1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright 2020-2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
4 */
5
6/**
7 * DOC: Enclave lifetime management driver for Nitro Enclaves (NE).
8 * Nitro is a hypervisor that has been developed by Amazon.
9 */
10
11#include <linux/anon_inodes.h>
12#include <linux/capability.h>
13#include <linux/cpu.h>
14#include <linux/device.h>
15#include <linux/file.h>
16#include <linux/hugetlb.h>
17#include <linux/limits.h>
18#include <linux/list.h>
19#include <linux/miscdevice.h>
20#include <linux/mm.h>
21#include <linux/mman.h>
22#include <linux/module.h>
23#include <linux/mutex.h>
24#include <linux/nitro_enclaves.h>
25#include <linux/pci.h>
26#include <linux/poll.h>
27#include <linux/range.h>
28#include <linux/slab.h>
29#include <linux/types.h>
30#include <uapi/linux/vm_sockets.h>
31
32#include "ne_misc_dev.h"
33#include "ne_pci_dev.h"
34
35/**
36 * NE_CPUS_SIZE - Size for max 128 CPUs, for now, in a cpu-list string, comma
37 * separated. The NE CPU pool includes CPUs from a single NUMA
38 * node.
39 */
40#define NE_CPUS_SIZE (512)
41
42/**
43 * NE_EIF_LOAD_OFFSET - The offset where to copy the Enclave Image Format (EIF)
44 * image in enclave memory.
45 */
46#define NE_EIF_LOAD_OFFSET (8 * 1024UL * 1024UL)
47
48/**
49 * NE_MIN_ENCLAVE_MEM_SIZE - The minimum memory size an enclave can be launched
50 * with.
51 */
52#define NE_MIN_ENCLAVE_MEM_SIZE (64 * 1024UL * 1024UL)
53
54/**
55 * NE_MIN_MEM_REGION_SIZE - The minimum size of an enclave memory region.
56 */
57#define NE_MIN_MEM_REGION_SIZE (2 * 1024UL * 1024UL)
58
59/**
60 * NE_PARENT_VM_CID - The CID for the vsock device of the primary / parent VM.
61 */
62#define NE_PARENT_VM_CID (3)
63
64static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
65
66static const struct file_operations ne_fops = {
67 .owner = THIS_MODULE,
68 .llseek = noop_llseek,
69 .unlocked_ioctl = ne_ioctl,
70};
71
72static struct miscdevice ne_misc_dev = {
73 .minor = MISC_DYNAMIC_MINOR,
74 .name = "nitro_enclaves",
75 .fops = &ne_fops,
76 .mode = 0660,
77};
78
79struct ne_devs ne_devs = {
80 .ne_misc_dev = &ne_misc_dev,
81};
82
83/*
84 * TODO: Update logic to create new sysfs entries instead of using
85 * a kernel parameter e.g. if multiple sysfs files needed.
86 */
87static int ne_set_kernel_param(const char *val, const struct kernel_param *kp);
88
89static const struct kernel_param_ops ne_cpu_pool_ops = {
90 .get = param_get_string,
91 .set = ne_set_kernel_param,
92};
93
94static char ne_cpus[NE_CPUS_SIZE];
95static struct kparam_string ne_cpus_arg = {
96 .maxlen = sizeof(ne_cpus),
97 .string = ne_cpus,
98};
99
100module_param_cb(ne_cpus, &ne_cpu_pool_ops, &ne_cpus_arg, 0644);
101/* https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists */
102MODULE_PARM_DESC(ne_cpus, "<cpu-list> - CPU pool used for Nitro Enclaves");
103
104/**
105 * struct ne_cpu_pool - CPU pool used for Nitro Enclaves.
106 * @avail_threads_per_core: Available full CPU cores to be dedicated to
107 * enclave(s). The cpumasks from the array, indexed
108 * by core id, contain all the threads from the
109 * available cores, that are not set for created
110 * enclave(s). The full CPU cores are part of the
111 * NE CPU pool.
112 * @mutex: Mutex for the access to the NE CPU pool.
113 * @nr_parent_vm_cores : The size of the available threads per core array.
114 * The total number of CPU cores available on the
115 * primary / parent VM.
116 * @nr_threads_per_core: The number of threads that a full CPU core has.
117 * @numa_node: NUMA node of the CPUs in the pool.
118 */
119struct ne_cpu_pool {
120 cpumask_var_t *avail_threads_per_core;
121 struct mutex mutex;
122 unsigned int nr_parent_vm_cores;
123 unsigned int nr_threads_per_core;
124 int numa_node;
125};
126
127static struct ne_cpu_pool ne_cpu_pool;
128
129/**
130 * struct ne_phys_contig_mem_regions - Contiguous physical memory regions.
131 * @num: The number of regions that currently has.
132 * @regions: The array of physical memory regions.
133 */
134struct ne_phys_contig_mem_regions {
135 unsigned long num;
136 struct range *regions;
137};
138
139/**
140 * ne_check_enclaves_created() - Verify if at least one enclave has been created.
141 * @void: No parameters provided.
142 *
143 * Context: Process context.
144 * Return:
145 * * True if at least one enclave is created.
146 * * False otherwise.
147 */
148static bool ne_check_enclaves_created(void)
149{
150 struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
151 bool ret = false;
152
153 if (!ne_pci_dev)
154 return ret;
155
156 mutex_lock(&ne_pci_dev->enclaves_list_mutex);
157
158 if (!list_empty(head: &ne_pci_dev->enclaves_list))
159 ret = true;
160
161 mutex_unlock(lock: &ne_pci_dev->enclaves_list_mutex);
162
163 return ret;
164}
165
166/**
167 * ne_setup_cpu_pool() - Set the NE CPU pool after handling sanity checks such
168 * as not sharing CPU cores with the primary / parent VM
169 * or not using CPU 0, which should remain available for
170 * the primary / parent VM. Offline the CPUs from the
171 * pool after the checks passed.
172 * @ne_cpu_list: The CPU list used for setting NE CPU pool.
173 *
174 * Context: Process context.
175 * Return:
176 * * 0 on success.
177 * * Negative return value on failure.
178 */
179static int ne_setup_cpu_pool(const char *ne_cpu_list)
180{
181 int core_id = -1;
182 unsigned int cpu = 0;
183 cpumask_var_t cpu_pool;
184 unsigned int cpu_sibling = 0;
185 unsigned int i = 0;
186 int numa_node = -1;
187 int rc = -EINVAL;
188
189 if (!zalloc_cpumask_var(mask: &cpu_pool, GFP_KERNEL))
190 return -ENOMEM;
191
192 mutex_lock(&ne_cpu_pool.mutex);
193
194 rc = cpulist_parse(buf: ne_cpu_list, dstp: cpu_pool);
195 if (rc < 0) {
196 pr_err("%s: Error in cpulist parse [rc=%d]\n", ne_misc_dev.name, rc);
197
198 goto free_pool_cpumask;
199 }
200
201 cpu = cpumask_any(cpu_pool);
202 if (cpu >= nr_cpu_ids) {
203 pr_err("%s: No CPUs available in CPU pool\n", ne_misc_dev.name);
204
205 rc = -EINVAL;
206
207 goto free_pool_cpumask;
208 }
209
210 /*
211 * Check if the CPUs are online, to further get info about them
212 * e.g. numa node, core id, siblings.
213 */
214 for_each_cpu(cpu, cpu_pool)
215 if (cpu_is_offline(cpu)) {
216 pr_err("%s: CPU %d is offline, has to be online to get its metadata\n",
217 ne_misc_dev.name, cpu);
218
219 rc = -EINVAL;
220
221 goto free_pool_cpumask;
222 }
223
224 /*
225 * Check if the CPUs from the NE CPU pool are from the same NUMA node.
226 */
227 for_each_cpu(cpu, cpu_pool)
228 if (numa_node < 0) {
229 numa_node = cpu_to_node(cpu);
230 if (numa_node < 0) {
231 pr_err("%s: Invalid NUMA node %d\n",
232 ne_misc_dev.name, numa_node);
233
234 rc = -EINVAL;
235
236 goto free_pool_cpumask;
237 }
238 } else {
239 if (numa_node != cpu_to_node(cpu)) {
240 pr_err("%s: CPUs with different NUMA nodes\n",
241 ne_misc_dev.name);
242
243 rc = -EINVAL;
244
245 goto free_pool_cpumask;
246 }
247 }
248
249 /*
250 * Check if CPU 0 and its siblings are included in the provided CPU pool
251 * They should remain available for the primary / parent VM.
252 */
253 if (cpumask_test_cpu(cpu: 0, cpumask: cpu_pool)) {
254 pr_err("%s: CPU 0 has to remain available\n", ne_misc_dev.name);
255
256 rc = -EINVAL;
257
258 goto free_pool_cpumask;
259 }
260
261 for_each_cpu(cpu_sibling, topology_sibling_cpumask(0)) {
262 if (cpumask_test_cpu(cpu: cpu_sibling, cpumask: cpu_pool)) {
263 pr_err("%s: CPU sibling %d for CPU 0 is in CPU pool\n",
264 ne_misc_dev.name, cpu_sibling);
265
266 rc = -EINVAL;
267
268 goto free_pool_cpumask;
269 }
270 }
271
272 /*
273 * Check if CPU siblings are included in the provided CPU pool. The
274 * expectation is that full CPU cores are made available in the CPU pool
275 * for enclaves.
276 */
277 for_each_cpu(cpu, cpu_pool) {
278 for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) {
279 if (!cpumask_test_cpu(cpu: cpu_sibling, cpumask: cpu_pool)) {
280 pr_err("%s: CPU %d is not in CPU pool\n",
281 ne_misc_dev.name, cpu_sibling);
282
283 rc = -EINVAL;
284
285 goto free_pool_cpumask;
286 }
287 }
288 }
289
290 /* Calculate the number of threads from a full CPU core. */
291 cpu = cpumask_any(cpu_pool);
292 for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu))
293 ne_cpu_pool.nr_threads_per_core++;
294
295 ne_cpu_pool.nr_parent_vm_cores = nr_cpu_ids / ne_cpu_pool.nr_threads_per_core;
296
297 ne_cpu_pool.avail_threads_per_core = kcalloc(n: ne_cpu_pool.nr_parent_vm_cores,
298 size: sizeof(*ne_cpu_pool.avail_threads_per_core),
299 GFP_KERNEL);
300 if (!ne_cpu_pool.avail_threads_per_core) {
301 rc = -ENOMEM;
302
303 goto free_pool_cpumask;
304 }
305
306 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
307 if (!zalloc_cpumask_var(mask: &ne_cpu_pool.avail_threads_per_core[i], GFP_KERNEL)) {
308 rc = -ENOMEM;
309
310 goto free_cores_cpumask;
311 }
312
313 /*
314 * Split the NE CPU pool in threads per core to keep the CPU topology
315 * after offlining the CPUs.
316 */
317 for_each_cpu(cpu, cpu_pool) {
318 core_id = topology_core_id(cpu);
319 if (core_id < 0 || core_id >= ne_cpu_pool.nr_parent_vm_cores) {
320 pr_err("%s: Invalid core id %d for CPU %d\n",
321 ne_misc_dev.name, core_id, cpu);
322
323 rc = -EINVAL;
324
325 goto clear_cpumask;
326 }
327
328 cpumask_set_cpu(cpu, dstp: ne_cpu_pool.avail_threads_per_core[core_id]);
329 }
330
331 /*
332 * CPUs that are given to enclave(s) should not be considered online
333 * by Linux anymore, as the hypervisor will degrade them to floating.
334 * The physical CPUs (full cores) are carved out of the primary / parent
335 * VM and given to the enclave VM. The same number of vCPUs would run
336 * on less pCPUs for the primary / parent VM.
337 *
338 * We offline them here, to not degrade performance and expose correct
339 * topology to Linux and user space.
340 */
341 for_each_cpu(cpu, cpu_pool) {
342 rc = remove_cpu(cpu);
343 if (rc != 0) {
344 pr_err("%s: CPU %d is not offlined [rc=%d]\n",
345 ne_misc_dev.name, cpu, rc);
346
347 goto online_cpus;
348 }
349 }
350
351 free_cpumask_var(mask: cpu_pool);
352
353 ne_cpu_pool.numa_node = numa_node;
354
355 mutex_unlock(lock: &ne_cpu_pool.mutex);
356
357 return 0;
358
359online_cpus:
360 for_each_cpu(cpu, cpu_pool)
361 add_cpu(cpu);
362clear_cpumask:
363 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
364 cpumask_clear(dstp: ne_cpu_pool.avail_threads_per_core[i]);
365free_cores_cpumask:
366 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
367 free_cpumask_var(mask: ne_cpu_pool.avail_threads_per_core[i]);
368 kfree(objp: ne_cpu_pool.avail_threads_per_core);
369free_pool_cpumask:
370 free_cpumask_var(mask: cpu_pool);
371 ne_cpu_pool.nr_parent_vm_cores = 0;
372 ne_cpu_pool.nr_threads_per_core = 0;
373 ne_cpu_pool.numa_node = -1;
374 mutex_unlock(lock: &ne_cpu_pool.mutex);
375
376 return rc;
377}
378
379/**
380 * ne_teardown_cpu_pool() - Online the CPUs from the NE CPU pool and cleanup the
381 * CPU pool.
382 * @void: No parameters provided.
383 *
384 * Context: Process context.
385 */
386static void ne_teardown_cpu_pool(void)
387{
388 unsigned int cpu = 0;
389 unsigned int i = 0;
390 int rc = -EINVAL;
391
392 mutex_lock(&ne_cpu_pool.mutex);
393
394 if (!ne_cpu_pool.nr_parent_vm_cores) {
395 mutex_unlock(lock: &ne_cpu_pool.mutex);
396
397 return;
398 }
399
400 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) {
401 for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]) {
402 rc = add_cpu(cpu);
403 if (rc != 0)
404 pr_err("%s: CPU %d is not onlined [rc=%d]\n",
405 ne_misc_dev.name, cpu, rc);
406 }
407
408 cpumask_clear(dstp: ne_cpu_pool.avail_threads_per_core[i]);
409
410 free_cpumask_var(mask: ne_cpu_pool.avail_threads_per_core[i]);
411 }
412
413 kfree(objp: ne_cpu_pool.avail_threads_per_core);
414 ne_cpu_pool.nr_parent_vm_cores = 0;
415 ne_cpu_pool.nr_threads_per_core = 0;
416 ne_cpu_pool.numa_node = -1;
417
418 mutex_unlock(lock: &ne_cpu_pool.mutex);
419}
420
421/**
422 * ne_set_kernel_param() - Set the NE CPU pool value via the NE kernel parameter.
423 * @val: NE CPU pool string value.
424 * @kp : NE kernel parameter associated with the NE CPU pool.
425 *
426 * Context: Process context.
427 * Return:
428 * * 0 on success.
429 * * Negative return value on failure.
430 */
431static int ne_set_kernel_param(const char *val, const struct kernel_param *kp)
432{
433 char error_val[] = "";
434 int rc = -EINVAL;
435
436 if (!capable(CAP_SYS_ADMIN))
437 return -EPERM;
438
439 if (ne_check_enclaves_created()) {
440 pr_err("%s: The CPU pool is used by enclave(s)\n", ne_misc_dev.name);
441
442 return -EPERM;
443 }
444
445 ne_teardown_cpu_pool();
446
447 rc = ne_setup_cpu_pool(ne_cpu_list: val);
448 if (rc < 0) {
449 pr_err("%s: Error in setup CPU pool [rc=%d]\n", ne_misc_dev.name, rc);
450
451 param_set_copystring(val: error_val, kp);
452
453 return rc;
454 }
455
456 rc = param_set_copystring(val, kp);
457 if (rc < 0) {
458 pr_err("%s: Error in param set copystring [rc=%d]\n", ne_misc_dev.name, rc);
459
460 ne_teardown_cpu_pool();
461
462 param_set_copystring(val: error_val, kp);
463
464 return rc;
465 }
466
467 return 0;
468}
469
470/**
471 * ne_donated_cpu() - Check if the provided CPU is already used by the enclave.
472 * @ne_enclave : Private data associated with the current enclave.
473 * @cpu: CPU to check if already used.
474 *
475 * Context: Process context. This function is called with the ne_enclave mutex held.
476 * Return:
477 * * True if the provided CPU is already used by the enclave.
478 * * False otherwise.
479 */
480static bool ne_donated_cpu(struct ne_enclave *ne_enclave, unsigned int cpu)
481{
482 if (cpumask_test_cpu(cpu, cpumask: ne_enclave->vcpu_ids))
483 return true;
484
485 return false;
486}
487
488/**
489 * ne_get_unused_core_from_cpu_pool() - Get the id of a full core from the
490 * NE CPU pool.
491 * @void: No parameters provided.
492 *
493 * Context: Process context. This function is called with the ne_enclave and
494 * ne_cpu_pool mutexes held.
495 * Return:
496 * * Core id.
497 * * -1 if no CPU core available in the pool.
498 */
499static int ne_get_unused_core_from_cpu_pool(void)
500{
501 int core_id = -1;
502 unsigned int i = 0;
503
504 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
505 if (!cpumask_empty(srcp: ne_cpu_pool.avail_threads_per_core[i])) {
506 core_id = i;
507
508 break;
509 }
510
511 return core_id;
512}
513
514/**
515 * ne_set_enclave_threads_per_core() - Set the threads of the provided core in
516 * the enclave data structure.
517 * @ne_enclave : Private data associated with the current enclave.
518 * @core_id: Core id to get its threads from the NE CPU pool.
519 * @vcpu_id: vCPU id part of the provided core.
520 *
521 * Context: Process context. This function is called with the ne_enclave and
522 * ne_cpu_pool mutexes held.
523 * Return:
524 * * 0 on success.
525 * * Negative return value on failure.
526 */
527static int ne_set_enclave_threads_per_core(struct ne_enclave *ne_enclave,
528 int core_id, u32 vcpu_id)
529{
530 unsigned int cpu = 0;
531
532 if (core_id < 0 && vcpu_id == 0) {
533 dev_err_ratelimited(ne_misc_dev.this_device,
534 "No CPUs available in NE CPU pool\n");
535
536 return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
537 }
538
539 if (core_id < 0) {
540 dev_err_ratelimited(ne_misc_dev.this_device,
541 "CPU %d is not in NE CPU pool\n", vcpu_id);
542
543 return -NE_ERR_VCPU_NOT_IN_CPU_POOL;
544 }
545
546 if (core_id >= ne_enclave->nr_parent_vm_cores) {
547 dev_err_ratelimited(ne_misc_dev.this_device,
548 "Invalid core id %d - ne_enclave\n", core_id);
549
550 return -NE_ERR_VCPU_INVALID_CPU_CORE;
551 }
552
553 for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id])
554 cpumask_set_cpu(cpu, dstp: ne_enclave->threads_per_core[core_id]);
555
556 cpumask_clear(dstp: ne_cpu_pool.avail_threads_per_core[core_id]);
557
558 return 0;
559}
560
561/**
562 * ne_get_cpu_from_cpu_pool() - Get a CPU from the NE CPU pool, either from the
563 * remaining sibling(s) of a CPU core or the first
564 * sibling of a new CPU core.
565 * @ne_enclave : Private data associated with the current enclave.
566 * @vcpu_id: vCPU to get from the NE CPU pool.
567 *
568 * Context: Process context. This function is called with the ne_enclave mutex held.
569 * Return:
570 * * 0 on success.
571 * * Negative return value on failure.
572 */
573static int ne_get_cpu_from_cpu_pool(struct ne_enclave *ne_enclave, u32 *vcpu_id)
574{
575 int core_id = -1;
576 unsigned int cpu = 0;
577 unsigned int i = 0;
578 int rc = -EINVAL;
579
580 /*
581 * If previously allocated a thread of a core to this enclave, first
582 * check remaining sibling(s) for new CPU allocations, so that full
583 * CPU cores are used for the enclave.
584 */
585 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
586 for_each_cpu(cpu, ne_enclave->threads_per_core[i])
587 if (!ne_donated_cpu(ne_enclave, cpu)) {
588 *vcpu_id = cpu;
589
590 return 0;
591 }
592
593 mutex_lock(&ne_cpu_pool.mutex);
594
595 /*
596 * If no remaining siblings, get a core from the NE CPU pool and keep
597 * track of all the threads in the enclave threads per core data structure.
598 */
599 core_id = ne_get_unused_core_from_cpu_pool();
600
601 rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id: *vcpu_id);
602 if (rc < 0)
603 goto unlock_mutex;
604
605 *vcpu_id = cpumask_any(ne_enclave->threads_per_core[core_id]);
606
607 rc = 0;
608
609unlock_mutex:
610 mutex_unlock(lock: &ne_cpu_pool.mutex);
611
612 return rc;
613}
614
615/**
616 * ne_get_vcpu_core_from_cpu_pool() - Get from the NE CPU pool the id of the
617 * core associated with the provided vCPU.
618 * @vcpu_id: Provided vCPU id to get its associated core id.
619 *
620 * Context: Process context. This function is called with the ne_enclave and
621 * ne_cpu_pool mutexes held.
622 * Return:
623 * * Core id.
624 * * -1 if the provided vCPU is not in the pool.
625 */
626static int ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id)
627{
628 int core_id = -1;
629 unsigned int i = 0;
630
631 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
632 if (cpumask_test_cpu(cpu: vcpu_id, cpumask: ne_cpu_pool.avail_threads_per_core[i])) {
633 core_id = i;
634
635 break;
636 }
637
638 return core_id;
639}
640
641/**
642 * ne_check_cpu_in_cpu_pool() - Check if the given vCPU is in the available CPUs
643 * from the pool.
644 * @ne_enclave : Private data associated with the current enclave.
645 * @vcpu_id: ID of the vCPU to check if available in the NE CPU pool.
646 *
647 * Context: Process context. This function is called with the ne_enclave mutex held.
648 * Return:
649 * * 0 on success.
650 * * Negative return value on failure.
651 */
652static int ne_check_cpu_in_cpu_pool(struct ne_enclave *ne_enclave, u32 vcpu_id)
653{
654 int core_id = -1;
655 unsigned int i = 0;
656 int rc = -EINVAL;
657
658 if (ne_donated_cpu(ne_enclave, cpu: vcpu_id)) {
659 dev_err_ratelimited(ne_misc_dev.this_device,
660 "CPU %d already used\n", vcpu_id);
661
662 return -NE_ERR_VCPU_ALREADY_USED;
663 }
664
665 /*
666 * If previously allocated a thread of a core to this enclave, but not
667 * the full core, first check remaining sibling(s).
668 */
669 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
670 if (cpumask_test_cpu(cpu: vcpu_id, cpumask: ne_enclave->threads_per_core[i]))
671 return 0;
672
673 mutex_lock(&ne_cpu_pool.mutex);
674
675 /*
676 * If no remaining siblings, get from the NE CPU pool the core
677 * associated with the vCPU and keep track of all the threads in the
678 * enclave threads per core data structure.
679 */
680 core_id = ne_get_vcpu_core_from_cpu_pool(vcpu_id);
681
682 rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id);
683 if (rc < 0)
684 goto unlock_mutex;
685
686 rc = 0;
687
688unlock_mutex:
689 mutex_unlock(lock: &ne_cpu_pool.mutex);
690
691 return rc;
692}
693
694/**
695 * ne_add_vcpu_ioctl() - Add a vCPU to the slot associated with the current
696 * enclave.
697 * @ne_enclave : Private data associated with the current enclave.
698 * @vcpu_id: ID of the CPU to be associated with the given slot,
699 * apic id on x86.
700 *
701 * Context: Process context. This function is called with the ne_enclave mutex held.
702 * Return:
703 * * 0 on success.
704 * * Negative return value on failure.
705 */
706static int ne_add_vcpu_ioctl(struct ne_enclave *ne_enclave, u32 vcpu_id)
707{
708 struct ne_pci_dev_cmd_reply cmd_reply = {};
709 struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
710 int rc = -EINVAL;
711 struct slot_add_vcpu_req slot_add_vcpu_req = {};
712
713 if (ne_enclave->mm != current->mm)
714 return -EIO;
715
716 slot_add_vcpu_req.slot_uid = ne_enclave->slot_uid;
717 slot_add_vcpu_req.vcpu_id = vcpu_id;
718
719 rc = ne_do_request(pdev, cmd_type: SLOT_ADD_VCPU,
720 cmd_request: &slot_add_vcpu_req, cmd_request_size: sizeof(slot_add_vcpu_req),
721 cmd_reply: &cmd_reply, cmd_reply_size: sizeof(cmd_reply));
722 if (rc < 0) {
723 dev_err_ratelimited(ne_misc_dev.this_device,
724 "Error in slot add vCPU [rc=%d]\n", rc);
725
726 return rc;
727 }
728
729 cpumask_set_cpu(cpu: vcpu_id, dstp: ne_enclave->vcpu_ids);
730
731 ne_enclave->nr_vcpus++;
732
733 return 0;
734}
735
736/**
737 * ne_sanity_check_user_mem_region() - Sanity check the user space memory
738 * region received during the set user
739 * memory region ioctl call.
740 * @ne_enclave : Private data associated with the current enclave.
741 * @mem_region : User space memory region to be sanity checked.
742 *
743 * Context: Process context. This function is called with the ne_enclave mutex held.
744 * Return:
745 * * 0 on success.
746 * * Negative return value on failure.
747 */
748static int ne_sanity_check_user_mem_region(struct ne_enclave *ne_enclave,
749 struct ne_user_memory_region mem_region)
750{
751 struct ne_mem_region *ne_mem_region = NULL;
752
753 if (ne_enclave->mm != current->mm)
754 return -EIO;
755
756 if (mem_region.memory_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
757 dev_err_ratelimited(ne_misc_dev.this_device,
758 "User space memory size is not multiple of 2 MiB\n");
759
760 return -NE_ERR_INVALID_MEM_REGION_SIZE;
761 }
762
763 if (!IS_ALIGNED(mem_region.userspace_addr, NE_MIN_MEM_REGION_SIZE)) {
764 dev_err_ratelimited(ne_misc_dev.this_device,
765 "User space address is not 2 MiB aligned\n");
766
767 return -NE_ERR_UNALIGNED_MEM_REGION_ADDR;
768 }
769
770 if ((mem_region.userspace_addr & (NE_MIN_MEM_REGION_SIZE - 1)) ||
771 !access_ok((void __user *)(unsigned long)mem_region.userspace_addr,
772 mem_region.memory_size)) {
773 dev_err_ratelimited(ne_misc_dev.this_device,
774 "Invalid user space address range\n");
775
776 return -NE_ERR_INVALID_MEM_REGION_ADDR;
777 }
778
779 list_for_each_entry(ne_mem_region, &ne_enclave->mem_regions_list,
780 mem_region_list_entry) {
781 u64 memory_size = ne_mem_region->memory_size;
782 u64 userspace_addr = ne_mem_region->userspace_addr;
783
784 if ((userspace_addr <= mem_region.userspace_addr &&
785 mem_region.userspace_addr < (userspace_addr + memory_size)) ||
786 (mem_region.userspace_addr <= userspace_addr &&
787 (mem_region.userspace_addr + mem_region.memory_size) > userspace_addr)) {
788 dev_err_ratelimited(ne_misc_dev.this_device,
789 "User space memory region already used\n");
790
791 return -NE_ERR_MEM_REGION_ALREADY_USED;
792 }
793 }
794
795 return 0;
796}
797
798/**
799 * ne_sanity_check_user_mem_region_page() - Sanity check a page from the user space
800 * memory region received during the set
801 * user memory region ioctl call.
802 * @ne_enclave : Private data associated with the current enclave.
803 * @mem_region_page: Page from the user space memory region to be sanity checked.
804 *
805 * Context: Process context. This function is called with the ne_enclave mutex held.
806 * Return:
807 * * 0 on success.
808 * * Negative return value on failure.
809 */
810static int ne_sanity_check_user_mem_region_page(struct ne_enclave *ne_enclave,
811 struct page *mem_region_page)
812{
813 if (!PageHuge(page: mem_region_page)) {
814 dev_err_ratelimited(ne_misc_dev.this_device,
815 "Not a hugetlbfs page\n");
816
817 return -NE_ERR_MEM_NOT_HUGE_PAGE;
818 }
819
820 if (page_size(page: mem_region_page) & (NE_MIN_MEM_REGION_SIZE - 1)) {
821 dev_err_ratelimited(ne_misc_dev.this_device,
822 "Page size not multiple of 2 MiB\n");
823
824 return -NE_ERR_INVALID_PAGE_SIZE;
825 }
826
827 if (ne_enclave->numa_node != page_to_nid(page: mem_region_page)) {
828 dev_err_ratelimited(ne_misc_dev.this_device,
829 "Page is not from NUMA node %d\n",
830 ne_enclave->numa_node);
831
832 return -NE_ERR_MEM_DIFFERENT_NUMA_NODE;
833 }
834
835 return 0;
836}
837
838/**
839 * ne_sanity_check_phys_mem_region() - Sanity check the start address and the size
840 * of a physical memory region.
841 * @phys_mem_region_paddr : Physical start address of the region to be sanity checked.
842 * @phys_mem_region_size : Length of the region to be sanity checked.
843 *
844 * Context: Process context. This function is called with the ne_enclave mutex held.
845 * Return:
846 * * 0 on success.
847 * * Negative return value on failure.
848 */
849static int ne_sanity_check_phys_mem_region(u64 phys_mem_region_paddr,
850 u64 phys_mem_region_size)
851{
852 if (phys_mem_region_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
853 dev_err_ratelimited(ne_misc_dev.this_device,
854 "Physical mem region size is not multiple of 2 MiB\n");
855
856 return -EINVAL;
857 }
858
859 if (!IS_ALIGNED(phys_mem_region_paddr, NE_MIN_MEM_REGION_SIZE)) {
860 dev_err_ratelimited(ne_misc_dev.this_device,
861 "Physical mem region address is not 2 MiB aligned\n");
862
863 return -EINVAL;
864 }
865
866 return 0;
867}
868
869/**
870 * ne_merge_phys_contig_memory_regions() - Add a memory region and merge the adjacent
871 * regions if they are physically contiguous.
872 * @phys_contig_regions : Private data associated with the contiguous physical memory regions.
873 * @page_paddr : Physical start address of the region to be added.
874 * @page_size : Length of the region to be added.
875 *
876 * Context: Process context. This function is called with the ne_enclave mutex held.
877 * Return:
878 * * 0 on success.
879 * * Negative return value on failure.
880 */
881static int
882ne_merge_phys_contig_memory_regions(struct ne_phys_contig_mem_regions *phys_contig_regions,
883 u64 page_paddr, u64 page_size)
884{
885 unsigned long num = phys_contig_regions->num;
886 int rc = 0;
887
888 rc = ne_sanity_check_phys_mem_region(phys_mem_region_paddr: page_paddr, phys_mem_region_size: page_size);
889 if (rc < 0)
890 return rc;
891
892 /* Physically contiguous, just merge */
893 if (num && (phys_contig_regions->regions[num - 1].end + 1) == page_paddr) {
894 phys_contig_regions->regions[num - 1].end += page_size;
895 } else {
896 phys_contig_regions->regions[num].start = page_paddr;
897 phys_contig_regions->regions[num].end = page_paddr + page_size - 1;
898 phys_contig_regions->num++;
899 }
900
901 return 0;
902}
903
904/**
905 * ne_set_user_memory_region_ioctl() - Add user space memory region to the slot
906 * associated with the current enclave.
907 * @ne_enclave : Private data associated with the current enclave.
908 * @mem_region : User space memory region to be associated with the given slot.
909 *
910 * Context: Process context. This function is called with the ne_enclave mutex held.
911 * Return:
912 * * 0 on success.
913 * * Negative return value on failure.
914 */
915static int ne_set_user_memory_region_ioctl(struct ne_enclave *ne_enclave,
916 struct ne_user_memory_region mem_region)
917{
918 long gup_rc = 0;
919 unsigned long i = 0;
920 unsigned long max_nr_pages = 0;
921 unsigned long memory_size = 0;
922 struct ne_mem_region *ne_mem_region = NULL;
923 struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
924 struct ne_phys_contig_mem_regions phys_contig_mem_regions = {};
925 int rc = -EINVAL;
926
927 rc = ne_sanity_check_user_mem_region(ne_enclave, mem_region);
928 if (rc < 0)
929 return rc;
930
931 ne_mem_region = kzalloc(size: sizeof(*ne_mem_region), GFP_KERNEL);
932 if (!ne_mem_region)
933 return -ENOMEM;
934
935 max_nr_pages = mem_region.memory_size / NE_MIN_MEM_REGION_SIZE;
936
937 ne_mem_region->pages = kcalloc(n: max_nr_pages, size: sizeof(*ne_mem_region->pages),
938 GFP_KERNEL);
939 if (!ne_mem_region->pages) {
940 rc = -ENOMEM;
941
942 goto free_mem_region;
943 }
944
945 phys_contig_mem_regions.regions = kcalloc(n: max_nr_pages,
946 size: sizeof(*phys_contig_mem_regions.regions),
947 GFP_KERNEL);
948 if (!phys_contig_mem_regions.regions) {
949 rc = -ENOMEM;
950
951 goto free_mem_region;
952 }
953
954 do {
955 i = ne_mem_region->nr_pages;
956
957 if (i == max_nr_pages) {
958 dev_err_ratelimited(ne_misc_dev.this_device,
959 "Reached max nr of pages in the pages data struct\n");
960
961 rc = -ENOMEM;
962
963 goto put_pages;
964 }
965
966 gup_rc = get_user_pages_unlocked(start: mem_region.userspace_addr + memory_size, nr_pages: 1,
967 pages: ne_mem_region->pages + i, gup_flags: FOLL_GET);
968
969 if (gup_rc < 0) {
970 rc = gup_rc;
971
972 dev_err_ratelimited(ne_misc_dev.this_device,
973 "Error in get user pages [rc=%d]\n", rc);
974
975 goto put_pages;
976 }
977
978 rc = ne_sanity_check_user_mem_region_page(ne_enclave, mem_region_page: ne_mem_region->pages[i]);
979 if (rc < 0)
980 goto put_pages;
981
982 rc = ne_merge_phys_contig_memory_regions(phys_contig_regions: &phys_contig_mem_regions,
983 page_to_phys(ne_mem_region->pages[i]),
984 page_size: page_size(page: ne_mem_region->pages[i]));
985 if (rc < 0)
986 goto put_pages;
987
988 memory_size += page_size(page: ne_mem_region->pages[i]);
989
990 ne_mem_region->nr_pages++;
991 } while (memory_size < mem_region.memory_size);
992
993 if ((ne_enclave->nr_mem_regions + phys_contig_mem_regions.num) >
994 ne_enclave->max_mem_regions) {
995 dev_err_ratelimited(ne_misc_dev.this_device,
996 "Reached max memory regions %lld\n",
997 ne_enclave->max_mem_regions);
998
999 rc = -NE_ERR_MEM_MAX_REGIONS;
1000
1001 goto put_pages;
1002 }
1003
1004 for (i = 0; i < phys_contig_mem_regions.num; i++) {
1005 u64 phys_region_addr = phys_contig_mem_regions.regions[i].start;
1006 u64 phys_region_size = range_len(range: &phys_contig_mem_regions.regions[i]);
1007
1008 rc = ne_sanity_check_phys_mem_region(phys_mem_region_paddr: phys_region_addr, phys_mem_region_size: phys_region_size);
1009 if (rc < 0)
1010 goto put_pages;
1011 }
1012
1013 ne_mem_region->memory_size = mem_region.memory_size;
1014 ne_mem_region->userspace_addr = mem_region.userspace_addr;
1015
1016 list_add(new: &ne_mem_region->mem_region_list_entry, head: &ne_enclave->mem_regions_list);
1017
1018 for (i = 0; i < phys_contig_mem_regions.num; i++) {
1019 struct ne_pci_dev_cmd_reply cmd_reply = {};
1020 struct slot_add_mem_req slot_add_mem_req = {};
1021
1022 slot_add_mem_req.slot_uid = ne_enclave->slot_uid;
1023 slot_add_mem_req.paddr = phys_contig_mem_regions.regions[i].start;
1024 slot_add_mem_req.size = range_len(range: &phys_contig_mem_regions.regions[i]);
1025
1026 rc = ne_do_request(pdev, cmd_type: SLOT_ADD_MEM,
1027 cmd_request: &slot_add_mem_req, cmd_request_size: sizeof(slot_add_mem_req),
1028 cmd_reply: &cmd_reply, cmd_reply_size: sizeof(cmd_reply));
1029 if (rc < 0) {
1030 dev_err_ratelimited(ne_misc_dev.this_device,
1031 "Error in slot add mem [rc=%d]\n", rc);
1032
1033 kfree(objp: phys_contig_mem_regions.regions);
1034
1035 /*
1036 * Exit here without put pages as memory regions may
1037 * already been added.
1038 */
1039 return rc;
1040 }
1041
1042 ne_enclave->mem_size += slot_add_mem_req.size;
1043 ne_enclave->nr_mem_regions++;
1044 }
1045
1046 kfree(objp: phys_contig_mem_regions.regions);
1047
1048 return 0;
1049
1050put_pages:
1051 for (i = 0; i < ne_mem_region->nr_pages; i++)
1052 put_page(page: ne_mem_region->pages[i]);
1053free_mem_region:
1054 kfree(objp: phys_contig_mem_regions.regions);
1055 kfree(objp: ne_mem_region->pages);
1056 kfree(objp: ne_mem_region);
1057
1058 return rc;
1059}
1060
1061/**
1062 * ne_start_enclave_ioctl() - Trigger enclave start after the enclave resources,
1063 * such as memory and CPU, have been set.
1064 * @ne_enclave : Private data associated with the current enclave.
1065 * @enclave_start_info : Enclave info that includes enclave cid and flags.
1066 *
1067 * Context: Process context. This function is called with the ne_enclave mutex held.
1068 * Return:
1069 * * 0 on success.
1070 * * Negative return value on failure.
1071 */
1072static int ne_start_enclave_ioctl(struct ne_enclave *ne_enclave,
1073 struct ne_enclave_start_info *enclave_start_info)
1074{
1075 struct ne_pci_dev_cmd_reply cmd_reply = {};
1076 unsigned int cpu = 0;
1077 struct enclave_start_req enclave_start_req = {};
1078 unsigned int i = 0;
1079 struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
1080 int rc = -EINVAL;
1081
1082 if (!ne_enclave->nr_mem_regions) {
1083 dev_err_ratelimited(ne_misc_dev.this_device,
1084 "Enclave has no mem regions\n");
1085
1086 return -NE_ERR_NO_MEM_REGIONS_ADDED;
1087 }
1088
1089 if (ne_enclave->mem_size < NE_MIN_ENCLAVE_MEM_SIZE) {
1090 dev_err_ratelimited(ne_misc_dev.this_device,
1091 "Enclave memory is less than %ld\n",
1092 NE_MIN_ENCLAVE_MEM_SIZE);
1093
1094 return -NE_ERR_ENCLAVE_MEM_MIN_SIZE;
1095 }
1096
1097 if (!ne_enclave->nr_vcpus) {
1098 dev_err_ratelimited(ne_misc_dev.this_device,
1099 "Enclave has no vCPUs\n");
1100
1101 return -NE_ERR_NO_VCPUS_ADDED;
1102 }
1103
1104 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1105 for_each_cpu(cpu, ne_enclave->threads_per_core[i])
1106 if (!cpumask_test_cpu(cpu, cpumask: ne_enclave->vcpu_ids)) {
1107 dev_err_ratelimited(ne_misc_dev.this_device,
1108 "Full CPU cores not used\n");
1109
1110 return -NE_ERR_FULL_CORES_NOT_USED;
1111 }
1112
1113 enclave_start_req.enclave_cid = enclave_start_info->enclave_cid;
1114 enclave_start_req.flags = enclave_start_info->flags;
1115 enclave_start_req.slot_uid = ne_enclave->slot_uid;
1116
1117 rc = ne_do_request(pdev, cmd_type: ENCLAVE_START,
1118 cmd_request: &enclave_start_req, cmd_request_size: sizeof(enclave_start_req),
1119 cmd_reply: &cmd_reply, cmd_reply_size: sizeof(cmd_reply));
1120 if (rc < 0) {
1121 dev_err_ratelimited(ne_misc_dev.this_device,
1122 "Error in enclave start [rc=%d]\n", rc);
1123
1124 return rc;
1125 }
1126
1127 ne_enclave->state = NE_STATE_RUNNING;
1128
1129 enclave_start_info->enclave_cid = cmd_reply.enclave_cid;
1130
1131 return 0;
1132}
1133
1134/**
1135 * ne_enclave_ioctl() - Ioctl function provided by the enclave file.
1136 * @file: File associated with this ioctl function.
1137 * @cmd: The command that is set for the ioctl call.
1138 * @arg: The argument that is provided for the ioctl call.
1139 *
1140 * Context: Process context.
1141 * Return:
1142 * * 0 on success.
1143 * * Negative return value on failure.
1144 */
1145static long ne_enclave_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1146{
1147 struct ne_enclave *ne_enclave = file->private_data;
1148
1149 switch (cmd) {
1150 case NE_ADD_VCPU: {
1151 int rc = -EINVAL;
1152 u32 vcpu_id = 0;
1153
1154 if (copy_from_user(to: &vcpu_id, from: (void __user *)arg, n: sizeof(vcpu_id)))
1155 return -EFAULT;
1156
1157 mutex_lock(&ne_enclave->enclave_info_mutex);
1158
1159 if (ne_enclave->state != NE_STATE_INIT) {
1160 dev_err_ratelimited(ne_misc_dev.this_device,
1161 "Enclave is not in init state\n");
1162
1163 mutex_unlock(lock: &ne_enclave->enclave_info_mutex);
1164
1165 return -NE_ERR_NOT_IN_INIT_STATE;
1166 }
1167
1168 if (vcpu_id >= (ne_enclave->nr_parent_vm_cores *
1169 ne_enclave->nr_threads_per_core)) {
1170 dev_err_ratelimited(ne_misc_dev.this_device,
1171 "vCPU id higher than max CPU id\n");
1172
1173 mutex_unlock(lock: &ne_enclave->enclave_info_mutex);
1174
1175 return -NE_ERR_INVALID_VCPU;
1176 }
1177
1178 if (!vcpu_id) {
1179 /* Use the CPU pool for choosing a CPU for the enclave. */
1180 rc = ne_get_cpu_from_cpu_pool(ne_enclave, vcpu_id: &vcpu_id);
1181 if (rc < 0) {
1182 dev_err_ratelimited(ne_misc_dev.this_device,
1183 "Error in get CPU from pool [rc=%d]\n",
1184 rc);
1185
1186 mutex_unlock(lock: &ne_enclave->enclave_info_mutex);
1187
1188 return rc;
1189 }
1190 } else {
1191 /* Check if the provided vCPU is available in the NE CPU pool. */
1192 rc = ne_check_cpu_in_cpu_pool(ne_enclave, vcpu_id);
1193 if (rc < 0) {
1194 dev_err_ratelimited(ne_misc_dev.this_device,
1195 "Error in check CPU %d in pool [rc=%d]\n",
1196 vcpu_id, rc);
1197
1198 mutex_unlock(lock: &ne_enclave->enclave_info_mutex);
1199
1200 return rc;
1201 }
1202 }
1203
1204 rc = ne_add_vcpu_ioctl(ne_enclave, vcpu_id);
1205 if (rc < 0) {
1206 mutex_unlock(lock: &ne_enclave->enclave_info_mutex);
1207
1208 return rc;
1209 }
1210
1211 mutex_unlock(lock: &ne_enclave->enclave_info_mutex);
1212
1213 if (copy_to_user(to: (void __user *)arg, from: &vcpu_id, n: sizeof(vcpu_id)))
1214 return -EFAULT;
1215
1216 return 0;
1217 }
1218
1219 case NE_GET_IMAGE_LOAD_INFO: {
1220 struct ne_image_load_info image_load_info = {};
1221
1222 if (copy_from_user(to: &image_load_info, from: (void __user *)arg, n: sizeof(image_load_info)))
1223 return -EFAULT;
1224
1225 mutex_lock(&ne_enclave->enclave_info_mutex);
1226
1227 if (ne_enclave->state != NE_STATE_INIT) {
1228 dev_err_ratelimited(ne_misc_dev.this_device,
1229 "Enclave is not in init state\n");
1230
1231 mutex_unlock(lock: &ne_enclave->enclave_info_mutex);
1232
1233 return -NE_ERR_NOT_IN_INIT_STATE;
1234 }
1235
1236 mutex_unlock(lock: &ne_enclave->enclave_info_mutex);
1237
1238 if (!image_load_info.flags ||
1239 image_load_info.flags >= NE_IMAGE_LOAD_MAX_FLAG_VAL) {
1240 dev_err_ratelimited(ne_misc_dev.this_device,
1241 "Incorrect flag in enclave image load info\n");
1242
1243 return -NE_ERR_INVALID_FLAG_VALUE;
1244 }
1245
1246 if (image_load_info.flags == NE_EIF_IMAGE)
1247 image_load_info.memory_offset = NE_EIF_LOAD_OFFSET;
1248
1249 if (copy_to_user(to: (void __user *)arg, from: &image_load_info, n: sizeof(image_load_info)))
1250 return -EFAULT;
1251
1252 return 0;
1253 }
1254
1255 case NE_SET_USER_MEMORY_REGION: {
1256 struct ne_user_memory_region mem_region = {};
1257 int rc = -EINVAL;
1258
1259 if (copy_from_user(to: &mem_region, from: (void __user *)arg, n: sizeof(mem_region)))
1260 return -EFAULT;
1261
1262 if (mem_region.flags >= NE_MEMORY_REGION_MAX_FLAG_VAL) {
1263 dev_err_ratelimited(ne_misc_dev.this_device,
1264 "Incorrect flag for user memory region\n");
1265
1266 return -NE_ERR_INVALID_FLAG_VALUE;
1267 }
1268
1269 mutex_lock(&ne_enclave->enclave_info_mutex);
1270
1271 if (ne_enclave->state != NE_STATE_INIT) {
1272 dev_err_ratelimited(ne_misc_dev.this_device,
1273 "Enclave is not in init state\n");
1274
1275 mutex_unlock(lock: &ne_enclave->enclave_info_mutex);
1276
1277 return -NE_ERR_NOT_IN_INIT_STATE;
1278 }
1279
1280 rc = ne_set_user_memory_region_ioctl(ne_enclave, mem_region);
1281 if (rc < 0) {
1282 mutex_unlock(lock: &ne_enclave->enclave_info_mutex);
1283
1284 return rc;
1285 }
1286
1287 mutex_unlock(lock: &ne_enclave->enclave_info_mutex);
1288
1289 return 0;
1290 }
1291
1292 case NE_START_ENCLAVE: {
1293 struct ne_enclave_start_info enclave_start_info = {};
1294 int rc = -EINVAL;
1295
1296 if (copy_from_user(to: &enclave_start_info, from: (void __user *)arg,
1297 n: sizeof(enclave_start_info)))
1298 return -EFAULT;
1299
1300 if (enclave_start_info.flags >= NE_ENCLAVE_START_MAX_FLAG_VAL) {
1301 dev_err_ratelimited(ne_misc_dev.this_device,
1302 "Incorrect flag in enclave start info\n");
1303
1304 return -NE_ERR_INVALID_FLAG_VALUE;
1305 }
1306
1307 /*
1308 * Do not use well-known CIDs - 0, 1, 2 - for enclaves.
1309 * VMADDR_CID_ANY = -1U
1310 * VMADDR_CID_HYPERVISOR = 0
1311 * VMADDR_CID_LOCAL = 1
1312 * VMADDR_CID_HOST = 2
1313 * Note: 0 is used as a placeholder to auto-generate an enclave CID.
1314 * http://man7.org/linux/man-pages/man7/vsock.7.html
1315 */
1316 if (enclave_start_info.enclave_cid > 0 &&
1317 enclave_start_info.enclave_cid <= VMADDR_CID_HOST) {
1318 dev_err_ratelimited(ne_misc_dev.this_device,
1319 "Well-known CID value, not to be used for enclaves\n");
1320
1321 return -NE_ERR_INVALID_ENCLAVE_CID;
1322 }
1323
1324 if (enclave_start_info.enclave_cid == U32_MAX) {
1325 dev_err_ratelimited(ne_misc_dev.this_device,
1326 "Well-known CID value, not to be used for enclaves\n");
1327
1328 return -NE_ERR_INVALID_ENCLAVE_CID;
1329 }
1330
1331 /*
1332 * Do not use the CID of the primary / parent VM for enclaves.
1333 */
1334 if (enclave_start_info.enclave_cid == NE_PARENT_VM_CID) {
1335 dev_err_ratelimited(ne_misc_dev.this_device,
1336 "CID of the parent VM, not to be used for enclaves\n");
1337
1338 return -NE_ERR_INVALID_ENCLAVE_CID;
1339 }
1340
1341 /* 64-bit CIDs are not yet supported for the vsock device. */
1342 if (enclave_start_info.enclave_cid > U32_MAX) {
1343 dev_err_ratelimited(ne_misc_dev.this_device,
1344 "64-bit CIDs not yet supported for the vsock device\n");
1345
1346 return -NE_ERR_INVALID_ENCLAVE_CID;
1347 }
1348
1349 mutex_lock(&ne_enclave->enclave_info_mutex);
1350
1351 if (ne_enclave->state != NE_STATE_INIT) {
1352 dev_err_ratelimited(ne_misc_dev.this_device,
1353 "Enclave is not in init state\n");
1354
1355 mutex_unlock(lock: &ne_enclave->enclave_info_mutex);
1356
1357 return -NE_ERR_NOT_IN_INIT_STATE;
1358 }
1359
1360 rc = ne_start_enclave_ioctl(ne_enclave, enclave_start_info: &enclave_start_info);
1361 if (rc < 0) {
1362 mutex_unlock(lock: &ne_enclave->enclave_info_mutex);
1363
1364 return rc;
1365 }
1366
1367 mutex_unlock(lock: &ne_enclave->enclave_info_mutex);
1368
1369 if (copy_to_user(to: (void __user *)arg, from: &enclave_start_info,
1370 n: sizeof(enclave_start_info)))
1371 return -EFAULT;
1372
1373 return 0;
1374 }
1375
1376 default:
1377 return -ENOTTY;
1378 }
1379
1380 return 0;
1381}
1382
1383/**
1384 * ne_enclave_remove_all_mem_region_entries() - Remove all memory region entries
1385 * from the enclave data structure.
1386 * @ne_enclave : Private data associated with the current enclave.
1387 *
1388 * Context: Process context. This function is called with the ne_enclave mutex held.
1389 */
1390static void ne_enclave_remove_all_mem_region_entries(struct ne_enclave *ne_enclave)
1391{
1392 unsigned long i = 0;
1393 struct ne_mem_region *ne_mem_region = NULL;
1394 struct ne_mem_region *ne_mem_region_tmp = NULL;
1395
1396 list_for_each_entry_safe(ne_mem_region, ne_mem_region_tmp,
1397 &ne_enclave->mem_regions_list,
1398 mem_region_list_entry) {
1399 list_del(entry: &ne_mem_region->mem_region_list_entry);
1400
1401 for (i = 0; i < ne_mem_region->nr_pages; i++)
1402 put_page(page: ne_mem_region->pages[i]);
1403
1404 kfree(objp: ne_mem_region->pages);
1405
1406 kfree(objp: ne_mem_region);
1407 }
1408}
1409
1410/**
1411 * ne_enclave_remove_all_vcpu_id_entries() - Remove all vCPU id entries from
1412 * the enclave data structure.
1413 * @ne_enclave : Private data associated with the current enclave.
1414 *
1415 * Context: Process context. This function is called with the ne_enclave mutex held.
1416 */
1417static void ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave *ne_enclave)
1418{
1419 unsigned int cpu = 0;
1420 unsigned int i = 0;
1421
1422 mutex_lock(&ne_cpu_pool.mutex);
1423
1424 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) {
1425 for_each_cpu(cpu, ne_enclave->threads_per_core[i])
1426 /* Update the available NE CPU pool. */
1427 cpumask_set_cpu(cpu, dstp: ne_cpu_pool.avail_threads_per_core[i]);
1428
1429 free_cpumask_var(mask: ne_enclave->threads_per_core[i]);
1430 }
1431
1432 mutex_unlock(lock: &ne_cpu_pool.mutex);
1433
1434 kfree(objp: ne_enclave->threads_per_core);
1435
1436 free_cpumask_var(mask: ne_enclave->vcpu_ids);
1437}
1438
1439/**
1440 * ne_pci_dev_remove_enclave_entry() - Remove the enclave entry from the data
1441 * structure that is part of the NE PCI
1442 * device private data.
1443 * @ne_enclave : Private data associated with the current enclave.
1444 * @ne_pci_dev : Private data associated with the PCI device.
1445 *
1446 * Context: Process context. This function is called with the ne_pci_dev enclave
1447 * mutex held.
1448 */
1449static void ne_pci_dev_remove_enclave_entry(struct ne_enclave *ne_enclave,
1450 struct ne_pci_dev *ne_pci_dev)
1451{
1452 struct ne_enclave *ne_enclave_entry = NULL;
1453 struct ne_enclave *ne_enclave_entry_tmp = NULL;
1454
1455 list_for_each_entry_safe(ne_enclave_entry, ne_enclave_entry_tmp,
1456 &ne_pci_dev->enclaves_list, enclave_list_entry) {
1457 if (ne_enclave_entry->slot_uid == ne_enclave->slot_uid) {
1458 list_del(entry: &ne_enclave_entry->enclave_list_entry);
1459
1460 break;
1461 }
1462 }
1463}
1464
1465/**
1466 * ne_enclave_release() - Release function provided by the enclave file.
1467 * @inode: Inode associated with this file release function.
1468 * @file: File associated with this release function.
1469 *
1470 * Context: Process context.
1471 * Return:
1472 * * 0 on success.
1473 * * Negative return value on failure.
1474 */
1475static int ne_enclave_release(struct inode *inode, struct file *file)
1476{
1477 struct ne_pci_dev_cmd_reply cmd_reply = {};
1478 struct enclave_stop_req enclave_stop_request = {};
1479 struct ne_enclave *ne_enclave = file->private_data;
1480 struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
1481 struct pci_dev *pdev = ne_pci_dev->pdev;
1482 int rc = -EINVAL;
1483 struct slot_free_req slot_free_req = {};
1484
1485 if (!ne_enclave)
1486 return 0;
1487
1488 /*
1489 * Early exit in case there is an error in the enclave creation logic
1490 * and fput() is called on the cleanup path.
1491 */
1492 if (!ne_enclave->slot_uid)
1493 return 0;
1494
1495 /*
1496 * Acquire the enclave list mutex before the enclave mutex
1497 * in order to avoid deadlocks with @ref ne_event_work_handler.
1498 */
1499 mutex_lock(&ne_pci_dev->enclaves_list_mutex);
1500 mutex_lock(&ne_enclave->enclave_info_mutex);
1501
1502 if (ne_enclave->state != NE_STATE_INIT && ne_enclave->state != NE_STATE_STOPPED) {
1503 enclave_stop_request.slot_uid = ne_enclave->slot_uid;
1504
1505 rc = ne_do_request(pdev, cmd_type: ENCLAVE_STOP,
1506 cmd_request: &enclave_stop_request, cmd_request_size: sizeof(enclave_stop_request),
1507 cmd_reply: &cmd_reply, cmd_reply_size: sizeof(cmd_reply));
1508 if (rc < 0) {
1509 dev_err_ratelimited(ne_misc_dev.this_device,
1510 "Error in enclave stop [rc=%d]\n", rc);
1511
1512 goto unlock_mutex;
1513 }
1514
1515 memset(&cmd_reply, 0, sizeof(cmd_reply));
1516 }
1517
1518 slot_free_req.slot_uid = ne_enclave->slot_uid;
1519
1520 rc = ne_do_request(pdev, cmd_type: SLOT_FREE,
1521 cmd_request: &slot_free_req, cmd_request_size: sizeof(slot_free_req),
1522 cmd_reply: &cmd_reply, cmd_reply_size: sizeof(cmd_reply));
1523 if (rc < 0) {
1524 dev_err_ratelimited(ne_misc_dev.this_device,
1525 "Error in slot free [rc=%d]\n", rc);
1526
1527 goto unlock_mutex;
1528 }
1529
1530 ne_pci_dev_remove_enclave_entry(ne_enclave, ne_pci_dev);
1531 ne_enclave_remove_all_mem_region_entries(ne_enclave);
1532 ne_enclave_remove_all_vcpu_id_entries(ne_enclave);
1533
1534 mutex_unlock(lock: &ne_enclave->enclave_info_mutex);
1535 mutex_unlock(lock: &ne_pci_dev->enclaves_list_mutex);
1536
1537 kfree(objp: ne_enclave);
1538
1539 return 0;
1540
1541unlock_mutex:
1542 mutex_unlock(lock: &ne_enclave->enclave_info_mutex);
1543 mutex_unlock(lock: &ne_pci_dev->enclaves_list_mutex);
1544
1545 return rc;
1546}
1547
1548/**
1549 * ne_enclave_poll() - Poll functionality used for enclave out-of-band events.
1550 * @file: File associated with this poll function.
1551 * @wait: Poll table data structure.
1552 *
1553 * Context: Process context.
1554 * Return:
1555 * * Poll mask.
1556 */
1557static __poll_t ne_enclave_poll(struct file *file, poll_table *wait)
1558{
1559 __poll_t mask = 0;
1560 struct ne_enclave *ne_enclave = file->private_data;
1561
1562 poll_wait(filp: file, wait_address: &ne_enclave->eventq, p: wait);
1563
1564 if (ne_enclave->has_event)
1565 mask |= EPOLLHUP;
1566
1567 return mask;
1568}
1569
1570static const struct file_operations ne_enclave_fops = {
1571 .owner = THIS_MODULE,
1572 .llseek = noop_llseek,
1573 .poll = ne_enclave_poll,
1574 .unlocked_ioctl = ne_enclave_ioctl,
1575 .release = ne_enclave_release,
1576};
1577
1578/**
1579 * ne_create_vm_ioctl() - Alloc slot to be associated with an enclave. Create
1580 * enclave file descriptor to be further used for enclave
1581 * resources handling e.g. memory regions and CPUs.
1582 * @ne_pci_dev : Private data associated with the PCI device.
1583 * @slot_uid: User pointer to store the generated unique slot id
1584 * associated with an enclave to.
1585 *
1586 * Context: Process context. This function is called with the ne_pci_dev enclave
1587 * mutex held.
1588 * Return:
1589 * * Enclave fd on success.
1590 * * Negative return value on failure.
1591 */
1592static int ne_create_vm_ioctl(struct ne_pci_dev *ne_pci_dev, u64 __user *slot_uid)
1593{
1594 struct ne_pci_dev_cmd_reply cmd_reply = {};
1595 int enclave_fd = -1;
1596 struct file *enclave_file = NULL;
1597 unsigned int i = 0;
1598 struct ne_enclave *ne_enclave = NULL;
1599 struct pci_dev *pdev = ne_pci_dev->pdev;
1600 int rc = -EINVAL;
1601 struct slot_alloc_req slot_alloc_req = {};
1602
1603 mutex_lock(&ne_cpu_pool.mutex);
1604
1605 for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
1606 if (!cpumask_empty(srcp: ne_cpu_pool.avail_threads_per_core[i]))
1607 break;
1608
1609 if (i == ne_cpu_pool.nr_parent_vm_cores) {
1610 dev_err_ratelimited(ne_misc_dev.this_device,
1611 "No CPUs available in CPU pool\n");
1612
1613 mutex_unlock(lock: &ne_cpu_pool.mutex);
1614
1615 return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
1616 }
1617
1618 mutex_unlock(lock: &ne_cpu_pool.mutex);
1619
1620 ne_enclave = kzalloc(size: sizeof(*ne_enclave), GFP_KERNEL);
1621 if (!ne_enclave)
1622 return -ENOMEM;
1623
1624 mutex_lock(&ne_cpu_pool.mutex);
1625
1626 ne_enclave->nr_parent_vm_cores = ne_cpu_pool.nr_parent_vm_cores;
1627 ne_enclave->nr_threads_per_core = ne_cpu_pool.nr_threads_per_core;
1628 ne_enclave->numa_node = ne_cpu_pool.numa_node;
1629
1630 mutex_unlock(lock: &ne_cpu_pool.mutex);
1631
1632 ne_enclave->threads_per_core = kcalloc(n: ne_enclave->nr_parent_vm_cores,
1633 size: sizeof(*ne_enclave->threads_per_core),
1634 GFP_KERNEL);
1635 if (!ne_enclave->threads_per_core) {
1636 rc = -ENOMEM;
1637
1638 goto free_ne_enclave;
1639 }
1640
1641 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1642 if (!zalloc_cpumask_var(mask: &ne_enclave->threads_per_core[i], GFP_KERNEL)) {
1643 rc = -ENOMEM;
1644
1645 goto free_cpumask;
1646 }
1647
1648 if (!zalloc_cpumask_var(mask: &ne_enclave->vcpu_ids, GFP_KERNEL)) {
1649 rc = -ENOMEM;
1650
1651 goto free_cpumask;
1652 }
1653
1654 enclave_fd = get_unused_fd_flags(O_CLOEXEC);
1655 if (enclave_fd < 0) {
1656 rc = enclave_fd;
1657
1658 dev_err_ratelimited(ne_misc_dev.this_device,
1659 "Error in getting unused fd [rc=%d]\n", rc);
1660
1661 goto free_cpumask;
1662 }
1663
1664 enclave_file = anon_inode_getfile(name: "ne-vm", fops: &ne_enclave_fops, priv: ne_enclave, O_RDWR);
1665 if (IS_ERR(ptr: enclave_file)) {
1666 rc = PTR_ERR(ptr: enclave_file);
1667
1668 dev_err_ratelimited(ne_misc_dev.this_device,
1669 "Error in anon inode get file [rc=%d]\n", rc);
1670
1671 goto put_fd;
1672 }
1673
1674 rc = ne_do_request(pdev, cmd_type: SLOT_ALLOC,
1675 cmd_request: &slot_alloc_req, cmd_request_size: sizeof(slot_alloc_req),
1676 cmd_reply: &cmd_reply, cmd_reply_size: sizeof(cmd_reply));
1677 if (rc < 0) {
1678 dev_err_ratelimited(ne_misc_dev.this_device,
1679 "Error in slot alloc [rc=%d]\n", rc);
1680
1681 goto put_file;
1682 }
1683
1684 init_waitqueue_head(&ne_enclave->eventq);
1685 ne_enclave->has_event = false;
1686 mutex_init(&ne_enclave->enclave_info_mutex);
1687 ne_enclave->max_mem_regions = cmd_reply.mem_regions;
1688 INIT_LIST_HEAD(list: &ne_enclave->mem_regions_list);
1689 ne_enclave->mm = current->mm;
1690 ne_enclave->slot_uid = cmd_reply.slot_uid;
1691 ne_enclave->state = NE_STATE_INIT;
1692
1693 list_add(new: &ne_enclave->enclave_list_entry, head: &ne_pci_dev->enclaves_list);
1694
1695 if (copy_to_user(to: slot_uid, from: &ne_enclave->slot_uid, n: sizeof(ne_enclave->slot_uid))) {
1696 /*
1697 * As we're holding the only reference to 'enclave_file', fput()
1698 * will call ne_enclave_release() which will do a proper cleanup
1699 * of all so far allocated resources, leaving only the unused fd
1700 * for us to free.
1701 */
1702 fput(enclave_file);
1703 put_unused_fd(fd: enclave_fd);
1704
1705 return -EFAULT;
1706 }
1707
1708 fd_install(fd: enclave_fd, file: enclave_file);
1709
1710 return enclave_fd;
1711
1712put_file:
1713 fput(enclave_file);
1714put_fd:
1715 put_unused_fd(fd: enclave_fd);
1716free_cpumask:
1717 free_cpumask_var(mask: ne_enclave->vcpu_ids);
1718 for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
1719 free_cpumask_var(mask: ne_enclave->threads_per_core[i]);
1720 kfree(objp: ne_enclave->threads_per_core);
1721free_ne_enclave:
1722 kfree(objp: ne_enclave);
1723
1724 return rc;
1725}
1726
1727/**
1728 * ne_ioctl() - Ioctl function provided by the NE misc device.
1729 * @file: File associated with this ioctl function.
1730 * @cmd: The command that is set for the ioctl call.
1731 * @arg: The argument that is provided for the ioctl call.
1732 *
1733 * Context: Process context.
1734 * Return:
1735 * * Ioctl result (e.g. enclave file descriptor) on success.
1736 * * Negative return value on failure.
1737 */
1738static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1739{
1740 switch (cmd) {
1741 case NE_CREATE_VM: {
1742 int enclave_fd = -1;
1743 struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
1744 u64 __user *slot_uid = (void __user *)arg;
1745
1746 mutex_lock(&ne_pci_dev->enclaves_list_mutex);
1747 enclave_fd = ne_create_vm_ioctl(ne_pci_dev, slot_uid);
1748 mutex_unlock(lock: &ne_pci_dev->enclaves_list_mutex);
1749
1750 return enclave_fd;
1751 }
1752
1753 default:
1754 return -ENOTTY;
1755 }
1756
1757 return 0;
1758}
1759
1760#if defined(CONFIG_NITRO_ENCLAVES_MISC_DEV_TEST)
1761#include "ne_misc_dev_test.c"
1762#endif
1763
1764static int __init ne_init(void)
1765{
1766 mutex_init(&ne_cpu_pool.mutex);
1767
1768 return pci_register_driver(&ne_pci_driver);
1769}
1770
1771static void __exit ne_exit(void)
1772{
1773 pci_unregister_driver(dev: &ne_pci_driver);
1774
1775 ne_teardown_cpu_pool();
1776}
1777
1778module_init(ne_init);
1779module_exit(ne_exit);
1780
1781MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
1782MODULE_DESCRIPTION("Nitro Enclaves Driver");
1783MODULE_LICENSE("GPL v2");
1784

source code of linux/drivers/virt/nitro_enclaves/ne_misc_dev.c