| 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * *************************************************************************** |
| 4 | * Marvell Armada-3700 Serial Driver |
| 5 | * Author: Wilson Ding <dingwei@marvell.com> |
| 6 | * Copyright (C) 2015 Marvell International Ltd. |
| 7 | * *************************************************************************** |
| 8 | */ |
| 9 | |
| 10 | #include <linux/clk.h> |
| 11 | #include <linux/clk-provider.h> |
| 12 | #include <linux/console.h> |
| 13 | #include <linux/delay.h> |
| 14 | #include <linux/device.h> |
| 15 | #include <linux/init.h> |
| 16 | #include <linux/io.h> |
| 17 | #include <linux/iopoll.h> |
| 18 | #include <linux/math64.h> |
| 19 | #include <linux/of.h> |
| 20 | #include <linux/of_address.h> |
| 21 | #include <linux/of_device.h> |
| 22 | #include <linux/of_irq.h> |
| 23 | #include <linux/of_platform.h> |
| 24 | #include <linux/platform_device.h> |
| 25 | #include <linux/serial.h> |
| 26 | #include <linux/serial_core.h> |
| 27 | #include <linux/slab.h> |
| 28 | #include <linux/tty.h> |
| 29 | #include <linux/tty_flip.h> |
| 30 | |
| 31 | /* Register Map */ |
| 32 | #define UART_STD_RBR 0x00 |
| 33 | #define UART_EXT_RBR 0x18 |
| 34 | |
| 35 | #define UART_STD_TSH 0x04 |
| 36 | #define UART_EXT_TSH 0x1C |
| 37 | |
| 38 | #define UART_STD_CTRL1 0x08 |
| 39 | #define UART_EXT_CTRL1 0x04 |
| 40 | #define CTRL_SOFT_RST BIT(31) |
| 41 | #define CTRL_TXFIFO_RST BIT(15) |
| 42 | #define CTRL_RXFIFO_RST BIT(14) |
| 43 | #define CTRL_SND_BRK_SEQ BIT(11) |
| 44 | #define CTRL_BRK_DET_INT BIT(3) |
| 45 | #define CTRL_FRM_ERR_INT BIT(2) |
| 46 | #define CTRL_PAR_ERR_INT BIT(1) |
| 47 | #define CTRL_OVR_ERR_INT BIT(0) |
| 48 | #define CTRL_BRK_INT (CTRL_BRK_DET_INT | CTRL_FRM_ERR_INT | \ |
| 49 | CTRL_PAR_ERR_INT | CTRL_OVR_ERR_INT) |
| 50 | |
| 51 | #define UART_STD_CTRL2 UART_STD_CTRL1 |
| 52 | #define UART_EXT_CTRL2 0x20 |
| 53 | #define CTRL_STD_TX_RDY_INT BIT(5) |
| 54 | #define CTRL_EXT_TX_RDY_INT BIT(6) |
| 55 | #define CTRL_STD_RX_RDY_INT BIT(4) |
| 56 | #define CTRL_EXT_RX_RDY_INT BIT(5) |
| 57 | |
| 58 | #define UART_STAT 0x0C |
| 59 | #define STAT_TX_FIFO_EMP BIT(13) |
| 60 | #define STAT_TX_FIFO_FUL BIT(11) |
| 61 | #define STAT_TX_EMP BIT(6) |
| 62 | #define STAT_STD_TX_RDY BIT(5) |
| 63 | #define STAT_EXT_TX_RDY BIT(15) |
| 64 | #define STAT_STD_RX_RDY BIT(4) |
| 65 | #define STAT_EXT_RX_RDY BIT(14) |
| 66 | #define STAT_BRK_DET BIT(3) |
| 67 | #define STAT_FRM_ERR BIT(2) |
| 68 | #define STAT_PAR_ERR BIT(1) |
| 69 | #define STAT_OVR_ERR BIT(0) |
| 70 | #define STAT_BRK_ERR (STAT_BRK_DET | STAT_FRM_ERR \ |
| 71 | | STAT_PAR_ERR | STAT_OVR_ERR) |
| 72 | |
| 73 | /* |
| 74 | * Marvell Armada 3700 Functional Specifications describes that bit 21 of UART |
| 75 | * Clock Control register controls UART1 and bit 20 controls UART2. But in |
| 76 | * reality bit 21 controls UART2 and bit 20 controls UART1. This seems to be an |
| 77 | * error in Marvell's documentation. Hence following CLK_DIS macros are swapped. |
| 78 | */ |
| 79 | |
| 80 | #define UART_BRDV 0x10 |
| 81 | /* These bits are located in UART1 address space and control UART2 */ |
| 82 | #define UART2_CLK_DIS BIT(21) |
| 83 | /* These bits are located in UART1 address space and control UART1 */ |
| 84 | #define UART1_CLK_DIS BIT(20) |
| 85 | /* These bits are located in UART1 address space and control both UARTs */ |
| 86 | #define CLK_NO_XTAL BIT(19) |
| 87 | #define CLK_TBG_DIV1_SHIFT 15 |
| 88 | #define CLK_TBG_DIV1_MASK 0x7 |
| 89 | #define CLK_TBG_DIV1_MAX 6 |
| 90 | #define CLK_TBG_DIV2_SHIFT 12 |
| 91 | #define CLK_TBG_DIV2_MASK 0x7 |
| 92 | #define CLK_TBG_DIV2_MAX 6 |
| 93 | #define CLK_TBG_SEL_SHIFT 10 |
| 94 | #define CLK_TBG_SEL_MASK 0x3 |
| 95 | /* These bits are located in both UARTs address space */ |
| 96 | #define BRDV_BAUD_MASK 0x3FF |
| 97 | #define BRDV_BAUD_MAX BRDV_BAUD_MASK |
| 98 | |
| 99 | #define UART_OSAMP 0x14 |
| 100 | #define OSAMP_DEFAULT_DIVISOR 16 |
| 101 | #define OSAMP_DIVISORS_MASK 0x3F3F3F3F |
| 102 | #define OSAMP_MAX_DIVISOR 63 |
| 103 | |
| 104 | #define MVEBU_NR_UARTS 2 |
| 105 | |
| 106 | #define MVEBU_UART_TYPE "mvebu-uart" |
| 107 | #define DRIVER_NAME "mvebu_serial" |
| 108 | |
| 109 | enum { |
| 110 | /* Either there is only one summed IRQ... */ |
| 111 | UART_IRQ_SUM = 0, |
| 112 | /* ...or there are two separate IRQ for RX and TX */ |
| 113 | UART_RX_IRQ = 0, |
| 114 | UART_TX_IRQ, |
| 115 | UART_IRQ_COUNT |
| 116 | }; |
| 117 | |
| 118 | /* Diverging register offsets */ |
| 119 | struct uart_regs_layout { |
| 120 | unsigned int rbr; |
| 121 | unsigned int tsh; |
| 122 | unsigned int ctrl; |
| 123 | unsigned int intr; |
| 124 | }; |
| 125 | |
| 126 | /* Diverging flags */ |
| 127 | struct uart_flags { |
| 128 | unsigned int ctrl_tx_rdy_int; |
| 129 | unsigned int ctrl_rx_rdy_int; |
| 130 | unsigned int stat_tx_rdy; |
| 131 | unsigned int stat_rx_rdy; |
| 132 | }; |
| 133 | |
| 134 | /* Driver data, a structure for each UART port */ |
| 135 | struct mvebu_uart_driver_data { |
| 136 | bool is_ext; |
| 137 | struct uart_regs_layout regs; |
| 138 | struct uart_flags flags; |
| 139 | }; |
| 140 | |
| 141 | /* Saved registers during suspend */ |
| 142 | struct mvebu_uart_pm_regs { |
| 143 | unsigned int rbr; |
| 144 | unsigned int tsh; |
| 145 | unsigned int ctrl; |
| 146 | unsigned int intr; |
| 147 | unsigned int stat; |
| 148 | unsigned int brdv; |
| 149 | unsigned int osamp; |
| 150 | }; |
| 151 | |
| 152 | /* MVEBU UART driver structure */ |
| 153 | struct mvebu_uart { |
| 154 | struct uart_port *port; |
| 155 | struct clk *clk; |
| 156 | int irq[UART_IRQ_COUNT]; |
| 157 | struct mvebu_uart_driver_data *data; |
| 158 | #if defined(CONFIG_PM) |
| 159 | struct mvebu_uart_pm_regs pm_regs; |
| 160 | #endif /* CONFIG_PM */ |
| 161 | }; |
| 162 | |
| 163 | static struct mvebu_uart *to_mvuart(struct uart_port *port) |
| 164 | { |
| 165 | return (struct mvebu_uart *)port->private_data; |
| 166 | } |
| 167 | |
| 168 | #define IS_EXTENDED(port) (to_mvuart(port)->data->is_ext) |
| 169 | |
| 170 | #define UART_RBR(port) (to_mvuart(port)->data->regs.rbr) |
| 171 | #define UART_TSH(port) (to_mvuart(port)->data->regs.tsh) |
| 172 | #define UART_CTRL(port) (to_mvuart(port)->data->regs.ctrl) |
| 173 | #define UART_INTR(port) (to_mvuart(port)->data->regs.intr) |
| 174 | |
| 175 | #define CTRL_TX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_tx_rdy_int) |
| 176 | #define CTRL_RX_RDY_INT(port) (to_mvuart(port)->data->flags.ctrl_rx_rdy_int) |
| 177 | #define STAT_TX_RDY(port) (to_mvuart(port)->data->flags.stat_tx_rdy) |
| 178 | #define STAT_RX_RDY(port) (to_mvuart(port)->data->flags.stat_rx_rdy) |
| 179 | |
| 180 | static struct uart_port mvebu_uart_ports[MVEBU_NR_UARTS]; |
| 181 | |
| 182 | static DEFINE_SPINLOCK(mvebu_uart_lock); |
| 183 | |
| 184 | /* Core UART Driver Operations */ |
| 185 | static unsigned int mvebu_uart_tx_empty(struct uart_port *port) |
| 186 | { |
| 187 | unsigned long flags; |
| 188 | unsigned int st; |
| 189 | |
| 190 | uart_port_lock_irqsave(up: port, flags: &flags); |
| 191 | st = readl(addr: port->membase + UART_STAT); |
| 192 | uart_port_unlock_irqrestore(up: port, flags); |
| 193 | |
| 194 | return (st & STAT_TX_EMP) ? TIOCSER_TEMT : 0; |
| 195 | } |
| 196 | |
| 197 | static unsigned int mvebu_uart_get_mctrl(struct uart_port *port) |
| 198 | { |
| 199 | return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR; |
| 200 | } |
| 201 | |
| 202 | static void mvebu_uart_set_mctrl(struct uart_port *port, |
| 203 | unsigned int mctrl) |
| 204 | { |
| 205 | /* |
| 206 | * Even if we do not support configuring the modem control lines, this |
| 207 | * function must be proided to the serial core |
| 208 | */ |
| 209 | } |
| 210 | |
| 211 | static void mvebu_uart_stop_tx(struct uart_port *port) |
| 212 | { |
| 213 | unsigned int ctl = readl(addr: port->membase + UART_INTR(port)); |
| 214 | |
| 215 | ctl &= ~CTRL_TX_RDY_INT(port); |
| 216 | writel(val: ctl, addr: port->membase + UART_INTR(port)); |
| 217 | } |
| 218 | |
| 219 | static void mvebu_uart_start_tx(struct uart_port *port) |
| 220 | { |
| 221 | unsigned int ctl; |
| 222 | unsigned char c; |
| 223 | |
| 224 | if (IS_EXTENDED(port) && uart_fifo_get(up: port, ch: &c)) |
| 225 | writel(val: c, addr: port->membase + UART_TSH(port)); |
| 226 | |
| 227 | ctl = readl(addr: port->membase + UART_INTR(port)); |
| 228 | ctl |= CTRL_TX_RDY_INT(port); |
| 229 | writel(val: ctl, addr: port->membase + UART_INTR(port)); |
| 230 | } |
| 231 | |
| 232 | static void mvebu_uart_stop_rx(struct uart_port *port) |
| 233 | { |
| 234 | unsigned int ctl; |
| 235 | |
| 236 | ctl = readl(addr: port->membase + UART_CTRL(port)); |
| 237 | ctl &= ~CTRL_BRK_INT; |
| 238 | writel(val: ctl, addr: port->membase + UART_CTRL(port)); |
| 239 | |
| 240 | ctl = readl(addr: port->membase + UART_INTR(port)); |
| 241 | ctl &= ~CTRL_RX_RDY_INT(port); |
| 242 | writel(val: ctl, addr: port->membase + UART_INTR(port)); |
| 243 | } |
| 244 | |
| 245 | static void mvebu_uart_break_ctl(struct uart_port *port, int brk) |
| 246 | { |
| 247 | unsigned int ctl; |
| 248 | unsigned long flags; |
| 249 | |
| 250 | uart_port_lock_irqsave(up: port, flags: &flags); |
| 251 | ctl = readl(addr: port->membase + UART_CTRL(port)); |
| 252 | if (brk == -1) |
| 253 | ctl |= CTRL_SND_BRK_SEQ; |
| 254 | else |
| 255 | ctl &= ~CTRL_SND_BRK_SEQ; |
| 256 | writel(val: ctl, addr: port->membase + UART_CTRL(port)); |
| 257 | uart_port_unlock_irqrestore(up: port, flags); |
| 258 | } |
| 259 | |
| 260 | static void mvebu_uart_rx_chars(struct uart_port *port, unsigned int status) |
| 261 | { |
| 262 | struct tty_port *tport = &port->state->port; |
| 263 | unsigned char ch = 0; |
| 264 | char flag = 0; |
| 265 | int ret; |
| 266 | |
| 267 | do { |
| 268 | if (status & STAT_RX_RDY(port)) { |
| 269 | ch = readl(addr: port->membase + UART_RBR(port)); |
| 270 | ch &= 0xff; |
| 271 | flag = TTY_NORMAL; |
| 272 | port->icount.rx++; |
| 273 | |
| 274 | if (status & STAT_PAR_ERR) |
| 275 | port->icount.parity++; |
| 276 | } |
| 277 | |
| 278 | /* |
| 279 | * For UART2, error bits are not cleared on buffer read. |
| 280 | * This causes interrupt loop and system hang. |
| 281 | */ |
| 282 | if (IS_EXTENDED(port) && (status & STAT_BRK_ERR)) { |
| 283 | ret = readl(addr: port->membase + UART_STAT); |
| 284 | ret |= STAT_BRK_ERR; |
| 285 | writel(val: ret, addr: port->membase + UART_STAT); |
| 286 | } |
| 287 | |
| 288 | if (status & STAT_BRK_DET) { |
| 289 | port->icount.brk++; |
| 290 | status &= ~(STAT_FRM_ERR | STAT_PAR_ERR); |
| 291 | if (uart_handle_break(port)) |
| 292 | goto ignore_char; |
| 293 | } |
| 294 | |
| 295 | if (status & STAT_OVR_ERR) |
| 296 | port->icount.overrun++; |
| 297 | |
| 298 | if (status & STAT_FRM_ERR) |
| 299 | port->icount.frame++; |
| 300 | |
| 301 | if (uart_handle_sysrq_char(port, ch)) |
| 302 | goto ignore_char; |
| 303 | |
| 304 | if (status & port->ignore_status_mask & STAT_PAR_ERR) |
| 305 | status &= ~STAT_RX_RDY(port); |
| 306 | |
| 307 | status &= port->read_status_mask; |
| 308 | |
| 309 | if (status & STAT_PAR_ERR) |
| 310 | flag = TTY_PARITY; |
| 311 | |
| 312 | status &= ~port->ignore_status_mask; |
| 313 | |
| 314 | if (status & STAT_RX_RDY(port)) |
| 315 | tty_insert_flip_char(port: tport, ch, flag); |
| 316 | |
| 317 | if (status & STAT_BRK_DET) |
| 318 | tty_insert_flip_char(port: tport, ch: 0, TTY_BREAK); |
| 319 | |
| 320 | if (status & STAT_FRM_ERR) |
| 321 | tty_insert_flip_char(port: tport, ch: 0, TTY_FRAME); |
| 322 | |
| 323 | if (status & STAT_OVR_ERR) |
| 324 | tty_insert_flip_char(port: tport, ch: 0, TTY_OVERRUN); |
| 325 | |
| 326 | ignore_char: |
| 327 | status = readl(addr: port->membase + UART_STAT); |
| 328 | } while (status & (STAT_RX_RDY(port) | STAT_BRK_DET)); |
| 329 | |
| 330 | tty_flip_buffer_push(port: tport); |
| 331 | } |
| 332 | |
| 333 | static void mvebu_uart_tx_chars(struct uart_port *port, unsigned int status) |
| 334 | { |
| 335 | u8 ch; |
| 336 | |
| 337 | uart_port_tx_limited(port, ch, port->fifosize, |
| 338 | !(readl(port->membase + UART_STAT) & STAT_TX_FIFO_FUL), |
| 339 | writel(ch, port->membase + UART_TSH(port)), |
| 340 | ({})); |
| 341 | } |
| 342 | |
| 343 | static irqreturn_t mvebu_uart_isr(int irq, void *dev_id) |
| 344 | { |
| 345 | struct uart_port *port = (struct uart_port *)dev_id; |
| 346 | unsigned int st = readl(addr: port->membase + UART_STAT); |
| 347 | |
| 348 | if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR | |
| 349 | STAT_BRK_DET)) |
| 350 | mvebu_uart_rx_chars(port, status: st); |
| 351 | |
| 352 | if (st & STAT_TX_RDY(port)) |
| 353 | mvebu_uart_tx_chars(port, status: st); |
| 354 | |
| 355 | return IRQ_HANDLED; |
| 356 | } |
| 357 | |
| 358 | static irqreturn_t mvebu_uart_rx_isr(int irq, void *dev_id) |
| 359 | { |
| 360 | struct uart_port *port = (struct uart_port *)dev_id; |
| 361 | unsigned int st = readl(addr: port->membase + UART_STAT); |
| 362 | |
| 363 | if (st & (STAT_RX_RDY(port) | STAT_OVR_ERR | STAT_FRM_ERR | |
| 364 | STAT_BRK_DET)) |
| 365 | mvebu_uart_rx_chars(port, status: st); |
| 366 | |
| 367 | return IRQ_HANDLED; |
| 368 | } |
| 369 | |
| 370 | static irqreturn_t mvebu_uart_tx_isr(int irq, void *dev_id) |
| 371 | { |
| 372 | struct uart_port *port = (struct uart_port *)dev_id; |
| 373 | unsigned int st = readl(addr: port->membase + UART_STAT); |
| 374 | |
| 375 | if (st & STAT_TX_RDY(port)) |
| 376 | mvebu_uart_tx_chars(port, status: st); |
| 377 | |
| 378 | return IRQ_HANDLED; |
| 379 | } |
| 380 | |
| 381 | static int mvebu_uart_startup(struct uart_port *port) |
| 382 | { |
| 383 | struct mvebu_uart *mvuart = to_mvuart(port); |
| 384 | unsigned int ctl; |
| 385 | int ret; |
| 386 | |
| 387 | writel(CTRL_TXFIFO_RST | CTRL_RXFIFO_RST, |
| 388 | addr: port->membase + UART_CTRL(port)); |
| 389 | udelay(usec: 1); |
| 390 | |
| 391 | /* Clear the error bits of state register before IRQ request */ |
| 392 | ret = readl(addr: port->membase + UART_STAT); |
| 393 | ret |= STAT_BRK_ERR; |
| 394 | writel(val: ret, addr: port->membase + UART_STAT); |
| 395 | |
| 396 | writel(CTRL_BRK_INT, addr: port->membase + UART_CTRL(port)); |
| 397 | |
| 398 | ctl = readl(addr: port->membase + UART_INTR(port)); |
| 399 | ctl |= CTRL_RX_RDY_INT(port); |
| 400 | writel(val: ctl, addr: port->membase + UART_INTR(port)); |
| 401 | |
| 402 | if (!mvuart->irq[UART_TX_IRQ]) { |
| 403 | /* Old bindings with just one interrupt (UART0 only) */ |
| 404 | ret = devm_request_irq(dev: port->dev, irq: mvuart->irq[UART_IRQ_SUM], |
| 405 | handler: mvebu_uart_isr, irqflags: port->irqflags, |
| 406 | devname: dev_name(dev: port->dev), dev_id: port); |
| 407 | if (ret) { |
| 408 | dev_err(port->dev, "unable to request IRQ %d\n" , |
| 409 | mvuart->irq[UART_IRQ_SUM]); |
| 410 | return ret; |
| 411 | } |
| 412 | } else { |
| 413 | /* New bindings with an IRQ for RX and TX (both UART) */ |
| 414 | ret = devm_request_irq(dev: port->dev, irq: mvuart->irq[UART_RX_IRQ], |
| 415 | handler: mvebu_uart_rx_isr, irqflags: port->irqflags, |
| 416 | devname: dev_name(dev: port->dev), dev_id: port); |
| 417 | if (ret) { |
| 418 | dev_err(port->dev, "unable to request IRQ %d\n" , |
| 419 | mvuart->irq[UART_RX_IRQ]); |
| 420 | return ret; |
| 421 | } |
| 422 | |
| 423 | ret = devm_request_irq(dev: port->dev, irq: mvuart->irq[UART_TX_IRQ], |
| 424 | handler: mvebu_uart_tx_isr, irqflags: port->irqflags, |
| 425 | devname: dev_name(dev: port->dev), |
| 426 | dev_id: port); |
| 427 | if (ret) { |
| 428 | dev_err(port->dev, "unable to request IRQ %d\n" , |
| 429 | mvuart->irq[UART_TX_IRQ]); |
| 430 | devm_free_irq(dev: port->dev, irq: mvuart->irq[UART_RX_IRQ], |
| 431 | dev_id: port); |
| 432 | return ret; |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | return 0; |
| 437 | } |
| 438 | |
| 439 | static void mvebu_uart_shutdown(struct uart_port *port) |
| 440 | { |
| 441 | struct mvebu_uart *mvuart = to_mvuart(port); |
| 442 | |
| 443 | writel(val: 0, addr: port->membase + UART_INTR(port)); |
| 444 | |
| 445 | if (!mvuart->irq[UART_TX_IRQ]) { |
| 446 | devm_free_irq(dev: port->dev, irq: mvuart->irq[UART_IRQ_SUM], dev_id: port); |
| 447 | } else { |
| 448 | devm_free_irq(dev: port->dev, irq: mvuart->irq[UART_RX_IRQ], dev_id: port); |
| 449 | devm_free_irq(dev: port->dev, irq: mvuart->irq[UART_TX_IRQ], dev_id: port); |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | static unsigned int mvebu_uart_baud_rate_set(struct uart_port *port, unsigned int baud) |
| 454 | { |
| 455 | unsigned int d_divisor, m_divisor; |
| 456 | unsigned long flags; |
| 457 | u32 brdv, osamp; |
| 458 | |
| 459 | if (!port->uartclk) |
| 460 | return 0; |
| 461 | |
| 462 | /* |
| 463 | * The baudrate is derived from the UART clock thanks to divisors: |
| 464 | * > d1 * d2 ("TBG divisors"): can divide only TBG clock from 1 to 6 |
| 465 | * > D ("baud generator"): can divide the clock from 1 to 1023 |
| 466 | * > M ("fractional divisor"): allows a better accuracy (from 1 to 63) |
| 467 | * |
| 468 | * Exact formulas for calculating baudrate: |
| 469 | * |
| 470 | * with default x16 scheme: |
| 471 | * baudrate = xtal / (d * 16) |
| 472 | * baudrate = tbg / (d1 * d2 * d * 16) |
| 473 | * |
| 474 | * with fractional divisor: |
| 475 | * baudrate = 10 * xtal / (d * (3 * (m1 + m2) + 2 * (m3 + m4))) |
| 476 | * baudrate = 10 * tbg / (d1*d2 * d * (3 * (m1 + m2) + 2 * (m3 + m4))) |
| 477 | * |
| 478 | * Oversampling value: |
| 479 | * osamp = (m1 << 0) | (m2 << 8) | (m3 << 16) | (m4 << 24); |
| 480 | * |
| 481 | * Where m1 controls number of clock cycles per bit for bits 1,2,3; |
| 482 | * m2 for bits 4,5,6; m3 for bits 7,8 and m4 for bits 9,10. |
| 483 | * |
| 484 | * To simplify baudrate setup set all the M prescalers to the same |
| 485 | * value. For baudrates 9600 Bd and higher, it is enough to use the |
| 486 | * default (x16) divisor or fractional divisor with M = 63, so there |
| 487 | * is no need to use real fractional support (where the M prescalers |
| 488 | * are not equal). |
| 489 | * |
| 490 | * When all the M prescalers are zeroed then default (x16) divisor is |
| 491 | * used. Default x16 scheme is more stable than M (fractional divisor), |
| 492 | * so use M only when D divisor is not enough to derive baudrate. |
| 493 | * |
| 494 | * Member port->uartclk is either xtal clock rate or TBG clock rate |
| 495 | * divided by (d1 * d2). So d1 and d2 are already set by the UART clock |
| 496 | * driver (and UART driver itself cannot change them). Moreover they are |
| 497 | * shared between both UARTs. |
| 498 | */ |
| 499 | |
| 500 | m_divisor = OSAMP_DEFAULT_DIVISOR; |
| 501 | d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor); |
| 502 | |
| 503 | if (d_divisor > BRDV_BAUD_MAX) { |
| 504 | /* |
| 505 | * Experiments show that small M divisors are unstable. |
| 506 | * Use maximal possible M = 63 and calculate D divisor. |
| 507 | */ |
| 508 | m_divisor = OSAMP_MAX_DIVISOR; |
| 509 | d_divisor = DIV_ROUND_CLOSEST(port->uartclk, baud * m_divisor); |
| 510 | } |
| 511 | |
| 512 | if (d_divisor < 1) |
| 513 | d_divisor = 1; |
| 514 | else if (d_divisor > BRDV_BAUD_MAX) |
| 515 | d_divisor = BRDV_BAUD_MAX; |
| 516 | |
| 517 | spin_lock_irqsave(&mvebu_uart_lock, flags); |
| 518 | brdv = readl(addr: port->membase + UART_BRDV); |
| 519 | brdv &= ~BRDV_BAUD_MASK; |
| 520 | brdv |= d_divisor; |
| 521 | writel(val: brdv, addr: port->membase + UART_BRDV); |
| 522 | spin_unlock_irqrestore(lock: &mvebu_uart_lock, flags); |
| 523 | |
| 524 | osamp = readl(addr: port->membase + UART_OSAMP); |
| 525 | osamp &= ~OSAMP_DIVISORS_MASK; |
| 526 | if (m_divisor != OSAMP_DEFAULT_DIVISOR) |
| 527 | osamp |= (m_divisor << 0) | (m_divisor << 8) | |
| 528 | (m_divisor << 16) | (m_divisor << 24); |
| 529 | writel(val: osamp, addr: port->membase + UART_OSAMP); |
| 530 | |
| 531 | return DIV_ROUND_CLOSEST(port->uartclk, d_divisor * m_divisor); |
| 532 | } |
| 533 | |
| 534 | static void mvebu_uart_set_termios(struct uart_port *port, |
| 535 | struct ktermios *termios, |
| 536 | const struct ktermios *old) |
| 537 | { |
| 538 | unsigned long flags; |
| 539 | unsigned int baud, min_baud, max_baud; |
| 540 | |
| 541 | uart_port_lock_irqsave(up: port, flags: &flags); |
| 542 | |
| 543 | port->read_status_mask = STAT_RX_RDY(port) | STAT_OVR_ERR | |
| 544 | STAT_TX_RDY(port) | STAT_TX_FIFO_FUL; |
| 545 | |
| 546 | if (termios->c_iflag & INPCK) |
| 547 | port->read_status_mask |= STAT_FRM_ERR | STAT_PAR_ERR; |
| 548 | |
| 549 | port->ignore_status_mask = 0; |
| 550 | if (termios->c_iflag & IGNPAR) |
| 551 | port->ignore_status_mask |= |
| 552 | STAT_FRM_ERR | STAT_PAR_ERR | STAT_OVR_ERR; |
| 553 | |
| 554 | if ((termios->c_cflag & CREAD) == 0) |
| 555 | port->ignore_status_mask |= STAT_RX_RDY(port) | STAT_BRK_ERR; |
| 556 | |
| 557 | /* |
| 558 | * Maximal divisor is 1023 and maximal fractional divisor is 63. And |
| 559 | * experiments show that baudrates above 1/80 of parent clock rate are |
| 560 | * not stable. So disallow baudrates above 1/80 of the parent clock |
| 561 | * rate. If port->uartclk is not available, then |
| 562 | * mvebu_uart_baud_rate_set() fails, so values min_baud and max_baud |
| 563 | * in this case do not matter. |
| 564 | */ |
| 565 | min_baud = DIV_ROUND_UP(port->uartclk, BRDV_BAUD_MAX * |
| 566 | OSAMP_MAX_DIVISOR); |
| 567 | max_baud = port->uartclk / 80; |
| 568 | |
| 569 | baud = uart_get_baud_rate(port, termios, old, min: min_baud, max: max_baud); |
| 570 | baud = mvebu_uart_baud_rate_set(port, baud); |
| 571 | |
| 572 | /* In case baudrate cannot be changed, report previous old value */ |
| 573 | if (baud == 0 && old) |
| 574 | baud = tty_termios_baud_rate(termios: old); |
| 575 | |
| 576 | /* Only the following flag changes are supported */ |
| 577 | if (old) { |
| 578 | termios->c_iflag &= INPCK | IGNPAR; |
| 579 | termios->c_iflag |= old->c_iflag & ~(INPCK | IGNPAR); |
| 580 | termios->c_cflag &= CREAD | CBAUD; |
| 581 | termios->c_cflag |= old->c_cflag & ~(CREAD | CBAUD); |
| 582 | termios->c_cflag |= CS8; |
| 583 | } |
| 584 | |
| 585 | if (baud != 0) { |
| 586 | tty_termios_encode_baud_rate(termios, ibaud: baud, obaud: baud); |
| 587 | uart_update_timeout(port, cflag: termios->c_cflag, baud); |
| 588 | } |
| 589 | |
| 590 | uart_port_unlock_irqrestore(up: port, flags); |
| 591 | } |
| 592 | |
| 593 | static const char *mvebu_uart_type(struct uart_port *port) |
| 594 | { |
| 595 | return MVEBU_UART_TYPE; |
| 596 | } |
| 597 | |
| 598 | static void mvebu_uart_release_port(struct uart_port *port) |
| 599 | { |
| 600 | /* Nothing to do here */ |
| 601 | } |
| 602 | |
| 603 | static int mvebu_uart_request_port(struct uart_port *port) |
| 604 | { |
| 605 | return 0; |
| 606 | } |
| 607 | |
| 608 | #ifdef CONFIG_CONSOLE_POLL |
| 609 | static int mvebu_uart_get_poll_char(struct uart_port *port) |
| 610 | { |
| 611 | unsigned int st = readl(addr: port->membase + UART_STAT); |
| 612 | |
| 613 | if (!(st & STAT_RX_RDY(port))) |
| 614 | return NO_POLL_CHAR; |
| 615 | |
| 616 | return readl(addr: port->membase + UART_RBR(port)); |
| 617 | } |
| 618 | |
| 619 | static void mvebu_uart_put_poll_char(struct uart_port *port, unsigned char c) |
| 620 | { |
| 621 | unsigned int st; |
| 622 | |
| 623 | for (;;) { |
| 624 | st = readl(addr: port->membase + UART_STAT); |
| 625 | |
| 626 | if (!(st & STAT_TX_FIFO_FUL)) |
| 627 | break; |
| 628 | |
| 629 | udelay(usec: 1); |
| 630 | } |
| 631 | |
| 632 | writel(val: c, addr: port->membase + UART_TSH(port)); |
| 633 | } |
| 634 | #endif |
| 635 | |
| 636 | static const struct uart_ops mvebu_uart_ops = { |
| 637 | .tx_empty = mvebu_uart_tx_empty, |
| 638 | .set_mctrl = mvebu_uart_set_mctrl, |
| 639 | .get_mctrl = mvebu_uart_get_mctrl, |
| 640 | .stop_tx = mvebu_uart_stop_tx, |
| 641 | .start_tx = mvebu_uart_start_tx, |
| 642 | .stop_rx = mvebu_uart_stop_rx, |
| 643 | .break_ctl = mvebu_uart_break_ctl, |
| 644 | .startup = mvebu_uart_startup, |
| 645 | .shutdown = mvebu_uart_shutdown, |
| 646 | .set_termios = mvebu_uart_set_termios, |
| 647 | .type = mvebu_uart_type, |
| 648 | .release_port = mvebu_uart_release_port, |
| 649 | .request_port = mvebu_uart_request_port, |
| 650 | #ifdef CONFIG_CONSOLE_POLL |
| 651 | .poll_get_char = mvebu_uart_get_poll_char, |
| 652 | .poll_put_char = mvebu_uart_put_poll_char, |
| 653 | #endif |
| 654 | }; |
| 655 | |
| 656 | /* Console Driver Operations */ |
| 657 | |
| 658 | #ifdef CONFIG_SERIAL_MVEBU_CONSOLE |
| 659 | /* Early Console */ |
| 660 | static void mvebu_uart_putc(struct uart_port *port, unsigned char c) |
| 661 | { |
| 662 | unsigned int st; |
| 663 | |
| 664 | for (;;) { |
| 665 | st = readl(addr: port->membase + UART_STAT); |
| 666 | if (!(st & STAT_TX_FIFO_FUL)) |
| 667 | break; |
| 668 | } |
| 669 | |
| 670 | /* At early stage, DT is not parsed yet, only use UART0 */ |
| 671 | writel(val: c, addr: port->membase + UART_STD_TSH); |
| 672 | |
| 673 | for (;;) { |
| 674 | st = readl(addr: port->membase + UART_STAT); |
| 675 | if (st & STAT_TX_FIFO_EMP) |
| 676 | break; |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | static void mvebu_uart_putc_early_write(struct console *con, |
| 681 | const char *s, |
| 682 | unsigned int n) |
| 683 | { |
| 684 | struct earlycon_device *dev = con->data; |
| 685 | |
| 686 | uart_console_write(port: &dev->port, s, count: n, putchar: mvebu_uart_putc); |
| 687 | } |
| 688 | |
| 689 | static int __init |
| 690 | mvebu_uart_early_console_setup(struct earlycon_device *device, |
| 691 | const char *opt) |
| 692 | { |
| 693 | if (!device->port.membase) |
| 694 | return -ENODEV; |
| 695 | |
| 696 | device->con->write = mvebu_uart_putc_early_write; |
| 697 | |
| 698 | return 0; |
| 699 | } |
| 700 | |
| 701 | EARLYCON_DECLARE(ar3700_uart, mvebu_uart_early_console_setup); |
| 702 | OF_EARLYCON_DECLARE(ar3700_uart, "marvell,armada-3700-uart" , |
| 703 | mvebu_uart_early_console_setup); |
| 704 | |
| 705 | static void wait_for_xmitr(struct uart_port *port) |
| 706 | { |
| 707 | u32 val; |
| 708 | |
| 709 | readl_poll_timeout_atomic(port->membase + UART_STAT, val, |
| 710 | (val & STAT_TX_RDY(port)), 1, 10000); |
| 711 | } |
| 712 | |
| 713 | static void wait_for_xmite(struct uart_port *port) |
| 714 | { |
| 715 | u32 val; |
| 716 | |
| 717 | readl_poll_timeout_atomic(port->membase + UART_STAT, val, |
| 718 | (val & STAT_TX_EMP), 1, 10000); |
| 719 | } |
| 720 | |
| 721 | static void mvebu_uart_console_putchar(struct uart_port *port, unsigned char ch) |
| 722 | { |
| 723 | wait_for_xmitr(port); |
| 724 | writel(val: ch, addr: port->membase + UART_TSH(port)); |
| 725 | } |
| 726 | |
| 727 | static void mvebu_uart_console_write(struct console *co, const char *s, |
| 728 | unsigned int count) |
| 729 | { |
| 730 | struct uart_port *port = &mvebu_uart_ports[co->index]; |
| 731 | unsigned long flags; |
| 732 | unsigned int ier, intr, ctl; |
| 733 | int locked = 1; |
| 734 | |
| 735 | if (oops_in_progress) |
| 736 | locked = uart_port_trylock_irqsave(up: port, flags: &flags); |
| 737 | else |
| 738 | uart_port_lock_irqsave(up: port, flags: &flags); |
| 739 | |
| 740 | ier = readl(addr: port->membase + UART_CTRL(port)) & CTRL_BRK_INT; |
| 741 | intr = readl(addr: port->membase + UART_INTR(port)) & |
| 742 | (CTRL_RX_RDY_INT(port) | CTRL_TX_RDY_INT(port)); |
| 743 | writel(val: 0, addr: port->membase + UART_CTRL(port)); |
| 744 | writel(val: 0, addr: port->membase + UART_INTR(port)); |
| 745 | |
| 746 | uart_console_write(port, s, count, putchar: mvebu_uart_console_putchar); |
| 747 | |
| 748 | wait_for_xmite(port); |
| 749 | |
| 750 | if (ier) |
| 751 | writel(val: ier, addr: port->membase + UART_CTRL(port)); |
| 752 | |
| 753 | if (intr) { |
| 754 | ctl = intr | readl(addr: port->membase + UART_INTR(port)); |
| 755 | writel(val: ctl, addr: port->membase + UART_INTR(port)); |
| 756 | } |
| 757 | |
| 758 | if (locked) |
| 759 | uart_port_unlock_irqrestore(up: port, flags); |
| 760 | } |
| 761 | |
| 762 | static int mvebu_uart_console_setup(struct console *co, char *options) |
| 763 | { |
| 764 | struct uart_port *port; |
| 765 | int baud = 9600; |
| 766 | int bits = 8; |
| 767 | int parity = 'n'; |
| 768 | int flow = 'n'; |
| 769 | |
| 770 | if (co->index < 0 || co->index >= MVEBU_NR_UARTS) |
| 771 | return -EINVAL; |
| 772 | |
| 773 | port = &mvebu_uart_ports[co->index]; |
| 774 | |
| 775 | if (!port->mapbase || !port->membase) { |
| 776 | pr_debug("console on ttyMV%i not present\n" , co->index); |
| 777 | return -ENODEV; |
| 778 | } |
| 779 | |
| 780 | if (options) |
| 781 | uart_parse_options(options, baud: &baud, parity: &parity, bits: &bits, flow: &flow); |
| 782 | |
| 783 | return uart_set_options(port, co, baud, parity, bits, flow); |
| 784 | } |
| 785 | |
| 786 | static struct uart_driver mvebu_uart_driver; |
| 787 | |
| 788 | static struct console mvebu_uart_console = { |
| 789 | .name = "ttyMV" , |
| 790 | .write = mvebu_uart_console_write, |
| 791 | .device = uart_console_device, |
| 792 | .setup = mvebu_uart_console_setup, |
| 793 | .flags = CON_PRINTBUFFER, |
| 794 | .index = -1, |
| 795 | .data = &mvebu_uart_driver, |
| 796 | }; |
| 797 | |
| 798 | static int __init mvebu_uart_console_init(void) |
| 799 | { |
| 800 | register_console(&mvebu_uart_console); |
| 801 | return 0; |
| 802 | } |
| 803 | |
| 804 | console_initcall(mvebu_uart_console_init); |
| 805 | |
| 806 | |
| 807 | #endif /* CONFIG_SERIAL_MVEBU_CONSOLE */ |
| 808 | |
| 809 | static struct uart_driver mvebu_uart_driver = { |
| 810 | .owner = THIS_MODULE, |
| 811 | .driver_name = DRIVER_NAME, |
| 812 | .dev_name = "ttyMV" , |
| 813 | .nr = MVEBU_NR_UARTS, |
| 814 | #ifdef CONFIG_SERIAL_MVEBU_CONSOLE |
| 815 | .cons = &mvebu_uart_console, |
| 816 | #endif |
| 817 | }; |
| 818 | |
| 819 | #if defined(CONFIG_PM) |
| 820 | static int mvebu_uart_suspend(struct device *dev) |
| 821 | { |
| 822 | struct mvebu_uart *mvuart = dev_get_drvdata(dev); |
| 823 | struct uart_port *port = mvuart->port; |
| 824 | unsigned long flags; |
| 825 | |
| 826 | uart_suspend_port(reg: &mvebu_uart_driver, port); |
| 827 | |
| 828 | mvuart->pm_regs.rbr = readl(addr: port->membase + UART_RBR(port)); |
| 829 | mvuart->pm_regs.tsh = readl(addr: port->membase + UART_TSH(port)); |
| 830 | mvuart->pm_regs.ctrl = readl(addr: port->membase + UART_CTRL(port)); |
| 831 | mvuart->pm_regs.intr = readl(addr: port->membase + UART_INTR(port)); |
| 832 | mvuart->pm_regs.stat = readl(addr: port->membase + UART_STAT); |
| 833 | spin_lock_irqsave(&mvebu_uart_lock, flags); |
| 834 | mvuart->pm_regs.brdv = readl(addr: port->membase + UART_BRDV); |
| 835 | spin_unlock_irqrestore(lock: &mvebu_uart_lock, flags); |
| 836 | mvuart->pm_regs.osamp = readl(addr: port->membase + UART_OSAMP); |
| 837 | |
| 838 | device_set_wakeup_enable(dev, enable: true); |
| 839 | |
| 840 | return 0; |
| 841 | } |
| 842 | |
| 843 | static int mvebu_uart_resume(struct device *dev) |
| 844 | { |
| 845 | struct mvebu_uart *mvuart = dev_get_drvdata(dev); |
| 846 | struct uart_port *port = mvuart->port; |
| 847 | unsigned long flags; |
| 848 | |
| 849 | writel(val: mvuart->pm_regs.rbr, addr: port->membase + UART_RBR(port)); |
| 850 | writel(val: mvuart->pm_regs.tsh, addr: port->membase + UART_TSH(port)); |
| 851 | writel(val: mvuart->pm_regs.ctrl, addr: port->membase + UART_CTRL(port)); |
| 852 | writel(val: mvuart->pm_regs.intr, addr: port->membase + UART_INTR(port)); |
| 853 | writel(val: mvuart->pm_regs.stat, addr: port->membase + UART_STAT); |
| 854 | spin_lock_irqsave(&mvebu_uart_lock, flags); |
| 855 | writel(val: mvuart->pm_regs.brdv, addr: port->membase + UART_BRDV); |
| 856 | spin_unlock_irqrestore(lock: &mvebu_uart_lock, flags); |
| 857 | writel(val: mvuart->pm_regs.osamp, addr: port->membase + UART_OSAMP); |
| 858 | |
| 859 | uart_resume_port(reg: &mvebu_uart_driver, port); |
| 860 | |
| 861 | return 0; |
| 862 | } |
| 863 | |
| 864 | static const struct dev_pm_ops mvebu_uart_pm_ops = { |
| 865 | .suspend = mvebu_uart_suspend, |
| 866 | .resume = mvebu_uart_resume, |
| 867 | }; |
| 868 | #endif /* CONFIG_PM */ |
| 869 | |
| 870 | static const struct of_device_id mvebu_uart_of_match[]; |
| 871 | |
| 872 | /* Counter to keep track of each UART port id when not using CONFIG_OF */ |
| 873 | static int uart_num_counter; |
| 874 | |
| 875 | static int mvebu_uart_probe(struct platform_device *pdev) |
| 876 | { |
| 877 | const struct of_device_id *match = of_match_device(matches: mvebu_uart_of_match, |
| 878 | dev: &pdev->dev); |
| 879 | struct uart_port *port; |
| 880 | struct mvebu_uart *mvuart; |
| 881 | struct resource *reg; |
| 882 | int id, irq; |
| 883 | |
| 884 | /* Assume that all UART ports have a DT alias or none has */ |
| 885 | id = of_alias_get_id(np: pdev->dev.of_node, stem: "serial" ); |
| 886 | if (!pdev->dev.of_node || id < 0) |
| 887 | pdev->id = uart_num_counter++; |
| 888 | else |
| 889 | pdev->id = id; |
| 890 | |
| 891 | if (pdev->id >= MVEBU_NR_UARTS) { |
| 892 | dev_err(&pdev->dev, "cannot have more than %d UART ports\n" , |
| 893 | MVEBU_NR_UARTS); |
| 894 | return -EINVAL; |
| 895 | } |
| 896 | |
| 897 | port = &mvebu_uart_ports[pdev->id]; |
| 898 | |
| 899 | spin_lock_init(&port->lock); |
| 900 | |
| 901 | port->dev = &pdev->dev; |
| 902 | port->type = PORT_MVEBU; |
| 903 | port->ops = &mvebu_uart_ops; |
| 904 | port->regshift = 0; |
| 905 | |
| 906 | port->fifosize = 32; |
| 907 | port->iotype = UPIO_MEM32; |
| 908 | port->flags = UPF_FIXED_PORT; |
| 909 | port->line = pdev->id; |
| 910 | |
| 911 | /* |
| 912 | * IRQ number is not stored in this structure because we may have two of |
| 913 | * them per port (RX and TX). Instead, use the driver UART structure |
| 914 | * array so called ->irq[]. |
| 915 | */ |
| 916 | port->irq = 0; |
| 917 | port->irqflags = 0; |
| 918 | |
| 919 | port->membase = devm_platform_get_and_ioremap_resource(pdev, index: 0, res: ®); |
| 920 | if (IS_ERR(ptr: port->membase)) |
| 921 | return PTR_ERR(ptr: port->membase); |
| 922 | port->mapbase = reg->start; |
| 923 | |
| 924 | mvuart = devm_kzalloc(dev: &pdev->dev, size: sizeof(struct mvebu_uart), |
| 925 | GFP_KERNEL); |
| 926 | if (!mvuart) |
| 927 | return -ENOMEM; |
| 928 | |
| 929 | /* Get controller data depending on the compatible string */ |
| 930 | mvuart->data = (struct mvebu_uart_driver_data *)match->data; |
| 931 | mvuart->port = port; |
| 932 | |
| 933 | port->private_data = mvuart; |
| 934 | platform_set_drvdata(pdev, data: mvuart); |
| 935 | |
| 936 | /* Get fixed clock frequency */ |
| 937 | mvuart->clk = devm_clk_get(dev: &pdev->dev, NULL); |
| 938 | if (IS_ERR(ptr: mvuart->clk)) { |
| 939 | if (PTR_ERR(ptr: mvuart->clk) == -EPROBE_DEFER) |
| 940 | return PTR_ERR(ptr: mvuart->clk); |
| 941 | |
| 942 | if (IS_EXTENDED(port)) { |
| 943 | dev_err(&pdev->dev, "unable to get UART clock\n" ); |
| 944 | return PTR_ERR(ptr: mvuart->clk); |
| 945 | } |
| 946 | } else { |
| 947 | if (!clk_prepare_enable(clk: mvuart->clk)) |
| 948 | port->uartclk = clk_get_rate(clk: mvuart->clk); |
| 949 | } |
| 950 | |
| 951 | /* Manage interrupts */ |
| 952 | if (platform_irq_count(pdev) == 1) { |
| 953 | /* Old bindings: no name on the single unamed UART0 IRQ */ |
| 954 | irq = platform_get_irq(pdev, 0); |
| 955 | if (irq < 0) |
| 956 | return irq; |
| 957 | |
| 958 | mvuart->irq[UART_IRQ_SUM] = irq; |
| 959 | } else { |
| 960 | /* |
| 961 | * New bindings: named interrupts (RX, TX) for both UARTS, |
| 962 | * only make use of uart-rx and uart-tx interrupts, do not use |
| 963 | * uart-sum of UART0 port. |
| 964 | */ |
| 965 | irq = platform_get_irq_byname(pdev, "uart-rx" ); |
| 966 | if (irq < 0) |
| 967 | return irq; |
| 968 | |
| 969 | mvuart->irq[UART_RX_IRQ] = irq; |
| 970 | |
| 971 | irq = platform_get_irq_byname(pdev, "uart-tx" ); |
| 972 | if (irq < 0) |
| 973 | return irq; |
| 974 | |
| 975 | mvuart->irq[UART_TX_IRQ] = irq; |
| 976 | } |
| 977 | |
| 978 | /* UART Soft Reset*/ |
| 979 | writel(CTRL_SOFT_RST, addr: port->membase + UART_CTRL(port)); |
| 980 | udelay(usec: 1); |
| 981 | writel(val: 0, addr: port->membase + UART_CTRL(port)); |
| 982 | |
| 983 | return uart_add_one_port(reg: &mvebu_uart_driver, port); |
| 984 | } |
| 985 | |
| 986 | static struct mvebu_uart_driver_data uart_std_driver_data = { |
| 987 | .is_ext = false, |
| 988 | .regs.rbr = UART_STD_RBR, |
| 989 | .regs.tsh = UART_STD_TSH, |
| 990 | .regs.ctrl = UART_STD_CTRL1, |
| 991 | .regs.intr = UART_STD_CTRL2, |
| 992 | .flags.ctrl_tx_rdy_int = CTRL_STD_TX_RDY_INT, |
| 993 | .flags.ctrl_rx_rdy_int = CTRL_STD_RX_RDY_INT, |
| 994 | .flags.stat_tx_rdy = STAT_STD_TX_RDY, |
| 995 | .flags.stat_rx_rdy = STAT_STD_RX_RDY, |
| 996 | }; |
| 997 | |
| 998 | static struct mvebu_uart_driver_data uart_ext_driver_data = { |
| 999 | .is_ext = true, |
| 1000 | .regs.rbr = UART_EXT_RBR, |
| 1001 | .regs.tsh = UART_EXT_TSH, |
| 1002 | .regs.ctrl = UART_EXT_CTRL1, |
| 1003 | .regs.intr = UART_EXT_CTRL2, |
| 1004 | .flags.ctrl_tx_rdy_int = CTRL_EXT_TX_RDY_INT, |
| 1005 | .flags.ctrl_rx_rdy_int = CTRL_EXT_RX_RDY_INT, |
| 1006 | .flags.stat_tx_rdy = STAT_EXT_TX_RDY, |
| 1007 | .flags.stat_rx_rdy = STAT_EXT_RX_RDY, |
| 1008 | }; |
| 1009 | |
| 1010 | /* Match table for of_platform binding */ |
| 1011 | static const struct of_device_id mvebu_uart_of_match[] = { |
| 1012 | { |
| 1013 | .compatible = "marvell,armada-3700-uart" , |
| 1014 | .data = (void *)&uart_std_driver_data, |
| 1015 | }, |
| 1016 | { |
| 1017 | .compatible = "marvell,armada-3700-uart-ext" , |
| 1018 | .data = (void *)&uart_ext_driver_data, |
| 1019 | }, |
| 1020 | {} |
| 1021 | }; |
| 1022 | |
| 1023 | static struct platform_driver mvebu_uart_platform_driver = { |
| 1024 | .probe = mvebu_uart_probe, |
| 1025 | .driver = { |
| 1026 | .name = "mvebu-uart" , |
| 1027 | .of_match_table = of_match_ptr(mvebu_uart_of_match), |
| 1028 | .suppress_bind_attrs = true, |
| 1029 | #if defined(CONFIG_PM) |
| 1030 | .pm = &mvebu_uart_pm_ops, |
| 1031 | #endif /* CONFIG_PM */ |
| 1032 | }, |
| 1033 | }; |
| 1034 | |
| 1035 | /* This code is based on clk-fixed-factor.c driver and modified. */ |
| 1036 | |
| 1037 | struct mvebu_uart_clock { |
| 1038 | struct clk_hw clk_hw; |
| 1039 | int clock_idx; |
| 1040 | u32 pm_context_reg1; |
| 1041 | u32 pm_context_reg2; |
| 1042 | }; |
| 1043 | |
| 1044 | struct mvebu_uart_clock_base { |
| 1045 | struct mvebu_uart_clock clocks[2]; |
| 1046 | unsigned int parent_rates[5]; |
| 1047 | int parent_idx; |
| 1048 | unsigned int div; |
| 1049 | void __iomem *reg1; |
| 1050 | void __iomem *reg2; |
| 1051 | bool configured; |
| 1052 | }; |
| 1053 | |
| 1054 | #define PARENT_CLOCK_XTAL 4 |
| 1055 | |
| 1056 | #define to_uart_clock(hw) container_of(hw, struct mvebu_uart_clock, clk_hw) |
| 1057 | #define to_uart_clock_base(uart_clock) container_of(uart_clock, \ |
| 1058 | struct mvebu_uart_clock_base, clocks[uart_clock->clock_idx]) |
| 1059 | |
| 1060 | static int mvebu_uart_clock_prepare(struct clk_hw *hw) |
| 1061 | { |
| 1062 | struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); |
| 1063 | struct mvebu_uart_clock_base *uart_clock_base = |
| 1064 | to_uart_clock_base(uart_clock); |
| 1065 | unsigned int prev_clock_idx, prev_clock_rate, prev_d1d2; |
| 1066 | unsigned int parent_clock_idx, parent_clock_rate; |
| 1067 | unsigned long flags; |
| 1068 | unsigned int d1, d2; |
| 1069 | u64 divisor; |
| 1070 | u32 val; |
| 1071 | |
| 1072 | /* |
| 1073 | * This function just reconfigures UART Clock Control register (located |
| 1074 | * in UART1 address space which controls both UART1 and UART2) to |
| 1075 | * selected UART base clock and recalculates current UART1/UART2 |
| 1076 | * divisors in their address spaces, so that final baudrate will not be |
| 1077 | * changed by switching UART parent clock. This is required for |
| 1078 | * otherwise kernel's boot log stops working - we need to ensure that |
| 1079 | * UART baudrate does not change during this setup. It is a one time |
| 1080 | * operation, it will execute only once and set `configured` to true, |
| 1081 | * and be skipped on subsequent calls. Because this UART Clock Control |
| 1082 | * register (UART_BRDV) is shared between UART1 baudrate function, |
| 1083 | * UART1 clock selector and UART2 clock selector, every access to |
| 1084 | * UART_BRDV (reg1) needs to be protected by a lock. |
| 1085 | */ |
| 1086 | |
| 1087 | spin_lock_irqsave(&mvebu_uart_lock, flags); |
| 1088 | |
| 1089 | if (uart_clock_base->configured) { |
| 1090 | spin_unlock_irqrestore(lock: &mvebu_uart_lock, flags); |
| 1091 | return 0; |
| 1092 | } |
| 1093 | |
| 1094 | parent_clock_idx = uart_clock_base->parent_idx; |
| 1095 | parent_clock_rate = uart_clock_base->parent_rates[parent_clock_idx]; |
| 1096 | |
| 1097 | val = readl(addr: uart_clock_base->reg1); |
| 1098 | |
| 1099 | if (uart_clock_base->div > CLK_TBG_DIV1_MAX) { |
| 1100 | d1 = CLK_TBG_DIV1_MAX; |
| 1101 | d2 = uart_clock_base->div / CLK_TBG_DIV1_MAX; |
| 1102 | } else { |
| 1103 | d1 = uart_clock_base->div; |
| 1104 | d2 = 1; |
| 1105 | } |
| 1106 | |
| 1107 | if (val & CLK_NO_XTAL) { |
| 1108 | prev_clock_idx = (val >> CLK_TBG_SEL_SHIFT) & CLK_TBG_SEL_MASK; |
| 1109 | prev_d1d2 = ((val >> CLK_TBG_DIV1_SHIFT) & CLK_TBG_DIV1_MASK) * |
| 1110 | ((val >> CLK_TBG_DIV2_SHIFT) & CLK_TBG_DIV2_MASK); |
| 1111 | } else { |
| 1112 | prev_clock_idx = PARENT_CLOCK_XTAL; |
| 1113 | prev_d1d2 = 1; |
| 1114 | } |
| 1115 | |
| 1116 | /* Note that uart_clock_base->parent_rates[i] may not be available */ |
| 1117 | prev_clock_rate = uart_clock_base->parent_rates[prev_clock_idx]; |
| 1118 | |
| 1119 | /* Recalculate UART1 divisor so UART1 baudrate does not change */ |
| 1120 | if (prev_clock_rate) { |
| 1121 | divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) * |
| 1122 | parent_clock_rate * prev_d1d2, |
| 1123 | prev_clock_rate * d1 * d2); |
| 1124 | if (divisor < 1) |
| 1125 | divisor = 1; |
| 1126 | else if (divisor > BRDV_BAUD_MAX) |
| 1127 | divisor = BRDV_BAUD_MAX; |
| 1128 | val = (val & ~BRDV_BAUD_MASK) | divisor; |
| 1129 | } |
| 1130 | |
| 1131 | if (parent_clock_idx != PARENT_CLOCK_XTAL) { |
| 1132 | /* Do not use XTAL, select TBG clock and TBG d1 * d2 divisors */ |
| 1133 | val |= CLK_NO_XTAL; |
| 1134 | val &= ~(CLK_TBG_DIV1_MASK << CLK_TBG_DIV1_SHIFT); |
| 1135 | val |= d1 << CLK_TBG_DIV1_SHIFT; |
| 1136 | val &= ~(CLK_TBG_DIV2_MASK << CLK_TBG_DIV2_SHIFT); |
| 1137 | val |= d2 << CLK_TBG_DIV2_SHIFT; |
| 1138 | val &= ~(CLK_TBG_SEL_MASK << CLK_TBG_SEL_SHIFT); |
| 1139 | val |= parent_clock_idx << CLK_TBG_SEL_SHIFT; |
| 1140 | } else { |
| 1141 | /* Use XTAL, TBG bits are then ignored */ |
| 1142 | val &= ~CLK_NO_XTAL; |
| 1143 | } |
| 1144 | |
| 1145 | writel(val, addr: uart_clock_base->reg1); |
| 1146 | |
| 1147 | /* Recalculate UART2 divisor so UART2 baudrate does not change */ |
| 1148 | if (prev_clock_rate) { |
| 1149 | val = readl(addr: uart_clock_base->reg2); |
| 1150 | divisor = DIV_U64_ROUND_CLOSEST((u64)(val & BRDV_BAUD_MASK) * |
| 1151 | parent_clock_rate * prev_d1d2, |
| 1152 | prev_clock_rate * d1 * d2); |
| 1153 | if (divisor < 1) |
| 1154 | divisor = 1; |
| 1155 | else if (divisor > BRDV_BAUD_MAX) |
| 1156 | divisor = BRDV_BAUD_MAX; |
| 1157 | val = (val & ~BRDV_BAUD_MASK) | divisor; |
| 1158 | writel(val, addr: uart_clock_base->reg2); |
| 1159 | } |
| 1160 | |
| 1161 | uart_clock_base->configured = true; |
| 1162 | |
| 1163 | spin_unlock_irqrestore(lock: &mvebu_uart_lock, flags); |
| 1164 | |
| 1165 | return 0; |
| 1166 | } |
| 1167 | |
| 1168 | static int mvebu_uart_clock_enable(struct clk_hw *hw) |
| 1169 | { |
| 1170 | struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); |
| 1171 | struct mvebu_uart_clock_base *uart_clock_base = |
| 1172 | to_uart_clock_base(uart_clock); |
| 1173 | unsigned long flags; |
| 1174 | u32 val; |
| 1175 | |
| 1176 | spin_lock_irqsave(&mvebu_uart_lock, flags); |
| 1177 | |
| 1178 | val = readl(addr: uart_clock_base->reg1); |
| 1179 | |
| 1180 | if (uart_clock->clock_idx == 0) |
| 1181 | val &= ~UART1_CLK_DIS; |
| 1182 | else |
| 1183 | val &= ~UART2_CLK_DIS; |
| 1184 | |
| 1185 | writel(val, addr: uart_clock_base->reg1); |
| 1186 | |
| 1187 | spin_unlock_irqrestore(lock: &mvebu_uart_lock, flags); |
| 1188 | |
| 1189 | return 0; |
| 1190 | } |
| 1191 | |
| 1192 | static void mvebu_uart_clock_disable(struct clk_hw *hw) |
| 1193 | { |
| 1194 | struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); |
| 1195 | struct mvebu_uart_clock_base *uart_clock_base = |
| 1196 | to_uart_clock_base(uart_clock); |
| 1197 | unsigned long flags; |
| 1198 | u32 val; |
| 1199 | |
| 1200 | spin_lock_irqsave(&mvebu_uart_lock, flags); |
| 1201 | |
| 1202 | val = readl(addr: uart_clock_base->reg1); |
| 1203 | |
| 1204 | if (uart_clock->clock_idx == 0) |
| 1205 | val |= UART1_CLK_DIS; |
| 1206 | else |
| 1207 | val |= UART2_CLK_DIS; |
| 1208 | |
| 1209 | writel(val, addr: uart_clock_base->reg1); |
| 1210 | |
| 1211 | spin_unlock_irqrestore(lock: &mvebu_uart_lock, flags); |
| 1212 | } |
| 1213 | |
| 1214 | static int mvebu_uart_clock_is_enabled(struct clk_hw *hw) |
| 1215 | { |
| 1216 | struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); |
| 1217 | struct mvebu_uart_clock_base *uart_clock_base = |
| 1218 | to_uart_clock_base(uart_clock); |
| 1219 | u32 val; |
| 1220 | |
| 1221 | val = readl(addr: uart_clock_base->reg1); |
| 1222 | |
| 1223 | if (uart_clock->clock_idx == 0) |
| 1224 | return !(val & UART1_CLK_DIS); |
| 1225 | else |
| 1226 | return !(val & UART2_CLK_DIS); |
| 1227 | } |
| 1228 | |
| 1229 | static int mvebu_uart_clock_save_context(struct clk_hw *hw) |
| 1230 | { |
| 1231 | struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); |
| 1232 | struct mvebu_uart_clock_base *uart_clock_base = |
| 1233 | to_uart_clock_base(uart_clock); |
| 1234 | unsigned long flags; |
| 1235 | |
| 1236 | spin_lock_irqsave(&mvebu_uart_lock, flags); |
| 1237 | uart_clock->pm_context_reg1 = readl(addr: uart_clock_base->reg1); |
| 1238 | uart_clock->pm_context_reg2 = readl(addr: uart_clock_base->reg2); |
| 1239 | spin_unlock_irqrestore(lock: &mvebu_uart_lock, flags); |
| 1240 | |
| 1241 | return 0; |
| 1242 | } |
| 1243 | |
| 1244 | static void mvebu_uart_clock_restore_context(struct clk_hw *hw) |
| 1245 | { |
| 1246 | struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); |
| 1247 | struct mvebu_uart_clock_base *uart_clock_base = |
| 1248 | to_uart_clock_base(uart_clock); |
| 1249 | unsigned long flags; |
| 1250 | |
| 1251 | spin_lock_irqsave(&mvebu_uart_lock, flags); |
| 1252 | writel(val: uart_clock->pm_context_reg1, addr: uart_clock_base->reg1); |
| 1253 | writel(val: uart_clock->pm_context_reg2, addr: uart_clock_base->reg2); |
| 1254 | spin_unlock_irqrestore(lock: &mvebu_uart_lock, flags); |
| 1255 | } |
| 1256 | |
| 1257 | static unsigned long mvebu_uart_clock_recalc_rate(struct clk_hw *hw, |
| 1258 | unsigned long parent_rate) |
| 1259 | { |
| 1260 | struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); |
| 1261 | struct mvebu_uart_clock_base *uart_clock_base = |
| 1262 | to_uart_clock_base(uart_clock); |
| 1263 | |
| 1264 | return parent_rate / uart_clock_base->div; |
| 1265 | } |
| 1266 | |
| 1267 | static long mvebu_uart_clock_round_rate(struct clk_hw *hw, unsigned long rate, |
| 1268 | unsigned long *parent_rate) |
| 1269 | { |
| 1270 | struct mvebu_uart_clock *uart_clock = to_uart_clock(hw); |
| 1271 | struct mvebu_uart_clock_base *uart_clock_base = |
| 1272 | to_uart_clock_base(uart_clock); |
| 1273 | |
| 1274 | return *parent_rate / uart_clock_base->div; |
| 1275 | } |
| 1276 | |
| 1277 | static int mvebu_uart_clock_set_rate(struct clk_hw *hw, unsigned long rate, |
| 1278 | unsigned long parent_rate) |
| 1279 | { |
| 1280 | /* |
| 1281 | * We must report success but we can do so unconditionally because |
| 1282 | * mvebu_uart_clock_round_rate returns values that ensure this call is a |
| 1283 | * nop. |
| 1284 | */ |
| 1285 | |
| 1286 | return 0; |
| 1287 | } |
| 1288 | |
| 1289 | static const struct clk_ops mvebu_uart_clock_ops = { |
| 1290 | .prepare = mvebu_uart_clock_prepare, |
| 1291 | .enable = mvebu_uart_clock_enable, |
| 1292 | .disable = mvebu_uart_clock_disable, |
| 1293 | .is_enabled = mvebu_uart_clock_is_enabled, |
| 1294 | .save_context = mvebu_uart_clock_save_context, |
| 1295 | .restore_context = mvebu_uart_clock_restore_context, |
| 1296 | .round_rate = mvebu_uart_clock_round_rate, |
| 1297 | .set_rate = mvebu_uart_clock_set_rate, |
| 1298 | .recalc_rate = mvebu_uart_clock_recalc_rate, |
| 1299 | }; |
| 1300 | |
| 1301 | static int mvebu_uart_clock_register(struct device *dev, |
| 1302 | struct mvebu_uart_clock *uart_clock, |
| 1303 | const char *name, |
| 1304 | const char *parent_name) |
| 1305 | { |
| 1306 | struct clk_init_data init = { }; |
| 1307 | |
| 1308 | uart_clock->clk_hw.init = &init; |
| 1309 | |
| 1310 | init.name = name; |
| 1311 | init.ops = &mvebu_uart_clock_ops; |
| 1312 | init.flags = 0; |
| 1313 | init.num_parents = 1; |
| 1314 | init.parent_names = &parent_name; |
| 1315 | |
| 1316 | return devm_clk_hw_register(dev, hw: &uart_clock->clk_hw); |
| 1317 | } |
| 1318 | |
| 1319 | static int mvebu_uart_clock_probe(struct platform_device *pdev) |
| 1320 | { |
| 1321 | static const char *const uart_clk_names[] = { "uart_1" , "uart_2" }; |
| 1322 | static const char *const parent_clk_names[] = { "TBG-A-P" , "TBG-B-P" , |
| 1323 | "TBG-A-S" , "TBG-B-S" , |
| 1324 | "xtal" }; |
| 1325 | struct clk *parent_clks[ARRAY_SIZE(parent_clk_names)]; |
| 1326 | struct mvebu_uart_clock_base *uart_clock_base; |
| 1327 | struct clk_hw_onecell_data *hw_clk_data; |
| 1328 | struct device *dev = &pdev->dev; |
| 1329 | int i, parent_clk_idx, ret; |
| 1330 | unsigned long div, rate; |
| 1331 | struct resource *res; |
| 1332 | unsigned int d1, d2; |
| 1333 | |
| 1334 | BUILD_BUG_ON(ARRAY_SIZE(uart_clk_names) != |
| 1335 | ARRAY_SIZE(uart_clock_base->clocks)); |
| 1336 | BUILD_BUG_ON(ARRAY_SIZE(parent_clk_names) != |
| 1337 | ARRAY_SIZE(uart_clock_base->parent_rates)); |
| 1338 | |
| 1339 | uart_clock_base = devm_kzalloc(dev, |
| 1340 | size: sizeof(*uart_clock_base), |
| 1341 | GFP_KERNEL); |
| 1342 | if (!uart_clock_base) |
| 1343 | return -ENOMEM; |
| 1344 | |
| 1345 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 1346 | if (!res) { |
| 1347 | dev_err(dev, "Couldn't get first register\n" ); |
| 1348 | return -ENOENT; |
| 1349 | } |
| 1350 | |
| 1351 | /* |
| 1352 | * UART Clock Control register (reg1 / UART_BRDV) is in the address |
| 1353 | * space of UART1 (standard UART variant), controls parent clock and |
| 1354 | * dividers for both UART1 and UART2 and is supplied via DT as the first |
| 1355 | * resource. Therefore use ioremap() rather than ioremap_resource() to |
| 1356 | * avoid conflicts with UART1 driver. Access to UART_BRDV is protected |
| 1357 | * by a lock shared between clock and UART driver. |
| 1358 | */ |
| 1359 | uart_clock_base->reg1 = devm_ioremap(dev, offset: res->start, |
| 1360 | size: resource_size(res)); |
| 1361 | if (!uart_clock_base->reg1) |
| 1362 | return -ENOMEM; |
| 1363 | |
| 1364 | res = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| 1365 | if (!res) { |
| 1366 | dev_err(dev, "Couldn't get second register\n" ); |
| 1367 | return -ENOENT; |
| 1368 | } |
| 1369 | |
| 1370 | /* |
| 1371 | * UART 2 Baud Rate Divisor register (reg2 / UART_BRDV) is in address |
| 1372 | * space of UART2 (extended UART variant), controls only one UART2 |
| 1373 | * specific divider and is supplied via DT as second resource. |
| 1374 | * Therefore use ioremap() rather than ioremap_resource() to avoid |
| 1375 | * conflicts with UART2 driver. Access to UART_BRDV is protected by a |
| 1376 | * by lock shared between clock and UART driver. |
| 1377 | */ |
| 1378 | uart_clock_base->reg2 = devm_ioremap(dev, offset: res->start, |
| 1379 | size: resource_size(res)); |
| 1380 | if (!uart_clock_base->reg2) |
| 1381 | return -ENOMEM; |
| 1382 | |
| 1383 | hw_clk_data = devm_kzalloc(dev, |
| 1384 | struct_size(hw_clk_data, hws, |
| 1385 | ARRAY_SIZE(uart_clk_names)), |
| 1386 | GFP_KERNEL); |
| 1387 | if (!hw_clk_data) |
| 1388 | return -ENOMEM; |
| 1389 | |
| 1390 | hw_clk_data->num = ARRAY_SIZE(uart_clk_names); |
| 1391 | for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) { |
| 1392 | hw_clk_data->hws[i] = &uart_clock_base->clocks[i].clk_hw; |
| 1393 | uart_clock_base->clocks[i].clock_idx = i; |
| 1394 | } |
| 1395 | |
| 1396 | parent_clk_idx = -1; |
| 1397 | |
| 1398 | for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) { |
| 1399 | parent_clks[i] = devm_clk_get(dev, id: parent_clk_names[i]); |
| 1400 | if (IS_ERR(ptr: parent_clks[i])) { |
| 1401 | if (PTR_ERR(ptr: parent_clks[i]) == -EPROBE_DEFER) |
| 1402 | return -EPROBE_DEFER; |
| 1403 | dev_warn(dev, "Couldn't get the parent clock %s: %ld\n" , |
| 1404 | parent_clk_names[i], PTR_ERR(parent_clks[i])); |
| 1405 | continue; |
| 1406 | } |
| 1407 | |
| 1408 | ret = clk_prepare_enable(clk: parent_clks[i]); |
| 1409 | if (ret) { |
| 1410 | dev_warn(dev, "Couldn't enable parent clock %s: %d\n" , |
| 1411 | parent_clk_names[i], ret); |
| 1412 | continue; |
| 1413 | } |
| 1414 | rate = clk_get_rate(clk: parent_clks[i]); |
| 1415 | uart_clock_base->parent_rates[i] = rate; |
| 1416 | |
| 1417 | if (i != PARENT_CLOCK_XTAL) { |
| 1418 | /* |
| 1419 | * Calculate the smallest TBG d1 and d2 divisors that |
| 1420 | * still can provide 9600 baudrate. |
| 1421 | */ |
| 1422 | d1 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR * |
| 1423 | BRDV_BAUD_MAX); |
| 1424 | if (d1 < 1) |
| 1425 | d1 = 1; |
| 1426 | else if (d1 > CLK_TBG_DIV1_MAX) |
| 1427 | d1 = CLK_TBG_DIV1_MAX; |
| 1428 | |
| 1429 | d2 = DIV_ROUND_UP(rate, 9600 * OSAMP_MAX_DIVISOR * |
| 1430 | BRDV_BAUD_MAX * d1); |
| 1431 | if (d2 < 1) |
| 1432 | d2 = 1; |
| 1433 | else if (d2 > CLK_TBG_DIV2_MAX) |
| 1434 | d2 = CLK_TBG_DIV2_MAX; |
| 1435 | } else { |
| 1436 | /* |
| 1437 | * When UART clock uses XTAL clock as a source then it |
| 1438 | * is not possible to use d1 and d2 divisors. |
| 1439 | */ |
| 1440 | d1 = d2 = 1; |
| 1441 | } |
| 1442 | |
| 1443 | /* Skip clock source which cannot provide 9600 baudrate */ |
| 1444 | if (rate > 9600 * OSAMP_MAX_DIVISOR * BRDV_BAUD_MAX * d1 * d2) |
| 1445 | continue; |
| 1446 | |
| 1447 | /* |
| 1448 | * Choose TBG clock source with the smallest divisors. Use XTAL |
| 1449 | * clock source only in case TBG is not available as XTAL cannot |
| 1450 | * be used for baudrates higher than 230400. |
| 1451 | */ |
| 1452 | if (parent_clk_idx == -1 || |
| 1453 | (i != PARENT_CLOCK_XTAL && div > d1 * d2)) { |
| 1454 | parent_clk_idx = i; |
| 1455 | div = d1 * d2; |
| 1456 | } |
| 1457 | } |
| 1458 | |
| 1459 | for (i = 0; i < ARRAY_SIZE(parent_clk_names); i++) { |
| 1460 | if (i == parent_clk_idx || IS_ERR(ptr: parent_clks[i])) |
| 1461 | continue; |
| 1462 | clk_disable_unprepare(clk: parent_clks[i]); |
| 1463 | devm_clk_put(dev, clk: parent_clks[i]); |
| 1464 | } |
| 1465 | |
| 1466 | if (parent_clk_idx == -1) { |
| 1467 | dev_err(dev, "No usable parent clock\n" ); |
| 1468 | return -ENOENT; |
| 1469 | } |
| 1470 | |
| 1471 | uart_clock_base->parent_idx = parent_clk_idx; |
| 1472 | uart_clock_base->div = div; |
| 1473 | |
| 1474 | dev_notice(dev, "Using parent clock %s as base UART clock\n" , |
| 1475 | __clk_get_name(parent_clks[parent_clk_idx])); |
| 1476 | |
| 1477 | for (i = 0; i < ARRAY_SIZE(uart_clk_names); i++) { |
| 1478 | ret = mvebu_uart_clock_register(dev, |
| 1479 | uart_clock: &uart_clock_base->clocks[i], |
| 1480 | name: uart_clk_names[i], |
| 1481 | parent_name: __clk_get_name(clk: parent_clks[parent_clk_idx])); |
| 1482 | if (ret) { |
| 1483 | dev_err(dev, "Can't register UART clock %d: %d\n" , |
| 1484 | i, ret); |
| 1485 | return ret; |
| 1486 | } |
| 1487 | } |
| 1488 | |
| 1489 | return devm_of_clk_add_hw_provider(dev, get: of_clk_hw_onecell_get, |
| 1490 | data: hw_clk_data); |
| 1491 | } |
| 1492 | |
| 1493 | static const struct of_device_id mvebu_uart_clock_of_match[] = { |
| 1494 | { .compatible = "marvell,armada-3700-uart-clock" , }, |
| 1495 | { } |
| 1496 | }; |
| 1497 | |
| 1498 | static struct platform_driver mvebu_uart_clock_platform_driver = { |
| 1499 | .probe = mvebu_uart_clock_probe, |
| 1500 | .driver = { |
| 1501 | .name = "mvebu-uart-clock" , |
| 1502 | .of_match_table = mvebu_uart_clock_of_match, |
| 1503 | }, |
| 1504 | }; |
| 1505 | |
| 1506 | static int __init mvebu_uart_init(void) |
| 1507 | { |
| 1508 | int ret; |
| 1509 | |
| 1510 | ret = uart_register_driver(uart: &mvebu_uart_driver); |
| 1511 | if (ret) |
| 1512 | return ret; |
| 1513 | |
| 1514 | ret = platform_driver_register(&mvebu_uart_clock_platform_driver); |
| 1515 | if (ret) { |
| 1516 | uart_unregister_driver(uart: &mvebu_uart_driver); |
| 1517 | return ret; |
| 1518 | } |
| 1519 | |
| 1520 | ret = platform_driver_register(&mvebu_uart_platform_driver); |
| 1521 | if (ret) { |
| 1522 | platform_driver_unregister(&mvebu_uart_clock_platform_driver); |
| 1523 | uart_unregister_driver(uart: &mvebu_uart_driver); |
| 1524 | return ret; |
| 1525 | } |
| 1526 | |
| 1527 | return 0; |
| 1528 | } |
| 1529 | arch_initcall(mvebu_uart_init); |
| 1530 | |