1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * ASPEED FMC/SPI Memory Controller Driver
4 *
5 * Copyright (c) 2015-2022, IBM Corporation.
6 * Copyright (c) 2020, ASPEED Corporation.
7 */
8
9#include <linux/clk.h>
10#include <linux/module.h>
11#include <linux/of.h>
12#include <linux/of_platform.h>
13#include <linux/platform_device.h>
14#include <linux/spi/spi.h>
15#include <linux/spi/spi-mem.h>
16
17#define DEVICE_NAME "spi-aspeed-smc"
18
19/* Type setting Register */
20#define CONFIG_REG 0x0
21#define CONFIG_TYPE_SPI 0x2
22
23/* CE Control Register */
24#define CE_CTRL_REG 0x4
25
26/* CEx Control Register */
27#define CE0_CTRL_REG 0x10
28#define CTRL_IO_MODE_MASK GENMASK(30, 28)
29#define CTRL_IO_SINGLE_DATA 0x0
30#define CTRL_IO_DUAL_DATA BIT(29)
31#define CTRL_IO_QUAD_DATA BIT(30)
32#define CTRL_COMMAND_SHIFT 16
33#define CTRL_IO_ADDRESS_4B BIT(13) /* AST2400 SPI only */
34#define CTRL_IO_DUMMY_SET(dummy) \
35 (((((dummy) >> 2) & 0x1) << 14) | (((dummy) & 0x3) << 6))
36#define CTRL_FREQ_SEL_SHIFT 8
37#define CTRL_FREQ_SEL_MASK GENMASK(11, CTRL_FREQ_SEL_SHIFT)
38#define CTRL_CE_STOP_ACTIVE BIT(2)
39#define CTRL_IO_MODE_CMD_MASK GENMASK(1, 0)
40#define CTRL_IO_MODE_NORMAL 0x0
41#define CTRL_IO_MODE_READ 0x1
42#define CTRL_IO_MODE_WRITE 0x2
43#define CTRL_IO_MODE_USER 0x3
44
45#define CTRL_IO_CMD_MASK 0xf0ff40c3
46
47/* CEx Address Decoding Range Register */
48#define CE0_SEGMENT_ADDR_REG 0x30
49
50/* CEx Read timing compensation register */
51#define CE0_TIMING_COMPENSATION_REG 0x94
52
53enum aspeed_spi_ctl_reg_value {
54 ASPEED_SPI_BASE,
55 ASPEED_SPI_READ,
56 ASPEED_SPI_WRITE,
57 ASPEED_SPI_MAX,
58};
59
60struct aspeed_spi;
61
62struct aspeed_spi_chip {
63 struct aspeed_spi *aspi;
64 u32 cs;
65 void __iomem *ctl;
66 void __iomem *ahb_base;
67 u32 ahb_window_size;
68 u32 ctl_val[ASPEED_SPI_MAX];
69 u32 clk_freq;
70};
71
72struct aspeed_spi_data {
73 u32 ctl0;
74 u32 max_cs;
75 bool hastype;
76 u32 mode_bits;
77 u32 we0;
78 u32 timing;
79 u32 hclk_mask;
80 u32 hdiv_max;
81
82 u32 (*segment_start)(struct aspeed_spi *aspi, u32 reg);
83 u32 (*segment_end)(struct aspeed_spi *aspi, u32 reg);
84 u32 (*segment_reg)(struct aspeed_spi *aspi, u32 start, u32 end);
85 int (*calibrate)(struct aspeed_spi_chip *chip, u32 hdiv,
86 const u8 *golden_buf, u8 *test_buf);
87};
88
89#define ASPEED_SPI_MAX_NUM_CS 5
90
91struct aspeed_spi {
92 const struct aspeed_spi_data *data;
93
94 void __iomem *regs;
95 void __iomem *ahb_base;
96 u32 ahb_base_phy;
97 u32 ahb_window_size;
98 struct device *dev;
99
100 struct clk *clk;
101 u32 clk_freq;
102
103 struct aspeed_spi_chip chips[ASPEED_SPI_MAX_NUM_CS];
104};
105
106static u32 aspeed_spi_get_io_mode(const struct spi_mem_op *op)
107{
108 switch (op->data.buswidth) {
109 case 1:
110 return CTRL_IO_SINGLE_DATA;
111 case 2:
112 return CTRL_IO_DUAL_DATA;
113 case 4:
114 return CTRL_IO_QUAD_DATA;
115 default:
116 return CTRL_IO_SINGLE_DATA;
117 }
118}
119
120static void aspeed_spi_set_io_mode(struct aspeed_spi_chip *chip, u32 io_mode)
121{
122 u32 ctl;
123
124 if (io_mode > 0) {
125 ctl = readl(addr: chip->ctl) & ~CTRL_IO_MODE_MASK;
126 ctl |= io_mode;
127 writel(val: ctl, addr: chip->ctl);
128 }
129}
130
131static void aspeed_spi_start_user(struct aspeed_spi_chip *chip)
132{
133 u32 ctl = chip->ctl_val[ASPEED_SPI_BASE];
134
135 ctl |= CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE;
136 writel(val: ctl, addr: chip->ctl);
137
138 ctl &= ~CTRL_CE_STOP_ACTIVE;
139 writel(val: ctl, addr: chip->ctl);
140}
141
142static void aspeed_spi_stop_user(struct aspeed_spi_chip *chip)
143{
144 u32 ctl = chip->ctl_val[ASPEED_SPI_READ] |
145 CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE;
146
147 writel(val: ctl, addr: chip->ctl);
148
149 /* Restore defaults */
150 writel(val: chip->ctl_val[ASPEED_SPI_READ], addr: chip->ctl);
151}
152
153static int aspeed_spi_read_from_ahb(void *buf, void __iomem *src, size_t len)
154{
155 size_t offset = 0;
156
157 if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
158 IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
159 ioread32_rep(port: src, buf, count: len >> 2);
160 offset = len & ~0x3;
161 len -= offset;
162 }
163 ioread8_rep(port: src, buf: (u8 *)buf + offset, count: len);
164 return 0;
165}
166
167static int aspeed_spi_write_to_ahb(void __iomem *dst, const void *buf, size_t len)
168{
169 size_t offset = 0;
170
171 if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
172 IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
173 iowrite32_rep(port: dst, buf, count: len >> 2);
174 offset = len & ~0x3;
175 len -= offset;
176 }
177 iowrite8_rep(port: dst, buf: (const u8 *)buf + offset, count: len);
178 return 0;
179}
180
181static int aspeed_spi_send_cmd_addr(struct aspeed_spi_chip *chip, u8 addr_nbytes,
182 u64 offset, u32 opcode)
183{
184 __be32 temp;
185 u32 cmdaddr;
186
187 switch (addr_nbytes) {
188 case 3:
189 cmdaddr = offset & 0xFFFFFF;
190 cmdaddr |= opcode << 24;
191
192 temp = cpu_to_be32(cmdaddr);
193 aspeed_spi_write_to_ahb(dst: chip->ahb_base, buf: &temp, len: 4);
194 break;
195 case 4:
196 temp = cpu_to_be32(offset);
197 aspeed_spi_write_to_ahb(dst: chip->ahb_base, buf: &opcode, len: 1);
198 aspeed_spi_write_to_ahb(dst: chip->ahb_base, buf: &temp, len: 4);
199 break;
200 default:
201 WARN_ONCE(1, "Unexpected address width %u", addr_nbytes);
202 return -EOPNOTSUPP;
203 }
204 return 0;
205}
206
207static int aspeed_spi_read_reg(struct aspeed_spi_chip *chip,
208 const struct spi_mem_op *op)
209{
210 aspeed_spi_start_user(chip);
211 aspeed_spi_write_to_ahb(dst: chip->ahb_base, buf: &op->cmd.opcode, len: 1);
212 aspeed_spi_read_from_ahb(buf: op->data.buf.in,
213 src: chip->ahb_base, len: op->data.nbytes);
214 aspeed_spi_stop_user(chip);
215 return 0;
216}
217
218static int aspeed_spi_write_reg(struct aspeed_spi_chip *chip,
219 const struct spi_mem_op *op)
220{
221 aspeed_spi_start_user(chip);
222 aspeed_spi_write_to_ahb(dst: chip->ahb_base, buf: &op->cmd.opcode, len: 1);
223 aspeed_spi_write_to_ahb(dst: chip->ahb_base, buf: op->data.buf.out,
224 len: op->data.nbytes);
225 aspeed_spi_stop_user(chip);
226 return 0;
227}
228
229static ssize_t aspeed_spi_read_user(struct aspeed_spi_chip *chip,
230 const struct spi_mem_op *op,
231 u64 offset, size_t len, void *buf)
232{
233 int io_mode = aspeed_spi_get_io_mode(op);
234 u8 dummy = 0xFF;
235 int i;
236 int ret;
237
238 aspeed_spi_start_user(chip);
239
240 ret = aspeed_spi_send_cmd_addr(chip, addr_nbytes: op->addr.nbytes, offset, opcode: op->cmd.opcode);
241 if (ret < 0)
242 return ret;
243
244 if (op->dummy.buswidth && op->dummy.nbytes) {
245 for (i = 0; i < op->dummy.nbytes / op->dummy.buswidth; i++)
246 aspeed_spi_write_to_ahb(dst: chip->ahb_base, buf: &dummy, len: sizeof(dummy));
247 }
248
249 aspeed_spi_set_io_mode(chip, io_mode);
250
251 aspeed_spi_read_from_ahb(buf, src: chip->ahb_base, len);
252 aspeed_spi_stop_user(chip);
253 return 0;
254}
255
256static ssize_t aspeed_spi_write_user(struct aspeed_spi_chip *chip,
257 const struct spi_mem_op *op)
258{
259 int ret;
260
261 aspeed_spi_start_user(chip);
262 ret = aspeed_spi_send_cmd_addr(chip, addr_nbytes: op->addr.nbytes, offset: op->addr.val, opcode: op->cmd.opcode);
263 if (ret < 0)
264 return ret;
265 aspeed_spi_write_to_ahb(dst: chip->ahb_base, buf: op->data.buf.out, len: op->data.nbytes);
266 aspeed_spi_stop_user(chip);
267 return 0;
268}
269
270/* support for 1-1-1, 1-1-2 or 1-1-4 */
271static bool aspeed_spi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
272{
273 if (op->cmd.buswidth > 1)
274 return false;
275
276 if (op->addr.nbytes != 0) {
277 if (op->addr.buswidth > 1)
278 return false;
279 if (op->addr.nbytes < 3 || op->addr.nbytes > 4)
280 return false;
281 }
282
283 if (op->dummy.nbytes != 0) {
284 if (op->dummy.buswidth > 1 || op->dummy.nbytes > 7)
285 return false;
286 }
287
288 if (op->data.nbytes != 0 && op->data.buswidth > 4)
289 return false;
290
291 return spi_mem_default_supports_op(mem, op);
292}
293
294static const struct aspeed_spi_data ast2400_spi_data;
295
296static int do_aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
297{
298 struct aspeed_spi *aspi = spi_controller_get_devdata(ctlr: mem->spi->controller);
299 struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(spi: mem->spi, idx: 0)];
300 u32 addr_mode, addr_mode_backup;
301 u32 ctl_val;
302 int ret = 0;
303
304 dev_dbg(aspi->dev,
305 "CE%d %s OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x len:%#x",
306 chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write",
307 op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
308 op->dummy.buswidth, op->data.buswidth,
309 op->addr.nbytes, op->dummy.nbytes, op->data.nbytes);
310
311 addr_mode = readl(addr: aspi->regs + CE_CTRL_REG);
312 addr_mode_backup = addr_mode;
313
314 ctl_val = chip->ctl_val[ASPEED_SPI_BASE];
315 ctl_val &= ~CTRL_IO_CMD_MASK;
316
317 ctl_val |= op->cmd.opcode << CTRL_COMMAND_SHIFT;
318
319 /* 4BYTE address mode */
320 if (op->addr.nbytes) {
321 if (op->addr.nbytes == 4)
322 addr_mode |= (0x11 << chip->cs);
323 else
324 addr_mode &= ~(0x11 << chip->cs);
325
326 if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data)
327 ctl_val |= CTRL_IO_ADDRESS_4B;
328 }
329
330 if (op->dummy.nbytes)
331 ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth);
332
333 if (op->data.nbytes)
334 ctl_val |= aspeed_spi_get_io_mode(op);
335
336 if (op->data.dir == SPI_MEM_DATA_OUT)
337 ctl_val |= CTRL_IO_MODE_WRITE;
338 else
339 ctl_val |= CTRL_IO_MODE_READ;
340
341 if (addr_mode != addr_mode_backup)
342 writel(val: addr_mode, addr: aspi->regs + CE_CTRL_REG);
343 writel(val: ctl_val, addr: chip->ctl);
344
345 if (op->data.dir == SPI_MEM_DATA_IN) {
346 if (!op->addr.nbytes)
347 ret = aspeed_spi_read_reg(chip, op);
348 else
349 ret = aspeed_spi_read_user(chip, op, offset: op->addr.val,
350 len: op->data.nbytes, buf: op->data.buf.in);
351 } else {
352 if (!op->addr.nbytes)
353 ret = aspeed_spi_write_reg(chip, op);
354 else
355 ret = aspeed_spi_write_user(chip, op);
356 }
357
358 /* Restore defaults */
359 if (addr_mode != addr_mode_backup)
360 writel(val: addr_mode_backup, addr: aspi->regs + CE_CTRL_REG);
361 writel(val: chip->ctl_val[ASPEED_SPI_READ], addr: chip->ctl);
362 return ret;
363}
364
365static int aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
366{
367 int ret;
368
369 ret = do_aspeed_spi_exec_op(mem, op);
370 if (ret)
371 dev_err(&mem->spi->dev, "operation failed: %d\n", ret);
372 return ret;
373}
374
375static const char *aspeed_spi_get_name(struct spi_mem *mem)
376{
377 struct aspeed_spi *aspi = spi_controller_get_devdata(ctlr: mem->spi->controller);
378 struct device *dev = aspi->dev;
379
380 return devm_kasprintf(dev, GFP_KERNEL, fmt: "%s.%d", dev_name(dev),
381 spi_get_chipselect(spi: mem->spi, idx: 0));
382}
383
384struct aspeed_spi_window {
385 u32 cs;
386 u32 offset;
387 u32 size;
388};
389
390static void aspeed_spi_get_windows(struct aspeed_spi *aspi,
391 struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS])
392{
393 const struct aspeed_spi_data *data = aspi->data;
394 u32 reg_val;
395 u32 cs;
396
397 for (cs = 0; cs < aspi->data->max_cs; cs++) {
398 reg_val = readl(addr: aspi->regs + CE0_SEGMENT_ADDR_REG + cs * 4);
399 windows[cs].cs = cs;
400 windows[cs].size = data->segment_end(aspi, reg_val) -
401 data->segment_start(aspi, reg_val);
402 windows[cs].offset = data->segment_start(aspi, reg_val) - aspi->ahb_base_phy;
403 dev_vdbg(aspi->dev, "CE%d offset=0x%.8x size=0x%x\n", cs,
404 windows[cs].offset, windows[cs].size);
405 }
406}
407
408/*
409 * On the AST2600, some CE windows are closed by default at reset but
410 * U-Boot should open all.
411 */
412static int aspeed_spi_chip_set_default_window(struct aspeed_spi_chip *chip)
413{
414 struct aspeed_spi *aspi = chip->aspi;
415 struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 };
416 struct aspeed_spi_window *win = &windows[chip->cs];
417
418 /* No segment registers for the AST2400 SPI controller */
419 if (aspi->data == &ast2400_spi_data) {
420 win->offset = 0;
421 win->size = aspi->ahb_window_size;
422 } else {
423 aspeed_spi_get_windows(aspi, windows);
424 }
425
426 chip->ahb_base = aspi->ahb_base + win->offset;
427 chip->ahb_window_size = win->size;
428
429 dev_dbg(aspi->dev, "CE%d default window [ 0x%.8x - 0x%.8x ] %dMB",
430 chip->cs, aspi->ahb_base_phy + win->offset,
431 aspi->ahb_base_phy + win->offset + win->size - 1,
432 win->size >> 20);
433
434 return chip->ahb_window_size ? 0 : -1;
435}
436
437static int aspeed_spi_set_window(struct aspeed_spi *aspi,
438 const struct aspeed_spi_window *win)
439{
440 u32 start = aspi->ahb_base_phy + win->offset;
441 u32 end = start + win->size;
442 void __iomem *seg_reg = aspi->regs + CE0_SEGMENT_ADDR_REG + win->cs * 4;
443 u32 seg_val_backup = readl(addr: seg_reg);
444 u32 seg_val = aspi->data->segment_reg(aspi, start, end);
445
446 if (seg_val == seg_val_backup)
447 return 0;
448
449 writel(val: seg_val, addr: seg_reg);
450
451 /*
452 * Restore initial value if something goes wrong else we could
453 * loose access to the chip.
454 */
455 if (seg_val != readl(addr: seg_reg)) {
456 dev_err(aspi->dev, "CE%d invalid window [ 0x%.8x - 0x%.8x ] %dMB",
457 win->cs, start, end - 1, win->size >> 20);
458 writel(val: seg_val_backup, addr: seg_reg);
459 return -EIO;
460 }
461
462 if (win->size)
463 dev_dbg(aspi->dev, "CE%d new window [ 0x%.8x - 0x%.8x ] %dMB",
464 win->cs, start, end - 1, win->size >> 20);
465 else
466 dev_dbg(aspi->dev, "CE%d window closed", win->cs);
467
468 return 0;
469}
470
471/*
472 * Yet to be done when possible :
473 * - Align mappings on flash size (we don't have the info)
474 * - ioremap each window, not strictly necessary since the overall window
475 * is correct.
476 */
477static const struct aspeed_spi_data ast2500_spi_data;
478static const struct aspeed_spi_data ast2600_spi_data;
479static const struct aspeed_spi_data ast2600_fmc_data;
480
481static int aspeed_spi_chip_adjust_window(struct aspeed_spi_chip *chip,
482 u32 local_offset, u32 size)
483{
484 struct aspeed_spi *aspi = chip->aspi;
485 struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 };
486 struct aspeed_spi_window *win = &windows[chip->cs];
487 int ret;
488
489 /* No segment registers for the AST2400 SPI controller */
490 if (aspi->data == &ast2400_spi_data)
491 return 0;
492
493 /*
494 * Due to an HW issue on the AST2500 SPI controller, the CE0
495 * window size should be smaller than the maximum 128MB.
496 */
497 if (aspi->data == &ast2500_spi_data && chip->cs == 0 && size == SZ_128M) {
498 size = 120 << 20;
499 dev_info(aspi->dev, "CE%d window resized to %dMB (AST2500 HW quirk)",
500 chip->cs, size >> 20);
501 }
502
503 /*
504 * The decoding size of AST2600 SPI controller should set at
505 * least 2MB.
506 */
507 if ((aspi->data == &ast2600_spi_data || aspi->data == &ast2600_fmc_data) &&
508 size < SZ_2M) {
509 size = SZ_2M;
510 dev_info(aspi->dev, "CE%d window resized to %dMB (AST2600 Decoding)",
511 chip->cs, size >> 20);
512 }
513
514 aspeed_spi_get_windows(aspi, windows);
515
516 /* Adjust this chip window */
517 win->offset += local_offset;
518 win->size = size;
519
520 if (win->offset + win->size > aspi->ahb_window_size) {
521 win->size = aspi->ahb_window_size - win->offset;
522 dev_warn(aspi->dev, "CE%d window resized to %dMB", chip->cs, win->size >> 20);
523 }
524
525 ret = aspeed_spi_set_window(aspi, win);
526 if (ret)
527 return ret;
528
529 /* Update chip mapping info */
530 chip->ahb_base = aspi->ahb_base + win->offset;
531 chip->ahb_window_size = win->size;
532
533 /*
534 * Also adjust next chip window to make sure that it does not
535 * overlap with the current window.
536 */
537 if (chip->cs < aspi->data->max_cs - 1) {
538 struct aspeed_spi_window *next = &windows[chip->cs + 1];
539
540 /* Change offset and size to keep the same end address */
541 if ((next->offset + next->size) > (win->offset + win->size))
542 next->size = (next->offset + next->size) - (win->offset + win->size);
543 else
544 next->size = 0;
545 next->offset = win->offset + win->size;
546
547 aspeed_spi_set_window(aspi, win: next);
548 }
549 return 0;
550}
551
552static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip);
553
554static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
555{
556 struct aspeed_spi *aspi = spi_controller_get_devdata(ctlr: desc->mem->spi->controller);
557 struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(spi: desc->mem->spi, idx: 0)];
558 struct spi_mem_op *op = &desc->info.op_tmpl;
559 u32 ctl_val;
560 int ret = 0;
561
562 dev_dbg(aspi->dev,
563 "CE%d %s dirmap [ 0x%.8llx - 0x%.8llx ] OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x\n",
564 chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write",
565 desc->info.offset, desc->info.offset + desc->info.length,
566 op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
567 op->dummy.buswidth, op->data.buswidth,
568 op->addr.nbytes, op->dummy.nbytes);
569
570 chip->clk_freq = desc->mem->spi->max_speed_hz;
571
572 /* Only for reads */
573 if (op->data.dir != SPI_MEM_DATA_IN)
574 return -EOPNOTSUPP;
575
576 aspeed_spi_chip_adjust_window(chip, local_offset: desc->info.offset, size: desc->info.length);
577
578 if (desc->info.length > chip->ahb_window_size)
579 dev_warn(aspi->dev, "CE%d window (%dMB) too small for mapping",
580 chip->cs, chip->ahb_window_size >> 20);
581
582 /* Define the default IO read settings */
583 ctl_val = readl(addr: chip->ctl) & ~CTRL_IO_CMD_MASK;
584 ctl_val |= aspeed_spi_get_io_mode(op) |
585 op->cmd.opcode << CTRL_COMMAND_SHIFT |
586 CTRL_IO_MODE_READ;
587
588 if (op->dummy.nbytes)
589 ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth);
590
591 /* Tune 4BYTE address mode */
592 if (op->addr.nbytes) {
593 u32 addr_mode = readl(addr: aspi->regs + CE_CTRL_REG);
594
595 if (op->addr.nbytes == 4)
596 addr_mode |= (0x11 << chip->cs);
597 else
598 addr_mode &= ~(0x11 << chip->cs);
599 writel(val: addr_mode, addr: aspi->regs + CE_CTRL_REG);
600
601 /* AST2400 SPI controller sets 4BYTE address mode in
602 * CE0 Control Register
603 */
604 if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data)
605 ctl_val |= CTRL_IO_ADDRESS_4B;
606 }
607
608 /* READ mode is the controller default setting */
609 chip->ctl_val[ASPEED_SPI_READ] = ctl_val;
610 writel(val: chip->ctl_val[ASPEED_SPI_READ], addr: chip->ctl);
611
612 ret = aspeed_spi_do_calibration(chip);
613
614 dev_info(aspi->dev, "CE%d read buswidth:%d [0x%08x]\n",
615 chip->cs, op->data.buswidth, chip->ctl_val[ASPEED_SPI_READ]);
616
617 return ret;
618}
619
620static ssize_t aspeed_spi_dirmap_read(struct spi_mem_dirmap_desc *desc,
621 u64 offset, size_t len, void *buf)
622{
623 struct aspeed_spi *aspi = spi_controller_get_devdata(ctlr: desc->mem->spi->controller);
624 struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(spi: desc->mem->spi, idx: 0)];
625
626 /* Switch to USER command mode if mapping window is too small */
627 if (chip->ahb_window_size < offset + len) {
628 int ret;
629
630 ret = aspeed_spi_read_user(chip, op: &desc->info.op_tmpl, offset, len, buf);
631 if (ret < 0)
632 return ret;
633 } else {
634 memcpy_fromio(buf, chip->ahb_base + offset, len);
635 }
636
637 return len;
638}
639
640static const struct spi_controller_mem_ops aspeed_spi_mem_ops = {
641 .supports_op = aspeed_spi_supports_op,
642 .exec_op = aspeed_spi_exec_op,
643 .get_name = aspeed_spi_get_name,
644 .dirmap_create = aspeed_spi_dirmap_create,
645 .dirmap_read = aspeed_spi_dirmap_read,
646};
647
648static void aspeed_spi_chip_set_type(struct aspeed_spi *aspi, unsigned int cs, int type)
649{
650 u32 reg;
651
652 reg = readl(addr: aspi->regs + CONFIG_REG);
653 reg &= ~(0x3 << (cs * 2));
654 reg |= type << (cs * 2);
655 writel(val: reg, addr: aspi->regs + CONFIG_REG);
656}
657
658static void aspeed_spi_chip_enable(struct aspeed_spi *aspi, unsigned int cs, bool enable)
659{
660 u32 we_bit = BIT(aspi->data->we0 + cs);
661 u32 reg = readl(addr: aspi->regs + CONFIG_REG);
662
663 if (enable)
664 reg |= we_bit;
665 else
666 reg &= ~we_bit;
667 writel(val: reg, addr: aspi->regs + CONFIG_REG);
668}
669
670static int aspeed_spi_setup(struct spi_device *spi)
671{
672 struct aspeed_spi *aspi = spi_controller_get_devdata(ctlr: spi->controller);
673 const struct aspeed_spi_data *data = aspi->data;
674 unsigned int cs = spi_get_chipselect(spi, idx: 0);
675 struct aspeed_spi_chip *chip = &aspi->chips[cs];
676
677 chip->aspi = aspi;
678 chip->cs = cs;
679 chip->ctl = aspi->regs + data->ctl0 + cs * 4;
680
681 /* The driver only supports SPI type flash */
682 if (data->hastype)
683 aspeed_spi_chip_set_type(aspi, cs, CONFIG_TYPE_SPI);
684
685 if (aspeed_spi_chip_set_default_window(chip) < 0) {
686 dev_warn(aspi->dev, "CE%d window invalid", cs);
687 return -EINVAL;
688 }
689
690 aspeed_spi_chip_enable(aspi, cs, enable: true);
691
692 chip->ctl_val[ASPEED_SPI_BASE] = CTRL_CE_STOP_ACTIVE | CTRL_IO_MODE_USER;
693
694 dev_dbg(aspi->dev, "CE%d setup done\n", cs);
695 return 0;
696}
697
698static void aspeed_spi_cleanup(struct spi_device *spi)
699{
700 struct aspeed_spi *aspi = spi_controller_get_devdata(ctlr: spi->controller);
701 unsigned int cs = spi_get_chipselect(spi, idx: 0);
702
703 aspeed_spi_chip_enable(aspi, cs, enable: false);
704
705 dev_dbg(aspi->dev, "CE%d cleanup done\n", cs);
706}
707
708static void aspeed_spi_enable(struct aspeed_spi *aspi, bool enable)
709{
710 int cs;
711
712 for (cs = 0; cs < aspi->data->max_cs; cs++)
713 aspeed_spi_chip_enable(aspi, cs, enable);
714}
715
716static int aspeed_spi_probe(struct platform_device *pdev)
717{
718 struct device *dev = &pdev->dev;
719 const struct aspeed_spi_data *data;
720 struct spi_controller *ctlr;
721 struct aspeed_spi *aspi;
722 struct resource *res;
723 int ret;
724
725 data = of_device_get_match_data(dev: &pdev->dev);
726 if (!data)
727 return -ENODEV;
728
729 ctlr = devm_spi_alloc_host(dev, size: sizeof(*aspi));
730 if (!ctlr)
731 return -ENOMEM;
732
733 aspi = spi_controller_get_devdata(ctlr);
734 platform_set_drvdata(pdev, data: aspi);
735 aspi->data = data;
736 aspi->dev = dev;
737
738 aspi->regs = devm_platform_ioremap_resource(pdev, index: 0);
739 if (IS_ERR(ptr: aspi->regs))
740 return PTR_ERR(ptr: aspi->regs);
741
742 aspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, index: 1, res: &res);
743 if (IS_ERR(ptr: aspi->ahb_base)) {
744 dev_err(dev, "missing AHB mapping window\n");
745 return PTR_ERR(ptr: aspi->ahb_base);
746 }
747
748 aspi->ahb_window_size = resource_size(res);
749 aspi->ahb_base_phy = res->start;
750
751 aspi->clk = devm_clk_get_enabled(dev: &pdev->dev, NULL);
752 if (IS_ERR(ptr: aspi->clk)) {
753 dev_err(dev, "missing clock\n");
754 return PTR_ERR(ptr: aspi->clk);
755 }
756
757 aspi->clk_freq = clk_get_rate(clk: aspi->clk);
758 if (!aspi->clk_freq) {
759 dev_err(dev, "invalid clock\n");
760 return -EINVAL;
761 }
762
763 /* IRQ is for DMA, which the driver doesn't support yet */
764
765 ctlr->mode_bits = SPI_RX_DUAL | SPI_TX_DUAL | data->mode_bits;
766 ctlr->bus_num = pdev->id;
767 ctlr->mem_ops = &aspeed_spi_mem_ops;
768 ctlr->setup = aspeed_spi_setup;
769 ctlr->cleanup = aspeed_spi_cleanup;
770 ctlr->num_chipselect = data->max_cs;
771 ctlr->dev.of_node = dev->of_node;
772
773 ret = devm_spi_register_controller(dev, ctlr);
774 if (ret)
775 dev_err(&pdev->dev, "spi_register_controller failed\n");
776
777 return ret;
778}
779
780static void aspeed_spi_remove(struct platform_device *pdev)
781{
782 struct aspeed_spi *aspi = platform_get_drvdata(pdev);
783
784 aspeed_spi_enable(aspi, enable: false);
785}
786
787/*
788 * AHB mappings
789 */
790
791/*
792 * The Segment Registers of the AST2400 and AST2500 use a 8MB unit.
793 * The address range is encoded with absolute addresses in the overall
794 * mapping window.
795 */
796static u32 aspeed_spi_segment_start(struct aspeed_spi *aspi, u32 reg)
797{
798 return ((reg >> 16) & 0xFF) << 23;
799}
800
801static u32 aspeed_spi_segment_end(struct aspeed_spi *aspi, u32 reg)
802{
803 return ((reg >> 24) & 0xFF) << 23;
804}
805
806static u32 aspeed_spi_segment_reg(struct aspeed_spi *aspi, u32 start, u32 end)
807{
808 return (((start >> 23) & 0xFF) << 16) | (((end >> 23) & 0xFF) << 24);
809}
810
811/*
812 * The Segment Registers of the AST2600 use a 1MB unit. The address
813 * range is encoded with offsets in the overall mapping window.
814 */
815
816#define AST2600_SEG_ADDR_MASK 0x0ff00000
817
818static u32 aspeed_spi_segment_ast2600_start(struct aspeed_spi *aspi,
819 u32 reg)
820{
821 u32 start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
822
823 return aspi->ahb_base_phy + start_offset;
824}
825
826static u32 aspeed_spi_segment_ast2600_end(struct aspeed_spi *aspi,
827 u32 reg)
828{
829 u32 end_offset = reg & AST2600_SEG_ADDR_MASK;
830
831 /* segment is disabled */
832 if (!end_offset)
833 return aspi->ahb_base_phy;
834
835 return aspi->ahb_base_phy + end_offset + 0x100000;
836}
837
838static u32 aspeed_spi_segment_ast2600_reg(struct aspeed_spi *aspi,
839 u32 start, u32 end)
840{
841 /* disable zero size segments */
842 if (start == end)
843 return 0;
844
845 return ((start & AST2600_SEG_ADDR_MASK) >> 16) |
846 ((end - 1) & AST2600_SEG_ADDR_MASK);
847}
848
849/*
850 * Read timing compensation sequences
851 */
852
853#define CALIBRATE_BUF_SIZE SZ_16K
854
855static bool aspeed_spi_check_reads(struct aspeed_spi_chip *chip,
856 const u8 *golden_buf, u8 *test_buf)
857{
858 int i;
859
860 for (i = 0; i < 10; i++) {
861 memcpy_fromio(test_buf, chip->ahb_base, CALIBRATE_BUF_SIZE);
862 if (memcmp(p: test_buf, q: golden_buf, CALIBRATE_BUF_SIZE) != 0) {
863#if defined(VERBOSE_DEBUG)
864 print_hex_dump_bytes(DEVICE_NAME " fail: ", DUMP_PREFIX_NONE,
865 test_buf, 0x100);
866#endif
867 return false;
868 }
869 }
870 return true;
871}
872
873#define FREAD_TPASS(i) (((i) / 2) | (((i) & 1) ? 0 : 8))
874
875/*
876 * The timing register is shared by all devices. Only update for CE0.
877 */
878static int aspeed_spi_calibrate(struct aspeed_spi_chip *chip, u32 hdiv,
879 const u8 *golden_buf, u8 *test_buf)
880{
881 struct aspeed_spi *aspi = chip->aspi;
882 const struct aspeed_spi_data *data = aspi->data;
883 int i;
884 int good_pass = -1, pass_count = 0;
885 u32 shift = (hdiv - 1) << 2;
886 u32 mask = ~(0xfu << shift);
887 u32 fread_timing_val = 0;
888
889 /* Try HCLK delay 0..5, each one with/without delay and look for a
890 * good pair.
891 */
892 for (i = 0; i < 12; i++) {
893 bool pass;
894
895 if (chip->cs == 0) {
896 fread_timing_val &= mask;
897 fread_timing_val |= FREAD_TPASS(i) << shift;
898 writel(val: fread_timing_val, addr: aspi->regs + data->timing);
899 }
900 pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
901 dev_dbg(aspi->dev,
902 " * [%08x] %d HCLK delay, %dns DI delay : %s",
903 fread_timing_val, i / 2, (i & 1) ? 0 : 4,
904 pass ? "PASS" : "FAIL");
905 if (pass) {
906 pass_count++;
907 if (pass_count == 3) {
908 good_pass = i - 1;
909 break;
910 }
911 } else {
912 pass_count = 0;
913 }
914 }
915
916 /* No good setting for this frequency */
917 if (good_pass < 0)
918 return -1;
919
920 /* We have at least one pass of margin, let's use first pass */
921 if (chip->cs == 0) {
922 fread_timing_val &= mask;
923 fread_timing_val |= FREAD_TPASS(good_pass) << shift;
924 writel(val: fread_timing_val, addr: aspi->regs + data->timing);
925 }
926 dev_dbg(aspi->dev, " * -> good is pass %d [0x%08x]",
927 good_pass, fread_timing_val);
928 return 0;
929}
930
931static bool aspeed_spi_check_calib_data(const u8 *test_buf, u32 size)
932{
933 const u32 *tb32 = (const u32 *)test_buf;
934 u32 i, cnt = 0;
935
936 /* We check if we have enough words that are neither all 0
937 * nor all 1's so the calibration can be considered valid.
938 *
939 * I use an arbitrary threshold for now of 64
940 */
941 size >>= 2;
942 for (i = 0; i < size; i++) {
943 if (tb32[i] != 0 && tb32[i] != 0xffffffff)
944 cnt++;
945 }
946 return cnt >= 64;
947}
948
949static const u32 aspeed_spi_hclk_divs[] = {
950 0xf, /* HCLK */
951 0x7, /* HCLK/2 */
952 0xe, /* HCLK/3 */
953 0x6, /* HCLK/4 */
954 0xd, /* HCLK/5 */
955};
956
957#define ASPEED_SPI_HCLK_DIV(i) \
958 (aspeed_spi_hclk_divs[(i) - 1] << CTRL_FREQ_SEL_SHIFT)
959
960static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip)
961{
962 struct aspeed_spi *aspi = chip->aspi;
963 const struct aspeed_spi_data *data = aspi->data;
964 u32 ahb_freq = aspi->clk_freq;
965 u32 max_freq = chip->clk_freq;
966 u32 ctl_val;
967 u8 *golden_buf = NULL;
968 u8 *test_buf = NULL;
969 int i, rc, best_div = -1;
970
971 dev_dbg(aspi->dev, "calculate timing compensation - AHB freq: %d MHz",
972 ahb_freq / 1000000);
973
974 /*
975 * use the related low frequency to get check calibration data
976 * and get golden data.
977 */
978 ctl_val = chip->ctl_val[ASPEED_SPI_READ] & data->hclk_mask;
979 writel(val: ctl_val, addr: chip->ctl);
980
981 test_buf = kzalloc(CALIBRATE_BUF_SIZE * 2, GFP_KERNEL);
982 if (!test_buf)
983 return -ENOMEM;
984
985 golden_buf = test_buf + CALIBRATE_BUF_SIZE;
986
987 memcpy_fromio(golden_buf, chip->ahb_base, CALIBRATE_BUF_SIZE);
988 if (!aspeed_spi_check_calib_data(test_buf: golden_buf, CALIBRATE_BUF_SIZE)) {
989 dev_info(aspi->dev, "Calibration area too uniform, using low speed");
990 goto no_calib;
991 }
992
993#if defined(VERBOSE_DEBUG)
994 print_hex_dump_bytes(DEVICE_NAME " good: ", DUMP_PREFIX_NONE,
995 golden_buf, 0x100);
996#endif
997
998 /* Now we iterate the HCLK dividers until we find our breaking point */
999 for (i = ARRAY_SIZE(aspeed_spi_hclk_divs); i > data->hdiv_max - 1; i--) {
1000 u32 tv, freq;
1001
1002 freq = ahb_freq / i;
1003 if (freq > max_freq)
1004 continue;
1005
1006 /* Set the timing */
1007 tv = chip->ctl_val[ASPEED_SPI_READ] | ASPEED_SPI_HCLK_DIV(i);
1008 writel(val: tv, addr: chip->ctl);
1009 dev_dbg(aspi->dev, "Trying HCLK/%d [%08x] ...", i, tv);
1010 rc = data->calibrate(chip, i, golden_buf, test_buf);
1011 if (rc == 0)
1012 best_div = i;
1013 }
1014
1015 /* Nothing found ? */
1016 if (best_div < 0) {
1017 dev_warn(aspi->dev, "No good frequency, using dumb slow");
1018 } else {
1019 dev_dbg(aspi->dev, "Found good read timings at HCLK/%d", best_div);
1020
1021 /* Record the freq */
1022 for (i = 0; i < ASPEED_SPI_MAX; i++)
1023 chip->ctl_val[i] = (chip->ctl_val[i] & data->hclk_mask) |
1024 ASPEED_SPI_HCLK_DIV(best_div);
1025 }
1026
1027no_calib:
1028 writel(val: chip->ctl_val[ASPEED_SPI_READ], addr: chip->ctl);
1029 kfree(objp: test_buf);
1030 return 0;
1031}
1032
1033#define TIMING_DELAY_DI BIT(3)
1034#define TIMING_DELAY_HCYCLE_MAX 5
1035#define TIMING_REG_AST2600(chip) \
1036 ((chip)->aspi->regs + (chip)->aspi->data->timing + \
1037 (chip)->cs * 4)
1038
1039static int aspeed_spi_ast2600_calibrate(struct aspeed_spi_chip *chip, u32 hdiv,
1040 const u8 *golden_buf, u8 *test_buf)
1041{
1042 struct aspeed_spi *aspi = chip->aspi;
1043 int hcycle;
1044 u32 shift = (hdiv - 2) << 3;
1045 u32 mask = ~(0xfu << shift);
1046 u32 fread_timing_val = 0;
1047
1048 for (hcycle = 0; hcycle <= TIMING_DELAY_HCYCLE_MAX; hcycle++) {
1049 int delay_ns;
1050 bool pass = false;
1051
1052 fread_timing_val &= mask;
1053 fread_timing_val |= hcycle << shift;
1054
1055 /* no DI input delay first */
1056 writel(val: fread_timing_val, TIMING_REG_AST2600(chip));
1057 pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
1058 dev_dbg(aspi->dev,
1059 " * [%08x] %d HCLK delay, DI delay none : %s",
1060 fread_timing_val, hcycle, pass ? "PASS" : "FAIL");
1061 if (pass)
1062 return 0;
1063
1064 /* Add DI input delays */
1065 fread_timing_val &= mask;
1066 fread_timing_val |= (TIMING_DELAY_DI | hcycle) << shift;
1067
1068 for (delay_ns = 0; delay_ns < 0x10; delay_ns++) {
1069 fread_timing_val &= ~(0xf << (4 + shift));
1070 fread_timing_val |= delay_ns << (4 + shift);
1071
1072 writel(val: fread_timing_val, TIMING_REG_AST2600(chip));
1073 pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
1074 dev_dbg(aspi->dev,
1075 " * [%08x] %d HCLK delay, DI delay %d.%dns : %s",
1076 fread_timing_val, hcycle, (delay_ns + 1) / 2,
1077 (delay_ns + 1) & 1 ? 5 : 5, pass ? "PASS" : "FAIL");
1078 /*
1079 * TODO: This is optimistic. We should look
1080 * for a working interval and save the middle
1081 * value in the read timing register.
1082 */
1083 if (pass)
1084 return 0;
1085 }
1086 }
1087
1088 /* No good setting for this frequency */
1089 return -1;
1090}
1091
1092/*
1093 * Platform definitions
1094 */
1095static const struct aspeed_spi_data ast2400_fmc_data = {
1096 .max_cs = 5,
1097 .hastype = true,
1098 .we0 = 16,
1099 .ctl0 = CE0_CTRL_REG,
1100 .timing = CE0_TIMING_COMPENSATION_REG,
1101 .hclk_mask = 0xfffff0ff,
1102 .hdiv_max = 1,
1103 .calibrate = aspeed_spi_calibrate,
1104 .segment_start = aspeed_spi_segment_start,
1105 .segment_end = aspeed_spi_segment_end,
1106 .segment_reg = aspeed_spi_segment_reg,
1107};
1108
1109static const struct aspeed_spi_data ast2400_spi_data = {
1110 .max_cs = 1,
1111 .hastype = false,
1112 .we0 = 0,
1113 .ctl0 = 0x04,
1114 .timing = 0x14,
1115 .hclk_mask = 0xfffff0ff,
1116 .hdiv_max = 1,
1117 .calibrate = aspeed_spi_calibrate,
1118 /* No segment registers */
1119};
1120
1121static const struct aspeed_spi_data ast2500_fmc_data = {
1122 .max_cs = 3,
1123 .hastype = true,
1124 .we0 = 16,
1125 .ctl0 = CE0_CTRL_REG,
1126 .timing = CE0_TIMING_COMPENSATION_REG,
1127 .hclk_mask = 0xffffd0ff,
1128 .hdiv_max = 1,
1129 .calibrate = aspeed_spi_calibrate,
1130 .segment_start = aspeed_spi_segment_start,
1131 .segment_end = aspeed_spi_segment_end,
1132 .segment_reg = aspeed_spi_segment_reg,
1133};
1134
1135static const struct aspeed_spi_data ast2500_spi_data = {
1136 .max_cs = 2,
1137 .hastype = false,
1138 .we0 = 16,
1139 .ctl0 = CE0_CTRL_REG,
1140 .timing = CE0_TIMING_COMPENSATION_REG,
1141 .hclk_mask = 0xffffd0ff,
1142 .hdiv_max = 1,
1143 .calibrate = aspeed_spi_calibrate,
1144 .segment_start = aspeed_spi_segment_start,
1145 .segment_end = aspeed_spi_segment_end,
1146 .segment_reg = aspeed_spi_segment_reg,
1147};
1148
1149static const struct aspeed_spi_data ast2600_fmc_data = {
1150 .max_cs = 3,
1151 .hastype = false,
1152 .mode_bits = SPI_RX_QUAD | SPI_TX_QUAD,
1153 .we0 = 16,
1154 .ctl0 = CE0_CTRL_REG,
1155 .timing = CE0_TIMING_COMPENSATION_REG,
1156 .hclk_mask = 0xf0fff0ff,
1157 .hdiv_max = 2,
1158 .calibrate = aspeed_spi_ast2600_calibrate,
1159 .segment_start = aspeed_spi_segment_ast2600_start,
1160 .segment_end = aspeed_spi_segment_ast2600_end,
1161 .segment_reg = aspeed_spi_segment_ast2600_reg,
1162};
1163
1164static const struct aspeed_spi_data ast2600_spi_data = {
1165 .max_cs = 2,
1166 .hastype = false,
1167 .mode_bits = SPI_RX_QUAD | SPI_TX_QUAD,
1168 .we0 = 16,
1169 .ctl0 = CE0_CTRL_REG,
1170 .timing = CE0_TIMING_COMPENSATION_REG,
1171 .hclk_mask = 0xf0fff0ff,
1172 .hdiv_max = 2,
1173 .calibrate = aspeed_spi_ast2600_calibrate,
1174 .segment_start = aspeed_spi_segment_ast2600_start,
1175 .segment_end = aspeed_spi_segment_ast2600_end,
1176 .segment_reg = aspeed_spi_segment_ast2600_reg,
1177};
1178
1179static const struct of_device_id aspeed_spi_matches[] = {
1180 { .compatible = "aspeed,ast2400-fmc", .data = &ast2400_fmc_data },
1181 { .compatible = "aspeed,ast2400-spi", .data = &ast2400_spi_data },
1182 { .compatible = "aspeed,ast2500-fmc", .data = &ast2500_fmc_data },
1183 { .compatible = "aspeed,ast2500-spi", .data = &ast2500_spi_data },
1184 { .compatible = "aspeed,ast2600-fmc", .data = &ast2600_fmc_data },
1185 { .compatible = "aspeed,ast2600-spi", .data = &ast2600_spi_data },
1186 { }
1187};
1188MODULE_DEVICE_TABLE(of, aspeed_spi_matches);
1189
1190static struct platform_driver aspeed_spi_driver = {
1191 .probe = aspeed_spi_probe,
1192 .remove_new = aspeed_spi_remove,
1193 .driver = {
1194 .name = DEVICE_NAME,
1195 .of_match_table = aspeed_spi_matches,
1196 }
1197};
1198
1199module_platform_driver(aspeed_spi_driver);
1200
1201MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
1202MODULE_AUTHOR("Chin-Ting Kuo <chin-ting_kuo@aspeedtech.com>");
1203MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
1204MODULE_LICENSE("GPL v2");
1205

source code of linux/drivers/spi/spi-aspeed-smc.c