1// SPDX-License-Identifier: GPL-2.0
2/*
3 * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
4 *
5 * Copyright (C) 2018-2020 Xilinx Inc.
6 *
7 * Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
8 * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
9 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10 *
11 * This driver is tested for USB, SGMII, SATA and Display Port currently.
12 * PCIe should also work but that is experimental as of now.
13 */
14
15#include <linux/clk.h>
16#include <linux/delay.h>
17#include <linux/io.h>
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/phy/phy.h>
22#include <linux/platform_device.h>
23#include <linux/pm_runtime.h>
24#include <linux/slab.h>
25
26#include <dt-bindings/phy/phy.h>
27
28/*
29 * Lane Registers
30 */
31
32/* TX De-emphasis parameters */
33#define L0_TX_ANA_TM_18 0x0048
34#define L0_TX_ANA_TM_118 0x01d8
35#define L0_TX_ANA_TM_118_FORCE_17_0 BIT(0)
36
37/* DN Resistor calibration code parameters */
38#define L0_TXPMA_ST_3 0x0b0c
39#define L0_DN_CALIB_CODE 0x3f
40
41/* PMA control parameters */
42#define L0_TXPMD_TM_45 0x0cb4
43#define L0_TXPMD_TM_48 0x0cc0
44#define L0_TXPMD_TM_45_OVER_DP_MAIN BIT(0)
45#define L0_TXPMD_TM_45_ENABLE_DP_MAIN BIT(1)
46#define L0_TXPMD_TM_45_OVER_DP_POST1 BIT(2)
47#define L0_TXPMD_TM_45_ENABLE_DP_POST1 BIT(3)
48#define L0_TXPMD_TM_45_OVER_DP_POST2 BIT(4)
49#define L0_TXPMD_TM_45_ENABLE_DP_POST2 BIT(5)
50
51/* PCS control parameters */
52#define L0_TM_DIG_6 0x106c
53#define L0_TM_DIS_DESCRAMBLE_DECODER 0x0f
54#define L0_TX_DIG_61 0x00f4
55#define L0_TM_DISABLE_SCRAMBLE_ENCODER 0x0f
56
57/* PLL Test Mode register parameters */
58#define L0_TM_PLL_DIG_37 0x2094
59#define L0_TM_COARSE_CODE_LIMIT 0x10
60
61/* PLL SSC step size offsets */
62#define L0_PLL_SS_STEPS_0_LSB 0x2368
63#define L0_PLL_SS_STEPS_1_MSB 0x236c
64#define L0_PLL_SS_STEP_SIZE_0_LSB 0x2370
65#define L0_PLL_SS_STEP_SIZE_1 0x2374
66#define L0_PLL_SS_STEP_SIZE_2 0x2378
67#define L0_PLL_SS_STEP_SIZE_3_MSB 0x237c
68#define L0_PLL_STATUS_READ_1 0x23e4
69
70/* SSC step size parameters */
71#define STEP_SIZE_0_MASK 0xff
72#define STEP_SIZE_1_MASK 0xff
73#define STEP_SIZE_2_MASK 0xff
74#define STEP_SIZE_3_MASK 0x3
75#define STEP_SIZE_SHIFT 8
76#define FORCE_STEP_SIZE 0x10
77#define FORCE_STEPS 0x20
78#define STEPS_0_MASK 0xff
79#define STEPS_1_MASK 0x07
80
81/* Reference clock selection parameters */
82#define L0_Ln_REF_CLK_SEL(n) (0x2860 + (n) * 4)
83#define L0_REF_CLK_SEL_MASK 0x8f
84
85/* Calibration digital logic parameters */
86#define L3_TM_CALIB_DIG19 0xec4c
87#define L3_CALIB_DONE_STATUS 0xef14
88#define L3_TM_CALIB_DIG18 0xec48
89#define L3_TM_CALIB_DIG19_NSW 0x07
90#define L3_TM_CALIB_DIG18_NSW 0xe0
91#define L3_TM_OVERRIDE_NSW_CODE 0x20
92#define L3_CALIB_DONE 0x02
93#define L3_NSW_SHIFT 5
94#define L3_NSW_PIPE_SHIFT 4
95#define L3_NSW_CALIB_SHIFT 3
96
97#define PHY_REG_OFFSET 0x4000
98
99/*
100 * Global Registers
101 */
102
103/* Refclk selection parameters */
104#define PLL_REF_SEL(n) (0x10000 + (n) * 4)
105#define PLL_FREQ_MASK 0x1f
106#define PLL_STATUS_LOCKED 0x10
107
108/* Inter Connect Matrix parameters */
109#define ICM_CFG0 0x10010
110#define ICM_CFG1 0x10014
111#define ICM_CFG0_L0_MASK 0x07
112#define ICM_CFG0_L1_MASK 0x70
113#define ICM_CFG1_L2_MASK 0x07
114#define ICM_CFG2_L3_MASK 0x70
115#define ICM_CFG_SHIFT 4
116
117/* Inter Connect Matrix allowed protocols */
118#define ICM_PROTOCOL_PD 0x0
119#define ICM_PROTOCOL_PCIE 0x1
120#define ICM_PROTOCOL_SATA 0x2
121#define ICM_PROTOCOL_USB 0x3
122#define ICM_PROTOCOL_DP 0x4
123#define ICM_PROTOCOL_SGMII 0x5
124
125/* Test Mode common reset control parameters */
126#define TM_CMN_RST 0x10018
127#define TM_CMN_RST_EN 0x1
128#define TM_CMN_RST_SET 0x2
129#define TM_CMN_RST_MASK 0x3
130
131/* Bus width parameters */
132#define TX_PROT_BUS_WIDTH 0x10040
133#define RX_PROT_BUS_WIDTH 0x10044
134#define PROT_BUS_WIDTH_10 0x0
135#define PROT_BUS_WIDTH_20 0x1
136#define PROT_BUS_WIDTH_40 0x2
137#define PROT_BUS_WIDTH_SHIFT(n) ((n) * 2)
138#define PROT_BUS_WIDTH_MASK(n) GENMASK((n) * 2 + 1, (n) * 2)
139
140/* Number of GT lanes */
141#define NUM_LANES 4
142
143/* SIOU SATA control register */
144#define SATA_CONTROL_OFFSET 0x0100
145
146/* Total number of controllers */
147#define CONTROLLERS_PER_LANE 5
148
149/* Protocol Type parameters */
150#define XPSGTR_TYPE_USB0 0 /* USB controller 0 */
151#define XPSGTR_TYPE_USB1 1 /* USB controller 1 */
152#define XPSGTR_TYPE_SATA_0 2 /* SATA controller lane 0 */
153#define XPSGTR_TYPE_SATA_1 3 /* SATA controller lane 1 */
154#define XPSGTR_TYPE_PCIE_0 4 /* PCIe controller lane 0 */
155#define XPSGTR_TYPE_PCIE_1 5 /* PCIe controller lane 1 */
156#define XPSGTR_TYPE_PCIE_2 6 /* PCIe controller lane 2 */
157#define XPSGTR_TYPE_PCIE_3 7 /* PCIe controller lane 3 */
158#define XPSGTR_TYPE_DP_0 8 /* Display Port controller lane 0 */
159#define XPSGTR_TYPE_DP_1 9 /* Display Port controller lane 1 */
160#define XPSGTR_TYPE_SGMII0 10 /* Ethernet SGMII controller 0 */
161#define XPSGTR_TYPE_SGMII1 11 /* Ethernet SGMII controller 1 */
162#define XPSGTR_TYPE_SGMII2 12 /* Ethernet SGMII controller 2 */
163#define XPSGTR_TYPE_SGMII3 13 /* Ethernet SGMII controller 3 */
164
165/* Timeout values */
166#define TIMEOUT_US 1000
167
168struct xpsgtr_dev;
169
170/**
171 * struct xpsgtr_ssc - structure to hold SSC settings for a lane
172 * @refclk_rate: PLL reference clock frequency
173 * @pll_ref_clk: value to be written to register for corresponding ref clk rate
174 * @steps: number of steps of SSC (Spread Spectrum Clock)
175 * @step_size: step size of each step
176 */
177struct xpsgtr_ssc {
178 u32 refclk_rate;
179 u8 pll_ref_clk;
180 u32 steps;
181 u32 step_size;
182};
183
184/**
185 * struct xpsgtr_phy - representation of a lane
186 * @phy: pointer to the kernel PHY device
187 * @type: controller which uses this lane
188 * @lane: lane number
189 * @protocol: protocol in which the lane operates
190 * @skip_phy_init: skip phy_init() if true
191 * @dev: pointer to the xpsgtr_dev instance
192 * @refclk: reference clock index
193 */
194struct xpsgtr_phy {
195 struct phy *phy;
196 u8 type;
197 u8 lane;
198 u8 protocol;
199 bool skip_phy_init;
200 struct xpsgtr_dev *dev;
201 unsigned int refclk;
202};
203
204/**
205 * struct xpsgtr_dev - representation of a ZynMP GT device
206 * @dev: pointer to device
207 * @serdes: serdes base address
208 * @siou: siou base address
209 * @gtr_mutex: mutex for locking
210 * @phys: PHY lanes
211 * @refclk_sscs: spread spectrum settings for the reference clocks
212 * @clk: reference clocks
213 * @tx_term_fix: fix for GT issue
214 * @saved_icm_cfg0: stored value of ICM CFG0 register
215 * @saved_icm_cfg1: stored value of ICM CFG1 register
216 */
217struct xpsgtr_dev {
218 struct device *dev;
219 void __iomem *serdes;
220 void __iomem *siou;
221 struct mutex gtr_mutex; /* mutex for locking */
222 struct xpsgtr_phy phys[NUM_LANES];
223 const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
224 struct clk *clk[NUM_LANES];
225 bool tx_term_fix;
226 unsigned int saved_icm_cfg0;
227 unsigned int saved_icm_cfg1;
228};
229
230/*
231 * Configuration Data
232 */
233
234/* lookup table to hold all settings needed for a ref clock frequency */
235static const struct xpsgtr_ssc ssc_lookup[] = {
236 { 19200000, 0x05, 608, 264020 },
237 { 20000000, 0x06, 634, 243454 },
238 { 24000000, 0x07, 760, 168973 },
239 { 26000000, 0x08, 824, 143860 },
240 { 27000000, 0x09, 856, 86551 },
241 { 38400000, 0x0a, 1218, 65896 },
242 { 40000000, 0x0b, 634, 243454 },
243 { 52000000, 0x0c, 824, 143860 },
244 { 100000000, 0x0d, 1058, 87533 },
245 { 108000000, 0x0e, 856, 86551 },
246 { 125000000, 0x0f, 992, 119497 },
247 { 135000000, 0x10, 1070, 55393 },
248 { 150000000, 0x11, 792, 187091 }
249};
250
251/*
252 * I/O Accessors
253 */
254
255static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
256{
257 return readl(addr: gtr_dev->serdes + reg);
258}
259
260static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
261{
262 writel(val: value, addr: gtr_dev->serdes + reg);
263}
264
265static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
266 u32 clr, u32 set)
267{
268 u32 value = xpsgtr_read(gtr_dev, reg);
269
270 value &= ~clr;
271 value |= set;
272 xpsgtr_write(gtr_dev, reg, value);
273}
274
275static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
276{
277 void __iomem *addr = gtr_phy->dev->serdes
278 + gtr_phy->lane * PHY_REG_OFFSET + reg;
279
280 return readl(addr);
281}
282
283static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
284 u32 reg, u32 value)
285{
286 void __iomem *addr = gtr_phy->dev->serdes
287 + gtr_phy->lane * PHY_REG_OFFSET + reg;
288
289 writel(val: value, addr);
290}
291
292static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
293 u32 reg, u32 clr, u32 set)
294{
295 void __iomem *addr = gtr_phy->dev->serdes
296 + gtr_phy->lane * PHY_REG_OFFSET + reg;
297
298 writel(val: (readl(addr) & ~clr) | set, addr);
299}
300
301/*
302 * Hardware Configuration
303 */
304
305/* Wait for the PLL to lock (with a timeout). */
306static int xpsgtr_wait_pll_lock(struct phy *phy)
307{
308 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
309 struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
310 unsigned int timeout = TIMEOUT_US;
311 int ret;
312
313 dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
314
315 while (1) {
316 u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
317
318 if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
319 ret = 0;
320 break;
321 }
322
323 if (--timeout == 0) {
324 ret = -ETIMEDOUT;
325 break;
326 }
327
328 udelay(1);
329 }
330
331 if (ret == -ETIMEDOUT)
332 dev_err(gtr_dev->dev,
333 "lane %u (type %u, protocol %u): PLL lock timeout\n",
334 gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
335
336 return ret;
337}
338
339/* Configure PLL and spread-sprectrum clock. */
340static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
341{
342 const struct xpsgtr_ssc *ssc;
343 u32 step_size;
344
345 ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
346 step_size = ssc->step_size;
347
348 xpsgtr_clr_set(gtr_dev: gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
349 PLL_FREQ_MASK, set: ssc->pll_ref_clk);
350
351 /* Enable lane clock sharing, if required */
352 if (gtr_phy->refclk != gtr_phy->lane) {
353 /* Lane3 Ref Clock Selection Register */
354 xpsgtr_clr_set(gtr_dev: gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
355 L0_REF_CLK_SEL_MASK, set: 1 << gtr_phy->refclk);
356 }
357
358 /* SSC step size [7:0] */
359 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
360 STEP_SIZE_0_MASK, set: step_size & STEP_SIZE_0_MASK);
361
362 /* SSC step size [15:8] */
363 step_size >>= STEP_SIZE_SHIFT;
364 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
365 STEP_SIZE_1_MASK, set: step_size & STEP_SIZE_1_MASK);
366
367 /* SSC step size [23:16] */
368 step_size >>= STEP_SIZE_SHIFT;
369 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
370 STEP_SIZE_2_MASK, set: step_size & STEP_SIZE_2_MASK);
371
372 /* SSC steps [7:0] */
373 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
374 STEPS_0_MASK, set: ssc->steps & STEPS_0_MASK);
375
376 /* SSC steps [10:8] */
377 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
378 STEPS_1_MASK,
379 set: (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
380
381 /* SSC step size [24:25] */
382 step_size >>= STEP_SIZE_SHIFT;
383 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
384 STEP_SIZE_3_MASK, set: (step_size & STEP_SIZE_3_MASK) |
385 FORCE_STEP_SIZE | FORCE_STEPS);
386}
387
388/* Configure the lane protocol. */
389static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
390{
391 struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
392 u8 protocol = gtr_phy->protocol;
393
394 switch (gtr_phy->lane) {
395 case 0:
396 xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, set: protocol);
397 break;
398 case 1:
399 xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
400 set: protocol << ICM_CFG_SHIFT);
401 break;
402 case 2:
403 xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, set: protocol);
404 break;
405 case 3:
406 xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
407 set: protocol << ICM_CFG_SHIFT);
408 break;
409 default:
410 /* We already checked 0 <= lane <= 3 */
411 break;
412 }
413}
414
415/* Bypass (de)scrambler and 8b/10b decoder and encoder. */
416static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
417{
418 xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
419 xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
420}
421
422/* DP-specific initialization. */
423static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
424{
425 xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
426 L0_TXPMD_TM_45_OVER_DP_MAIN |
427 L0_TXPMD_TM_45_ENABLE_DP_MAIN |
428 L0_TXPMD_TM_45_OVER_DP_POST1 |
429 L0_TXPMD_TM_45_OVER_DP_POST2 |
430 L0_TXPMD_TM_45_ENABLE_DP_POST2);
431 xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
432 L0_TX_ANA_TM_118_FORCE_17_0);
433}
434
435/* SATA-specific initialization. */
436static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
437{
438 struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
439
440 xpsgtr_bypass_scrambler_8b10b(gtr_phy);
441
442 writel(val: gtr_phy->lane, addr: gtr_dev->siou + SATA_CONTROL_OFFSET);
443}
444
445/* SGMII-specific initialization. */
446static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
447{
448 struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
449 u32 mask = PROT_BUS_WIDTH_MASK(gtr_phy->lane);
450 u32 val = PROT_BUS_WIDTH_10 << PROT_BUS_WIDTH_SHIFT(gtr_phy->lane);
451
452 /* Set SGMII protocol TX and RX bus width to 10 bits. */
453 xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, clr: mask, set: val);
454 xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, clr: mask, set: val);
455
456 xpsgtr_bypass_scrambler_8b10b(gtr_phy);
457}
458
459/* Configure TX de-emphasis and margining for DP. */
460static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre,
461 unsigned int voltage)
462{
463 static const u8 voltage_swing[4][4] = {
464 { 0x2a, 0x27, 0x24, 0x20 },
465 { 0x27, 0x23, 0x20, 0xff },
466 { 0x24, 0x20, 0xff, 0xff },
467 { 0xff, 0xff, 0xff, 0xff }
468 };
469 static const u8 pre_emphasis[4][4] = {
470 { 0x02, 0x02, 0x02, 0x02 },
471 { 0x01, 0x01, 0x01, 0xff },
472 { 0x00, 0x00, 0xff, 0xff },
473 { 0xff, 0xff, 0xff, 0xff }
474 };
475
476 xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, value: voltage_swing[pre][voltage]);
477 xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, value: pre_emphasis[pre][voltage]);
478}
479
480/*
481 * PHY Operations
482 */
483
484static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy)
485{
486 /*
487 * As USB may save the snapshot of the states during hibernation, doing
488 * phy_init() will put the USB controller into reset, resulting in the
489 * losing of the saved snapshot. So try to avoid phy_init() for USB
490 * except when gtr_phy->skip_phy_init is false (this happens when FPD is
491 * shutdown during suspend or when gt lane is changed from current one)
492 */
493 if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init)
494 return false;
495 else
496 return true;
497}
498
499/*
500 * There is a functional issue in the GT. The TX termination resistance can be
501 * out of spec due to a issue in the calibration logic. This is the workaround
502 * to fix it, required for XCZU9EG silicon.
503 */
504static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy)
505{
506 struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
507 u32 timeout = TIMEOUT_US;
508 u32 nsw;
509
510 /* Enabling Test Mode control for CMN Rest */
511 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
512
513 /* Set Test Mode reset */
514 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
515
516 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, value: 0x00);
517 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE);
518
519 /*
520 * As a part of work around sequence for PMOS calibration fix,
521 * we need to configure any lane ICM_CFG to valid protocol. This
522 * will deassert the CMN_Resetn signal.
523 */
524 xpsgtr_lane_set_protocol(gtr_phy);
525
526 /* Clear Test Mode reset */
527 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
528
529 dev_dbg(gtr_dev->dev, "calibrating...\n");
530
531 do {
532 u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS);
533
534 if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE)
535 break;
536
537 if (!--timeout) {
538 dev_err(gtr_dev->dev, "calibration time out\n");
539 return -ETIMEDOUT;
540 }
541
542 udelay(1);
543 } while (timeout > 0);
544
545 dev_dbg(gtr_dev->dev, "calibration done\n");
546
547 /* Reading NMOS Register Code */
548 nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE;
549
550 /* Set Test Mode reset */
551 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
552
553 /* Writing NMOS register values back [5:3] */
554 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, value: nsw >> L3_NSW_CALIB_SHIFT);
555
556 /* Writing NMOS register value [2:0] */
557 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18,
558 value: ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) |
559 (1 << L3_NSW_PIPE_SHIFT));
560
561 /* Clear Test Mode reset */
562 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
563
564 return 0;
565}
566
567static int xpsgtr_phy_init(struct phy *phy)
568{
569 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
570 struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
571 int ret = 0;
572
573 mutex_lock(&gtr_dev->gtr_mutex);
574
575 /* Configure and enable the clock when peripheral phy_init call */
576 if (clk_prepare_enable(clk: gtr_dev->clk[gtr_phy->lane]))
577 goto out;
578
579 /* Skip initialization if not required. */
580 if (!xpsgtr_phy_init_required(gtr_phy))
581 goto out;
582
583 if (gtr_dev->tx_term_fix) {
584 ret = xpsgtr_phy_tx_term_fix(gtr_phy);
585 if (ret < 0)
586 goto out;
587
588 gtr_dev->tx_term_fix = false;
589 }
590
591 /* Enable coarse code saturation limiting logic. */
592 xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
593
594 /*
595 * Configure the PLL, the lane protocol, and perform protocol-specific
596 * initialization.
597 */
598 xpsgtr_configure_pll(gtr_phy);
599 xpsgtr_lane_set_protocol(gtr_phy);
600
601 switch (gtr_phy->protocol) {
602 case ICM_PROTOCOL_DP:
603 xpsgtr_phy_init_dp(gtr_phy);
604 break;
605
606 case ICM_PROTOCOL_SATA:
607 xpsgtr_phy_init_sata(gtr_phy);
608 break;
609
610 case ICM_PROTOCOL_SGMII:
611 xpsgtr_phy_init_sgmii(gtr_phy);
612 break;
613 }
614
615out:
616 mutex_unlock(lock: &gtr_dev->gtr_mutex);
617 return ret;
618}
619
620static int xpsgtr_phy_exit(struct phy *phy)
621{
622 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
623 struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
624
625 gtr_phy->skip_phy_init = false;
626
627 /* Ensure that disable clock only, which configure for lane */
628 clk_disable_unprepare(clk: gtr_dev->clk[gtr_phy->lane]);
629
630 return 0;
631}
632
633static int xpsgtr_phy_power_on(struct phy *phy)
634{
635 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
636 int ret = 0;
637
638 /* Skip initialization if not required. */
639 if (!xpsgtr_phy_init_required(gtr_phy))
640 return ret;
641 /*
642 * Wait for the PLL to lock. For DP, only wait on DP0 to avoid
643 * cumulating waits for both lanes. The user is expected to initialize
644 * lane 0 last.
645 */
646 if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
647 gtr_phy->type == XPSGTR_TYPE_DP_0)
648 ret = xpsgtr_wait_pll_lock(phy);
649
650 return ret;
651}
652
653static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts)
654{
655 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
656
657 if (gtr_phy->protocol != ICM_PROTOCOL_DP)
658 return 0;
659
660 xpsgtr_phy_configure_dp(gtr_phy, pre: opts->dp.pre[0], voltage: opts->dp.voltage[0]);
661
662 return 0;
663}
664
665static const struct phy_ops xpsgtr_phyops = {
666 .init = xpsgtr_phy_init,
667 .exit = xpsgtr_phy_exit,
668 .power_on = xpsgtr_phy_power_on,
669 .configure = xpsgtr_phy_configure,
670 .owner = THIS_MODULE,
671};
672
673/*
674 * OF Xlate Support
675 */
676
677/* Set the lane type and protocol based on the PHY type and instance number. */
678static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
679 unsigned int phy_instance)
680{
681 unsigned int num_phy_types;
682 const int *phy_types;
683
684 switch (phy_type) {
685 case PHY_TYPE_SATA: {
686 static const int types[] = {
687 XPSGTR_TYPE_SATA_0,
688 XPSGTR_TYPE_SATA_1,
689 };
690
691 phy_types = types;
692 num_phy_types = ARRAY_SIZE(types);
693 gtr_phy->protocol = ICM_PROTOCOL_SATA;
694 break;
695 }
696 case PHY_TYPE_USB3: {
697 static const int types[] = {
698 XPSGTR_TYPE_USB0,
699 XPSGTR_TYPE_USB1,
700 };
701
702 phy_types = types;
703 num_phy_types = ARRAY_SIZE(types);
704 gtr_phy->protocol = ICM_PROTOCOL_USB;
705 break;
706 }
707 case PHY_TYPE_DP: {
708 static const int types[] = {
709 XPSGTR_TYPE_DP_0,
710 XPSGTR_TYPE_DP_1,
711 };
712
713 phy_types = types;
714 num_phy_types = ARRAY_SIZE(types);
715 gtr_phy->protocol = ICM_PROTOCOL_DP;
716 break;
717 }
718 case PHY_TYPE_PCIE: {
719 static const int types[] = {
720 XPSGTR_TYPE_PCIE_0,
721 XPSGTR_TYPE_PCIE_1,
722 XPSGTR_TYPE_PCIE_2,
723 XPSGTR_TYPE_PCIE_3,
724 };
725
726 phy_types = types;
727 num_phy_types = ARRAY_SIZE(types);
728 gtr_phy->protocol = ICM_PROTOCOL_PCIE;
729 break;
730 }
731 case PHY_TYPE_SGMII: {
732 static const int types[] = {
733 XPSGTR_TYPE_SGMII0,
734 XPSGTR_TYPE_SGMII1,
735 XPSGTR_TYPE_SGMII2,
736 XPSGTR_TYPE_SGMII3,
737 };
738
739 phy_types = types;
740 num_phy_types = ARRAY_SIZE(types);
741 gtr_phy->protocol = ICM_PROTOCOL_SGMII;
742 break;
743 }
744 default:
745 return -EINVAL;
746 }
747
748 if (phy_instance >= num_phy_types)
749 return -EINVAL;
750
751 gtr_phy->type = phy_types[phy_instance];
752 return 0;
753}
754
755/*
756 * Valid combinations of controllers and lanes (Interconnect Matrix).
757 */
758static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
759 { XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
760 XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
761 { XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
762 XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
763 { XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
764 XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
765 { XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
766 XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
767};
768
769/* Translate OF phandle and args to PHY instance. */
770static struct phy *xpsgtr_xlate(struct device *dev,
771 const struct of_phandle_args *args)
772{
773 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
774 struct xpsgtr_phy *gtr_phy;
775 unsigned int phy_instance;
776 unsigned int phy_lane;
777 unsigned int phy_type;
778 unsigned int refclk;
779 unsigned int i;
780 int ret;
781
782 if (args->args_count != 4) {
783 dev_err(dev, "Invalid number of cells in 'phy' property\n");
784 return ERR_PTR(error: -EINVAL);
785 }
786
787 /*
788 * Get the PHY parameters from the OF arguments and derive the lane
789 * type.
790 */
791 phy_lane = args->args[0];
792 if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) {
793 dev_err(dev, "Invalid lane number %u\n", phy_lane);
794 return ERR_PTR(error: -ENODEV);
795 }
796
797 gtr_phy = &gtr_dev->phys[phy_lane];
798 phy_type = args->args[1];
799 phy_instance = args->args[2];
800
801 ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
802 if (ret < 0) {
803 dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n");
804 return ERR_PTR(error: ret);
805 }
806
807 refclk = args->args[3];
808 if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
809 !gtr_dev->refclk_sscs[refclk]) {
810 dev_err(dev, "Invalid reference clock number %u\n", refclk);
811 return ERR_PTR(error: -EINVAL);
812 }
813
814 gtr_phy->refclk = refclk;
815
816 /*
817 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
818 * is allowed to operate on the lane.
819 */
820 for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
821 if (icm_matrix[phy_lane][i] == gtr_phy->type)
822 return gtr_phy->phy;
823 }
824
825 return ERR_PTR(error: -EINVAL);
826}
827
828/*
829 * Power Management
830 */
831
832static int xpsgtr_runtime_suspend(struct device *dev)
833{
834 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
835
836 /* Save the snapshot ICM_CFG registers. */
837 gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
838 gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
839
840 return 0;
841}
842
843static int xpsgtr_runtime_resume(struct device *dev)
844{
845 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
846 unsigned int icm_cfg0, icm_cfg1;
847 unsigned int i;
848 bool skip_phy_init;
849
850 icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
851 icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
852
853 /* Return if no GT lanes got configured before suspend. */
854 if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1)
855 return 0;
856
857 /* Check if the ICM configurations changed after suspend. */
858 if (icm_cfg0 == gtr_dev->saved_icm_cfg0 &&
859 icm_cfg1 == gtr_dev->saved_icm_cfg1)
860 skip_phy_init = true;
861 else
862 skip_phy_init = false;
863
864 /* Update the skip_phy_init for all gtr_phy instances. */
865 for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++)
866 gtr_dev->phys[i].skip_phy_init = skip_phy_init;
867
868 return 0;
869}
870
871static DEFINE_RUNTIME_DEV_PM_OPS(xpsgtr_pm_ops, xpsgtr_runtime_suspend,
872 xpsgtr_runtime_resume, NULL);
873/*
874 * Probe & Platform Driver
875 */
876
877static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev)
878{
879 unsigned int refclk;
880
881 for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) {
882 unsigned long rate;
883 unsigned int i;
884 struct clk *clk;
885 char name[8];
886
887 snprintf(buf: name, size: sizeof(name), fmt: "ref%u", refclk);
888 clk = devm_clk_get_optional(dev: gtr_dev->dev, id: name);
889 if (IS_ERR(ptr: clk)) {
890 return dev_err_probe(dev: gtr_dev->dev, err: PTR_ERR(ptr: clk),
891 fmt: "Failed to get ref clock %u\n",
892 refclk);
893 }
894
895 if (!clk)
896 continue;
897
898 gtr_dev->clk[refclk] = clk;
899
900 /*
901 * Get the spread spectrum (SSC) settings for the reference
902 * clock rate.
903 */
904 rate = clk_get_rate(clk);
905
906 for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
907 /* Allow an error of 100 ppm */
908 unsigned long error = ssc_lookup[i].refclk_rate / 10000;
909
910 if (abs(rate - ssc_lookup[i].refclk_rate) < error) {
911 gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
912 break;
913 }
914 }
915
916 if (i == ARRAY_SIZE(ssc_lookup)) {
917 dev_err(gtr_dev->dev,
918 "Invalid rate %lu for reference clock %u\n",
919 rate, refclk);
920 return -EINVAL;
921 }
922 }
923
924 return 0;
925}
926
927static int xpsgtr_probe(struct platform_device *pdev)
928{
929 struct device_node *np = pdev->dev.of_node;
930 struct xpsgtr_dev *gtr_dev;
931 struct phy_provider *provider;
932 unsigned int port;
933 int ret;
934
935 gtr_dev = devm_kzalloc(dev: &pdev->dev, size: sizeof(*gtr_dev), GFP_KERNEL);
936 if (!gtr_dev)
937 return -ENOMEM;
938
939 gtr_dev->dev = &pdev->dev;
940 platform_set_drvdata(pdev, data: gtr_dev);
941
942 mutex_init(&gtr_dev->gtr_mutex);
943
944 if (of_device_is_compatible(device: np, "xlnx,zynqmp-psgtr"))
945 gtr_dev->tx_term_fix =
946 of_property_read_bool(np, propname: "xlnx,tx-termination-fix");
947
948 /* Acquire resources. */
949 gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, name: "serdes");
950 if (IS_ERR(ptr: gtr_dev->serdes))
951 return PTR_ERR(ptr: gtr_dev->serdes);
952
953 gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, name: "siou");
954 if (IS_ERR(ptr: gtr_dev->siou))
955 return PTR_ERR(ptr: gtr_dev->siou);
956
957 ret = xpsgtr_get_ref_clocks(gtr_dev);
958 if (ret)
959 return ret;
960
961 /* Create PHYs. */
962 for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) {
963 struct xpsgtr_phy *gtr_phy = &gtr_dev->phys[port];
964 struct phy *phy;
965
966 gtr_phy->lane = port;
967 gtr_phy->dev = gtr_dev;
968
969 phy = devm_phy_create(dev: &pdev->dev, node: np, ops: &xpsgtr_phyops);
970 if (IS_ERR(ptr: phy)) {
971 dev_err(&pdev->dev, "failed to create PHY\n");
972 return PTR_ERR(ptr: phy);
973 }
974
975 gtr_phy->phy = phy;
976 phy_set_drvdata(phy, data: gtr_phy);
977 }
978
979 /* Register the PHY provider. */
980 provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate);
981 if (IS_ERR(ptr: provider)) {
982 dev_err(&pdev->dev, "registering provider failed\n");
983 return PTR_ERR(ptr: provider);
984 }
985
986 pm_runtime_set_active(dev: gtr_dev->dev);
987 pm_runtime_enable(dev: gtr_dev->dev);
988
989 ret = pm_runtime_resume_and_get(dev: gtr_dev->dev);
990 if (ret < 0) {
991 pm_runtime_disable(dev: gtr_dev->dev);
992 return ret;
993 }
994
995 return 0;
996}
997
998static int xpsgtr_remove(struct platform_device *pdev)
999{
1000 struct xpsgtr_dev *gtr_dev = platform_get_drvdata(pdev);
1001
1002 pm_runtime_disable(dev: gtr_dev->dev);
1003 pm_runtime_put_noidle(dev: gtr_dev->dev);
1004 pm_runtime_set_suspended(dev: gtr_dev->dev);
1005
1006 return 0;
1007}
1008
1009static const struct of_device_id xpsgtr_of_match[] = {
1010 { .compatible = "xlnx,zynqmp-psgtr", },
1011 { .compatible = "xlnx,zynqmp-psgtr-v1.1", },
1012 {},
1013};
1014MODULE_DEVICE_TABLE(of, xpsgtr_of_match);
1015
1016static struct platform_driver xpsgtr_driver = {
1017 .probe = xpsgtr_probe,
1018 .remove = xpsgtr_remove,
1019 .driver = {
1020 .name = "xilinx-psgtr",
1021 .of_match_table = xpsgtr_of_match,
1022 .pm = pm_ptr(&xpsgtr_pm_ops),
1023 },
1024};
1025
1026module_platform_driver(xpsgtr_driver);
1027
1028MODULE_AUTHOR("Xilinx Inc.");
1029MODULE_LICENSE("GPL v2");
1030MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");
1031

source code of linux/drivers/phy/xilinx/phy-zynqmp.c