at a time. Also SFF-8472 requires |
2279 | * that EEPROM supports atomic 16bit read operation for diagnostic |
2280 | * fields, so do not switch to one byte reading at a time unless it |
2281 | * is really required and we have no other option. |
2282 | */ |
2283 | if (sfp_id_needs_byte_io(sfp, buf: &id.base, len: sizeof(id.base))) { |
2284 | dev_info(sfp->dev, |
2285 | "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); |
2286 | dev_info(sfp->dev, |
2287 | "Switching to reading EEPROM to one byte at a time\n"); |
2288 | sfp->i2c_block_size = 1; |
2289 | |
2290 | ret = sfp_read(sfp, a2: false, addr: 0, buf: &id.base, len: sizeof(id.base)); |
2291 | if (ret < 0) { |
2292 | if (report) |
2293 | dev_err(sfp->dev, |
2294 | "failed to read EEPROM: %pe\n", |
2295 | ERR_PTR(ret)); |
2296 | return -EAGAIN; |
2297 | } |
2298 | |
2299 | if (ret != sizeof(id.base)) { |
2300 | dev_err(sfp->dev, "EEPROM short read: %pe\n", |
2301 | ERR_PTR(ret)); |
2302 | return -EAGAIN; |
2303 | } |
2304 | } |
2305 | |
2306 | /* Cotsworks do not seem to update the checksums when they |
2307 | * do the final programming with the final module part number, |
2308 | * serial number and date code. |
2309 | */ |
2310 | cotsworks = !memcmp(p: id.base.vendor_name, q: "COTSWORKS ", size: 16); |
2311 | cotsworks_sfbg = !memcmp(p: id.base.vendor_pn, q: "SFBG", size: 4); |
2312 | |
2313 | /* Cotsworks SFF module EEPROM do not always have valid phys_id, |
2314 | * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if |
2315 | * Cotsworks PN matches and bytes are not correct. |
2316 | */ |
2317 | if (cotsworks && cotsworks_sfbg) { |
2318 | ret = sfp_cotsworks_fixup_check(sfp, id: &id); |
2319 | if (ret < 0) |
2320 | return ret; |
2321 | } |
2322 | |
2323 | /* Validate the checksum over the base structure */ |
2324 | check = sfp_check(buf: &id.base, len: sizeof(id.base) - 1); |
2325 | if (check != id.base.cc_base) { |
2326 | if (cotsworks) { |
2327 | dev_warn(sfp->dev, |
2328 | "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", |
2329 | check, id.base.cc_base); |
2330 | } else { |
2331 | dev_err(sfp->dev, |
2332 | "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", |
2333 | check, id.base.cc_base); |
2334 | print_hex_dump(KERN_ERR, prefix_str: "sfp EE: ", prefix_type: DUMP_PREFIX_OFFSET, |
2335 | rowsize: 16, groupsize: 1, buf: &id, len: sizeof(id), ascii: true); |
2336 | return -EINVAL; |
2337 | } |
2338 | } |
2339 | |
2340 | ret = sfp_read(sfp, a2: false, addr: SFP_CC_BASE + 1, buf: &id.ext, len: sizeof(id.ext)); |
2341 | if (ret < 0) { |
2342 | if (report) |
2343 | dev_err(sfp->dev, "failed to read EEPROM: %pe\n", |
2344 | ERR_PTR(ret)); |
2345 | return -EAGAIN; |
2346 | } |
2347 | |
2348 | if (ret != sizeof(id.ext)) { |
2349 | dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); |
2350 | return -EAGAIN; |
2351 | } |
2352 | |
2353 | check = sfp_check(buf: &id.ext, len: sizeof(id.ext) - 1); |
2354 | if (check != id.ext.cc_ext) { |
2355 | if (cotsworks) { |
2356 | dev_warn(sfp->dev, |
2357 | "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", |
2358 | check, id.ext.cc_ext); |
2359 | } else { |
2360 | dev_err(sfp->dev, |
2361 | "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", |
2362 | check, id.ext.cc_ext); |
2363 | print_hex_dump(KERN_ERR, prefix_str: "sfp EE: ", prefix_type: DUMP_PREFIX_OFFSET, |
2364 | rowsize: 16, groupsize: 1, buf: &id, len: sizeof(id), ascii: true); |
2365 | memset(&id.ext, 0, sizeof(id.ext)); |
2366 | } |
2367 | } |
2368 | |
2369 | sfp->id = id; |
2370 | |
2371 | dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", |
2372 | (int)sizeof(id.base.vendor_name), id.base.vendor_name, |
2373 | (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, |
2374 | (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, |
2375 | (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, |
2376 | (int)sizeof(id.ext.datecode), id.ext.datecode); |
2377 | |
2378 | /* Check whether we support this module */ |
2379 | if (!sfp->type->module_supported(&id)) { |
2380 | dev_err(sfp->dev, |
2381 | "module is not supported - phys id 0x%02x 0x%02x\n", |
2382 | sfp->id.base.phys_id, sfp->id.base.phys_ext_id); |
2383 | return -EINVAL; |
2384 | } |
2385 | |
2386 | if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) { |
2387 | ret = sfp_module_parse_sff8472(sfp); |
2388 | if (ret < 0) |
2389 | return ret; |
2390 | } |
2391 | |
2392 | /* Parse the module power requirement */ |
2393 | ret = sfp_module_parse_power(sfp); |
2394 | if (ret < 0) |
2395 | return ret; |
2396 | |
2397 | sfp_module_parse_rate_select(sfp); |
2398 | |
2399 | mask = SFP_F_PRESENT; |
2400 | if (sfp->gpio[GPIO_TX_DISABLE]) |
2401 | mask |= SFP_F_TX_DISABLE; |
2402 | if (sfp->gpio[GPIO_TX_FAULT]) |
2403 | mask |= SFP_F_TX_FAULT; |
2404 | if (sfp->gpio[GPIO_LOS]) |
2405 | mask |= SFP_F_LOS; |
2406 | if (sfp->gpio[GPIO_RS0]) |
2407 | mask |= SFP_F_RS0; |
2408 | if (sfp->gpio[GPIO_RS1]) |
2409 | mask |= SFP_F_RS1; |
2410 | |
2411 | sfp->module_t_start_up = T_START_UP; |
2412 | sfp->module_t_wait = T_WAIT; |
2413 | sfp->phy_t_retry = T_PHY_RETRY; |
2414 | |
2415 | sfp->state_ignore_mask = 0; |
2416 | |
2417 | if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || |
2418 | sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || |
2419 | sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || |
2420 | sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) |
2421 | sfp->mdio_protocol = MDIO_I2C_C45; |
2422 | else if (sfp->id.base.e1000_base_t) |
2423 | sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; |
2424 | else |
2425 | sfp->mdio_protocol = MDIO_I2C_NONE; |
2426 | |
2427 | sfp->quirk = sfp_lookup_quirk(id: &id); |
2428 | |
2429 | mutex_lock(&sfp->st_mutex); |
2430 | /* Initialise state bits to use from hardware */ |
2431 | sfp->state_hw_mask = mask; |
2432 | |
2433 | /* We want to drive the rate select pins that the module is using */ |
2434 | sfp->state_hw_drive |= sfp->rs_state_mask; |
2435 | |
2436 | if (sfp->quirk && sfp->quirk->fixup) |
2437 | sfp->quirk->fixup(sfp); |
2438 | |
2439 | sfp->state_hw_mask &= ~sfp->state_ignore_mask; |
2440 | mutex_unlock(lock: &sfp->st_mutex); |
2441 | |
2442 | return 0; |
2443 | } |
2444 | |
2445 | static void sfp_sm_mod_remove(struct sfp *sfp) |
2446 | { |
2447 | if (sfp->sm_mod_state > SFP_MOD_WAITDEV) |
2448 | sfp_module_remove(bus: sfp->sfp_bus); |
2449 | |
2450 | sfp_hwmon_remove(sfp); |
2451 | |
2452 | memset(&sfp->id, 0, sizeof(sfp->id)); |
2453 | sfp->module_power_mW = 0; |
2454 | sfp->state_hw_drive = SFP_F_TX_DISABLE; |
2455 | sfp->have_a2 = false; |
2456 | |
2457 | dev_info(sfp->dev, "module removed\n"); |
2458 | } |
2459 | |
2460 | /* This state machine tracks the upstream's state */ |
2461 | static void sfp_sm_device(struct sfp *sfp, unsigned int event) |
2462 | { |
2463 | switch (sfp->sm_dev_state) { |
2464 | default: |
2465 | if (event == SFP_E_DEV_ATTACH) |
2466 | sfp->sm_dev_state = SFP_DEV_DOWN; |
2467 | break; |
2468 | |
2469 | case SFP_DEV_DOWN: |
2470 | if (event == SFP_E_DEV_DETACH) |
2471 | sfp->sm_dev_state = SFP_DEV_DETACHED; |
2472 | else if (event == SFP_E_DEV_UP) |
2473 | sfp->sm_dev_state = SFP_DEV_UP; |
2474 | break; |
2475 | |
2476 | case SFP_DEV_UP: |
2477 | if (event == SFP_E_DEV_DETACH) |
2478 | sfp->sm_dev_state = SFP_DEV_DETACHED; |
2479 | else if (event == SFP_E_DEV_DOWN) |
2480 | sfp->sm_dev_state = SFP_DEV_DOWN; |
2481 | break; |
2482 | } |
2483 | } |
2484 | |
2485 | /* This state machine tracks the insert/remove state of the module, probes |
2486 | * the on-board EEPROM, and sets up the power level. |
2487 | */ |
2488 | static void sfp_sm_module(struct sfp *sfp, unsigned int event) |
2489 | { |
2490 | int err; |
2491 | |
2492 | /* Handle remove event globally, it resets this state machine */ |
2493 | if (event == SFP_E_REMOVE) { |
2494 | sfp_sm_mod_remove(sfp); |
2495 | sfp_sm_mod_next(sfp, state: SFP_MOD_EMPTY, timeout: 0); |
2496 | return; |
2497 | } |
2498 | |
2499 | /* Handle device detach globally */ |
2500 | if (sfp->sm_dev_state < SFP_DEV_DOWN && |
2501 | sfp->sm_mod_state > SFP_MOD_WAITDEV) { |
2502 | if (sfp->module_power_mW > 1000 && |
2503 | sfp->sm_mod_state > SFP_MOD_HPOWER) |
2504 | sfp_sm_mod_hpower(sfp, enable: false); |
2505 | sfp_sm_mod_next(sfp, state: SFP_MOD_WAITDEV, timeout: 0); |
2506 | return; |
2507 | } |
2508 | |
2509 | switch (sfp->sm_mod_state) { |
2510 | default: |
2511 | if (event == SFP_E_INSERT) { |
2512 | sfp_sm_mod_next(sfp, state: SFP_MOD_PROBE, T_SERIAL); |
2513 | sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; |
2514 | sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; |
2515 | } |
2516 | break; |
2517 | |
2518 | case SFP_MOD_PROBE: |
2519 | /* Wait for T_PROBE_INIT to time out */ |
2520 | if (event != SFP_E_TIMEOUT) |
2521 | break; |
2522 | |
2523 | err = sfp_sm_mod_probe(sfp, report: sfp->sm_mod_tries == 1); |
2524 | if (err == -EAGAIN) { |
2525 | if (sfp->sm_mod_tries_init && |
2526 | --sfp->sm_mod_tries_init) { |
2527 | sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); |
2528 | break; |
2529 | } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { |
2530 | if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) |
2531 | dev_warn(sfp->dev, |
2532 | "please wait, module slow to respond\n"); |
2533 | sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); |
2534 | break; |
2535 | } |
2536 | } |
2537 | if (err < 0) { |
2538 | sfp_sm_mod_next(sfp, state: SFP_MOD_ERROR, timeout: 0); |
2539 | break; |
2540 | } |
2541 | |
2542 | /* Force a poll to re-read the hardware signal state after |
2543 | * sfp_sm_mod_probe() changed state_hw_mask. |
2544 | */ |
2545 | mod_delayed_work(wq: system_wq, dwork: &sfp->poll, delay: 1); |
2546 | |
2547 | err = sfp_hwmon_insert(sfp); |
2548 | if (err) |
2549 | dev_warn(sfp->dev, "hwmon probe failed: %pe\n", |
2550 | ERR_PTR(err)); |
2551 | |
2552 | sfp_sm_mod_next(sfp, state: SFP_MOD_WAITDEV, timeout: 0); |
2553 | fallthrough; |
2554 | case SFP_MOD_WAITDEV: |
2555 | /* Ensure that the device is attached before proceeding */ |
2556 | if (sfp->sm_dev_state < SFP_DEV_DOWN) |
2557 | break; |
2558 | |
2559 | /* Report the module insertion to the upstream device */ |
2560 | err = sfp_module_insert(bus: sfp->sfp_bus, id: &sfp->id, |
2561 | quirk: sfp->quirk); |
2562 | if (err < 0) { |
2563 | sfp_sm_mod_next(sfp, state: SFP_MOD_ERROR, timeout: 0); |
2564 | break; |
2565 | } |
2566 | |
2567 | /* If this is a power level 1 module, we are done */ |
2568 | if (sfp->module_power_mW <= 1000) |
2569 | goto insert; |
2570 | |
2571 | sfp_sm_mod_next(sfp, state: SFP_MOD_HPOWER, timeout: 0); |
2572 | fallthrough; |
2573 | case SFP_MOD_HPOWER: |
2574 | /* Enable high power mode */ |
2575 | err = sfp_sm_mod_hpower(sfp, enable: true); |
2576 | if (err < 0) { |
2577 | if (err != -EAGAIN) { |
2578 | sfp_module_remove(bus: sfp->sfp_bus); |
2579 | sfp_sm_mod_next(sfp, state: SFP_MOD_ERROR, timeout: 0); |
2580 | } else { |
2581 | sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); |
2582 | } |
2583 | break; |
2584 | } |
2585 | |
2586 | sfp_sm_mod_next(sfp, state: SFP_MOD_WAITPWR, T_HPOWER_LEVEL); |
2587 | break; |
2588 | |
2589 | case SFP_MOD_WAITPWR: |
2590 | /* Wait for T_HPOWER_LEVEL to time out */ |
2591 | if (event != SFP_E_TIMEOUT) |
2592 | break; |
2593 | |
2594 | insert: |
2595 | sfp_sm_mod_next(sfp, state: SFP_MOD_PRESENT, timeout: 0); |
2596 | break; |
2597 | |
2598 | case SFP_MOD_PRESENT: |
2599 | case SFP_MOD_ERROR: |
2600 | break; |
2601 | } |
2602 | } |
2603 | |
2604 | static void sfp_sm_main(struct sfp *sfp, unsigned int event) |
2605 | { |
2606 | unsigned long timeout; |
2607 | int ret; |
2608 | |
2609 | /* Some events are global */ |
2610 | if (sfp->sm_state != SFP_S_DOWN && |
2611 | (sfp->sm_mod_state != SFP_MOD_PRESENT || |
2612 | sfp->sm_dev_state != SFP_DEV_UP)) { |
2613 | if (sfp->sm_state == SFP_S_LINK_UP && |
2614 | sfp->sm_dev_state == SFP_DEV_UP) |
2615 | sfp_sm_link_down(sfp); |
2616 | if (sfp->sm_state > SFP_S_INIT) |
2617 | sfp_module_stop(bus: sfp->sfp_bus); |
2618 | if (sfp->mod_phy) |
2619 | sfp_sm_phy_detach(sfp); |
2620 | if (sfp->i2c_mii) |
2621 | sfp_i2c_mdiobus_destroy(sfp); |
2622 | sfp_module_tx_disable(sfp); |
2623 | sfp_soft_stop_poll(sfp); |
2624 | sfp_sm_next(sfp, state: SFP_S_DOWN, timeout: 0); |
2625 | return; |
2626 | } |
2627 | |
2628 | /* The main state machine */ |
2629 | switch (sfp->sm_state) { |
2630 | case SFP_S_DOWN: |
2631 | if (sfp->sm_mod_state != SFP_MOD_PRESENT || |
2632 | sfp->sm_dev_state != SFP_DEV_UP) |
2633 | break; |
2634 | |
2635 | /* Only use the soft state bits if we have access to the A2h |
2636 | * memory, which implies that we have some level of SFF-8472 |
2637 | * compliance. |
2638 | */ |
2639 | if (sfp->have_a2) |
2640 | sfp_soft_start_poll(sfp); |
2641 | |
2642 | sfp_module_tx_enable(sfp); |
2643 | |
2644 | /* Initialise the fault clearance retries */ |
2645 | sfp->sm_fault_retries = N_FAULT_INIT; |
2646 | |
2647 | /* We need to check the TX_FAULT state, which is not defined |
2648 | * while TX_DISABLE is asserted. The earliest we want to do |
2649 | * anything (such as probe for a PHY) is 50ms (or more on |
2650 | * specific modules). |
2651 | */ |
2652 | sfp_sm_next(sfp, state: SFP_S_WAIT, timeout: sfp->module_t_wait); |
2653 | break; |
2654 | |
2655 | case SFP_S_WAIT: |
2656 | if (event != SFP_E_TIMEOUT) |
2657 | break; |
2658 | |
2659 | if (sfp->state & SFP_F_TX_FAULT) { |
2660 | /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) |
2661 | * from the TX_DISABLE deassertion for the module to |
2662 | * initialise, which is indicated by TX_FAULT |
2663 | * deasserting. |
2664 | */ |
2665 | timeout = sfp->module_t_start_up; |
2666 | if (timeout > sfp->module_t_wait) |
2667 | timeout -= sfp->module_t_wait; |
2668 | else |
2669 | timeout = 1; |
2670 | |
2671 | sfp_sm_next(sfp, state: SFP_S_INIT, timeout); |
2672 | } else { |
2673 | /* TX_FAULT is not asserted, assume the module has |
2674 | * finished initialising. |
2675 | */ |
2676 | goto init_done; |
2677 | } |
2678 | break; |
2679 | |
2680 | case SFP_S_INIT: |
2681 | if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { |
2682 | /* TX_FAULT is still asserted after t_init |
2683 | * or t_start_up, so assume there is a fault. |
2684 | */ |
2685 | sfp_sm_fault(sfp, next_state: SFP_S_INIT_TX_FAULT, |
2686 | warn: sfp->sm_fault_retries == N_FAULT_INIT); |
2687 | } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { |
2688 | init_done: |
2689 | /* Create mdiobus and start trying for PHY */ |
2690 | ret = sfp_sm_add_mdio_bus(sfp); |
2691 | if (ret < 0) { |
2692 | sfp_sm_next(sfp, state: SFP_S_FAIL, timeout: 0); |
2693 | break; |
2694 | } |
2695 | sfp->sm_phy_retries = R_PHY_RETRY; |
2696 | goto phy_probe; |
2697 | } |
2698 | break; |
2699 | |
2700 | case SFP_S_INIT_PHY: |
2701 | if (event != SFP_E_TIMEOUT) |
2702 | break; |
2703 | phy_probe: |
2704 | /* TX_FAULT deasserted or we timed out with TX_FAULT |
2705 | * clear. Probe for the PHY and check the LOS state. |
2706 | */ |
2707 | ret = sfp_sm_probe_for_phy(sfp); |
2708 | if (ret == -ENODEV) { |
2709 | if (--sfp->sm_phy_retries) { |
2710 | sfp_sm_next(sfp, state: SFP_S_INIT_PHY, |
2711 | timeout: sfp->phy_t_retry); |
2712 | dev_dbg(sfp->dev, |
2713 | "no PHY detected, %u tries left\n", |
2714 | sfp->sm_phy_retries); |
2715 | break; |
2716 | } else { |
2717 | dev_info(sfp->dev, "no PHY detected\n"); |
2718 | } |
2719 | } else if (ret) { |
2720 | sfp_sm_next(sfp, state: SFP_S_FAIL, timeout: 0); |
2721 | break; |
2722 | } |
2723 | if (sfp_module_start(bus: sfp->sfp_bus)) { |
2724 | sfp_sm_next(sfp, state: SFP_S_FAIL, timeout: 0); |
2725 | break; |
2726 | } |
2727 | sfp_sm_link_check_los(sfp); |
2728 | |
2729 | /* Reset the fault retry count */ |
2730 | sfp->sm_fault_retries = N_FAULT; |
2731 | break; |
2732 | |
2733 | case SFP_S_INIT_TX_FAULT: |
2734 | if (event == SFP_E_TIMEOUT) { |
2735 | sfp_module_tx_fault_reset(sfp); |
2736 | sfp_sm_next(sfp, state: SFP_S_INIT, timeout: sfp->module_t_start_up); |
2737 | } |
2738 | break; |
2739 | |
2740 | case SFP_S_WAIT_LOS: |
2741 | if (event == SFP_E_TX_FAULT) |
2742 | sfp_sm_fault(sfp, next_state: SFP_S_TX_FAULT, warn: true); |
2743 | else if (sfp_los_event_inactive(sfp, event)) |
2744 | sfp_sm_link_up(sfp); |
2745 | break; |
2746 | |
2747 | case SFP_S_LINK_UP: |
2748 | if (event == SFP_E_TX_FAULT) { |
2749 | sfp_sm_link_down(sfp); |
2750 | sfp_sm_fault(sfp, next_state: SFP_S_TX_FAULT, warn: true); |
2751 | } else if (sfp_los_event_active(sfp, event)) { |
2752 | sfp_sm_link_down(sfp); |
2753 | sfp_sm_next(sfp, state: SFP_S_WAIT_LOS, timeout: 0); |
2754 | } |
2755 | break; |
2756 | |
2757 | case SFP_S_TX_FAULT: |
2758 | if (event == SFP_E_TIMEOUT) { |
2759 | sfp_module_tx_fault_reset(sfp); |
2760 | sfp_sm_next(sfp, state: SFP_S_REINIT, timeout: sfp->module_t_start_up); |
2761 | } |
2762 | break; |
2763 | |
2764 | case SFP_S_REINIT: |
2765 | if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { |
2766 | sfp_sm_fault(sfp, next_state: SFP_S_TX_FAULT, warn: false); |
2767 | } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { |
2768 | dev_info(sfp->dev, "module transmit fault recovered\n"); |
2769 | sfp_sm_link_check_los(sfp); |
2770 | } |
2771 | break; |
2772 | |
2773 | case SFP_S_TX_DISABLE: |
2774 | break; |
2775 | } |
2776 | } |
2777 | |
2778 | static void __sfp_sm_event(struct sfp *sfp, unsigned int event) |
2779 | { |
2780 | dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", |
2781 | mod_state_to_str(sfp->sm_mod_state), |
2782 | dev_state_to_str(sfp->sm_dev_state), |
2783 | sm_state_to_str(sfp->sm_state), |
2784 | event_to_str(event)); |
2785 | |
2786 | sfp_sm_device(sfp, event); |
2787 | sfp_sm_module(sfp, event); |
2788 | sfp_sm_main(sfp, event); |
2789 | |
2790 | dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", |
2791 | mod_state_to_str(sfp->sm_mod_state), |
2792 | dev_state_to_str(sfp->sm_dev_state), |
2793 | sm_state_to_str(sfp->sm_state)); |
2794 | } |
2795 | |
2796 | static void sfp_sm_event(struct sfp *sfp, unsigned int event) |
2797 | { |
2798 | mutex_lock(&sfp->sm_mutex); |
2799 | __sfp_sm_event(sfp, event); |
2800 | mutex_unlock(lock: &sfp->sm_mutex); |
2801 | } |
2802 | |
2803 | static void sfp_attach(struct sfp *sfp) |
2804 | { |
2805 | sfp_sm_event(sfp, event: SFP_E_DEV_ATTACH); |
2806 | } |
2807 | |
2808 | static void sfp_detach(struct sfp *sfp) |
2809 | { |
2810 | sfp_sm_event(sfp, event: SFP_E_DEV_DETACH); |
2811 | } |
2812 | |
2813 | static void sfp_start(struct sfp *sfp) |
2814 | { |
2815 | sfp_sm_event(sfp, event: SFP_E_DEV_UP); |
2816 | } |
2817 | |
2818 | static void sfp_stop(struct sfp *sfp) |
2819 | { |
2820 | sfp_sm_event(sfp, event: SFP_E_DEV_DOWN); |
2821 | } |
2822 | |
2823 | static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd) |
2824 | { |
2825 | unsigned int set; |
2826 | |
2827 | sfp->rate_kbd = rate_kbd; |
2828 | |
2829 | if (rate_kbd > sfp->rs_threshold_kbd) |
2830 | set = sfp->rs_state_mask; |
2831 | else |
2832 | set = 0; |
2833 | |
2834 | sfp_mod_state(sfp, mask: SFP_F_RS0 | SFP_F_RS1, set); |
2835 | } |
2836 | |
2837 | static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) |
2838 | { |
2839 | /* locking... and check module is present */ |
2840 | |
2841 | if (sfp->id.ext.sff8472_compliance && |
2842 | !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { |
2843 | modinfo->type = ETH_MODULE_SFF_8472; |
2844 | modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; |
2845 | } else { |
2846 | modinfo->type = ETH_MODULE_SFF_8079; |
2847 | modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; |
2848 | } |
2849 | return 0; |
2850 | } |
2851 | |
2852 | static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, |
2853 | u8 *data) |
2854 | { |
2855 | unsigned int first, last, len; |
2856 | int ret; |
2857 | |
2858 | if (!(sfp->state & SFP_F_PRESENT)) |
2859 | return -ENODEV; |
2860 | |
2861 | if (ee->len == 0) |
2862 | return -EINVAL; |
2863 | |
2864 | first = ee->offset; |
2865 | last = ee->offset + ee->len; |
2866 | if (first < ETH_MODULE_SFF_8079_LEN) { |
2867 | len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); |
2868 | len -= first; |
2869 | |
2870 | ret = sfp_read(sfp, a2: false, addr: first, buf: data, len); |
2871 | if (ret < 0) |
2872 | return ret; |
2873 | |
2874 | first += len; |
2875 | data += len; |
2876 | } |
2877 | if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { |
2878 | len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); |
2879 | len -= first; |
2880 | first -= ETH_MODULE_SFF_8079_LEN; |
2881 | |
2882 | ret = sfp_read(sfp, a2: true, addr: first, buf: data, len); |
2883 | if (ret < 0) |
2884 | return ret; |
2885 | } |
2886 | return 0; |
2887 | } |
2888 | |
2889 | static int sfp_module_eeprom_by_page(struct sfp *sfp, |
2890 | const struct ethtool_module_eeprom *page, |
2891 | struct netlink_ext_ack *extack) |
2892 | { |
2893 | if (!(sfp->state & SFP_F_PRESENT)) |
2894 | return -ENODEV; |
2895 | |
2896 | if (page->bank) { |
2897 | NL_SET_ERR_MSG(extack, "Banks not supported"); |
2898 | return -EOPNOTSUPP; |
2899 | } |
2900 | |
2901 | if (page->page) { |
2902 | NL_SET_ERR_MSG(extack, "Only page 0 supported"); |
2903 | return -EOPNOTSUPP; |
2904 | } |
2905 | |
2906 | if (page->i2c_address != 0x50 && |
2907 | page->i2c_address != 0x51) { |
2908 | NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); |
2909 | return -EOPNOTSUPP; |
2910 | } |
2911 | |
2912 | return sfp_read(sfp, a2: page->i2c_address == 0x51, addr: page->offset, |
2913 | buf: page->data, len: page->length); |
2914 | }; |
2915 | |
2916 | static const struct sfp_socket_ops sfp_module_ops = { |
2917 | .attach = sfp_attach, |
2918 | .detach = sfp_detach, |
2919 | .start = sfp_start, |
2920 | .stop = sfp_stop, |
2921 | .set_signal_rate = sfp_set_signal_rate, |
2922 | .module_info = sfp_module_info, |
2923 | .module_eeprom = sfp_module_eeprom, |
2924 | .module_eeprom_by_page = sfp_module_eeprom_by_page, |
2925 | }; |
2926 | |
2927 | static void sfp_timeout(struct work_struct *work) |
2928 | { |
2929 | struct sfp *sfp = container_of(work, struct sfp, timeout.work); |
2930 | |
2931 | rtnl_lock(); |
2932 | sfp_sm_event(sfp, event: SFP_E_TIMEOUT); |
2933 | rtnl_unlock(); |
2934 | } |
2935 | |
2936 | static void sfp_check_state(struct sfp *sfp) |
2937 | { |
2938 | unsigned int state, i, changed; |
2939 | |
2940 | rtnl_lock(); |
2941 | mutex_lock(&sfp->st_mutex); |
2942 | state = sfp_get_state(sfp); |
2943 | changed = state ^ sfp->state; |
2944 | changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; |
2945 | |
2946 | for (i = 0; i < GPIO_MAX; i++) |
2947 | if (changed & BIT(i)) |
2948 | dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], |
2949 | !!(sfp->state & BIT(i)), !!(state & BIT(i))); |
2950 | |
2951 | state |= sfp->state & SFP_F_OUTPUTS; |
2952 | sfp->state = state; |
2953 | mutex_unlock(lock: &sfp->st_mutex); |
2954 | |
2955 | mutex_lock(&sfp->sm_mutex); |
2956 | if (changed & SFP_F_PRESENT) |
2957 | __sfp_sm_event(sfp, event: state & SFP_F_PRESENT ? |
2958 | SFP_E_INSERT : SFP_E_REMOVE); |
2959 | |
2960 | if (changed & SFP_F_TX_FAULT) |
2961 | __sfp_sm_event(sfp, event: state & SFP_F_TX_FAULT ? |
2962 | SFP_E_TX_FAULT : SFP_E_TX_CLEAR); |
2963 | |
2964 | if (changed & SFP_F_LOS) |
2965 | __sfp_sm_event(sfp, event: state & SFP_F_LOS ? |
2966 | SFP_E_LOS_HIGH : SFP_E_LOS_LOW); |
2967 | mutex_unlock(lock: &sfp->sm_mutex); |
2968 | rtnl_unlock(); |
2969 | } |
2970 | |
2971 | static irqreturn_t sfp_irq(int irq, void *data) |
2972 | { |
2973 | struct sfp *sfp = data; |
2974 | |
2975 | sfp_check_state(sfp); |
2976 | |
2977 | return IRQ_HANDLED; |
2978 | } |
2979 | |
2980 | static void sfp_poll(struct work_struct *work) |
2981 | { |
2982 | struct sfp *sfp = container_of(work, struct sfp, poll.work); |
2983 | |
2984 | sfp_check_state(sfp); |
2985 | |
2986 | // st_mutex doesn't need to be held here for state_soft_mask, |
2987 | // it's unimportant if we race while reading this. |
2988 | if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || |
2989 | sfp->need_poll) |
2990 | mod_delayed_work(wq: system_wq, dwork: &sfp->poll, delay: poll_jiffies); |
2991 | } |
2992 | |
2993 | static struct sfp *sfp_alloc(struct device *dev) |
2994 | { |
2995 | struct sfp *sfp; |
2996 | |
2997 | sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); |
2998 | if (!sfp) |
2999 | return ERR_PTR(error: -ENOMEM); |
3000 | |
3001 | sfp->dev = dev; |
3002 | |
3003 | mutex_init(&sfp->sm_mutex); |
3004 | mutex_init(&sfp->st_mutex); |
3005 | INIT_DELAYED_WORK(&sfp->poll, sfp_poll); |
3006 | INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); |
3007 | |
3008 | sfp_hwmon_init(sfp); |
3009 | |
3010 | return sfp; |
3011 | } |
3012 | |
3013 | static void sfp_cleanup(void *data) |
3014 | { |
3015 | struct sfp *sfp = data; |
3016 | |
3017 | sfp_hwmon_exit(sfp); |
3018 | |
3019 | cancel_delayed_work_sync(dwork: &sfp->poll); |
3020 | cancel_delayed_work_sync(dwork: &sfp->timeout); |
3021 | if (sfp->i2c_mii) { |
3022 | mdiobus_unregister(bus: sfp->i2c_mii); |
3023 | mdiobus_free(bus: sfp->i2c_mii); |
3024 | } |
3025 | if (sfp->i2c) |
3026 | i2c_put_adapter(adap: sfp->i2c); |
3027 | kfree(objp: sfp); |
3028 | } |
3029 | |
3030 | static int sfp_i2c_get(struct sfp *sfp) |
3031 | { |
3032 | struct fwnode_handle *h; |
3033 | struct i2c_adapter *i2c; |
3034 | int err; |
3035 | |
3036 | h = fwnode_find_reference(dev_fwnode(sfp->dev), name: "i2c-bus", index: 0); |
3037 | if (IS_ERR(ptr: h)) { |
3038 | dev_err(sfp->dev, "missing 'i2c-bus' property\n"); |
3039 | return -ENODEV; |
3040 | } |
3041 | |
3042 | i2c = i2c_get_adapter_by_fwnode(fwnode: h); |
3043 | if (!i2c) { |
3044 | err = -EPROBE_DEFER; |
3045 | goto put; |
3046 | } |
3047 | |
3048 | err = sfp_i2c_configure(sfp, i2c); |
3049 | if (err) |
3050 | i2c_put_adapter(adap: i2c); |
3051 | put: |
3052 | fwnode_handle_put(fwnode: h); |
3053 | return err; |
3054 | } |
3055 | |
3056 | static int sfp_probe(struct platform_device *pdev) |
3057 | { |
3058 | const struct sff_data *sff; |
3059 | char *sfp_irq_name; |
3060 | struct sfp *sfp; |
3061 | int err, i; |
3062 | |
3063 | sfp = sfp_alloc(dev: &pdev->dev); |
3064 | if (IS_ERR(ptr: sfp)) |
3065 | return PTR_ERR(ptr: sfp); |
3066 | |
3067 | platform_set_drvdata(pdev, data: sfp); |
3068 | |
3069 | err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); |
3070 | if (err < 0) |
3071 | return err; |
3072 | |
3073 | sff = device_get_match_data(dev: sfp->dev); |
3074 | if (!sff) |
3075 | sff = &sfp_data; |
3076 | |
3077 | sfp->type = sff; |
3078 | |
3079 | err = sfp_i2c_get(sfp); |
3080 | if (err) |
3081 | return err; |
3082 | |
3083 | for (i = 0; i < GPIO_MAX; i++) |
3084 | if (sff->gpios & BIT(i)) { |
3085 | sfp->gpio[i] = devm_gpiod_get_optional(dev: sfp->dev, |
3086 | con_id: gpio_names[i], flags: gpio_flags[i]); |
3087 | if (IS_ERR(ptr: sfp->gpio[i])) |
3088 | return PTR_ERR(ptr: sfp->gpio[i]); |
3089 | } |
3090 | |
3091 | sfp->state_hw_mask = SFP_F_PRESENT; |
3092 | sfp->state_hw_drive = SFP_F_TX_DISABLE; |
3093 | |
3094 | sfp->get_state = sfp_gpio_get_state; |
3095 | sfp->set_state = sfp_gpio_set_state; |
3096 | |
3097 | /* Modules that have no detect signal are always present */ |
3098 | if (!(sfp->gpio[GPIO_MODDEF0])) |
3099 | sfp->get_state = sff_gpio_get_state; |
3100 | |
3101 | device_property_read_u32(dev: &pdev->dev, propname: "maximum-power-milliwatt", |
3102 | val: &sfp->max_power_mW); |
3103 | if (sfp->max_power_mW < 1000) { |
3104 | if (sfp->max_power_mW) |
3105 | dev_warn(sfp->dev, |
3106 | "Firmware bug: host maximum power should be at least 1W\n"); |
3107 | sfp->max_power_mW = 1000; |
3108 | } |
3109 | |
3110 | dev_info(sfp->dev, "Host maximum power %u.%uW\n", |
3111 | sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); |
3112 | |
3113 | /* Get the initial state, and always signal TX disable, |
3114 | * since the network interface will not be up. |
3115 | */ |
3116 | sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; |
3117 | |
3118 | if (sfp->gpio[GPIO_RS0] && |
3119 | gpiod_get_value_cansleep(desc: sfp->gpio[GPIO_RS0])) |
3120 | sfp->state |= SFP_F_RS0; |
3121 | sfp_set_state(sfp, state: sfp->state); |
3122 | sfp_module_tx_disable(sfp); |
3123 | if (sfp->state & SFP_F_PRESENT) { |
3124 | rtnl_lock(); |
3125 | sfp_sm_event(sfp, event: SFP_E_INSERT); |
3126 | rtnl_unlock(); |
3127 | } |
3128 | |
3129 | for (i = 0; i < GPIO_MAX; i++) { |
3130 | if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) |
3131 | continue; |
3132 | |
3133 | sfp->gpio_irq[i] = gpiod_to_irq(desc: sfp->gpio[i]); |
3134 | if (sfp->gpio_irq[i] < 0) { |
3135 | sfp->gpio_irq[i] = 0; |
3136 | sfp->need_poll = true; |
3137 | continue; |
3138 | } |
3139 | |
3140 | sfp_irq_name = devm_kasprintf(dev: sfp->dev, GFP_KERNEL, |
3141 | fmt: "%s-%s", dev_name(dev: sfp->dev), |
3142 | gpio_names[i]); |
3143 | |
3144 | if (!sfp_irq_name) |
3145 | return -ENOMEM; |
3146 | |
3147 | err = devm_request_threaded_irq(dev: sfp->dev, irq: sfp->gpio_irq[i], |
3148 | NULL, thread_fn: sfp_irq, |
3149 | IRQF_ONESHOT | |
3150 | IRQF_TRIGGER_RISING | |
3151 | IRQF_TRIGGER_FALLING, |
3152 | devname: sfp_irq_name, dev_id: sfp); |
3153 | if (err) { |
3154 | sfp->gpio_irq[i] = 0; |
3155 | sfp->need_poll = true; |
3156 | } |
3157 | } |
3158 | |
3159 | if (sfp->need_poll) |
3160 | mod_delayed_work(wq: system_wq, dwork: &sfp->poll, delay: poll_jiffies); |
3161 | |
3162 | /* We could have an issue in cases no Tx disable pin is available or |
3163 | * wired as modules using a laser as their light source will continue to |
3164 | * be active when the fiber is removed. This could be a safety issue and |
3165 | * we should at least warn the user about that. |
3166 | */ |
3167 | if (!sfp->gpio[GPIO_TX_DISABLE]) |
3168 | dev_warn(sfp->dev, |
3169 | "No tx_disable pin: SFP modules will always be emitting.\n"); |
3170 | |
3171 | sfp->sfp_bus = sfp_register_socket(dev: sfp->dev, sfp, ops: &sfp_module_ops); |
3172 | if (!sfp->sfp_bus) |
3173 | return -ENOMEM; |
3174 | |
3175 | if (sfp->i2c_max_block_size < 2) |
3176 | dev_warn(sfp->dev, |
3177 | "Please note:\n" |
3178 | "This SFP cage is accessed via an SMBus only capable of single byte\n" |
3179 | "transactions. Some features are disabled, other may be unreliable or\n" |
3180 | "sporadically fail. Use with caution. There is nothing that the kernel\n" |
3181 | "or community can do to fix it, the kernel will try best efforts. Please\n" |
3182 | "verify any problems on hardware that supports multi-byte I2C transactions.\n"); |
3183 | |
3184 | sfp_debugfs_init(sfp); |
3185 | |
3186 | return 0; |
3187 | } |
3188 | |
3189 | static void sfp_remove(struct platform_device *pdev) |
3190 | { |
3191 | struct sfp *sfp = platform_get_drvdata(pdev); |
3192 | |
3193 | sfp_debugfs_exit(sfp); |
3194 | sfp_unregister_socket(bus: sfp->sfp_bus); |
3195 | |
3196 | rtnl_lock(); |
3197 | sfp_sm_event(sfp, event: SFP_E_REMOVE); |
3198 | rtnl_unlock(); |
3199 | } |
3200 | |
3201 | static void sfp_shutdown(struct platform_device *pdev) |
3202 | { |
3203 | struct sfp *sfp = platform_get_drvdata(pdev); |
3204 | int i; |
3205 | |
3206 | for (i = 0; i < GPIO_MAX; i++) { |
3207 | if (!sfp->gpio_irq[i]) |
3208 | continue; |
3209 | |
3210 | devm_free_irq(dev: sfp->dev, irq: sfp->gpio_irq[i], dev_id: sfp); |
3211 | } |
3212 | |
3213 | cancel_delayed_work_sync(dwork: &sfp->poll); |
3214 | cancel_delayed_work_sync(dwork: &sfp->timeout); |
3215 | } |
3216 | |
3217 | static struct platform_driver sfp_driver = { |
3218 | .probe = sfp_probe, |
3219 | .remove = sfp_remove, |
3220 | .shutdown = sfp_shutdown, |
3221 | .driver = { |
3222 | .name = "sfp", |
3223 | .of_match_table = sfp_of_match, |
3224 | }, |
3225 | }; |
3226 | |
3227 | static int sfp_init(void) |
3228 | { |
3229 | poll_jiffies = msecs_to_jiffies(m: 100); |
3230 | |
3231 | return platform_driver_register(&sfp_driver); |
3232 | } |
3233 | module_init(sfp_init); |
3234 | |
3235 | static void sfp_exit(void) |
3236 | { |
3237 | platform_driver_unregister(&sfp_driver); |
3238 | } |
3239 | module_exit(sfp_exit); |
3240 | |
3241 | MODULE_ALIAS("platform:sfp"); |
3242 | MODULE_AUTHOR("Russell King"); |
3243 | MODULE_LICENSE("GPL v2"); |
3244 | MODULE_DESCRIPTION("SFP cage support"); |
3245 |
Definitions
- mod_state_strings
- mod_state_to_str
- dev_state_strings
- dev_state_to_str
- event_strings
- event_to_str
- sm_state_strings
- sm_state_to_str
- gpio_names
- gpio_flags
- sff_data
- sfp
- sff_module_supported
- sff_data
- sfp_module_supported
- sfp_data
- sfp_of_match
- sfp_fixup_long_startup
- sfp_fixup_ignore_los
- sfp_fixup_ignore_tx_fault
- sfp_fixup_nokia
- sfp_fixup_10gbaset_30m
- sfp_fixup_rollball
- sfp_fixup_rollball_wait4s
- sfp_fixup_fs_10gt
- sfp_fixup_halny_gsfp
- sfp_fixup_rollball_cc
- sfp_quirk_2500basex
- sfp_quirk_disable_autoneg
- sfp_quirk_oem_2_5g
- sfp_quirk_ubnt_uf_instant
- sfp_quirks
- sfp_strlen
- sfp_match
- sfp_lookup_quirk
- poll_jiffies
- sfp_gpio_get_state
- sff_gpio_get_state
- sfp_gpio_set_state
- sfp_i2c_read
- sfp_i2c_write
- sfp_smbus_byte_read
- sfp_smbus_byte_write
- sfp_i2c_configure
- sfp_i2c_mdiobus_create
- sfp_i2c_mdiobus_destroy
- sfp_read
- sfp_write
- sfp_modify_u8
- sfp_soft_get_state
- sfp_soft_set_state
- sfp_soft_start_poll
- sfp_soft_stop_poll
- sfp_get_state
- sfp_set_state
- sfp_mod_state
- sfp_check
- sfp_hwmon_is_visible
- sfp_hwmon_read_sensor
- sfp_hwmon_to_rx_power
- sfp_hwmon_calibrate
- sfp_hwmon_calibrate_temp
- sfp_hwmon_calibrate_vcc
- sfp_hwmon_calibrate_bias
- sfp_hwmon_calibrate_tx_power
- sfp_hwmon_read_temp
- sfp_hwmon_read_vcc
- sfp_hwmon_read_bias
- sfp_hwmon_read_tx_power
- sfp_hwmon_read_rx_power
- sfp_hwmon_temp
- sfp_hwmon_vcc
- sfp_hwmon_bias
- sfp_hwmon_tx_power
- sfp_hwmon_rx_power
- sfp_hwmon_read
- sfp_hwmon_power_labels
- sfp_hwmon_read_string
- sfp_hwmon_ops
- sfp_hwmon_info
- sfp_hwmon_chip_info
- sfp_hwmon_probe
- sfp_hwmon_insert
- sfp_hwmon_remove
- sfp_hwmon_init
- sfp_hwmon_exit
- sfp_module_tx_disable
- sfp_module_tx_enable
- sfp_debug_state_show
- sfp_debugfs_init
- sfp_debugfs_exit
- sfp_module_tx_fault_reset
- sfp_sm_set_timer
- sfp_sm_next
- sfp_sm_mod_next
- sfp_sm_phy_detach
- sfp_sm_probe_phy
- sfp_sm_link_up
- sfp_sm_link_down
- sfp_sm_link_check_los
- sfp_los_event_active
- sfp_los_event_inactive
- sfp_sm_fault
- sfp_sm_add_mdio_bus
- sfp_sm_probe_for_phy
- sfp_module_parse_power
- sfp_sm_mod_hpower
- sfp_module_parse_rate_select
- sfp_id_needs_byte_io
- sfp_cotsworks_fixup_check
- sfp_module_parse_sff8472
- sfp_sm_mod_probe
- sfp_sm_mod_remove
- sfp_sm_device
- sfp_sm_module
- sfp_sm_main
- __sfp_sm_event
- sfp_sm_event
- sfp_attach
- sfp_detach
- sfp_start
- sfp_stop
- sfp_set_signal_rate
- sfp_module_info
- sfp_module_eeprom
- sfp_module_eeprom_by_page
- sfp_module_ops
- sfp_timeout
- sfp_check_state
- sfp_irq
- sfp_poll
- sfp_alloc
- sfp_cleanup
- sfp_i2c_get
- sfp_probe
- sfp_remove
- sfp_shutdown
- sfp_driver
- sfp_init
Improve your Profiling and Debugging skills
Find out more