1// SPDX-License-Identifier: GPL-2.0
2// Copyright (C) 2020 Spreadtrum Communications Inc.
3
4#include <linux/clk.h>
5#include <linux/io.h>
6#include <linux/iopoll.h>
7#include <linux/module.h>
8#include <linux/nvmem-consumer.h>
9#include <linux/of.h>
10#include <linux/platform_device.h>
11#include <linux/slab.h>
12#include <linux/thermal.h>
13
14#define SPRD_THM_CTL 0x0
15#define SPRD_THM_INT_EN 0x4
16#define SPRD_THM_INT_STS 0x8
17#define SPRD_THM_INT_RAW_STS 0xc
18#define SPRD_THM_DET_PERIOD 0x10
19#define SPRD_THM_INT_CLR 0x14
20#define SPRD_THM_INT_CLR_ST 0x18
21#define SPRD_THM_MON_PERIOD 0x4c
22#define SPRD_THM_MON_CTL 0x50
23#define SPRD_THM_INTERNAL_STS1 0x54
24#define SPRD_THM_RAW_READ_MSK 0x3ff
25
26#define SPRD_THM_OFFSET(id) ((id) * 0x4)
27#define SPRD_THM_TEMP(id) (SPRD_THM_OFFSET(id) + 0x5c)
28#define SPRD_THM_THRES(id) (SPRD_THM_OFFSET(id) + 0x2c)
29
30#define SPRD_THM_SEN(id) BIT((id) + 2)
31#define SPRD_THM_SEN_OVERHEAT_EN(id) BIT((id) + 8)
32#define SPRD_THM_SEN_OVERHEAT_ALARM_EN(id) BIT((id) + 0)
33
34/* bits definitions for register THM_CTL */
35#define SPRD_THM_SET_RDY_ST BIT(13)
36#define SPRD_THM_SET_RDY BIT(12)
37#define SPRD_THM_MON_EN BIT(1)
38#define SPRD_THM_EN BIT(0)
39
40/* bits definitions for register THM_INT_CTL */
41#define SPRD_THM_BIT_INT_EN BIT(26)
42#define SPRD_THM_OVERHEAT_EN BIT(25)
43#define SPRD_THM_OTP_TRIP_SHIFT 10
44
45/* bits definitions for register SPRD_THM_INTERNAL_STS1 */
46#define SPRD_THM_TEMPER_RDY BIT(0)
47
48#define SPRD_THM_DET_PERIOD_DATA 0x800
49#define SPRD_THM_DET_PERIOD_MASK GENMASK(19, 0)
50#define SPRD_THM_MON_MODE 0x7
51#define SPRD_THM_MON_MODE_MASK GENMASK(3, 0)
52#define SPRD_THM_MON_PERIOD_DATA 0x10
53#define SPRD_THM_MON_PERIOD_MASK GENMASK(15, 0)
54#define SPRD_THM_THRES_MASK GENMASK(19, 0)
55#define SPRD_THM_INT_CLR_MASK GENMASK(24, 0)
56
57/* thermal sensor calibration parameters */
58#define SPRD_THM_TEMP_LOW -40000
59#define SPRD_THM_TEMP_HIGH 120000
60#define SPRD_THM_OTP_TEMP 120000
61#define SPRD_THM_HOT_TEMP 75000
62#define SPRD_THM_RAW_DATA_LOW 0
63#define SPRD_THM_RAW_DATA_HIGH 1000
64#define SPRD_THM_SEN_NUM 8
65#define SPRD_THM_DT_OFFSET 24
66#define SPRD_THM_RATION_OFFSET 17
67#define SPRD_THM_RATION_SIGN 16
68
69#define SPRD_THM_RDYST_POLLING_TIME 10
70#define SPRD_THM_RDYST_TIMEOUT 700
71#define SPRD_THM_TEMP_READY_POLL_TIME 10000
72#define SPRD_THM_TEMP_READY_TIMEOUT 600000
73#define SPRD_THM_MAX_SENSOR 8
74
75struct sprd_thermal_sensor {
76 struct thermal_zone_device *tzd;
77 struct sprd_thermal_data *data;
78 struct device *dev;
79 int cal_slope;
80 int cal_offset;
81 int id;
82};
83
84struct sprd_thermal_data {
85 const struct sprd_thm_variant_data *var_data;
86 struct sprd_thermal_sensor *sensor[SPRD_THM_MAX_SENSOR];
87 struct clk *clk;
88 void __iomem *base;
89 u32 ratio_off;
90 int ratio_sign;
91 int nr_sensors;
92};
93
94/*
95 * The conversion between ADC and temperature is based on linear relationship,
96 * and use idea_k to specify the slope and ideal_b to specify the offset.
97 *
98 * Since different Spreadtrum SoCs have different ideal_k and ideal_b,
99 * we should save ideal_k and ideal_b in the device data structure.
100 */
101struct sprd_thm_variant_data {
102 u32 ideal_k;
103 u32 ideal_b;
104};
105
106static const struct sprd_thm_variant_data ums512_data = {
107 .ideal_k = 262,
108 .ideal_b = 66400,
109};
110
111static inline void sprd_thm_update_bits(void __iomem *reg, u32 mask, u32 val)
112{
113 u32 tmp, orig;
114
115 orig = readl(addr: reg);
116 tmp = orig & ~mask;
117 tmp |= val & mask;
118 writel(val: tmp, addr: reg);
119}
120
121static int sprd_thm_cal_read(struct device_node *np, const char *cell_id,
122 u32 *val)
123{
124 struct nvmem_cell *cell;
125 void *buf;
126 size_t len;
127
128 cell = of_nvmem_cell_get(np, id: cell_id);
129 if (IS_ERR(ptr: cell))
130 return PTR_ERR(ptr: cell);
131
132 buf = nvmem_cell_read(cell, len: &len);
133 nvmem_cell_put(cell);
134 if (IS_ERR(ptr: buf))
135 return PTR_ERR(ptr: buf);
136
137 if (len > sizeof(u32)) {
138 kfree(objp: buf);
139 return -EINVAL;
140 }
141
142 memcpy(val, buf, len);
143
144 kfree(objp: buf);
145 return 0;
146}
147
148static int sprd_thm_sensor_calibration(struct device_node *np,
149 struct sprd_thermal_data *thm,
150 struct sprd_thermal_sensor *sen)
151{
152 int ret;
153 /*
154 * According to thermal datasheet, the default calibration offset is 64,
155 * and the default ratio is 1000.
156 */
157 int dt_offset = 64, ratio = 1000;
158
159 ret = sprd_thm_cal_read(np, cell_id: "sen_delta_cal", val: &dt_offset);
160 if (ret)
161 return ret;
162
163 ratio += thm->ratio_sign * thm->ratio_off;
164
165 /*
166 * According to the ideal slope K and ideal offset B, combined with
167 * calibration value of thermal from efuse, then calibrate the real
168 * slope k and offset b:
169 * k_cal = (k * ratio) / 1000.
170 * b_cal = b + (dt_offset - 64) * 500.
171 */
172 sen->cal_slope = (thm->var_data->ideal_k * ratio) / 1000;
173 sen->cal_offset = thm->var_data->ideal_b + (dt_offset - 128) * 250;
174
175 return 0;
176}
177
178static int sprd_thm_rawdata_to_temp(struct sprd_thermal_sensor *sen,
179 u32 rawdata)
180{
181 clamp(rawdata, (u32)SPRD_THM_RAW_DATA_LOW, (u32)SPRD_THM_RAW_DATA_HIGH);
182
183 /*
184 * According to the thermal datasheet, the formula of converting
185 * adc value to the temperature value should be:
186 * T_final = k_cal * x - b_cal.
187 */
188 return sen->cal_slope * rawdata - sen->cal_offset;
189}
190
191static int sprd_thm_temp_to_rawdata(int temp, struct sprd_thermal_sensor *sen)
192{
193 u32 val;
194
195 clamp(temp, (int)SPRD_THM_TEMP_LOW, (int)SPRD_THM_TEMP_HIGH);
196
197 /*
198 * According to the thermal datasheet, the formula of converting
199 * adc value to the temperature value should be:
200 * T_final = k_cal * x - b_cal.
201 */
202 val = (temp + sen->cal_offset) / sen->cal_slope;
203
204 return clamp(val, val, (u32)(SPRD_THM_RAW_DATA_HIGH - 1));
205}
206
207static int sprd_thm_read_temp(struct thermal_zone_device *tz, int *temp)
208{
209 struct sprd_thermal_sensor *sen = thermal_zone_device_priv(tzd: tz);
210 u32 data;
211
212 data = readl(addr: sen->data->base + SPRD_THM_TEMP(sen->id)) &
213 SPRD_THM_RAW_READ_MSK;
214
215 *temp = sprd_thm_rawdata_to_temp(sen, rawdata: data);
216
217 return 0;
218}
219
220static const struct thermal_zone_device_ops sprd_thm_ops = {
221 .get_temp = sprd_thm_read_temp,
222};
223
224static int sprd_thm_poll_ready_status(struct sprd_thermal_data *thm)
225{
226 u32 val;
227 int ret;
228
229 /*
230 * Wait for thermal ready status before configuring thermal parameters.
231 */
232 ret = readl_poll_timeout(thm->base + SPRD_THM_CTL, val,
233 !(val & SPRD_THM_SET_RDY_ST),
234 SPRD_THM_RDYST_POLLING_TIME,
235 SPRD_THM_RDYST_TIMEOUT);
236 if (ret)
237 return ret;
238
239 sprd_thm_update_bits(reg: thm->base + SPRD_THM_CTL, SPRD_THM_MON_EN,
240 SPRD_THM_MON_EN);
241 sprd_thm_update_bits(reg: thm->base + SPRD_THM_CTL, SPRD_THM_SET_RDY,
242 SPRD_THM_SET_RDY);
243 return 0;
244}
245
246static int sprd_thm_wait_temp_ready(struct sprd_thermal_data *thm)
247{
248 u32 val;
249
250 /* Wait for first temperature data ready before reading temperature */
251 return readl_poll_timeout(thm->base + SPRD_THM_INTERNAL_STS1, val,
252 !(val & SPRD_THM_TEMPER_RDY),
253 SPRD_THM_TEMP_READY_POLL_TIME,
254 SPRD_THM_TEMP_READY_TIMEOUT);
255}
256
257static int sprd_thm_set_ready(struct sprd_thermal_data *thm)
258{
259 int ret;
260
261 ret = sprd_thm_poll_ready_status(thm);
262 if (ret)
263 return ret;
264
265 /*
266 * Clear interrupt status, enable thermal interrupt and enable thermal.
267 *
268 * The SPRD thermal controller integrates a hardware interrupt signal,
269 * which means if the temperature is overheat, it will generate an
270 * interrupt and notify the event to PMIC automatically to shutdown the
271 * system. So here we should enable the interrupt bits, though we have
272 * not registered an irq handler.
273 */
274 writel(SPRD_THM_INT_CLR_MASK, addr: thm->base + SPRD_THM_INT_CLR);
275 sprd_thm_update_bits(reg: thm->base + SPRD_THM_INT_EN,
276 SPRD_THM_BIT_INT_EN, SPRD_THM_BIT_INT_EN);
277 sprd_thm_update_bits(reg: thm->base + SPRD_THM_CTL,
278 SPRD_THM_EN, SPRD_THM_EN);
279 return 0;
280}
281
282static void sprd_thm_sensor_init(struct sprd_thermal_data *thm,
283 struct sprd_thermal_sensor *sen)
284{
285 u32 otp_rawdata, hot_rawdata;
286
287 otp_rawdata = sprd_thm_temp_to_rawdata(SPRD_THM_OTP_TEMP, sen);
288 hot_rawdata = sprd_thm_temp_to_rawdata(SPRD_THM_HOT_TEMP, sen);
289
290 /* Enable the sensor' overheat temperature protection interrupt */
291 sprd_thm_update_bits(reg: thm->base + SPRD_THM_INT_EN,
292 SPRD_THM_SEN_OVERHEAT_ALARM_EN(sen->id),
293 SPRD_THM_SEN_OVERHEAT_ALARM_EN(sen->id));
294
295 /* Set the sensor' overheat and hot threshold temperature */
296 sprd_thm_update_bits(reg: thm->base + SPRD_THM_THRES(sen->id),
297 SPRD_THM_THRES_MASK,
298 val: (otp_rawdata << SPRD_THM_OTP_TRIP_SHIFT) |
299 hot_rawdata);
300
301 /* Enable the corresponding sensor */
302 sprd_thm_update_bits(reg: thm->base + SPRD_THM_CTL, SPRD_THM_SEN(sen->id),
303 SPRD_THM_SEN(sen->id));
304}
305
306static void sprd_thm_para_config(struct sprd_thermal_data *thm)
307{
308 /* Set the period of two valid temperature detection action */
309 sprd_thm_update_bits(reg: thm->base + SPRD_THM_DET_PERIOD,
310 SPRD_THM_DET_PERIOD_MASK, SPRD_THM_DET_PERIOD);
311
312 /* Set the sensors' monitor mode */
313 sprd_thm_update_bits(reg: thm->base + SPRD_THM_MON_CTL,
314 SPRD_THM_MON_MODE_MASK, SPRD_THM_MON_MODE);
315
316 /* Set the sensors' monitor period */
317 sprd_thm_update_bits(reg: thm->base + SPRD_THM_MON_PERIOD,
318 SPRD_THM_MON_PERIOD_MASK, SPRD_THM_MON_PERIOD);
319}
320
321static void sprd_thm_toggle_sensor(struct sprd_thermal_sensor *sen, bool on)
322{
323 struct thermal_zone_device *tzd = sen->tzd;
324
325 if (on)
326 thermal_zone_device_enable(tz: tzd);
327 else
328 thermal_zone_device_disable(tz: tzd);
329}
330
331static int sprd_thm_probe(struct platform_device *pdev)
332{
333 struct device_node *np = pdev->dev.of_node;
334 struct device_node *sen_child;
335 struct sprd_thermal_data *thm;
336 struct sprd_thermal_sensor *sen;
337 const struct sprd_thm_variant_data *pdata;
338 int ret, i;
339 u32 val;
340
341 pdata = of_device_get_match_data(dev: &pdev->dev);
342 if (!pdata) {
343 dev_err(&pdev->dev, "No matching driver data found\n");
344 return -EINVAL;
345 }
346
347 thm = devm_kzalloc(dev: &pdev->dev, size: sizeof(*thm), GFP_KERNEL);
348 if (!thm)
349 return -ENOMEM;
350
351 thm->var_data = pdata;
352 thm->base = devm_platform_ioremap_resource(pdev, index: 0);
353 if (IS_ERR(ptr: thm->base))
354 return PTR_ERR(ptr: thm->base);
355
356 thm->nr_sensors = of_get_child_count(np);
357 if (thm->nr_sensors == 0 || thm->nr_sensors > SPRD_THM_MAX_SENSOR) {
358 dev_err(&pdev->dev, "incorrect sensor count\n");
359 return -EINVAL;
360 }
361
362 thm->clk = devm_clk_get(dev: &pdev->dev, id: "enable");
363 if (IS_ERR(ptr: thm->clk)) {
364 dev_err(&pdev->dev, "failed to get enable clock\n");
365 return PTR_ERR(ptr: thm->clk);
366 }
367
368 ret = clk_prepare_enable(clk: thm->clk);
369 if (ret)
370 return ret;
371
372 sprd_thm_para_config(thm);
373
374 ret = sprd_thm_cal_read(np, cell_id: "thm_sign_cal", val: &val);
375 if (ret)
376 goto disable_clk;
377
378 if (val > 0)
379 thm->ratio_sign = -1;
380 else
381 thm->ratio_sign = 1;
382
383 ret = sprd_thm_cal_read(np, cell_id: "thm_ratio_cal", val: &thm->ratio_off);
384 if (ret)
385 goto disable_clk;
386
387 for_each_child_of_node(np, sen_child) {
388 sen = devm_kzalloc(dev: &pdev->dev, size: sizeof(*sen), GFP_KERNEL);
389 if (!sen) {
390 ret = -ENOMEM;
391 goto of_put;
392 }
393
394 sen->data = thm;
395 sen->dev = &pdev->dev;
396
397 ret = of_property_read_u32(np: sen_child, propname: "reg", out_value: &sen->id);
398 if (ret) {
399 dev_err(&pdev->dev, "get sensor reg failed");
400 goto of_put;
401 }
402
403 ret = sprd_thm_sensor_calibration(np: sen_child, thm, sen);
404 if (ret) {
405 dev_err(&pdev->dev, "efuse cal analysis failed");
406 goto of_put;
407 }
408
409 sprd_thm_sensor_init(thm, sen);
410
411 sen->tzd = devm_thermal_of_zone_register(dev: sen->dev,
412 id: sen->id,
413 data: sen,
414 ops: &sprd_thm_ops);
415 if (IS_ERR(ptr: sen->tzd)) {
416 dev_err(&pdev->dev, "register thermal zone failed %d\n",
417 sen->id);
418 ret = PTR_ERR(ptr: sen->tzd);
419 goto of_put;
420 }
421
422 thm->sensor[sen->id] = sen;
423 }
424 /* sen_child set to NULL at this point */
425
426 ret = sprd_thm_set_ready(thm);
427 if (ret)
428 goto of_put;
429
430 ret = sprd_thm_wait_temp_ready(thm);
431 if (ret)
432 goto of_put;
433
434 for (i = 0; i < thm->nr_sensors; i++)
435 sprd_thm_toggle_sensor(sen: thm->sensor[i], on: true);
436
437 platform_set_drvdata(pdev, data: thm);
438 return 0;
439
440of_put:
441 of_node_put(node: sen_child);
442disable_clk:
443 clk_disable_unprepare(clk: thm->clk);
444 return ret;
445}
446
447#ifdef CONFIG_PM_SLEEP
448static void sprd_thm_hw_suspend(struct sprd_thermal_data *thm)
449{
450 int i;
451
452 for (i = 0; i < thm->nr_sensors; i++) {
453 sprd_thm_update_bits(reg: thm->base + SPRD_THM_CTL,
454 SPRD_THM_SEN(thm->sensor[i]->id), val: 0);
455 }
456
457 sprd_thm_update_bits(reg: thm->base + SPRD_THM_CTL,
458 SPRD_THM_EN, val: 0x0);
459}
460
461static int sprd_thm_suspend(struct device *dev)
462{
463 struct sprd_thermal_data *thm = dev_get_drvdata(dev);
464 int i;
465
466 for (i = 0; i < thm->nr_sensors; i++)
467 sprd_thm_toggle_sensor(sen: thm->sensor[i], on: false);
468
469 sprd_thm_hw_suspend(thm);
470 clk_disable_unprepare(clk: thm->clk);
471
472 return 0;
473}
474
475static int sprd_thm_hw_resume(struct sprd_thermal_data *thm)
476{
477 int ret, i;
478
479 for (i = 0; i < thm->nr_sensors; i++) {
480 sprd_thm_update_bits(reg: thm->base + SPRD_THM_CTL,
481 SPRD_THM_SEN(thm->sensor[i]->id),
482 SPRD_THM_SEN(thm->sensor[i]->id));
483 }
484
485 ret = sprd_thm_poll_ready_status(thm);
486 if (ret)
487 return ret;
488
489 writel(SPRD_THM_INT_CLR_MASK, addr: thm->base + SPRD_THM_INT_CLR);
490 sprd_thm_update_bits(reg: thm->base + SPRD_THM_CTL,
491 SPRD_THM_EN, SPRD_THM_EN);
492 return sprd_thm_wait_temp_ready(thm);
493}
494
495static int sprd_thm_resume(struct device *dev)
496{
497 struct sprd_thermal_data *thm = dev_get_drvdata(dev);
498 int ret, i;
499
500 ret = clk_prepare_enable(clk: thm->clk);
501 if (ret)
502 return ret;
503
504 ret = sprd_thm_hw_resume(thm);
505 if (ret)
506 goto disable_clk;
507
508 for (i = 0; i < thm->nr_sensors; i++)
509 sprd_thm_toggle_sensor(sen: thm->sensor[i], on: true);
510
511 return 0;
512
513disable_clk:
514 clk_disable_unprepare(clk: thm->clk);
515 return ret;
516}
517#endif
518
519static void sprd_thm_remove(struct platform_device *pdev)
520{
521 struct sprd_thermal_data *thm = platform_get_drvdata(pdev);
522 int i;
523
524 for (i = 0; i < thm->nr_sensors; i++) {
525 sprd_thm_toggle_sensor(sen: thm->sensor[i], on: false);
526 devm_thermal_of_zone_unregister(dev: &pdev->dev,
527 tz: thm->sensor[i]->tzd);
528 }
529
530 clk_disable_unprepare(clk: thm->clk);
531}
532
533static const struct of_device_id sprd_thermal_of_match[] = {
534 { .compatible = "sprd,ums512-thermal", .data = &ums512_data },
535 { },
536};
537MODULE_DEVICE_TABLE(of, sprd_thermal_of_match);
538
539static const struct dev_pm_ops sprd_thermal_pm_ops = {
540 SET_SYSTEM_SLEEP_PM_OPS(sprd_thm_suspend, sprd_thm_resume)
541};
542
543static struct platform_driver sprd_thermal_driver = {
544 .probe = sprd_thm_probe,
545 .remove_new = sprd_thm_remove,
546 .driver = {
547 .name = "sprd-thermal",
548 .pm = &sprd_thermal_pm_ops,
549 .of_match_table = sprd_thermal_of_match,
550 },
551};
552
553module_platform_driver(sprd_thermal_driver);
554
555MODULE_AUTHOR("Freeman Liu <freeman.liu@unisoc.com>");
556MODULE_DESCRIPTION("Spreadtrum thermal driver");
557MODULE_LICENSE("GPL v2");
558

source code of linux/drivers/thermal/sprd_thermal.c