1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/usb.h>
12#include <linux/overflow.h>
13#include <linux/pci.h>
14#include <linux/slab.h>
15#include <linux/dmapool.h>
16#include <linux/dma-mapping.h>
17
18#include "xhci.h"
19#include "xhci-trace.h"
20#include "xhci-debugfs.h"
21
22/*
23 * Allocates a generic ring segment from the ring pool, sets the dma address,
24 * initializes the segment to zero, and sets the private next pointer to NULL.
25 *
26 * Section 4.11.1.1:
27 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28 */
29static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30 unsigned int cycle_state,
31 unsigned int max_packet,
32 unsigned int num,
33 gfp_t flags)
34{
35 struct xhci_segment *seg;
36 dma_addr_t dma;
37 int i;
38 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
39
40 seg = kzalloc_node(size: sizeof(*seg), flags, node: dev_to_node(dev));
41 if (!seg)
42 return NULL;
43
44 seg->trbs = dma_pool_zalloc(pool: xhci->segment_pool, mem_flags: flags, handle: &dma);
45 if (!seg->trbs) {
46 kfree(objp: seg);
47 return NULL;
48 }
49
50 if (max_packet) {
51 seg->bounce_buf = kzalloc_node(size: max_packet, flags,
52 node: dev_to_node(dev));
53 if (!seg->bounce_buf) {
54 dma_pool_free(pool: xhci->segment_pool, vaddr: seg->trbs, addr: dma);
55 kfree(objp: seg);
56 return NULL;
57 }
58 }
59 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
60 if (cycle_state == 0) {
61 for (i = 0; i < TRBS_PER_SEGMENT; i++)
62 seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
63 }
64 seg->num = num;
65 seg->dma = dma;
66 seg->next = NULL;
67
68 return seg;
69}
70
71static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
72{
73 if (seg->trbs) {
74 dma_pool_free(pool: xhci->segment_pool, vaddr: seg->trbs, addr: seg->dma);
75 seg->trbs = NULL;
76 }
77 kfree(objp: seg->bounce_buf);
78 kfree(objp: seg);
79}
80
81static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
82 struct xhci_segment *first)
83{
84 struct xhci_segment *seg;
85
86 seg = first->next;
87 while (seg && seg != first) {
88 struct xhci_segment *next = seg->next;
89 xhci_segment_free(xhci, seg);
90 seg = next;
91 }
92 xhci_segment_free(xhci, seg: first);
93}
94
95/*
96 * Make the prev segment point to the next segment.
97 *
98 * Change the last TRB in the prev segment to be a Link TRB which points to the
99 * DMA address of the next segment. The caller needs to set any Link TRB
100 * related flags, such as End TRB, Toggle Cycle, and no snoop.
101 */
102static void xhci_link_segments(struct xhci_segment *prev,
103 struct xhci_segment *next,
104 enum xhci_ring_type type, bool chain_links)
105{
106 u32 val;
107
108 if (!prev || !next)
109 return;
110 prev->next = next;
111 if (type != TYPE_EVENT) {
112 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
113 cpu_to_le64(next->dma);
114
115 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
116 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
117 val &= ~TRB_TYPE_BITMASK;
118 val |= TRB_TYPE(TRB_LINK);
119 if (chain_links)
120 val |= TRB_CHAIN;
121 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
122 }
123}
124
125/*
126 * Link the ring to the new segments.
127 * Set Toggle Cycle for the new ring if needed.
128 */
129static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
130 struct xhci_segment *first, struct xhci_segment *last,
131 unsigned int num_segs)
132{
133 struct xhci_segment *next, *seg;
134 bool chain_links;
135
136 if (!ring || !first || !last)
137 return;
138
139 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
140 chain_links = !!(xhci_link_trb_quirk(xhci) ||
141 (ring->type == TYPE_ISOC &&
142 (xhci->quirks & XHCI_AMD_0x96_HOST)));
143
144 next = ring->enq_seg->next;
145 xhci_link_segments(prev: ring->enq_seg, next: first, type: ring->type, chain_links);
146 xhci_link_segments(prev: last, next, type: ring->type, chain_links);
147 ring->num_segs += num_segs;
148
149 if (ring->enq_seg == ring->last_seg) {
150 if (ring->type != TYPE_EVENT) {
151 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
152 &= ~cpu_to_le32(LINK_TOGGLE);
153 last->trbs[TRBS_PER_SEGMENT-1].link.control
154 |= cpu_to_le32(LINK_TOGGLE);
155 }
156 ring->last_seg = last;
157 }
158
159 for (seg = last; seg != ring->last_seg; seg = seg->next)
160 seg->next->num = seg->num + 1;
161}
162
163/*
164 * We need a radix tree for mapping physical addresses of TRBs to which stream
165 * ID they belong to. We need to do this because the host controller won't tell
166 * us which stream ring the TRB came from. We could store the stream ID in an
167 * event data TRB, but that doesn't help us for the cancellation case, since the
168 * endpoint may stop before it reaches that event data TRB.
169 *
170 * The radix tree maps the upper portion of the TRB DMA address to a ring
171 * segment that has the same upper portion of DMA addresses. For example, say I
172 * have segments of size 1KB, that are always 1KB aligned. A segment may
173 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
174 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
175 * pass the radix tree a key to get the right stream ID:
176 *
177 * 0x10c90fff >> 10 = 0x43243
178 * 0x10c912c0 >> 10 = 0x43244
179 * 0x10c91400 >> 10 = 0x43245
180 *
181 * Obviously, only those TRBs with DMA addresses that are within the segment
182 * will make the radix tree return the stream ID for that ring.
183 *
184 * Caveats for the radix tree:
185 *
186 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
187 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
188 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
189 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
190 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
191 * extended systems (where the DMA address can be bigger than 32-bits),
192 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
193 */
194static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
195 struct xhci_ring *ring,
196 struct xhci_segment *seg,
197 gfp_t mem_flags)
198{
199 unsigned long key;
200 int ret;
201
202 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
203 /* Skip any segments that were already added. */
204 if (radix_tree_lookup(trb_address_map, key))
205 return 0;
206
207 ret = radix_tree_maybe_preload(gfp_mask: mem_flags);
208 if (ret)
209 return ret;
210 ret = radix_tree_insert(trb_address_map,
211 index: key, ring);
212 radix_tree_preload_end();
213 return ret;
214}
215
216static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
217 struct xhci_segment *seg)
218{
219 unsigned long key;
220
221 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
222 if (radix_tree_lookup(trb_address_map, key))
223 radix_tree_delete(trb_address_map, key);
224}
225
226static int xhci_update_stream_segment_mapping(
227 struct radix_tree_root *trb_address_map,
228 struct xhci_ring *ring,
229 struct xhci_segment *first_seg,
230 struct xhci_segment *last_seg,
231 gfp_t mem_flags)
232{
233 struct xhci_segment *seg;
234 struct xhci_segment *failed_seg;
235 int ret;
236
237 if (WARN_ON_ONCE(trb_address_map == NULL))
238 return 0;
239
240 seg = first_seg;
241 do {
242 ret = xhci_insert_segment_mapping(trb_address_map,
243 ring, seg, mem_flags);
244 if (ret)
245 goto remove_streams;
246 if (seg == last_seg)
247 return 0;
248 seg = seg->next;
249 } while (seg != first_seg);
250
251 return 0;
252
253remove_streams:
254 failed_seg = seg;
255 seg = first_seg;
256 do {
257 xhci_remove_segment_mapping(trb_address_map, seg);
258 if (seg == failed_seg)
259 return ret;
260 seg = seg->next;
261 } while (seg != first_seg);
262
263 return ret;
264}
265
266static void xhci_remove_stream_mapping(struct xhci_ring *ring)
267{
268 struct xhci_segment *seg;
269
270 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
271 return;
272
273 seg = ring->first_seg;
274 do {
275 xhci_remove_segment_mapping(trb_address_map: ring->trb_address_map, seg);
276 seg = seg->next;
277 } while (seg != ring->first_seg);
278}
279
280static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
281{
282 return xhci_update_stream_segment_mapping(trb_address_map: ring->trb_address_map, ring,
283 first_seg: ring->first_seg, last_seg: ring->last_seg, mem_flags);
284}
285
286/* XXX: Do we need the hcd structure in all these functions? */
287void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
288{
289 if (!ring)
290 return;
291
292 trace_xhci_ring_free(ring);
293
294 if (ring->first_seg) {
295 if (ring->type == TYPE_STREAM)
296 xhci_remove_stream_mapping(ring);
297 xhci_free_segments_for_ring(xhci, first: ring->first_seg);
298 }
299
300 kfree(objp: ring);
301}
302
303void xhci_initialize_ring_info(struct xhci_ring *ring,
304 unsigned int cycle_state)
305{
306 /* The ring is empty, so the enqueue pointer == dequeue pointer */
307 ring->enqueue = ring->first_seg->trbs;
308 ring->enq_seg = ring->first_seg;
309 ring->dequeue = ring->enqueue;
310 ring->deq_seg = ring->first_seg;
311 /* The ring is initialized to 0. The producer must write 1 to the cycle
312 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
313 * compare CCS to the cycle bit to check ownership, so CCS = 1.
314 *
315 * New rings are initialized with cycle state equal to 1; if we are
316 * handling ring expansion, set the cycle state equal to the old ring.
317 */
318 ring->cycle_state = cycle_state;
319
320 /*
321 * Each segment has a link TRB, and leave an extra TRB for SW
322 * accounting purpose
323 */
324 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325}
326EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
327
328/* Allocate segments and link them for a ring */
329static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
330 struct xhci_segment **first, struct xhci_segment **last,
331 unsigned int num_segs, unsigned int num,
332 unsigned int cycle_state, enum xhci_ring_type type,
333 unsigned int max_packet, gfp_t flags)
334{
335 struct xhci_segment *prev;
336 bool chain_links;
337
338 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
339 chain_links = !!(xhci_link_trb_quirk(xhci) ||
340 (type == TYPE_ISOC &&
341 (xhci->quirks & XHCI_AMD_0x96_HOST)));
342
343 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags);
344 if (!prev)
345 return -ENOMEM;
346 num++;
347
348 *first = prev;
349 while (num < num_segs) {
350 struct xhci_segment *next;
351
352 next = xhci_segment_alloc(xhci, cycle_state, max_packet, num,
353 flags);
354 if (!next)
355 goto free_segments;
356
357 xhci_link_segments(prev, next, type, chain_links);
358 prev = next;
359 num++;
360 }
361 xhci_link_segments(prev, next: *first, type, chain_links);
362 *last = prev;
363
364 return 0;
365
366free_segments:
367 xhci_free_segments_for_ring(xhci, first: *first);
368 return -ENOMEM;
369}
370
371/*
372 * Create a new ring with zero or more segments.
373 *
374 * Link each segment together into a ring.
375 * Set the end flag and the cycle toggle bit on the last segment.
376 * See section 4.9.1 and figures 15 and 16.
377 */
378struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
379 unsigned int num_segs, unsigned int cycle_state,
380 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
381{
382 struct xhci_ring *ring;
383 int ret;
384 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
385
386 ring = kzalloc_node(size: sizeof(*ring), flags, node: dev_to_node(dev));
387 if (!ring)
388 return NULL;
389
390 ring->num_segs = num_segs;
391 ring->bounce_buf_len = max_packet;
392 INIT_LIST_HEAD(list: &ring->td_list);
393 ring->type = type;
394 if (num_segs == 0)
395 return ring;
396
397 ret = xhci_alloc_segments_for_ring(xhci, first: &ring->first_seg,
398 last: &ring->last_seg, num_segs, num: 0, cycle_state, type,
399 max_packet, flags);
400 if (ret)
401 goto fail;
402
403 /* Only event ring does not use link TRB */
404 if (type != TYPE_EVENT) {
405 /* See section 4.9.2.1 and 6.4.4.1 */
406 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
407 cpu_to_le32(LINK_TOGGLE);
408 }
409 xhci_initialize_ring_info(ring, cycle_state);
410 trace_xhci_ring_alloc(ring);
411 return ring;
412
413fail:
414 kfree(objp: ring);
415 return NULL;
416}
417
418void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
419 struct xhci_virt_device *virt_dev,
420 unsigned int ep_index)
421{
422 xhci_ring_free(xhci, ring: virt_dev->eps[ep_index].ring);
423 virt_dev->eps[ep_index].ring = NULL;
424}
425
426/*
427 * Expand an existing ring.
428 * Allocate a new ring which has same segment numbers and link the two rings.
429 */
430int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
431 unsigned int num_new_segs, gfp_t flags)
432{
433 struct xhci_segment *first;
434 struct xhci_segment *last;
435 int ret;
436
437 ret = xhci_alloc_segments_for_ring(xhci, first: &first, last: &last,
438 num_segs: num_new_segs, num: ring->enq_seg->num + 1,
439 cycle_state: ring->cycle_state, type: ring->type,
440 max_packet: ring->bounce_buf_len, flags);
441 if (ret)
442 return -ENOMEM;
443
444 if (ring->type == TYPE_STREAM) {
445 ret = xhci_update_stream_segment_mapping(trb_address_map: ring->trb_address_map,
446 ring, first_seg: first, last_seg: last, mem_flags: flags);
447 if (ret)
448 goto free_segments;
449 }
450
451 xhci_link_rings(xhci, ring, first, last, num_segs: num_new_segs);
452 trace_xhci_ring_expansion(ring);
453 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_ring_expansion,
454 fmt: "ring expansion succeed, now has %d segments",
455 ring->num_segs);
456
457 return 0;
458
459free_segments:
460 xhci_free_segments_for_ring(xhci, first);
461 return ret;
462}
463
464struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
465 int type, gfp_t flags)
466{
467 struct xhci_container_ctx *ctx;
468 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
469
470 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
471 return NULL;
472
473 ctx = kzalloc_node(size: sizeof(*ctx), flags, node: dev_to_node(dev));
474 if (!ctx)
475 return NULL;
476
477 ctx->type = type;
478 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
479 if (type == XHCI_CTX_TYPE_INPUT)
480 ctx->size += CTX_SIZE(xhci->hcc_params);
481
482 ctx->bytes = dma_pool_zalloc(pool: xhci->device_pool, mem_flags: flags, handle: &ctx->dma);
483 if (!ctx->bytes) {
484 kfree(objp: ctx);
485 return NULL;
486 }
487 return ctx;
488}
489
490void xhci_free_container_ctx(struct xhci_hcd *xhci,
491 struct xhci_container_ctx *ctx)
492{
493 if (!ctx)
494 return;
495 dma_pool_free(pool: xhci->device_pool, vaddr: ctx->bytes, addr: ctx->dma);
496 kfree(objp: ctx);
497}
498
499struct xhci_input_control_ctx *xhci_get_input_control_ctx(
500 struct xhci_container_ctx *ctx)
501{
502 if (ctx->type != XHCI_CTX_TYPE_INPUT)
503 return NULL;
504
505 return (struct xhci_input_control_ctx *)ctx->bytes;
506}
507
508struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
509 struct xhci_container_ctx *ctx)
510{
511 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
512 return (struct xhci_slot_ctx *)ctx->bytes;
513
514 return (struct xhci_slot_ctx *)
515 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
516}
517
518struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
519 struct xhci_container_ctx *ctx,
520 unsigned int ep_index)
521{
522 /* increment ep index by offset of start of ep ctx array */
523 ep_index++;
524 if (ctx->type == XHCI_CTX_TYPE_INPUT)
525 ep_index++;
526
527 return (struct xhci_ep_ctx *)
528 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
529}
530EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
531
532/***************** Streams structures manipulation *************************/
533
534static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
535 unsigned int num_stream_ctxs,
536 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
537{
538 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
539 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
540
541 if (size > MEDIUM_STREAM_ARRAY_SIZE)
542 dma_free_coherent(dev, size, cpu_addr: stream_ctx, dma_handle: dma);
543 else if (size > SMALL_STREAM_ARRAY_SIZE)
544 dma_pool_free(pool: xhci->medium_streams_pool, vaddr: stream_ctx, addr: dma);
545 else
546 dma_pool_free(pool: xhci->small_streams_pool, vaddr: stream_ctx, addr: dma);
547}
548
549/*
550 * The stream context array for each endpoint with bulk streams enabled can
551 * vary in size, based on:
552 * - how many streams the endpoint supports,
553 * - the maximum primary stream array size the host controller supports,
554 * - and how many streams the device driver asks for.
555 *
556 * The stream context array must be a power of 2, and can be as small as
557 * 64 bytes or as large as 1MB.
558 */
559static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
560 unsigned int num_stream_ctxs, dma_addr_t *dma,
561 gfp_t mem_flags)
562{
563 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
564 size_t size = size_mul(factor1: sizeof(struct xhci_stream_ctx), factor2: num_stream_ctxs);
565
566 if (size > MEDIUM_STREAM_ARRAY_SIZE)
567 return dma_alloc_coherent(dev, size, dma_handle: dma, gfp: mem_flags);
568 if (size > SMALL_STREAM_ARRAY_SIZE)
569 return dma_pool_zalloc(pool: xhci->medium_streams_pool, mem_flags, handle: dma);
570 else
571 return dma_pool_zalloc(pool: xhci->small_streams_pool, mem_flags, handle: dma);
572}
573
574struct xhci_ring *xhci_dma_to_transfer_ring(
575 struct xhci_virt_ep *ep,
576 u64 address)
577{
578 if (ep->ep_state & EP_HAS_STREAMS)
579 return radix_tree_lookup(&ep->stream_info->trb_address_map,
580 address >> TRB_SEGMENT_SHIFT);
581 return ep->ring;
582}
583
584/*
585 * Change an endpoint's internal structure so it supports stream IDs. The
586 * number of requested streams includes stream 0, which cannot be used by device
587 * drivers.
588 *
589 * The number of stream contexts in the stream context array may be bigger than
590 * the number of streams the driver wants to use. This is because the number of
591 * stream context array entries must be a power of two.
592 */
593struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
594 unsigned int num_stream_ctxs,
595 unsigned int num_streams,
596 unsigned int max_packet, gfp_t mem_flags)
597{
598 struct xhci_stream_info *stream_info;
599 u32 cur_stream;
600 struct xhci_ring *cur_ring;
601 u64 addr;
602 int ret;
603 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
604
605 xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
606 num_streams, num_stream_ctxs);
607 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
608 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
609 return NULL;
610 }
611 xhci->cmd_ring_reserved_trbs++;
612
613 stream_info = kzalloc_node(size: sizeof(*stream_info), flags: mem_flags,
614 node: dev_to_node(dev));
615 if (!stream_info)
616 goto cleanup_trbs;
617
618 stream_info->num_streams = num_streams;
619 stream_info->num_stream_ctxs = num_stream_ctxs;
620
621 /* Initialize the array of virtual pointers to stream rings. */
622 stream_info->stream_rings = kcalloc_node(
623 n: num_streams, size: sizeof(struct xhci_ring *), flags: mem_flags,
624 node: dev_to_node(dev));
625 if (!stream_info->stream_rings)
626 goto cleanup_info;
627
628 /* Initialize the array of DMA addresses for stream rings for the HW. */
629 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
630 num_stream_ctxs, dma: &stream_info->ctx_array_dma,
631 mem_flags);
632 if (!stream_info->stream_ctx_array)
633 goto cleanup_ring_array;
634
635 /* Allocate everything needed to free the stream rings later */
636 stream_info->free_streams_command =
637 xhci_alloc_command_with_ctx(xhci, allocate_completion: true, mem_flags);
638 if (!stream_info->free_streams_command)
639 goto cleanup_ctx;
640
641 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
642
643 /* Allocate rings for all the streams that the driver will use,
644 * and add their segment DMA addresses to the radix tree.
645 * Stream 0 is reserved.
646 */
647
648 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
649 stream_info->stream_rings[cur_stream] =
650 xhci_ring_alloc(xhci, num_segs: 2, cycle_state: 1, type: TYPE_STREAM, max_packet,
651 flags: mem_flags);
652 cur_ring = stream_info->stream_rings[cur_stream];
653 if (!cur_ring)
654 goto cleanup_rings;
655 cur_ring->stream_id = cur_stream;
656 cur_ring->trb_address_map = &stream_info->trb_address_map;
657 /* Set deq ptr, cycle bit, and stream context type */
658 addr = cur_ring->first_seg->dma |
659 SCT_FOR_CTX(SCT_PRI_TR) |
660 cur_ring->cycle_state;
661 stream_info->stream_ctx_array[cur_stream].stream_ring =
662 cpu_to_le64(addr);
663 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
664
665 ret = xhci_update_stream_mapping(ring: cur_ring, mem_flags);
666 if (ret) {
667 xhci_ring_free(xhci, ring: cur_ring);
668 stream_info->stream_rings[cur_stream] = NULL;
669 goto cleanup_rings;
670 }
671 }
672 /* Leave the other unused stream ring pointers in the stream context
673 * array initialized to zero. This will cause the xHC to give us an
674 * error if the device asks for a stream ID we don't have setup (if it
675 * was any other way, the host controller would assume the ring is
676 * "empty" and wait forever for data to be queued to that stream ID).
677 */
678
679 return stream_info;
680
681cleanup_rings:
682 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
683 cur_ring = stream_info->stream_rings[cur_stream];
684 if (cur_ring) {
685 xhci_ring_free(xhci, ring: cur_ring);
686 stream_info->stream_rings[cur_stream] = NULL;
687 }
688 }
689 xhci_free_command(xhci, command: stream_info->free_streams_command);
690cleanup_ctx:
691 xhci_free_stream_ctx(xhci,
692 num_stream_ctxs: stream_info->num_stream_ctxs,
693 stream_ctx: stream_info->stream_ctx_array,
694 dma: stream_info->ctx_array_dma);
695cleanup_ring_array:
696 kfree(objp: stream_info->stream_rings);
697cleanup_info:
698 kfree(objp: stream_info);
699cleanup_trbs:
700 xhci->cmd_ring_reserved_trbs--;
701 return NULL;
702}
703/*
704 * Sets the MaxPStreams field and the Linear Stream Array field.
705 * Sets the dequeue pointer to the stream context array.
706 */
707void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
708 struct xhci_ep_ctx *ep_ctx,
709 struct xhci_stream_info *stream_info)
710{
711 u32 max_primary_streams;
712 /* MaxPStreams is the number of stream context array entries, not the
713 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
714 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
715 */
716 max_primary_streams = fls(x: stream_info->num_stream_ctxs) - 2;
717 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_context_change,
718 fmt: "Setting number of stream ctx array entries to %u",
719 1 << (max_primary_streams + 1));
720 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
721 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
722 | EP_HAS_LSA);
723 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
724}
725
726/*
727 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
728 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
729 * not at the beginning of the ring).
730 */
731void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
732 struct xhci_virt_ep *ep)
733{
734 dma_addr_t addr;
735 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
736 addr = xhci_trb_virt_to_dma(seg: ep->ring->deq_seg, trb: ep->ring->dequeue);
737 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
738}
739
740/* Frees all stream contexts associated with the endpoint,
741 *
742 * Caller should fix the endpoint context streams fields.
743 */
744void xhci_free_stream_info(struct xhci_hcd *xhci,
745 struct xhci_stream_info *stream_info)
746{
747 int cur_stream;
748 struct xhci_ring *cur_ring;
749
750 if (!stream_info)
751 return;
752
753 for (cur_stream = 1; cur_stream < stream_info->num_streams;
754 cur_stream++) {
755 cur_ring = stream_info->stream_rings[cur_stream];
756 if (cur_ring) {
757 xhci_ring_free(xhci, ring: cur_ring);
758 stream_info->stream_rings[cur_stream] = NULL;
759 }
760 }
761 xhci_free_command(xhci, command: stream_info->free_streams_command);
762 xhci->cmd_ring_reserved_trbs--;
763 if (stream_info->stream_ctx_array)
764 xhci_free_stream_ctx(xhci,
765 num_stream_ctxs: stream_info->num_stream_ctxs,
766 stream_ctx: stream_info->stream_ctx_array,
767 dma: stream_info->ctx_array_dma);
768
769 kfree(objp: stream_info->stream_rings);
770 kfree(objp: stream_info);
771}
772
773
774/***************** Device context manipulation *************************/
775
776static void xhci_free_tt_info(struct xhci_hcd *xhci,
777 struct xhci_virt_device *virt_dev,
778 int slot_id)
779{
780 struct list_head *tt_list_head;
781 struct xhci_tt_bw_info *tt_info, *next;
782 bool slot_found = false;
783
784 /* If the device never made it past the Set Address stage,
785 * it may not have the root hub port pointer set correctly.
786 */
787 if (!virt_dev->rhub_port) {
788 xhci_dbg(xhci, "Bad rhub port.\n");
789 return;
790 }
791
792 tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
793 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
794 /* Multi-TT hubs will have more than one entry */
795 if (tt_info->slot_id == slot_id) {
796 slot_found = true;
797 list_del(entry: &tt_info->tt_list);
798 kfree(objp: tt_info);
799 } else if (slot_found) {
800 break;
801 }
802 }
803}
804
805int xhci_alloc_tt_info(struct xhci_hcd *xhci,
806 struct xhci_virt_device *virt_dev,
807 struct usb_device *hdev,
808 struct usb_tt *tt, gfp_t mem_flags)
809{
810 struct xhci_tt_bw_info *tt_info;
811 unsigned int num_ports;
812 int i, j;
813 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
814
815 if (!tt->multi)
816 num_ports = 1;
817 else
818 num_ports = hdev->maxchild;
819
820 for (i = 0; i < num_ports; i++, tt_info++) {
821 struct xhci_interval_bw_table *bw_table;
822
823 tt_info = kzalloc_node(size: sizeof(*tt_info), flags: mem_flags,
824 node: dev_to_node(dev));
825 if (!tt_info)
826 goto free_tts;
827 INIT_LIST_HEAD(list: &tt_info->tt_list);
828 list_add(new: &tt_info->tt_list,
829 head: &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
830 tt_info->slot_id = virt_dev->udev->slot_id;
831 if (tt->multi)
832 tt_info->ttport = i+1;
833 bw_table = &tt_info->bw_table;
834 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
835 INIT_LIST_HEAD(list: &bw_table->interval_bw[j].endpoints);
836 }
837 return 0;
838
839free_tts:
840 xhci_free_tt_info(xhci, virt_dev, slot_id: virt_dev->udev->slot_id);
841 return -ENOMEM;
842}
843
844
845/* All the xhci_tds in the ring's TD list should be freed at this point.
846 * Should be called with xhci->lock held if there is any chance the TT lists
847 * will be manipulated by the configure endpoint, allocate device, or update
848 * hub functions while this function is removing the TT entries from the list.
849 */
850void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
851{
852 struct xhci_virt_device *dev;
853 int i;
854 int old_active_eps = 0;
855
856 /* Slot ID 0 is reserved */
857 if (slot_id == 0 || !xhci->devs[slot_id])
858 return;
859
860 dev = xhci->devs[slot_id];
861
862 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
863 if (!dev)
864 return;
865
866 trace_xhci_free_virt_device(vdev: dev);
867
868 if (dev->tt_info)
869 old_active_eps = dev->tt_info->active_eps;
870
871 for (i = 0; i < 31; i++) {
872 if (dev->eps[i].ring)
873 xhci_ring_free(xhci, ring: dev->eps[i].ring);
874 if (dev->eps[i].stream_info)
875 xhci_free_stream_info(xhci,
876 stream_info: dev->eps[i].stream_info);
877 /*
878 * Endpoints are normally deleted from the bandwidth list when
879 * endpoints are dropped, before device is freed.
880 * If host is dying or being removed then endpoints aren't
881 * dropped cleanly, so delete the endpoint from list here.
882 * Only applicable for hosts with software bandwidth checking.
883 */
884
885 if (!list_empty(head: &dev->eps[i].bw_endpoint_list)) {
886 list_del_init(entry: &dev->eps[i].bw_endpoint_list);
887 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
888 slot_id, i);
889 }
890 }
891 /* If this is a hub, free the TT(s) from the TT list */
892 xhci_free_tt_info(xhci, virt_dev: dev, slot_id);
893 /* If necessary, update the number of active TTs on this root port */
894 xhci_update_tt_active_eps(xhci, virt_dev: dev, old_active_eps);
895
896 if (dev->in_ctx)
897 xhci_free_container_ctx(xhci, ctx: dev->in_ctx);
898 if (dev->out_ctx)
899 xhci_free_container_ctx(xhci, ctx: dev->out_ctx);
900
901 if (dev->udev && dev->udev->slot_id)
902 dev->udev->slot_id = 0;
903 if (dev->rhub_port && dev->rhub_port->slot_id == slot_id)
904 dev->rhub_port->slot_id = 0;
905 kfree(objp: xhci->devs[slot_id]);
906 xhci->devs[slot_id] = NULL;
907}
908
909/*
910 * Free a virt_device structure.
911 * If the virt_device added a tt_info (a hub) and has children pointing to
912 * that tt_info, then free the child first. Recursive.
913 * We can't rely on udev at this point to find child-parent relationships.
914 */
915static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
916{
917 struct xhci_virt_device *vdev;
918 struct list_head *tt_list_head;
919 struct xhci_tt_bw_info *tt_info, *next;
920 int i;
921
922 vdev = xhci->devs[slot_id];
923 if (!vdev)
924 return;
925
926 if (!vdev->rhub_port) {
927 xhci_dbg(xhci, "Bad rhub port.\n");
928 goto out;
929 }
930
931 tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts);
932 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
933 /* is this a hub device that added a tt_info to the tts list */
934 if (tt_info->slot_id == slot_id) {
935 /* are any devices using this tt_info? */
936 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
937 vdev = xhci->devs[i];
938 if (vdev && (vdev->tt_info == tt_info))
939 xhci_free_virt_devices_depth_first(
940 xhci, slot_id: i);
941 }
942 }
943 }
944out:
945 /* we are now at a leaf device */
946 xhci_debugfs_remove_slot(xhci, slot_id);
947 xhci_free_virt_device(xhci, slot_id);
948}
949
950int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
951 struct usb_device *udev, gfp_t flags)
952{
953 struct xhci_virt_device *dev;
954 int i;
955
956 /* Slot ID 0 is reserved */
957 if (slot_id == 0 || xhci->devs[slot_id]) {
958 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
959 return 0;
960 }
961
962 dev = kzalloc(size: sizeof(*dev), flags);
963 if (!dev)
964 return 0;
965
966 dev->slot_id = slot_id;
967
968 /* Allocate the (output) device context that will be used in the HC. */
969 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
970 if (!dev->out_ctx)
971 goto fail;
972
973 xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
974
975 /* Allocate the (input) device context for address device command */
976 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
977 if (!dev->in_ctx)
978 goto fail;
979
980 xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
981
982 /* Initialize the cancellation and bandwidth list for each ep */
983 for (i = 0; i < 31; i++) {
984 dev->eps[i].ep_index = i;
985 dev->eps[i].vdev = dev;
986 dev->eps[i].xhci = xhci;
987 INIT_LIST_HEAD(list: &dev->eps[i].cancelled_td_list);
988 INIT_LIST_HEAD(list: &dev->eps[i].bw_endpoint_list);
989 }
990
991 /* Allocate endpoint 0 ring */
992 dev->eps[0].ring = xhci_ring_alloc(xhci, num_segs: 2, cycle_state: 1, type: TYPE_CTRL, max_packet: 0, flags);
993 if (!dev->eps[0].ring)
994 goto fail;
995
996 dev->udev = udev;
997
998 /* Point to output device context in dcbaa. */
999 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1000 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1001 slot_id,
1002 &xhci->dcbaa->dev_context_ptrs[slot_id],
1003 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1004
1005 trace_xhci_alloc_virt_device(vdev: dev);
1006
1007 xhci->devs[slot_id] = dev;
1008
1009 return 1;
1010fail:
1011
1012 if (dev->in_ctx)
1013 xhci_free_container_ctx(xhci, ctx: dev->in_ctx);
1014 if (dev->out_ctx)
1015 xhci_free_container_ctx(xhci, ctx: dev->out_ctx);
1016 kfree(objp: dev);
1017
1018 return 0;
1019}
1020
1021void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1022 struct usb_device *udev)
1023{
1024 struct xhci_virt_device *virt_dev;
1025 struct xhci_ep_ctx *ep0_ctx;
1026 struct xhci_ring *ep_ring;
1027
1028 virt_dev = xhci->devs[udev->slot_id];
1029 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1030 ep_ring = virt_dev->eps[0].ring;
1031 /*
1032 * FIXME we don't keep track of the dequeue pointer very well after a
1033 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1034 * host to our enqueue pointer. This should only be called after a
1035 * configured device has reset, so all control transfers should have
1036 * been completed or cancelled before the reset.
1037 */
1038 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1039 ep_ring->enqueue)
1040 | ep_ring->cycle_state);
1041}
1042
1043/*
1044 * The xHCI roothub may have ports of differing speeds in any order in the port
1045 * status registers.
1046 *
1047 * The xHCI hardware wants to know the roothub port that the USB device
1048 * is attached to (or the roothub port its ancestor hub is attached to). All we
1049 * know is the index of that port under either the USB 2.0 or the USB 3.0
1050 * roothub, but that doesn't give us the real index into the HW port status
1051 * registers.
1052 */
1053static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev)
1054{
1055 struct usb_device *top_dev;
1056 struct xhci_hub *rhub;
1057 struct usb_hcd *hcd;
1058
1059 if (udev->speed >= USB_SPEED_SUPER)
1060 hcd = xhci_get_usb3_hcd(xhci);
1061 else
1062 hcd = xhci->main_hcd;
1063
1064 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1065 top_dev = top_dev->parent)
1066 /* Found device below root hub */;
1067
1068 rhub = xhci_get_rhub(hcd);
1069 return rhub->ports[top_dev->portnum - 1];
1070}
1071
1072/* Setup an xHCI virtual device for a Set Address command */
1073int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1074{
1075 struct xhci_virt_device *dev;
1076 struct xhci_ep_ctx *ep0_ctx;
1077 struct xhci_slot_ctx *slot_ctx;
1078 u32 max_packets;
1079
1080 dev = xhci->devs[udev->slot_id];
1081 /* Slot ID 0 is reserved */
1082 if (udev->slot_id == 0 || !dev) {
1083 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1084 udev->slot_id);
1085 return -EINVAL;
1086 }
1087 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1088 slot_ctx = xhci_get_slot_ctx(xhci, ctx: dev->in_ctx);
1089
1090 /* 3) Only the control endpoint is valid - one endpoint context */
1091 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1092 switch (udev->speed) {
1093 case USB_SPEED_SUPER_PLUS:
1094 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1095 max_packets = MAX_PACKET(512);
1096 break;
1097 case USB_SPEED_SUPER:
1098 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1099 max_packets = MAX_PACKET(512);
1100 break;
1101 case USB_SPEED_HIGH:
1102 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1103 max_packets = MAX_PACKET(64);
1104 break;
1105 /* USB core guesses at a 64-byte max packet first for FS devices */
1106 case USB_SPEED_FULL:
1107 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1108 max_packets = MAX_PACKET(64);
1109 break;
1110 case USB_SPEED_LOW:
1111 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1112 max_packets = MAX_PACKET(8);
1113 break;
1114 default:
1115 /* Speed was set earlier, this shouldn't happen. */
1116 return -EINVAL;
1117 }
1118 /* Find the root hub port this device is under */
1119 dev->rhub_port = xhci_find_rhub_port(xhci, udev);
1120 if (!dev->rhub_port)
1121 return -EINVAL;
1122 /* Slot ID is set to the device directly below the root hub */
1123 if (!udev->parent->parent)
1124 dev->rhub_port->slot_id = udev->slot_id;
1125 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1));
1126 xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n",
1127 udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum);
1128
1129 /* Find the right bandwidth table that this device will be a part of.
1130 * If this is a full speed device attached directly to a root port (or a
1131 * decendent of one), it counts as a primary bandwidth domain, not a
1132 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1133 * will never be created for the HS root hub.
1134 */
1135 if (!udev->tt || !udev->tt->hub->parent) {
1136 dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table;
1137 } else {
1138 struct xhci_root_port_bw_info *rh_bw;
1139 struct xhci_tt_bw_info *tt_bw;
1140
1141 rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum];
1142 /* Find the right TT. */
1143 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1144 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1145 continue;
1146
1147 if (!dev->udev->tt->multi ||
1148 (udev->tt->multi &&
1149 tt_bw->ttport == dev->udev->ttport)) {
1150 dev->bw_table = &tt_bw->bw_table;
1151 dev->tt_info = tt_bw;
1152 break;
1153 }
1154 }
1155 if (!dev->tt_info)
1156 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1157 }
1158
1159 /* Is this a LS/FS device under an external HS hub? */
1160 if (udev->tt && udev->tt->hub->parent) {
1161 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1162 (udev->ttport << 8));
1163 if (udev->tt->multi)
1164 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1165 }
1166 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1167 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1168
1169 /* Step 4 - ring already allocated */
1170 /* Step 5 */
1171 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1172
1173 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1174 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1175 max_packets);
1176
1177 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1178 dev->eps[0].ring->cycle_state);
1179
1180 trace_xhci_setup_addressable_virt_device(vdev: dev);
1181
1182 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1183
1184 return 0;
1185}
1186
1187/*
1188 * Convert interval expressed as 2^(bInterval - 1) == interval into
1189 * straight exponent value 2^n == interval.
1190 *
1191 */
1192static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1193 struct usb_host_endpoint *ep)
1194{
1195 unsigned int interval;
1196
1197 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1198 if (interval != ep->desc.bInterval - 1)
1199 dev_warn(&udev->dev,
1200 "ep %#x - rounding interval to %d %sframes\n",
1201 ep->desc.bEndpointAddress,
1202 1 << interval,
1203 udev->speed == USB_SPEED_FULL ? "" : "micro");
1204
1205 if (udev->speed == USB_SPEED_FULL) {
1206 /*
1207 * Full speed isoc endpoints specify interval in frames,
1208 * not microframes. We are using microframes everywhere,
1209 * so adjust accordingly.
1210 */
1211 interval += 3; /* 1 frame = 2^3 uframes */
1212 }
1213
1214 return interval;
1215}
1216
1217/*
1218 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1219 * microframes, rounded down to nearest power of 2.
1220 */
1221static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1222 struct usb_host_endpoint *ep, unsigned int desc_interval,
1223 unsigned int min_exponent, unsigned int max_exponent)
1224{
1225 unsigned int interval;
1226
1227 interval = fls(x: desc_interval) - 1;
1228 interval = clamp_val(interval, min_exponent, max_exponent);
1229 if ((1 << interval) != desc_interval)
1230 dev_dbg(&udev->dev,
1231 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1232 ep->desc.bEndpointAddress,
1233 1 << interval,
1234 desc_interval);
1235
1236 return interval;
1237}
1238
1239static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1240 struct usb_host_endpoint *ep)
1241{
1242 if (ep->desc.bInterval == 0)
1243 return 0;
1244 return xhci_microframes_to_exponent(udev, ep,
1245 desc_interval: ep->desc.bInterval, min_exponent: 0, max_exponent: 15);
1246}
1247
1248
1249static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1250 struct usb_host_endpoint *ep)
1251{
1252 return xhci_microframes_to_exponent(udev, ep,
1253 desc_interval: ep->desc.bInterval * 8, min_exponent: 3, max_exponent: 10);
1254}
1255
1256/* Return the polling or NAK interval.
1257 *
1258 * The polling interval is expressed in "microframes". If xHCI's Interval field
1259 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1260 *
1261 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1262 * is set to 0.
1263 */
1264static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1265 struct usb_host_endpoint *ep)
1266{
1267 unsigned int interval = 0;
1268
1269 switch (udev->speed) {
1270 case USB_SPEED_HIGH:
1271 /* Max NAK rate */
1272 if (usb_endpoint_xfer_control(epd: &ep->desc) ||
1273 usb_endpoint_xfer_bulk(epd: &ep->desc)) {
1274 interval = xhci_parse_microframe_interval(udev, ep);
1275 break;
1276 }
1277 fallthrough; /* SS and HS isoc/int have same decoding */
1278
1279 case USB_SPEED_SUPER_PLUS:
1280 case USB_SPEED_SUPER:
1281 if (usb_endpoint_xfer_int(epd: &ep->desc) ||
1282 usb_endpoint_xfer_isoc(epd: &ep->desc)) {
1283 interval = xhci_parse_exponent_interval(udev, ep);
1284 }
1285 break;
1286
1287 case USB_SPEED_FULL:
1288 if (usb_endpoint_xfer_isoc(epd: &ep->desc)) {
1289 interval = xhci_parse_exponent_interval(udev, ep);
1290 break;
1291 }
1292 /*
1293 * Fall through for interrupt endpoint interval decoding
1294 * since it uses the same rules as low speed interrupt
1295 * endpoints.
1296 */
1297 fallthrough;
1298
1299 case USB_SPEED_LOW:
1300 if (usb_endpoint_xfer_int(epd: &ep->desc) ||
1301 usb_endpoint_xfer_isoc(epd: &ep->desc)) {
1302
1303 interval = xhci_parse_frame_interval(udev, ep);
1304 }
1305 break;
1306
1307 default:
1308 BUG();
1309 }
1310 return interval;
1311}
1312
1313/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1314 * High speed endpoint descriptors can define "the number of additional
1315 * transaction opportunities per microframe", but that goes in the Max Burst
1316 * endpoint context field.
1317 */
1318static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1319 struct usb_host_endpoint *ep)
1320{
1321 if (udev->speed < USB_SPEED_SUPER ||
1322 !usb_endpoint_xfer_isoc(epd: &ep->desc))
1323 return 0;
1324 return ep->ss_ep_comp.bmAttributes;
1325}
1326
1327static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1328 struct usb_host_endpoint *ep)
1329{
1330 /* Super speed and Plus have max burst in ep companion desc */
1331 if (udev->speed >= USB_SPEED_SUPER)
1332 return ep->ss_ep_comp.bMaxBurst;
1333
1334 if (udev->speed == USB_SPEED_HIGH &&
1335 (usb_endpoint_xfer_isoc(epd: &ep->desc) ||
1336 usb_endpoint_xfer_int(epd: &ep->desc)))
1337 return usb_endpoint_maxp_mult(epd: &ep->desc) - 1;
1338
1339 return 0;
1340}
1341
1342static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1343{
1344 int in;
1345
1346 in = usb_endpoint_dir_in(epd: &ep->desc);
1347
1348 switch (usb_endpoint_type(epd: &ep->desc)) {
1349 case USB_ENDPOINT_XFER_CONTROL:
1350 return CTRL_EP;
1351 case USB_ENDPOINT_XFER_BULK:
1352 return in ? BULK_IN_EP : BULK_OUT_EP;
1353 case USB_ENDPOINT_XFER_ISOC:
1354 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1355 case USB_ENDPOINT_XFER_INT:
1356 return in ? INT_IN_EP : INT_OUT_EP;
1357 }
1358 return 0;
1359}
1360
1361/* Return the maximum endpoint service interval time (ESIT) payload.
1362 * Basically, this is the maxpacket size, multiplied by the burst size
1363 * and mult size.
1364 */
1365static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1366 struct usb_host_endpoint *ep)
1367{
1368 int max_burst;
1369 int max_packet;
1370
1371 /* Only applies for interrupt or isochronous endpoints */
1372 if (usb_endpoint_xfer_control(epd: &ep->desc) ||
1373 usb_endpoint_xfer_bulk(epd: &ep->desc))
1374 return 0;
1375
1376 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1377 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1378 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1379 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1380
1381 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1382 if (udev->speed >= USB_SPEED_SUPER)
1383 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1384
1385 max_packet = usb_endpoint_maxp(epd: &ep->desc);
1386 max_burst = usb_endpoint_maxp_mult(epd: &ep->desc);
1387 /* A 0 in max burst means 1 transfer per ESIT */
1388 return max_packet * max_burst;
1389}
1390
1391/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1392 * Drivers will have to call usb_alloc_streams() to do that.
1393 */
1394int xhci_endpoint_init(struct xhci_hcd *xhci,
1395 struct xhci_virt_device *virt_dev,
1396 struct usb_device *udev,
1397 struct usb_host_endpoint *ep,
1398 gfp_t mem_flags)
1399{
1400 unsigned int ep_index;
1401 struct xhci_ep_ctx *ep_ctx;
1402 struct xhci_ring *ep_ring;
1403 unsigned int max_packet;
1404 enum xhci_ring_type ring_type;
1405 u32 max_esit_payload;
1406 u32 endpoint_type;
1407 unsigned int max_burst;
1408 unsigned int interval;
1409 unsigned int mult;
1410 unsigned int avg_trb_len;
1411 unsigned int err_count = 0;
1412
1413 ep_index = xhci_get_endpoint_index(desc: &ep->desc);
1414 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1415
1416 endpoint_type = xhci_get_endpoint_type(ep);
1417 if (!endpoint_type)
1418 return -EINVAL;
1419
1420 ring_type = usb_endpoint_type(epd: &ep->desc);
1421
1422 /*
1423 * Get values to fill the endpoint context, mostly from ep descriptor.
1424 * The average TRB buffer lengt for bulk endpoints is unclear as we
1425 * have no clue on scatter gather list entry size. For Isoc and Int,
1426 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1427 */
1428 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1429 interval = xhci_get_endpoint_interval(udev, ep);
1430
1431 /* Periodic endpoint bInterval limit quirk */
1432 if (usb_endpoint_xfer_int(epd: &ep->desc) ||
1433 usb_endpoint_xfer_isoc(epd: &ep->desc)) {
1434 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1435 udev->speed >= USB_SPEED_HIGH &&
1436 interval >= 7) {
1437 interval = 6;
1438 }
1439 }
1440
1441 mult = xhci_get_endpoint_mult(udev, ep);
1442 max_packet = usb_endpoint_maxp(epd: &ep->desc);
1443 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1444 avg_trb_len = max_esit_payload;
1445
1446 /* FIXME dig Mult and streams info out of ep companion desc */
1447
1448 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1449 if (!usb_endpoint_xfer_isoc(epd: &ep->desc))
1450 err_count = 3;
1451 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1452 if (usb_endpoint_xfer_bulk(epd: &ep->desc)) {
1453 if (udev->speed == USB_SPEED_HIGH)
1454 max_packet = 512;
1455 if (udev->speed == USB_SPEED_FULL) {
1456 max_packet = rounddown_pow_of_two(max_packet);
1457 max_packet = clamp_val(max_packet, 8, 64);
1458 }
1459 }
1460 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1461 if (usb_endpoint_xfer_control(epd: &ep->desc) && xhci->hci_version >= 0x100)
1462 avg_trb_len = 8;
1463 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1464 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1465 mult = 0;
1466
1467 /* Set up the endpoint ring */
1468 virt_dev->eps[ep_index].new_ring =
1469 xhci_ring_alloc(xhci, num_segs: 2, cycle_state: 1, type: ring_type, max_packet, flags: mem_flags);
1470 if (!virt_dev->eps[ep_index].new_ring)
1471 return -ENOMEM;
1472
1473 virt_dev->eps[ep_index].skip = false;
1474 ep_ring = virt_dev->eps[ep_index].new_ring;
1475
1476 /* Fill the endpoint context */
1477 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1478 EP_INTERVAL(interval) |
1479 EP_MULT(mult));
1480 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1481 MAX_PACKET(max_packet) |
1482 MAX_BURST(max_burst) |
1483 ERROR_COUNT(err_count));
1484 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1485 ep_ring->cycle_state);
1486
1487 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1488 EP_AVG_TRB_LENGTH(avg_trb_len));
1489
1490 return 0;
1491}
1492
1493void xhci_endpoint_zero(struct xhci_hcd *xhci,
1494 struct xhci_virt_device *virt_dev,
1495 struct usb_host_endpoint *ep)
1496{
1497 unsigned int ep_index;
1498 struct xhci_ep_ctx *ep_ctx;
1499
1500 ep_index = xhci_get_endpoint_index(desc: &ep->desc);
1501 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1502
1503 ep_ctx->ep_info = 0;
1504 ep_ctx->ep_info2 = 0;
1505 ep_ctx->deq = 0;
1506 ep_ctx->tx_info = 0;
1507 /* Don't free the endpoint ring until the set interface or configuration
1508 * request succeeds.
1509 */
1510}
1511
1512void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1513{
1514 bw_info->ep_interval = 0;
1515 bw_info->mult = 0;
1516 bw_info->num_packets = 0;
1517 bw_info->max_packet_size = 0;
1518 bw_info->type = 0;
1519 bw_info->max_esit_payload = 0;
1520}
1521
1522void xhci_update_bw_info(struct xhci_hcd *xhci,
1523 struct xhci_container_ctx *in_ctx,
1524 struct xhci_input_control_ctx *ctrl_ctx,
1525 struct xhci_virt_device *virt_dev)
1526{
1527 struct xhci_bw_info *bw_info;
1528 struct xhci_ep_ctx *ep_ctx;
1529 unsigned int ep_type;
1530 int i;
1531
1532 for (i = 1; i < 31; i++) {
1533 bw_info = &virt_dev->eps[i].bw_info;
1534
1535 /* We can't tell what endpoint type is being dropped, but
1536 * unconditionally clearing the bandwidth info for non-periodic
1537 * endpoints should be harmless because the info will never be
1538 * set in the first place.
1539 */
1540 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1541 /* Dropped endpoint */
1542 xhci_clear_endpoint_bw_info(bw_info);
1543 continue;
1544 }
1545
1546 if (EP_IS_ADDED(ctrl_ctx, i)) {
1547 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1548 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1549
1550 /* Ignore non-periodic endpoints */
1551 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1552 ep_type != ISOC_IN_EP &&
1553 ep_type != INT_IN_EP)
1554 continue;
1555
1556 /* Added or changed endpoint */
1557 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1558 le32_to_cpu(ep_ctx->ep_info));
1559 /* Number of packets and mult are zero-based in the
1560 * input context, but we want one-based for the
1561 * interval table.
1562 */
1563 bw_info->mult = CTX_TO_EP_MULT(
1564 le32_to_cpu(ep_ctx->ep_info)) + 1;
1565 bw_info->num_packets = CTX_TO_MAX_BURST(
1566 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1567 bw_info->max_packet_size = MAX_PACKET_DECODED(
1568 le32_to_cpu(ep_ctx->ep_info2));
1569 bw_info->type = ep_type;
1570 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1571 le32_to_cpu(ep_ctx->tx_info));
1572 }
1573 }
1574}
1575
1576/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1577 * Useful when you want to change one particular aspect of the endpoint and then
1578 * issue a configure endpoint command.
1579 */
1580void xhci_endpoint_copy(struct xhci_hcd *xhci,
1581 struct xhci_container_ctx *in_ctx,
1582 struct xhci_container_ctx *out_ctx,
1583 unsigned int ep_index)
1584{
1585 struct xhci_ep_ctx *out_ep_ctx;
1586 struct xhci_ep_ctx *in_ep_ctx;
1587
1588 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1589 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1590
1591 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1592 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1593 in_ep_ctx->deq = out_ep_ctx->deq;
1594 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1595 if (xhci->quirks & XHCI_MTK_HOST) {
1596 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1597 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1598 }
1599}
1600
1601/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1602 * Useful when you want to change one particular aspect of the endpoint and then
1603 * issue a configure endpoint command. Only the context entries field matters,
1604 * but we'll copy the whole thing anyway.
1605 */
1606void xhci_slot_copy(struct xhci_hcd *xhci,
1607 struct xhci_container_ctx *in_ctx,
1608 struct xhci_container_ctx *out_ctx)
1609{
1610 struct xhci_slot_ctx *in_slot_ctx;
1611 struct xhci_slot_ctx *out_slot_ctx;
1612
1613 in_slot_ctx = xhci_get_slot_ctx(xhci, ctx: in_ctx);
1614 out_slot_ctx = xhci_get_slot_ctx(xhci, ctx: out_ctx);
1615
1616 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1617 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1618 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1619 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1620}
1621
1622/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1623static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1624{
1625 int i;
1626 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1627 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1628
1629 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
1630 fmt: "Allocating %d scratchpad buffers", num_sp);
1631
1632 if (!num_sp)
1633 return 0;
1634
1635 xhci->scratchpad = kzalloc_node(size: sizeof(*xhci->scratchpad), flags,
1636 node: dev_to_node(dev));
1637 if (!xhci->scratchpad)
1638 goto fail_sp;
1639
1640 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1641 size: size_mul(factor1: sizeof(u64), factor2: num_sp),
1642 dma_handle: &xhci->scratchpad->sp_dma, gfp: flags);
1643 if (!xhci->scratchpad->sp_array)
1644 goto fail_sp2;
1645
1646 xhci->scratchpad->sp_buffers = kcalloc_node(n: num_sp, size: sizeof(void *),
1647 flags, node: dev_to_node(dev));
1648 if (!xhci->scratchpad->sp_buffers)
1649 goto fail_sp3;
1650
1651 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1652 for (i = 0; i < num_sp; i++) {
1653 dma_addr_t dma;
1654 void *buf = dma_alloc_coherent(dev, size: xhci->page_size, dma_handle: &dma,
1655 gfp: flags);
1656 if (!buf)
1657 goto fail_sp4;
1658
1659 xhci->scratchpad->sp_array[i] = dma;
1660 xhci->scratchpad->sp_buffers[i] = buf;
1661 }
1662
1663 return 0;
1664
1665 fail_sp4:
1666 while (i--)
1667 dma_free_coherent(dev, size: xhci->page_size,
1668 cpu_addr: xhci->scratchpad->sp_buffers[i],
1669 dma_handle: xhci->scratchpad->sp_array[i]);
1670
1671 kfree(objp: xhci->scratchpad->sp_buffers);
1672
1673 fail_sp3:
1674 dma_free_coherent(dev, size: num_sp * sizeof(u64),
1675 cpu_addr: xhci->scratchpad->sp_array,
1676 dma_handle: xhci->scratchpad->sp_dma);
1677
1678 fail_sp2:
1679 kfree(objp: xhci->scratchpad);
1680 xhci->scratchpad = NULL;
1681
1682 fail_sp:
1683 return -ENOMEM;
1684}
1685
1686static void scratchpad_free(struct xhci_hcd *xhci)
1687{
1688 int num_sp;
1689 int i;
1690 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1691
1692 if (!xhci->scratchpad)
1693 return;
1694
1695 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1696
1697 for (i = 0; i < num_sp; i++) {
1698 dma_free_coherent(dev, size: xhci->page_size,
1699 cpu_addr: xhci->scratchpad->sp_buffers[i],
1700 dma_handle: xhci->scratchpad->sp_array[i]);
1701 }
1702 kfree(objp: xhci->scratchpad->sp_buffers);
1703 dma_free_coherent(dev, size: num_sp * sizeof(u64),
1704 cpu_addr: xhci->scratchpad->sp_array,
1705 dma_handle: xhci->scratchpad->sp_dma);
1706 kfree(objp: xhci->scratchpad);
1707 xhci->scratchpad = NULL;
1708}
1709
1710struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1711 bool allocate_completion, gfp_t mem_flags)
1712{
1713 struct xhci_command *command;
1714 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1715
1716 command = kzalloc_node(size: sizeof(*command), flags: mem_flags, node: dev_to_node(dev));
1717 if (!command)
1718 return NULL;
1719
1720 if (allocate_completion) {
1721 command->completion =
1722 kzalloc_node(size: sizeof(struct completion), flags: mem_flags,
1723 node: dev_to_node(dev));
1724 if (!command->completion) {
1725 kfree(objp: command);
1726 return NULL;
1727 }
1728 init_completion(x: command->completion);
1729 }
1730
1731 command->status = 0;
1732 /* set default timeout to 5000 ms */
1733 command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1734 INIT_LIST_HEAD(list: &command->cmd_list);
1735 return command;
1736}
1737
1738struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1739 bool allocate_completion, gfp_t mem_flags)
1740{
1741 struct xhci_command *command;
1742
1743 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1744 if (!command)
1745 return NULL;
1746
1747 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1748 flags: mem_flags);
1749 if (!command->in_ctx) {
1750 kfree(objp: command->completion);
1751 kfree(objp: command);
1752 return NULL;
1753 }
1754 return command;
1755}
1756
1757void xhci_urb_free_priv(struct urb_priv *urb_priv)
1758{
1759 kfree(objp: urb_priv);
1760}
1761
1762void xhci_free_command(struct xhci_hcd *xhci,
1763 struct xhci_command *command)
1764{
1765 xhci_free_container_ctx(xhci,
1766 ctx: command->in_ctx);
1767 kfree(objp: command->completion);
1768 kfree(objp: command);
1769}
1770
1771static int xhci_alloc_erst(struct xhci_hcd *xhci,
1772 struct xhci_ring *evt_ring,
1773 struct xhci_erst *erst,
1774 gfp_t flags)
1775{
1776 size_t size;
1777 unsigned int val;
1778 struct xhci_segment *seg;
1779 struct xhci_erst_entry *entry;
1780
1781 size = size_mul(factor1: sizeof(struct xhci_erst_entry), factor2: evt_ring->num_segs);
1782 erst->entries = dma_alloc_coherent(dev: xhci_to_hcd(xhci)->self.sysdev,
1783 size, dma_handle: &erst->erst_dma_addr, gfp: flags);
1784 if (!erst->entries)
1785 return -ENOMEM;
1786
1787 erst->num_entries = evt_ring->num_segs;
1788
1789 seg = evt_ring->first_seg;
1790 for (val = 0; val < evt_ring->num_segs; val++) {
1791 entry = &erst->entries[val];
1792 entry->seg_addr = cpu_to_le64(seg->dma);
1793 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1794 entry->rsvd = 0;
1795 seg = seg->next;
1796 }
1797
1798 return 0;
1799}
1800
1801static void
1802xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1803{
1804 u32 tmp;
1805
1806 if (!ir)
1807 return;
1808
1809 /*
1810 * Clean out interrupter registers except ERSTBA. Clearing either the
1811 * low or high 32 bits of ERSTBA immediately causes the controller to
1812 * dereference the partially cleared 64 bit address, causing IOMMU error.
1813 */
1814 if (ir->ir_set) {
1815 tmp = readl(addr: &ir->ir_set->erst_size);
1816 tmp &= ERST_SIZE_MASK;
1817 writel(val: tmp, addr: &ir->ir_set->erst_size);
1818
1819 xhci_write_64(xhci, ERST_EHB, regs: &ir->ir_set->erst_dequeue);
1820 }
1821}
1822
1823static void
1824xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1825{
1826 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1827 size_t erst_size;
1828
1829 if (!ir)
1830 return;
1831
1832 erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries;
1833 if (ir->erst.entries)
1834 dma_free_coherent(dev, size: erst_size,
1835 cpu_addr: ir->erst.entries,
1836 dma_handle: ir->erst.erst_dma_addr);
1837 ir->erst.entries = NULL;
1838
1839 /* free interrupter event ring */
1840 if (ir->event_ring)
1841 xhci_ring_free(xhci, ring: ir->event_ring);
1842
1843 ir->event_ring = NULL;
1844
1845 kfree(objp: ir);
1846}
1847
1848void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1849{
1850 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1851 unsigned int intr_num;
1852
1853 spin_lock_irq(lock: &xhci->lock);
1854
1855 /* interrupter 0 is primary interrupter, don't touch it */
1856 if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1857 xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1858 spin_unlock_irq(lock: &xhci->lock);
1859 return;
1860 }
1861
1862 intr_num = ir->intr_num;
1863
1864 xhci_remove_interrupter(xhci, ir);
1865 xhci->interrupters[intr_num] = NULL;
1866
1867 spin_unlock_irq(lock: &xhci->lock);
1868
1869 xhci_free_interrupter(xhci, ir);
1870}
1871EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1872
1873void xhci_mem_cleanup(struct xhci_hcd *xhci)
1874{
1875 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1876 int i, j, num_ports;
1877
1878 cancel_delayed_work_sync(dwork: &xhci->cmd_timer);
1879
1880 for (i = 0; i < xhci->max_interrupters; i++) {
1881 if (xhci->interrupters[i]) {
1882 xhci_remove_interrupter(xhci, ir: xhci->interrupters[i]);
1883 xhci_free_interrupter(xhci, ir: xhci->interrupters[i]);
1884 xhci->interrupters[i] = NULL;
1885 }
1886 }
1887 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Freed interrupters");
1888
1889 if (xhci->cmd_ring)
1890 xhci_ring_free(xhci, ring: xhci->cmd_ring);
1891 xhci->cmd_ring = NULL;
1892 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Freed command ring");
1893 xhci_cleanup_command_queue(xhci);
1894
1895 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1896 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1897 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1898 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1899 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1900 while (!list_empty(head: ep))
1901 list_del_init(entry: ep->next);
1902 }
1903 }
1904
1905 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1906 xhci_free_virt_devices_depth_first(xhci, slot_id: i);
1907
1908 dma_pool_destroy(pool: xhci->segment_pool);
1909 xhci->segment_pool = NULL;
1910 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Freed segment pool");
1911
1912 dma_pool_destroy(pool: xhci->device_pool);
1913 xhci->device_pool = NULL;
1914 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Freed device context pool");
1915
1916 dma_pool_destroy(pool: xhci->small_streams_pool);
1917 xhci->small_streams_pool = NULL;
1918 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
1919 fmt: "Freed small stream array pool");
1920
1921 dma_pool_destroy(pool: xhci->medium_streams_pool);
1922 xhci->medium_streams_pool = NULL;
1923 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
1924 fmt: "Freed medium stream array pool");
1925
1926 if (xhci->dcbaa)
1927 dma_free_coherent(dev, size: sizeof(*xhci->dcbaa),
1928 cpu_addr: xhci->dcbaa, dma_handle: xhci->dcbaa->dma);
1929 xhci->dcbaa = NULL;
1930
1931 scratchpad_free(xhci);
1932
1933 if (!xhci->rh_bw)
1934 goto no_bw;
1935
1936 for (i = 0; i < num_ports; i++) {
1937 struct xhci_tt_bw_info *tt, *n;
1938 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1939 list_del(entry: &tt->tt_list);
1940 kfree(objp: tt);
1941 }
1942 }
1943
1944no_bw:
1945 xhci->cmd_ring_reserved_trbs = 0;
1946 xhci->usb2_rhub.num_ports = 0;
1947 xhci->usb3_rhub.num_ports = 0;
1948 xhci->num_active_eps = 0;
1949 kfree(objp: xhci->usb2_rhub.ports);
1950 kfree(objp: xhci->usb3_rhub.ports);
1951 kfree(objp: xhci->hw_ports);
1952 kfree(objp: xhci->rh_bw);
1953 kfree(objp: xhci->ext_caps);
1954 for (i = 0; i < xhci->num_port_caps; i++)
1955 kfree(objp: xhci->port_caps[i].psi);
1956 kfree(objp: xhci->port_caps);
1957 kfree(objp: xhci->interrupters);
1958 xhci->num_port_caps = 0;
1959
1960 xhci->usb2_rhub.ports = NULL;
1961 xhci->usb3_rhub.ports = NULL;
1962 xhci->hw_ports = NULL;
1963 xhci->rh_bw = NULL;
1964 xhci->ext_caps = NULL;
1965 xhci->port_caps = NULL;
1966 xhci->interrupters = NULL;
1967
1968 xhci->page_size = 0;
1969 xhci->page_shift = 0;
1970 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1971 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1972}
1973
1974static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1975{
1976 dma_addr_t deq;
1977
1978 deq = xhci_trb_virt_to_dma(seg: ir->event_ring->deq_seg,
1979 trb: ir->event_ring->dequeue);
1980 if (!deq)
1981 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1982 /* Update HC event ring dequeue pointer */
1983 /* Don't clear the EHB bit (which is RW1C) because
1984 * there might be more events to service.
1985 */
1986 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
1987 fmt: "// Write event ring dequeue pointer, preserving EHB bit");
1988 xhci_write_64(xhci, val: deq & ERST_PTR_MASK, regs: &ir->ir_set->erst_dequeue);
1989}
1990
1991static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1992 __le32 __iomem *addr, int max_caps)
1993{
1994 u32 temp, port_offset, port_count;
1995 int i;
1996 u8 major_revision, minor_revision, tmp_minor_revision;
1997 struct xhci_hub *rhub;
1998 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1999 struct xhci_port_cap *port_cap;
2000
2001 temp = readl(addr);
2002 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2003 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2004
2005 if (major_revision == 0x03) {
2006 rhub = &xhci->usb3_rhub;
2007 /*
2008 * Some hosts incorrectly use sub-minor version for minor
2009 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2010 * for bcdUSB 0x310). Since there is no USB release with sub
2011 * minor version 0x301 to 0x309, we can assume that they are
2012 * incorrect and fix it here.
2013 */
2014 if (minor_revision > 0x00 && minor_revision < 0x10)
2015 minor_revision <<= 4;
2016 /*
2017 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2018 * but only support Gen1.
2019 */
2020 if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2021 tmp_minor_revision = minor_revision;
2022 minor_revision = 0;
2023 }
2024
2025 } else if (major_revision <= 0x02) {
2026 rhub = &xhci->usb2_rhub;
2027 } else {
2028 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2029 addr, major_revision);
2030 /* Ignoring port protocol we can't understand. FIXME */
2031 return;
2032 }
2033
2034 /* Port offset and count in the third dword, see section 7.2 */
2035 temp = readl(addr: addr + 2);
2036 port_offset = XHCI_EXT_PORT_OFF(temp);
2037 port_count = XHCI_EXT_PORT_COUNT(temp);
2038 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2039 fmt: "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2040 addr, port_offset, port_count, major_revision);
2041 /* Port count includes the current port offset */
2042 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2043 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2044 return;
2045
2046 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2047 if (xhci->num_port_caps > max_caps)
2048 return;
2049
2050 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2051
2052 if (port_cap->psi_count) {
2053 port_cap->psi = kcalloc_node(n: port_cap->psi_count,
2054 size: sizeof(*port_cap->psi),
2055 GFP_KERNEL, node: dev_to_node(dev));
2056 if (!port_cap->psi)
2057 port_cap->psi_count = 0;
2058
2059 port_cap->psi_uid_count++;
2060 for (i = 0; i < port_cap->psi_count; i++) {
2061 port_cap->psi[i] = readl(addr: addr + 4 + i);
2062
2063 /* count unique ID values, two consecutive entries can
2064 * have the same ID if link is assymetric
2065 */
2066 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2067 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2068 port_cap->psi_uid_count++;
2069
2070 if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2071 major_revision == 0x03 &&
2072 XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2073 minor_revision = tmp_minor_revision;
2074
2075 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2076 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2077 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2078 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2079 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2080 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2081 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2082 }
2083 }
2084
2085 rhub->maj_rev = major_revision;
2086
2087 if (rhub->min_rev < minor_revision)
2088 rhub->min_rev = minor_revision;
2089
2090 port_cap->maj_rev = major_revision;
2091 port_cap->min_rev = minor_revision;
2092
2093 /* cache usb2 port capabilities */
2094 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2095 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2096
2097 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2098 (temp & XHCI_HLC)) {
2099 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2100 fmt: "xHCI 1.0: support USB2 hardware lpm");
2101 xhci->hw_lpm_support = 1;
2102 }
2103
2104 port_offset--;
2105 for (i = port_offset; i < (port_offset + port_count); i++) {
2106 struct xhci_port *hw_port = &xhci->hw_ports[i];
2107 /* Duplicate entry. Ignore the port if the revisions differ. */
2108 if (hw_port->rhub) {
2109 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2110 xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2111 hw_port->rhub->maj_rev, major_revision);
2112 /* Only adjust the roothub port counts if we haven't
2113 * found a similar duplicate.
2114 */
2115 if (hw_port->rhub != rhub &&
2116 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2117 hw_port->rhub->num_ports--;
2118 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2119 }
2120 continue;
2121 }
2122 hw_port->rhub = rhub;
2123 hw_port->port_cap = port_cap;
2124 rhub->num_ports++;
2125 }
2126 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2127}
2128
2129static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2130 struct xhci_hub *rhub, gfp_t flags)
2131{
2132 int port_index = 0;
2133 int i;
2134 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2135
2136 if (!rhub->num_ports)
2137 return;
2138 rhub->ports = kcalloc_node(n: rhub->num_ports, size: sizeof(*rhub->ports),
2139 flags, node: dev_to_node(dev));
2140 if (!rhub->ports)
2141 return;
2142
2143 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2144 if (xhci->hw_ports[i].rhub != rhub ||
2145 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2146 continue;
2147 xhci->hw_ports[i].hcd_portnum = port_index;
2148 rhub->ports[port_index] = &xhci->hw_ports[i];
2149 port_index++;
2150 if (port_index == rhub->num_ports)
2151 break;
2152 }
2153}
2154
2155/*
2156 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2157 * specify what speeds each port is supposed to be. We can't count on the port
2158 * speed bits in the PORTSC register being correct until a device is connected,
2159 * but we need to set up the two fake roothubs with the correct number of USB
2160 * 3.0 and USB 2.0 ports at host controller initialization time.
2161 */
2162static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2163{
2164 void __iomem *base;
2165 u32 offset;
2166 unsigned int num_ports;
2167 int i, j;
2168 int cap_count = 0;
2169 u32 cap_start;
2170 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2171
2172 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2173 xhci->hw_ports = kcalloc_node(n: num_ports, size: sizeof(*xhci->hw_ports),
2174 flags, node: dev_to_node(dev));
2175 if (!xhci->hw_ports)
2176 return -ENOMEM;
2177
2178 for (i = 0; i < num_ports; i++) {
2179 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2180 NUM_PORT_REGS * i;
2181 xhci->hw_ports[i].hw_portnum = i;
2182
2183 init_completion(x: &xhci->hw_ports[i].rexit_done);
2184 init_completion(x: &xhci->hw_ports[i].u3exit_done);
2185 }
2186
2187 xhci->rh_bw = kcalloc_node(n: num_ports, size: sizeof(*xhci->rh_bw), flags,
2188 node: dev_to_node(dev));
2189 if (!xhci->rh_bw)
2190 return -ENOMEM;
2191 for (i = 0; i < num_ports; i++) {
2192 struct xhci_interval_bw_table *bw_table;
2193
2194 INIT_LIST_HEAD(list: &xhci->rh_bw[i].tts);
2195 bw_table = &xhci->rh_bw[i].bw_table;
2196 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2197 INIT_LIST_HEAD(list: &bw_table->interval_bw[j].endpoints);
2198 }
2199 base = &xhci->cap_regs->hc_capbase;
2200
2201 cap_start = xhci_find_next_ext_cap(base, start: 0, XHCI_EXT_CAPS_PROTOCOL);
2202 if (!cap_start) {
2203 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2204 return -ENODEV;
2205 }
2206
2207 offset = cap_start;
2208 /* count extended protocol capability entries for later caching */
2209 while (offset) {
2210 cap_count++;
2211 offset = xhci_find_next_ext_cap(base, start: offset,
2212 XHCI_EXT_CAPS_PROTOCOL);
2213 }
2214
2215 xhci->ext_caps = kcalloc_node(n: cap_count, size: sizeof(*xhci->ext_caps),
2216 flags, node: dev_to_node(dev));
2217 if (!xhci->ext_caps)
2218 return -ENOMEM;
2219
2220 xhci->port_caps = kcalloc_node(n: cap_count, size: sizeof(*xhci->port_caps),
2221 flags, node: dev_to_node(dev));
2222 if (!xhci->port_caps)
2223 return -ENOMEM;
2224
2225 offset = cap_start;
2226
2227 while (offset) {
2228 xhci_add_in_port(xhci, num_ports, addr: base + offset, max_caps: cap_count);
2229 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2230 num_ports)
2231 break;
2232 offset = xhci_find_next_ext_cap(base, start: offset,
2233 XHCI_EXT_CAPS_PROTOCOL);
2234 }
2235 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2236 xhci_warn(xhci, "No ports on the roothubs?\n");
2237 return -ENODEV;
2238 }
2239 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2240 fmt: "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2241 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2242
2243 /* Place limits on the number of roothub ports so that the hub
2244 * descriptors aren't longer than the USB core will allocate.
2245 */
2246 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2247 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2248 fmt: "Limiting USB 3.0 roothub ports to %u.",
2249 USB_SS_MAXPORTS);
2250 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2251 }
2252 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2253 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2254 fmt: "Limiting USB 2.0 roothub ports to %u.",
2255 USB_MAXCHILDREN);
2256 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2257 }
2258
2259 if (!xhci->usb2_rhub.num_ports)
2260 xhci_info(xhci, "USB2 root hub has no ports\n");
2261
2262 if (!xhci->usb3_rhub.num_ports)
2263 xhci_info(xhci, "USB3 root hub has no ports\n");
2264
2265 xhci_create_rhub_port_array(xhci, rhub: &xhci->usb2_rhub, flags);
2266 xhci_create_rhub_port_array(xhci, rhub: &xhci->usb3_rhub, flags);
2267
2268 return 0;
2269}
2270
2271static struct xhci_interrupter *
2272xhci_alloc_interrupter(struct xhci_hcd *xhci, int segs, gfp_t flags)
2273{
2274 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2275 struct xhci_interrupter *ir;
2276 unsigned int num_segs = segs;
2277 int ret;
2278
2279 ir = kzalloc_node(size: sizeof(*ir), flags, node: dev_to_node(dev));
2280 if (!ir)
2281 return NULL;
2282
2283 /* number of ring segments should be greater than 0 */
2284 if (segs <= 0)
2285 num_segs = min_t(unsigned int, 1 << HCS_ERST_MAX(xhci->hcs_params2),
2286 ERST_MAX_SEGS);
2287
2288 ir->event_ring = xhci_ring_alloc(xhci, num_segs, cycle_state: 1, type: TYPE_EVENT, max_packet: 0,
2289 flags);
2290 if (!ir->event_ring) {
2291 xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2292 kfree(objp: ir);
2293 return NULL;
2294 }
2295
2296 ret = xhci_alloc_erst(xhci, evt_ring: ir->event_ring, erst: &ir->erst, flags);
2297 if (ret) {
2298 xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2299 xhci_ring_free(xhci, ring: ir->event_ring);
2300 kfree(objp: ir);
2301 return NULL;
2302 }
2303
2304 return ir;
2305}
2306
2307static int
2308xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2309 unsigned int intr_num)
2310{
2311 u64 erst_base;
2312 u32 erst_size;
2313
2314 if (intr_num >= xhci->max_interrupters) {
2315 xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2316 intr_num, xhci->max_interrupters);
2317 return -EINVAL;
2318 }
2319
2320 if (xhci->interrupters[intr_num]) {
2321 xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2322 return -EINVAL;
2323 }
2324
2325 xhci->interrupters[intr_num] = ir;
2326 ir->intr_num = intr_num;
2327 ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2328
2329 /* set ERST count with the number of entries in the segment table */
2330 erst_size = readl(addr: &ir->ir_set->erst_size);
2331 erst_size &= ERST_SIZE_MASK;
2332 erst_size |= ir->event_ring->num_segs;
2333 writel(val: erst_size, addr: &ir->ir_set->erst_size);
2334
2335 erst_base = xhci_read_64(xhci, regs: &ir->ir_set->erst_base);
2336 erst_base &= ERST_BASE_RSVDP;
2337 erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2338 xhci_write_64(xhci, val: erst_base, regs: &ir->ir_set->erst_base);
2339
2340 /* Set the event ring dequeue address of this interrupter */
2341 xhci_set_hc_event_deq(xhci, ir);
2342
2343 return 0;
2344}
2345
2346struct xhci_interrupter *
2347xhci_create_secondary_interrupter(struct usb_hcd *hcd, int num_seg)
2348{
2349 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2350 struct xhci_interrupter *ir;
2351 unsigned int i;
2352 int err = -ENOSPC;
2353
2354 if (!xhci->interrupters || xhci->max_interrupters <= 1)
2355 return NULL;
2356
2357 ir = xhci_alloc_interrupter(xhci, segs: num_seg, GFP_KERNEL);
2358 if (!ir)
2359 return NULL;
2360
2361 spin_lock_irq(lock: &xhci->lock);
2362
2363 /* Find available secondary interrupter, interrupter 0 is reserved for primary */
2364 for (i = 1; i < xhci->max_interrupters; i++) {
2365 if (xhci->interrupters[i] == NULL) {
2366 err = xhci_add_interrupter(xhci, ir, intr_num: i);
2367 break;
2368 }
2369 }
2370
2371 spin_unlock_irq(lock: &xhci->lock);
2372
2373 if (err) {
2374 xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2375 xhci->max_interrupters);
2376 xhci_free_interrupter(xhci, ir);
2377 return NULL;
2378 }
2379
2380 xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2381 i, xhci->max_interrupters);
2382
2383 return ir;
2384}
2385EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2386
2387int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2388{
2389 struct xhci_interrupter *ir;
2390 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2391 dma_addr_t dma;
2392 unsigned int val, val2;
2393 u64 val_64;
2394 u32 page_size, temp;
2395 int i;
2396
2397 INIT_LIST_HEAD(list: &xhci->cmd_list);
2398
2399 /* init command timeout work */
2400 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2401 init_completion(x: &xhci->cmd_ring_stop_completion);
2402
2403 page_size = readl(addr: &xhci->op_regs->page_size);
2404 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2405 fmt: "Supported page size register = 0x%x", page_size);
2406 i = ffs(page_size);
2407 if (i < 16)
2408 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2409 fmt: "Supported page size of %iK", (1 << (i+12)) / 1024);
2410 else
2411 xhci_warn(xhci, "WARN: no supported page size\n");
2412 /* Use 4K pages, since that's common and the minimum the HC supports */
2413 xhci->page_shift = 12;
2414 xhci->page_size = 1 << xhci->page_shift;
2415 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2416 fmt: "HCD page size set to %iK", xhci->page_size / 1024);
2417
2418 /*
2419 * Program the Number of Device Slots Enabled field in the CONFIG
2420 * register with the max value of slots the HC can handle.
2421 */
2422 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2423 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2424 fmt: "// xHC can handle at most %d device slots.", val);
2425 val2 = readl(addr: &xhci->op_regs->config_reg);
2426 val |= (val2 & ~HCS_SLOTS_MASK);
2427 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2428 fmt: "// Setting Max device slots reg = 0x%x.", val);
2429 writel(val, addr: &xhci->op_regs->config_reg);
2430
2431 /*
2432 * xHCI section 5.4.6 - Device Context array must be
2433 * "physically contiguous and 64-byte (cache line) aligned".
2434 */
2435 xhci->dcbaa = dma_alloc_coherent(dev, size: sizeof(*xhci->dcbaa), dma_handle: &dma,
2436 gfp: flags);
2437 if (!xhci->dcbaa)
2438 goto fail;
2439 xhci->dcbaa->dma = dma;
2440 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2441 fmt: "// Device context base array address = 0x%pad (DMA), %p (virt)",
2442 &xhci->dcbaa->dma, xhci->dcbaa);
2443 xhci_write_64(xhci, val: dma, regs: &xhci->op_regs->dcbaa_ptr);
2444
2445 /*
2446 * Initialize the ring segment pool. The ring must be a contiguous
2447 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2448 * however, the command ring segment needs 64-byte aligned segments
2449 * and our use of dma addresses in the trb_address_map radix tree needs
2450 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2451 */
2452 if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2453 xhci->segment_pool = dma_pool_create(name: "xHCI ring segments", dev,
2454 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, allocation: xhci->page_size * 2);
2455 else
2456 xhci->segment_pool = dma_pool_create(name: "xHCI ring segments", dev,
2457 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, allocation: xhci->page_size);
2458
2459 /* See Table 46 and Note on Figure 55 */
2460 xhci->device_pool = dma_pool_create(name: "xHCI input/output contexts", dev,
2461 size: 2112, align: 64, allocation: xhci->page_size);
2462 if (!xhci->segment_pool || !xhci->device_pool)
2463 goto fail;
2464
2465 /* Linear stream context arrays don't have any boundary restrictions,
2466 * and only need to be 16-byte aligned.
2467 */
2468 xhci->small_streams_pool =
2469 dma_pool_create(name: "xHCI 256 byte stream ctx arrays",
2470 dev, SMALL_STREAM_ARRAY_SIZE, align: 16, allocation: 0);
2471 xhci->medium_streams_pool =
2472 dma_pool_create(name: "xHCI 1KB stream ctx arrays",
2473 dev, MEDIUM_STREAM_ARRAY_SIZE, align: 16, allocation: 0);
2474 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2475 * will be allocated with dma_alloc_coherent()
2476 */
2477
2478 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2479 goto fail;
2480
2481 /* Set up the command ring to have one segments for now. */
2482 xhci->cmd_ring = xhci_ring_alloc(xhci, num_segs: 1, cycle_state: 1, type: TYPE_COMMAND, max_packet: 0, flags);
2483 if (!xhci->cmd_ring)
2484 goto fail;
2485 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2486 fmt: "Allocated command ring at %p", xhci->cmd_ring);
2487 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "First segment DMA is 0x%pad",
2488 &xhci->cmd_ring->first_seg->dma);
2489
2490 /* Set the address in the Command Ring Control register */
2491 val_64 = xhci_read_64(xhci, regs: &xhci->op_regs->cmd_ring);
2492 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2493 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2494 xhci->cmd_ring->cycle_state;
2495 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2496 fmt: "// Setting command ring address to 0x%016llx", val_64);
2497 xhci_write_64(xhci, val: val_64, regs: &xhci->op_regs->cmd_ring);
2498
2499 /* Reserve one command ring TRB for disabling LPM.
2500 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2501 * disabling LPM, we only need to reserve one TRB for all devices.
2502 */
2503 xhci->cmd_ring_reserved_trbs++;
2504
2505 val = readl(addr: &xhci->cap_regs->db_off);
2506 val &= DBOFF_MASK;
2507 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2508 fmt: "// Doorbell array is located at offset 0x%x from cap regs base addr",
2509 val);
2510 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2511
2512 /* Allocate and set up primary interrupter 0 with an event ring. */
2513 xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init,
2514 fmt: "Allocating primary event ring");
2515 xhci->interrupters = kcalloc_node(n: xhci->max_interrupters, size: sizeof(*xhci->interrupters),
2516 flags, node: dev_to_node(dev));
2517
2518 ir = xhci_alloc_interrupter(xhci, segs: 0, flags);
2519 if (!ir)
2520 goto fail;
2521
2522 if (xhci_add_interrupter(xhci, ir, intr_num: 0))
2523 goto fail;
2524
2525 ir->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2526
2527 /*
2528 * XXX: Might need to set the Interrupter Moderation Register to
2529 * something other than the default (~1ms minimum between interrupts).
2530 * See section 5.5.1.2.
2531 */
2532 for (i = 0; i < MAX_HC_SLOTS; i++)
2533 xhci->devs[i] = NULL;
2534
2535 if (scratchpad_alloc(xhci, flags))
2536 goto fail;
2537 if (xhci_setup_port_arrays(xhci, flags))
2538 goto fail;
2539
2540 /* Enable USB 3.0 device notifications for function remote wake, which
2541 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2542 * U3 (device suspend).
2543 */
2544 temp = readl(addr: &xhci->op_regs->dev_notification);
2545 temp &= ~DEV_NOTE_MASK;
2546 temp |= DEV_NOTE_FWAKE;
2547 writel(val: temp, addr: &xhci->op_regs->dev_notification);
2548
2549 return 0;
2550
2551fail:
2552 xhci_halt(xhci);
2553 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2554 xhci_mem_cleanup(xhci);
2555 return -ENOMEM;
2556}
2557

source code of linux/drivers/usb/host/xhci-mem.c