| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | #include <linux/debugfs.h> |
| 3 | #include <linux/delay.h> |
| 4 | #include <linux/gpio/consumer.h> |
| 5 | #include <linux/hwmon.h> |
| 6 | #include <linux/i2c.h> |
| 7 | #include <linux/interrupt.h> |
| 8 | #include <linux/jiffies.h> |
| 9 | #include <linux/mdio/mdio-i2c.h> |
| 10 | #include <linux/module.h> |
| 11 | #include <linux/mutex.h> |
| 12 | #include <linux/of.h> |
| 13 | #include <linux/phy.h> |
| 14 | #include <linux/platform_device.h> |
| 15 | #include <linux/rtnetlink.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/workqueue.h> |
| 18 | |
| 19 | #include "sfp.h" |
| 20 | #include "swphy.h" |
| 21 | |
| 22 | enum { |
| 23 | GPIO_MODDEF0, |
| 24 | GPIO_LOS, |
| 25 | GPIO_TX_FAULT, |
| 26 | GPIO_TX_DISABLE, |
| 27 | GPIO_RS0, |
| 28 | GPIO_RS1, |
| 29 | GPIO_MAX, |
| 30 | |
| 31 | SFP_F_PRESENT = BIT(GPIO_MODDEF0), |
| 32 | SFP_F_LOS = BIT(GPIO_LOS), |
| 33 | SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), |
| 34 | SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), |
| 35 | SFP_F_RS0 = BIT(GPIO_RS0), |
| 36 | SFP_F_RS1 = BIT(GPIO_RS1), |
| 37 | |
| 38 | SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, |
| 39 | |
| 40 | SFP_E_INSERT = 0, |
| 41 | SFP_E_REMOVE, |
| 42 | SFP_E_DEV_ATTACH, |
| 43 | SFP_E_DEV_DETACH, |
| 44 | SFP_E_DEV_DOWN, |
| 45 | SFP_E_DEV_UP, |
| 46 | SFP_E_TX_FAULT, |
| 47 | SFP_E_TX_CLEAR, |
| 48 | SFP_E_LOS_HIGH, |
| 49 | SFP_E_LOS_LOW, |
| 50 | SFP_E_TIMEOUT, |
| 51 | |
| 52 | SFP_MOD_EMPTY = 0, |
| 53 | SFP_MOD_ERROR, |
| 54 | SFP_MOD_PROBE, |
| 55 | SFP_MOD_WAITDEV, |
| 56 | SFP_MOD_HPOWER, |
| 57 | SFP_MOD_WAITPWR, |
| 58 | SFP_MOD_PRESENT, |
| 59 | |
| 60 | SFP_DEV_DETACHED = 0, |
| 61 | SFP_DEV_DOWN, |
| 62 | SFP_DEV_UP, |
| 63 | |
| 64 | SFP_S_DOWN = 0, |
| 65 | SFP_S_FAIL, |
| 66 | SFP_S_WAIT, |
| 67 | SFP_S_INIT, |
| 68 | SFP_S_INIT_PHY, |
| 69 | SFP_S_INIT_TX_FAULT, |
| 70 | SFP_S_WAIT_LOS, |
| 71 | SFP_S_LINK_UP, |
| 72 | SFP_S_TX_FAULT, |
| 73 | SFP_S_REINIT, |
| 74 | SFP_S_TX_DISABLE, |
| 75 | }; |
| 76 | |
| 77 | static const char * const mod_state_strings[] = { |
| 78 | [SFP_MOD_EMPTY] = "empty" , |
| 79 | [SFP_MOD_ERROR] = "error" , |
| 80 | [SFP_MOD_PROBE] = "probe" , |
| 81 | [SFP_MOD_WAITDEV] = "waitdev" , |
| 82 | [SFP_MOD_HPOWER] = "hpower" , |
| 83 | [SFP_MOD_WAITPWR] = "waitpwr" , |
| 84 | [SFP_MOD_PRESENT] = "present" , |
| 85 | }; |
| 86 | |
| 87 | static const char *mod_state_to_str(unsigned short mod_state) |
| 88 | { |
| 89 | if (mod_state >= ARRAY_SIZE(mod_state_strings)) |
| 90 | return "Unknown module state" ; |
| 91 | return mod_state_strings[mod_state]; |
| 92 | } |
| 93 | |
| 94 | static const char * const dev_state_strings[] = { |
| 95 | [SFP_DEV_DETACHED] = "detached" , |
| 96 | [SFP_DEV_DOWN] = "down" , |
| 97 | [SFP_DEV_UP] = "up" , |
| 98 | }; |
| 99 | |
| 100 | static const char *dev_state_to_str(unsigned short dev_state) |
| 101 | { |
| 102 | if (dev_state >= ARRAY_SIZE(dev_state_strings)) |
| 103 | return "Unknown device state" ; |
| 104 | return dev_state_strings[dev_state]; |
| 105 | } |
| 106 | |
| 107 | static const char * const event_strings[] = { |
| 108 | [SFP_E_INSERT] = "insert" , |
| 109 | [SFP_E_REMOVE] = "remove" , |
| 110 | [SFP_E_DEV_ATTACH] = "dev_attach" , |
| 111 | [SFP_E_DEV_DETACH] = "dev_detach" , |
| 112 | [SFP_E_DEV_DOWN] = "dev_down" , |
| 113 | [SFP_E_DEV_UP] = "dev_up" , |
| 114 | [SFP_E_TX_FAULT] = "tx_fault" , |
| 115 | [SFP_E_TX_CLEAR] = "tx_clear" , |
| 116 | [SFP_E_LOS_HIGH] = "los_high" , |
| 117 | [SFP_E_LOS_LOW] = "los_low" , |
| 118 | [SFP_E_TIMEOUT] = "timeout" , |
| 119 | }; |
| 120 | |
| 121 | static const char *event_to_str(unsigned short event) |
| 122 | { |
| 123 | if (event >= ARRAY_SIZE(event_strings)) |
| 124 | return "Unknown event" ; |
| 125 | return event_strings[event]; |
| 126 | } |
| 127 | |
| 128 | static const char * const sm_state_strings[] = { |
| 129 | [SFP_S_DOWN] = "down" , |
| 130 | [SFP_S_FAIL] = "fail" , |
| 131 | [SFP_S_WAIT] = "wait" , |
| 132 | [SFP_S_INIT] = "init" , |
| 133 | [SFP_S_INIT_PHY] = "init_phy" , |
| 134 | [SFP_S_INIT_TX_FAULT] = "init_tx_fault" , |
| 135 | [SFP_S_WAIT_LOS] = "wait_los" , |
| 136 | [SFP_S_LINK_UP] = "link_up" , |
| 137 | [SFP_S_TX_FAULT] = "tx_fault" , |
| 138 | [SFP_S_REINIT] = "reinit" , |
| 139 | [SFP_S_TX_DISABLE] = "tx_disable" , |
| 140 | }; |
| 141 | |
| 142 | static const char *sm_state_to_str(unsigned short sm_state) |
| 143 | { |
| 144 | if (sm_state >= ARRAY_SIZE(sm_state_strings)) |
| 145 | return "Unknown state" ; |
| 146 | return sm_state_strings[sm_state]; |
| 147 | } |
| 148 | |
| 149 | static const char *gpio_names[] = { |
| 150 | "mod-def0" , |
| 151 | "los" , |
| 152 | "tx-fault" , |
| 153 | "tx-disable" , |
| 154 | "rate-select0" , |
| 155 | "rate-select1" , |
| 156 | }; |
| 157 | |
| 158 | static const enum gpiod_flags gpio_flags[] = { |
| 159 | GPIOD_IN, |
| 160 | GPIOD_IN, |
| 161 | GPIOD_IN, |
| 162 | GPIOD_ASIS, |
| 163 | GPIOD_ASIS, |
| 164 | GPIOD_ASIS, |
| 165 | }; |
| 166 | |
| 167 | /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a |
| 168 | * non-cooled module to initialise its laser safety circuitry. We wait |
| 169 | * an initial T_WAIT period before we check the tx fault to give any PHY |
| 170 | * on board (for a copper SFP) time to initialise. |
| 171 | */ |
| 172 | #define T_WAIT msecs_to_jiffies(50) |
| 173 | #define T_START_UP msecs_to_jiffies(300) |
| 174 | #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) |
| 175 | |
| 176 | /* t_reset is the time required to assert the TX_DISABLE signal to reset |
| 177 | * an indicated TX_FAULT. |
| 178 | */ |
| 179 | #define T_RESET_US 10 |
| 180 | #define T_FAULT_RECOVER msecs_to_jiffies(1000) |
| 181 | |
| 182 | /* N_FAULT_INIT is the number of recovery attempts at module initialisation |
| 183 | * time. If the TX_FAULT signal is not deasserted after this number of |
| 184 | * attempts at clearing it, we decide that the module is faulty. |
| 185 | * N_FAULT is the same but after the module has initialised. |
| 186 | */ |
| 187 | #define N_FAULT_INIT 5 |
| 188 | #define N_FAULT 5 |
| 189 | |
| 190 | /* T_PHY_RETRY is the time interval between attempts to probe the PHY. |
| 191 | * R_PHY_RETRY is the number of attempts. |
| 192 | */ |
| 193 | #define T_PHY_RETRY msecs_to_jiffies(50) |
| 194 | #define R_PHY_RETRY 25 |
| 195 | |
| 196 | /* SFP module presence detection is poor: the three MOD DEF signals are |
| 197 | * the same length on the PCB, which means it's possible for MOD DEF 0 to |
| 198 | * connect before the I2C bus on MOD DEF 1/2. |
| 199 | * |
| 200 | * The SFF-8472 specifies t_serial ("Time from power on until module is |
| 201 | * ready for data transmission over the two wire serial bus.") as 300ms. |
| 202 | */ |
| 203 | #define T_SERIAL msecs_to_jiffies(300) |
| 204 | #define T_HPOWER_LEVEL msecs_to_jiffies(300) |
| 205 | #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) |
| 206 | #define R_PROBE_RETRY_INIT 10 |
| 207 | #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) |
| 208 | #define R_PROBE_RETRY_SLOW 12 |
| 209 | |
| 210 | /* SFP modules appear to always have their PHY configured for bus address |
| 211 | * 0x56 (which with mdio-i2c, translates to a PHY address of 22). |
| 212 | * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface |
| 213 | * via address 0x51 (mdio-i2c will use RollBall protocol on this address). |
| 214 | */ |
| 215 | #define SFP_PHY_ADDR 22 |
| 216 | #define SFP_PHY_ADDR_ROLLBALL 17 |
| 217 | |
| 218 | /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM |
| 219 | * at a time. Some SFP modules and also some Linux I2C drivers do not like |
| 220 | * reads longer than 16 bytes. |
| 221 | */ |
| 222 | #define SFP_EEPROM_BLOCK_SIZE 16 |
| 223 | |
| 224 | struct sff_data { |
| 225 | unsigned int gpios; |
| 226 | bool (*module_supported)(const struct sfp_eeprom_id *id); |
| 227 | }; |
| 228 | |
| 229 | struct sfp { |
| 230 | struct device *dev; |
| 231 | struct i2c_adapter *i2c; |
| 232 | struct mii_bus *i2c_mii; |
| 233 | struct sfp_bus *sfp_bus; |
| 234 | enum mdio_i2c_proto mdio_protocol; |
| 235 | struct phy_device *mod_phy; |
| 236 | const struct sff_data *type; |
| 237 | size_t i2c_max_block_size; |
| 238 | size_t i2c_block_size; |
| 239 | u32 max_power_mW; |
| 240 | |
| 241 | unsigned int (*get_state)(struct sfp *); |
| 242 | void (*set_state)(struct sfp *, unsigned int); |
| 243 | int (*read)(struct sfp *, bool, u8, void *, size_t); |
| 244 | int (*write)(struct sfp *, bool, u8, void *, size_t); |
| 245 | |
| 246 | struct gpio_desc *gpio[GPIO_MAX]; |
| 247 | int gpio_irq[GPIO_MAX]; |
| 248 | |
| 249 | bool need_poll; |
| 250 | |
| 251 | /* Access rules: |
| 252 | * state_hw_drive: st_mutex held |
| 253 | * state_hw_mask: st_mutex held |
| 254 | * state_soft_mask: st_mutex held |
| 255 | * state: st_mutex held unless reading input bits |
| 256 | */ |
| 257 | struct mutex st_mutex; /* Protects state */ |
| 258 | unsigned int state_hw_drive; |
| 259 | unsigned int state_hw_mask; |
| 260 | unsigned int state_soft_mask; |
| 261 | unsigned int state_ignore_mask; |
| 262 | unsigned int state; |
| 263 | |
| 264 | struct delayed_work poll; |
| 265 | struct delayed_work timeout; |
| 266 | struct mutex sm_mutex; /* Protects state machine */ |
| 267 | unsigned char sm_mod_state; |
| 268 | unsigned char sm_mod_tries_init; |
| 269 | unsigned char sm_mod_tries; |
| 270 | unsigned char sm_dev_state; |
| 271 | unsigned short sm_state; |
| 272 | unsigned char sm_fault_retries; |
| 273 | unsigned char sm_phy_retries; |
| 274 | |
| 275 | struct sfp_eeprom_id id; |
| 276 | unsigned int module_power_mW; |
| 277 | unsigned int module_t_start_up; |
| 278 | unsigned int module_t_wait; |
| 279 | unsigned int phy_t_retry; |
| 280 | |
| 281 | unsigned int rate_kbd; |
| 282 | unsigned int rs_threshold_kbd; |
| 283 | unsigned int rs_state_mask; |
| 284 | |
| 285 | bool have_a2; |
| 286 | |
| 287 | const struct sfp_quirk *quirk; |
| 288 | |
| 289 | #if IS_ENABLED(CONFIG_HWMON) |
| 290 | struct sfp_diag diag; |
| 291 | struct delayed_work hwmon_probe; |
| 292 | unsigned int hwmon_tries; |
| 293 | struct device *hwmon_dev; |
| 294 | char *hwmon_name; |
| 295 | #endif |
| 296 | |
| 297 | #if IS_ENABLED(CONFIG_DEBUG_FS) |
| 298 | struct dentry *debugfs_dir; |
| 299 | #endif |
| 300 | }; |
| 301 | |
| 302 | static bool sff_module_supported(const struct sfp_eeprom_id *id) |
| 303 | { |
| 304 | return id->base.phys_id == SFF8024_ID_SFF_8472 && |
| 305 | id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; |
| 306 | } |
| 307 | |
| 308 | static const struct sff_data sff_data = { |
| 309 | .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, |
| 310 | .module_supported = sff_module_supported, |
| 311 | }; |
| 312 | |
| 313 | static bool sfp_module_supported(const struct sfp_eeprom_id *id) |
| 314 | { |
| 315 | if (id->base.phys_id == SFF8024_ID_SFP && |
| 316 | id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) |
| 317 | return true; |
| 318 | |
| 319 | /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored |
| 320 | * phys id SFF instead of SFP. Therefore mark this module explicitly |
| 321 | * as supported based on vendor name and pn match. |
| 322 | */ |
| 323 | if (id->base.phys_id == SFF8024_ID_SFF_8472 && |
| 324 | id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && |
| 325 | !memcmp(p: id->base.vendor_name, q: "UBNT " , size: 16) && |
| 326 | !memcmp(p: id->base.vendor_pn, q: "UF-INSTANT " , size: 16)) |
| 327 | return true; |
| 328 | |
| 329 | return false; |
| 330 | } |
| 331 | |
| 332 | static const struct sff_data sfp_data = { |
| 333 | .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | |
| 334 | SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, |
| 335 | .module_supported = sfp_module_supported, |
| 336 | }; |
| 337 | |
| 338 | static const struct of_device_id sfp_of_match[] = { |
| 339 | { .compatible = "sff,sff" , .data = &sff_data, }, |
| 340 | { .compatible = "sff,sfp" , .data = &sfp_data, }, |
| 341 | { }, |
| 342 | }; |
| 343 | MODULE_DEVICE_TABLE(of, sfp_of_match); |
| 344 | |
| 345 | static void sfp_fixup_long_startup(struct sfp *sfp) |
| 346 | { |
| 347 | sfp->module_t_start_up = T_START_UP_BAD_GPON; |
| 348 | } |
| 349 | |
| 350 | static void sfp_fixup_ignore_los(struct sfp *sfp) |
| 351 | { |
| 352 | /* This forces LOS to zero, so we ignore transitions */ |
| 353 | sfp->state_ignore_mask |= SFP_F_LOS; |
| 354 | /* Make sure that LOS options are clear */ |
| 355 | sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED | |
| 356 | SFP_OPTIONS_LOS_NORMAL); |
| 357 | } |
| 358 | |
| 359 | static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) |
| 360 | { |
| 361 | sfp->state_ignore_mask |= SFP_F_TX_FAULT; |
| 362 | } |
| 363 | |
| 364 | static void sfp_fixup_nokia(struct sfp *sfp) |
| 365 | { |
| 366 | sfp_fixup_long_startup(sfp); |
| 367 | sfp_fixup_ignore_los(sfp); |
| 368 | } |
| 369 | |
| 370 | // For 10GBASE-T short-reach modules |
| 371 | static void sfp_fixup_10gbaset_30m(struct sfp *sfp) |
| 372 | { |
| 373 | sfp->id.base.connector = SFF8024_CONNECTOR_RJ45; |
| 374 | sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR; |
| 375 | } |
| 376 | |
| 377 | static void sfp_fixup_rollball(struct sfp *sfp) |
| 378 | { |
| 379 | sfp->mdio_protocol = MDIO_I2C_ROLLBALL; |
| 380 | |
| 381 | /* RollBall modules may disallow access to PHY registers for up to 25 |
| 382 | * seconds, and the reads return 0xffff before that. Increase the time |
| 383 | * between PHY probe retries from 50ms to 1s so that we will wait for |
| 384 | * the PHY for a sufficient amount of time. |
| 385 | */ |
| 386 | sfp->phy_t_retry = msecs_to_jiffies(m: 1000); |
| 387 | } |
| 388 | |
| 389 | static void sfp_fixup_rollball_wait4s(struct sfp *sfp) |
| 390 | { |
| 391 | sfp_fixup_rollball(sfp); |
| 392 | |
| 393 | /* The RollBall fixup is not enough for FS modules, the PHY chip inside |
| 394 | * them does not return 0xffff for PHY ID registers in all MMDs for the |
| 395 | * while initializing. They need a 4 second wait before accessing PHY. |
| 396 | */ |
| 397 | sfp->module_t_wait = msecs_to_jiffies(m: 4000); |
| 398 | } |
| 399 | |
| 400 | static void sfp_fixup_fs_10gt(struct sfp *sfp) |
| 401 | { |
| 402 | sfp_fixup_10gbaset_30m(sfp); |
| 403 | sfp_fixup_rollball_wait4s(sfp); |
| 404 | } |
| 405 | |
| 406 | static void sfp_fixup_halny_gsfp(struct sfp *sfp) |
| 407 | { |
| 408 | /* Ignore the TX_FAULT and LOS signals on this module. |
| 409 | * these are possibly used for other purposes on this |
| 410 | * module, e.g. a serial port. |
| 411 | */ |
| 412 | sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); |
| 413 | } |
| 414 | |
| 415 | static void sfp_fixup_rollball_cc(struct sfp *sfp) |
| 416 | { |
| 417 | sfp_fixup_rollball(sfp); |
| 418 | |
| 419 | /* Some RollBall SFPs may have wrong (zero) extended compliance code |
| 420 | * burned in EEPROM. For PHY probing we need the correct one. |
| 421 | */ |
| 422 | sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; |
| 423 | } |
| 424 | |
| 425 | static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, |
| 426 | unsigned long *modes, |
| 427 | unsigned long *interfaces) |
| 428 | { |
| 429 | linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); |
| 430 | __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); |
| 431 | } |
| 432 | |
| 433 | static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, |
| 434 | unsigned long *modes, |
| 435 | unsigned long *interfaces) |
| 436 | { |
| 437 | linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes); |
| 438 | } |
| 439 | |
| 440 | static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, |
| 441 | unsigned long *modes, |
| 442 | unsigned long *interfaces) |
| 443 | { |
| 444 | /* Copper 2.5G SFP */ |
| 445 | linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes); |
| 446 | __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); |
| 447 | sfp_quirk_disable_autoneg(id, modes, interfaces); |
| 448 | } |
| 449 | |
| 450 | static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, |
| 451 | unsigned long *modes, |
| 452 | unsigned long *interfaces) |
| 453 | { |
| 454 | /* Ubiquiti U-Fiber Instant module claims that support all transceiver |
| 455 | * types including 10G Ethernet which is not truth. So clear all claimed |
| 456 | * modes and set only one mode which module supports: 1000baseX_Full. |
| 457 | */ |
| 458 | linkmode_zero(dst: modes); |
| 459 | linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); |
| 460 | } |
| 461 | |
| 462 | #define SFP_QUIRK(_v, _p, _m, _f) \ |
| 463 | { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } |
| 464 | #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) |
| 465 | #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) |
| 466 | |
| 467 | static const struct sfp_quirk sfp_quirks[] = { |
| 468 | // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly |
| 469 | // report 2500MBd NRZ in their EEPROM |
| 470 | SFP_QUIRK("ALCATELLUCENT" , "G010SP" , sfp_quirk_2500basex, |
| 471 | sfp_fixup_ignore_tx_fault), |
| 472 | |
| 473 | // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd |
| 474 | // NRZ in their EEPROM |
| 475 | SFP_QUIRK("ALCATELLUCENT" , "3FE46541AA" , sfp_quirk_2500basex, |
| 476 | sfp_fixup_nokia), |
| 477 | |
| 478 | // Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball |
| 479 | // protocol to talk to the PHY and needs 4 sec wait before probing the |
| 480 | // PHY. |
| 481 | SFP_QUIRK_F("FS" , "SFP-10G-T" , sfp_fixup_fs_10gt), |
| 482 | |
| 483 | // Fiberstore SFP-2.5G-T and SFP-10GM-T uses Rollball protocol to talk |
| 484 | // to the PHY and needs 4 sec wait before probing the PHY. |
| 485 | SFP_QUIRK_F("FS" , "SFP-2.5G-T" , sfp_fixup_rollball_wait4s), |
| 486 | SFP_QUIRK_F("FS" , "SFP-10GM-T" , sfp_fixup_rollball_wait4s), |
| 487 | |
| 488 | // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd |
| 489 | // NRZ in their EEPROM |
| 490 | SFP_QUIRK("FS" , "GPON-ONU-34-20BI" , sfp_quirk_2500basex, |
| 491 | sfp_fixup_ignore_tx_fault), |
| 492 | |
| 493 | SFP_QUIRK_F("HALNy" , "HL-GSFP" , sfp_fixup_halny_gsfp), |
| 494 | |
| 495 | // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports |
| 496 | // 2600MBd in their EERPOM |
| 497 | SFP_QUIRK_M("HG GENUINE" , "MXPD-483II" , sfp_quirk_2500basex), |
| 498 | |
| 499 | // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in |
| 500 | // their EEPROM |
| 501 | SFP_QUIRK("HUAWEI" , "MA5671A" , sfp_quirk_2500basex, |
| 502 | sfp_fixup_ignore_tx_fault), |
| 503 | |
| 504 | // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report |
| 505 | // 2500MBd NRZ in their EEPROM |
| 506 | SFP_QUIRK_M("Lantech" , "8330-262D-E" , sfp_quirk_2500basex), |
| 507 | |
| 508 | SFP_QUIRK_M("UBNT" , "UF-INSTANT" , sfp_quirk_ubnt_uf_instant), |
| 509 | |
| 510 | // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the |
| 511 | // Rollball protocol to talk to the PHY. |
| 512 | SFP_QUIRK_F("Walsun" , "HXSX-ATRC-1" , sfp_fixup_fs_10gt), |
| 513 | SFP_QUIRK_F("Walsun" , "HXSX-ATRI-1" , sfp_fixup_fs_10gt), |
| 514 | |
| 515 | // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator |
| 516 | SFP_QUIRK_F("OEM" , "SFP-GE-T" , sfp_fixup_ignore_tx_fault), |
| 517 | |
| 518 | SFP_QUIRK_F("OEM" , "SFP-10G-T" , sfp_fixup_rollball_cc), |
| 519 | SFP_QUIRK_M("OEM" , "SFP-2.5G-T" , sfp_quirk_oem_2_5g), |
| 520 | SFP_QUIRK_M("OEM" , "SFP-2.5G-BX10-D" , sfp_quirk_2500basex), |
| 521 | SFP_QUIRK_M("OEM" , "SFP-2.5G-BX10-U" , sfp_quirk_2500basex), |
| 522 | SFP_QUIRK_F("OEM" , "RTSFP-10" , sfp_fixup_rollball_cc), |
| 523 | SFP_QUIRK_F("OEM" , "RTSFP-10G" , sfp_fixup_rollball_cc), |
| 524 | SFP_QUIRK_F("Turris" , "RTSFP-2.5G" , sfp_fixup_rollball), |
| 525 | SFP_QUIRK_F("Turris" , "RTSFP-10" , sfp_fixup_rollball), |
| 526 | SFP_QUIRK_F("Turris" , "RTSFP-10G" , sfp_fixup_rollball), |
| 527 | }; |
| 528 | |
| 529 | static size_t sfp_strlen(const char *str, size_t maxlen) |
| 530 | { |
| 531 | size_t size, i; |
| 532 | |
| 533 | /* Trailing characters should be filled with space chars, but |
| 534 | * some manufacturers can't read SFF-8472 and use NUL. |
| 535 | */ |
| 536 | for (i = 0, size = 0; i < maxlen; i++) |
| 537 | if (str[i] != ' ' && str[i] != '\0') |
| 538 | size = i + 1; |
| 539 | |
| 540 | return size; |
| 541 | } |
| 542 | |
| 543 | static bool sfp_match(const char *qs, const char *str, size_t len) |
| 544 | { |
| 545 | if (!qs) |
| 546 | return true; |
| 547 | if (strlen(qs) != len) |
| 548 | return false; |
| 549 | return !strncmp(qs, str, len); |
| 550 | } |
| 551 | |
| 552 | static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) |
| 553 | { |
| 554 | const struct sfp_quirk *q; |
| 555 | unsigned int i; |
| 556 | size_t vs, ps; |
| 557 | |
| 558 | vs = sfp_strlen(str: id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); |
| 559 | ps = sfp_strlen(str: id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); |
| 560 | |
| 561 | for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) |
| 562 | if (sfp_match(qs: q->vendor, str: id->base.vendor_name, len: vs) && |
| 563 | sfp_match(qs: q->part, str: id->base.vendor_pn, len: ps)) |
| 564 | return q; |
| 565 | |
| 566 | return NULL; |
| 567 | } |
| 568 | |
| 569 | static unsigned long poll_jiffies; |
| 570 | |
| 571 | static unsigned int sfp_gpio_get_state(struct sfp *sfp) |
| 572 | { |
| 573 | unsigned int i, state, v; |
| 574 | |
| 575 | for (i = state = 0; i < GPIO_MAX; i++) { |
| 576 | if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) |
| 577 | continue; |
| 578 | |
| 579 | v = gpiod_get_value_cansleep(desc: sfp->gpio[i]); |
| 580 | if (v) |
| 581 | state |= BIT(i); |
| 582 | } |
| 583 | |
| 584 | return state; |
| 585 | } |
| 586 | |
| 587 | static unsigned int sff_gpio_get_state(struct sfp *sfp) |
| 588 | { |
| 589 | return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; |
| 590 | } |
| 591 | |
| 592 | static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) |
| 593 | { |
| 594 | unsigned int drive; |
| 595 | |
| 596 | if (state & SFP_F_PRESENT) |
| 597 | /* If the module is present, drive the requested signals */ |
| 598 | drive = sfp->state_hw_drive; |
| 599 | else |
| 600 | /* Otherwise, let them float to the pull-ups */ |
| 601 | drive = 0; |
| 602 | |
| 603 | if (sfp->gpio[GPIO_TX_DISABLE]) { |
| 604 | if (drive & SFP_F_TX_DISABLE) |
| 605 | gpiod_direction_output(desc: sfp->gpio[GPIO_TX_DISABLE], |
| 606 | value: state & SFP_F_TX_DISABLE); |
| 607 | else |
| 608 | gpiod_direction_input(desc: sfp->gpio[GPIO_TX_DISABLE]); |
| 609 | } |
| 610 | |
| 611 | if (sfp->gpio[GPIO_RS0]) { |
| 612 | if (drive & SFP_F_RS0) |
| 613 | gpiod_direction_output(desc: sfp->gpio[GPIO_RS0], |
| 614 | value: state & SFP_F_RS0); |
| 615 | else |
| 616 | gpiod_direction_input(desc: sfp->gpio[GPIO_RS0]); |
| 617 | } |
| 618 | |
| 619 | if (sfp->gpio[GPIO_RS1]) { |
| 620 | if (drive & SFP_F_RS1) |
| 621 | gpiod_direction_output(desc: sfp->gpio[GPIO_RS1], |
| 622 | value: state & SFP_F_RS1); |
| 623 | else |
| 624 | gpiod_direction_input(desc: sfp->gpio[GPIO_RS1]); |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, |
| 629 | size_t len) |
| 630 | { |
| 631 | struct i2c_msg msgs[2]; |
| 632 | u8 bus_addr = a2 ? 0x51 : 0x50; |
| 633 | size_t block_size = sfp->i2c_block_size; |
| 634 | size_t this_len; |
| 635 | int ret; |
| 636 | |
| 637 | msgs[0].addr = bus_addr; |
| 638 | msgs[0].flags = 0; |
| 639 | msgs[0].len = 1; |
| 640 | msgs[0].buf = &dev_addr; |
| 641 | msgs[1].addr = bus_addr; |
| 642 | msgs[1].flags = I2C_M_RD; |
| 643 | msgs[1].len = len; |
| 644 | msgs[1].buf = buf; |
| 645 | |
| 646 | while (len) { |
| 647 | this_len = len; |
| 648 | if (this_len > block_size) |
| 649 | this_len = block_size; |
| 650 | |
| 651 | msgs[1].len = this_len; |
| 652 | |
| 653 | ret = i2c_transfer(adap: sfp->i2c, msgs, ARRAY_SIZE(msgs)); |
| 654 | if (ret < 0) |
| 655 | return ret; |
| 656 | |
| 657 | if (ret != ARRAY_SIZE(msgs)) |
| 658 | break; |
| 659 | |
| 660 | msgs[1].buf += this_len; |
| 661 | dev_addr += this_len; |
| 662 | len -= this_len; |
| 663 | } |
| 664 | |
| 665 | return msgs[1].buf - (u8 *)buf; |
| 666 | } |
| 667 | |
| 668 | static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, |
| 669 | size_t len) |
| 670 | { |
| 671 | struct i2c_msg msgs[1]; |
| 672 | u8 bus_addr = a2 ? 0x51 : 0x50; |
| 673 | int ret; |
| 674 | |
| 675 | msgs[0].addr = bus_addr; |
| 676 | msgs[0].flags = 0; |
| 677 | msgs[0].len = 1 + len; |
| 678 | msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); |
| 679 | if (!msgs[0].buf) |
| 680 | return -ENOMEM; |
| 681 | |
| 682 | msgs[0].buf[0] = dev_addr; |
| 683 | memcpy(&msgs[0].buf[1], buf, len); |
| 684 | |
| 685 | ret = i2c_transfer(adap: sfp->i2c, msgs, ARRAY_SIZE(msgs)); |
| 686 | |
| 687 | kfree(objp: msgs[0].buf); |
| 688 | |
| 689 | if (ret < 0) |
| 690 | return ret; |
| 691 | |
| 692 | return ret == ARRAY_SIZE(msgs) ? len : 0; |
| 693 | } |
| 694 | |
| 695 | static int sfp_smbus_byte_read(struct sfp *sfp, bool a2, u8 dev_addr, |
| 696 | void *buf, size_t len) |
| 697 | { |
| 698 | union i2c_smbus_data smbus_data; |
| 699 | u8 bus_addr = a2 ? 0x51 : 0x50; |
| 700 | u8 *data = buf; |
| 701 | int ret; |
| 702 | |
| 703 | while (len) { |
| 704 | ret = i2c_smbus_xfer(adapter: sfp->i2c, addr: bus_addr, flags: 0, |
| 705 | I2C_SMBUS_READ, command: dev_addr, |
| 706 | I2C_SMBUS_BYTE_DATA, data: &smbus_data); |
| 707 | if (ret < 0) |
| 708 | return ret; |
| 709 | |
| 710 | *data = smbus_data.byte; |
| 711 | |
| 712 | len--; |
| 713 | data++; |
| 714 | dev_addr++; |
| 715 | } |
| 716 | |
| 717 | return data - (u8 *)buf; |
| 718 | } |
| 719 | |
| 720 | static int sfp_smbus_byte_write(struct sfp *sfp, bool a2, u8 dev_addr, |
| 721 | void *buf, size_t len) |
| 722 | { |
| 723 | union i2c_smbus_data smbus_data; |
| 724 | u8 bus_addr = a2 ? 0x51 : 0x50; |
| 725 | u8 *data = buf; |
| 726 | int ret; |
| 727 | |
| 728 | while (len) { |
| 729 | smbus_data.byte = *data; |
| 730 | ret = i2c_smbus_xfer(adapter: sfp->i2c, addr: bus_addr, flags: 0, |
| 731 | I2C_SMBUS_WRITE, command: dev_addr, |
| 732 | I2C_SMBUS_BYTE_DATA, data: &smbus_data); |
| 733 | if (ret) |
| 734 | return ret; |
| 735 | |
| 736 | len--; |
| 737 | data++; |
| 738 | dev_addr++; |
| 739 | } |
| 740 | |
| 741 | return 0; |
| 742 | } |
| 743 | |
| 744 | static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) |
| 745 | { |
| 746 | sfp->i2c = i2c; |
| 747 | |
| 748 | if (i2c_check_functionality(adap: i2c, I2C_FUNC_I2C)) { |
| 749 | sfp->read = sfp_i2c_read; |
| 750 | sfp->write = sfp_i2c_write; |
| 751 | sfp->i2c_max_block_size = SFP_EEPROM_BLOCK_SIZE; |
| 752 | } else if (i2c_check_functionality(adap: i2c, I2C_FUNC_SMBUS_BYTE_DATA)) { |
| 753 | sfp->read = sfp_smbus_byte_read; |
| 754 | sfp->write = sfp_smbus_byte_write; |
| 755 | sfp->i2c_max_block_size = 1; |
| 756 | } else { |
| 757 | sfp->i2c = NULL; |
| 758 | return -EINVAL; |
| 759 | } |
| 760 | |
| 761 | return 0; |
| 762 | } |
| 763 | |
| 764 | static int sfp_i2c_mdiobus_create(struct sfp *sfp) |
| 765 | { |
| 766 | struct mii_bus *i2c_mii; |
| 767 | int ret; |
| 768 | |
| 769 | i2c_mii = mdio_i2c_alloc(parent: sfp->dev, i2c: sfp->i2c, protocol: sfp->mdio_protocol); |
| 770 | if (IS_ERR(ptr: i2c_mii)) |
| 771 | return PTR_ERR(ptr: i2c_mii); |
| 772 | |
| 773 | i2c_mii->name = "SFP I2C Bus" ; |
| 774 | i2c_mii->phy_mask = ~0; |
| 775 | |
| 776 | ret = mdiobus_register(i2c_mii); |
| 777 | if (ret < 0) { |
| 778 | mdiobus_free(bus: i2c_mii); |
| 779 | return ret; |
| 780 | } |
| 781 | |
| 782 | sfp->i2c_mii = i2c_mii; |
| 783 | |
| 784 | return 0; |
| 785 | } |
| 786 | |
| 787 | static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) |
| 788 | { |
| 789 | mdiobus_unregister(bus: sfp->i2c_mii); |
| 790 | sfp->i2c_mii = NULL; |
| 791 | } |
| 792 | |
| 793 | /* Interface */ |
| 794 | static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) |
| 795 | { |
| 796 | return sfp->read(sfp, a2, addr, buf, len); |
| 797 | } |
| 798 | |
| 799 | static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) |
| 800 | { |
| 801 | return sfp->write(sfp, a2, addr, buf, len); |
| 802 | } |
| 803 | |
| 804 | static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) |
| 805 | { |
| 806 | int ret; |
| 807 | u8 old, v; |
| 808 | |
| 809 | ret = sfp_read(sfp, a2, addr, buf: &old, len: sizeof(old)); |
| 810 | if (ret != sizeof(old)) |
| 811 | return ret; |
| 812 | |
| 813 | v = (old & ~mask) | (val & mask); |
| 814 | if (v == old) |
| 815 | return sizeof(v); |
| 816 | |
| 817 | return sfp_write(sfp, a2, addr, buf: &v, len: sizeof(v)); |
| 818 | } |
| 819 | |
| 820 | static unsigned int sfp_soft_get_state(struct sfp *sfp) |
| 821 | { |
| 822 | unsigned int state = 0; |
| 823 | u8 status; |
| 824 | int ret; |
| 825 | |
| 826 | ret = sfp_read(sfp, a2: true, addr: SFP_STATUS, buf: &status, len: sizeof(status)); |
| 827 | if (ret == sizeof(status)) { |
| 828 | if (status & SFP_STATUS_RX_LOS) |
| 829 | state |= SFP_F_LOS; |
| 830 | if (status & SFP_STATUS_TX_FAULT) |
| 831 | state |= SFP_F_TX_FAULT; |
| 832 | } else { |
| 833 | dev_err_ratelimited(sfp->dev, |
| 834 | "failed to read SFP soft status: %pe\n" , |
| 835 | ERR_PTR(ret)); |
| 836 | /* Preserve the current state */ |
| 837 | state = sfp->state; |
| 838 | } |
| 839 | |
| 840 | return state & sfp->state_soft_mask; |
| 841 | } |
| 842 | |
| 843 | static void sfp_soft_set_state(struct sfp *sfp, unsigned int state, |
| 844 | unsigned int soft) |
| 845 | { |
| 846 | u8 mask = 0; |
| 847 | u8 val = 0; |
| 848 | |
| 849 | if (soft & SFP_F_TX_DISABLE) |
| 850 | mask |= SFP_STATUS_TX_DISABLE_FORCE; |
| 851 | if (state & SFP_F_TX_DISABLE) |
| 852 | val |= SFP_STATUS_TX_DISABLE_FORCE; |
| 853 | |
| 854 | if (soft & SFP_F_RS0) |
| 855 | mask |= SFP_STATUS_RS0_SELECT; |
| 856 | if (state & SFP_F_RS0) |
| 857 | val |= SFP_STATUS_RS0_SELECT; |
| 858 | |
| 859 | if (mask) |
| 860 | sfp_modify_u8(sfp, a2: true, addr: SFP_STATUS, mask, val); |
| 861 | |
| 862 | val = mask = 0; |
| 863 | if (soft & SFP_F_RS1) |
| 864 | mask |= SFP_EXT_STATUS_RS1_SELECT; |
| 865 | if (state & SFP_F_RS1) |
| 866 | val |= SFP_EXT_STATUS_RS1_SELECT; |
| 867 | |
| 868 | if (mask) |
| 869 | sfp_modify_u8(sfp, a2: true, addr: SFP_EXT_STATUS, mask, val); |
| 870 | } |
| 871 | |
| 872 | static void sfp_soft_start_poll(struct sfp *sfp) |
| 873 | { |
| 874 | const struct sfp_eeprom_id *id = &sfp->id; |
| 875 | unsigned int mask = 0; |
| 876 | |
| 877 | if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) |
| 878 | mask |= SFP_F_TX_DISABLE; |
| 879 | if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) |
| 880 | mask |= SFP_F_TX_FAULT; |
| 881 | if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) |
| 882 | mask |= SFP_F_LOS; |
| 883 | if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT) |
| 884 | mask |= sfp->rs_state_mask; |
| 885 | |
| 886 | mutex_lock(&sfp->st_mutex); |
| 887 | // Poll the soft state for hardware pins we want to ignore |
| 888 | sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask & |
| 889 | mask; |
| 890 | |
| 891 | if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && |
| 892 | !sfp->need_poll) |
| 893 | mod_delayed_work(wq: system_wq, dwork: &sfp->poll, delay: poll_jiffies); |
| 894 | mutex_unlock(lock: &sfp->st_mutex); |
| 895 | } |
| 896 | |
| 897 | static void sfp_soft_stop_poll(struct sfp *sfp) |
| 898 | { |
| 899 | mutex_lock(&sfp->st_mutex); |
| 900 | sfp->state_soft_mask = 0; |
| 901 | mutex_unlock(lock: &sfp->st_mutex); |
| 902 | } |
| 903 | |
| 904 | /* sfp_get_state() - must be called with st_mutex held, or in the |
| 905 | * initialisation path. |
| 906 | */ |
| 907 | static unsigned int sfp_get_state(struct sfp *sfp) |
| 908 | { |
| 909 | unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); |
| 910 | unsigned int state; |
| 911 | |
| 912 | state = sfp->get_state(sfp) & sfp->state_hw_mask; |
| 913 | if (state & SFP_F_PRESENT && soft) |
| 914 | state |= sfp_soft_get_state(sfp); |
| 915 | |
| 916 | return state; |
| 917 | } |
| 918 | |
| 919 | /* sfp_set_state() - must be called with st_mutex held, or in the |
| 920 | * initialisation path. |
| 921 | */ |
| 922 | static void sfp_set_state(struct sfp *sfp, unsigned int state) |
| 923 | { |
| 924 | unsigned int soft; |
| 925 | |
| 926 | sfp->set_state(sfp, state); |
| 927 | |
| 928 | soft = sfp->state_soft_mask & SFP_F_OUTPUTS; |
| 929 | if (state & SFP_F_PRESENT && soft) |
| 930 | sfp_soft_set_state(sfp, state, soft); |
| 931 | } |
| 932 | |
| 933 | static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set) |
| 934 | { |
| 935 | mutex_lock(&sfp->st_mutex); |
| 936 | sfp->state = (sfp->state & ~mask) | set; |
| 937 | sfp_set_state(sfp, state: sfp->state); |
| 938 | mutex_unlock(lock: &sfp->st_mutex); |
| 939 | } |
| 940 | |
| 941 | static unsigned int sfp_check(void *buf, size_t len) |
| 942 | { |
| 943 | u8 *p, check; |
| 944 | |
| 945 | for (p = buf, check = 0; len; p++, len--) |
| 946 | check += *p; |
| 947 | |
| 948 | return check; |
| 949 | } |
| 950 | |
| 951 | /* hwmon */ |
| 952 | #if IS_ENABLED(CONFIG_HWMON) |
| 953 | static umode_t sfp_hwmon_is_visible(const void *data, |
| 954 | enum hwmon_sensor_types type, |
| 955 | u32 attr, int channel) |
| 956 | { |
| 957 | const struct sfp *sfp = data; |
| 958 | |
| 959 | switch (type) { |
| 960 | case hwmon_temp: |
| 961 | switch (attr) { |
| 962 | case hwmon_temp_min_alarm: |
| 963 | case hwmon_temp_max_alarm: |
| 964 | case hwmon_temp_lcrit_alarm: |
| 965 | case hwmon_temp_crit_alarm: |
| 966 | case hwmon_temp_min: |
| 967 | case hwmon_temp_max: |
| 968 | case hwmon_temp_lcrit: |
| 969 | case hwmon_temp_crit: |
| 970 | if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) |
| 971 | return 0; |
| 972 | fallthrough; |
| 973 | case hwmon_temp_input: |
| 974 | case hwmon_temp_label: |
| 975 | return 0444; |
| 976 | default: |
| 977 | return 0; |
| 978 | } |
| 979 | case hwmon_in: |
| 980 | switch (attr) { |
| 981 | case hwmon_in_min_alarm: |
| 982 | case hwmon_in_max_alarm: |
| 983 | case hwmon_in_lcrit_alarm: |
| 984 | case hwmon_in_crit_alarm: |
| 985 | case hwmon_in_min: |
| 986 | case hwmon_in_max: |
| 987 | case hwmon_in_lcrit: |
| 988 | case hwmon_in_crit: |
| 989 | if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) |
| 990 | return 0; |
| 991 | fallthrough; |
| 992 | case hwmon_in_input: |
| 993 | case hwmon_in_label: |
| 994 | return 0444; |
| 995 | default: |
| 996 | return 0; |
| 997 | } |
| 998 | case hwmon_curr: |
| 999 | switch (attr) { |
| 1000 | case hwmon_curr_min_alarm: |
| 1001 | case hwmon_curr_max_alarm: |
| 1002 | case hwmon_curr_lcrit_alarm: |
| 1003 | case hwmon_curr_crit_alarm: |
| 1004 | case hwmon_curr_min: |
| 1005 | case hwmon_curr_max: |
| 1006 | case hwmon_curr_lcrit: |
| 1007 | case hwmon_curr_crit: |
| 1008 | if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) |
| 1009 | return 0; |
| 1010 | fallthrough; |
| 1011 | case hwmon_curr_input: |
| 1012 | case hwmon_curr_label: |
| 1013 | return 0444; |
| 1014 | default: |
| 1015 | return 0; |
| 1016 | } |
| 1017 | case hwmon_power: |
| 1018 | /* External calibration of receive power requires |
| 1019 | * floating point arithmetic. Doing that in the kernel |
| 1020 | * is not easy, so just skip it. If the module does |
| 1021 | * not require external calibration, we can however |
| 1022 | * show receiver power, since FP is then not needed. |
| 1023 | */ |
| 1024 | if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && |
| 1025 | channel == 1) |
| 1026 | return 0; |
| 1027 | switch (attr) { |
| 1028 | case hwmon_power_min_alarm: |
| 1029 | case hwmon_power_max_alarm: |
| 1030 | case hwmon_power_lcrit_alarm: |
| 1031 | case hwmon_power_crit_alarm: |
| 1032 | case hwmon_power_min: |
| 1033 | case hwmon_power_max: |
| 1034 | case hwmon_power_lcrit: |
| 1035 | case hwmon_power_crit: |
| 1036 | if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) |
| 1037 | return 0; |
| 1038 | fallthrough; |
| 1039 | case hwmon_power_input: |
| 1040 | case hwmon_power_label: |
| 1041 | return 0444; |
| 1042 | default: |
| 1043 | return 0; |
| 1044 | } |
| 1045 | default: |
| 1046 | return 0; |
| 1047 | } |
| 1048 | } |
| 1049 | |
| 1050 | static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) |
| 1051 | { |
| 1052 | __be16 val; |
| 1053 | int err; |
| 1054 | |
| 1055 | err = sfp_read(sfp, a2: true, addr: reg, buf: &val, len: sizeof(val)); |
| 1056 | if (err < 0) |
| 1057 | return err; |
| 1058 | |
| 1059 | *value = be16_to_cpu(val); |
| 1060 | |
| 1061 | return 0; |
| 1062 | } |
| 1063 | |
| 1064 | static void sfp_hwmon_to_rx_power(long *value) |
| 1065 | { |
| 1066 | *value = DIV_ROUND_CLOSEST(*value, 10); |
| 1067 | } |
| 1068 | |
| 1069 | static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, |
| 1070 | long *value) |
| 1071 | { |
| 1072 | if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) |
| 1073 | *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; |
| 1074 | } |
| 1075 | |
| 1076 | static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) |
| 1077 | { |
| 1078 | sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), |
| 1079 | be16_to_cpu(sfp->diag.cal_t_offset), value); |
| 1080 | |
| 1081 | if (*value >= 0x8000) |
| 1082 | *value -= 0x10000; |
| 1083 | |
| 1084 | *value = DIV_ROUND_CLOSEST(*value * 1000, 256); |
| 1085 | } |
| 1086 | |
| 1087 | static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) |
| 1088 | { |
| 1089 | sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), |
| 1090 | be16_to_cpu(sfp->diag.cal_v_offset), value); |
| 1091 | |
| 1092 | *value = DIV_ROUND_CLOSEST(*value, 10); |
| 1093 | } |
| 1094 | |
| 1095 | static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) |
| 1096 | { |
| 1097 | sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), |
| 1098 | be16_to_cpu(sfp->diag.cal_txi_offset), value); |
| 1099 | |
| 1100 | *value = DIV_ROUND_CLOSEST(*value, 500); |
| 1101 | } |
| 1102 | |
| 1103 | static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) |
| 1104 | { |
| 1105 | sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), |
| 1106 | be16_to_cpu(sfp->diag.cal_txpwr_offset), value); |
| 1107 | |
| 1108 | *value = DIV_ROUND_CLOSEST(*value, 10); |
| 1109 | } |
| 1110 | |
| 1111 | static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) |
| 1112 | { |
| 1113 | int err; |
| 1114 | |
| 1115 | err = sfp_hwmon_read_sensor(sfp, reg, value); |
| 1116 | if (err < 0) |
| 1117 | return err; |
| 1118 | |
| 1119 | sfp_hwmon_calibrate_temp(sfp, value); |
| 1120 | |
| 1121 | return 0; |
| 1122 | } |
| 1123 | |
| 1124 | static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) |
| 1125 | { |
| 1126 | int err; |
| 1127 | |
| 1128 | err = sfp_hwmon_read_sensor(sfp, reg, value); |
| 1129 | if (err < 0) |
| 1130 | return err; |
| 1131 | |
| 1132 | sfp_hwmon_calibrate_vcc(sfp, value); |
| 1133 | |
| 1134 | return 0; |
| 1135 | } |
| 1136 | |
| 1137 | static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) |
| 1138 | { |
| 1139 | int err; |
| 1140 | |
| 1141 | err = sfp_hwmon_read_sensor(sfp, reg, value); |
| 1142 | if (err < 0) |
| 1143 | return err; |
| 1144 | |
| 1145 | sfp_hwmon_calibrate_bias(sfp, value); |
| 1146 | |
| 1147 | return 0; |
| 1148 | } |
| 1149 | |
| 1150 | static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) |
| 1151 | { |
| 1152 | int err; |
| 1153 | |
| 1154 | err = sfp_hwmon_read_sensor(sfp, reg, value); |
| 1155 | if (err < 0) |
| 1156 | return err; |
| 1157 | |
| 1158 | sfp_hwmon_calibrate_tx_power(sfp, value); |
| 1159 | |
| 1160 | return 0; |
| 1161 | } |
| 1162 | |
| 1163 | static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) |
| 1164 | { |
| 1165 | int err; |
| 1166 | |
| 1167 | err = sfp_hwmon_read_sensor(sfp, reg, value); |
| 1168 | if (err < 0) |
| 1169 | return err; |
| 1170 | |
| 1171 | sfp_hwmon_to_rx_power(value); |
| 1172 | |
| 1173 | return 0; |
| 1174 | } |
| 1175 | |
| 1176 | static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) |
| 1177 | { |
| 1178 | u8 status; |
| 1179 | int err; |
| 1180 | |
| 1181 | switch (attr) { |
| 1182 | case hwmon_temp_input: |
| 1183 | return sfp_hwmon_read_temp(sfp, reg: SFP_TEMP, value); |
| 1184 | |
| 1185 | case hwmon_temp_lcrit: |
| 1186 | *value = be16_to_cpu(sfp->diag.temp_low_alarm); |
| 1187 | sfp_hwmon_calibrate_temp(sfp, value); |
| 1188 | return 0; |
| 1189 | |
| 1190 | case hwmon_temp_min: |
| 1191 | *value = be16_to_cpu(sfp->diag.temp_low_warn); |
| 1192 | sfp_hwmon_calibrate_temp(sfp, value); |
| 1193 | return 0; |
| 1194 | case hwmon_temp_max: |
| 1195 | *value = be16_to_cpu(sfp->diag.temp_high_warn); |
| 1196 | sfp_hwmon_calibrate_temp(sfp, value); |
| 1197 | return 0; |
| 1198 | |
| 1199 | case hwmon_temp_crit: |
| 1200 | *value = be16_to_cpu(sfp->diag.temp_high_alarm); |
| 1201 | sfp_hwmon_calibrate_temp(sfp, value); |
| 1202 | return 0; |
| 1203 | |
| 1204 | case hwmon_temp_lcrit_alarm: |
| 1205 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status)); |
| 1206 | if (err < 0) |
| 1207 | return err; |
| 1208 | |
| 1209 | *value = !!(status & SFP_ALARM0_TEMP_LOW); |
| 1210 | return 0; |
| 1211 | |
| 1212 | case hwmon_temp_min_alarm: |
| 1213 | err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status)); |
| 1214 | if (err < 0) |
| 1215 | return err; |
| 1216 | |
| 1217 | *value = !!(status & SFP_WARN0_TEMP_LOW); |
| 1218 | return 0; |
| 1219 | |
| 1220 | case hwmon_temp_max_alarm: |
| 1221 | err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status)); |
| 1222 | if (err < 0) |
| 1223 | return err; |
| 1224 | |
| 1225 | *value = !!(status & SFP_WARN0_TEMP_HIGH); |
| 1226 | return 0; |
| 1227 | |
| 1228 | case hwmon_temp_crit_alarm: |
| 1229 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status)); |
| 1230 | if (err < 0) |
| 1231 | return err; |
| 1232 | |
| 1233 | *value = !!(status & SFP_ALARM0_TEMP_HIGH); |
| 1234 | return 0; |
| 1235 | default: |
| 1236 | return -EOPNOTSUPP; |
| 1237 | } |
| 1238 | |
| 1239 | return -EOPNOTSUPP; |
| 1240 | } |
| 1241 | |
| 1242 | static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) |
| 1243 | { |
| 1244 | u8 status; |
| 1245 | int err; |
| 1246 | |
| 1247 | switch (attr) { |
| 1248 | case hwmon_in_input: |
| 1249 | return sfp_hwmon_read_vcc(sfp, reg: SFP_VCC, value); |
| 1250 | |
| 1251 | case hwmon_in_lcrit: |
| 1252 | *value = be16_to_cpu(sfp->diag.volt_low_alarm); |
| 1253 | sfp_hwmon_calibrate_vcc(sfp, value); |
| 1254 | return 0; |
| 1255 | |
| 1256 | case hwmon_in_min: |
| 1257 | *value = be16_to_cpu(sfp->diag.volt_low_warn); |
| 1258 | sfp_hwmon_calibrate_vcc(sfp, value); |
| 1259 | return 0; |
| 1260 | |
| 1261 | case hwmon_in_max: |
| 1262 | *value = be16_to_cpu(sfp->diag.volt_high_warn); |
| 1263 | sfp_hwmon_calibrate_vcc(sfp, value); |
| 1264 | return 0; |
| 1265 | |
| 1266 | case hwmon_in_crit: |
| 1267 | *value = be16_to_cpu(sfp->diag.volt_high_alarm); |
| 1268 | sfp_hwmon_calibrate_vcc(sfp, value); |
| 1269 | return 0; |
| 1270 | |
| 1271 | case hwmon_in_lcrit_alarm: |
| 1272 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status)); |
| 1273 | if (err < 0) |
| 1274 | return err; |
| 1275 | |
| 1276 | *value = !!(status & SFP_ALARM0_VCC_LOW); |
| 1277 | return 0; |
| 1278 | |
| 1279 | case hwmon_in_min_alarm: |
| 1280 | err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status)); |
| 1281 | if (err < 0) |
| 1282 | return err; |
| 1283 | |
| 1284 | *value = !!(status & SFP_WARN0_VCC_LOW); |
| 1285 | return 0; |
| 1286 | |
| 1287 | case hwmon_in_max_alarm: |
| 1288 | err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status)); |
| 1289 | if (err < 0) |
| 1290 | return err; |
| 1291 | |
| 1292 | *value = !!(status & SFP_WARN0_VCC_HIGH); |
| 1293 | return 0; |
| 1294 | |
| 1295 | case hwmon_in_crit_alarm: |
| 1296 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status)); |
| 1297 | if (err < 0) |
| 1298 | return err; |
| 1299 | |
| 1300 | *value = !!(status & SFP_ALARM0_VCC_HIGH); |
| 1301 | return 0; |
| 1302 | default: |
| 1303 | return -EOPNOTSUPP; |
| 1304 | } |
| 1305 | |
| 1306 | return -EOPNOTSUPP; |
| 1307 | } |
| 1308 | |
| 1309 | static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) |
| 1310 | { |
| 1311 | u8 status; |
| 1312 | int err; |
| 1313 | |
| 1314 | switch (attr) { |
| 1315 | case hwmon_curr_input: |
| 1316 | return sfp_hwmon_read_bias(sfp, reg: SFP_TX_BIAS, value); |
| 1317 | |
| 1318 | case hwmon_curr_lcrit: |
| 1319 | *value = be16_to_cpu(sfp->diag.bias_low_alarm); |
| 1320 | sfp_hwmon_calibrate_bias(sfp, value); |
| 1321 | return 0; |
| 1322 | |
| 1323 | case hwmon_curr_min: |
| 1324 | *value = be16_to_cpu(sfp->diag.bias_low_warn); |
| 1325 | sfp_hwmon_calibrate_bias(sfp, value); |
| 1326 | return 0; |
| 1327 | |
| 1328 | case hwmon_curr_max: |
| 1329 | *value = be16_to_cpu(sfp->diag.bias_high_warn); |
| 1330 | sfp_hwmon_calibrate_bias(sfp, value); |
| 1331 | return 0; |
| 1332 | |
| 1333 | case hwmon_curr_crit: |
| 1334 | *value = be16_to_cpu(sfp->diag.bias_high_alarm); |
| 1335 | sfp_hwmon_calibrate_bias(sfp, value); |
| 1336 | return 0; |
| 1337 | |
| 1338 | case hwmon_curr_lcrit_alarm: |
| 1339 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status)); |
| 1340 | if (err < 0) |
| 1341 | return err; |
| 1342 | |
| 1343 | *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); |
| 1344 | return 0; |
| 1345 | |
| 1346 | case hwmon_curr_min_alarm: |
| 1347 | err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status)); |
| 1348 | if (err < 0) |
| 1349 | return err; |
| 1350 | |
| 1351 | *value = !!(status & SFP_WARN0_TX_BIAS_LOW); |
| 1352 | return 0; |
| 1353 | |
| 1354 | case hwmon_curr_max_alarm: |
| 1355 | err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status)); |
| 1356 | if (err < 0) |
| 1357 | return err; |
| 1358 | |
| 1359 | *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); |
| 1360 | return 0; |
| 1361 | |
| 1362 | case hwmon_curr_crit_alarm: |
| 1363 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status)); |
| 1364 | if (err < 0) |
| 1365 | return err; |
| 1366 | |
| 1367 | *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); |
| 1368 | return 0; |
| 1369 | default: |
| 1370 | return -EOPNOTSUPP; |
| 1371 | } |
| 1372 | |
| 1373 | return -EOPNOTSUPP; |
| 1374 | } |
| 1375 | |
| 1376 | static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) |
| 1377 | { |
| 1378 | u8 status; |
| 1379 | int err; |
| 1380 | |
| 1381 | switch (attr) { |
| 1382 | case hwmon_power_input: |
| 1383 | return sfp_hwmon_read_tx_power(sfp, reg: SFP_TX_POWER, value); |
| 1384 | |
| 1385 | case hwmon_power_lcrit: |
| 1386 | *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); |
| 1387 | sfp_hwmon_calibrate_tx_power(sfp, value); |
| 1388 | return 0; |
| 1389 | |
| 1390 | case hwmon_power_min: |
| 1391 | *value = be16_to_cpu(sfp->diag.txpwr_low_warn); |
| 1392 | sfp_hwmon_calibrate_tx_power(sfp, value); |
| 1393 | return 0; |
| 1394 | |
| 1395 | case hwmon_power_max: |
| 1396 | *value = be16_to_cpu(sfp->diag.txpwr_high_warn); |
| 1397 | sfp_hwmon_calibrate_tx_power(sfp, value); |
| 1398 | return 0; |
| 1399 | |
| 1400 | case hwmon_power_crit: |
| 1401 | *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); |
| 1402 | sfp_hwmon_calibrate_tx_power(sfp, value); |
| 1403 | return 0; |
| 1404 | |
| 1405 | case hwmon_power_lcrit_alarm: |
| 1406 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status)); |
| 1407 | if (err < 0) |
| 1408 | return err; |
| 1409 | |
| 1410 | *value = !!(status & SFP_ALARM0_TXPWR_LOW); |
| 1411 | return 0; |
| 1412 | |
| 1413 | case hwmon_power_min_alarm: |
| 1414 | err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status)); |
| 1415 | if (err < 0) |
| 1416 | return err; |
| 1417 | |
| 1418 | *value = !!(status & SFP_WARN0_TXPWR_LOW); |
| 1419 | return 0; |
| 1420 | |
| 1421 | case hwmon_power_max_alarm: |
| 1422 | err = sfp_read(sfp, a2: true, addr: SFP_WARN0, buf: &status, len: sizeof(status)); |
| 1423 | if (err < 0) |
| 1424 | return err; |
| 1425 | |
| 1426 | *value = !!(status & SFP_WARN0_TXPWR_HIGH); |
| 1427 | return 0; |
| 1428 | |
| 1429 | case hwmon_power_crit_alarm: |
| 1430 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM0, buf: &status, len: sizeof(status)); |
| 1431 | if (err < 0) |
| 1432 | return err; |
| 1433 | |
| 1434 | *value = !!(status & SFP_ALARM0_TXPWR_HIGH); |
| 1435 | return 0; |
| 1436 | default: |
| 1437 | return -EOPNOTSUPP; |
| 1438 | } |
| 1439 | |
| 1440 | return -EOPNOTSUPP; |
| 1441 | } |
| 1442 | |
| 1443 | static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) |
| 1444 | { |
| 1445 | u8 status; |
| 1446 | int err; |
| 1447 | |
| 1448 | switch (attr) { |
| 1449 | case hwmon_power_input: |
| 1450 | return sfp_hwmon_read_rx_power(sfp, reg: SFP_RX_POWER, value); |
| 1451 | |
| 1452 | case hwmon_power_lcrit: |
| 1453 | *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); |
| 1454 | sfp_hwmon_to_rx_power(value); |
| 1455 | return 0; |
| 1456 | |
| 1457 | case hwmon_power_min: |
| 1458 | *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); |
| 1459 | sfp_hwmon_to_rx_power(value); |
| 1460 | return 0; |
| 1461 | |
| 1462 | case hwmon_power_max: |
| 1463 | *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); |
| 1464 | sfp_hwmon_to_rx_power(value); |
| 1465 | return 0; |
| 1466 | |
| 1467 | case hwmon_power_crit: |
| 1468 | *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); |
| 1469 | sfp_hwmon_to_rx_power(value); |
| 1470 | return 0; |
| 1471 | |
| 1472 | case hwmon_power_lcrit_alarm: |
| 1473 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM1, buf: &status, len: sizeof(status)); |
| 1474 | if (err < 0) |
| 1475 | return err; |
| 1476 | |
| 1477 | *value = !!(status & SFP_ALARM1_RXPWR_LOW); |
| 1478 | return 0; |
| 1479 | |
| 1480 | case hwmon_power_min_alarm: |
| 1481 | err = sfp_read(sfp, a2: true, addr: SFP_WARN1, buf: &status, len: sizeof(status)); |
| 1482 | if (err < 0) |
| 1483 | return err; |
| 1484 | |
| 1485 | *value = !!(status & SFP_WARN1_RXPWR_LOW); |
| 1486 | return 0; |
| 1487 | |
| 1488 | case hwmon_power_max_alarm: |
| 1489 | err = sfp_read(sfp, a2: true, addr: SFP_WARN1, buf: &status, len: sizeof(status)); |
| 1490 | if (err < 0) |
| 1491 | return err; |
| 1492 | |
| 1493 | *value = !!(status & SFP_WARN1_RXPWR_HIGH); |
| 1494 | return 0; |
| 1495 | |
| 1496 | case hwmon_power_crit_alarm: |
| 1497 | err = sfp_read(sfp, a2: true, addr: SFP_ALARM1, buf: &status, len: sizeof(status)); |
| 1498 | if (err < 0) |
| 1499 | return err; |
| 1500 | |
| 1501 | *value = !!(status & SFP_ALARM1_RXPWR_HIGH); |
| 1502 | return 0; |
| 1503 | default: |
| 1504 | return -EOPNOTSUPP; |
| 1505 | } |
| 1506 | |
| 1507 | return -EOPNOTSUPP; |
| 1508 | } |
| 1509 | |
| 1510 | static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, |
| 1511 | u32 attr, int channel, long *value) |
| 1512 | { |
| 1513 | struct sfp *sfp = dev_get_drvdata(dev); |
| 1514 | |
| 1515 | switch (type) { |
| 1516 | case hwmon_temp: |
| 1517 | return sfp_hwmon_temp(sfp, attr, value); |
| 1518 | case hwmon_in: |
| 1519 | return sfp_hwmon_vcc(sfp, attr, value); |
| 1520 | case hwmon_curr: |
| 1521 | return sfp_hwmon_bias(sfp, attr, value); |
| 1522 | case hwmon_power: |
| 1523 | switch (channel) { |
| 1524 | case 0: |
| 1525 | return sfp_hwmon_tx_power(sfp, attr, value); |
| 1526 | case 1: |
| 1527 | return sfp_hwmon_rx_power(sfp, attr, value); |
| 1528 | default: |
| 1529 | return -EOPNOTSUPP; |
| 1530 | } |
| 1531 | default: |
| 1532 | return -EOPNOTSUPP; |
| 1533 | } |
| 1534 | } |
| 1535 | |
| 1536 | static const char *const sfp_hwmon_power_labels[] = { |
| 1537 | "TX_power" , |
| 1538 | "RX_power" , |
| 1539 | }; |
| 1540 | |
| 1541 | static int sfp_hwmon_read_string(struct device *dev, |
| 1542 | enum hwmon_sensor_types type, |
| 1543 | u32 attr, int channel, const char **str) |
| 1544 | { |
| 1545 | switch (type) { |
| 1546 | case hwmon_curr: |
| 1547 | switch (attr) { |
| 1548 | case hwmon_curr_label: |
| 1549 | *str = "bias" ; |
| 1550 | return 0; |
| 1551 | default: |
| 1552 | return -EOPNOTSUPP; |
| 1553 | } |
| 1554 | break; |
| 1555 | case hwmon_temp: |
| 1556 | switch (attr) { |
| 1557 | case hwmon_temp_label: |
| 1558 | *str = "temperature" ; |
| 1559 | return 0; |
| 1560 | default: |
| 1561 | return -EOPNOTSUPP; |
| 1562 | } |
| 1563 | break; |
| 1564 | case hwmon_in: |
| 1565 | switch (attr) { |
| 1566 | case hwmon_in_label: |
| 1567 | *str = "VCC" ; |
| 1568 | return 0; |
| 1569 | default: |
| 1570 | return -EOPNOTSUPP; |
| 1571 | } |
| 1572 | break; |
| 1573 | case hwmon_power: |
| 1574 | switch (attr) { |
| 1575 | case hwmon_power_label: |
| 1576 | *str = sfp_hwmon_power_labels[channel]; |
| 1577 | return 0; |
| 1578 | default: |
| 1579 | return -EOPNOTSUPP; |
| 1580 | } |
| 1581 | break; |
| 1582 | default: |
| 1583 | return -EOPNOTSUPP; |
| 1584 | } |
| 1585 | |
| 1586 | return -EOPNOTSUPP; |
| 1587 | } |
| 1588 | |
| 1589 | static const struct hwmon_ops sfp_hwmon_ops = { |
| 1590 | .is_visible = sfp_hwmon_is_visible, |
| 1591 | .read = sfp_hwmon_read, |
| 1592 | .read_string = sfp_hwmon_read_string, |
| 1593 | }; |
| 1594 | |
| 1595 | static const struct hwmon_channel_info * const sfp_hwmon_info[] = { |
| 1596 | HWMON_CHANNEL_INFO(chip, |
| 1597 | HWMON_C_REGISTER_TZ), |
| 1598 | HWMON_CHANNEL_INFO(in, |
| 1599 | HWMON_I_INPUT | |
| 1600 | HWMON_I_MAX | HWMON_I_MIN | |
| 1601 | HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | |
| 1602 | HWMON_I_CRIT | HWMON_I_LCRIT | |
| 1603 | HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | |
| 1604 | HWMON_I_LABEL), |
| 1605 | HWMON_CHANNEL_INFO(temp, |
| 1606 | HWMON_T_INPUT | |
| 1607 | HWMON_T_MAX | HWMON_T_MIN | |
| 1608 | HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | |
| 1609 | HWMON_T_CRIT | HWMON_T_LCRIT | |
| 1610 | HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | |
| 1611 | HWMON_T_LABEL), |
| 1612 | HWMON_CHANNEL_INFO(curr, |
| 1613 | HWMON_C_INPUT | |
| 1614 | HWMON_C_MAX | HWMON_C_MIN | |
| 1615 | HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | |
| 1616 | HWMON_C_CRIT | HWMON_C_LCRIT | |
| 1617 | HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | |
| 1618 | HWMON_C_LABEL), |
| 1619 | HWMON_CHANNEL_INFO(power, |
| 1620 | /* Transmit power */ |
| 1621 | HWMON_P_INPUT | |
| 1622 | HWMON_P_MAX | HWMON_P_MIN | |
| 1623 | HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | |
| 1624 | HWMON_P_CRIT | HWMON_P_LCRIT | |
| 1625 | HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | |
| 1626 | HWMON_P_LABEL, |
| 1627 | /* Receive power */ |
| 1628 | HWMON_P_INPUT | |
| 1629 | HWMON_P_MAX | HWMON_P_MIN | |
| 1630 | HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | |
| 1631 | HWMON_P_CRIT | HWMON_P_LCRIT | |
| 1632 | HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | |
| 1633 | HWMON_P_LABEL), |
| 1634 | NULL, |
| 1635 | }; |
| 1636 | |
| 1637 | static const struct hwmon_chip_info sfp_hwmon_chip_info = { |
| 1638 | .ops = &sfp_hwmon_ops, |
| 1639 | .info = sfp_hwmon_info, |
| 1640 | }; |
| 1641 | |
| 1642 | static void sfp_hwmon_probe(struct work_struct *work) |
| 1643 | { |
| 1644 | struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); |
| 1645 | int err; |
| 1646 | |
| 1647 | /* hwmon interface needs to access 16bit registers in atomic way to |
| 1648 | * guarantee coherency of the diagnostic monitoring data. If it is not |
| 1649 | * possible to guarantee coherency because EEPROM is broken in such way |
| 1650 | * that does not support atomic 16bit read operation then we have to |
| 1651 | * skip registration of hwmon device. |
| 1652 | */ |
| 1653 | if (sfp->i2c_block_size < 2) { |
| 1654 | dev_info(sfp->dev, |
| 1655 | "skipping hwmon device registration\n" ); |
| 1656 | dev_info(sfp->dev, |
| 1657 | "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n" ); |
| 1658 | return; |
| 1659 | } |
| 1660 | |
| 1661 | err = sfp_read(sfp, a2: true, addr: 0, buf: &sfp->diag, len: sizeof(sfp->diag)); |
| 1662 | if (err < 0) { |
| 1663 | if (sfp->hwmon_tries--) { |
| 1664 | mod_delayed_work(wq: system_wq, dwork: &sfp->hwmon_probe, |
| 1665 | T_PROBE_RETRY_SLOW); |
| 1666 | } else { |
| 1667 | dev_warn(sfp->dev, "hwmon probe failed: %pe\n" , |
| 1668 | ERR_PTR(err)); |
| 1669 | } |
| 1670 | return; |
| 1671 | } |
| 1672 | |
| 1673 | sfp->hwmon_name = hwmon_sanitize_name(name: dev_name(dev: sfp->dev)); |
| 1674 | if (IS_ERR(ptr: sfp->hwmon_name)) { |
| 1675 | dev_err(sfp->dev, "out of memory for hwmon name\n" ); |
| 1676 | return; |
| 1677 | } |
| 1678 | |
| 1679 | sfp->hwmon_dev = hwmon_device_register_with_info(dev: sfp->dev, |
| 1680 | name: sfp->hwmon_name, drvdata: sfp, |
| 1681 | info: &sfp_hwmon_chip_info, |
| 1682 | NULL); |
| 1683 | if (IS_ERR(ptr: sfp->hwmon_dev)) |
| 1684 | dev_err(sfp->dev, "failed to register hwmon device: %ld\n" , |
| 1685 | PTR_ERR(sfp->hwmon_dev)); |
| 1686 | } |
| 1687 | |
| 1688 | static int sfp_hwmon_insert(struct sfp *sfp) |
| 1689 | { |
| 1690 | if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) { |
| 1691 | mod_delayed_work(wq: system_wq, dwork: &sfp->hwmon_probe, delay: 1); |
| 1692 | sfp->hwmon_tries = R_PROBE_RETRY_SLOW; |
| 1693 | } |
| 1694 | |
| 1695 | return 0; |
| 1696 | } |
| 1697 | |
| 1698 | static void sfp_hwmon_remove(struct sfp *sfp) |
| 1699 | { |
| 1700 | cancel_delayed_work_sync(dwork: &sfp->hwmon_probe); |
| 1701 | if (!IS_ERR_OR_NULL(ptr: sfp->hwmon_dev)) { |
| 1702 | hwmon_device_unregister(dev: sfp->hwmon_dev); |
| 1703 | sfp->hwmon_dev = NULL; |
| 1704 | kfree(objp: sfp->hwmon_name); |
| 1705 | } |
| 1706 | } |
| 1707 | |
| 1708 | static int sfp_hwmon_init(struct sfp *sfp) |
| 1709 | { |
| 1710 | INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); |
| 1711 | |
| 1712 | return 0; |
| 1713 | } |
| 1714 | |
| 1715 | static void sfp_hwmon_exit(struct sfp *sfp) |
| 1716 | { |
| 1717 | cancel_delayed_work_sync(dwork: &sfp->hwmon_probe); |
| 1718 | } |
| 1719 | #else |
| 1720 | static int sfp_hwmon_insert(struct sfp *sfp) |
| 1721 | { |
| 1722 | return 0; |
| 1723 | } |
| 1724 | |
| 1725 | static void sfp_hwmon_remove(struct sfp *sfp) |
| 1726 | { |
| 1727 | } |
| 1728 | |
| 1729 | static int sfp_hwmon_init(struct sfp *sfp) |
| 1730 | { |
| 1731 | return 0; |
| 1732 | } |
| 1733 | |
| 1734 | static void sfp_hwmon_exit(struct sfp *sfp) |
| 1735 | { |
| 1736 | } |
| 1737 | #endif |
| 1738 | |
| 1739 | /* Helpers */ |
| 1740 | static void sfp_module_tx_disable(struct sfp *sfp) |
| 1741 | { |
| 1742 | dev_dbg(sfp->dev, "tx disable %u -> %u\n" , |
| 1743 | sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); |
| 1744 | sfp_mod_state(sfp, mask: SFP_F_TX_DISABLE, set: SFP_F_TX_DISABLE); |
| 1745 | } |
| 1746 | |
| 1747 | static void sfp_module_tx_enable(struct sfp *sfp) |
| 1748 | { |
| 1749 | dev_dbg(sfp->dev, "tx disable %u -> %u\n" , |
| 1750 | sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); |
| 1751 | sfp_mod_state(sfp, mask: SFP_F_TX_DISABLE, set: 0); |
| 1752 | } |
| 1753 | |
| 1754 | #if IS_ENABLED(CONFIG_DEBUG_FS) |
| 1755 | static int sfp_debug_state_show(struct seq_file *s, void *data) |
| 1756 | { |
| 1757 | struct sfp *sfp = s->private; |
| 1758 | |
| 1759 | seq_printf(m: s, fmt: "Module state: %s\n" , |
| 1760 | mod_state_to_str(mod_state: sfp->sm_mod_state)); |
| 1761 | seq_printf(m: s, fmt: "Module probe attempts: %d %d\n" , |
| 1762 | R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, |
| 1763 | R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); |
| 1764 | seq_printf(m: s, fmt: "Device state: %s\n" , |
| 1765 | dev_state_to_str(dev_state: sfp->sm_dev_state)); |
| 1766 | seq_printf(m: s, fmt: "Main state: %s\n" , |
| 1767 | sm_state_to_str(sm_state: sfp->sm_state)); |
| 1768 | seq_printf(m: s, fmt: "Fault recovery remaining retries: %d\n" , |
| 1769 | sfp->sm_fault_retries); |
| 1770 | seq_printf(m: s, fmt: "PHY probe remaining retries: %d\n" , |
| 1771 | sfp->sm_phy_retries); |
| 1772 | seq_printf(m: s, fmt: "Signalling rate: %u kBd\n" , sfp->rate_kbd); |
| 1773 | seq_printf(m: s, fmt: "Rate select threshold: %u kBd\n" , |
| 1774 | sfp->rs_threshold_kbd); |
| 1775 | seq_printf(m: s, fmt: "moddef0: %d\n" , !!(sfp->state & SFP_F_PRESENT)); |
| 1776 | seq_printf(m: s, fmt: "rx_los: %d\n" , !!(sfp->state & SFP_F_LOS)); |
| 1777 | seq_printf(m: s, fmt: "tx_fault: %d\n" , !!(sfp->state & SFP_F_TX_FAULT)); |
| 1778 | seq_printf(m: s, fmt: "tx_disable: %d\n" , !!(sfp->state & SFP_F_TX_DISABLE)); |
| 1779 | seq_printf(m: s, fmt: "rs0: %d\n" , !!(sfp->state & SFP_F_RS0)); |
| 1780 | seq_printf(m: s, fmt: "rs1: %d\n" , !!(sfp->state & SFP_F_RS1)); |
| 1781 | return 0; |
| 1782 | } |
| 1783 | DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); |
| 1784 | |
| 1785 | static void sfp_debugfs_init(struct sfp *sfp) |
| 1786 | { |
| 1787 | sfp->debugfs_dir = debugfs_create_dir(name: dev_name(dev: sfp->dev), NULL); |
| 1788 | |
| 1789 | debugfs_create_file("state" , 0600, sfp->debugfs_dir, sfp, |
| 1790 | &sfp_debug_state_fops); |
| 1791 | } |
| 1792 | |
| 1793 | static void sfp_debugfs_exit(struct sfp *sfp) |
| 1794 | { |
| 1795 | debugfs_remove_recursive(dentry: sfp->debugfs_dir); |
| 1796 | } |
| 1797 | #else |
| 1798 | static void sfp_debugfs_init(struct sfp *sfp) |
| 1799 | { |
| 1800 | } |
| 1801 | |
| 1802 | static void sfp_debugfs_exit(struct sfp *sfp) |
| 1803 | { |
| 1804 | } |
| 1805 | #endif |
| 1806 | |
| 1807 | static void sfp_module_tx_fault_reset(struct sfp *sfp) |
| 1808 | { |
| 1809 | unsigned int state; |
| 1810 | |
| 1811 | mutex_lock(&sfp->st_mutex); |
| 1812 | state = sfp->state; |
| 1813 | if (!(state & SFP_F_TX_DISABLE)) { |
| 1814 | sfp_set_state(sfp, state: state | SFP_F_TX_DISABLE); |
| 1815 | |
| 1816 | udelay(T_RESET_US); |
| 1817 | |
| 1818 | sfp_set_state(sfp, state); |
| 1819 | } |
| 1820 | mutex_unlock(lock: &sfp->st_mutex); |
| 1821 | } |
| 1822 | |
| 1823 | /* SFP state machine */ |
| 1824 | static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) |
| 1825 | { |
| 1826 | if (timeout) |
| 1827 | mod_delayed_work(wq: system_power_efficient_wq, dwork: &sfp->timeout, |
| 1828 | delay: timeout); |
| 1829 | else |
| 1830 | cancel_delayed_work(dwork: &sfp->timeout); |
| 1831 | } |
| 1832 | |
| 1833 | static void sfp_sm_next(struct sfp *sfp, unsigned int state, |
| 1834 | unsigned int timeout) |
| 1835 | { |
| 1836 | sfp->sm_state = state; |
| 1837 | sfp_sm_set_timer(sfp, timeout); |
| 1838 | } |
| 1839 | |
| 1840 | static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, |
| 1841 | unsigned int timeout) |
| 1842 | { |
| 1843 | sfp->sm_mod_state = state; |
| 1844 | sfp_sm_set_timer(sfp, timeout); |
| 1845 | } |
| 1846 | |
| 1847 | static void sfp_sm_phy_detach(struct sfp *sfp) |
| 1848 | { |
| 1849 | sfp_remove_phy(bus: sfp->sfp_bus); |
| 1850 | phy_device_remove(phydev: sfp->mod_phy); |
| 1851 | phy_device_free(phydev: sfp->mod_phy); |
| 1852 | sfp->mod_phy = NULL; |
| 1853 | } |
| 1854 | |
| 1855 | static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) |
| 1856 | { |
| 1857 | struct phy_device *phy; |
| 1858 | int err; |
| 1859 | |
| 1860 | phy = get_phy_device(bus: sfp->i2c_mii, addr, is_c45); |
| 1861 | if (phy == ERR_PTR(error: -ENODEV)) |
| 1862 | return PTR_ERR(ptr: phy); |
| 1863 | if (IS_ERR(ptr: phy)) { |
| 1864 | dev_err(sfp->dev, "mdiobus scan returned %pe\n" , phy); |
| 1865 | return PTR_ERR(ptr: phy); |
| 1866 | } |
| 1867 | |
| 1868 | /* Mark this PHY as being on a SFP module */ |
| 1869 | phy->is_on_sfp_module = true; |
| 1870 | |
| 1871 | err = phy_device_register(phy); |
| 1872 | if (err) { |
| 1873 | phy_device_free(phydev: phy); |
| 1874 | dev_err(sfp->dev, "phy_device_register failed: %pe\n" , |
| 1875 | ERR_PTR(err)); |
| 1876 | return err; |
| 1877 | } |
| 1878 | |
| 1879 | err = sfp_add_phy(bus: sfp->sfp_bus, phydev: phy); |
| 1880 | if (err) { |
| 1881 | phy_device_remove(phydev: phy); |
| 1882 | phy_device_free(phydev: phy); |
| 1883 | dev_err(sfp->dev, "sfp_add_phy failed: %pe\n" , ERR_PTR(err)); |
| 1884 | return err; |
| 1885 | } |
| 1886 | |
| 1887 | sfp->mod_phy = phy; |
| 1888 | |
| 1889 | return 0; |
| 1890 | } |
| 1891 | |
| 1892 | static void sfp_sm_link_up(struct sfp *sfp) |
| 1893 | { |
| 1894 | sfp_link_up(bus: sfp->sfp_bus); |
| 1895 | sfp_sm_next(sfp, state: SFP_S_LINK_UP, timeout: 0); |
| 1896 | } |
| 1897 | |
| 1898 | static void sfp_sm_link_down(struct sfp *sfp) |
| 1899 | { |
| 1900 | sfp_link_down(bus: sfp->sfp_bus); |
| 1901 | } |
| 1902 | |
| 1903 | static void sfp_sm_link_check_los(struct sfp *sfp) |
| 1904 | { |
| 1905 | const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); |
| 1906 | const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); |
| 1907 | __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); |
| 1908 | bool los = false; |
| 1909 | |
| 1910 | /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL |
| 1911 | * are set, we assume that no LOS signal is available. If both are |
| 1912 | * set, we assume LOS is not implemented (and is meaningless.) |
| 1913 | */ |
| 1914 | if (los_options == los_inverted) |
| 1915 | los = !(sfp->state & SFP_F_LOS); |
| 1916 | else if (los_options == los_normal) |
| 1917 | los = !!(sfp->state & SFP_F_LOS); |
| 1918 | |
| 1919 | if (los) |
| 1920 | sfp_sm_next(sfp, state: SFP_S_WAIT_LOS, timeout: 0); |
| 1921 | else |
| 1922 | sfp_sm_link_up(sfp); |
| 1923 | } |
| 1924 | |
| 1925 | static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) |
| 1926 | { |
| 1927 | const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); |
| 1928 | const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); |
| 1929 | __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); |
| 1930 | |
| 1931 | return (los_options == los_inverted && event == SFP_E_LOS_LOW) || |
| 1932 | (los_options == los_normal && event == SFP_E_LOS_HIGH); |
| 1933 | } |
| 1934 | |
| 1935 | static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) |
| 1936 | { |
| 1937 | const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); |
| 1938 | const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); |
| 1939 | __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); |
| 1940 | |
| 1941 | return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || |
| 1942 | (los_options == los_normal && event == SFP_E_LOS_LOW); |
| 1943 | } |
| 1944 | |
| 1945 | static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) |
| 1946 | { |
| 1947 | if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { |
| 1948 | dev_err(sfp->dev, |
| 1949 | "module persistently indicates fault, disabling\n" ); |
| 1950 | sfp_sm_next(sfp, state: SFP_S_TX_DISABLE, timeout: 0); |
| 1951 | } else { |
| 1952 | if (warn) |
| 1953 | dev_err(sfp->dev, "module transmit fault indicated\n" ); |
| 1954 | |
| 1955 | sfp_sm_next(sfp, state: next_state, T_FAULT_RECOVER); |
| 1956 | } |
| 1957 | } |
| 1958 | |
| 1959 | static int sfp_sm_add_mdio_bus(struct sfp *sfp) |
| 1960 | { |
| 1961 | if (sfp->mdio_protocol != MDIO_I2C_NONE) |
| 1962 | return sfp_i2c_mdiobus_create(sfp); |
| 1963 | |
| 1964 | return 0; |
| 1965 | } |
| 1966 | |
| 1967 | /* Probe a SFP for a PHY device if the module supports copper - the PHY |
| 1968 | * normally sits at I2C bus address 0x56, and may either be a clause 22 |
| 1969 | * or clause 45 PHY. |
| 1970 | * |
| 1971 | * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with |
| 1972 | * negotiation enabled, but some may be in 1000base-X - which is for the |
| 1973 | * PHY driver to determine. |
| 1974 | * |
| 1975 | * Clause 45 copper SFP+ modules (10G) appear to switch their interface |
| 1976 | * mode according to the negotiated line speed. |
| 1977 | */ |
| 1978 | static int sfp_sm_probe_for_phy(struct sfp *sfp) |
| 1979 | { |
| 1980 | int err = 0; |
| 1981 | |
| 1982 | switch (sfp->mdio_protocol) { |
| 1983 | case MDIO_I2C_NONE: |
| 1984 | break; |
| 1985 | |
| 1986 | case MDIO_I2C_MARVELL_C22: |
| 1987 | err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, is_c45: false); |
| 1988 | break; |
| 1989 | |
| 1990 | case MDIO_I2C_C45: |
| 1991 | err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, is_c45: true); |
| 1992 | break; |
| 1993 | |
| 1994 | case MDIO_I2C_ROLLBALL: |
| 1995 | err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, is_c45: true); |
| 1996 | break; |
| 1997 | } |
| 1998 | |
| 1999 | return err; |
| 2000 | } |
| 2001 | |
| 2002 | static int sfp_module_parse_power(struct sfp *sfp) |
| 2003 | { |
| 2004 | u32 power_mW = 1000; |
| 2005 | bool supports_a2; |
| 2006 | |
| 2007 | if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && |
| 2008 | sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) |
| 2009 | power_mW = 1500; |
| 2010 | /* Added in Rev 11.9, but there is no compliance code for this */ |
| 2011 | if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && |
| 2012 | sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) |
| 2013 | power_mW = 2000; |
| 2014 | |
| 2015 | /* Power level 1 modules (max. 1W) are always supported. */ |
| 2016 | if (power_mW <= 1000) { |
| 2017 | sfp->module_power_mW = power_mW; |
| 2018 | return 0; |
| 2019 | } |
| 2020 | |
| 2021 | supports_a2 = sfp->id.ext.sff8472_compliance != |
| 2022 | SFP_SFF8472_COMPLIANCE_NONE || |
| 2023 | sfp->id.ext.diagmon & SFP_DIAGMON_DDM; |
| 2024 | |
| 2025 | if (power_mW > sfp->max_power_mW) { |
| 2026 | /* Module power specification exceeds the allowed maximum. */ |
| 2027 | if (!supports_a2) { |
| 2028 | /* The module appears not to implement bus address |
| 2029 | * 0xa2, so assume that the module powers up in the |
| 2030 | * indicated mode. |
| 2031 | */ |
| 2032 | dev_err(sfp->dev, |
| 2033 | "Host does not support %u.%uW modules\n" , |
| 2034 | power_mW / 1000, (power_mW / 100) % 10); |
| 2035 | return -EINVAL; |
| 2036 | } else { |
| 2037 | dev_warn(sfp->dev, |
| 2038 | "Host does not support %u.%uW modules, module left in power mode 1\n" , |
| 2039 | power_mW / 1000, (power_mW / 100) % 10); |
| 2040 | return 0; |
| 2041 | } |
| 2042 | } |
| 2043 | |
| 2044 | if (!supports_a2) { |
| 2045 | /* The module power level is below the host maximum and the |
| 2046 | * module appears not to implement bus address 0xa2, so assume |
| 2047 | * that the module powers up in the indicated mode. |
| 2048 | */ |
| 2049 | return 0; |
| 2050 | } |
| 2051 | |
| 2052 | /* If the module requires a higher power mode, but also requires |
| 2053 | * an address change sequence, warn the user that the module may |
| 2054 | * not be functional. |
| 2055 | */ |
| 2056 | if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { |
| 2057 | dev_warn(sfp->dev, |
| 2058 | "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n" , |
| 2059 | power_mW / 1000, (power_mW / 100) % 10); |
| 2060 | return 0; |
| 2061 | } |
| 2062 | |
| 2063 | sfp->module_power_mW = power_mW; |
| 2064 | |
| 2065 | return 0; |
| 2066 | } |
| 2067 | |
| 2068 | static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) |
| 2069 | { |
| 2070 | int err; |
| 2071 | |
| 2072 | err = sfp_modify_u8(sfp, a2: true, addr: SFP_EXT_STATUS, |
| 2073 | mask: SFP_EXT_STATUS_PWRLVL_SELECT, |
| 2074 | val: enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); |
| 2075 | if (err != sizeof(u8)) { |
| 2076 | dev_err(sfp->dev, "failed to %sable high power: %pe\n" , |
| 2077 | enable ? "en" : "dis" , ERR_PTR(err)); |
| 2078 | return -EAGAIN; |
| 2079 | } |
| 2080 | |
| 2081 | if (enable) |
| 2082 | dev_info(sfp->dev, "Module switched to %u.%uW power level\n" , |
| 2083 | sfp->module_power_mW / 1000, |
| 2084 | (sfp->module_power_mW / 100) % 10); |
| 2085 | |
| 2086 | return 0; |
| 2087 | } |
| 2088 | |
| 2089 | static void sfp_module_parse_rate_select(struct sfp *sfp) |
| 2090 | { |
| 2091 | u8 rate_id; |
| 2092 | |
| 2093 | sfp->rs_threshold_kbd = 0; |
| 2094 | sfp->rs_state_mask = 0; |
| 2095 | |
| 2096 | if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT))) |
| 2097 | /* No support for RateSelect */ |
| 2098 | return; |
| 2099 | |
| 2100 | /* Default to INF-8074 RateSelect operation. The signalling threshold |
| 2101 | * rate is not well specified, so always select "Full Bandwidth", but |
| 2102 | * SFF-8079 reveals that it is understood that RS0 will be low for |
| 2103 | * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between. |
| 2104 | * This method exists prior to SFF-8472. |
| 2105 | */ |
| 2106 | sfp->rs_state_mask = SFP_F_RS0; |
| 2107 | sfp->rs_threshold_kbd = 1594; |
| 2108 | |
| 2109 | /* Parse the rate identifier, which is complicated due to history: |
| 2110 | * SFF-8472 rev 9.5 marks this field as reserved. |
| 2111 | * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472 |
| 2112 | * compliance is not required. |
| 2113 | * SFF-8472 rev 10.2 defines this field using values 0..4 |
| 2114 | * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079 |
| 2115 | * and even values. |
| 2116 | */ |
| 2117 | rate_id = sfp->id.base.rate_id; |
| 2118 | if (rate_id == 0) |
| 2119 | /* Unspecified */ |
| 2120 | return; |
| 2121 | |
| 2122 | /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0, |
| 2123 | * and allocated value 3 to SFF-8431 independent tx/rx rate select. |
| 2124 | * Convert this to a SFF-8472 rev 11.0 rate identifier. |
| 2125 | */ |
| 2126 | if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && |
| 2127 | sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 && |
| 2128 | rate_id == 3) |
| 2129 | rate_id = SFF_RID_8431; |
| 2130 | |
| 2131 | if (rate_id & SFF_RID_8079) { |
| 2132 | /* SFF-8079 RateSelect / Application Select in conjunction with |
| 2133 | * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield |
| 2134 | * with only bit 0 used, which takes precedence over SFF-8472. |
| 2135 | */ |
| 2136 | if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) { |
| 2137 | /* SFF-8079 Part 1 - rate selection between Fibre |
| 2138 | * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0 |
| 2139 | * is high for 2125, so we have to subtract 1 to |
| 2140 | * include it. |
| 2141 | */ |
| 2142 | sfp->rs_threshold_kbd = 2125 - 1; |
| 2143 | sfp->rs_state_mask = SFP_F_RS0; |
| 2144 | } |
| 2145 | return; |
| 2146 | } |
| 2147 | |
| 2148 | /* SFF-8472 rev 9.5 does not define the rate identifier */ |
| 2149 | if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5) |
| 2150 | return; |
| 2151 | |
| 2152 | /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will |
| 2153 | * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id. |
| 2154 | */ |
| 2155 | switch (rate_id) { |
| 2156 | case SFF_RID_8431_RX_ONLY: |
| 2157 | sfp->rs_threshold_kbd = 4250; |
| 2158 | sfp->rs_state_mask = SFP_F_RS0; |
| 2159 | break; |
| 2160 | |
| 2161 | case SFF_RID_8431_TX_ONLY: |
| 2162 | sfp->rs_threshold_kbd = 4250; |
| 2163 | sfp->rs_state_mask = SFP_F_RS1; |
| 2164 | break; |
| 2165 | |
| 2166 | case SFF_RID_8431: |
| 2167 | sfp->rs_threshold_kbd = 4250; |
| 2168 | sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; |
| 2169 | break; |
| 2170 | |
| 2171 | case SFF_RID_10G8G: |
| 2172 | sfp->rs_threshold_kbd = 9000; |
| 2173 | sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; |
| 2174 | break; |
| 2175 | } |
| 2176 | } |
| 2177 | |
| 2178 | /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL |
| 2179 | * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do |
| 2180 | * not support multibyte reads from the EEPROM. Each multi-byte read |
| 2181 | * operation returns just one byte of EEPROM followed by zeros. There is |
| 2182 | * no way to identify which modules are using Realtek RTL8672 and RTL9601C |
| 2183 | * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor |
| 2184 | * name and vendor id into EEPROM, so there is even no way to detect if |
| 2185 | * module is V-SOL V2801F. Therefore check for those zeros in the read |
| 2186 | * data and then based on check switch to reading EEPROM to one byte |
| 2187 | * at a time. |
| 2188 | */ |
| 2189 | static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) |
| 2190 | { |
| 2191 | size_t i, block_size = sfp->i2c_block_size; |
| 2192 | |
| 2193 | /* Already using byte IO */ |
| 2194 | if (block_size == 1) |
| 2195 | return false; |
| 2196 | |
| 2197 | for (i = 1; i < len; i += block_size) { |
| 2198 | if (memchr_inv(p: buf + i, c: '\0', min(block_size - 1, len - i))) |
| 2199 | return false; |
| 2200 | } |
| 2201 | return true; |
| 2202 | } |
| 2203 | |
| 2204 | static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) |
| 2205 | { |
| 2206 | u8 check; |
| 2207 | int err; |
| 2208 | |
| 2209 | if (id->base.phys_id != SFF8024_ID_SFF_8472 || |
| 2210 | id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || |
| 2211 | id->base.connector != SFF8024_CONNECTOR_LC) { |
| 2212 | dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n" ); |
| 2213 | id->base.phys_id = SFF8024_ID_SFF_8472; |
| 2214 | id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; |
| 2215 | id->base.connector = SFF8024_CONNECTOR_LC; |
| 2216 | err = sfp_write(sfp, a2: false, addr: SFP_PHYS_ID, buf: &id->base, len: 3); |
| 2217 | if (err != 3) { |
| 2218 | dev_err(sfp->dev, |
| 2219 | "Failed to rewrite module EEPROM: %pe\n" , |
| 2220 | ERR_PTR(err)); |
| 2221 | return err; |
| 2222 | } |
| 2223 | |
| 2224 | /* Cotsworks modules have been found to require a delay between write operations. */ |
| 2225 | mdelay(50); |
| 2226 | |
| 2227 | /* Update base structure checksum */ |
| 2228 | check = sfp_check(buf: &id->base, len: sizeof(id->base) - 1); |
| 2229 | err = sfp_write(sfp, a2: false, addr: SFP_CC_BASE, buf: &check, len: 1); |
| 2230 | if (err != 1) { |
| 2231 | dev_err(sfp->dev, |
| 2232 | "Failed to update base structure checksum in fiber module EEPROM: %pe\n" , |
| 2233 | ERR_PTR(err)); |
| 2234 | return err; |
| 2235 | } |
| 2236 | } |
| 2237 | return 0; |
| 2238 | } |
| 2239 | |
| 2240 | static int sfp_module_parse_sff8472(struct sfp *sfp) |
| 2241 | { |
| 2242 | /* If the module requires address swap mode, warn about it */ |
| 2243 | if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) |
| 2244 | dev_warn(sfp->dev, |
| 2245 | "module address swap to access page 0xA2 is not supported.\n" ); |
| 2246 | else |
| 2247 | sfp->have_a2 = true; |
| 2248 | |
| 2249 | return 0; |
| 2250 | } |
| 2251 | |
| 2252 | static int sfp_sm_mod_probe(struct sfp *sfp, bool report) |
| 2253 | { |
| 2254 | /* SFP module inserted - read I2C data */ |
| 2255 | struct sfp_eeprom_id id; |
| 2256 | bool cotsworks_sfbg; |
| 2257 | unsigned int mask; |
| 2258 | bool cotsworks; |
| 2259 | u8 check; |
| 2260 | int ret; |
| 2261 | |
| 2262 | sfp->i2c_block_size = sfp->i2c_max_block_size; |
| 2263 | |
| 2264 | ret = sfp_read(sfp, a2: false, addr: 0, buf: &id.base, len: sizeof(id.base)); |
| 2265 | if (ret < 0) { |
| 2266 | if (report) |
| 2267 | dev_err(sfp->dev, "failed to read EEPROM: %pe\n" , |
| 2268 | ERR_PTR(ret)); |
| 2269 | return -EAGAIN; |
| 2270 | } |
| 2271 | |
| 2272 | if (ret != sizeof(id.base)) { |
| 2273 | dev_err(sfp->dev, "EEPROM short read: %pe\n" , ERR_PTR(ret)); |
| 2274 | return -EAGAIN; |
| 2275 | } |
| 2276 | |
| 2277 | /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from |
| 2278 | * address 0x51 is just one byte at a time. Also SFF-8472 requires |
| 2279 | * that EEPROM supports atomic 16bit read operation for diagnostic |
| 2280 | * fields, so do not switch to one byte reading at a time unless it |
| 2281 | * is really required and we have no other option. |
| 2282 | */ |
| 2283 | if (sfp_id_needs_byte_io(sfp, buf: &id.base, len: sizeof(id.base))) { |
| 2284 | dev_info(sfp->dev, |
| 2285 | "Detected broken RTL8672/RTL9601C emulated EEPROM\n" ); |
| 2286 | dev_info(sfp->dev, |
| 2287 | "Switching to reading EEPROM to one byte at a time\n" ); |
| 2288 | sfp->i2c_block_size = 1; |
| 2289 | |
| 2290 | ret = sfp_read(sfp, a2: false, addr: 0, buf: &id.base, len: sizeof(id.base)); |
| 2291 | if (ret < 0) { |
| 2292 | if (report) |
| 2293 | dev_err(sfp->dev, |
| 2294 | "failed to read EEPROM: %pe\n" , |
| 2295 | ERR_PTR(ret)); |
| 2296 | return -EAGAIN; |
| 2297 | } |
| 2298 | |
| 2299 | if (ret != sizeof(id.base)) { |
| 2300 | dev_err(sfp->dev, "EEPROM short read: %pe\n" , |
| 2301 | ERR_PTR(ret)); |
| 2302 | return -EAGAIN; |
| 2303 | } |
| 2304 | } |
| 2305 | |
| 2306 | /* Cotsworks do not seem to update the checksums when they |
| 2307 | * do the final programming with the final module part number, |
| 2308 | * serial number and date code. |
| 2309 | */ |
| 2310 | cotsworks = !memcmp(p: id.base.vendor_name, q: "COTSWORKS " , size: 16); |
| 2311 | cotsworks_sfbg = !memcmp(p: id.base.vendor_pn, q: "SFBG" , size: 4); |
| 2312 | |
| 2313 | /* Cotsworks SFF module EEPROM do not always have valid phys_id, |
| 2314 | * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if |
| 2315 | * Cotsworks PN matches and bytes are not correct. |
| 2316 | */ |
| 2317 | if (cotsworks && cotsworks_sfbg) { |
| 2318 | ret = sfp_cotsworks_fixup_check(sfp, id: &id); |
| 2319 | if (ret < 0) |
| 2320 | return ret; |
| 2321 | } |
| 2322 | |
| 2323 | /* Validate the checksum over the base structure */ |
| 2324 | check = sfp_check(buf: &id.base, len: sizeof(id.base) - 1); |
| 2325 | if (check != id.base.cc_base) { |
| 2326 | if (cotsworks) { |
| 2327 | dev_warn(sfp->dev, |
| 2328 | "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n" , |
| 2329 | check, id.base.cc_base); |
| 2330 | } else { |
| 2331 | dev_err(sfp->dev, |
| 2332 | "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n" , |
| 2333 | check, id.base.cc_base); |
| 2334 | print_hex_dump(KERN_ERR, prefix_str: "sfp EE: " , prefix_type: DUMP_PREFIX_OFFSET, |
| 2335 | rowsize: 16, groupsize: 1, buf: &id, len: sizeof(id), ascii: true); |
| 2336 | return -EINVAL; |
| 2337 | } |
| 2338 | } |
| 2339 | |
| 2340 | ret = sfp_read(sfp, a2: false, addr: SFP_CC_BASE + 1, buf: &id.ext, len: sizeof(id.ext)); |
| 2341 | if (ret < 0) { |
| 2342 | if (report) |
| 2343 | dev_err(sfp->dev, "failed to read EEPROM: %pe\n" , |
| 2344 | ERR_PTR(ret)); |
| 2345 | return -EAGAIN; |
| 2346 | } |
| 2347 | |
| 2348 | if (ret != sizeof(id.ext)) { |
| 2349 | dev_err(sfp->dev, "EEPROM short read: %pe\n" , ERR_PTR(ret)); |
| 2350 | return -EAGAIN; |
| 2351 | } |
| 2352 | |
| 2353 | check = sfp_check(buf: &id.ext, len: sizeof(id.ext) - 1); |
| 2354 | if (check != id.ext.cc_ext) { |
| 2355 | if (cotsworks) { |
| 2356 | dev_warn(sfp->dev, |
| 2357 | "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n" , |
| 2358 | check, id.ext.cc_ext); |
| 2359 | } else { |
| 2360 | dev_err(sfp->dev, |
| 2361 | "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n" , |
| 2362 | check, id.ext.cc_ext); |
| 2363 | print_hex_dump(KERN_ERR, prefix_str: "sfp EE: " , prefix_type: DUMP_PREFIX_OFFSET, |
| 2364 | rowsize: 16, groupsize: 1, buf: &id, len: sizeof(id), ascii: true); |
| 2365 | memset(&id.ext, 0, sizeof(id.ext)); |
| 2366 | } |
| 2367 | } |
| 2368 | |
| 2369 | sfp->id = id; |
| 2370 | |
| 2371 | dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n" , |
| 2372 | (int)sizeof(id.base.vendor_name), id.base.vendor_name, |
| 2373 | (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, |
| 2374 | (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, |
| 2375 | (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, |
| 2376 | (int)sizeof(id.ext.datecode), id.ext.datecode); |
| 2377 | |
| 2378 | /* Check whether we support this module */ |
| 2379 | if (!sfp->type->module_supported(&id)) { |
| 2380 | dev_err(sfp->dev, |
| 2381 | "module is not supported - phys id 0x%02x 0x%02x\n" , |
| 2382 | sfp->id.base.phys_id, sfp->id.base.phys_ext_id); |
| 2383 | return -EINVAL; |
| 2384 | } |
| 2385 | |
| 2386 | if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) { |
| 2387 | ret = sfp_module_parse_sff8472(sfp); |
| 2388 | if (ret < 0) |
| 2389 | return ret; |
| 2390 | } |
| 2391 | |
| 2392 | /* Parse the module power requirement */ |
| 2393 | ret = sfp_module_parse_power(sfp); |
| 2394 | if (ret < 0) |
| 2395 | return ret; |
| 2396 | |
| 2397 | sfp_module_parse_rate_select(sfp); |
| 2398 | |
| 2399 | mask = SFP_F_PRESENT; |
| 2400 | if (sfp->gpio[GPIO_TX_DISABLE]) |
| 2401 | mask |= SFP_F_TX_DISABLE; |
| 2402 | if (sfp->gpio[GPIO_TX_FAULT]) |
| 2403 | mask |= SFP_F_TX_FAULT; |
| 2404 | if (sfp->gpio[GPIO_LOS]) |
| 2405 | mask |= SFP_F_LOS; |
| 2406 | if (sfp->gpio[GPIO_RS0]) |
| 2407 | mask |= SFP_F_RS0; |
| 2408 | if (sfp->gpio[GPIO_RS1]) |
| 2409 | mask |= SFP_F_RS1; |
| 2410 | |
| 2411 | sfp->module_t_start_up = T_START_UP; |
| 2412 | sfp->module_t_wait = T_WAIT; |
| 2413 | sfp->phy_t_retry = T_PHY_RETRY; |
| 2414 | |
| 2415 | sfp->state_ignore_mask = 0; |
| 2416 | |
| 2417 | if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || |
| 2418 | sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || |
| 2419 | sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || |
| 2420 | sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) |
| 2421 | sfp->mdio_protocol = MDIO_I2C_C45; |
| 2422 | else if (sfp->id.base.e1000_base_t) |
| 2423 | sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; |
| 2424 | else |
| 2425 | sfp->mdio_protocol = MDIO_I2C_NONE; |
| 2426 | |
| 2427 | sfp->quirk = sfp_lookup_quirk(id: &id); |
| 2428 | |
| 2429 | mutex_lock(&sfp->st_mutex); |
| 2430 | /* Initialise state bits to use from hardware */ |
| 2431 | sfp->state_hw_mask = mask; |
| 2432 | |
| 2433 | /* We want to drive the rate select pins that the module is using */ |
| 2434 | sfp->state_hw_drive |= sfp->rs_state_mask; |
| 2435 | |
| 2436 | if (sfp->quirk && sfp->quirk->fixup) |
| 2437 | sfp->quirk->fixup(sfp); |
| 2438 | |
| 2439 | sfp->state_hw_mask &= ~sfp->state_ignore_mask; |
| 2440 | mutex_unlock(lock: &sfp->st_mutex); |
| 2441 | |
| 2442 | return 0; |
| 2443 | } |
| 2444 | |
| 2445 | static void sfp_sm_mod_remove(struct sfp *sfp) |
| 2446 | { |
| 2447 | if (sfp->sm_mod_state > SFP_MOD_WAITDEV) |
| 2448 | sfp_module_remove(bus: sfp->sfp_bus); |
| 2449 | |
| 2450 | sfp_hwmon_remove(sfp); |
| 2451 | |
| 2452 | memset(&sfp->id, 0, sizeof(sfp->id)); |
| 2453 | sfp->module_power_mW = 0; |
| 2454 | sfp->state_hw_drive = SFP_F_TX_DISABLE; |
| 2455 | sfp->have_a2 = false; |
| 2456 | |
| 2457 | dev_info(sfp->dev, "module removed\n" ); |
| 2458 | } |
| 2459 | |
| 2460 | /* This state machine tracks the upstream's state */ |
| 2461 | static void sfp_sm_device(struct sfp *sfp, unsigned int event) |
| 2462 | { |
| 2463 | switch (sfp->sm_dev_state) { |
| 2464 | default: |
| 2465 | if (event == SFP_E_DEV_ATTACH) |
| 2466 | sfp->sm_dev_state = SFP_DEV_DOWN; |
| 2467 | break; |
| 2468 | |
| 2469 | case SFP_DEV_DOWN: |
| 2470 | if (event == SFP_E_DEV_DETACH) |
| 2471 | sfp->sm_dev_state = SFP_DEV_DETACHED; |
| 2472 | else if (event == SFP_E_DEV_UP) |
| 2473 | sfp->sm_dev_state = SFP_DEV_UP; |
| 2474 | break; |
| 2475 | |
| 2476 | case SFP_DEV_UP: |
| 2477 | if (event == SFP_E_DEV_DETACH) |
| 2478 | sfp->sm_dev_state = SFP_DEV_DETACHED; |
| 2479 | else if (event == SFP_E_DEV_DOWN) |
| 2480 | sfp->sm_dev_state = SFP_DEV_DOWN; |
| 2481 | break; |
| 2482 | } |
| 2483 | } |
| 2484 | |
| 2485 | /* This state machine tracks the insert/remove state of the module, probes |
| 2486 | * the on-board EEPROM, and sets up the power level. |
| 2487 | */ |
| 2488 | static void sfp_sm_module(struct sfp *sfp, unsigned int event) |
| 2489 | { |
| 2490 | int err; |
| 2491 | |
| 2492 | /* Handle remove event globally, it resets this state machine */ |
| 2493 | if (event == SFP_E_REMOVE) { |
| 2494 | sfp_sm_mod_remove(sfp); |
| 2495 | sfp_sm_mod_next(sfp, state: SFP_MOD_EMPTY, timeout: 0); |
| 2496 | return; |
| 2497 | } |
| 2498 | |
| 2499 | /* Handle device detach globally */ |
| 2500 | if (sfp->sm_dev_state < SFP_DEV_DOWN && |
| 2501 | sfp->sm_mod_state > SFP_MOD_WAITDEV) { |
| 2502 | if (sfp->module_power_mW > 1000 && |
| 2503 | sfp->sm_mod_state > SFP_MOD_HPOWER) |
| 2504 | sfp_sm_mod_hpower(sfp, enable: false); |
| 2505 | sfp_sm_mod_next(sfp, state: SFP_MOD_WAITDEV, timeout: 0); |
| 2506 | return; |
| 2507 | } |
| 2508 | |
| 2509 | switch (sfp->sm_mod_state) { |
| 2510 | default: |
| 2511 | if (event == SFP_E_INSERT) { |
| 2512 | sfp_sm_mod_next(sfp, state: SFP_MOD_PROBE, T_SERIAL); |
| 2513 | sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; |
| 2514 | sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; |
| 2515 | } |
| 2516 | break; |
| 2517 | |
| 2518 | case SFP_MOD_PROBE: |
| 2519 | /* Wait for T_PROBE_INIT to time out */ |
| 2520 | if (event != SFP_E_TIMEOUT) |
| 2521 | break; |
| 2522 | |
| 2523 | err = sfp_sm_mod_probe(sfp, report: sfp->sm_mod_tries == 1); |
| 2524 | if (err == -EAGAIN) { |
| 2525 | if (sfp->sm_mod_tries_init && |
| 2526 | --sfp->sm_mod_tries_init) { |
| 2527 | sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); |
| 2528 | break; |
| 2529 | } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { |
| 2530 | if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) |
| 2531 | dev_warn(sfp->dev, |
| 2532 | "please wait, module slow to respond\n" ); |
| 2533 | sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); |
| 2534 | break; |
| 2535 | } |
| 2536 | } |
| 2537 | if (err < 0) { |
| 2538 | sfp_sm_mod_next(sfp, state: SFP_MOD_ERROR, timeout: 0); |
| 2539 | break; |
| 2540 | } |
| 2541 | |
| 2542 | /* Force a poll to re-read the hardware signal state after |
| 2543 | * sfp_sm_mod_probe() changed state_hw_mask. |
| 2544 | */ |
| 2545 | mod_delayed_work(wq: system_wq, dwork: &sfp->poll, delay: 1); |
| 2546 | |
| 2547 | err = sfp_hwmon_insert(sfp); |
| 2548 | if (err) |
| 2549 | dev_warn(sfp->dev, "hwmon probe failed: %pe\n" , |
| 2550 | ERR_PTR(err)); |
| 2551 | |
| 2552 | sfp_sm_mod_next(sfp, state: SFP_MOD_WAITDEV, timeout: 0); |
| 2553 | fallthrough; |
| 2554 | case SFP_MOD_WAITDEV: |
| 2555 | /* Ensure that the device is attached before proceeding */ |
| 2556 | if (sfp->sm_dev_state < SFP_DEV_DOWN) |
| 2557 | break; |
| 2558 | |
| 2559 | /* Report the module insertion to the upstream device */ |
| 2560 | err = sfp_module_insert(bus: sfp->sfp_bus, id: &sfp->id, |
| 2561 | quirk: sfp->quirk); |
| 2562 | if (err < 0) { |
| 2563 | sfp_sm_mod_next(sfp, state: SFP_MOD_ERROR, timeout: 0); |
| 2564 | break; |
| 2565 | } |
| 2566 | |
| 2567 | /* If this is a power level 1 module, we are done */ |
| 2568 | if (sfp->module_power_mW <= 1000) |
| 2569 | goto insert; |
| 2570 | |
| 2571 | sfp_sm_mod_next(sfp, state: SFP_MOD_HPOWER, timeout: 0); |
| 2572 | fallthrough; |
| 2573 | case SFP_MOD_HPOWER: |
| 2574 | /* Enable high power mode */ |
| 2575 | err = sfp_sm_mod_hpower(sfp, enable: true); |
| 2576 | if (err < 0) { |
| 2577 | if (err != -EAGAIN) { |
| 2578 | sfp_module_remove(bus: sfp->sfp_bus); |
| 2579 | sfp_sm_mod_next(sfp, state: SFP_MOD_ERROR, timeout: 0); |
| 2580 | } else { |
| 2581 | sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); |
| 2582 | } |
| 2583 | break; |
| 2584 | } |
| 2585 | |
| 2586 | sfp_sm_mod_next(sfp, state: SFP_MOD_WAITPWR, T_HPOWER_LEVEL); |
| 2587 | break; |
| 2588 | |
| 2589 | case SFP_MOD_WAITPWR: |
| 2590 | /* Wait for T_HPOWER_LEVEL to time out */ |
| 2591 | if (event != SFP_E_TIMEOUT) |
| 2592 | break; |
| 2593 | |
| 2594 | insert: |
| 2595 | sfp_sm_mod_next(sfp, state: SFP_MOD_PRESENT, timeout: 0); |
| 2596 | break; |
| 2597 | |
| 2598 | case SFP_MOD_PRESENT: |
| 2599 | case SFP_MOD_ERROR: |
| 2600 | break; |
| 2601 | } |
| 2602 | } |
| 2603 | |
| 2604 | static void sfp_sm_main(struct sfp *sfp, unsigned int event) |
| 2605 | { |
| 2606 | unsigned long timeout; |
| 2607 | int ret; |
| 2608 | |
| 2609 | /* Some events are global */ |
| 2610 | if (sfp->sm_state != SFP_S_DOWN && |
| 2611 | (sfp->sm_mod_state != SFP_MOD_PRESENT || |
| 2612 | sfp->sm_dev_state != SFP_DEV_UP)) { |
| 2613 | if (sfp->sm_state == SFP_S_LINK_UP && |
| 2614 | sfp->sm_dev_state == SFP_DEV_UP) |
| 2615 | sfp_sm_link_down(sfp); |
| 2616 | if (sfp->sm_state > SFP_S_INIT) |
| 2617 | sfp_module_stop(bus: sfp->sfp_bus); |
| 2618 | if (sfp->mod_phy) |
| 2619 | sfp_sm_phy_detach(sfp); |
| 2620 | if (sfp->i2c_mii) |
| 2621 | sfp_i2c_mdiobus_destroy(sfp); |
| 2622 | sfp_module_tx_disable(sfp); |
| 2623 | sfp_soft_stop_poll(sfp); |
| 2624 | sfp_sm_next(sfp, state: SFP_S_DOWN, timeout: 0); |
| 2625 | return; |
| 2626 | } |
| 2627 | |
| 2628 | /* The main state machine */ |
| 2629 | switch (sfp->sm_state) { |
| 2630 | case SFP_S_DOWN: |
| 2631 | if (sfp->sm_mod_state != SFP_MOD_PRESENT || |
| 2632 | sfp->sm_dev_state != SFP_DEV_UP) |
| 2633 | break; |
| 2634 | |
| 2635 | /* Only use the soft state bits if we have access to the A2h |
| 2636 | * memory, which implies that we have some level of SFF-8472 |
| 2637 | * compliance. |
| 2638 | */ |
| 2639 | if (sfp->have_a2) |
| 2640 | sfp_soft_start_poll(sfp); |
| 2641 | |
| 2642 | sfp_module_tx_enable(sfp); |
| 2643 | |
| 2644 | /* Initialise the fault clearance retries */ |
| 2645 | sfp->sm_fault_retries = N_FAULT_INIT; |
| 2646 | |
| 2647 | /* We need to check the TX_FAULT state, which is not defined |
| 2648 | * while TX_DISABLE is asserted. The earliest we want to do |
| 2649 | * anything (such as probe for a PHY) is 50ms (or more on |
| 2650 | * specific modules). |
| 2651 | */ |
| 2652 | sfp_sm_next(sfp, state: SFP_S_WAIT, timeout: sfp->module_t_wait); |
| 2653 | break; |
| 2654 | |
| 2655 | case SFP_S_WAIT: |
| 2656 | if (event != SFP_E_TIMEOUT) |
| 2657 | break; |
| 2658 | |
| 2659 | if (sfp->state & SFP_F_TX_FAULT) { |
| 2660 | /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) |
| 2661 | * from the TX_DISABLE deassertion for the module to |
| 2662 | * initialise, which is indicated by TX_FAULT |
| 2663 | * deasserting. |
| 2664 | */ |
| 2665 | timeout = sfp->module_t_start_up; |
| 2666 | if (timeout > sfp->module_t_wait) |
| 2667 | timeout -= sfp->module_t_wait; |
| 2668 | else |
| 2669 | timeout = 1; |
| 2670 | |
| 2671 | sfp_sm_next(sfp, state: SFP_S_INIT, timeout); |
| 2672 | } else { |
| 2673 | /* TX_FAULT is not asserted, assume the module has |
| 2674 | * finished initialising. |
| 2675 | */ |
| 2676 | goto init_done; |
| 2677 | } |
| 2678 | break; |
| 2679 | |
| 2680 | case SFP_S_INIT: |
| 2681 | if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { |
| 2682 | /* TX_FAULT is still asserted after t_init |
| 2683 | * or t_start_up, so assume there is a fault. |
| 2684 | */ |
| 2685 | sfp_sm_fault(sfp, next_state: SFP_S_INIT_TX_FAULT, |
| 2686 | warn: sfp->sm_fault_retries == N_FAULT_INIT); |
| 2687 | } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { |
| 2688 | init_done: |
| 2689 | /* Create mdiobus and start trying for PHY */ |
| 2690 | ret = sfp_sm_add_mdio_bus(sfp); |
| 2691 | if (ret < 0) { |
| 2692 | sfp_sm_next(sfp, state: SFP_S_FAIL, timeout: 0); |
| 2693 | break; |
| 2694 | } |
| 2695 | sfp->sm_phy_retries = R_PHY_RETRY; |
| 2696 | goto phy_probe; |
| 2697 | } |
| 2698 | break; |
| 2699 | |
| 2700 | case SFP_S_INIT_PHY: |
| 2701 | if (event != SFP_E_TIMEOUT) |
| 2702 | break; |
| 2703 | phy_probe: |
| 2704 | /* TX_FAULT deasserted or we timed out with TX_FAULT |
| 2705 | * clear. Probe for the PHY and check the LOS state. |
| 2706 | */ |
| 2707 | ret = sfp_sm_probe_for_phy(sfp); |
| 2708 | if (ret == -ENODEV) { |
| 2709 | if (--sfp->sm_phy_retries) { |
| 2710 | sfp_sm_next(sfp, state: SFP_S_INIT_PHY, |
| 2711 | timeout: sfp->phy_t_retry); |
| 2712 | dev_dbg(sfp->dev, |
| 2713 | "no PHY detected, %u tries left\n" , |
| 2714 | sfp->sm_phy_retries); |
| 2715 | break; |
| 2716 | } else { |
| 2717 | dev_info(sfp->dev, "no PHY detected\n" ); |
| 2718 | } |
| 2719 | } else if (ret) { |
| 2720 | sfp_sm_next(sfp, state: SFP_S_FAIL, timeout: 0); |
| 2721 | break; |
| 2722 | } |
| 2723 | if (sfp_module_start(bus: sfp->sfp_bus)) { |
| 2724 | sfp_sm_next(sfp, state: SFP_S_FAIL, timeout: 0); |
| 2725 | break; |
| 2726 | } |
| 2727 | sfp_sm_link_check_los(sfp); |
| 2728 | |
| 2729 | /* Reset the fault retry count */ |
| 2730 | sfp->sm_fault_retries = N_FAULT; |
| 2731 | break; |
| 2732 | |
| 2733 | case SFP_S_INIT_TX_FAULT: |
| 2734 | if (event == SFP_E_TIMEOUT) { |
| 2735 | sfp_module_tx_fault_reset(sfp); |
| 2736 | sfp_sm_next(sfp, state: SFP_S_INIT, timeout: sfp->module_t_start_up); |
| 2737 | } |
| 2738 | break; |
| 2739 | |
| 2740 | case SFP_S_WAIT_LOS: |
| 2741 | if (event == SFP_E_TX_FAULT) |
| 2742 | sfp_sm_fault(sfp, next_state: SFP_S_TX_FAULT, warn: true); |
| 2743 | else if (sfp_los_event_inactive(sfp, event)) |
| 2744 | sfp_sm_link_up(sfp); |
| 2745 | break; |
| 2746 | |
| 2747 | case SFP_S_LINK_UP: |
| 2748 | if (event == SFP_E_TX_FAULT) { |
| 2749 | sfp_sm_link_down(sfp); |
| 2750 | sfp_sm_fault(sfp, next_state: SFP_S_TX_FAULT, warn: true); |
| 2751 | } else if (sfp_los_event_active(sfp, event)) { |
| 2752 | sfp_sm_link_down(sfp); |
| 2753 | sfp_sm_next(sfp, state: SFP_S_WAIT_LOS, timeout: 0); |
| 2754 | } |
| 2755 | break; |
| 2756 | |
| 2757 | case SFP_S_TX_FAULT: |
| 2758 | if (event == SFP_E_TIMEOUT) { |
| 2759 | sfp_module_tx_fault_reset(sfp); |
| 2760 | sfp_sm_next(sfp, state: SFP_S_REINIT, timeout: sfp->module_t_start_up); |
| 2761 | } |
| 2762 | break; |
| 2763 | |
| 2764 | case SFP_S_REINIT: |
| 2765 | if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { |
| 2766 | sfp_sm_fault(sfp, next_state: SFP_S_TX_FAULT, warn: false); |
| 2767 | } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { |
| 2768 | dev_info(sfp->dev, "module transmit fault recovered\n" ); |
| 2769 | sfp_sm_link_check_los(sfp); |
| 2770 | } |
| 2771 | break; |
| 2772 | |
| 2773 | case SFP_S_TX_DISABLE: |
| 2774 | break; |
| 2775 | } |
| 2776 | } |
| 2777 | |
| 2778 | static void __sfp_sm_event(struct sfp *sfp, unsigned int event) |
| 2779 | { |
| 2780 | dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n" , |
| 2781 | mod_state_to_str(sfp->sm_mod_state), |
| 2782 | dev_state_to_str(sfp->sm_dev_state), |
| 2783 | sm_state_to_str(sfp->sm_state), |
| 2784 | event_to_str(event)); |
| 2785 | |
| 2786 | sfp_sm_device(sfp, event); |
| 2787 | sfp_sm_module(sfp, event); |
| 2788 | sfp_sm_main(sfp, event); |
| 2789 | |
| 2790 | dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n" , |
| 2791 | mod_state_to_str(sfp->sm_mod_state), |
| 2792 | dev_state_to_str(sfp->sm_dev_state), |
| 2793 | sm_state_to_str(sfp->sm_state)); |
| 2794 | } |
| 2795 | |
| 2796 | static void sfp_sm_event(struct sfp *sfp, unsigned int event) |
| 2797 | { |
| 2798 | mutex_lock(&sfp->sm_mutex); |
| 2799 | __sfp_sm_event(sfp, event); |
| 2800 | mutex_unlock(lock: &sfp->sm_mutex); |
| 2801 | } |
| 2802 | |
| 2803 | static void sfp_attach(struct sfp *sfp) |
| 2804 | { |
| 2805 | sfp_sm_event(sfp, event: SFP_E_DEV_ATTACH); |
| 2806 | } |
| 2807 | |
| 2808 | static void sfp_detach(struct sfp *sfp) |
| 2809 | { |
| 2810 | sfp_sm_event(sfp, event: SFP_E_DEV_DETACH); |
| 2811 | } |
| 2812 | |
| 2813 | static void sfp_start(struct sfp *sfp) |
| 2814 | { |
| 2815 | sfp_sm_event(sfp, event: SFP_E_DEV_UP); |
| 2816 | } |
| 2817 | |
| 2818 | static void sfp_stop(struct sfp *sfp) |
| 2819 | { |
| 2820 | sfp_sm_event(sfp, event: SFP_E_DEV_DOWN); |
| 2821 | } |
| 2822 | |
| 2823 | static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd) |
| 2824 | { |
| 2825 | unsigned int set; |
| 2826 | |
| 2827 | sfp->rate_kbd = rate_kbd; |
| 2828 | |
| 2829 | if (rate_kbd > sfp->rs_threshold_kbd) |
| 2830 | set = sfp->rs_state_mask; |
| 2831 | else |
| 2832 | set = 0; |
| 2833 | |
| 2834 | sfp_mod_state(sfp, mask: SFP_F_RS0 | SFP_F_RS1, set); |
| 2835 | } |
| 2836 | |
| 2837 | static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) |
| 2838 | { |
| 2839 | /* locking... and check module is present */ |
| 2840 | |
| 2841 | if (sfp->id.ext.sff8472_compliance && |
| 2842 | !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { |
| 2843 | modinfo->type = ETH_MODULE_SFF_8472; |
| 2844 | modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; |
| 2845 | } else { |
| 2846 | modinfo->type = ETH_MODULE_SFF_8079; |
| 2847 | modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; |
| 2848 | } |
| 2849 | return 0; |
| 2850 | } |
| 2851 | |
| 2852 | static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, |
| 2853 | u8 *data) |
| 2854 | { |
| 2855 | unsigned int first, last, len; |
| 2856 | int ret; |
| 2857 | |
| 2858 | if (!(sfp->state & SFP_F_PRESENT)) |
| 2859 | return -ENODEV; |
| 2860 | |
| 2861 | if (ee->len == 0) |
| 2862 | return -EINVAL; |
| 2863 | |
| 2864 | first = ee->offset; |
| 2865 | last = ee->offset + ee->len; |
| 2866 | if (first < ETH_MODULE_SFF_8079_LEN) { |
| 2867 | len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); |
| 2868 | len -= first; |
| 2869 | |
| 2870 | ret = sfp_read(sfp, a2: false, addr: first, buf: data, len); |
| 2871 | if (ret < 0) |
| 2872 | return ret; |
| 2873 | |
| 2874 | first += len; |
| 2875 | data += len; |
| 2876 | } |
| 2877 | if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { |
| 2878 | len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); |
| 2879 | len -= first; |
| 2880 | first -= ETH_MODULE_SFF_8079_LEN; |
| 2881 | |
| 2882 | ret = sfp_read(sfp, a2: true, addr: first, buf: data, len); |
| 2883 | if (ret < 0) |
| 2884 | return ret; |
| 2885 | } |
| 2886 | return 0; |
| 2887 | } |
| 2888 | |
| 2889 | static int sfp_module_eeprom_by_page(struct sfp *sfp, |
| 2890 | const struct ethtool_module_eeprom *page, |
| 2891 | struct netlink_ext_ack *extack) |
| 2892 | { |
| 2893 | if (!(sfp->state & SFP_F_PRESENT)) |
| 2894 | return -ENODEV; |
| 2895 | |
| 2896 | if (page->bank) { |
| 2897 | NL_SET_ERR_MSG(extack, "Banks not supported" ); |
| 2898 | return -EOPNOTSUPP; |
| 2899 | } |
| 2900 | |
| 2901 | if (page->page) { |
| 2902 | NL_SET_ERR_MSG(extack, "Only page 0 supported" ); |
| 2903 | return -EOPNOTSUPP; |
| 2904 | } |
| 2905 | |
| 2906 | if (page->i2c_address != 0x50 && |
| 2907 | page->i2c_address != 0x51) { |
| 2908 | NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported" ); |
| 2909 | return -EOPNOTSUPP; |
| 2910 | } |
| 2911 | |
| 2912 | return sfp_read(sfp, a2: page->i2c_address == 0x51, addr: page->offset, |
| 2913 | buf: page->data, len: page->length); |
| 2914 | }; |
| 2915 | |
| 2916 | static const struct sfp_socket_ops sfp_module_ops = { |
| 2917 | .attach = sfp_attach, |
| 2918 | .detach = sfp_detach, |
| 2919 | .start = sfp_start, |
| 2920 | .stop = sfp_stop, |
| 2921 | .set_signal_rate = sfp_set_signal_rate, |
| 2922 | .module_info = sfp_module_info, |
| 2923 | .module_eeprom = sfp_module_eeprom, |
| 2924 | .module_eeprom_by_page = sfp_module_eeprom_by_page, |
| 2925 | }; |
| 2926 | |
| 2927 | static void sfp_timeout(struct work_struct *work) |
| 2928 | { |
| 2929 | struct sfp *sfp = container_of(work, struct sfp, timeout.work); |
| 2930 | |
| 2931 | rtnl_lock(); |
| 2932 | sfp_sm_event(sfp, event: SFP_E_TIMEOUT); |
| 2933 | rtnl_unlock(); |
| 2934 | } |
| 2935 | |
| 2936 | static void sfp_check_state(struct sfp *sfp) |
| 2937 | { |
| 2938 | unsigned int state, i, changed; |
| 2939 | |
| 2940 | rtnl_lock(); |
| 2941 | mutex_lock(&sfp->st_mutex); |
| 2942 | state = sfp_get_state(sfp); |
| 2943 | changed = state ^ sfp->state; |
| 2944 | changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; |
| 2945 | |
| 2946 | for (i = 0; i < GPIO_MAX; i++) |
| 2947 | if (changed & BIT(i)) |
| 2948 | dev_dbg(sfp->dev, "%s %u -> %u\n" , gpio_names[i], |
| 2949 | !!(sfp->state & BIT(i)), !!(state & BIT(i))); |
| 2950 | |
| 2951 | state |= sfp->state & SFP_F_OUTPUTS; |
| 2952 | sfp->state = state; |
| 2953 | mutex_unlock(lock: &sfp->st_mutex); |
| 2954 | |
| 2955 | mutex_lock(&sfp->sm_mutex); |
| 2956 | if (changed & SFP_F_PRESENT) |
| 2957 | __sfp_sm_event(sfp, event: state & SFP_F_PRESENT ? |
| 2958 | SFP_E_INSERT : SFP_E_REMOVE); |
| 2959 | |
| 2960 | if (changed & SFP_F_TX_FAULT) |
| 2961 | __sfp_sm_event(sfp, event: state & SFP_F_TX_FAULT ? |
| 2962 | SFP_E_TX_FAULT : SFP_E_TX_CLEAR); |
| 2963 | |
| 2964 | if (changed & SFP_F_LOS) |
| 2965 | __sfp_sm_event(sfp, event: state & SFP_F_LOS ? |
| 2966 | SFP_E_LOS_HIGH : SFP_E_LOS_LOW); |
| 2967 | mutex_unlock(lock: &sfp->sm_mutex); |
| 2968 | rtnl_unlock(); |
| 2969 | } |
| 2970 | |
| 2971 | static irqreturn_t sfp_irq(int irq, void *data) |
| 2972 | { |
| 2973 | struct sfp *sfp = data; |
| 2974 | |
| 2975 | sfp_check_state(sfp); |
| 2976 | |
| 2977 | return IRQ_HANDLED; |
| 2978 | } |
| 2979 | |
| 2980 | static void sfp_poll(struct work_struct *work) |
| 2981 | { |
| 2982 | struct sfp *sfp = container_of(work, struct sfp, poll.work); |
| 2983 | |
| 2984 | sfp_check_state(sfp); |
| 2985 | |
| 2986 | // st_mutex doesn't need to be held here for state_soft_mask, |
| 2987 | // it's unimportant if we race while reading this. |
| 2988 | if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || |
| 2989 | sfp->need_poll) |
| 2990 | mod_delayed_work(wq: system_wq, dwork: &sfp->poll, delay: poll_jiffies); |
| 2991 | } |
| 2992 | |
| 2993 | static struct sfp *sfp_alloc(struct device *dev) |
| 2994 | { |
| 2995 | struct sfp *sfp; |
| 2996 | |
| 2997 | sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); |
| 2998 | if (!sfp) |
| 2999 | return ERR_PTR(error: -ENOMEM); |
| 3000 | |
| 3001 | sfp->dev = dev; |
| 3002 | |
| 3003 | mutex_init(&sfp->sm_mutex); |
| 3004 | mutex_init(&sfp->st_mutex); |
| 3005 | INIT_DELAYED_WORK(&sfp->poll, sfp_poll); |
| 3006 | INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); |
| 3007 | |
| 3008 | sfp_hwmon_init(sfp); |
| 3009 | |
| 3010 | return sfp; |
| 3011 | } |
| 3012 | |
| 3013 | static void sfp_cleanup(void *data) |
| 3014 | { |
| 3015 | struct sfp *sfp = data; |
| 3016 | |
| 3017 | sfp_hwmon_exit(sfp); |
| 3018 | |
| 3019 | cancel_delayed_work_sync(dwork: &sfp->poll); |
| 3020 | cancel_delayed_work_sync(dwork: &sfp->timeout); |
| 3021 | if (sfp->i2c_mii) { |
| 3022 | mdiobus_unregister(bus: sfp->i2c_mii); |
| 3023 | mdiobus_free(bus: sfp->i2c_mii); |
| 3024 | } |
| 3025 | if (sfp->i2c) |
| 3026 | i2c_put_adapter(adap: sfp->i2c); |
| 3027 | kfree(objp: sfp); |
| 3028 | } |
| 3029 | |
| 3030 | static int sfp_i2c_get(struct sfp *sfp) |
| 3031 | { |
| 3032 | struct fwnode_handle *h; |
| 3033 | struct i2c_adapter *i2c; |
| 3034 | int err; |
| 3035 | |
| 3036 | h = fwnode_find_reference(dev_fwnode(sfp->dev), name: "i2c-bus" , index: 0); |
| 3037 | if (IS_ERR(ptr: h)) { |
| 3038 | dev_err(sfp->dev, "missing 'i2c-bus' property\n" ); |
| 3039 | return -ENODEV; |
| 3040 | } |
| 3041 | |
| 3042 | i2c = i2c_get_adapter_by_fwnode(fwnode: h); |
| 3043 | if (!i2c) { |
| 3044 | err = -EPROBE_DEFER; |
| 3045 | goto put; |
| 3046 | } |
| 3047 | |
| 3048 | err = sfp_i2c_configure(sfp, i2c); |
| 3049 | if (err) |
| 3050 | i2c_put_adapter(adap: i2c); |
| 3051 | put: |
| 3052 | fwnode_handle_put(fwnode: h); |
| 3053 | return err; |
| 3054 | } |
| 3055 | |
| 3056 | static int sfp_probe(struct platform_device *pdev) |
| 3057 | { |
| 3058 | const struct sff_data *sff; |
| 3059 | char *sfp_irq_name; |
| 3060 | struct sfp *sfp; |
| 3061 | int err, i; |
| 3062 | |
| 3063 | sfp = sfp_alloc(dev: &pdev->dev); |
| 3064 | if (IS_ERR(ptr: sfp)) |
| 3065 | return PTR_ERR(ptr: sfp); |
| 3066 | |
| 3067 | platform_set_drvdata(pdev, data: sfp); |
| 3068 | |
| 3069 | err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); |
| 3070 | if (err < 0) |
| 3071 | return err; |
| 3072 | |
| 3073 | sff = device_get_match_data(dev: sfp->dev); |
| 3074 | if (!sff) |
| 3075 | sff = &sfp_data; |
| 3076 | |
| 3077 | sfp->type = sff; |
| 3078 | |
| 3079 | err = sfp_i2c_get(sfp); |
| 3080 | if (err) |
| 3081 | return err; |
| 3082 | |
| 3083 | for (i = 0; i < GPIO_MAX; i++) |
| 3084 | if (sff->gpios & BIT(i)) { |
| 3085 | sfp->gpio[i] = devm_gpiod_get_optional(dev: sfp->dev, |
| 3086 | con_id: gpio_names[i], flags: gpio_flags[i]); |
| 3087 | if (IS_ERR(ptr: sfp->gpio[i])) |
| 3088 | return PTR_ERR(ptr: sfp->gpio[i]); |
| 3089 | } |
| 3090 | |
| 3091 | sfp->state_hw_mask = SFP_F_PRESENT; |
| 3092 | sfp->state_hw_drive = SFP_F_TX_DISABLE; |
| 3093 | |
| 3094 | sfp->get_state = sfp_gpio_get_state; |
| 3095 | sfp->set_state = sfp_gpio_set_state; |
| 3096 | |
| 3097 | /* Modules that have no detect signal are always present */ |
| 3098 | if (!(sfp->gpio[GPIO_MODDEF0])) |
| 3099 | sfp->get_state = sff_gpio_get_state; |
| 3100 | |
| 3101 | device_property_read_u32(dev: &pdev->dev, propname: "maximum-power-milliwatt" , |
| 3102 | val: &sfp->max_power_mW); |
| 3103 | if (sfp->max_power_mW < 1000) { |
| 3104 | if (sfp->max_power_mW) |
| 3105 | dev_warn(sfp->dev, |
| 3106 | "Firmware bug: host maximum power should be at least 1W\n" ); |
| 3107 | sfp->max_power_mW = 1000; |
| 3108 | } |
| 3109 | |
| 3110 | dev_info(sfp->dev, "Host maximum power %u.%uW\n" , |
| 3111 | sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); |
| 3112 | |
| 3113 | /* Get the initial state, and always signal TX disable, |
| 3114 | * since the network interface will not be up. |
| 3115 | */ |
| 3116 | sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; |
| 3117 | |
| 3118 | if (sfp->gpio[GPIO_RS0] && |
| 3119 | gpiod_get_value_cansleep(desc: sfp->gpio[GPIO_RS0])) |
| 3120 | sfp->state |= SFP_F_RS0; |
| 3121 | sfp_set_state(sfp, state: sfp->state); |
| 3122 | sfp_module_tx_disable(sfp); |
| 3123 | if (sfp->state & SFP_F_PRESENT) { |
| 3124 | rtnl_lock(); |
| 3125 | sfp_sm_event(sfp, event: SFP_E_INSERT); |
| 3126 | rtnl_unlock(); |
| 3127 | } |
| 3128 | |
| 3129 | for (i = 0; i < GPIO_MAX; i++) { |
| 3130 | if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) |
| 3131 | continue; |
| 3132 | |
| 3133 | sfp->gpio_irq[i] = gpiod_to_irq(desc: sfp->gpio[i]); |
| 3134 | if (sfp->gpio_irq[i] < 0) { |
| 3135 | sfp->gpio_irq[i] = 0; |
| 3136 | sfp->need_poll = true; |
| 3137 | continue; |
| 3138 | } |
| 3139 | |
| 3140 | sfp_irq_name = devm_kasprintf(dev: sfp->dev, GFP_KERNEL, |
| 3141 | fmt: "%s-%s" , dev_name(dev: sfp->dev), |
| 3142 | gpio_names[i]); |
| 3143 | |
| 3144 | if (!sfp_irq_name) |
| 3145 | return -ENOMEM; |
| 3146 | |
| 3147 | err = devm_request_threaded_irq(dev: sfp->dev, irq: sfp->gpio_irq[i], |
| 3148 | NULL, thread_fn: sfp_irq, |
| 3149 | IRQF_ONESHOT | |
| 3150 | IRQF_TRIGGER_RISING | |
| 3151 | IRQF_TRIGGER_FALLING, |
| 3152 | devname: sfp_irq_name, dev_id: sfp); |
| 3153 | if (err) { |
| 3154 | sfp->gpio_irq[i] = 0; |
| 3155 | sfp->need_poll = true; |
| 3156 | } |
| 3157 | } |
| 3158 | |
| 3159 | if (sfp->need_poll) |
| 3160 | mod_delayed_work(wq: system_wq, dwork: &sfp->poll, delay: poll_jiffies); |
| 3161 | |
| 3162 | /* We could have an issue in cases no Tx disable pin is available or |
| 3163 | * wired as modules using a laser as their light source will continue to |
| 3164 | * be active when the fiber is removed. This could be a safety issue and |
| 3165 | * we should at least warn the user about that. |
| 3166 | */ |
| 3167 | if (!sfp->gpio[GPIO_TX_DISABLE]) |
| 3168 | dev_warn(sfp->dev, |
| 3169 | "No tx_disable pin: SFP modules will always be emitting.\n" ); |
| 3170 | |
| 3171 | sfp->sfp_bus = sfp_register_socket(dev: sfp->dev, sfp, ops: &sfp_module_ops); |
| 3172 | if (!sfp->sfp_bus) |
| 3173 | return -ENOMEM; |
| 3174 | |
| 3175 | if (sfp->i2c_max_block_size < 2) |
| 3176 | dev_warn(sfp->dev, |
| 3177 | "Please note:\n" |
| 3178 | "This SFP cage is accessed via an SMBus only capable of single byte\n" |
| 3179 | "transactions. Some features are disabled, other may be unreliable or\n" |
| 3180 | "sporadically fail. Use with caution. There is nothing that the kernel\n" |
| 3181 | "or community can do to fix it, the kernel will try best efforts. Please\n" |
| 3182 | "verify any problems on hardware that supports multi-byte I2C transactions.\n" ); |
| 3183 | |
| 3184 | sfp_debugfs_init(sfp); |
| 3185 | |
| 3186 | return 0; |
| 3187 | } |
| 3188 | |
| 3189 | static void sfp_remove(struct platform_device *pdev) |
| 3190 | { |
| 3191 | struct sfp *sfp = platform_get_drvdata(pdev); |
| 3192 | |
| 3193 | sfp_debugfs_exit(sfp); |
| 3194 | sfp_unregister_socket(bus: sfp->sfp_bus); |
| 3195 | |
| 3196 | rtnl_lock(); |
| 3197 | sfp_sm_event(sfp, event: SFP_E_REMOVE); |
| 3198 | rtnl_unlock(); |
| 3199 | } |
| 3200 | |
| 3201 | static void sfp_shutdown(struct platform_device *pdev) |
| 3202 | { |
| 3203 | struct sfp *sfp = platform_get_drvdata(pdev); |
| 3204 | int i; |
| 3205 | |
| 3206 | for (i = 0; i < GPIO_MAX; i++) { |
| 3207 | if (!sfp->gpio_irq[i]) |
| 3208 | continue; |
| 3209 | |
| 3210 | devm_free_irq(dev: sfp->dev, irq: sfp->gpio_irq[i], dev_id: sfp); |
| 3211 | } |
| 3212 | |
| 3213 | cancel_delayed_work_sync(dwork: &sfp->poll); |
| 3214 | cancel_delayed_work_sync(dwork: &sfp->timeout); |
| 3215 | } |
| 3216 | |
| 3217 | static struct platform_driver sfp_driver = { |
| 3218 | .probe = sfp_probe, |
| 3219 | .remove = sfp_remove, |
| 3220 | .shutdown = sfp_shutdown, |
| 3221 | .driver = { |
| 3222 | .name = "sfp" , |
| 3223 | .of_match_table = sfp_of_match, |
| 3224 | }, |
| 3225 | }; |
| 3226 | |
| 3227 | static int sfp_init(void) |
| 3228 | { |
| 3229 | poll_jiffies = msecs_to_jiffies(m: 100); |
| 3230 | |
| 3231 | return platform_driver_register(&sfp_driver); |
| 3232 | } |
| 3233 | module_init(sfp_init); |
| 3234 | |
| 3235 | static void sfp_exit(void) |
| 3236 | { |
| 3237 | platform_driver_unregister(&sfp_driver); |
| 3238 | } |
| 3239 | module_exit(sfp_exit); |
| 3240 | |
| 3241 | MODULE_ALIAS("platform:sfp" ); |
| 3242 | MODULE_AUTHOR("Russell King" ); |
| 3243 | MODULE_LICENSE("GPL v2" ); |
| 3244 | MODULE_DESCRIPTION("SFP cage support" ); |
| 3245 | |