1// SPDX-License-Identifier: GPL-2.0
2// Copyright (C) 2022 Jonathan Neuschäfer
3
4#include <linux/clk.h>
5#include <linux/mfd/syscon.h>
6#include <linux/mod_devicetable.h>
7#include <linux/module.h>
8#include <linux/platform_device.h>
9#include <linux/regmap.h>
10#include <linux/spi/spi-mem.h>
11
12#define FIU_CFG 0x00
13#define FIU_BURST_BFG 0x01
14#define FIU_RESP_CFG 0x02
15#define FIU_CFBB_PROT 0x03
16#define FIU_FWIN1_LOW 0x04
17#define FIU_FWIN1_HIGH 0x06
18#define FIU_FWIN2_LOW 0x08
19#define FIU_FWIN2_HIGH 0x0a
20#define FIU_FWIN3_LOW 0x0c
21#define FIU_FWIN3_HIGH 0x0e
22#define FIU_PROT_LOCK 0x10
23#define FIU_PROT_CLEAR 0x11
24#define FIU_SPI_FL_CFG 0x14
25#define FIU_UMA_CODE 0x16
26#define FIU_UMA_AB0 0x17
27#define FIU_UMA_AB1 0x18
28#define FIU_UMA_AB2 0x19
29#define FIU_UMA_DB0 0x1a
30#define FIU_UMA_DB1 0x1b
31#define FIU_UMA_DB2 0x1c
32#define FIU_UMA_DB3 0x1d
33#define FIU_UMA_CTS 0x1e
34#define FIU_UMA_ECTS 0x1f
35
36#define FIU_BURST_CFG_R16 3
37
38#define FIU_UMA_CTS_D_SIZE(x) (x)
39#define FIU_UMA_CTS_A_SIZE BIT(3)
40#define FIU_UMA_CTS_WR BIT(4)
41#define FIU_UMA_CTS_CS(x) ((x) << 5)
42#define FIU_UMA_CTS_EXEC_DONE BIT(7)
43
44#define SHM_FLASH_SIZE 0x02
45#define SHM_FLASH_SIZE_STALL_HOST BIT(6)
46
47/*
48 * I observed a typical wait time of 16 iterations for a UMA transfer to
49 * finish, so this should be a safe limit.
50 */
51#define UMA_WAIT_ITERATIONS 100
52
53/* The memory-mapped view of flash is 16 MiB long */
54#define MAX_MEMORY_SIZE_PER_CS (16 << 20)
55#define MAX_MEMORY_SIZE_TOTAL (4 * MAX_MEMORY_SIZE_PER_CS)
56
57struct wpcm_fiu_spi {
58 struct device *dev;
59 struct clk *clk;
60 void __iomem *regs;
61 void __iomem *memory;
62 size_t memory_size;
63 struct regmap *shm_regmap;
64};
65
66static void wpcm_fiu_set_opcode(struct wpcm_fiu_spi *fiu, u8 opcode)
67{
68 writeb(val: opcode, addr: fiu->regs + FIU_UMA_CODE);
69}
70
71static void wpcm_fiu_set_addr(struct wpcm_fiu_spi *fiu, u32 addr)
72{
73 writeb(val: (addr >> 0) & 0xff, addr: fiu->regs + FIU_UMA_AB0);
74 writeb(val: (addr >> 8) & 0xff, addr: fiu->regs + FIU_UMA_AB1);
75 writeb(val: (addr >> 16) & 0xff, addr: fiu->regs + FIU_UMA_AB2);
76}
77
78static void wpcm_fiu_set_data(struct wpcm_fiu_spi *fiu, const u8 *data, unsigned int nbytes)
79{
80 int i;
81
82 for (i = 0; i < nbytes; i++)
83 writeb(val: data[i], addr: fiu->regs + FIU_UMA_DB0 + i);
84}
85
86static void wpcm_fiu_get_data(struct wpcm_fiu_spi *fiu, u8 *data, unsigned int nbytes)
87{
88 int i;
89
90 for (i = 0; i < nbytes; i++)
91 data[i] = readb(addr: fiu->regs + FIU_UMA_DB0 + i);
92}
93
94/*
95 * Perform a UMA (User Mode Access) operation, i.e. a software-controlled SPI transfer.
96 */
97static int wpcm_fiu_do_uma(struct wpcm_fiu_spi *fiu, unsigned int cs,
98 bool use_addr, bool write, int data_bytes)
99{
100 int i = 0;
101 u8 cts = FIU_UMA_CTS_EXEC_DONE | FIU_UMA_CTS_CS(cs);
102
103 if (use_addr)
104 cts |= FIU_UMA_CTS_A_SIZE;
105 if (write)
106 cts |= FIU_UMA_CTS_WR;
107 cts |= FIU_UMA_CTS_D_SIZE(data_bytes);
108
109 writeb(val: cts, addr: fiu->regs + FIU_UMA_CTS);
110
111 for (i = 0; i < UMA_WAIT_ITERATIONS; i++)
112 if (!(readb(addr: fiu->regs + FIU_UMA_CTS) & FIU_UMA_CTS_EXEC_DONE))
113 return 0;
114
115 dev_info(fiu->dev, "UMA transfer has not finished in %d iterations\n", UMA_WAIT_ITERATIONS);
116 return -EIO;
117}
118
119static void wpcm_fiu_ects_assert(struct wpcm_fiu_spi *fiu, unsigned int cs)
120{
121 u8 ects = readb(addr: fiu->regs + FIU_UMA_ECTS);
122
123 ects &= ~BIT(cs);
124 writeb(val: ects, addr: fiu->regs + FIU_UMA_ECTS);
125}
126
127static void wpcm_fiu_ects_deassert(struct wpcm_fiu_spi *fiu, unsigned int cs)
128{
129 u8 ects = readb(addr: fiu->regs + FIU_UMA_ECTS);
130
131 ects |= BIT(cs);
132 writeb(val: ects, addr: fiu->regs + FIU_UMA_ECTS);
133}
134
135struct wpcm_fiu_op_shape {
136 bool (*match)(const struct spi_mem_op *op);
137 int (*exec)(struct spi_mem *mem, const struct spi_mem_op *op);
138};
139
140static bool wpcm_fiu_normal_match(const struct spi_mem_op *op)
141{
142 // Opcode 0x0b (FAST READ) is treated differently in hardware
143 if (op->cmd.opcode == 0x0b)
144 return false;
145
146 return (op->addr.nbytes == 0 || op->addr.nbytes == 3) &&
147 op->dummy.nbytes == 0 && op->data.nbytes <= 4;
148}
149
150static int wpcm_fiu_normal_exec(struct spi_mem *mem, const struct spi_mem_op *op)
151{
152 struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(ctlr: mem->spi->controller);
153 int ret;
154
155 wpcm_fiu_set_opcode(fiu, opcode: op->cmd.opcode);
156 wpcm_fiu_set_addr(fiu, addr: op->addr.val);
157 if (op->data.dir == SPI_MEM_DATA_OUT)
158 wpcm_fiu_set_data(fiu, data: op->data.buf.out, nbytes: op->data.nbytes);
159
160 ret = wpcm_fiu_do_uma(fiu, cs: spi_get_chipselect(spi: mem->spi, idx: 0), use_addr: op->addr.nbytes == 3,
161 write: op->data.dir == SPI_MEM_DATA_OUT, data_bytes: op->data.nbytes);
162
163 if (op->data.dir == SPI_MEM_DATA_IN)
164 wpcm_fiu_get_data(fiu, data: op->data.buf.in, nbytes: op->data.nbytes);
165
166 return ret;
167}
168
169static bool wpcm_fiu_fast_read_match(const struct spi_mem_op *op)
170{
171 return op->cmd.opcode == 0x0b && op->addr.nbytes == 3 &&
172 op->dummy.nbytes == 1 &&
173 op->data.nbytes >= 1 && op->data.nbytes <= 4 &&
174 op->data.dir == SPI_MEM_DATA_IN;
175}
176
177static int wpcm_fiu_fast_read_exec(struct spi_mem *mem, const struct spi_mem_op *op)
178{
179 return -EINVAL;
180}
181
182/*
183 * 4-byte addressing.
184 *
185 * Flash view: [ C A A A A D D D D]
186 * bytes: 13 aa bb cc dd -> 5a a5 f0 0f
187 * FIU's view: [ C A A A][ C D D D D]
188 * FIU mode: [ read/write][ read ]
189 */
190static bool wpcm_fiu_4ba_match(const struct spi_mem_op *op)
191{
192 return op->addr.nbytes == 4 && op->dummy.nbytes == 0 && op->data.nbytes <= 4;
193}
194
195static int wpcm_fiu_4ba_exec(struct spi_mem *mem, const struct spi_mem_op *op)
196{
197 struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(ctlr: mem->spi->controller);
198 int cs = spi_get_chipselect(spi: mem->spi, idx: 0);
199
200 wpcm_fiu_ects_assert(fiu, cs);
201
202 wpcm_fiu_set_opcode(fiu, opcode: op->cmd.opcode);
203 wpcm_fiu_set_addr(fiu, addr: op->addr.val >> 8);
204 wpcm_fiu_do_uma(fiu, cs, use_addr: true, write: false, data_bytes: 0);
205
206 wpcm_fiu_set_opcode(fiu, opcode: op->addr.val & 0xff);
207 wpcm_fiu_set_addr(fiu, addr: 0);
208 if (op->data.dir == SPI_MEM_DATA_OUT)
209 wpcm_fiu_set_data(fiu, data: op->data.buf.out, nbytes: op->data.nbytes);
210 wpcm_fiu_do_uma(fiu, cs, use_addr: false, write: op->data.dir == SPI_MEM_DATA_OUT, data_bytes: op->data.nbytes);
211
212 wpcm_fiu_ects_deassert(fiu, cs);
213
214 if (op->data.dir == SPI_MEM_DATA_IN)
215 wpcm_fiu_get_data(fiu, data: op->data.buf.in, nbytes: op->data.nbytes);
216
217 return 0;
218}
219
220/*
221 * RDID (Read Identification) needs special handling because Linux expects to
222 * be able to read 6 ID bytes and FIU can only read up to 4 at once.
223 *
224 * We're lucky in this case, because executing the RDID instruction twice will
225 * result in the same result.
226 *
227 * What we do is as follows (C: write command/opcode byte, D: read data byte,
228 * A: write address byte):
229 *
230 * 1. C D D D
231 * 2. C A A A D D D
232 */
233static bool wpcm_fiu_rdid_match(const struct spi_mem_op *op)
234{
235 return op->cmd.opcode == 0x9f && op->addr.nbytes == 0 &&
236 op->dummy.nbytes == 0 && op->data.nbytes == 6 &&
237 op->data.dir == SPI_MEM_DATA_IN;
238}
239
240static int wpcm_fiu_rdid_exec(struct spi_mem *mem, const struct spi_mem_op *op)
241{
242 struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(ctlr: mem->spi->controller);
243 int cs = spi_get_chipselect(spi: mem->spi, idx: 0);
244
245 /* First transfer */
246 wpcm_fiu_set_opcode(fiu, opcode: op->cmd.opcode);
247 wpcm_fiu_set_addr(fiu, addr: 0);
248 wpcm_fiu_do_uma(fiu, cs, use_addr: false, write: false, data_bytes: 3);
249 wpcm_fiu_get_data(fiu, data: op->data.buf.in, nbytes: 3);
250
251 /* Second transfer */
252 wpcm_fiu_set_opcode(fiu, opcode: op->cmd.opcode);
253 wpcm_fiu_set_addr(fiu, addr: 0);
254 wpcm_fiu_do_uma(fiu, cs, use_addr: true, write: false, data_bytes: 3);
255 wpcm_fiu_get_data(fiu, data: op->data.buf.in + 3, nbytes: 3);
256
257 return 0;
258}
259
260/*
261 * With some dummy bytes.
262 *
263 * C A A A X* X D D D D
264 * [C A A A D*][C D D D D]
265 */
266static bool wpcm_fiu_dummy_match(const struct spi_mem_op *op)
267{
268 // Opcode 0x0b (FAST READ) is treated differently in hardware
269 if (op->cmd.opcode == 0x0b)
270 return false;
271
272 return (op->addr.nbytes == 0 || op->addr.nbytes == 3) &&
273 op->dummy.nbytes >= 1 && op->dummy.nbytes <= 5 &&
274 op->data.nbytes <= 4;
275}
276
277static int wpcm_fiu_dummy_exec(struct spi_mem *mem, const struct spi_mem_op *op)
278{
279 struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(ctlr: mem->spi->controller);
280 int cs = spi_get_chipselect(spi: mem->spi, idx: 0);
281
282 wpcm_fiu_ects_assert(fiu, cs);
283
284 /* First transfer */
285 wpcm_fiu_set_opcode(fiu, opcode: op->cmd.opcode);
286 wpcm_fiu_set_addr(fiu, addr: op->addr.val);
287 wpcm_fiu_do_uma(fiu, cs, use_addr: op->addr.nbytes != 0, write: true, data_bytes: op->dummy.nbytes - 1);
288
289 /* Second transfer */
290 wpcm_fiu_set_opcode(fiu, opcode: 0);
291 wpcm_fiu_set_addr(fiu, addr: 0);
292 wpcm_fiu_do_uma(fiu, cs, use_addr: false, write: false, data_bytes: op->data.nbytes);
293 wpcm_fiu_get_data(fiu, data: op->data.buf.in, nbytes: op->data.nbytes);
294
295 wpcm_fiu_ects_deassert(fiu, cs);
296
297 return 0;
298}
299
300static const struct wpcm_fiu_op_shape wpcm_fiu_op_shapes[] = {
301 { .match = wpcm_fiu_normal_match, .exec = wpcm_fiu_normal_exec },
302 { .match = wpcm_fiu_fast_read_match, .exec = wpcm_fiu_fast_read_exec },
303 { .match = wpcm_fiu_4ba_match, .exec = wpcm_fiu_4ba_exec },
304 { .match = wpcm_fiu_rdid_match, .exec = wpcm_fiu_rdid_exec },
305 { .match = wpcm_fiu_dummy_match, .exec = wpcm_fiu_dummy_exec },
306};
307
308static const struct wpcm_fiu_op_shape *wpcm_fiu_find_op_shape(const struct spi_mem_op *op)
309{
310 size_t i;
311
312 for (i = 0; i < ARRAY_SIZE(wpcm_fiu_op_shapes); i++) {
313 const struct wpcm_fiu_op_shape *shape = &wpcm_fiu_op_shapes[i];
314
315 if (shape->match(op))
316 return shape;
317 }
318
319 return NULL;
320}
321
322static bool wpcm_fiu_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
323{
324 if (!spi_mem_default_supports_op(mem, op))
325 return false;
326
327 if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
328 return false;
329
330 if (op->cmd.buswidth > 1 || op->addr.buswidth > 1 ||
331 op->dummy.buswidth > 1 || op->data.buswidth > 1)
332 return false;
333
334 return wpcm_fiu_find_op_shape(op) != NULL;
335}
336
337/*
338 * In order to ensure the integrity of SPI transfers performed via UMA,
339 * temporarily disable (stall) memory accesses coming from the host CPU.
340 */
341static void wpcm_fiu_stall_host(struct wpcm_fiu_spi *fiu, bool stall)
342{
343 if (fiu->shm_regmap) {
344 int res = regmap_update_bits(map: fiu->shm_regmap, SHM_FLASH_SIZE,
345 SHM_FLASH_SIZE_STALL_HOST,
346 val: stall ? SHM_FLASH_SIZE_STALL_HOST : 0);
347 if (res)
348 dev_warn(fiu->dev, "Failed to (un)stall host memory accesses: %d\n", res);
349 }
350}
351
352static int wpcm_fiu_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
353{
354 struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(ctlr: mem->spi->controller);
355 const struct wpcm_fiu_op_shape *shape = wpcm_fiu_find_op_shape(op);
356
357 wpcm_fiu_stall_host(fiu, stall: true);
358
359 if (shape)
360 return shape->exec(mem, op);
361
362 wpcm_fiu_stall_host(fiu, stall: false);
363
364 return -EOPNOTSUPP;
365}
366
367static int wpcm_fiu_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
368{
369 if (op->data.nbytes > 4)
370 op->data.nbytes = 4;
371
372 return 0;
373}
374
375static int wpcm_fiu_dirmap_create(struct spi_mem_dirmap_desc *desc)
376{
377 struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(ctlr: desc->mem->spi->controller);
378 int cs = spi_get_chipselect(spi: desc->mem->spi, idx: 0);
379
380 if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
381 return -ENOTSUPP;
382
383 /*
384 * Unfortunately, FIU only supports a 16 MiB direct mapping window (per
385 * attached flash chip), but the SPI MEM core doesn't support partial
386 * direct mappings. This means that we can't support direct mapping on
387 * flashes that are bigger than 16 MiB.
388 */
389 if (desc->info.offset + desc->info.length > MAX_MEMORY_SIZE_PER_CS)
390 return -ENOTSUPP;
391
392 /* Don't read past the memory window */
393 if (cs * MAX_MEMORY_SIZE_PER_CS + desc->info.offset + desc->info.length > fiu->memory_size)
394 return -ENOTSUPP;
395
396 return 0;
397}
398
399static ssize_t wpcm_fiu_direct_read(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, void *buf)
400{
401 struct wpcm_fiu_spi *fiu = spi_controller_get_devdata(ctlr: desc->mem->spi->controller);
402 int cs = spi_get_chipselect(spi: desc->mem->spi, idx: 0);
403
404 if (offs >= MAX_MEMORY_SIZE_PER_CS)
405 return -ENOTSUPP;
406
407 offs += cs * MAX_MEMORY_SIZE_PER_CS;
408
409 if (!fiu->memory || offs >= fiu->memory_size)
410 return -ENOTSUPP;
411
412 len = min_t(size_t, len, fiu->memory_size - offs);
413 memcpy_fromio(buf, fiu->memory + offs, len);
414
415 return len;
416}
417
418static const struct spi_controller_mem_ops wpcm_fiu_mem_ops = {
419 .adjust_op_size = wpcm_fiu_adjust_op_size,
420 .supports_op = wpcm_fiu_supports_op,
421 .exec_op = wpcm_fiu_exec_op,
422 .dirmap_create = wpcm_fiu_dirmap_create,
423 .dirmap_read = wpcm_fiu_direct_read,
424};
425
426static void wpcm_fiu_hw_init(struct wpcm_fiu_spi *fiu)
427{
428 /* Configure memory-mapped flash access */
429 writeb(FIU_BURST_CFG_R16, addr: fiu->regs + FIU_BURST_BFG);
430 writeb(MAX_MEMORY_SIZE_TOTAL / (512 << 10), addr: fiu->regs + FIU_CFG);
431 writeb(MAX_MEMORY_SIZE_PER_CS / (512 << 10) | BIT(6), addr: fiu->regs + FIU_SPI_FL_CFG);
432
433 /* Deassert all manually asserted chip selects */
434 writeb(val: 0x0f, addr: fiu->regs + FIU_UMA_ECTS);
435}
436
437static int wpcm_fiu_probe(struct platform_device *pdev)
438{
439 struct device *dev = &pdev->dev;
440 struct spi_controller *ctrl;
441 struct wpcm_fiu_spi *fiu;
442 struct resource *res;
443
444 ctrl = devm_spi_alloc_host(dev, size: sizeof(*fiu));
445 if (!ctrl)
446 return -ENOMEM;
447
448 fiu = spi_controller_get_devdata(ctlr: ctrl);
449 fiu->dev = dev;
450
451 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "control");
452 fiu->regs = devm_ioremap_resource(dev, res);
453 if (IS_ERR(ptr: fiu->regs)) {
454 dev_err(dev, "Failed to map registers\n");
455 return PTR_ERR(ptr: fiu->regs);
456 }
457
458 fiu->clk = devm_clk_get_enabled(dev, NULL);
459 if (IS_ERR(ptr: fiu->clk))
460 return PTR_ERR(ptr: fiu->clk);
461
462 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "memory");
463 fiu->memory = devm_ioremap_resource(dev, res);
464 fiu->memory_size = min_t(size_t, resource_size(res), MAX_MEMORY_SIZE_TOTAL);
465 if (IS_ERR(ptr: fiu->memory)) {
466 dev_err(dev, "Failed to map flash memory window\n");
467 return PTR_ERR(ptr: fiu->memory);
468 }
469
470 fiu->shm_regmap = syscon_regmap_lookup_by_phandle_optional(np: dev->of_node, property: "nuvoton,shm");
471
472 wpcm_fiu_hw_init(fiu);
473
474 ctrl->bus_num = -1;
475 ctrl->mem_ops = &wpcm_fiu_mem_ops;
476 ctrl->num_chipselect = 4;
477 ctrl->dev.of_node = dev->of_node;
478
479 /*
480 * The FIU doesn't include a clock divider, the clock is entirely
481 * determined by the AHB3 bus clock.
482 */
483 ctrl->min_speed_hz = clk_get_rate(clk: fiu->clk);
484 ctrl->max_speed_hz = clk_get_rate(clk: fiu->clk);
485
486 return devm_spi_register_controller(dev, ctlr: ctrl);
487}
488
489static const struct of_device_id wpcm_fiu_dt_ids[] = {
490 { .compatible = "nuvoton,wpcm450-fiu", },
491 { }
492};
493MODULE_DEVICE_TABLE(of, wpcm_fiu_dt_ids);
494
495static struct platform_driver wpcm_fiu_driver = {
496 .driver = {
497 .name = "wpcm450-fiu",
498 .bus = &platform_bus_type,
499 .of_match_table = wpcm_fiu_dt_ids,
500 },
501 .probe = wpcm_fiu_probe,
502};
503module_platform_driver(wpcm_fiu_driver);
504
505MODULE_DESCRIPTION("Nuvoton WPCM450 FIU SPI controller driver");
506MODULE_AUTHOR("Jonathan Neuschäfer <j.neuschaefer@gmx.net>");
507MODULE_LICENSE("GPL");
508

source code of linux/drivers/spi/spi-wpcm-fiu.c