| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * xHCI host controller driver |
| 4 | * |
| 5 | * Copyright (C) 2008 Intel Corp. |
| 6 | * |
| 7 | * Author: Sarah Sharp |
| 8 | * Some code borrowed from the Linux EHCI driver. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/usb.h> |
| 12 | #include <linux/overflow.h> |
| 13 | #include <linux/pci.h> |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/dmapool.h> |
| 16 | #include <linux/dma-mapping.h> |
| 17 | |
| 18 | #include "xhci.h" |
| 19 | #include "xhci-trace.h" |
| 20 | #include "xhci-debugfs.h" |
| 21 | |
| 22 | /* |
| 23 | * Allocates a generic ring segment from the ring pool, sets the dma address, |
| 24 | * initializes the segment to zero, and sets the private next pointer to NULL. |
| 25 | * |
| 26 | * Section 4.11.1.1: |
| 27 | * "All components of all Command and Transfer TRBs shall be initialized to '0'" |
| 28 | */ |
| 29 | static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, |
| 30 | unsigned int max_packet, |
| 31 | unsigned int num, |
| 32 | gfp_t flags) |
| 33 | { |
| 34 | struct xhci_segment *seg; |
| 35 | dma_addr_t dma; |
| 36 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 37 | |
| 38 | seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev)); |
| 39 | if (!seg) |
| 40 | return NULL; |
| 41 | |
| 42 | seg->trbs = dma_pool_zalloc(pool: xhci->segment_pool, mem_flags: flags, handle: &dma); |
| 43 | if (!seg->trbs) { |
| 44 | kfree(objp: seg); |
| 45 | return NULL; |
| 46 | } |
| 47 | |
| 48 | if (max_packet) { |
| 49 | seg->bounce_buf = kzalloc_node(max_packet, flags, |
| 50 | dev_to_node(dev)); |
| 51 | if (!seg->bounce_buf) { |
| 52 | dma_pool_free(pool: xhci->segment_pool, vaddr: seg->trbs, addr: dma); |
| 53 | kfree(objp: seg); |
| 54 | return NULL; |
| 55 | } |
| 56 | } |
| 57 | seg->num = num; |
| 58 | seg->dma = dma; |
| 59 | seg->next = NULL; |
| 60 | |
| 61 | return seg; |
| 62 | } |
| 63 | |
| 64 | static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) |
| 65 | { |
| 66 | if (seg->trbs) { |
| 67 | dma_pool_free(pool: xhci->segment_pool, vaddr: seg->trbs, addr: seg->dma); |
| 68 | seg->trbs = NULL; |
| 69 | } |
| 70 | kfree(objp: seg->bounce_buf); |
| 71 | kfree(objp: seg); |
| 72 | } |
| 73 | |
| 74 | static void xhci_ring_segments_free(struct xhci_hcd *xhci, struct xhci_ring *ring) |
| 75 | { |
| 76 | struct xhci_segment *seg, *next; |
| 77 | |
| 78 | ring->last_seg->next = NULL; |
| 79 | seg = ring->first_seg; |
| 80 | |
| 81 | while (seg) { |
| 82 | next = seg->next; |
| 83 | xhci_segment_free(xhci, seg); |
| 84 | seg = next; |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | /* |
| 89 | * Only for transfer and command rings where driver is the producer, not for |
| 90 | * event rings. |
| 91 | * |
| 92 | * Change the last TRB in the segment to be a Link TRB which points to the |
| 93 | * DMA address of the next segment. The caller needs to set any Link TRB |
| 94 | * related flags, such as End TRB, Toggle Cycle, and no snoop. |
| 95 | */ |
| 96 | static void xhci_set_link_trb(struct xhci_segment *seg, bool chain_links) |
| 97 | { |
| 98 | union xhci_trb *trb; |
| 99 | u32 val; |
| 100 | |
| 101 | if (!seg || !seg->next) |
| 102 | return; |
| 103 | |
| 104 | trb = &seg->trbs[TRBS_PER_SEGMENT - 1]; |
| 105 | |
| 106 | /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ |
| 107 | val = le32_to_cpu(trb->link.control); |
| 108 | val &= ~TRB_TYPE_BITMASK; |
| 109 | val |= TRB_TYPE(TRB_LINK); |
| 110 | if (chain_links) |
| 111 | val |= TRB_CHAIN; |
| 112 | trb->link.control = cpu_to_le32(val); |
| 113 | trb->link.segment_ptr = cpu_to_le64(seg->next->dma); |
| 114 | } |
| 115 | |
| 116 | static void xhci_initialize_ring_segments(struct xhci_hcd *xhci, struct xhci_ring *ring) |
| 117 | { |
| 118 | struct xhci_segment *seg; |
| 119 | bool chain_links; |
| 120 | |
| 121 | if (ring->type == TYPE_EVENT) |
| 122 | return; |
| 123 | |
| 124 | chain_links = xhci_link_chain_quirk(xhci, type: ring->type); |
| 125 | xhci_for_each_ring_seg(ring->first_seg, seg) |
| 126 | xhci_set_link_trb(seg, chain_links); |
| 127 | |
| 128 | /* See section 4.9.2.1 and 6.4.4.1 */ |
| 129 | ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE); |
| 130 | } |
| 131 | |
| 132 | /* |
| 133 | * Link the src ring segments to the dst ring. |
| 134 | * Set Toggle Cycle for the new ring if needed. |
| 135 | */ |
| 136 | static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *src, struct xhci_ring *dst) |
| 137 | { |
| 138 | struct xhci_segment *seg; |
| 139 | bool chain_links; |
| 140 | |
| 141 | if (!src || !dst) |
| 142 | return; |
| 143 | |
| 144 | /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ |
| 145 | if (dst->cycle_state == 0) { |
| 146 | xhci_for_each_ring_seg(src->first_seg, seg) { |
| 147 | for (int i = 0; i < TRBS_PER_SEGMENT; i++) |
| 148 | seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE); |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | src->last_seg->next = dst->enq_seg->next; |
| 153 | dst->enq_seg->next = src->first_seg; |
| 154 | if (dst->type != TYPE_EVENT) { |
| 155 | chain_links = xhci_link_chain_quirk(xhci, type: dst->type); |
| 156 | xhci_set_link_trb(seg: dst->enq_seg, chain_links); |
| 157 | xhci_set_link_trb(seg: src->last_seg, chain_links); |
| 158 | } |
| 159 | dst->num_segs += src->num_segs; |
| 160 | |
| 161 | if (dst->enq_seg == dst->last_seg) { |
| 162 | if (dst->type != TYPE_EVENT) |
| 163 | dst->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control |
| 164 | &= ~cpu_to_le32(LINK_TOGGLE); |
| 165 | |
| 166 | dst->last_seg = src->last_seg; |
| 167 | } else if (dst->type != TYPE_EVENT) { |
| 168 | src->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control &= ~cpu_to_le32(LINK_TOGGLE); |
| 169 | } |
| 170 | |
| 171 | for (seg = dst->enq_seg; seg != dst->last_seg; seg = seg->next) |
| 172 | seg->next->num = seg->num + 1; |
| 173 | } |
| 174 | |
| 175 | /* |
| 176 | * We need a radix tree for mapping physical addresses of TRBs to which stream |
| 177 | * ID they belong to. We need to do this because the host controller won't tell |
| 178 | * us which stream ring the TRB came from. We could store the stream ID in an |
| 179 | * event data TRB, but that doesn't help us for the cancellation case, since the |
| 180 | * endpoint may stop before it reaches that event data TRB. |
| 181 | * |
| 182 | * The radix tree maps the upper portion of the TRB DMA address to a ring |
| 183 | * segment that has the same upper portion of DMA addresses. For example, say I |
| 184 | * have segments of size 1KB, that are always 1KB aligned. A segment may |
| 185 | * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the |
| 186 | * key to the stream ID is 0x43244. I can use the DMA address of the TRB to |
| 187 | * pass the radix tree a key to get the right stream ID: |
| 188 | * |
| 189 | * 0x10c90fff >> 10 = 0x43243 |
| 190 | * 0x10c912c0 >> 10 = 0x43244 |
| 191 | * 0x10c91400 >> 10 = 0x43245 |
| 192 | * |
| 193 | * Obviously, only those TRBs with DMA addresses that are within the segment |
| 194 | * will make the radix tree return the stream ID for that ring. |
| 195 | * |
| 196 | * Caveats for the radix tree: |
| 197 | * |
| 198 | * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an |
| 199 | * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be |
| 200 | * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the |
| 201 | * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit |
| 202 | * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit |
| 203 | * extended systems (where the DMA address can be bigger than 32-bits), |
| 204 | * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. |
| 205 | */ |
| 206 | static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, |
| 207 | struct xhci_ring *ring, |
| 208 | struct xhci_segment *seg, |
| 209 | gfp_t mem_flags) |
| 210 | { |
| 211 | unsigned long key; |
| 212 | int ret; |
| 213 | |
| 214 | key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); |
| 215 | /* Skip any segments that were already added. */ |
| 216 | if (radix_tree_lookup(trb_address_map, key)) |
| 217 | return 0; |
| 218 | |
| 219 | ret = radix_tree_maybe_preload(gfp_mask: mem_flags); |
| 220 | if (ret) |
| 221 | return ret; |
| 222 | ret = radix_tree_insert(trb_address_map, |
| 223 | index: key, ring); |
| 224 | radix_tree_preload_end(); |
| 225 | return ret; |
| 226 | } |
| 227 | |
| 228 | static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, |
| 229 | struct xhci_segment *seg) |
| 230 | { |
| 231 | unsigned long key; |
| 232 | |
| 233 | key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); |
| 234 | if (radix_tree_lookup(trb_address_map, key)) |
| 235 | radix_tree_delete(trb_address_map, key); |
| 236 | } |
| 237 | |
| 238 | static int xhci_update_stream_segment_mapping( |
| 239 | struct radix_tree_root *trb_address_map, |
| 240 | struct xhci_ring *ring, |
| 241 | struct xhci_segment *first_seg, |
| 242 | gfp_t mem_flags) |
| 243 | { |
| 244 | struct xhci_segment *seg; |
| 245 | struct xhci_segment *failed_seg; |
| 246 | int ret; |
| 247 | |
| 248 | if (WARN_ON_ONCE(trb_address_map == NULL)) |
| 249 | return 0; |
| 250 | |
| 251 | xhci_for_each_ring_seg(first_seg, seg) { |
| 252 | ret = xhci_insert_segment_mapping(trb_address_map, |
| 253 | ring, seg, mem_flags); |
| 254 | if (ret) |
| 255 | goto remove_streams; |
| 256 | } |
| 257 | |
| 258 | return 0; |
| 259 | |
| 260 | remove_streams: |
| 261 | failed_seg = seg; |
| 262 | xhci_for_each_ring_seg(first_seg, seg) { |
| 263 | xhci_remove_segment_mapping(trb_address_map, seg); |
| 264 | if (seg == failed_seg) |
| 265 | return ret; |
| 266 | } |
| 267 | |
| 268 | return ret; |
| 269 | } |
| 270 | |
| 271 | static void xhci_remove_stream_mapping(struct xhci_ring *ring) |
| 272 | { |
| 273 | struct xhci_segment *seg; |
| 274 | |
| 275 | if (WARN_ON_ONCE(ring->trb_address_map == NULL)) |
| 276 | return; |
| 277 | |
| 278 | xhci_for_each_ring_seg(ring->first_seg, seg) |
| 279 | xhci_remove_segment_mapping(trb_address_map: ring->trb_address_map, seg); |
| 280 | } |
| 281 | |
| 282 | static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) |
| 283 | { |
| 284 | return xhci_update_stream_segment_mapping(trb_address_map: ring->trb_address_map, ring, |
| 285 | first_seg: ring->first_seg, mem_flags); |
| 286 | } |
| 287 | |
| 288 | /* XXX: Do we need the hcd structure in all these functions? */ |
| 289 | void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) |
| 290 | { |
| 291 | if (!ring) |
| 292 | return; |
| 293 | |
| 294 | trace_xhci_ring_free(ring); |
| 295 | |
| 296 | if (ring->first_seg) { |
| 297 | if (ring->type == TYPE_STREAM) |
| 298 | xhci_remove_stream_mapping(ring); |
| 299 | xhci_ring_segments_free(xhci, ring); |
| 300 | } |
| 301 | |
| 302 | kfree(objp: ring); |
| 303 | } |
| 304 | |
| 305 | void xhci_initialize_ring_info(struct xhci_ring *ring) |
| 306 | { |
| 307 | /* The ring is empty, so the enqueue pointer == dequeue pointer */ |
| 308 | ring->enqueue = ring->first_seg->trbs; |
| 309 | ring->enq_seg = ring->first_seg; |
| 310 | ring->dequeue = ring->enqueue; |
| 311 | ring->deq_seg = ring->first_seg; |
| 312 | /* The ring is initialized to 0. The producer must write 1 to the cycle |
| 313 | * bit to handover ownership of the TRB, so PCS = 1. The consumer must |
| 314 | * compare CCS to the cycle bit to check ownership, so CCS = 1. |
| 315 | * |
| 316 | * New rings are initialized with cycle state equal to 1; if we are |
| 317 | * handling ring expansion, set the cycle state equal to the old ring. |
| 318 | */ |
| 319 | ring->cycle_state = 1; |
| 320 | |
| 321 | /* |
| 322 | * Each segment has a link TRB, and leave an extra TRB for SW |
| 323 | * accounting purpose |
| 324 | */ |
| 325 | ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; |
| 326 | } |
| 327 | EXPORT_SYMBOL_GPL(xhci_initialize_ring_info); |
| 328 | |
| 329 | /* Allocate segments and link them for a ring */ |
| 330 | static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, gfp_t flags) |
| 331 | { |
| 332 | struct xhci_segment *prev; |
| 333 | unsigned int num = 0; |
| 334 | |
| 335 | prev = xhci_segment_alloc(xhci, max_packet: ring->bounce_buf_len, num, flags); |
| 336 | if (!prev) |
| 337 | return -ENOMEM; |
| 338 | num++; |
| 339 | |
| 340 | ring->first_seg = prev; |
| 341 | while (num < ring->num_segs) { |
| 342 | struct xhci_segment *next; |
| 343 | |
| 344 | next = xhci_segment_alloc(xhci, max_packet: ring->bounce_buf_len, num, flags); |
| 345 | if (!next) |
| 346 | goto free_segments; |
| 347 | |
| 348 | prev->next = next; |
| 349 | prev = next; |
| 350 | num++; |
| 351 | } |
| 352 | ring->last_seg = prev; |
| 353 | |
| 354 | ring->last_seg->next = ring->first_seg; |
| 355 | return 0; |
| 356 | |
| 357 | free_segments: |
| 358 | ring->last_seg = prev; |
| 359 | xhci_ring_segments_free(xhci, ring); |
| 360 | return -ENOMEM; |
| 361 | } |
| 362 | |
| 363 | /* |
| 364 | * Create a new ring with zero or more segments. |
| 365 | * |
| 366 | * Link each segment together into a ring. |
| 367 | * Set the end flag and the cycle toggle bit on the last segment. |
| 368 | * See section 4.9.1 and figures 15 and 16. |
| 369 | */ |
| 370 | struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, unsigned int num_segs, |
| 371 | enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) |
| 372 | { |
| 373 | struct xhci_ring *ring; |
| 374 | int ret; |
| 375 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 376 | |
| 377 | ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev)); |
| 378 | if (!ring) |
| 379 | return NULL; |
| 380 | |
| 381 | ring->num_segs = num_segs; |
| 382 | ring->bounce_buf_len = max_packet; |
| 383 | INIT_LIST_HEAD(list: &ring->td_list); |
| 384 | ring->type = type; |
| 385 | if (num_segs == 0) |
| 386 | return ring; |
| 387 | |
| 388 | ret = xhci_alloc_segments_for_ring(xhci, ring, flags); |
| 389 | if (ret) |
| 390 | goto fail; |
| 391 | |
| 392 | xhci_initialize_ring_segments(xhci, ring); |
| 393 | xhci_initialize_ring_info(ring); |
| 394 | trace_xhci_ring_alloc(ring); |
| 395 | return ring; |
| 396 | |
| 397 | fail: |
| 398 | kfree(objp: ring); |
| 399 | return NULL; |
| 400 | } |
| 401 | |
| 402 | void xhci_free_endpoint_ring(struct xhci_hcd *xhci, |
| 403 | struct xhci_virt_device *virt_dev, |
| 404 | unsigned int ep_index) |
| 405 | { |
| 406 | xhci_ring_free(xhci, ring: virt_dev->eps[ep_index].ring); |
| 407 | virt_dev->eps[ep_index].ring = NULL; |
| 408 | } |
| 409 | |
| 410 | /* |
| 411 | * Expand an existing ring. |
| 412 | * Allocate a new ring which has same segment numbers and link the two rings. |
| 413 | */ |
| 414 | int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, |
| 415 | unsigned int num_new_segs, gfp_t flags) |
| 416 | { |
| 417 | struct xhci_ring new_ring; |
| 418 | int ret; |
| 419 | |
| 420 | if (num_new_segs == 0) |
| 421 | return 0; |
| 422 | |
| 423 | new_ring.num_segs = num_new_segs; |
| 424 | new_ring.bounce_buf_len = ring->bounce_buf_len; |
| 425 | new_ring.type = ring->type; |
| 426 | ret = xhci_alloc_segments_for_ring(xhci, ring: &new_ring, flags); |
| 427 | if (ret) |
| 428 | return -ENOMEM; |
| 429 | |
| 430 | xhci_initialize_ring_segments(xhci, ring: &new_ring); |
| 431 | |
| 432 | if (ring->type == TYPE_STREAM) { |
| 433 | ret = xhci_update_stream_segment_mapping(trb_address_map: ring->trb_address_map, ring, |
| 434 | first_seg: new_ring.first_seg, mem_flags: flags); |
| 435 | if (ret) |
| 436 | goto free_segments; |
| 437 | } |
| 438 | |
| 439 | xhci_link_rings(xhci, src: &new_ring, dst: ring); |
| 440 | trace_xhci_ring_expansion(ring); |
| 441 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_ring_expansion, |
| 442 | fmt: "ring expansion succeed, now has %d segments" , |
| 443 | ring->num_segs); |
| 444 | |
| 445 | return 0; |
| 446 | |
| 447 | free_segments: |
| 448 | xhci_ring_segments_free(xhci, ring: &new_ring); |
| 449 | return ret; |
| 450 | } |
| 451 | |
| 452 | struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, |
| 453 | int type, gfp_t flags) |
| 454 | { |
| 455 | struct xhci_container_ctx *ctx; |
| 456 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 457 | |
| 458 | if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) |
| 459 | return NULL; |
| 460 | |
| 461 | ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); |
| 462 | if (!ctx) |
| 463 | return NULL; |
| 464 | |
| 465 | ctx->type = type; |
| 466 | ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; |
| 467 | if (type == XHCI_CTX_TYPE_INPUT) |
| 468 | ctx->size += CTX_SIZE(xhci->hcc_params); |
| 469 | |
| 470 | ctx->bytes = dma_pool_zalloc(pool: xhci->device_pool, mem_flags: flags, handle: &ctx->dma); |
| 471 | if (!ctx->bytes) { |
| 472 | kfree(objp: ctx); |
| 473 | return NULL; |
| 474 | } |
| 475 | return ctx; |
| 476 | } |
| 477 | |
| 478 | void xhci_free_container_ctx(struct xhci_hcd *xhci, |
| 479 | struct xhci_container_ctx *ctx) |
| 480 | { |
| 481 | if (!ctx) |
| 482 | return; |
| 483 | dma_pool_free(pool: xhci->device_pool, vaddr: ctx->bytes, addr: ctx->dma); |
| 484 | kfree(objp: ctx); |
| 485 | } |
| 486 | |
| 487 | struct xhci_container_ctx *xhci_alloc_port_bw_ctx(struct xhci_hcd *xhci, |
| 488 | gfp_t flags) |
| 489 | { |
| 490 | struct xhci_container_ctx *ctx; |
| 491 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 492 | |
| 493 | ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); |
| 494 | if (!ctx) |
| 495 | return NULL; |
| 496 | |
| 497 | ctx->size = GET_PORT_BW_ARRAY_SIZE; |
| 498 | |
| 499 | ctx->bytes = dma_pool_zalloc(pool: xhci->port_bw_pool, mem_flags: flags, handle: &ctx->dma); |
| 500 | if (!ctx->bytes) { |
| 501 | kfree(objp: ctx); |
| 502 | return NULL; |
| 503 | } |
| 504 | return ctx; |
| 505 | } |
| 506 | |
| 507 | void xhci_free_port_bw_ctx(struct xhci_hcd *xhci, |
| 508 | struct xhci_container_ctx *ctx) |
| 509 | { |
| 510 | if (!ctx) |
| 511 | return; |
| 512 | dma_pool_free(pool: xhci->port_bw_pool, vaddr: ctx->bytes, addr: ctx->dma); |
| 513 | kfree(objp: ctx); |
| 514 | } |
| 515 | |
| 516 | struct xhci_input_control_ctx *xhci_get_input_control_ctx( |
| 517 | struct xhci_container_ctx *ctx) |
| 518 | { |
| 519 | if (ctx->type != XHCI_CTX_TYPE_INPUT) |
| 520 | return NULL; |
| 521 | |
| 522 | return (struct xhci_input_control_ctx *)ctx->bytes; |
| 523 | } |
| 524 | |
| 525 | struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, |
| 526 | struct xhci_container_ctx *ctx) |
| 527 | { |
| 528 | if (ctx->type == XHCI_CTX_TYPE_DEVICE) |
| 529 | return (struct xhci_slot_ctx *)ctx->bytes; |
| 530 | |
| 531 | return (struct xhci_slot_ctx *) |
| 532 | (ctx->bytes + CTX_SIZE(xhci->hcc_params)); |
| 533 | } |
| 534 | |
| 535 | struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, |
| 536 | struct xhci_container_ctx *ctx, |
| 537 | unsigned int ep_index) |
| 538 | { |
| 539 | /* increment ep index by offset of start of ep ctx array */ |
| 540 | ep_index++; |
| 541 | if (ctx->type == XHCI_CTX_TYPE_INPUT) |
| 542 | ep_index++; |
| 543 | |
| 544 | return (struct xhci_ep_ctx *) |
| 545 | (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); |
| 546 | } |
| 547 | EXPORT_SYMBOL_GPL(xhci_get_ep_ctx); |
| 548 | |
| 549 | /***************** Streams structures manipulation *************************/ |
| 550 | |
| 551 | static void xhci_free_stream_ctx(struct xhci_hcd *xhci, |
| 552 | unsigned int num_stream_ctxs, |
| 553 | struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) |
| 554 | { |
| 555 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 556 | size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs); |
| 557 | |
| 558 | if (size > MEDIUM_STREAM_ARRAY_SIZE) |
| 559 | dma_free_coherent(dev, size, cpu_addr: stream_ctx, dma_handle: dma); |
| 560 | else if (size > SMALL_STREAM_ARRAY_SIZE) |
| 561 | dma_pool_free(pool: xhci->medium_streams_pool, vaddr: stream_ctx, addr: dma); |
| 562 | else |
| 563 | dma_pool_free(pool: xhci->small_streams_pool, vaddr: stream_ctx, addr: dma); |
| 564 | } |
| 565 | |
| 566 | /* |
| 567 | * The stream context array for each endpoint with bulk streams enabled can |
| 568 | * vary in size, based on: |
| 569 | * - how many streams the endpoint supports, |
| 570 | * - the maximum primary stream array size the host controller supports, |
| 571 | * - and how many streams the device driver asks for. |
| 572 | * |
| 573 | * The stream context array must be a power of 2, and can be as small as |
| 574 | * 64 bytes or as large as 1MB. |
| 575 | */ |
| 576 | static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, |
| 577 | unsigned int num_stream_ctxs, dma_addr_t *dma, |
| 578 | gfp_t mem_flags) |
| 579 | { |
| 580 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 581 | size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs); |
| 582 | |
| 583 | if (size > MEDIUM_STREAM_ARRAY_SIZE) |
| 584 | return dma_alloc_coherent(dev, size, dma_handle: dma, gfp: mem_flags); |
| 585 | if (size > SMALL_STREAM_ARRAY_SIZE) |
| 586 | return dma_pool_zalloc(pool: xhci->medium_streams_pool, mem_flags, handle: dma); |
| 587 | else |
| 588 | return dma_pool_zalloc(pool: xhci->small_streams_pool, mem_flags, handle: dma); |
| 589 | } |
| 590 | |
| 591 | struct xhci_ring *xhci_dma_to_transfer_ring( |
| 592 | struct xhci_virt_ep *ep, |
| 593 | u64 address) |
| 594 | { |
| 595 | if (ep->ep_state & EP_HAS_STREAMS) |
| 596 | return radix_tree_lookup(&ep->stream_info->trb_address_map, |
| 597 | address >> TRB_SEGMENT_SHIFT); |
| 598 | return ep->ring; |
| 599 | } |
| 600 | |
| 601 | /* |
| 602 | * Change an endpoint's internal structure so it supports stream IDs. The |
| 603 | * number of requested streams includes stream 0, which cannot be used by device |
| 604 | * drivers. |
| 605 | * |
| 606 | * The number of stream contexts in the stream context array may be bigger than |
| 607 | * the number of streams the driver wants to use. This is because the number of |
| 608 | * stream context array entries must be a power of two. |
| 609 | */ |
| 610 | struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, |
| 611 | unsigned int num_stream_ctxs, |
| 612 | unsigned int num_streams, |
| 613 | unsigned int max_packet, gfp_t mem_flags) |
| 614 | { |
| 615 | struct xhci_stream_info *stream_info; |
| 616 | u32 cur_stream; |
| 617 | struct xhci_ring *cur_ring; |
| 618 | u64 addr; |
| 619 | int ret; |
| 620 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 621 | |
| 622 | xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n" , |
| 623 | num_streams, num_stream_ctxs); |
| 624 | if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { |
| 625 | xhci_dbg(xhci, "Command ring has no reserved TRBs available\n" ); |
| 626 | return NULL; |
| 627 | } |
| 628 | xhci->cmd_ring_reserved_trbs++; |
| 629 | |
| 630 | stream_info = kzalloc_node(sizeof(*stream_info), mem_flags, |
| 631 | dev_to_node(dev)); |
| 632 | if (!stream_info) |
| 633 | goto cleanup_trbs; |
| 634 | |
| 635 | stream_info->num_streams = num_streams; |
| 636 | stream_info->num_stream_ctxs = num_stream_ctxs; |
| 637 | |
| 638 | /* Initialize the array of virtual pointers to stream rings. */ |
| 639 | stream_info->stream_rings = kcalloc_node( |
| 640 | num_streams, sizeof(struct xhci_ring *), mem_flags, |
| 641 | dev_to_node(dev)); |
| 642 | if (!stream_info->stream_rings) |
| 643 | goto cleanup_info; |
| 644 | |
| 645 | /* Initialize the array of DMA addresses for stream rings for the HW. */ |
| 646 | stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, |
| 647 | num_stream_ctxs, dma: &stream_info->ctx_array_dma, |
| 648 | mem_flags); |
| 649 | if (!stream_info->stream_ctx_array) |
| 650 | goto cleanup_ring_array; |
| 651 | |
| 652 | /* Allocate everything needed to free the stream rings later */ |
| 653 | stream_info->free_streams_command = |
| 654 | xhci_alloc_command_with_ctx(xhci, allocate_completion: true, mem_flags); |
| 655 | if (!stream_info->free_streams_command) |
| 656 | goto cleanup_ctx; |
| 657 | |
| 658 | INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); |
| 659 | |
| 660 | /* Allocate rings for all the streams that the driver will use, |
| 661 | * and add their segment DMA addresses to the radix tree. |
| 662 | * Stream 0 is reserved. |
| 663 | */ |
| 664 | |
| 665 | for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { |
| 666 | stream_info->stream_rings[cur_stream] = |
| 667 | xhci_ring_alloc(xhci, num_segs: 2, type: TYPE_STREAM, max_packet, flags: mem_flags); |
| 668 | cur_ring = stream_info->stream_rings[cur_stream]; |
| 669 | if (!cur_ring) |
| 670 | goto cleanup_rings; |
| 671 | cur_ring->stream_id = cur_stream; |
| 672 | cur_ring->trb_address_map = &stream_info->trb_address_map; |
| 673 | /* Set deq ptr, cycle bit, and stream context type */ |
| 674 | addr = cur_ring->first_seg->dma | |
| 675 | SCT_FOR_CTX(SCT_PRI_TR) | |
| 676 | cur_ring->cycle_state; |
| 677 | stream_info->stream_ctx_array[cur_stream].stream_ring = |
| 678 | cpu_to_le64(addr); |
| 679 | xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n" , cur_stream, addr); |
| 680 | |
| 681 | ret = xhci_update_stream_mapping(ring: cur_ring, mem_flags); |
| 682 | |
| 683 | trace_xhci_alloc_stream_info_ctx(info: stream_info, stream_id: cur_stream); |
| 684 | if (ret) { |
| 685 | xhci_ring_free(xhci, ring: cur_ring); |
| 686 | stream_info->stream_rings[cur_stream] = NULL; |
| 687 | goto cleanup_rings; |
| 688 | } |
| 689 | } |
| 690 | /* Leave the other unused stream ring pointers in the stream context |
| 691 | * array initialized to zero. This will cause the xHC to give us an |
| 692 | * error if the device asks for a stream ID we don't have setup (if it |
| 693 | * was any other way, the host controller would assume the ring is |
| 694 | * "empty" and wait forever for data to be queued to that stream ID). |
| 695 | */ |
| 696 | |
| 697 | return stream_info; |
| 698 | |
| 699 | cleanup_rings: |
| 700 | for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { |
| 701 | cur_ring = stream_info->stream_rings[cur_stream]; |
| 702 | if (cur_ring) { |
| 703 | xhci_ring_free(xhci, ring: cur_ring); |
| 704 | stream_info->stream_rings[cur_stream] = NULL; |
| 705 | } |
| 706 | } |
| 707 | xhci_free_command(xhci, command: stream_info->free_streams_command); |
| 708 | cleanup_ctx: |
| 709 | xhci_free_stream_ctx(xhci, |
| 710 | num_stream_ctxs: stream_info->num_stream_ctxs, |
| 711 | stream_ctx: stream_info->stream_ctx_array, |
| 712 | dma: stream_info->ctx_array_dma); |
| 713 | cleanup_ring_array: |
| 714 | kfree(objp: stream_info->stream_rings); |
| 715 | cleanup_info: |
| 716 | kfree(objp: stream_info); |
| 717 | cleanup_trbs: |
| 718 | xhci->cmd_ring_reserved_trbs--; |
| 719 | return NULL; |
| 720 | } |
| 721 | /* |
| 722 | * Sets the MaxPStreams field and the Linear Stream Array field. |
| 723 | * Sets the dequeue pointer to the stream context array. |
| 724 | */ |
| 725 | void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, |
| 726 | struct xhci_ep_ctx *ep_ctx, |
| 727 | struct xhci_stream_info *stream_info) |
| 728 | { |
| 729 | u32 max_primary_streams; |
| 730 | /* MaxPStreams is the number of stream context array entries, not the |
| 731 | * number we're actually using. Must be in 2^(MaxPstreams + 1) format. |
| 732 | * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. |
| 733 | */ |
| 734 | max_primary_streams = fls(x: stream_info->num_stream_ctxs) - 2; |
| 735 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_context_change, |
| 736 | fmt: "Setting number of stream ctx array entries to %u" , |
| 737 | 1 << (max_primary_streams + 1)); |
| 738 | ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); |
| 739 | ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) |
| 740 | | EP_HAS_LSA); |
| 741 | ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); |
| 742 | } |
| 743 | |
| 744 | /* |
| 745 | * Sets the MaxPStreams field and the Linear Stream Array field to 0. |
| 746 | * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, |
| 747 | * not at the beginning of the ring). |
| 748 | */ |
| 749 | void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, |
| 750 | struct xhci_virt_ep *ep) |
| 751 | { |
| 752 | dma_addr_t addr; |
| 753 | ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); |
| 754 | addr = xhci_trb_virt_to_dma(seg: ep->ring->deq_seg, trb: ep->ring->dequeue); |
| 755 | ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); |
| 756 | } |
| 757 | |
| 758 | /* Frees all stream contexts associated with the endpoint, |
| 759 | * |
| 760 | * Caller should fix the endpoint context streams fields. |
| 761 | */ |
| 762 | void xhci_free_stream_info(struct xhci_hcd *xhci, |
| 763 | struct xhci_stream_info *stream_info) |
| 764 | { |
| 765 | int cur_stream; |
| 766 | struct xhci_ring *cur_ring; |
| 767 | |
| 768 | if (!stream_info) |
| 769 | return; |
| 770 | |
| 771 | for (cur_stream = 1; cur_stream < stream_info->num_streams; |
| 772 | cur_stream++) { |
| 773 | cur_ring = stream_info->stream_rings[cur_stream]; |
| 774 | if (cur_ring) { |
| 775 | xhci_ring_free(xhci, ring: cur_ring); |
| 776 | stream_info->stream_rings[cur_stream] = NULL; |
| 777 | } |
| 778 | } |
| 779 | xhci_free_command(xhci, command: stream_info->free_streams_command); |
| 780 | xhci->cmd_ring_reserved_trbs--; |
| 781 | if (stream_info->stream_ctx_array) |
| 782 | xhci_free_stream_ctx(xhci, |
| 783 | num_stream_ctxs: stream_info->num_stream_ctxs, |
| 784 | stream_ctx: stream_info->stream_ctx_array, |
| 785 | dma: stream_info->ctx_array_dma); |
| 786 | |
| 787 | kfree(objp: stream_info->stream_rings); |
| 788 | kfree(objp: stream_info); |
| 789 | } |
| 790 | |
| 791 | |
| 792 | /***************** Device context manipulation *************************/ |
| 793 | |
| 794 | static void xhci_free_tt_info(struct xhci_hcd *xhci, |
| 795 | struct xhci_virt_device *virt_dev, |
| 796 | int slot_id) |
| 797 | { |
| 798 | struct list_head *tt_list_head; |
| 799 | struct xhci_tt_bw_info *tt_info, *next; |
| 800 | bool slot_found = false; |
| 801 | |
| 802 | /* If the device never made it past the Set Address stage, |
| 803 | * it may not have the root hub port pointer set correctly. |
| 804 | */ |
| 805 | if (!virt_dev->rhub_port) { |
| 806 | xhci_dbg(xhci, "Bad rhub port.\n" ); |
| 807 | return; |
| 808 | } |
| 809 | |
| 810 | tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts); |
| 811 | list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { |
| 812 | /* Multi-TT hubs will have more than one entry */ |
| 813 | if (tt_info->slot_id == slot_id) { |
| 814 | slot_found = true; |
| 815 | list_del(entry: &tt_info->tt_list); |
| 816 | kfree(objp: tt_info); |
| 817 | } else if (slot_found) { |
| 818 | break; |
| 819 | } |
| 820 | } |
| 821 | } |
| 822 | |
| 823 | int xhci_alloc_tt_info(struct xhci_hcd *xhci, |
| 824 | struct xhci_virt_device *virt_dev, |
| 825 | struct usb_device *hdev, |
| 826 | struct usb_tt *tt, gfp_t mem_flags) |
| 827 | { |
| 828 | struct xhci_tt_bw_info *tt_info; |
| 829 | unsigned int num_ports; |
| 830 | int i, j; |
| 831 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 832 | |
| 833 | if (!tt->multi) |
| 834 | num_ports = 1; |
| 835 | else |
| 836 | num_ports = hdev->maxchild; |
| 837 | |
| 838 | for (i = 0; i < num_ports; i++, tt_info++) { |
| 839 | struct xhci_interval_bw_table *bw_table; |
| 840 | |
| 841 | tt_info = kzalloc_node(sizeof(*tt_info), mem_flags, |
| 842 | dev_to_node(dev)); |
| 843 | if (!tt_info) |
| 844 | goto free_tts; |
| 845 | INIT_LIST_HEAD(list: &tt_info->tt_list); |
| 846 | list_add(new: &tt_info->tt_list, |
| 847 | head: &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts); |
| 848 | tt_info->slot_id = virt_dev->udev->slot_id; |
| 849 | if (tt->multi) |
| 850 | tt_info->ttport = i+1; |
| 851 | bw_table = &tt_info->bw_table; |
| 852 | for (j = 0; j < XHCI_MAX_INTERVAL; j++) |
| 853 | INIT_LIST_HEAD(list: &bw_table->interval_bw[j].endpoints); |
| 854 | } |
| 855 | return 0; |
| 856 | |
| 857 | free_tts: |
| 858 | xhci_free_tt_info(xhci, virt_dev, slot_id: virt_dev->udev->slot_id); |
| 859 | return -ENOMEM; |
| 860 | } |
| 861 | |
| 862 | |
| 863 | /* All the xhci_tds in the ring's TD list should be freed at this point. |
| 864 | * Should be called with xhci->lock held if there is any chance the TT lists |
| 865 | * will be manipulated by the configure endpoint, allocate device, or update |
| 866 | * hub functions while this function is removing the TT entries from the list. |
| 867 | */ |
| 868 | void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) |
| 869 | { |
| 870 | struct xhci_virt_device *dev; |
| 871 | int i; |
| 872 | int old_active_eps = 0; |
| 873 | |
| 874 | /* Slot ID 0 is reserved */ |
| 875 | if (slot_id == 0 || !xhci->devs[slot_id]) |
| 876 | return; |
| 877 | |
| 878 | dev = xhci->devs[slot_id]; |
| 879 | |
| 880 | xhci->dcbaa->dev_context_ptrs[slot_id] = 0; |
| 881 | if (!dev) |
| 882 | return; |
| 883 | |
| 884 | trace_xhci_free_virt_device(vdev: dev); |
| 885 | |
| 886 | if (dev->tt_info) |
| 887 | old_active_eps = dev->tt_info->active_eps; |
| 888 | |
| 889 | for (i = 0; i < 31; i++) { |
| 890 | if (dev->eps[i].ring) |
| 891 | xhci_ring_free(xhci, ring: dev->eps[i].ring); |
| 892 | if (dev->eps[i].stream_info) |
| 893 | xhci_free_stream_info(xhci, |
| 894 | stream_info: dev->eps[i].stream_info); |
| 895 | /* |
| 896 | * Endpoints are normally deleted from the bandwidth list when |
| 897 | * endpoints are dropped, before device is freed. |
| 898 | * If host is dying or being removed then endpoints aren't |
| 899 | * dropped cleanly, so delete the endpoint from list here. |
| 900 | * Only applicable for hosts with software bandwidth checking. |
| 901 | */ |
| 902 | |
| 903 | if (!list_empty(head: &dev->eps[i].bw_endpoint_list)) { |
| 904 | list_del_init(entry: &dev->eps[i].bw_endpoint_list); |
| 905 | xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n" , |
| 906 | slot_id, i); |
| 907 | } |
| 908 | } |
| 909 | /* If this is a hub, free the TT(s) from the TT list */ |
| 910 | xhci_free_tt_info(xhci, virt_dev: dev, slot_id); |
| 911 | /* If necessary, update the number of active TTs on this root port */ |
| 912 | xhci_update_tt_active_eps(xhci, virt_dev: dev, old_active_eps); |
| 913 | |
| 914 | if (dev->in_ctx) |
| 915 | xhci_free_container_ctx(xhci, ctx: dev->in_ctx); |
| 916 | if (dev->out_ctx) |
| 917 | xhci_free_container_ctx(xhci, ctx: dev->out_ctx); |
| 918 | |
| 919 | if (dev->udev && dev->udev->slot_id) |
| 920 | dev->udev->slot_id = 0; |
| 921 | if (dev->rhub_port && dev->rhub_port->slot_id == slot_id) |
| 922 | dev->rhub_port->slot_id = 0; |
| 923 | kfree(objp: xhci->devs[slot_id]); |
| 924 | xhci->devs[slot_id] = NULL; |
| 925 | } |
| 926 | |
| 927 | /* |
| 928 | * Free a virt_device structure. |
| 929 | * If the virt_device added a tt_info (a hub) and has children pointing to |
| 930 | * that tt_info, then free the child first. Recursive. |
| 931 | * We can't rely on udev at this point to find child-parent relationships. |
| 932 | */ |
| 933 | static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) |
| 934 | { |
| 935 | struct xhci_virt_device *vdev; |
| 936 | struct list_head *tt_list_head; |
| 937 | struct xhci_tt_bw_info *tt_info, *next; |
| 938 | int i; |
| 939 | |
| 940 | vdev = xhci->devs[slot_id]; |
| 941 | if (!vdev) |
| 942 | return; |
| 943 | |
| 944 | if (!vdev->rhub_port) { |
| 945 | xhci_dbg(xhci, "Bad rhub port.\n" ); |
| 946 | goto out; |
| 947 | } |
| 948 | |
| 949 | tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts); |
| 950 | list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { |
| 951 | /* is this a hub device that added a tt_info to the tts list */ |
| 952 | if (tt_info->slot_id == slot_id) { |
| 953 | /* are any devices using this tt_info? */ |
| 954 | for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { |
| 955 | vdev = xhci->devs[i]; |
| 956 | if (vdev && (vdev->tt_info == tt_info)) |
| 957 | xhci_free_virt_devices_depth_first( |
| 958 | xhci, slot_id: i); |
| 959 | } |
| 960 | } |
| 961 | } |
| 962 | out: |
| 963 | /* we are now at a leaf device */ |
| 964 | xhci_debugfs_remove_slot(xhci, slot_id); |
| 965 | xhci_free_virt_device(xhci, slot_id); |
| 966 | } |
| 967 | |
| 968 | int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, |
| 969 | struct usb_device *udev, gfp_t flags) |
| 970 | { |
| 971 | struct xhci_virt_device *dev; |
| 972 | int i; |
| 973 | |
| 974 | /* Slot ID 0 is reserved */ |
| 975 | if (slot_id == 0 || xhci->devs[slot_id]) { |
| 976 | xhci_warn(xhci, "Bad Slot ID %d\n" , slot_id); |
| 977 | return 0; |
| 978 | } |
| 979 | |
| 980 | dev = kzalloc(sizeof(*dev), flags); |
| 981 | if (!dev) |
| 982 | return 0; |
| 983 | |
| 984 | dev->slot_id = slot_id; |
| 985 | |
| 986 | /* Allocate the (output) device context that will be used in the HC. */ |
| 987 | dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); |
| 988 | if (!dev->out_ctx) |
| 989 | goto fail; |
| 990 | |
| 991 | xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n" , slot_id, &dev->out_ctx->dma); |
| 992 | |
| 993 | /* Allocate the (input) device context for address device command */ |
| 994 | dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); |
| 995 | if (!dev->in_ctx) |
| 996 | goto fail; |
| 997 | |
| 998 | xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n" , slot_id, &dev->in_ctx->dma); |
| 999 | |
| 1000 | /* Initialize the cancellation and bandwidth list for each ep */ |
| 1001 | for (i = 0; i < 31; i++) { |
| 1002 | dev->eps[i].ep_index = i; |
| 1003 | dev->eps[i].vdev = dev; |
| 1004 | dev->eps[i].xhci = xhci; |
| 1005 | INIT_LIST_HEAD(list: &dev->eps[i].cancelled_td_list); |
| 1006 | INIT_LIST_HEAD(list: &dev->eps[i].bw_endpoint_list); |
| 1007 | } |
| 1008 | |
| 1009 | /* Allocate endpoint 0 ring */ |
| 1010 | dev->eps[0].ring = xhci_ring_alloc(xhci, num_segs: 2, type: TYPE_CTRL, max_packet: 0, flags); |
| 1011 | if (!dev->eps[0].ring) |
| 1012 | goto fail; |
| 1013 | |
| 1014 | dev->udev = udev; |
| 1015 | |
| 1016 | /* Point to output device context in dcbaa. */ |
| 1017 | xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); |
| 1018 | xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n" , |
| 1019 | slot_id, |
| 1020 | &xhci->dcbaa->dev_context_ptrs[slot_id], |
| 1021 | le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); |
| 1022 | |
| 1023 | trace_xhci_alloc_virt_device(vdev: dev); |
| 1024 | |
| 1025 | xhci->devs[slot_id] = dev; |
| 1026 | |
| 1027 | return 1; |
| 1028 | fail: |
| 1029 | |
| 1030 | if (dev->in_ctx) |
| 1031 | xhci_free_container_ctx(xhci, ctx: dev->in_ctx); |
| 1032 | if (dev->out_ctx) |
| 1033 | xhci_free_container_ctx(xhci, ctx: dev->out_ctx); |
| 1034 | kfree(objp: dev); |
| 1035 | |
| 1036 | return 0; |
| 1037 | } |
| 1038 | |
| 1039 | void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, |
| 1040 | struct usb_device *udev) |
| 1041 | { |
| 1042 | struct xhci_virt_device *virt_dev; |
| 1043 | struct xhci_ep_ctx *ep0_ctx; |
| 1044 | struct xhci_ring *ep_ring; |
| 1045 | |
| 1046 | virt_dev = xhci->devs[udev->slot_id]; |
| 1047 | ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); |
| 1048 | ep_ring = virt_dev->eps[0].ring; |
| 1049 | /* |
| 1050 | * FIXME we don't keep track of the dequeue pointer very well after a |
| 1051 | * Set TR dequeue pointer, so we're setting the dequeue pointer of the |
| 1052 | * host to our enqueue pointer. This should only be called after a |
| 1053 | * configured device has reset, so all control transfers should have |
| 1054 | * been completed or cancelled before the reset. |
| 1055 | */ |
| 1056 | ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, |
| 1057 | ep_ring->enqueue) |
| 1058 | | ep_ring->cycle_state); |
| 1059 | } |
| 1060 | |
| 1061 | /* |
| 1062 | * The xHCI roothub may have ports of differing speeds in any order in the port |
| 1063 | * status registers. |
| 1064 | * |
| 1065 | * The xHCI hardware wants to know the roothub port that the USB device |
| 1066 | * is attached to (or the roothub port its ancestor hub is attached to). All we |
| 1067 | * know is the index of that port under either the USB 2.0 or the USB 3.0 |
| 1068 | * roothub, but that doesn't give us the real index into the HW port status |
| 1069 | * registers. |
| 1070 | */ |
| 1071 | static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev) |
| 1072 | { |
| 1073 | struct usb_device *top_dev; |
| 1074 | struct xhci_hub *rhub; |
| 1075 | struct usb_hcd *hcd; |
| 1076 | |
| 1077 | if (udev->speed >= USB_SPEED_SUPER) |
| 1078 | hcd = xhci_get_usb3_hcd(xhci); |
| 1079 | else |
| 1080 | hcd = xhci->main_hcd; |
| 1081 | |
| 1082 | for (top_dev = udev; top_dev->parent && top_dev->parent->parent; |
| 1083 | top_dev = top_dev->parent) |
| 1084 | /* Found device below root hub */; |
| 1085 | |
| 1086 | rhub = xhci_get_rhub(hcd); |
| 1087 | return rhub->ports[top_dev->portnum - 1]; |
| 1088 | } |
| 1089 | |
| 1090 | /* Setup an xHCI virtual device for a Set Address command */ |
| 1091 | int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) |
| 1092 | { |
| 1093 | struct xhci_virt_device *dev; |
| 1094 | struct xhci_ep_ctx *ep0_ctx; |
| 1095 | struct xhci_slot_ctx *slot_ctx; |
| 1096 | u32 max_packets; |
| 1097 | |
| 1098 | dev = xhci->devs[udev->slot_id]; |
| 1099 | /* Slot ID 0 is reserved */ |
| 1100 | if (udev->slot_id == 0 || !dev) { |
| 1101 | xhci_warn(xhci, "Slot ID %d is not assigned to this device\n" , |
| 1102 | udev->slot_id); |
| 1103 | return -EINVAL; |
| 1104 | } |
| 1105 | ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); |
| 1106 | slot_ctx = xhci_get_slot_ctx(xhci, ctx: dev->in_ctx); |
| 1107 | |
| 1108 | /* 3) Only the control endpoint is valid - one endpoint context */ |
| 1109 | slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); |
| 1110 | switch (udev->speed) { |
| 1111 | case USB_SPEED_SUPER_PLUS: |
| 1112 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); |
| 1113 | max_packets = MAX_PACKET(512); |
| 1114 | break; |
| 1115 | case USB_SPEED_SUPER: |
| 1116 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); |
| 1117 | max_packets = MAX_PACKET(512); |
| 1118 | break; |
| 1119 | case USB_SPEED_HIGH: |
| 1120 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); |
| 1121 | max_packets = MAX_PACKET(64); |
| 1122 | break; |
| 1123 | /* USB core guesses at a 64-byte max packet first for FS devices */ |
| 1124 | case USB_SPEED_FULL: |
| 1125 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); |
| 1126 | max_packets = MAX_PACKET(64); |
| 1127 | break; |
| 1128 | case USB_SPEED_LOW: |
| 1129 | slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); |
| 1130 | max_packets = MAX_PACKET(8); |
| 1131 | break; |
| 1132 | default: |
| 1133 | /* Speed was set earlier, this shouldn't happen. */ |
| 1134 | return -EINVAL; |
| 1135 | } |
| 1136 | /* Find the root hub port this device is under */ |
| 1137 | dev->rhub_port = xhci_find_rhub_port(xhci, udev); |
| 1138 | if (!dev->rhub_port) |
| 1139 | return -EINVAL; |
| 1140 | /* Slot ID is set to the device directly below the root hub */ |
| 1141 | if (!udev->parent->parent) |
| 1142 | dev->rhub_port->slot_id = udev->slot_id; |
| 1143 | slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1)); |
| 1144 | xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n" , |
| 1145 | udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum); |
| 1146 | |
| 1147 | /* Find the right bandwidth table that this device will be a part of. |
| 1148 | * If this is a full speed device attached directly to a root port (or a |
| 1149 | * decendent of one), it counts as a primary bandwidth domain, not a |
| 1150 | * secondary bandwidth domain under a TT. An xhci_tt_info structure |
| 1151 | * will never be created for the HS root hub. |
| 1152 | */ |
| 1153 | if (!udev->tt || !udev->tt->hub->parent) { |
| 1154 | dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table; |
| 1155 | } else { |
| 1156 | struct xhci_root_port_bw_info *rh_bw; |
| 1157 | struct xhci_tt_bw_info *tt_bw; |
| 1158 | |
| 1159 | rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum]; |
| 1160 | /* Find the right TT. */ |
| 1161 | list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { |
| 1162 | if (tt_bw->slot_id != udev->tt->hub->slot_id) |
| 1163 | continue; |
| 1164 | |
| 1165 | if (!dev->udev->tt->multi || |
| 1166 | (udev->tt->multi && |
| 1167 | tt_bw->ttport == dev->udev->ttport)) { |
| 1168 | dev->bw_table = &tt_bw->bw_table; |
| 1169 | dev->tt_info = tt_bw; |
| 1170 | break; |
| 1171 | } |
| 1172 | } |
| 1173 | if (!dev->tt_info) |
| 1174 | xhci_warn(xhci, "WARN: Didn't find a matching TT\n" ); |
| 1175 | } |
| 1176 | |
| 1177 | /* Is this a LS/FS device under an external HS hub? */ |
| 1178 | if (udev->tt && udev->tt->hub->parent) { |
| 1179 | slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | |
| 1180 | (udev->ttport << 8)); |
| 1181 | if (udev->tt->multi) |
| 1182 | slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); |
| 1183 | } |
| 1184 | xhci_dbg(xhci, "udev->tt = %p\n" , udev->tt); |
| 1185 | xhci_dbg(xhci, "udev->ttport = 0x%x\n" , udev->ttport); |
| 1186 | |
| 1187 | /* Step 4 - ring already allocated */ |
| 1188 | /* Step 5 */ |
| 1189 | ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); |
| 1190 | |
| 1191 | /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ |
| 1192 | ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | |
| 1193 | max_packets); |
| 1194 | |
| 1195 | ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | |
| 1196 | dev->eps[0].ring->cycle_state); |
| 1197 | |
| 1198 | trace_xhci_setup_addressable_virt_device(vdev: dev); |
| 1199 | |
| 1200 | /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ |
| 1201 | |
| 1202 | return 0; |
| 1203 | } |
| 1204 | |
| 1205 | /* |
| 1206 | * Convert interval expressed as 2^(bInterval - 1) == interval into |
| 1207 | * straight exponent value 2^n == interval. |
| 1208 | * |
| 1209 | */ |
| 1210 | static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, |
| 1211 | struct usb_host_endpoint *ep) |
| 1212 | { |
| 1213 | unsigned int interval; |
| 1214 | |
| 1215 | interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; |
| 1216 | if (interval != ep->desc.bInterval - 1) |
| 1217 | dev_warn(&udev->dev, |
| 1218 | "ep %#x - rounding interval to %d %sframes\n" , |
| 1219 | ep->desc.bEndpointAddress, |
| 1220 | 1 << interval, |
| 1221 | udev->speed == USB_SPEED_FULL ? "" : "micro" ); |
| 1222 | |
| 1223 | if (udev->speed == USB_SPEED_FULL) { |
| 1224 | /* |
| 1225 | * Full speed isoc endpoints specify interval in frames, |
| 1226 | * not microframes. We are using microframes everywhere, |
| 1227 | * so adjust accordingly. |
| 1228 | */ |
| 1229 | interval += 3; /* 1 frame = 2^3 uframes */ |
| 1230 | } |
| 1231 | |
| 1232 | return interval; |
| 1233 | } |
| 1234 | |
| 1235 | /* |
| 1236 | * Convert bInterval expressed in microframes (in 1-255 range) to exponent of |
| 1237 | * microframes, rounded down to nearest power of 2. |
| 1238 | */ |
| 1239 | static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, |
| 1240 | struct usb_host_endpoint *ep, unsigned int desc_interval, |
| 1241 | unsigned int min_exponent, unsigned int max_exponent) |
| 1242 | { |
| 1243 | unsigned int interval; |
| 1244 | |
| 1245 | interval = fls(x: desc_interval) - 1; |
| 1246 | interval = clamp_val(interval, min_exponent, max_exponent); |
| 1247 | if ((1 << interval) != desc_interval) |
| 1248 | dev_dbg(&udev->dev, |
| 1249 | "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n" , |
| 1250 | ep->desc.bEndpointAddress, |
| 1251 | 1 << interval, |
| 1252 | desc_interval); |
| 1253 | |
| 1254 | return interval; |
| 1255 | } |
| 1256 | |
| 1257 | static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, |
| 1258 | struct usb_host_endpoint *ep) |
| 1259 | { |
| 1260 | if (ep->desc.bInterval == 0) |
| 1261 | return 0; |
| 1262 | return xhci_microframes_to_exponent(udev, ep, |
| 1263 | desc_interval: ep->desc.bInterval, min_exponent: 0, max_exponent: 15); |
| 1264 | } |
| 1265 | |
| 1266 | |
| 1267 | static unsigned int xhci_parse_frame_interval(struct usb_device *udev, |
| 1268 | struct usb_host_endpoint *ep) |
| 1269 | { |
| 1270 | return xhci_microframes_to_exponent(udev, ep, |
| 1271 | desc_interval: ep->desc.bInterval * 8, min_exponent: 3, max_exponent: 10); |
| 1272 | } |
| 1273 | |
| 1274 | /* Return the polling or NAK interval. |
| 1275 | * |
| 1276 | * The polling interval is expressed in "microframes". If xHCI's Interval field |
| 1277 | * is set to N, it will service the endpoint every 2^(Interval)*125us. |
| 1278 | * |
| 1279 | * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval |
| 1280 | * is set to 0. |
| 1281 | */ |
| 1282 | static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, |
| 1283 | struct usb_host_endpoint *ep) |
| 1284 | { |
| 1285 | unsigned int interval = 0; |
| 1286 | |
| 1287 | switch (udev->speed) { |
| 1288 | case USB_SPEED_HIGH: |
| 1289 | /* Max NAK rate */ |
| 1290 | if (usb_endpoint_xfer_control(epd: &ep->desc) || |
| 1291 | usb_endpoint_xfer_bulk(epd: &ep->desc)) { |
| 1292 | interval = xhci_parse_microframe_interval(udev, ep); |
| 1293 | break; |
| 1294 | } |
| 1295 | fallthrough; /* SS and HS isoc/int have same decoding */ |
| 1296 | |
| 1297 | case USB_SPEED_SUPER_PLUS: |
| 1298 | case USB_SPEED_SUPER: |
| 1299 | if (usb_endpoint_xfer_int(epd: &ep->desc) || |
| 1300 | usb_endpoint_xfer_isoc(epd: &ep->desc)) { |
| 1301 | interval = xhci_parse_exponent_interval(udev, ep); |
| 1302 | } |
| 1303 | break; |
| 1304 | |
| 1305 | case USB_SPEED_FULL: |
| 1306 | if (usb_endpoint_xfer_isoc(epd: &ep->desc)) { |
| 1307 | interval = xhci_parse_exponent_interval(udev, ep); |
| 1308 | break; |
| 1309 | } |
| 1310 | /* |
| 1311 | * Fall through for interrupt endpoint interval decoding |
| 1312 | * since it uses the same rules as low speed interrupt |
| 1313 | * endpoints. |
| 1314 | */ |
| 1315 | fallthrough; |
| 1316 | |
| 1317 | case USB_SPEED_LOW: |
| 1318 | if (usb_endpoint_xfer_int(epd: &ep->desc) || |
| 1319 | usb_endpoint_xfer_isoc(epd: &ep->desc)) { |
| 1320 | |
| 1321 | interval = xhci_parse_frame_interval(udev, ep); |
| 1322 | } |
| 1323 | break; |
| 1324 | |
| 1325 | default: |
| 1326 | BUG(); |
| 1327 | } |
| 1328 | return interval; |
| 1329 | } |
| 1330 | |
| 1331 | /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. |
| 1332 | * High speed endpoint descriptors can define "the number of additional |
| 1333 | * transaction opportunities per microframe", but that goes in the Max Burst |
| 1334 | * endpoint context field. |
| 1335 | */ |
| 1336 | static u32 xhci_get_endpoint_mult(struct usb_device *udev, |
| 1337 | struct usb_host_endpoint *ep) |
| 1338 | { |
| 1339 | if (udev->speed < USB_SPEED_SUPER || |
| 1340 | !usb_endpoint_xfer_isoc(epd: &ep->desc)) |
| 1341 | return 0; |
| 1342 | return ep->ss_ep_comp.bmAttributes; |
| 1343 | } |
| 1344 | |
| 1345 | static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, |
| 1346 | struct usb_host_endpoint *ep) |
| 1347 | { |
| 1348 | /* Super speed and Plus have max burst in ep companion desc */ |
| 1349 | if (udev->speed >= USB_SPEED_SUPER) |
| 1350 | return ep->ss_ep_comp.bMaxBurst; |
| 1351 | |
| 1352 | if (udev->speed == USB_SPEED_HIGH && |
| 1353 | (usb_endpoint_xfer_isoc(epd: &ep->desc) || |
| 1354 | usb_endpoint_xfer_int(epd: &ep->desc))) |
| 1355 | return usb_endpoint_maxp_mult(epd: &ep->desc) - 1; |
| 1356 | |
| 1357 | return 0; |
| 1358 | } |
| 1359 | |
| 1360 | static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) |
| 1361 | { |
| 1362 | int in; |
| 1363 | |
| 1364 | in = usb_endpoint_dir_in(epd: &ep->desc); |
| 1365 | |
| 1366 | switch (usb_endpoint_type(epd: &ep->desc)) { |
| 1367 | case USB_ENDPOINT_XFER_CONTROL: |
| 1368 | return CTRL_EP; |
| 1369 | case USB_ENDPOINT_XFER_BULK: |
| 1370 | return in ? BULK_IN_EP : BULK_OUT_EP; |
| 1371 | case USB_ENDPOINT_XFER_ISOC: |
| 1372 | return in ? ISOC_IN_EP : ISOC_OUT_EP; |
| 1373 | case USB_ENDPOINT_XFER_INT: |
| 1374 | return in ? INT_IN_EP : INT_OUT_EP; |
| 1375 | } |
| 1376 | return 0; |
| 1377 | } |
| 1378 | |
| 1379 | /* Return the maximum endpoint service interval time (ESIT) payload. |
| 1380 | * Basically, this is the maxpacket size, multiplied by the burst size |
| 1381 | * and mult size. |
| 1382 | */ |
| 1383 | static u32 xhci_get_max_esit_payload(struct usb_device *udev, |
| 1384 | struct usb_host_endpoint *ep) |
| 1385 | { |
| 1386 | int max_burst; |
| 1387 | int max_packet; |
| 1388 | |
| 1389 | /* Only applies for interrupt or isochronous endpoints */ |
| 1390 | if (usb_endpoint_xfer_control(epd: &ep->desc) || |
| 1391 | usb_endpoint_xfer_bulk(epd: &ep->desc)) |
| 1392 | return 0; |
| 1393 | |
| 1394 | /* SuperSpeedPlus Isoc ep sending over 48k per esit */ |
| 1395 | if ((udev->speed >= USB_SPEED_SUPER_PLUS) && |
| 1396 | USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) |
| 1397 | return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); |
| 1398 | |
| 1399 | /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ |
| 1400 | if (udev->speed >= USB_SPEED_SUPER) |
| 1401 | return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); |
| 1402 | |
| 1403 | max_packet = usb_endpoint_maxp(epd: &ep->desc); |
| 1404 | max_burst = usb_endpoint_maxp_mult(epd: &ep->desc); |
| 1405 | /* A 0 in max burst means 1 transfer per ESIT */ |
| 1406 | return max_packet * max_burst; |
| 1407 | } |
| 1408 | |
| 1409 | /* Set up an endpoint with one ring segment. Do not allocate stream rings. |
| 1410 | * Drivers will have to call usb_alloc_streams() to do that. |
| 1411 | */ |
| 1412 | int xhci_endpoint_init(struct xhci_hcd *xhci, |
| 1413 | struct xhci_virt_device *virt_dev, |
| 1414 | struct usb_device *udev, |
| 1415 | struct usb_host_endpoint *ep, |
| 1416 | gfp_t mem_flags) |
| 1417 | { |
| 1418 | unsigned int ep_index; |
| 1419 | struct xhci_ep_ctx *ep_ctx; |
| 1420 | struct xhci_ring *ep_ring; |
| 1421 | unsigned int max_packet; |
| 1422 | enum xhci_ring_type ring_type; |
| 1423 | u32 max_esit_payload; |
| 1424 | u32 endpoint_type; |
| 1425 | unsigned int max_burst; |
| 1426 | unsigned int interval; |
| 1427 | unsigned int mult; |
| 1428 | unsigned int avg_trb_len; |
| 1429 | unsigned int err_count = 0; |
| 1430 | |
| 1431 | ep_index = xhci_get_endpoint_index(desc: &ep->desc); |
| 1432 | ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); |
| 1433 | |
| 1434 | endpoint_type = xhci_get_endpoint_type(ep); |
| 1435 | if (!endpoint_type) |
| 1436 | return -EINVAL; |
| 1437 | |
| 1438 | ring_type = usb_endpoint_type(epd: &ep->desc); |
| 1439 | |
| 1440 | /* |
| 1441 | * Get values to fill the endpoint context, mostly from ep descriptor. |
| 1442 | * The average TRB buffer lengt for bulk endpoints is unclear as we |
| 1443 | * have no clue on scatter gather list entry size. For Isoc and Int, |
| 1444 | * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. |
| 1445 | */ |
| 1446 | max_esit_payload = xhci_get_max_esit_payload(udev, ep); |
| 1447 | interval = xhci_get_endpoint_interval(udev, ep); |
| 1448 | |
| 1449 | /* Periodic endpoint bInterval limit quirk */ |
| 1450 | if (usb_endpoint_xfer_int(epd: &ep->desc) || |
| 1451 | usb_endpoint_xfer_isoc(epd: &ep->desc)) { |
| 1452 | if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && |
| 1453 | udev->speed >= USB_SPEED_HIGH && |
| 1454 | interval >= 7) { |
| 1455 | interval = 6; |
| 1456 | } |
| 1457 | } |
| 1458 | |
| 1459 | mult = xhci_get_endpoint_mult(udev, ep); |
| 1460 | max_packet = usb_endpoint_maxp(epd: &ep->desc); |
| 1461 | max_burst = xhci_get_endpoint_max_burst(udev, ep); |
| 1462 | avg_trb_len = max_esit_payload; |
| 1463 | |
| 1464 | /* FIXME dig Mult and streams info out of ep companion desc */ |
| 1465 | |
| 1466 | /* Allow 3 retries for everything but isoc, set CErr = 3 */ |
| 1467 | if (!usb_endpoint_xfer_isoc(epd: &ep->desc)) |
| 1468 | err_count = 3; |
| 1469 | /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */ |
| 1470 | if (usb_endpoint_xfer_bulk(epd: &ep->desc)) { |
| 1471 | if (udev->speed == USB_SPEED_HIGH) |
| 1472 | max_packet = 512; |
| 1473 | if (udev->speed == USB_SPEED_FULL) { |
| 1474 | max_packet = rounddown_pow_of_two(max_packet); |
| 1475 | max_packet = clamp_val(max_packet, 8, 64); |
| 1476 | } |
| 1477 | } |
| 1478 | /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ |
| 1479 | if (usb_endpoint_xfer_control(epd: &ep->desc) && xhci->hci_version >= 0x100) |
| 1480 | avg_trb_len = 8; |
| 1481 | /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ |
| 1482 | if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) |
| 1483 | mult = 0; |
| 1484 | |
| 1485 | /* Set up the endpoint ring */ |
| 1486 | virt_dev->eps[ep_index].new_ring = |
| 1487 | xhci_ring_alloc(xhci, num_segs: 2, type: ring_type, max_packet, flags: mem_flags); |
| 1488 | if (!virt_dev->eps[ep_index].new_ring) |
| 1489 | return -ENOMEM; |
| 1490 | |
| 1491 | virt_dev->eps[ep_index].skip = false; |
| 1492 | ep_ring = virt_dev->eps[ep_index].new_ring; |
| 1493 | |
| 1494 | /* Fill the endpoint context */ |
| 1495 | ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | |
| 1496 | EP_INTERVAL(interval) | |
| 1497 | EP_MULT(mult)); |
| 1498 | ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | |
| 1499 | MAX_PACKET(max_packet) | |
| 1500 | MAX_BURST(max_burst) | |
| 1501 | ERROR_COUNT(err_count)); |
| 1502 | ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | |
| 1503 | ep_ring->cycle_state); |
| 1504 | |
| 1505 | ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | |
| 1506 | EP_AVG_TRB_LENGTH(avg_trb_len)); |
| 1507 | |
| 1508 | return 0; |
| 1509 | } |
| 1510 | |
| 1511 | void xhci_endpoint_zero(struct xhci_hcd *xhci, |
| 1512 | struct xhci_virt_device *virt_dev, |
| 1513 | struct usb_host_endpoint *ep) |
| 1514 | { |
| 1515 | unsigned int ep_index; |
| 1516 | struct xhci_ep_ctx *ep_ctx; |
| 1517 | |
| 1518 | ep_index = xhci_get_endpoint_index(desc: &ep->desc); |
| 1519 | ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); |
| 1520 | |
| 1521 | ep_ctx->ep_info = 0; |
| 1522 | ep_ctx->ep_info2 = 0; |
| 1523 | ep_ctx->deq = 0; |
| 1524 | ep_ctx->tx_info = 0; |
| 1525 | /* Don't free the endpoint ring until the set interface or configuration |
| 1526 | * request succeeds. |
| 1527 | */ |
| 1528 | } |
| 1529 | |
| 1530 | void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) |
| 1531 | { |
| 1532 | bw_info->ep_interval = 0; |
| 1533 | bw_info->mult = 0; |
| 1534 | bw_info->num_packets = 0; |
| 1535 | bw_info->max_packet_size = 0; |
| 1536 | bw_info->type = 0; |
| 1537 | bw_info->max_esit_payload = 0; |
| 1538 | } |
| 1539 | |
| 1540 | void xhci_update_bw_info(struct xhci_hcd *xhci, |
| 1541 | struct xhci_container_ctx *in_ctx, |
| 1542 | struct xhci_input_control_ctx *ctrl_ctx, |
| 1543 | struct xhci_virt_device *virt_dev) |
| 1544 | { |
| 1545 | struct xhci_bw_info *bw_info; |
| 1546 | struct xhci_ep_ctx *ep_ctx; |
| 1547 | unsigned int ep_type; |
| 1548 | int i; |
| 1549 | |
| 1550 | for (i = 1; i < 31; i++) { |
| 1551 | bw_info = &virt_dev->eps[i].bw_info; |
| 1552 | |
| 1553 | /* We can't tell what endpoint type is being dropped, but |
| 1554 | * unconditionally clearing the bandwidth info for non-periodic |
| 1555 | * endpoints should be harmless because the info will never be |
| 1556 | * set in the first place. |
| 1557 | */ |
| 1558 | if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { |
| 1559 | /* Dropped endpoint */ |
| 1560 | xhci_clear_endpoint_bw_info(bw_info); |
| 1561 | continue; |
| 1562 | } |
| 1563 | |
| 1564 | if (EP_IS_ADDED(ctrl_ctx, i)) { |
| 1565 | ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); |
| 1566 | ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); |
| 1567 | |
| 1568 | /* Ignore non-periodic endpoints */ |
| 1569 | if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && |
| 1570 | ep_type != ISOC_IN_EP && |
| 1571 | ep_type != INT_IN_EP) |
| 1572 | continue; |
| 1573 | |
| 1574 | /* Added or changed endpoint */ |
| 1575 | bw_info->ep_interval = CTX_TO_EP_INTERVAL( |
| 1576 | le32_to_cpu(ep_ctx->ep_info)); |
| 1577 | /* Number of packets and mult are zero-based in the |
| 1578 | * input context, but we want one-based for the |
| 1579 | * interval table. |
| 1580 | */ |
| 1581 | bw_info->mult = CTX_TO_EP_MULT( |
| 1582 | le32_to_cpu(ep_ctx->ep_info)) + 1; |
| 1583 | bw_info->num_packets = CTX_TO_MAX_BURST( |
| 1584 | le32_to_cpu(ep_ctx->ep_info2)) + 1; |
| 1585 | bw_info->max_packet_size = MAX_PACKET_DECODED( |
| 1586 | le32_to_cpu(ep_ctx->ep_info2)); |
| 1587 | bw_info->type = ep_type; |
| 1588 | bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( |
| 1589 | le32_to_cpu(ep_ctx->tx_info)); |
| 1590 | } |
| 1591 | } |
| 1592 | } |
| 1593 | |
| 1594 | /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. |
| 1595 | * Useful when you want to change one particular aspect of the endpoint and then |
| 1596 | * issue a configure endpoint command. |
| 1597 | */ |
| 1598 | void xhci_endpoint_copy(struct xhci_hcd *xhci, |
| 1599 | struct xhci_container_ctx *in_ctx, |
| 1600 | struct xhci_container_ctx *out_ctx, |
| 1601 | unsigned int ep_index) |
| 1602 | { |
| 1603 | struct xhci_ep_ctx *out_ep_ctx; |
| 1604 | struct xhci_ep_ctx *in_ep_ctx; |
| 1605 | |
| 1606 | out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); |
| 1607 | in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); |
| 1608 | |
| 1609 | in_ep_ctx->ep_info = out_ep_ctx->ep_info; |
| 1610 | in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; |
| 1611 | in_ep_ctx->deq = out_ep_ctx->deq; |
| 1612 | in_ep_ctx->tx_info = out_ep_ctx->tx_info; |
| 1613 | if (xhci->quirks & XHCI_MTK_HOST) { |
| 1614 | in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0]; |
| 1615 | in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1]; |
| 1616 | } |
| 1617 | } |
| 1618 | |
| 1619 | /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. |
| 1620 | * Useful when you want to change one particular aspect of the endpoint and then |
| 1621 | * issue a configure endpoint command. Only the context entries field matters, |
| 1622 | * but we'll copy the whole thing anyway. |
| 1623 | */ |
| 1624 | void xhci_slot_copy(struct xhci_hcd *xhci, |
| 1625 | struct xhci_container_ctx *in_ctx, |
| 1626 | struct xhci_container_ctx *out_ctx) |
| 1627 | { |
| 1628 | struct xhci_slot_ctx *in_slot_ctx; |
| 1629 | struct xhci_slot_ctx *out_slot_ctx; |
| 1630 | |
| 1631 | in_slot_ctx = xhci_get_slot_ctx(xhci, ctx: in_ctx); |
| 1632 | out_slot_ctx = xhci_get_slot_ctx(xhci, ctx: out_ctx); |
| 1633 | |
| 1634 | in_slot_ctx->dev_info = out_slot_ctx->dev_info; |
| 1635 | in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; |
| 1636 | in_slot_ctx->tt_info = out_slot_ctx->tt_info; |
| 1637 | in_slot_ctx->dev_state = out_slot_ctx->dev_state; |
| 1638 | } |
| 1639 | |
| 1640 | /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ |
| 1641 | static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) |
| 1642 | { |
| 1643 | int i; |
| 1644 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 1645 | int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); |
| 1646 | |
| 1647 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, |
| 1648 | fmt: "Allocating %d scratchpad buffers" , num_sp); |
| 1649 | |
| 1650 | if (!num_sp) |
| 1651 | return 0; |
| 1652 | |
| 1653 | xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags, |
| 1654 | dev_to_node(dev)); |
| 1655 | if (!xhci->scratchpad) |
| 1656 | goto fail_sp; |
| 1657 | |
| 1658 | xhci->scratchpad->sp_array = dma_alloc_coherent(dev, |
| 1659 | array_size(sizeof(u64), num_sp), |
| 1660 | dma_handle: &xhci->scratchpad->sp_dma, gfp: flags); |
| 1661 | if (!xhci->scratchpad->sp_array) |
| 1662 | goto fail_sp2; |
| 1663 | |
| 1664 | xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *), |
| 1665 | flags, dev_to_node(dev)); |
| 1666 | if (!xhci->scratchpad->sp_buffers) |
| 1667 | goto fail_sp3; |
| 1668 | |
| 1669 | xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); |
| 1670 | for (i = 0; i < num_sp; i++) { |
| 1671 | dma_addr_t dma; |
| 1672 | void *buf = dma_alloc_coherent(dev, size: xhci->page_size, dma_handle: &dma, |
| 1673 | gfp: flags); |
| 1674 | if (!buf) |
| 1675 | goto fail_sp4; |
| 1676 | |
| 1677 | xhci->scratchpad->sp_array[i] = dma; |
| 1678 | xhci->scratchpad->sp_buffers[i] = buf; |
| 1679 | } |
| 1680 | |
| 1681 | return 0; |
| 1682 | |
| 1683 | fail_sp4: |
| 1684 | while (i--) |
| 1685 | dma_free_coherent(dev, size: xhci->page_size, |
| 1686 | cpu_addr: xhci->scratchpad->sp_buffers[i], |
| 1687 | dma_handle: xhci->scratchpad->sp_array[i]); |
| 1688 | |
| 1689 | kfree(objp: xhci->scratchpad->sp_buffers); |
| 1690 | |
| 1691 | fail_sp3: |
| 1692 | dma_free_coherent(dev, array_size(sizeof(u64), num_sp), |
| 1693 | cpu_addr: xhci->scratchpad->sp_array, |
| 1694 | dma_handle: xhci->scratchpad->sp_dma); |
| 1695 | |
| 1696 | fail_sp2: |
| 1697 | kfree(objp: xhci->scratchpad); |
| 1698 | xhci->scratchpad = NULL; |
| 1699 | |
| 1700 | fail_sp: |
| 1701 | return -ENOMEM; |
| 1702 | } |
| 1703 | |
| 1704 | static void scratchpad_free(struct xhci_hcd *xhci) |
| 1705 | { |
| 1706 | int num_sp; |
| 1707 | int i; |
| 1708 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 1709 | |
| 1710 | if (!xhci->scratchpad) |
| 1711 | return; |
| 1712 | |
| 1713 | num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); |
| 1714 | |
| 1715 | for (i = 0; i < num_sp; i++) { |
| 1716 | dma_free_coherent(dev, size: xhci->page_size, |
| 1717 | cpu_addr: xhci->scratchpad->sp_buffers[i], |
| 1718 | dma_handle: xhci->scratchpad->sp_array[i]); |
| 1719 | } |
| 1720 | kfree(objp: xhci->scratchpad->sp_buffers); |
| 1721 | dma_free_coherent(dev, array_size(sizeof(u64), num_sp), |
| 1722 | cpu_addr: xhci->scratchpad->sp_array, |
| 1723 | dma_handle: xhci->scratchpad->sp_dma); |
| 1724 | kfree(objp: xhci->scratchpad); |
| 1725 | xhci->scratchpad = NULL; |
| 1726 | } |
| 1727 | |
| 1728 | struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, |
| 1729 | bool allocate_completion, gfp_t mem_flags) |
| 1730 | { |
| 1731 | struct xhci_command *command; |
| 1732 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 1733 | |
| 1734 | command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev)); |
| 1735 | if (!command) |
| 1736 | return NULL; |
| 1737 | |
| 1738 | if (allocate_completion) { |
| 1739 | command->completion = |
| 1740 | kzalloc_node(sizeof(struct completion), mem_flags, |
| 1741 | dev_to_node(dev)); |
| 1742 | if (!command->completion) { |
| 1743 | kfree(objp: command); |
| 1744 | return NULL; |
| 1745 | } |
| 1746 | init_completion(x: command->completion); |
| 1747 | } |
| 1748 | |
| 1749 | command->status = 0; |
| 1750 | /* set default timeout to 5000 ms */ |
| 1751 | command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT; |
| 1752 | INIT_LIST_HEAD(list: &command->cmd_list); |
| 1753 | return command; |
| 1754 | } |
| 1755 | |
| 1756 | struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci, |
| 1757 | bool allocate_completion, gfp_t mem_flags) |
| 1758 | { |
| 1759 | struct xhci_command *command; |
| 1760 | |
| 1761 | command = xhci_alloc_command(xhci, allocate_completion, mem_flags); |
| 1762 | if (!command) |
| 1763 | return NULL; |
| 1764 | |
| 1765 | command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, |
| 1766 | flags: mem_flags); |
| 1767 | if (!command->in_ctx) { |
| 1768 | kfree(objp: command->completion); |
| 1769 | kfree(objp: command); |
| 1770 | return NULL; |
| 1771 | } |
| 1772 | return command; |
| 1773 | } |
| 1774 | |
| 1775 | void xhci_urb_free_priv(struct urb_priv *urb_priv) |
| 1776 | { |
| 1777 | kfree(objp: urb_priv); |
| 1778 | } |
| 1779 | |
| 1780 | void xhci_free_command(struct xhci_hcd *xhci, |
| 1781 | struct xhci_command *command) |
| 1782 | { |
| 1783 | xhci_free_container_ctx(xhci, |
| 1784 | ctx: command->in_ctx); |
| 1785 | kfree(objp: command->completion); |
| 1786 | kfree(objp: command); |
| 1787 | } |
| 1788 | |
| 1789 | static int xhci_alloc_erst(struct xhci_hcd *xhci, |
| 1790 | struct xhci_ring *evt_ring, |
| 1791 | struct xhci_erst *erst, |
| 1792 | gfp_t flags) |
| 1793 | { |
| 1794 | size_t size; |
| 1795 | unsigned int val; |
| 1796 | struct xhci_segment *seg; |
| 1797 | struct xhci_erst_entry *entry; |
| 1798 | |
| 1799 | size = array_size(sizeof(struct xhci_erst_entry), evt_ring->num_segs); |
| 1800 | erst->entries = dma_alloc_coherent(dev: xhci_to_hcd(xhci)->self.sysdev, |
| 1801 | size, dma_handle: &erst->erst_dma_addr, gfp: flags); |
| 1802 | if (!erst->entries) |
| 1803 | return -ENOMEM; |
| 1804 | |
| 1805 | erst->num_entries = evt_ring->num_segs; |
| 1806 | |
| 1807 | seg = evt_ring->first_seg; |
| 1808 | for (val = 0; val < evt_ring->num_segs; val++) { |
| 1809 | entry = &erst->entries[val]; |
| 1810 | entry->seg_addr = cpu_to_le64(seg->dma); |
| 1811 | entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); |
| 1812 | entry->rsvd = 0; |
| 1813 | seg = seg->next; |
| 1814 | } |
| 1815 | |
| 1816 | return 0; |
| 1817 | } |
| 1818 | |
| 1819 | static void |
| 1820 | xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) |
| 1821 | { |
| 1822 | u32 tmp; |
| 1823 | |
| 1824 | if (!ir) |
| 1825 | return; |
| 1826 | |
| 1827 | /* |
| 1828 | * Clean out interrupter registers except ERSTBA. Clearing either the |
| 1829 | * low or high 32 bits of ERSTBA immediately causes the controller to |
| 1830 | * dereference the partially cleared 64 bit address, causing IOMMU error. |
| 1831 | */ |
| 1832 | if (ir->ir_set) { |
| 1833 | tmp = readl(addr: &ir->ir_set->erst_size); |
| 1834 | tmp &= ~ERST_SIZE_MASK; |
| 1835 | writel(val: tmp, addr: &ir->ir_set->erst_size); |
| 1836 | |
| 1837 | xhci_update_erst_dequeue(xhci, ir, clear_ehb: true); |
| 1838 | } |
| 1839 | } |
| 1840 | |
| 1841 | static void |
| 1842 | xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) |
| 1843 | { |
| 1844 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 1845 | size_t erst_size; |
| 1846 | |
| 1847 | if (!ir) |
| 1848 | return; |
| 1849 | |
| 1850 | erst_size = array_size(sizeof(struct xhci_erst_entry), ir->erst.num_entries); |
| 1851 | if (ir->erst.entries) |
| 1852 | dma_free_coherent(dev, size: erst_size, |
| 1853 | cpu_addr: ir->erst.entries, |
| 1854 | dma_handle: ir->erst.erst_dma_addr); |
| 1855 | ir->erst.entries = NULL; |
| 1856 | |
| 1857 | /* free interrupter event ring */ |
| 1858 | if (ir->event_ring) |
| 1859 | xhci_ring_free(xhci, ring: ir->event_ring); |
| 1860 | |
| 1861 | ir->event_ring = NULL; |
| 1862 | |
| 1863 | kfree(objp: ir); |
| 1864 | } |
| 1865 | |
| 1866 | void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir) |
| 1867 | { |
| 1868 | struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| 1869 | unsigned int intr_num; |
| 1870 | |
| 1871 | spin_lock_irq(lock: &xhci->lock); |
| 1872 | |
| 1873 | /* interrupter 0 is primary interrupter, don't touch it */ |
| 1874 | if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) { |
| 1875 | xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n" ); |
| 1876 | spin_unlock_irq(lock: &xhci->lock); |
| 1877 | return; |
| 1878 | } |
| 1879 | |
| 1880 | /* |
| 1881 | * Cleanup secondary interrupter to ensure there are no pending events. |
| 1882 | * This also updates event ring dequeue pointer back to the start. |
| 1883 | */ |
| 1884 | xhci_skip_sec_intr_events(xhci, ring: ir->event_ring, ir); |
| 1885 | intr_num = ir->intr_num; |
| 1886 | |
| 1887 | xhci_remove_interrupter(xhci, ir); |
| 1888 | xhci->interrupters[intr_num] = NULL; |
| 1889 | |
| 1890 | spin_unlock_irq(lock: &xhci->lock); |
| 1891 | |
| 1892 | xhci_free_interrupter(xhci, ir); |
| 1893 | } |
| 1894 | EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter); |
| 1895 | |
| 1896 | void xhci_mem_cleanup(struct xhci_hcd *xhci) |
| 1897 | { |
| 1898 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 1899 | int i, j, num_ports; |
| 1900 | |
| 1901 | cancel_delayed_work_sync(dwork: &xhci->cmd_timer); |
| 1902 | |
| 1903 | for (i = 0; xhci->interrupters && i < xhci->max_interrupters; i++) { |
| 1904 | if (xhci->interrupters[i]) { |
| 1905 | xhci_remove_interrupter(xhci, ir: xhci->interrupters[i]); |
| 1906 | xhci_free_interrupter(xhci, ir: xhci->interrupters[i]); |
| 1907 | xhci->interrupters[i] = NULL; |
| 1908 | } |
| 1909 | } |
| 1910 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Freed interrupters" ); |
| 1911 | |
| 1912 | if (xhci->cmd_ring) |
| 1913 | xhci_ring_free(xhci, ring: xhci->cmd_ring); |
| 1914 | xhci->cmd_ring = NULL; |
| 1915 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Freed command ring" ); |
| 1916 | xhci_cleanup_command_queue(xhci); |
| 1917 | |
| 1918 | num_ports = HCS_MAX_PORTS(xhci->hcs_params1); |
| 1919 | for (i = 0; i < num_ports && xhci->rh_bw; i++) { |
| 1920 | struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; |
| 1921 | for (j = 0; j < XHCI_MAX_INTERVAL; j++) { |
| 1922 | struct list_head *ep = &bwt->interval_bw[j].endpoints; |
| 1923 | while (!list_empty(head: ep)) |
| 1924 | list_del_init(entry: ep->next); |
| 1925 | } |
| 1926 | } |
| 1927 | |
| 1928 | for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) |
| 1929 | xhci_free_virt_devices_depth_first(xhci, slot_id: i); |
| 1930 | |
| 1931 | dma_pool_destroy(pool: xhci->segment_pool); |
| 1932 | xhci->segment_pool = NULL; |
| 1933 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Freed segment pool" ); |
| 1934 | |
| 1935 | dma_pool_destroy(pool: xhci->device_pool); |
| 1936 | xhci->device_pool = NULL; |
| 1937 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Freed device context pool" ); |
| 1938 | |
| 1939 | dma_pool_destroy(pool: xhci->small_streams_pool); |
| 1940 | xhci->small_streams_pool = NULL; |
| 1941 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, |
| 1942 | fmt: "Freed small stream array pool" ); |
| 1943 | |
| 1944 | dma_pool_destroy(pool: xhci->port_bw_pool); |
| 1945 | xhci->port_bw_pool = NULL; |
| 1946 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, |
| 1947 | fmt: "Freed xhci port bw array pool" ); |
| 1948 | |
| 1949 | dma_pool_destroy(pool: xhci->medium_streams_pool); |
| 1950 | xhci->medium_streams_pool = NULL; |
| 1951 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, |
| 1952 | fmt: "Freed medium stream array pool" ); |
| 1953 | |
| 1954 | if (xhci->dcbaa) |
| 1955 | dma_free_coherent(dev, size: sizeof(*xhci->dcbaa), |
| 1956 | cpu_addr: xhci->dcbaa, dma_handle: xhci->dcbaa->dma); |
| 1957 | xhci->dcbaa = NULL; |
| 1958 | |
| 1959 | scratchpad_free(xhci); |
| 1960 | |
| 1961 | if (!xhci->rh_bw) |
| 1962 | goto no_bw; |
| 1963 | |
| 1964 | for (i = 0; i < num_ports; i++) { |
| 1965 | struct xhci_tt_bw_info *tt, *n; |
| 1966 | list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { |
| 1967 | list_del(entry: &tt->tt_list); |
| 1968 | kfree(objp: tt); |
| 1969 | } |
| 1970 | } |
| 1971 | |
| 1972 | no_bw: |
| 1973 | xhci->cmd_ring_reserved_trbs = 0; |
| 1974 | xhci->usb2_rhub.num_ports = 0; |
| 1975 | xhci->usb3_rhub.num_ports = 0; |
| 1976 | xhci->num_active_eps = 0; |
| 1977 | kfree(objp: xhci->usb2_rhub.ports); |
| 1978 | kfree(objp: xhci->usb3_rhub.ports); |
| 1979 | kfree(objp: xhci->hw_ports); |
| 1980 | kfree(objp: xhci->rh_bw); |
| 1981 | for (i = 0; i < xhci->num_port_caps; i++) |
| 1982 | kfree(objp: xhci->port_caps[i].psi); |
| 1983 | kfree(objp: xhci->port_caps); |
| 1984 | kfree(objp: xhci->interrupters); |
| 1985 | xhci->num_port_caps = 0; |
| 1986 | |
| 1987 | xhci->usb2_rhub.ports = NULL; |
| 1988 | xhci->usb3_rhub.ports = NULL; |
| 1989 | xhci->hw_ports = NULL; |
| 1990 | xhci->rh_bw = NULL; |
| 1991 | xhci->port_caps = NULL; |
| 1992 | xhci->interrupters = NULL; |
| 1993 | |
| 1994 | xhci->page_size = 0; |
| 1995 | xhci->usb2_rhub.bus_state.bus_suspended = 0; |
| 1996 | xhci->usb3_rhub.bus_state.bus_suspended = 0; |
| 1997 | } |
| 1998 | |
| 1999 | static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir) |
| 2000 | { |
| 2001 | dma_addr_t deq; |
| 2002 | |
| 2003 | deq = xhci_trb_virt_to_dma(seg: ir->event_ring->deq_seg, |
| 2004 | trb: ir->event_ring->dequeue); |
| 2005 | if (!deq) |
| 2006 | xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n" ); |
| 2007 | /* Update HC event ring dequeue pointer */ |
| 2008 | /* Don't clear the EHB bit (which is RW1C) because |
| 2009 | * there might be more events to service. |
| 2010 | */ |
| 2011 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, |
| 2012 | fmt: "// Write event ring dequeue pointer, preserving EHB bit" ); |
| 2013 | xhci_write_64(xhci, val: deq & ERST_PTR_MASK, regs: &ir->ir_set->erst_dequeue); |
| 2014 | } |
| 2015 | |
| 2016 | static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, |
| 2017 | __le32 __iomem *addr, int max_caps) |
| 2018 | { |
| 2019 | u32 temp, port_offset, port_count; |
| 2020 | int i; |
| 2021 | u8 major_revision, minor_revision, tmp_minor_revision; |
| 2022 | struct xhci_hub *rhub; |
| 2023 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 2024 | struct xhci_port_cap *port_cap; |
| 2025 | |
| 2026 | temp = readl(addr); |
| 2027 | major_revision = XHCI_EXT_PORT_MAJOR(temp); |
| 2028 | minor_revision = XHCI_EXT_PORT_MINOR(temp); |
| 2029 | |
| 2030 | if (major_revision == 0x03) { |
| 2031 | rhub = &xhci->usb3_rhub; |
| 2032 | /* |
| 2033 | * Some hosts incorrectly use sub-minor version for minor |
| 2034 | * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01 |
| 2035 | * for bcdUSB 0x310). Since there is no USB release with sub |
| 2036 | * minor version 0x301 to 0x309, we can assume that they are |
| 2037 | * incorrect and fix it here. |
| 2038 | */ |
| 2039 | if (minor_revision > 0x00 && minor_revision < 0x10) |
| 2040 | minor_revision <<= 4; |
| 2041 | /* |
| 2042 | * Some zhaoxin's xHCI controller that follow usb3.1 spec |
| 2043 | * but only support Gen1. |
| 2044 | */ |
| 2045 | if (xhci->quirks & XHCI_ZHAOXIN_HOST) { |
| 2046 | tmp_minor_revision = minor_revision; |
| 2047 | minor_revision = 0; |
| 2048 | } |
| 2049 | |
| 2050 | } else if (major_revision <= 0x02) { |
| 2051 | rhub = &xhci->usb2_rhub; |
| 2052 | } else { |
| 2053 | xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n" , |
| 2054 | addr, major_revision); |
| 2055 | /* Ignoring port protocol we can't understand. FIXME */ |
| 2056 | return; |
| 2057 | } |
| 2058 | |
| 2059 | /* Port offset and count in the third dword, see section 7.2 */ |
| 2060 | temp = readl(addr: addr + 2); |
| 2061 | port_offset = XHCI_EXT_PORT_OFF(temp); |
| 2062 | port_count = XHCI_EXT_PORT_COUNT(temp); |
| 2063 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, |
| 2064 | fmt: "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x" , |
| 2065 | addr, port_offset, port_count, major_revision); |
| 2066 | /* Port count includes the current port offset */ |
| 2067 | if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) |
| 2068 | /* WTF? "Valid values are ‘1’ to MaxPorts" */ |
| 2069 | return; |
| 2070 | |
| 2071 | port_cap = &xhci->port_caps[xhci->num_port_caps++]; |
| 2072 | if (xhci->num_port_caps > max_caps) |
| 2073 | return; |
| 2074 | |
| 2075 | port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp); |
| 2076 | |
| 2077 | if (port_cap->psi_count) { |
| 2078 | port_cap->psi = kcalloc_node(port_cap->psi_count, |
| 2079 | sizeof(*port_cap->psi), |
| 2080 | GFP_KERNEL, dev_to_node(dev)); |
| 2081 | if (!port_cap->psi) |
| 2082 | port_cap->psi_count = 0; |
| 2083 | |
| 2084 | port_cap->psi_uid_count++; |
| 2085 | for (i = 0; i < port_cap->psi_count; i++) { |
| 2086 | port_cap->psi[i] = readl(addr: addr + 4 + i); |
| 2087 | |
| 2088 | /* count unique ID values, two consecutive entries can |
| 2089 | * have the same ID if link is assymetric |
| 2090 | */ |
| 2091 | if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) != |
| 2092 | XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1]))) |
| 2093 | port_cap->psi_uid_count++; |
| 2094 | |
| 2095 | if (xhci->quirks & XHCI_ZHAOXIN_HOST && |
| 2096 | major_revision == 0x03 && |
| 2097 | XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5) |
| 2098 | minor_revision = tmp_minor_revision; |
| 2099 | |
| 2100 | xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n" , |
| 2101 | XHCI_EXT_PORT_PSIV(port_cap->psi[i]), |
| 2102 | XHCI_EXT_PORT_PSIE(port_cap->psi[i]), |
| 2103 | XHCI_EXT_PORT_PLT(port_cap->psi[i]), |
| 2104 | XHCI_EXT_PORT_PFD(port_cap->psi[i]), |
| 2105 | XHCI_EXT_PORT_LP(port_cap->psi[i]), |
| 2106 | XHCI_EXT_PORT_PSIM(port_cap->psi[i])); |
| 2107 | } |
| 2108 | } |
| 2109 | |
| 2110 | rhub->maj_rev = major_revision; |
| 2111 | |
| 2112 | if (rhub->min_rev < minor_revision) |
| 2113 | rhub->min_rev = minor_revision; |
| 2114 | |
| 2115 | port_cap->maj_rev = major_revision; |
| 2116 | port_cap->min_rev = minor_revision; |
| 2117 | port_cap->protocol_caps = temp; |
| 2118 | |
| 2119 | if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) && |
| 2120 | (temp & XHCI_HLC)) { |
| 2121 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, |
| 2122 | fmt: "xHCI 1.0: support USB2 hardware lpm" ); |
| 2123 | xhci->hw_lpm_support = 1; |
| 2124 | } |
| 2125 | |
| 2126 | port_offset--; |
| 2127 | for (i = port_offset; i < (port_offset + port_count); i++) { |
| 2128 | struct xhci_port *hw_port = &xhci->hw_ports[i]; |
| 2129 | /* Duplicate entry. Ignore the port if the revisions differ. */ |
| 2130 | if (hw_port->rhub) { |
| 2131 | xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n" , addr, i); |
| 2132 | xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n" , |
| 2133 | hw_port->rhub->maj_rev, major_revision); |
| 2134 | /* Only adjust the roothub port counts if we haven't |
| 2135 | * found a similar duplicate. |
| 2136 | */ |
| 2137 | if (hw_port->rhub != rhub && |
| 2138 | hw_port->hcd_portnum != DUPLICATE_ENTRY) { |
| 2139 | hw_port->rhub->num_ports--; |
| 2140 | hw_port->hcd_portnum = DUPLICATE_ENTRY; |
| 2141 | } |
| 2142 | continue; |
| 2143 | } |
| 2144 | hw_port->rhub = rhub; |
| 2145 | hw_port->port_cap = port_cap; |
| 2146 | rhub->num_ports++; |
| 2147 | } |
| 2148 | /* FIXME: Should we disable ports not in the Extended Capabilities? */ |
| 2149 | } |
| 2150 | |
| 2151 | static void xhci_create_rhub_port_array(struct xhci_hcd *xhci, |
| 2152 | struct xhci_hub *rhub, gfp_t flags) |
| 2153 | { |
| 2154 | int port_index = 0; |
| 2155 | int i; |
| 2156 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 2157 | |
| 2158 | if (!rhub->num_ports) |
| 2159 | return; |
| 2160 | rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports), |
| 2161 | flags, dev_to_node(dev)); |
| 2162 | if (!rhub->ports) |
| 2163 | return; |
| 2164 | |
| 2165 | for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { |
| 2166 | if (xhci->hw_ports[i].rhub != rhub || |
| 2167 | xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY) |
| 2168 | continue; |
| 2169 | xhci->hw_ports[i].hcd_portnum = port_index; |
| 2170 | rhub->ports[port_index] = &xhci->hw_ports[i]; |
| 2171 | port_index++; |
| 2172 | if (port_index == rhub->num_ports) |
| 2173 | break; |
| 2174 | } |
| 2175 | } |
| 2176 | |
| 2177 | /* |
| 2178 | * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that |
| 2179 | * specify what speeds each port is supposed to be. We can't count on the port |
| 2180 | * speed bits in the PORTSC register being correct until a device is connected, |
| 2181 | * but we need to set up the two fake roothubs with the correct number of USB |
| 2182 | * 3.0 and USB 2.0 ports at host controller initialization time. |
| 2183 | */ |
| 2184 | static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) |
| 2185 | { |
| 2186 | void __iomem *base; |
| 2187 | u32 offset; |
| 2188 | unsigned int num_ports; |
| 2189 | int i, j; |
| 2190 | int cap_count = 0; |
| 2191 | u32 cap_start; |
| 2192 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 2193 | |
| 2194 | num_ports = HCS_MAX_PORTS(xhci->hcs_params1); |
| 2195 | xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports), |
| 2196 | flags, dev_to_node(dev)); |
| 2197 | if (!xhci->hw_ports) |
| 2198 | return -ENOMEM; |
| 2199 | |
| 2200 | for (i = 0; i < num_ports; i++) { |
| 2201 | xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base + |
| 2202 | NUM_PORT_REGS * i; |
| 2203 | xhci->hw_ports[i].hw_portnum = i; |
| 2204 | |
| 2205 | init_completion(x: &xhci->hw_ports[i].rexit_done); |
| 2206 | init_completion(x: &xhci->hw_ports[i].u3exit_done); |
| 2207 | } |
| 2208 | |
| 2209 | xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags, |
| 2210 | dev_to_node(dev)); |
| 2211 | if (!xhci->rh_bw) |
| 2212 | return -ENOMEM; |
| 2213 | for (i = 0; i < num_ports; i++) { |
| 2214 | struct xhci_interval_bw_table *bw_table; |
| 2215 | |
| 2216 | INIT_LIST_HEAD(list: &xhci->rh_bw[i].tts); |
| 2217 | bw_table = &xhci->rh_bw[i].bw_table; |
| 2218 | for (j = 0; j < XHCI_MAX_INTERVAL; j++) |
| 2219 | INIT_LIST_HEAD(list: &bw_table->interval_bw[j].endpoints); |
| 2220 | } |
| 2221 | base = &xhci->cap_regs->hc_capbase; |
| 2222 | |
| 2223 | cap_start = xhci_find_next_ext_cap(base, start: 0, XHCI_EXT_CAPS_PROTOCOL); |
| 2224 | if (!cap_start) { |
| 2225 | xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n" ); |
| 2226 | return -ENODEV; |
| 2227 | } |
| 2228 | |
| 2229 | offset = cap_start; |
| 2230 | /* count extended protocol capability entries for later caching */ |
| 2231 | while (offset) { |
| 2232 | cap_count++; |
| 2233 | offset = xhci_find_next_ext_cap(base, start: offset, |
| 2234 | XHCI_EXT_CAPS_PROTOCOL); |
| 2235 | } |
| 2236 | |
| 2237 | xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps), |
| 2238 | flags, dev_to_node(dev)); |
| 2239 | if (!xhci->port_caps) |
| 2240 | return -ENOMEM; |
| 2241 | |
| 2242 | offset = cap_start; |
| 2243 | |
| 2244 | while (offset) { |
| 2245 | xhci_add_in_port(xhci, num_ports, addr: base + offset, max_caps: cap_count); |
| 2246 | if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == |
| 2247 | num_ports) |
| 2248 | break; |
| 2249 | offset = xhci_find_next_ext_cap(base, start: offset, |
| 2250 | XHCI_EXT_CAPS_PROTOCOL); |
| 2251 | } |
| 2252 | if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) { |
| 2253 | xhci_warn(xhci, "No ports on the roothubs?\n" ); |
| 2254 | return -ENODEV; |
| 2255 | } |
| 2256 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, |
| 2257 | fmt: "Found %u USB 2.0 ports and %u USB 3.0 ports." , |
| 2258 | xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports); |
| 2259 | |
| 2260 | /* Place limits on the number of roothub ports so that the hub |
| 2261 | * descriptors aren't longer than the USB core will allocate. |
| 2262 | */ |
| 2263 | if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) { |
| 2264 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, |
| 2265 | fmt: "Limiting USB 3.0 roothub ports to %u." , |
| 2266 | USB_SS_MAXPORTS); |
| 2267 | xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS; |
| 2268 | } |
| 2269 | if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) { |
| 2270 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, |
| 2271 | fmt: "Limiting USB 2.0 roothub ports to %u." , |
| 2272 | USB_MAXCHILDREN); |
| 2273 | xhci->usb2_rhub.num_ports = USB_MAXCHILDREN; |
| 2274 | } |
| 2275 | |
| 2276 | if (!xhci->usb2_rhub.num_ports) |
| 2277 | xhci_info(xhci, "USB2 root hub has no ports\n" ); |
| 2278 | |
| 2279 | if (!xhci->usb3_rhub.num_ports) |
| 2280 | xhci_info(xhci, "USB3 root hub has no ports\n" ); |
| 2281 | |
| 2282 | xhci_create_rhub_port_array(xhci, rhub: &xhci->usb2_rhub, flags); |
| 2283 | xhci_create_rhub_port_array(xhci, rhub: &xhci->usb3_rhub, flags); |
| 2284 | |
| 2285 | return 0; |
| 2286 | } |
| 2287 | |
| 2288 | static struct xhci_interrupter * |
| 2289 | xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags) |
| 2290 | { |
| 2291 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 2292 | struct xhci_interrupter *ir; |
| 2293 | unsigned int max_segs; |
| 2294 | int ret; |
| 2295 | |
| 2296 | if (!segs) |
| 2297 | segs = ERST_DEFAULT_SEGS; |
| 2298 | |
| 2299 | max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2)); |
| 2300 | segs = min(segs, max_segs); |
| 2301 | |
| 2302 | ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev)); |
| 2303 | if (!ir) |
| 2304 | return NULL; |
| 2305 | |
| 2306 | ir->event_ring = xhci_ring_alloc(xhci, num_segs: segs, type: TYPE_EVENT, max_packet: 0, flags); |
| 2307 | if (!ir->event_ring) { |
| 2308 | xhci_warn(xhci, "Failed to allocate interrupter event ring\n" ); |
| 2309 | kfree(objp: ir); |
| 2310 | return NULL; |
| 2311 | } |
| 2312 | |
| 2313 | ret = xhci_alloc_erst(xhci, evt_ring: ir->event_ring, erst: &ir->erst, flags); |
| 2314 | if (ret) { |
| 2315 | xhci_warn(xhci, "Failed to allocate interrupter erst\n" ); |
| 2316 | xhci_ring_free(xhci, ring: ir->event_ring); |
| 2317 | kfree(objp: ir); |
| 2318 | return NULL; |
| 2319 | } |
| 2320 | |
| 2321 | return ir; |
| 2322 | } |
| 2323 | |
| 2324 | void xhci_add_interrupter(struct xhci_hcd *xhci, unsigned int intr_num) |
| 2325 | { |
| 2326 | struct xhci_interrupter *ir; |
| 2327 | u64 erst_base; |
| 2328 | u32 erst_size; |
| 2329 | |
| 2330 | ir = xhci->interrupters[intr_num]; |
| 2331 | ir->intr_num = intr_num; |
| 2332 | ir->ir_set = &xhci->run_regs->ir_set[intr_num]; |
| 2333 | |
| 2334 | /* set ERST count with the number of entries in the segment table */ |
| 2335 | erst_size = readl(addr: &ir->ir_set->erst_size); |
| 2336 | erst_size &= ~ERST_SIZE_MASK; |
| 2337 | erst_size |= ir->event_ring->num_segs; |
| 2338 | writel(val: erst_size, addr: &ir->ir_set->erst_size); |
| 2339 | |
| 2340 | erst_base = xhci_read_64(xhci, regs: &ir->ir_set->erst_base); |
| 2341 | erst_base &= ~ERST_BASE_ADDRESS_MASK; |
| 2342 | erst_base |= ir->erst.erst_dma_addr & ERST_BASE_ADDRESS_MASK; |
| 2343 | if (xhci->quirks & XHCI_WRITE_64_HI_LO) |
| 2344 | hi_lo_writeq(val: erst_base, addr: &ir->ir_set->erst_base); |
| 2345 | else |
| 2346 | xhci_write_64(xhci, val: erst_base, regs: &ir->ir_set->erst_base); |
| 2347 | |
| 2348 | /* Set the event ring dequeue address of this interrupter */ |
| 2349 | xhci_set_hc_event_deq(xhci, ir); |
| 2350 | } |
| 2351 | |
| 2352 | struct xhci_interrupter * |
| 2353 | xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs, |
| 2354 | u32 imod_interval, unsigned int intr_num) |
| 2355 | { |
| 2356 | struct xhci_hcd *xhci = hcd_to_xhci(hcd); |
| 2357 | struct xhci_interrupter *ir; |
| 2358 | unsigned int i; |
| 2359 | int err = -ENOSPC; |
| 2360 | |
| 2361 | if (!xhci->interrupters || xhci->max_interrupters <= 1 || |
| 2362 | intr_num >= xhci->max_interrupters) |
| 2363 | return NULL; |
| 2364 | |
| 2365 | ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL); |
| 2366 | if (!ir) |
| 2367 | return NULL; |
| 2368 | |
| 2369 | spin_lock_irq(lock: &xhci->lock); |
| 2370 | if (!intr_num) { |
| 2371 | /* Find available secondary interrupter, interrupter 0 is reserved for primary */ |
| 2372 | for (i = 1; i < xhci->max_interrupters; i++) { |
| 2373 | if (!xhci->interrupters[i]) { |
| 2374 | xhci->interrupters[i] = ir; |
| 2375 | xhci_add_interrupter(xhci, intr_num: i); |
| 2376 | err = 0; |
| 2377 | break; |
| 2378 | } |
| 2379 | } |
| 2380 | } else { |
| 2381 | if (!xhci->interrupters[intr_num]) { |
| 2382 | xhci->interrupters[intr_num] = ir; |
| 2383 | xhci_add_interrupter(xhci, intr_num); |
| 2384 | err = 0; |
| 2385 | } |
| 2386 | } |
| 2387 | spin_unlock_irq(lock: &xhci->lock); |
| 2388 | |
| 2389 | if (err) { |
| 2390 | xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n" , |
| 2391 | xhci->max_interrupters); |
| 2392 | xhci_free_interrupter(xhci, ir); |
| 2393 | return NULL; |
| 2394 | } |
| 2395 | |
| 2396 | xhci_set_interrupter_moderation(ir, imod_interval); |
| 2397 | |
| 2398 | xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n" , |
| 2399 | ir->intr_num, xhci->max_interrupters); |
| 2400 | |
| 2401 | return ir; |
| 2402 | } |
| 2403 | EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter); |
| 2404 | |
| 2405 | int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) |
| 2406 | { |
| 2407 | struct device *dev = xhci_to_hcd(xhci)->self.sysdev; |
| 2408 | dma_addr_t dma; |
| 2409 | |
| 2410 | /* |
| 2411 | * xHCI section 5.4.6 - Device Context array must be |
| 2412 | * "physically contiguous and 64-byte (cache line) aligned". |
| 2413 | */ |
| 2414 | xhci->dcbaa = dma_alloc_coherent(dev, size: sizeof(*xhci->dcbaa), dma_handle: &dma, gfp: flags); |
| 2415 | if (!xhci->dcbaa) |
| 2416 | goto fail; |
| 2417 | |
| 2418 | xhci->dcbaa->dma = dma; |
| 2419 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, |
| 2420 | fmt: "Device context base array address = 0x%pad (DMA), %p (virt)" , |
| 2421 | &xhci->dcbaa->dma, xhci->dcbaa); |
| 2422 | |
| 2423 | /* |
| 2424 | * Initialize the ring segment pool. The ring must be a contiguous |
| 2425 | * structure comprised of TRBs. The TRBs must be 16 byte aligned, |
| 2426 | * however, the command ring segment needs 64-byte aligned segments |
| 2427 | * and our use of dma addresses in the trb_address_map radix tree needs |
| 2428 | * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. |
| 2429 | */ |
| 2430 | if (xhci->quirks & XHCI_TRB_OVERFETCH) |
| 2431 | /* Buggy HC prefetches beyond segment bounds - allocate dummy space at the end */ |
| 2432 | xhci->segment_pool = dma_pool_create(name: "xHCI ring segments" , dev, |
| 2433 | TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, boundary: xhci->page_size * 2); |
| 2434 | else |
| 2435 | xhci->segment_pool = dma_pool_create(name: "xHCI ring segments" , dev, |
| 2436 | TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, boundary: xhci->page_size); |
| 2437 | if (!xhci->segment_pool) |
| 2438 | goto fail; |
| 2439 | |
| 2440 | /* See Table 46 and Note on Figure 55 */ |
| 2441 | xhci->device_pool = dma_pool_create(name: "xHCI input/output contexts" , dev, size: 2112, align: 64, |
| 2442 | boundary: xhci->page_size); |
| 2443 | if (!xhci->device_pool) |
| 2444 | goto fail; |
| 2445 | |
| 2446 | /* |
| 2447 | * Linear stream context arrays don't have any boundary restrictions, |
| 2448 | * and only need to be 16-byte aligned. |
| 2449 | */ |
| 2450 | xhci->small_streams_pool = dma_pool_create(name: "xHCI 256 byte stream ctx arrays" , |
| 2451 | dev, SMALL_STREAM_ARRAY_SIZE, align: 16, boundary: 0); |
| 2452 | if (!xhci->small_streams_pool) |
| 2453 | goto fail; |
| 2454 | |
| 2455 | /* |
| 2456 | * Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE will be |
| 2457 | * allocated with dma_alloc_coherent(). |
| 2458 | */ |
| 2459 | |
| 2460 | xhci->medium_streams_pool = dma_pool_create(name: "xHCI 1KB stream ctx arrays" , |
| 2461 | dev, MEDIUM_STREAM_ARRAY_SIZE, align: 16, boundary: 0); |
| 2462 | if (!xhci->medium_streams_pool) |
| 2463 | goto fail; |
| 2464 | |
| 2465 | /* |
| 2466 | * refer to xhci rev1_2 protocol 5.3.3 max ports is 255. |
| 2467 | * refer to xhci rev1_2 protocol 6.4.3.14 port bandwidth buffer need |
| 2468 | * to be 16-byte aligned. |
| 2469 | */ |
| 2470 | xhci->port_bw_pool = dma_pool_create(name: "xHCI 256 port bw ctx arrays" , |
| 2471 | dev, GET_PORT_BW_ARRAY_SIZE, align: 16, boundary: 0); |
| 2472 | if (!xhci->port_bw_pool) |
| 2473 | goto fail; |
| 2474 | |
| 2475 | /* Set up the command ring to have one segments for now. */ |
| 2476 | xhci->cmd_ring = xhci_ring_alloc(xhci, num_segs: 1, type: TYPE_COMMAND, max_packet: 0, flags); |
| 2477 | if (!xhci->cmd_ring) |
| 2478 | goto fail; |
| 2479 | |
| 2480 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Allocated command ring at %p" , xhci->cmd_ring); |
| 2481 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "First segment DMA is 0x%pad" , |
| 2482 | &xhci->cmd_ring->first_seg->dma); |
| 2483 | |
| 2484 | /* |
| 2485 | * Reserve one command ring TRB for disabling LPM. |
| 2486 | * Since the USB core grabs the shared usb_bus bandwidth mutex before |
| 2487 | * disabling LPM, we only need to reserve one TRB for all devices. |
| 2488 | */ |
| 2489 | xhci->cmd_ring_reserved_trbs++; |
| 2490 | |
| 2491 | /* Allocate and set up primary interrupter 0 with an event ring. */ |
| 2492 | xhci_dbg_trace(xhci, trace: trace_xhci_dbg_init, fmt: "Allocating primary event ring" ); |
| 2493 | xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters), |
| 2494 | flags, dev_to_node(dev)); |
| 2495 | if (!xhci->interrupters) |
| 2496 | goto fail; |
| 2497 | |
| 2498 | xhci->interrupters[0] = xhci_alloc_interrupter(xhci, segs: 0, flags); |
| 2499 | if (!xhci->interrupters[0]) |
| 2500 | goto fail; |
| 2501 | |
| 2502 | if (scratchpad_alloc(xhci, flags)) |
| 2503 | goto fail; |
| 2504 | |
| 2505 | if (xhci_setup_port_arrays(xhci, flags)) |
| 2506 | goto fail; |
| 2507 | |
| 2508 | return 0; |
| 2509 | |
| 2510 | fail: |
| 2511 | xhci_halt(xhci); |
| 2512 | xhci_reset(xhci, XHCI_RESET_SHORT_USEC); |
| 2513 | xhci_mem_cleanup(xhci); |
| 2514 | return -ENOMEM; |
| 2515 | } |
| 2516 | |