1// SPDX-License-Identifier: GPL-2.0-only
2//
3// Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
4//
5// Authors:
6// Ramil Zaripov <Ramil.Zaripov@baikalelectronics.ru>
7// Serge Semin <Sergey.Semin@baikalelectronics.ru>
8//
9// Baikal-T1 DW APB SPI and System Boot SPI driver
10//
11
12#include <linux/clk.h>
13#include <linux/cpumask.h>
14#include <linux/err.h>
15#include <linux/interrupt.h>
16#include <linux/module.h>
17#include <linux/mux/consumer.h>
18#include <linux/of.h>
19#include <linux/of_platform.h>
20#include <linux/platform_device.h>
21#include <linux/pm_runtime.h>
22#include <linux/property.h>
23#include <linux/slab.h>
24#include <linux/spi/spi-mem.h>
25#include <linux/spi/spi.h>
26
27#include "spi-dw.h"
28
29#define BT1_BOOT_DIRMAP 0
30#define BT1_BOOT_REGS 1
31
32struct dw_spi_bt1 {
33 struct dw_spi dws;
34 struct clk *clk;
35 struct mux_control *mux;
36
37#ifdef CONFIG_SPI_DW_BT1_DIRMAP
38 void __iomem *map;
39 resource_size_t map_len;
40#endif
41};
42#define to_dw_spi_bt1(_ctlr) \
43 container_of(spi_controller_get_devdata(_ctlr), struct dw_spi_bt1, dws)
44
45typedef int (*dw_spi_bt1_init_cb)(struct platform_device *pdev,
46 struct dw_spi_bt1 *dwsbt1);
47
48#ifdef CONFIG_SPI_DW_BT1_DIRMAP
49
50static int dw_spi_bt1_dirmap_create(struct spi_mem_dirmap_desc *desc)
51{
52 struct dw_spi_bt1 *dwsbt1 = to_dw_spi_bt1(desc->mem->spi->controller);
53
54 if (!dwsbt1->map ||
55 !dwsbt1->dws.mem_ops.supports_op(desc->mem, &desc->info.op_tmpl))
56 return -EOPNOTSUPP;
57
58 /*
59 * Make sure the requested region doesn't go out of the physically
60 * mapped flash memory bounds and the operation is read-only.
61 */
62 if (desc->info.offset + desc->info.length > dwsbt1->map_len ||
63 desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
64 return -EOPNOTSUPP;
65
66 return 0;
67}
68
69/*
70 * Directly mapped SPI memory region is only accessible in the dword chunks.
71 * That's why we have to create a dedicated read-method to copy data from there
72 * to the passed buffer.
73 */
74static void dw_spi_bt1_dirmap_copy_from_map(void *to, void __iomem *from, size_t len)
75{
76 size_t shift, chunk;
77 u32 data;
78
79 /*
80 * We split the copying up into the next three stages: unaligned head,
81 * aligned body, unaligned tail.
82 */
83 shift = (size_t)from & 0x3;
84 if (shift) {
85 chunk = min_t(size_t, 4 - shift, len);
86 data = readl_relaxed(from - shift);
87 memcpy(to, (char *)&data + shift, chunk);
88 from += chunk;
89 to += chunk;
90 len -= chunk;
91 }
92
93 while (len >= 4) {
94 data = readl_relaxed(from);
95 memcpy(to, &data, 4);
96 from += 4;
97 to += 4;
98 len -= 4;
99 }
100
101 if (len) {
102 data = readl_relaxed(from);
103 memcpy(to, &data, len);
104 }
105}
106
107static ssize_t dw_spi_bt1_dirmap_read(struct spi_mem_dirmap_desc *desc,
108 u64 offs, size_t len, void *buf)
109{
110 struct dw_spi_bt1 *dwsbt1 = to_dw_spi_bt1(desc->mem->spi->controller);
111 struct dw_spi *dws = &dwsbt1->dws;
112 struct spi_mem *mem = desc->mem;
113 struct dw_spi_cfg cfg;
114 int ret;
115
116 /*
117 * Make sure the requested operation length is valid. Truncate the
118 * length if it's greater than the length of the MMIO region.
119 */
120 if (offs >= dwsbt1->map_len || !len)
121 return 0;
122
123 len = min_t(size_t, len, dwsbt1->map_len - offs);
124
125 /* Collect the controller configuration required by the operation */
126 cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD;
127 cfg.dfs = 8;
128 cfg.ndf = 4;
129 cfg.freq = mem->spi->max_speed_hz;
130
131 /* Make sure the corresponding CS is de-asserted on transmission */
132 dw_spi_set_cs(spi: mem->spi, enable: false);
133
134 dw_spi_enable_chip(dws, enable: 0);
135
136 dw_spi_update_config(dws, spi: mem->spi, cfg: &cfg);
137
138 dw_spi_umask_intr(dws, DW_SPI_INT_RXFI);
139
140 dw_spi_enable_chip(dws, enable: 1);
141
142 /*
143 * Enable the transparent mode of the System Boot Controller.
144 * The SPI core IO should have been locked before calling this method
145 * so noone would be touching the controller' registers during the
146 * dirmap operation.
147 */
148 ret = mux_control_select(mux: dwsbt1->mux, BT1_BOOT_DIRMAP);
149 if (ret)
150 return ret;
151
152 dw_spi_bt1_dirmap_copy_from_map(to: buf, from: dwsbt1->map + offs, len);
153
154 mux_control_deselect(mux: dwsbt1->mux);
155
156 dw_spi_set_cs(spi: mem->spi, enable: true);
157
158 ret = dw_spi_check_status(dws, raw: true);
159
160 return ret ?: len;
161}
162
163#endif /* CONFIG_SPI_DW_BT1_DIRMAP */
164
165static int dw_spi_bt1_std_init(struct platform_device *pdev,
166 struct dw_spi_bt1 *dwsbt1)
167{
168 struct dw_spi *dws = &dwsbt1->dws;
169
170 dws->irq = platform_get_irq(pdev, 0);
171 if (dws->irq < 0)
172 return dws->irq;
173
174 dws->num_cs = 4;
175
176 /*
177 * Baikal-T1 Normal SPI Controllers don't always keep up with full SPI
178 * bus speed especially when it comes to the concurrent access to the
179 * APB bus resources. Thus we have no choice but to set a constraint on
180 * the SPI bus frequency for the memory operations which require to
181 * read/write data as fast as possible.
182 */
183 dws->max_mem_freq = 20000000U;
184
185 dw_spi_dma_setup_generic(dws);
186
187 return 0;
188}
189
190static int dw_spi_bt1_sys_init(struct platform_device *pdev,
191 struct dw_spi_bt1 *dwsbt1)
192{
193 struct resource *mem __maybe_unused;
194 struct dw_spi *dws = &dwsbt1->dws;
195
196 /*
197 * Baikal-T1 System Boot Controller is equipped with a mux, which
198 * switches between the directly mapped SPI flash access mode and
199 * IO access to the DW APB SSI registers. Note the mux controller
200 * must be setup to preserve the registers being accessible by default
201 * (on idle-state).
202 */
203 dwsbt1->mux = devm_mux_control_get(dev: &pdev->dev, NULL);
204 if (IS_ERR(ptr: dwsbt1->mux))
205 return PTR_ERR(ptr: dwsbt1->mux);
206
207 /*
208 * Directly mapped SPI flash memory is a 16MB MMIO region, which can be
209 * used to access a peripheral memory device just by reading/writing
210 * data from/to it. Note the system APB bus will stall during each IO
211 * from/to the dirmap region until the operation is finished. So don't
212 * use it concurrently with time-critical tasks (like the SPI memory
213 * operations implemented in the DW APB SSI driver).
214 */
215#ifdef CONFIG_SPI_DW_BT1_DIRMAP
216 mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
217 if (mem) {
218 dwsbt1->map = devm_ioremap_resource(dev: &pdev->dev, res: mem);
219 if (!IS_ERR(ptr: dwsbt1->map)) {
220 dwsbt1->map_len = resource_size(res: mem);
221 dws->mem_ops.dirmap_create = dw_spi_bt1_dirmap_create;
222 dws->mem_ops.dirmap_read = dw_spi_bt1_dirmap_read;
223 } else {
224 dwsbt1->map = NULL;
225 }
226 }
227#endif /* CONFIG_SPI_DW_BT1_DIRMAP */
228
229 /*
230 * There is no IRQ, no DMA and just one CS available on the System Boot
231 * SPI controller.
232 */
233 dws->irq = IRQ_NOTCONNECTED;
234 dws->num_cs = 1;
235
236 /*
237 * Baikal-T1 System Boot SPI Controller doesn't keep up with the full
238 * SPI bus speed due to relatively slow APB bus and races for it'
239 * resources from different CPUs. The situation is worsen by a small
240 * FIFOs depth (just 8 words). It works better in a single CPU mode
241 * though, but still tends to be not fast enough at low CPU
242 * frequencies.
243 */
244 if (num_possible_cpus() > 1)
245 dws->max_mem_freq = 10000000U;
246 else
247 dws->max_mem_freq = 20000000U;
248
249 return 0;
250}
251
252static int dw_spi_bt1_probe(struct platform_device *pdev)
253{
254 dw_spi_bt1_init_cb init_func;
255 struct dw_spi_bt1 *dwsbt1;
256 struct resource *mem;
257 struct dw_spi *dws;
258 int ret;
259
260 dwsbt1 = devm_kzalloc(dev: &pdev->dev, size: sizeof(struct dw_spi_bt1), GFP_KERNEL);
261 if (!dwsbt1)
262 return -ENOMEM;
263
264 dws = &dwsbt1->dws;
265
266 dws->regs = devm_platform_get_and_ioremap_resource(pdev, index: 0, res: &mem);
267 if (IS_ERR(ptr: dws->regs))
268 return PTR_ERR(ptr: dws->regs);
269
270 dws->paddr = mem->start;
271
272 dwsbt1->clk = devm_clk_get_enabled(dev: &pdev->dev, NULL);
273 if (IS_ERR(ptr: dwsbt1->clk))
274 return PTR_ERR(ptr: dwsbt1->clk);
275
276 dws->bus_num = pdev->id;
277 dws->reg_io_width = 4;
278 dws->max_freq = clk_get_rate(clk: dwsbt1->clk);
279 if (!dws->max_freq)
280 return -EINVAL;
281
282 init_func = device_get_match_data(dev: &pdev->dev);
283 ret = init_func(pdev, dwsbt1);
284 if (ret)
285 return ret;
286
287 pm_runtime_enable(dev: &pdev->dev);
288
289 ret = dw_spi_add_host(dev: &pdev->dev, dws);
290 if (ret) {
291 pm_runtime_disable(dev: &pdev->dev);
292 return ret;
293 }
294
295 platform_set_drvdata(pdev, data: dwsbt1);
296
297 return 0;
298}
299
300static void dw_spi_bt1_remove(struct platform_device *pdev)
301{
302 struct dw_spi_bt1 *dwsbt1 = platform_get_drvdata(pdev);
303
304 dw_spi_remove_host(dws: &dwsbt1->dws);
305
306 pm_runtime_disable(dev: &pdev->dev);
307}
308
309static const struct of_device_id dw_spi_bt1_of_match[] = {
310 { .compatible = "baikal,bt1-ssi", .data = dw_spi_bt1_std_init},
311 { .compatible = "baikal,bt1-sys-ssi", .data = dw_spi_bt1_sys_init},
312 { }
313};
314MODULE_DEVICE_TABLE(of, dw_spi_bt1_of_match);
315
316static struct platform_driver dw_spi_bt1_driver = {
317 .probe = dw_spi_bt1_probe,
318 .remove_new = dw_spi_bt1_remove,
319 .driver = {
320 .name = "bt1-sys-ssi",
321 .of_match_table = dw_spi_bt1_of_match,
322 },
323};
324module_platform_driver(dw_spi_bt1_driver);
325
326MODULE_AUTHOR("Serge Semin <Sergey.Semin@baikalelectronics.ru>");
327MODULE_DESCRIPTION("Baikal-T1 System Boot SPI Controller driver");
328MODULE_LICENSE("GPL v2");
329MODULE_IMPORT_NS(SPI_DW_CORE);
330

source code of linux/drivers/spi/spi-dw-bt1.c