| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * Renesas RZ/V2M Clocked Serial Interface (CSI) driver |
| 4 | * |
| 5 | * Copyright (C) 2023 Renesas Electronics Corporation |
| 6 | */ |
| 7 | |
| 8 | #include <linux/bits.h> |
| 9 | #include <linux/clk.h> |
| 10 | #include <linux/count_zeros.h> |
| 11 | #include <linux/interrupt.h> |
| 12 | #include <linux/iopoll.h> |
| 13 | #include <linux/log2.h> |
| 14 | #include <linux/of.h> |
| 15 | #include <linux/platform_device.h> |
| 16 | #include <linux/property.h> |
| 17 | #include <linux/reset.h> |
| 18 | #include <linux/spi/spi.h> |
| 19 | #include <linux/units.h> |
| 20 | |
| 21 | /* Registers */ |
| 22 | #define CSI_MODE 0x00 /* CSI mode control */ |
| 23 | #define CSI_CLKSEL 0x04 /* CSI clock select */ |
| 24 | #define CSI_CNT 0x08 /* CSI control */ |
| 25 | #define CSI_INT 0x0C /* CSI interrupt status */ |
| 26 | #define CSI_IFIFOL 0x10 /* CSI receive FIFO level display */ |
| 27 | #define CSI_OFIFOL 0x14 /* CSI transmit FIFO level display */ |
| 28 | #define CSI_IFIFO 0x18 /* CSI receive window */ |
| 29 | #define CSI_OFIFO 0x1C /* CSI transmit window */ |
| 30 | #define CSI_FIFOTRG 0x20 /* CSI FIFO trigger level */ |
| 31 | |
| 32 | /* CSI_MODE */ |
| 33 | #define CSI_MODE_CSIE BIT(7) |
| 34 | #define CSI_MODE_TRMD BIT(6) |
| 35 | #define CSI_MODE_CCL BIT(5) |
| 36 | #define CSI_MODE_DIR BIT(4) |
| 37 | #define CSI_MODE_CSOT BIT(0) |
| 38 | |
| 39 | #define CSI_MODE_SETUP 0x00000040 |
| 40 | |
| 41 | /* CSI_CLKSEL */ |
| 42 | #define CSI_CLKSEL_SS_ENA BIT(19) |
| 43 | #define CSI_CLKSEL_SS_POL BIT(18) |
| 44 | #define CSI_CLKSEL_SS (CSI_CLKSEL_SS_ENA | CSI_CLKSEL_SS_POL) |
| 45 | #define CSI_CLKSEL_CKP BIT(17) |
| 46 | #define CSI_CLKSEL_DAP BIT(16) |
| 47 | #define CSI_CLKSEL_MODE (CSI_CLKSEL_CKP|CSI_CLKSEL_DAP) |
| 48 | #define CSI_CLKSEL_SLAVE BIT(15) |
| 49 | #define CSI_CLKSEL_CKS GENMASK(14, 1) |
| 50 | |
| 51 | /* CSI_CNT */ |
| 52 | #define CSI_CNT_CSIRST BIT(28) |
| 53 | #define CSI_CNT_R_TRGEN BIT(19) |
| 54 | #define CSI_CNT_UNDER_E BIT(13) |
| 55 | #define CSI_CNT_OVERF_E BIT(12) |
| 56 | #define CSI_CNT_TREND_E BIT(9) |
| 57 | #define CSI_CNT_CSIEND_E BIT(8) |
| 58 | #define CSI_CNT_T_TRGR_E BIT(4) |
| 59 | #define CSI_CNT_R_TRGR_E BIT(0) |
| 60 | |
| 61 | /* CSI_INT */ |
| 62 | #define CSI_INT_UNDER BIT(13) |
| 63 | #define CSI_INT_OVERF BIT(12) |
| 64 | #define CSI_INT_TREND BIT(9) |
| 65 | #define CSI_INT_CSIEND BIT(8) |
| 66 | #define CSI_INT_T_TRGR BIT(4) |
| 67 | #define CSI_INT_R_TRGR BIT(0) |
| 68 | |
| 69 | /* CSI_FIFOTRG */ |
| 70 | #define CSI_FIFOTRG_R_TRG GENMASK(2, 0) |
| 71 | |
| 72 | #define CSI_FIFO_SIZE_BYTES 32U |
| 73 | #define CSI_FIFO_HALF_SIZE 16U |
| 74 | #define CSI_EN_DIS_TIMEOUT_US 100 |
| 75 | /* |
| 76 | * Clock "csiclk" gets divided by 2 * CSI_CLKSEL_CKS in order to generate the |
| 77 | * serial clock (output from master), with CSI_CLKSEL_CKS ranging from 0x1 (that |
| 78 | * means "csiclk" is divided by 2) to 0x3FFF ("csiclk" is divided by 32766). |
| 79 | */ |
| 80 | #define CSI_CKS_MAX GENMASK(13, 0) |
| 81 | |
| 82 | #define UNDERRUN_ERROR BIT(0) |
| 83 | #define OVERFLOW_ERROR BIT(1) |
| 84 | #define TX_TIMEOUT_ERROR BIT(2) |
| 85 | #define RX_TIMEOUT_ERROR BIT(3) |
| 86 | |
| 87 | #define CSI_MAX_SPI_SCKO (8 * HZ_PER_MHZ) |
| 88 | |
| 89 | #define CSI_CLKSEL_SS_DISABLED 0 |
| 90 | #define CSI_CLKSEL_SS_ENABLED_ACTIVE_LOW BIT(1) |
| 91 | #define CSI_CLKSEL_SS_ENABLED_ACTIVE_HIGH GENMASK(1, 0) |
| 92 | |
| 93 | struct rzv2m_csi_priv { |
| 94 | void __iomem *base; |
| 95 | struct clk *csiclk; |
| 96 | struct clk *pclk; |
| 97 | struct device *dev; |
| 98 | struct spi_controller *controller; |
| 99 | const void *txbuf; |
| 100 | void *rxbuf; |
| 101 | unsigned int buffer_len; |
| 102 | unsigned int bytes_sent; |
| 103 | unsigned int bytes_received; |
| 104 | unsigned int bytes_to_transfer; |
| 105 | unsigned int words_to_transfer; |
| 106 | unsigned int bytes_per_word; |
| 107 | wait_queue_head_t wait; |
| 108 | u32 errors; |
| 109 | u32 status; |
| 110 | bool target_aborted; |
| 111 | bool use_ss_pin; |
| 112 | }; |
| 113 | |
| 114 | static void rzv2m_csi_reg_write_bit(const struct rzv2m_csi_priv *csi, |
| 115 | int reg_offs, int bit_mask, u32 value) |
| 116 | { |
| 117 | int nr_zeros; |
| 118 | u32 tmp; |
| 119 | |
| 120 | nr_zeros = count_trailing_zeros(x: bit_mask); |
| 121 | value <<= nr_zeros; |
| 122 | |
| 123 | tmp = (readl(addr: csi->base + reg_offs) & ~bit_mask) | value; |
| 124 | writel(val: tmp, addr: csi->base + reg_offs); |
| 125 | } |
| 126 | |
| 127 | static int rzv2m_csi_sw_reset(struct rzv2m_csi_priv *csi, int assert) |
| 128 | { |
| 129 | u32 reg; |
| 130 | |
| 131 | rzv2m_csi_reg_write_bit(csi, CSI_CNT, CSI_CNT_CSIRST, value: assert); |
| 132 | |
| 133 | if (!assert) |
| 134 | return 0; |
| 135 | |
| 136 | return readl_poll_timeout(csi->base + CSI_MODE, reg, |
| 137 | !(reg & CSI_MODE_CSOT), 0, |
| 138 | CSI_EN_DIS_TIMEOUT_US); |
| 139 | } |
| 140 | |
| 141 | static int rzv2m_csi_start_stop_operation(const struct rzv2m_csi_priv *csi, |
| 142 | int enable, bool wait) |
| 143 | { |
| 144 | u32 reg; |
| 145 | |
| 146 | rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_CSIE, value: enable); |
| 147 | |
| 148 | if (enable || !wait) |
| 149 | return 0; |
| 150 | |
| 151 | return readl_poll_timeout(csi->base + CSI_MODE, reg, |
| 152 | !(reg & CSI_MODE_CSOT), 0, |
| 153 | CSI_EN_DIS_TIMEOUT_US); |
| 154 | } |
| 155 | |
| 156 | static int rzv2m_csi_fill_txfifo(struct rzv2m_csi_priv *csi) |
| 157 | { |
| 158 | unsigned int i; |
| 159 | |
| 160 | if (readl(addr: csi->base + CSI_OFIFOL)) |
| 161 | return -EIO; |
| 162 | |
| 163 | if (csi->bytes_per_word == 2) { |
| 164 | const u16 *buf = csi->txbuf; |
| 165 | |
| 166 | for (i = 0; i < csi->words_to_transfer; i++) |
| 167 | writel(val: buf[i], addr: csi->base + CSI_OFIFO); |
| 168 | } else { |
| 169 | const u8 *buf = csi->txbuf; |
| 170 | |
| 171 | for (i = 0; i < csi->words_to_transfer; i++) |
| 172 | writel(val: buf[i], addr: csi->base + CSI_OFIFO); |
| 173 | } |
| 174 | |
| 175 | csi->txbuf += csi->bytes_to_transfer; |
| 176 | csi->bytes_sent += csi->bytes_to_transfer; |
| 177 | |
| 178 | return 0; |
| 179 | } |
| 180 | |
| 181 | static int rzv2m_csi_read_rxfifo(struct rzv2m_csi_priv *csi) |
| 182 | { |
| 183 | unsigned int i; |
| 184 | |
| 185 | if (readl(addr: csi->base + CSI_IFIFOL) != csi->bytes_to_transfer) |
| 186 | return -EIO; |
| 187 | |
| 188 | if (csi->bytes_per_word == 2) { |
| 189 | u16 *buf = csi->rxbuf; |
| 190 | |
| 191 | for (i = 0; i < csi->words_to_transfer; i++) |
| 192 | buf[i] = (u16)readl(addr: csi->base + CSI_IFIFO); |
| 193 | } else { |
| 194 | u8 *buf = csi->rxbuf; |
| 195 | |
| 196 | for (i = 0; i < csi->words_to_transfer; i++) |
| 197 | buf[i] = (u8)readl(addr: csi->base + CSI_IFIFO); |
| 198 | } |
| 199 | |
| 200 | csi->rxbuf += csi->bytes_to_transfer; |
| 201 | csi->bytes_received += csi->bytes_to_transfer; |
| 202 | |
| 203 | return 0; |
| 204 | } |
| 205 | |
| 206 | static inline void rzv2m_csi_empty_rxfifo(struct rzv2m_csi_priv *csi) |
| 207 | { |
| 208 | unsigned int i; |
| 209 | |
| 210 | for (i = 0; i < csi->words_to_transfer; i++) |
| 211 | readl(addr: csi->base + CSI_IFIFO); |
| 212 | } |
| 213 | |
| 214 | static inline void rzv2m_csi_calc_current_transfer(struct rzv2m_csi_priv *csi) |
| 215 | { |
| 216 | unsigned int bytes_transferred = max(csi->bytes_received, csi->bytes_sent); |
| 217 | unsigned int bytes_remaining = csi->buffer_len - bytes_transferred; |
| 218 | unsigned int to_transfer; |
| 219 | |
| 220 | if (csi->txbuf) |
| 221 | /* |
| 222 | * Leaving a little bit of headroom in the FIFOs makes it very |
| 223 | * hard to raise an overflow error (which is only possible |
| 224 | * when IP transmits and receives at the same time). |
| 225 | */ |
| 226 | to_transfer = min(CSI_FIFO_HALF_SIZE, bytes_remaining); |
| 227 | else |
| 228 | to_transfer = min(CSI_FIFO_SIZE_BYTES, bytes_remaining); |
| 229 | |
| 230 | if (csi->bytes_per_word == 2) |
| 231 | to_transfer >>= 1; |
| 232 | |
| 233 | /* |
| 234 | * We can only choose a trigger level from a predefined set of values. |
| 235 | * This will pick a value that is the greatest possible integer that's |
| 236 | * less than or equal to the number of bytes we need to transfer. |
| 237 | * This may result in multiple smaller transfers. |
| 238 | */ |
| 239 | csi->words_to_transfer = rounddown_pow_of_two(to_transfer); |
| 240 | |
| 241 | if (csi->bytes_per_word == 2) |
| 242 | csi->bytes_to_transfer = csi->words_to_transfer << 1; |
| 243 | else |
| 244 | csi->bytes_to_transfer = csi->words_to_transfer; |
| 245 | } |
| 246 | |
| 247 | static inline void rzv2m_csi_set_rx_fifo_trigger_level(struct rzv2m_csi_priv *csi) |
| 248 | { |
| 249 | rzv2m_csi_reg_write_bit(csi, CSI_FIFOTRG, CSI_FIFOTRG_R_TRG, |
| 250 | ilog2(csi->words_to_transfer)); |
| 251 | } |
| 252 | |
| 253 | static inline void rzv2m_csi_enable_rx_trigger(struct rzv2m_csi_priv *csi, |
| 254 | bool enable) |
| 255 | { |
| 256 | rzv2m_csi_reg_write_bit(csi, CSI_CNT, CSI_CNT_R_TRGEN, value: enable); |
| 257 | } |
| 258 | |
| 259 | static void rzv2m_csi_disable_irqs(const struct rzv2m_csi_priv *csi, |
| 260 | u32 enable_bits) |
| 261 | { |
| 262 | u32 cnt = readl(addr: csi->base + CSI_CNT); |
| 263 | |
| 264 | writel(val: cnt & ~enable_bits, addr: csi->base + CSI_CNT); |
| 265 | } |
| 266 | |
| 267 | static void rzv2m_csi_disable_all_irqs(struct rzv2m_csi_priv *csi) |
| 268 | { |
| 269 | rzv2m_csi_disable_irqs(csi, CSI_CNT_R_TRGR_E | CSI_CNT_T_TRGR_E | |
| 270 | CSI_CNT_CSIEND_E | CSI_CNT_TREND_E | |
| 271 | CSI_CNT_OVERF_E | CSI_CNT_UNDER_E); |
| 272 | } |
| 273 | |
| 274 | static inline void rzv2m_csi_clear_irqs(struct rzv2m_csi_priv *csi, u32 irqs) |
| 275 | { |
| 276 | writel(val: irqs, addr: csi->base + CSI_INT); |
| 277 | } |
| 278 | |
| 279 | static void rzv2m_csi_clear_all_irqs(struct rzv2m_csi_priv *csi) |
| 280 | { |
| 281 | rzv2m_csi_clear_irqs(csi, CSI_INT_UNDER | CSI_INT_OVERF | |
| 282 | CSI_INT_TREND | CSI_INT_CSIEND | CSI_INT_T_TRGR | |
| 283 | CSI_INT_R_TRGR); |
| 284 | } |
| 285 | |
| 286 | static void rzv2m_csi_enable_irqs(struct rzv2m_csi_priv *csi, u32 enable_bits) |
| 287 | { |
| 288 | u32 cnt = readl(addr: csi->base + CSI_CNT); |
| 289 | |
| 290 | writel(val: cnt | enable_bits, addr: csi->base + CSI_CNT); |
| 291 | } |
| 292 | |
| 293 | static int rzv2m_csi_wait_for_interrupt(struct rzv2m_csi_priv *csi, |
| 294 | u32 wait_mask, u32 enable_bits) |
| 295 | { |
| 296 | int ret; |
| 297 | |
| 298 | rzv2m_csi_enable_irqs(csi, enable_bits); |
| 299 | |
| 300 | if (spi_controller_is_target(ctlr: csi->controller)) { |
| 301 | ret = wait_event_interruptible(csi->wait, |
| 302 | ((csi->status & wait_mask) == wait_mask) || |
| 303 | csi->errors || csi->target_aborted); |
| 304 | if (ret || csi->target_aborted) |
| 305 | ret = -EINTR; |
| 306 | } else { |
| 307 | ret = wait_event_timeout(csi->wait, |
| 308 | ((csi->status & wait_mask) == wait_mask) || |
| 309 | csi->errors, HZ) == 0 ? -ETIMEDOUT : 0; |
| 310 | } |
| 311 | |
| 312 | rzv2m_csi_disable_irqs(csi, enable_bits); |
| 313 | |
| 314 | if (csi->errors) |
| 315 | return -EIO; |
| 316 | |
| 317 | return ret; |
| 318 | } |
| 319 | |
| 320 | static inline int rzv2m_csi_wait_for_rx_ready(struct rzv2m_csi_priv *csi) |
| 321 | { |
| 322 | int ret; |
| 323 | |
| 324 | if (readl(addr: csi->base + CSI_IFIFOL) >= csi->bytes_to_transfer) |
| 325 | return 0; |
| 326 | |
| 327 | ret = rzv2m_csi_wait_for_interrupt(csi, CSI_INT_R_TRGR, |
| 328 | CSI_CNT_R_TRGR_E); |
| 329 | if (ret == -ETIMEDOUT) |
| 330 | csi->errors |= RX_TIMEOUT_ERROR; |
| 331 | |
| 332 | return ret; |
| 333 | } |
| 334 | |
| 335 | static irqreturn_t rzv2m_csi_irq_handler(int irq, void *data) |
| 336 | { |
| 337 | struct rzv2m_csi_priv *csi = data; |
| 338 | |
| 339 | csi->status = readl(addr: csi->base + CSI_INT); |
| 340 | rzv2m_csi_disable_irqs(csi, enable_bits: csi->status); |
| 341 | |
| 342 | if (csi->status & CSI_INT_OVERF) |
| 343 | csi->errors |= OVERFLOW_ERROR; |
| 344 | if (csi->status & CSI_INT_UNDER) |
| 345 | csi->errors |= UNDERRUN_ERROR; |
| 346 | |
| 347 | wake_up(&csi->wait); |
| 348 | |
| 349 | return IRQ_HANDLED; |
| 350 | } |
| 351 | |
| 352 | static void rzv2m_csi_setup_clock(struct rzv2m_csi_priv *csi, u32 spi_hz) |
| 353 | { |
| 354 | unsigned long csiclk_rate = clk_get_rate(clk: csi->csiclk); |
| 355 | unsigned long pclk_rate = clk_get_rate(clk: csi->pclk); |
| 356 | unsigned long csiclk_rate_limit = pclk_rate >> 1; |
| 357 | u32 cks; |
| 358 | |
| 359 | /* |
| 360 | * There is a restriction on the frequency of CSICLK, it has to be <= |
| 361 | * PCLK / 2. |
| 362 | */ |
| 363 | if (csiclk_rate > csiclk_rate_limit) { |
| 364 | clk_set_rate(clk: csi->csiclk, rate: csiclk_rate >> 1); |
| 365 | csiclk_rate = clk_get_rate(clk: csi->csiclk); |
| 366 | } else if ((csiclk_rate << 1) <= csiclk_rate_limit) { |
| 367 | clk_set_rate(clk: csi->csiclk, rate: csiclk_rate << 1); |
| 368 | csiclk_rate = clk_get_rate(clk: csi->csiclk); |
| 369 | } |
| 370 | |
| 371 | spi_hz = spi_hz > CSI_MAX_SPI_SCKO ? CSI_MAX_SPI_SCKO : spi_hz; |
| 372 | |
| 373 | cks = DIV_ROUND_UP(csiclk_rate, spi_hz << 1); |
| 374 | if (cks > CSI_CKS_MAX) |
| 375 | cks = CSI_CKS_MAX; |
| 376 | |
| 377 | dev_dbg(csi->dev, "SPI clk rate is %ldHz\n" , csiclk_rate / (cks << 1)); |
| 378 | |
| 379 | rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_CKS, value: cks); |
| 380 | } |
| 381 | |
| 382 | static void rzv2m_csi_setup_operating_mode(struct rzv2m_csi_priv *csi, |
| 383 | struct spi_transfer *t) |
| 384 | { |
| 385 | if (t->rx_buf && !t->tx_buf) |
| 386 | /* Reception-only mode */ |
| 387 | rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_TRMD, value: 0); |
| 388 | else |
| 389 | /* Send and receive mode */ |
| 390 | rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_TRMD, value: 1); |
| 391 | |
| 392 | csi->bytes_per_word = t->bits_per_word / 8; |
| 393 | rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_CCL, |
| 394 | value: csi->bytes_per_word == 2); |
| 395 | } |
| 396 | |
| 397 | static int rzv2m_csi_setup(struct spi_device *spi) |
| 398 | { |
| 399 | struct rzv2m_csi_priv *csi = spi_controller_get_devdata(ctlr: spi->controller); |
| 400 | u32 slave_selection = CSI_CLKSEL_SS_DISABLED; |
| 401 | int ret; |
| 402 | |
| 403 | rzv2m_csi_sw_reset(csi, assert: 0); |
| 404 | |
| 405 | writel(CSI_MODE_SETUP, addr: csi->base + CSI_MODE); |
| 406 | |
| 407 | /* Setup clock polarity and phase timing */ |
| 408 | rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_MODE, |
| 409 | value: ~spi->mode & SPI_MODE_X_MASK); |
| 410 | |
| 411 | /* Setup serial data order */ |
| 412 | rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_DIR, |
| 413 | value: !!(spi->mode & SPI_LSB_FIRST)); |
| 414 | |
| 415 | /* Set the role, 1 for target and 0 for host */ |
| 416 | rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_SLAVE, |
| 417 | value: !!spi_controller_is_target(ctlr: csi->controller)); |
| 418 | |
| 419 | if (csi->use_ss_pin) |
| 420 | slave_selection = spi->mode & SPI_CS_HIGH ? |
| 421 | CSI_CLKSEL_SS_ENABLED_ACTIVE_HIGH : |
| 422 | CSI_CLKSEL_SS_ENABLED_ACTIVE_LOW; |
| 423 | |
| 424 | /* Configure the slave selection (SS) pin */ |
| 425 | rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_SS, value: slave_selection); |
| 426 | |
| 427 | /* Give the IP a SW reset */ |
| 428 | ret = rzv2m_csi_sw_reset(csi, assert: 1); |
| 429 | if (ret) |
| 430 | return ret; |
| 431 | rzv2m_csi_sw_reset(csi, assert: 0); |
| 432 | |
| 433 | /* |
| 434 | * We need to enable the communication so that the clock will settle |
| 435 | * for the right polarity before enabling the CS. |
| 436 | */ |
| 437 | rzv2m_csi_start_stop_operation(csi, enable: 1, wait: false); |
| 438 | udelay(usec: 10); |
| 439 | rzv2m_csi_start_stop_operation(csi, enable: 0, wait: false); |
| 440 | |
| 441 | return 0; |
| 442 | } |
| 443 | |
| 444 | static int rzv2m_csi_pio_transfer(struct rzv2m_csi_priv *csi) |
| 445 | { |
| 446 | bool tx_completed = !csi->txbuf; |
| 447 | bool rx_completed = !csi->rxbuf; |
| 448 | int ret = 0; |
| 449 | |
| 450 | /* Make sure the TX FIFO is empty */ |
| 451 | writel(val: 0, addr: csi->base + CSI_OFIFOL); |
| 452 | |
| 453 | /* Make sure the RX FIFO is empty */ |
| 454 | writel(val: 0, addr: csi->base + CSI_IFIFOL); |
| 455 | |
| 456 | csi->bytes_sent = 0; |
| 457 | csi->bytes_received = 0; |
| 458 | csi->errors = 0; |
| 459 | csi->target_aborted = false; |
| 460 | |
| 461 | rzv2m_csi_disable_all_irqs(csi); |
| 462 | rzv2m_csi_clear_all_irqs(csi); |
| 463 | rzv2m_csi_enable_rx_trigger(csi, enable: true); |
| 464 | |
| 465 | while (!tx_completed || !rx_completed) { |
| 466 | /* |
| 467 | * Decide how many words we are going to transfer during |
| 468 | * this cycle (for both TX and RX), then set the RX FIFO trigger |
| 469 | * level accordingly. No need to set a trigger level for the |
| 470 | * TX FIFO, as this IP comes with an interrupt that fires when |
| 471 | * the TX FIFO is empty. |
| 472 | */ |
| 473 | rzv2m_csi_calc_current_transfer(csi); |
| 474 | rzv2m_csi_set_rx_fifo_trigger_level(csi); |
| 475 | |
| 476 | rzv2m_csi_enable_irqs(csi, CSI_INT_OVERF | CSI_INT_UNDER); |
| 477 | |
| 478 | writel(readl(addr: csi->base + CSI_INT), addr: csi->base + CSI_INT); |
| 479 | csi->status = 0; |
| 480 | |
| 481 | /* TX */ |
| 482 | if (csi->txbuf) { |
| 483 | ret = rzv2m_csi_fill_txfifo(csi); |
| 484 | if (ret) |
| 485 | break; |
| 486 | |
| 487 | if (csi->bytes_sent == csi->buffer_len) |
| 488 | tx_completed = true; |
| 489 | } |
| 490 | |
| 491 | rzv2m_csi_start_stop_operation(csi, enable: 1, wait: false); |
| 492 | |
| 493 | /* |
| 494 | * Make sure the RX FIFO contains the desired number of words. |
| 495 | * We then either flush its content, or we copy it onto |
| 496 | * csi->rxbuf. |
| 497 | */ |
| 498 | ret = rzv2m_csi_wait_for_rx_ready(csi); |
| 499 | if (ret) |
| 500 | break; |
| 501 | |
| 502 | if (!spi_controller_is_target(ctlr: csi->controller)) |
| 503 | rzv2m_csi_start_stop_operation(csi, enable: 0, wait: false); |
| 504 | |
| 505 | /* RX */ |
| 506 | if (csi->rxbuf) { |
| 507 | ret = rzv2m_csi_read_rxfifo(csi); |
| 508 | if (ret) |
| 509 | break; |
| 510 | |
| 511 | if (csi->bytes_received == csi->buffer_len) |
| 512 | rx_completed = true; |
| 513 | } else { |
| 514 | rzv2m_csi_empty_rxfifo(csi); |
| 515 | } |
| 516 | |
| 517 | if (csi->errors) { |
| 518 | ret = -EIO; |
| 519 | break; |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | rzv2m_csi_start_stop_operation(csi, enable: 0, wait: true); |
| 524 | rzv2m_csi_disable_all_irqs(csi); |
| 525 | rzv2m_csi_enable_rx_trigger(csi, enable: false); |
| 526 | rzv2m_csi_clear_all_irqs(csi); |
| 527 | |
| 528 | return ret; |
| 529 | } |
| 530 | |
| 531 | static int rzv2m_csi_transfer_one(struct spi_controller *controller, |
| 532 | struct spi_device *spi, |
| 533 | struct spi_transfer *transfer) |
| 534 | { |
| 535 | struct rzv2m_csi_priv *csi = spi_controller_get_devdata(ctlr: controller); |
| 536 | struct device *dev = csi->dev; |
| 537 | int ret; |
| 538 | |
| 539 | csi->txbuf = transfer->tx_buf; |
| 540 | csi->rxbuf = transfer->rx_buf; |
| 541 | csi->buffer_len = transfer->len; |
| 542 | |
| 543 | rzv2m_csi_setup_operating_mode(csi, t: transfer); |
| 544 | |
| 545 | if (!spi_controller_is_target(ctlr: csi->controller)) |
| 546 | rzv2m_csi_setup_clock(csi, spi_hz: transfer->speed_hz); |
| 547 | |
| 548 | ret = rzv2m_csi_pio_transfer(csi); |
| 549 | if (ret) { |
| 550 | if (csi->errors & UNDERRUN_ERROR) |
| 551 | dev_err(dev, "Underrun error\n" ); |
| 552 | if (csi->errors & OVERFLOW_ERROR) |
| 553 | dev_err(dev, "Overflow error\n" ); |
| 554 | if (csi->errors & TX_TIMEOUT_ERROR) |
| 555 | dev_err(dev, "TX timeout error\n" ); |
| 556 | if (csi->errors & RX_TIMEOUT_ERROR) |
| 557 | dev_err(dev, "RX timeout error\n" ); |
| 558 | } |
| 559 | |
| 560 | return ret; |
| 561 | } |
| 562 | |
| 563 | static int rzv2m_csi_target_abort(struct spi_controller *ctlr) |
| 564 | { |
| 565 | struct rzv2m_csi_priv *csi = spi_controller_get_devdata(ctlr); |
| 566 | |
| 567 | csi->target_aborted = true; |
| 568 | wake_up(&csi->wait); |
| 569 | |
| 570 | return 0; |
| 571 | } |
| 572 | |
| 573 | static int rzv2m_csi_probe(struct platform_device *pdev) |
| 574 | { |
| 575 | struct device_node *np = pdev->dev.of_node; |
| 576 | struct spi_controller *controller; |
| 577 | struct device *dev = &pdev->dev; |
| 578 | struct rzv2m_csi_priv *csi; |
| 579 | struct reset_control *rstc; |
| 580 | bool target_mode; |
| 581 | int irq; |
| 582 | int ret; |
| 583 | |
| 584 | target_mode = of_property_read_bool(np, propname: "spi-slave" ); |
| 585 | |
| 586 | if (target_mode) |
| 587 | controller = devm_spi_alloc_target(dev, size: sizeof(*csi)); |
| 588 | else |
| 589 | controller = devm_spi_alloc_host(dev, size: sizeof(*csi)); |
| 590 | |
| 591 | if (!controller) |
| 592 | return -ENOMEM; |
| 593 | |
| 594 | csi = spi_controller_get_devdata(ctlr: controller); |
| 595 | platform_set_drvdata(pdev, data: csi); |
| 596 | |
| 597 | csi->use_ss_pin = false; |
| 598 | if (spi_controller_is_target(ctlr: controller) && |
| 599 | !of_property_read_bool(np, propname: "renesas,csi-no-ss" )) |
| 600 | csi->use_ss_pin = true; |
| 601 | |
| 602 | csi->dev = dev; |
| 603 | csi->controller = controller; |
| 604 | csi->target_aborted = false; |
| 605 | |
| 606 | csi->base = devm_platform_ioremap_resource(pdev, index: 0); |
| 607 | if (IS_ERR(ptr: csi->base)) |
| 608 | return PTR_ERR(ptr: csi->base); |
| 609 | |
| 610 | irq = platform_get_irq(pdev, 0); |
| 611 | if (irq < 0) |
| 612 | return irq; |
| 613 | |
| 614 | csi->csiclk = devm_clk_get(dev, id: "csiclk" ); |
| 615 | if (IS_ERR(ptr: csi->csiclk)) |
| 616 | return dev_err_probe(dev, err: PTR_ERR(ptr: csi->csiclk), |
| 617 | fmt: "could not get csiclk\n" ); |
| 618 | |
| 619 | csi->pclk = devm_clk_get(dev, id: "pclk" ); |
| 620 | if (IS_ERR(ptr: csi->pclk)) |
| 621 | return dev_err_probe(dev, err: PTR_ERR(ptr: csi->pclk), |
| 622 | fmt: "could not get pclk\n" ); |
| 623 | |
| 624 | rstc = devm_reset_control_get_shared(dev, NULL); |
| 625 | if (IS_ERR(ptr: rstc)) |
| 626 | return dev_err_probe(dev, err: PTR_ERR(ptr: rstc), fmt: "Missing reset ctrl\n" ); |
| 627 | |
| 628 | init_waitqueue_head(&csi->wait); |
| 629 | |
| 630 | controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH; |
| 631 | controller->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8); |
| 632 | controller->setup = rzv2m_csi_setup; |
| 633 | controller->transfer_one = rzv2m_csi_transfer_one; |
| 634 | controller->use_gpio_descriptors = true; |
| 635 | controller->target_abort = rzv2m_csi_target_abort; |
| 636 | |
| 637 | device_set_node(dev: &controller->dev, dev_fwnode(dev)); |
| 638 | |
| 639 | ret = devm_request_irq(dev, irq, handler: rzv2m_csi_irq_handler, irqflags: 0, |
| 640 | devname: dev_name(dev), dev_id: csi); |
| 641 | if (ret) |
| 642 | return dev_err_probe(dev, err: ret, fmt: "cannot request IRQ\n" ); |
| 643 | |
| 644 | /* |
| 645 | * The reset also affects other HW that is not under the control |
| 646 | * of Linux. Therefore, all we can do is make sure the reset is |
| 647 | * deasserted. |
| 648 | */ |
| 649 | reset_control_deassert(rstc); |
| 650 | |
| 651 | /* Make sure the IP is in SW reset state */ |
| 652 | ret = rzv2m_csi_sw_reset(csi, assert: 1); |
| 653 | if (ret) |
| 654 | return ret; |
| 655 | |
| 656 | ret = clk_prepare_enable(clk: csi->csiclk); |
| 657 | if (ret) |
| 658 | return dev_err_probe(dev, err: ret, fmt: "could not enable csiclk\n" ); |
| 659 | |
| 660 | ret = spi_register_controller(ctlr: controller); |
| 661 | if (ret) { |
| 662 | clk_disable_unprepare(clk: csi->csiclk); |
| 663 | return dev_err_probe(dev, err: ret, fmt: "register controller failed\n" ); |
| 664 | } |
| 665 | |
| 666 | return 0; |
| 667 | } |
| 668 | |
| 669 | static void rzv2m_csi_remove(struct platform_device *pdev) |
| 670 | { |
| 671 | struct rzv2m_csi_priv *csi = platform_get_drvdata(pdev); |
| 672 | |
| 673 | spi_unregister_controller(ctlr: csi->controller); |
| 674 | rzv2m_csi_sw_reset(csi, assert: 1); |
| 675 | clk_disable_unprepare(clk: csi->csiclk); |
| 676 | } |
| 677 | |
| 678 | static const struct of_device_id rzv2m_csi_match[] = { |
| 679 | { .compatible = "renesas,rzv2m-csi" }, |
| 680 | { /* sentinel */ } |
| 681 | }; |
| 682 | MODULE_DEVICE_TABLE(of, rzv2m_csi_match); |
| 683 | |
| 684 | static struct platform_driver rzv2m_csi_drv = { |
| 685 | .probe = rzv2m_csi_probe, |
| 686 | .remove = rzv2m_csi_remove, |
| 687 | .driver = { |
| 688 | .name = "rzv2m_csi" , |
| 689 | .of_match_table = rzv2m_csi_match, |
| 690 | }, |
| 691 | }; |
| 692 | module_platform_driver(rzv2m_csi_drv); |
| 693 | |
| 694 | MODULE_LICENSE("GPL" ); |
| 695 | MODULE_AUTHOR("Fabrizio Castro <castro.fabrizio.jz@renesas.com>" ); |
| 696 | MODULE_DESCRIPTION("Clocked Serial Interface Driver" ); |
| 697 | |