1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Renesas RZ/N1 Real Time Clock interface for Linux
4 *
5 * Copyright:
6 * - 2014 Renesas Electronics Europe Limited
7 * - 2022 Schneider Electric
8 *
9 * Authors:
10 * - Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
11 * - Miquel Raynal <miquel.raynal@bootlin.com>
12 */
13
14#include <linux/bcd.h>
15#include <linux/init.h>
16#include <linux/iopoll.h>
17#include <linux/module.h>
18#include <linux/mod_devicetable.h>
19#include <linux/platform_device.h>
20#include <linux/pm_runtime.h>
21#include <linux/rtc.h>
22
23#define RZN1_RTC_CTL0 0x00
24#define RZN1_RTC_CTL0_SLSB_SUBU 0
25#define RZN1_RTC_CTL0_SLSB_SCMP BIT(4)
26#define RZN1_RTC_CTL0_AMPM BIT(5)
27#define RZN1_RTC_CTL0_CE BIT(7)
28
29#define RZN1_RTC_CTL1 0x04
30#define RZN1_RTC_CTL1_ALME BIT(4)
31
32#define RZN1_RTC_CTL2 0x08
33#define RZN1_RTC_CTL2_WAIT BIT(0)
34#define RZN1_RTC_CTL2_WST BIT(1)
35#define RZN1_RTC_CTL2_WUST BIT(5)
36#define RZN1_RTC_CTL2_STOPPED (RZN1_RTC_CTL2_WAIT | RZN1_RTC_CTL2_WST)
37
38#define RZN1_RTC_SEC 0x14
39#define RZN1_RTC_MIN 0x18
40#define RZN1_RTC_HOUR 0x1c
41#define RZN1_RTC_WEEK 0x20
42#define RZN1_RTC_DAY 0x24
43#define RZN1_RTC_MONTH 0x28
44#define RZN1_RTC_YEAR 0x2c
45
46#define RZN1_RTC_SUBU 0x38
47#define RZN1_RTC_SUBU_DEV BIT(7)
48#define RZN1_RTC_SUBU_DECR BIT(6)
49
50#define RZN1_RTC_ALM 0x40
51#define RZN1_RTC_ALH 0x44
52#define RZN1_RTC_ALW 0x48
53
54#define RZN1_RTC_SECC 0x4c
55#define RZN1_RTC_MINC 0x50
56#define RZN1_RTC_HOURC 0x54
57#define RZN1_RTC_WEEKC 0x58
58#define RZN1_RTC_DAYC 0x5c
59#define RZN1_RTC_MONTHC 0x60
60#define RZN1_RTC_YEARC 0x64
61
62struct rzn1_rtc {
63 struct rtc_device *rtcdev;
64 void __iomem *base;
65};
66
67static void rzn1_rtc_get_time_snapshot(struct rzn1_rtc *rtc, struct rtc_time *tm)
68{
69 tm->tm_sec = readl(addr: rtc->base + RZN1_RTC_SECC);
70 tm->tm_min = readl(addr: rtc->base + RZN1_RTC_MINC);
71 tm->tm_hour = readl(addr: rtc->base + RZN1_RTC_HOURC);
72 tm->tm_wday = readl(addr: rtc->base + RZN1_RTC_WEEKC);
73 tm->tm_mday = readl(addr: rtc->base + RZN1_RTC_DAYC);
74 tm->tm_mon = readl(addr: rtc->base + RZN1_RTC_MONTHC);
75 tm->tm_year = readl(addr: rtc->base + RZN1_RTC_YEARC);
76}
77
78static unsigned int rzn1_rtc_tm_to_wday(struct rtc_time *tm)
79{
80 time64_t time;
81 unsigned int days;
82 u32 secs;
83
84 time = rtc_tm_to_time64(tm);
85 days = div_s64_rem(dividend: time, divisor: 86400, remainder: &secs);
86
87 /* day of the week, 1970-01-01 was a Thursday */
88 return (days + 4) % 7;
89}
90
91static int rzn1_rtc_read_time(struct device *dev, struct rtc_time *tm)
92{
93 struct rzn1_rtc *rtc = dev_get_drvdata(dev);
94 u32 val, secs;
95
96 /*
97 * The RTC was not started or is stopped and thus does not carry the
98 * proper time/date.
99 */
100 val = readl(addr: rtc->base + RZN1_RTC_CTL2);
101 if (val & RZN1_RTC_CTL2_STOPPED)
102 return -EINVAL;
103
104 rzn1_rtc_get_time_snapshot(rtc, tm);
105 secs = readl(addr: rtc->base + RZN1_RTC_SECC);
106 if (tm->tm_sec != secs)
107 rzn1_rtc_get_time_snapshot(rtc, tm);
108
109 tm->tm_sec = bcd2bin(tm->tm_sec);
110 tm->tm_min = bcd2bin(tm->tm_min);
111 tm->tm_hour = bcd2bin(tm->tm_hour);
112 tm->tm_wday = bcd2bin(tm->tm_wday);
113 tm->tm_mday = bcd2bin(tm->tm_mday);
114 tm->tm_mon = bcd2bin(tm->tm_mon);
115 tm->tm_year = bcd2bin(tm->tm_year);
116
117 return 0;
118}
119
120static int rzn1_rtc_set_time(struct device *dev, struct rtc_time *tm)
121{
122 struct rzn1_rtc *rtc = dev_get_drvdata(dev);
123 u32 val;
124 int ret;
125
126 tm->tm_sec = bin2bcd(tm->tm_sec);
127 tm->tm_min = bin2bcd(tm->tm_min);
128 tm->tm_hour = bin2bcd(tm->tm_hour);
129 tm->tm_wday = bin2bcd(rzn1_rtc_tm_to_wday(tm));
130 tm->tm_mday = bin2bcd(tm->tm_mday);
131 tm->tm_mon = bin2bcd(tm->tm_mon);
132 tm->tm_year = bin2bcd(tm->tm_year);
133
134 val = readl(addr: rtc->base + RZN1_RTC_CTL2);
135 if (!(val & RZN1_RTC_CTL2_STOPPED)) {
136 /* Hold the counter if it was counting up */
137 writel(RZN1_RTC_CTL2_WAIT, addr: rtc->base + RZN1_RTC_CTL2);
138
139 /* Wait for the counter to stop: two 32k clock cycles */
140 usleep_range(min: 61, max: 100);
141 ret = readl_poll_timeout(rtc->base + RZN1_RTC_CTL2, val,
142 val & RZN1_RTC_CTL2_WST, 0, 100);
143 if (ret)
144 return ret;
145 }
146
147 writel(val: tm->tm_sec, addr: rtc->base + RZN1_RTC_SEC);
148 writel(val: tm->tm_min, addr: rtc->base + RZN1_RTC_MIN);
149 writel(val: tm->tm_hour, addr: rtc->base + RZN1_RTC_HOUR);
150 writel(val: tm->tm_wday, addr: rtc->base + RZN1_RTC_WEEK);
151 writel(val: tm->tm_mday, addr: rtc->base + RZN1_RTC_DAY);
152 writel(val: tm->tm_mon, addr: rtc->base + RZN1_RTC_MONTH);
153 writel(val: tm->tm_year, addr: rtc->base + RZN1_RTC_YEAR);
154 writel(val: 0, addr: rtc->base + RZN1_RTC_CTL2);
155
156 return 0;
157}
158
159static irqreturn_t rzn1_rtc_alarm_irq(int irq, void *dev_id)
160{
161 struct rzn1_rtc *rtc = dev_id;
162
163 rtc_update_irq(rtc: rtc->rtcdev, num: 1, RTC_AF | RTC_IRQF);
164
165 return IRQ_HANDLED;
166}
167
168static int rzn1_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
169{
170 struct rzn1_rtc *rtc = dev_get_drvdata(dev);
171 u32 ctl1 = readl(addr: rtc->base + RZN1_RTC_CTL1);
172
173 if (enable)
174 ctl1 |= RZN1_RTC_CTL1_ALME;
175 else
176 ctl1 &= ~RZN1_RTC_CTL1_ALME;
177
178 writel(val: ctl1, addr: rtc->base + RZN1_RTC_CTL1);
179
180 return 0;
181}
182
183static int rzn1_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
184{
185 struct rzn1_rtc *rtc = dev_get_drvdata(dev);
186 struct rtc_time *tm = &alrm->time;
187 unsigned int min, hour, wday, delta_days;
188 time64_t alarm;
189 u32 ctl1;
190 int ret;
191
192 ret = rzn1_rtc_read_time(dev, tm);
193 if (ret)
194 return ret;
195
196 min = readl(addr: rtc->base + RZN1_RTC_ALM);
197 hour = readl(addr: rtc->base + RZN1_RTC_ALH);
198 wday = readl(addr: rtc->base + RZN1_RTC_ALW);
199
200 tm->tm_sec = 0;
201 tm->tm_min = bcd2bin(min);
202 tm->tm_hour = bcd2bin(hour);
203 delta_days = ((fls(x: wday) - 1) - tm->tm_wday + 7) % 7;
204 tm->tm_wday = fls(x: wday) - 1;
205
206 if (delta_days) {
207 alarm = rtc_tm_to_time64(tm) + (delta_days * 86400);
208 rtc_time64_to_tm(time: alarm, tm);
209 }
210
211 ctl1 = readl(addr: rtc->base + RZN1_RTC_CTL1);
212 alrm->enabled = !!(ctl1 & RZN1_RTC_CTL1_ALME);
213
214 return 0;
215}
216
217static int rzn1_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
218{
219 struct rzn1_rtc *rtc = dev_get_drvdata(dev);
220 struct rtc_time *tm = &alrm->time, tm_now;
221 unsigned long alarm, farest;
222 unsigned int days_ahead, wday;
223 int ret;
224
225 ret = rzn1_rtc_read_time(dev, tm: &tm_now);
226 if (ret)
227 return ret;
228
229 /* We cannot set alarms more than one week ahead */
230 farest = rtc_tm_to_time64(tm: &tm_now) + rtc->rtcdev->alarm_offset_max;
231 alarm = rtc_tm_to_time64(tm);
232 if (time_after(alarm, farest))
233 return -ERANGE;
234
235 /* Convert alarm day into week day */
236 days_ahead = tm->tm_mday - tm_now.tm_mday;
237 wday = (tm_now.tm_wday + days_ahead) % 7;
238
239 writel(bin2bcd(tm->tm_min), addr: rtc->base + RZN1_RTC_ALM);
240 writel(bin2bcd(tm->tm_hour), addr: rtc->base + RZN1_RTC_ALH);
241 writel(BIT(wday), addr: rtc->base + RZN1_RTC_ALW);
242
243 rzn1_rtc_alarm_irq_enable(dev, enable: alrm->enabled);
244
245 return 0;
246}
247
248static int rzn1_rtc_read_offset(struct device *dev, long *offset)
249{
250 struct rzn1_rtc *rtc = dev_get_drvdata(dev);
251 unsigned int ppb_per_step;
252 bool subtract;
253 u32 val;
254
255 val = readl(addr: rtc->base + RZN1_RTC_SUBU);
256 ppb_per_step = val & RZN1_RTC_SUBU_DEV ? 1017 : 3051;
257 subtract = val & RZN1_RTC_SUBU_DECR;
258 val &= 0x3F;
259
260 if (!val)
261 *offset = 0;
262 else if (subtract)
263 *offset = -(((~val) & 0x3F) + 1) * ppb_per_step;
264 else
265 *offset = (val - 1) * ppb_per_step;
266
267 return 0;
268}
269
270static int rzn1_rtc_set_offset(struct device *dev, long offset)
271{
272 struct rzn1_rtc *rtc = dev_get_drvdata(dev);
273 int stepsh, stepsl, steps;
274 u32 subu = 0, ctl2;
275 int ret;
276
277 /*
278 * Check which resolution mode (every 20 or 60s) can be used.
279 * Between 2 and 124 clock pulses can be added or substracted.
280 *
281 * In 20s mode, the minimum resolution is 2 / (32768 * 20) which is
282 * close to 3051 ppb. In 60s mode, the resolution is closer to 1017.
283 */
284 stepsh = DIV_ROUND_CLOSEST(offset, 1017);
285 stepsl = DIV_ROUND_CLOSEST(offset, 3051);
286
287 if (stepsh >= -0x3E && stepsh <= 0x3E) {
288 /* 1017 ppb per step */
289 steps = stepsh;
290 subu |= RZN1_RTC_SUBU_DEV;
291 } else if (stepsl >= -0x3E && stepsl <= 0x3E) {
292 /* 3051 ppb per step */
293 steps = stepsl;
294 } else {
295 return -ERANGE;
296 }
297
298 if (!steps)
299 return 0;
300
301 if (steps > 0) {
302 subu |= steps + 1;
303 } else {
304 subu |= RZN1_RTC_SUBU_DECR;
305 subu |= (~(-steps - 1)) & 0x3F;
306 }
307
308 ret = readl_poll_timeout(rtc->base + RZN1_RTC_CTL2, ctl2,
309 !(ctl2 & RZN1_RTC_CTL2_WUST), 100, 2000000);
310 if (ret)
311 return ret;
312
313 writel(val: subu, addr: rtc->base + RZN1_RTC_SUBU);
314
315 return 0;
316}
317
318static const struct rtc_class_ops rzn1_rtc_ops = {
319 .read_time = rzn1_rtc_read_time,
320 .set_time = rzn1_rtc_set_time,
321 .read_alarm = rzn1_rtc_read_alarm,
322 .set_alarm = rzn1_rtc_set_alarm,
323 .alarm_irq_enable = rzn1_rtc_alarm_irq_enable,
324 .read_offset = rzn1_rtc_read_offset,
325 .set_offset = rzn1_rtc_set_offset,
326};
327
328static int rzn1_rtc_probe(struct platform_device *pdev)
329{
330 struct rzn1_rtc *rtc;
331 int alarm_irq;
332 int ret;
333
334 rtc = devm_kzalloc(dev: &pdev->dev, size: sizeof(*rtc), GFP_KERNEL);
335 if (!rtc)
336 return -ENOMEM;
337
338 platform_set_drvdata(pdev, data: rtc);
339
340 rtc->base = devm_platform_ioremap_resource(pdev, index: 0);
341 if (IS_ERR(ptr: rtc->base))
342 return dev_err_probe(dev: &pdev->dev, err: PTR_ERR(ptr: rtc->base), fmt: "Missing reg\n");
343
344 alarm_irq = platform_get_irq(pdev, 0);
345 if (alarm_irq < 0)
346 return alarm_irq;
347
348 rtc->rtcdev = devm_rtc_allocate_device(dev: &pdev->dev);
349 if (IS_ERR(ptr: rtc->rtcdev))
350 return PTR_ERR(ptr: rtc->rtcdev);
351
352 rtc->rtcdev->range_min = RTC_TIMESTAMP_BEGIN_2000;
353 rtc->rtcdev->range_max = RTC_TIMESTAMP_END_2099;
354 rtc->rtcdev->alarm_offset_max = 7 * 86400;
355 rtc->rtcdev->ops = &rzn1_rtc_ops;
356 set_bit(RTC_FEATURE_ALARM_RES_MINUTE, addr: rtc->rtcdev->features);
357 clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, addr: rtc->rtcdev->features);
358
359 ret = devm_pm_runtime_enable(dev: &pdev->dev);
360 if (ret < 0)
361 return ret;
362 ret = pm_runtime_resume_and_get(dev: &pdev->dev);
363 if (ret < 0)
364 return ret;
365
366 /*
367 * Ensure the clock counter is enabled.
368 * Set 24-hour mode and possible oscillator offset compensation in SUBU mode.
369 */
370 writel(RZN1_RTC_CTL0_CE | RZN1_RTC_CTL0_AMPM | RZN1_RTC_CTL0_SLSB_SUBU,
371 addr: rtc->base + RZN1_RTC_CTL0);
372
373 /* Disable all interrupts */
374 writel(val: 0, addr: rtc->base + RZN1_RTC_CTL1);
375
376 ret = devm_request_irq(dev: &pdev->dev, irq: alarm_irq, handler: rzn1_rtc_alarm_irq, irqflags: 0,
377 devname: dev_name(dev: &pdev->dev), dev_id: rtc);
378 if (ret) {
379 dev_err(&pdev->dev, "RTC timer interrupt not available\n");
380 goto dis_runtime_pm;
381 }
382
383 ret = devm_rtc_register_device(rtc->rtcdev);
384 if (ret)
385 goto dis_runtime_pm;
386
387 return 0;
388
389dis_runtime_pm:
390 pm_runtime_put(dev: &pdev->dev);
391
392 return ret;
393}
394
395static void rzn1_rtc_remove(struct platform_device *pdev)
396{
397 pm_runtime_put(dev: &pdev->dev);
398}
399
400static const struct of_device_id rzn1_rtc_of_match[] = {
401 { .compatible = "renesas,rzn1-rtc" },
402 {},
403};
404MODULE_DEVICE_TABLE(of, rzn1_rtc_of_match);
405
406static struct platform_driver rzn1_rtc_driver = {
407 .probe = rzn1_rtc_probe,
408 .remove_new = rzn1_rtc_remove,
409 .driver = {
410 .name = "rzn1-rtc",
411 .of_match_table = rzn1_rtc_of_match,
412 },
413};
414module_platform_driver(rzn1_rtc_driver);
415
416MODULE_AUTHOR("Michel Pollet <Michel.Pollet@bp.renesas.com");
417MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com");
418MODULE_DESCRIPTION("RZ/N1 RTC driver");
419MODULE_LICENSE("GPL");
420

source code of linux/drivers/rtc/rtc-rzn1.c