1// SPDX-License-Identifier: GPL-2.0
2// Copyright (C) 2019 Spreadtrum Communications Inc.
3
4#include <linux/clk.h>
5#include <linux/delay.h>
6#include <linux/hwspinlock.h>
7#include <linux/io.h>
8#include <linux/module.h>
9#include <linux/nvmem-provider.h>
10#include <linux/of.h>
11#include <linux/platform_device.h>
12
13#define SPRD_EFUSE_ENABLE 0x20
14#define SPRD_EFUSE_ERR_FLAG 0x24
15#define SPRD_EFUSE_ERR_CLR 0x28
16#define SPRD_EFUSE_MAGIC_NUM 0x2c
17#define SPRD_EFUSE_FW_CFG 0x50
18#define SPRD_EFUSE_PW_SWT 0x54
19#define SPRD_EFUSE_MEM(val) (0x1000 + ((val) << 2))
20
21#define SPRD_EFUSE_VDD_EN BIT(0)
22#define SPRD_EFUSE_AUTO_CHECK_EN BIT(1)
23#define SPRD_EFUSE_DOUBLE_EN BIT(2)
24#define SPRD_EFUSE_MARGIN_RD_EN BIT(3)
25#define SPRD_EFUSE_LOCK_WR_EN BIT(4)
26
27#define SPRD_EFUSE_ERR_CLR_MASK GENMASK(13, 0)
28
29#define SPRD_EFUSE_ENK1_ON BIT(0)
30#define SPRD_EFUSE_ENK2_ON BIT(1)
31#define SPRD_EFUSE_PROG_EN BIT(2)
32
33#define SPRD_EFUSE_MAGIC_NUMBER 0x8810
34
35/* Block width (bytes) definitions */
36#define SPRD_EFUSE_BLOCK_WIDTH 4
37
38/*
39 * The Spreadtrum AP efuse contains 2 parts: normal efuse and secure efuse,
40 * and we can only access the normal efuse in kernel. So define the normal
41 * block offset index and normal block numbers.
42 */
43#define SPRD_EFUSE_NORMAL_BLOCK_NUMS 24
44#define SPRD_EFUSE_NORMAL_BLOCK_OFFSET 72
45
46/* Timeout (ms) for the trylock of hardware spinlocks */
47#define SPRD_EFUSE_HWLOCK_TIMEOUT 5000
48
49/*
50 * Since different Spreadtrum SoC chip can have different normal block numbers
51 * and offset. And some SoC can support block double feature, which means
52 * when reading or writing data to efuse memory, the controller can save double
53 * data in case one data become incorrect after a long period.
54 *
55 * Thus we should save them in the device data structure.
56 */
57struct sprd_efuse_variant_data {
58 u32 blk_nums;
59 u32 blk_offset;
60 bool blk_double;
61};
62
63struct sprd_efuse {
64 struct device *dev;
65 struct clk *clk;
66 struct hwspinlock *hwlock;
67 struct mutex mutex;
68 void __iomem *base;
69 const struct sprd_efuse_variant_data *data;
70};
71
72static const struct sprd_efuse_variant_data ums312_data = {
73 .blk_nums = SPRD_EFUSE_NORMAL_BLOCK_NUMS,
74 .blk_offset = SPRD_EFUSE_NORMAL_BLOCK_OFFSET,
75 .blk_double = false,
76};
77
78/*
79 * On Spreadtrum platform, we have multi-subsystems will access the unique
80 * efuse controller, so we need one hardware spinlock to synchronize between
81 * the multiple subsystems.
82 */
83static int sprd_efuse_lock(struct sprd_efuse *efuse)
84{
85 int ret;
86
87 mutex_lock(&efuse->mutex);
88
89 ret = hwspin_lock_timeout_raw(hwlock: efuse->hwlock,
90 SPRD_EFUSE_HWLOCK_TIMEOUT);
91 if (ret) {
92 dev_err(efuse->dev, "timeout get the hwspinlock\n");
93 mutex_unlock(lock: &efuse->mutex);
94 return ret;
95 }
96
97 return 0;
98}
99
100static void sprd_efuse_unlock(struct sprd_efuse *efuse)
101{
102 hwspin_unlock_raw(hwlock: efuse->hwlock);
103 mutex_unlock(lock: &efuse->mutex);
104}
105
106static void sprd_efuse_set_prog_power(struct sprd_efuse *efuse, bool en)
107{
108 u32 val = readl(addr: efuse->base + SPRD_EFUSE_PW_SWT);
109
110 if (en)
111 val &= ~SPRD_EFUSE_ENK2_ON;
112 else
113 val &= ~SPRD_EFUSE_ENK1_ON;
114
115 writel(val, addr: efuse->base + SPRD_EFUSE_PW_SWT);
116
117 /* Open or close efuse power need wait 1000us to make power stable. */
118 usleep_range(min: 1000, max: 1200);
119
120 if (en)
121 val |= SPRD_EFUSE_ENK1_ON;
122 else
123 val |= SPRD_EFUSE_ENK2_ON;
124
125 writel(val, addr: efuse->base + SPRD_EFUSE_PW_SWT);
126
127 /* Open or close efuse power need wait 1000us to make power stable. */
128 usleep_range(min: 1000, max: 1200);
129}
130
131static void sprd_efuse_set_read_power(struct sprd_efuse *efuse, bool en)
132{
133 u32 val = readl(addr: efuse->base + SPRD_EFUSE_ENABLE);
134
135 if (en)
136 val |= SPRD_EFUSE_VDD_EN;
137 else
138 val &= ~SPRD_EFUSE_VDD_EN;
139
140 writel(val, addr: efuse->base + SPRD_EFUSE_ENABLE);
141
142 /* Open or close efuse power need wait 1000us to make power stable. */
143 usleep_range(min: 1000, max: 1200);
144}
145
146static void sprd_efuse_set_prog_lock(struct sprd_efuse *efuse, bool en)
147{
148 u32 val = readl(addr: efuse->base + SPRD_EFUSE_ENABLE);
149
150 if (en)
151 val |= SPRD_EFUSE_LOCK_WR_EN;
152 else
153 val &= ~SPRD_EFUSE_LOCK_WR_EN;
154
155 writel(val, addr: efuse->base + SPRD_EFUSE_ENABLE);
156}
157
158static void sprd_efuse_set_auto_check(struct sprd_efuse *efuse, bool en)
159{
160 u32 val = readl(addr: efuse->base + SPRD_EFUSE_ENABLE);
161
162 if (en)
163 val |= SPRD_EFUSE_AUTO_CHECK_EN;
164 else
165 val &= ~SPRD_EFUSE_AUTO_CHECK_EN;
166
167 writel(val, addr: efuse->base + SPRD_EFUSE_ENABLE);
168}
169
170static void sprd_efuse_set_data_double(struct sprd_efuse *efuse, bool en)
171{
172 u32 val = readl(addr: efuse->base + SPRD_EFUSE_ENABLE);
173
174 if (en)
175 val |= SPRD_EFUSE_DOUBLE_EN;
176 else
177 val &= ~SPRD_EFUSE_DOUBLE_EN;
178
179 writel(val, addr: efuse->base + SPRD_EFUSE_ENABLE);
180}
181
182static void sprd_efuse_set_prog_en(struct sprd_efuse *efuse, bool en)
183{
184 u32 val = readl(addr: efuse->base + SPRD_EFUSE_PW_SWT);
185
186 if (en)
187 val |= SPRD_EFUSE_PROG_EN;
188 else
189 val &= ~SPRD_EFUSE_PROG_EN;
190
191 writel(val, addr: efuse->base + SPRD_EFUSE_PW_SWT);
192}
193
194static int sprd_efuse_raw_prog(struct sprd_efuse *efuse, u32 blk, bool doub,
195 bool lock, u32 *data)
196{
197 u32 status;
198 int ret = 0;
199
200 /*
201 * We need set the correct magic number before writing the efuse to
202 * allow programming, and block other programming until we clear the
203 * magic number.
204 */
205 writel(SPRD_EFUSE_MAGIC_NUMBER,
206 addr: efuse->base + SPRD_EFUSE_MAGIC_NUM);
207
208 /*
209 * Power on the efuse, enable programme and enable double data
210 * if asked.
211 */
212 sprd_efuse_set_prog_power(efuse, en: true);
213 sprd_efuse_set_prog_en(efuse, en: true);
214 sprd_efuse_set_data_double(efuse, en: doub);
215
216 /*
217 * Enable the auto-check function to validate if the programming is
218 * successful.
219 */
220 if (lock)
221 sprd_efuse_set_auto_check(efuse, en: true);
222
223 writel(val: *data, addr: efuse->base + SPRD_EFUSE_MEM(blk));
224
225 /* Disable auto-check and data double after programming */
226 if (lock)
227 sprd_efuse_set_auto_check(efuse, en: false);
228 sprd_efuse_set_data_double(efuse, en: false);
229
230 /*
231 * Check the efuse error status, if the programming is successful,
232 * we should lock this efuse block to avoid programming again.
233 */
234 status = readl(addr: efuse->base + SPRD_EFUSE_ERR_FLAG);
235 if (status) {
236 dev_err(efuse->dev,
237 "write error status %u of block %d\n", status, blk);
238
239 writel(SPRD_EFUSE_ERR_CLR_MASK,
240 addr: efuse->base + SPRD_EFUSE_ERR_CLR);
241 ret = -EBUSY;
242 } else if (lock) {
243 sprd_efuse_set_prog_lock(efuse, en: lock);
244 writel(val: 0, addr: efuse->base + SPRD_EFUSE_MEM(blk));
245 sprd_efuse_set_prog_lock(efuse, en: false);
246 }
247
248 sprd_efuse_set_prog_power(efuse, en: false);
249 writel(val: 0, addr: efuse->base + SPRD_EFUSE_MAGIC_NUM);
250
251 return ret;
252}
253
254static int sprd_efuse_raw_read(struct sprd_efuse *efuse, int blk, u32 *val,
255 bool doub)
256{
257 u32 status;
258
259 /*
260 * Need power on the efuse before reading data from efuse, and will
261 * power off the efuse after reading process.
262 */
263 sprd_efuse_set_read_power(efuse, en: true);
264
265 /* Enable double data if asked */
266 sprd_efuse_set_data_double(efuse, en: doub);
267
268 /* Start to read data from efuse block */
269 *val = readl(addr: efuse->base + SPRD_EFUSE_MEM(blk));
270
271 /* Disable double data */
272 sprd_efuse_set_data_double(efuse, en: false);
273
274 /* Power off the efuse */
275 sprd_efuse_set_read_power(efuse, en: false);
276
277 /*
278 * Check the efuse error status and clear them if there are some
279 * errors occurred.
280 */
281 status = readl(addr: efuse->base + SPRD_EFUSE_ERR_FLAG);
282 if (status) {
283 dev_err(efuse->dev,
284 "read error status %d of block %d\n", status, blk);
285
286 writel(SPRD_EFUSE_ERR_CLR_MASK,
287 addr: efuse->base + SPRD_EFUSE_ERR_CLR);
288 return -EBUSY;
289 }
290
291 return 0;
292}
293
294static int sprd_efuse_read(void *context, u32 offset, void *val, size_t bytes)
295{
296 struct sprd_efuse *efuse = context;
297 bool blk_double = efuse->data->blk_double;
298 u32 index = offset / SPRD_EFUSE_BLOCK_WIDTH + efuse->data->blk_offset;
299 u32 blk_offset = (offset % SPRD_EFUSE_BLOCK_WIDTH) * BITS_PER_BYTE;
300 u32 data;
301 int ret;
302
303 ret = sprd_efuse_lock(efuse);
304 if (ret)
305 return ret;
306
307 ret = clk_prepare_enable(clk: efuse->clk);
308 if (ret)
309 goto unlock;
310
311 ret = sprd_efuse_raw_read(efuse, blk: index, val: &data, doub: blk_double);
312 if (!ret) {
313 data >>= blk_offset;
314 memcpy(val, &data, bytes);
315 }
316
317 clk_disable_unprepare(clk: efuse->clk);
318
319unlock:
320 sprd_efuse_unlock(efuse);
321 return ret;
322}
323
324static int sprd_efuse_write(void *context, u32 offset, void *val, size_t bytes)
325{
326 struct sprd_efuse *efuse = context;
327 bool blk_double = efuse->data->blk_double;
328 bool lock;
329 int ret;
330
331 ret = sprd_efuse_lock(efuse);
332 if (ret)
333 return ret;
334
335 ret = clk_prepare_enable(clk: efuse->clk);
336 if (ret)
337 goto unlock;
338
339 /*
340 * If the writing bytes are equal with the block width, which means the
341 * whole block will be programmed. For this case, we should not allow
342 * this block to be programmed again by locking this block.
343 *
344 * If the block was programmed partially, we should allow this block to
345 * be programmed again.
346 */
347 if (bytes < SPRD_EFUSE_BLOCK_WIDTH)
348 lock = false;
349 else
350 lock = true;
351
352 ret = sprd_efuse_raw_prog(efuse, blk: offset, doub: blk_double, lock, data: val);
353
354 clk_disable_unprepare(clk: efuse->clk);
355
356unlock:
357 sprd_efuse_unlock(efuse);
358 return ret;
359}
360
361static int sprd_efuse_probe(struct platform_device *pdev)
362{
363 struct device_node *np = pdev->dev.of_node;
364 struct nvmem_device *nvmem;
365 struct nvmem_config econfig = { };
366 struct sprd_efuse *efuse;
367 const struct sprd_efuse_variant_data *pdata;
368 int ret;
369
370 pdata = of_device_get_match_data(dev: &pdev->dev);
371 if (!pdata) {
372 dev_err(&pdev->dev, "No matching driver data found\n");
373 return -EINVAL;
374 }
375
376 efuse = devm_kzalloc(dev: &pdev->dev, size: sizeof(*efuse), GFP_KERNEL);
377 if (!efuse)
378 return -ENOMEM;
379
380 efuse->base = devm_platform_ioremap_resource(pdev, index: 0);
381 if (IS_ERR(ptr: efuse->base))
382 return PTR_ERR(ptr: efuse->base);
383
384 ret = of_hwspin_lock_get_id(np, index: 0);
385 if (ret < 0) {
386 dev_err(&pdev->dev, "failed to get hwlock id\n");
387 return ret;
388 }
389
390 efuse->hwlock = devm_hwspin_lock_request_specific(dev: &pdev->dev, id: ret);
391 if (!efuse->hwlock) {
392 dev_err(&pdev->dev, "failed to request hwlock\n");
393 return -ENXIO;
394 }
395
396 efuse->clk = devm_clk_get(dev: &pdev->dev, id: "enable");
397 if (IS_ERR(ptr: efuse->clk)) {
398 dev_err(&pdev->dev, "failed to get enable clock\n");
399 return PTR_ERR(ptr: efuse->clk);
400 }
401
402 mutex_init(&efuse->mutex);
403 efuse->dev = &pdev->dev;
404 efuse->data = pdata;
405
406 econfig.stride = 1;
407 econfig.word_size = 1;
408 econfig.read_only = false;
409 econfig.name = "sprd-efuse";
410 econfig.size = efuse->data->blk_nums * SPRD_EFUSE_BLOCK_WIDTH;
411 econfig.add_legacy_fixed_of_cells = true;
412 econfig.reg_read = sprd_efuse_read;
413 econfig.reg_write = sprd_efuse_write;
414 econfig.priv = efuse;
415 econfig.dev = &pdev->dev;
416 nvmem = devm_nvmem_register(dev: &pdev->dev, cfg: &econfig);
417 if (IS_ERR(ptr: nvmem)) {
418 dev_err(&pdev->dev, "failed to register nvmem\n");
419 return PTR_ERR(ptr: nvmem);
420 }
421
422 return 0;
423}
424
425static const struct of_device_id sprd_efuse_of_match[] = {
426 { .compatible = "sprd,ums312-efuse", .data = &ums312_data },
427 { }
428};
429
430static struct platform_driver sprd_efuse_driver = {
431 .probe = sprd_efuse_probe,
432 .driver = {
433 .name = "sprd-efuse",
434 .of_match_table = sprd_efuse_of_match,
435 },
436};
437
438module_platform_driver(sprd_efuse_driver);
439
440MODULE_AUTHOR("Freeman Liu <freeman.liu@spreadtrum.com>");
441MODULE_DESCRIPTION("Spreadtrum AP efuse driver");
442MODULE_LICENSE("GPL v2");
443

source code of linux/drivers/nvmem/sprd-efuse.c