| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (C) 2008 Oracle. All rights reserved. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/kernel.h> |
| 7 | #include <linux/bio.h> |
| 8 | #include <linux/file.h> |
| 9 | #include <linux/fs.h> |
| 10 | #include <linux/pagemap.h> |
| 11 | #include <linux/pagevec.h> |
| 12 | #include <linux/highmem.h> |
| 13 | #include <linux/kthread.h> |
| 14 | #include <linux/time.h> |
| 15 | #include <linux/init.h> |
| 16 | #include <linux/string.h> |
| 17 | #include <linux/backing-dev.h> |
| 18 | #include <linux/writeback.h> |
| 19 | #include <linux/psi.h> |
| 20 | #include <linux/slab.h> |
| 21 | #include <linux/sched/mm.h> |
| 22 | #include <linux/log2.h> |
| 23 | #include <linux/shrinker.h> |
| 24 | #include <crypto/hash.h> |
| 25 | #include "misc.h" |
| 26 | #include "ctree.h" |
| 27 | #include "fs.h" |
| 28 | #include "btrfs_inode.h" |
| 29 | #include "bio.h" |
| 30 | #include "ordered-data.h" |
| 31 | #include "compression.h" |
| 32 | #include "extent_io.h" |
| 33 | #include "extent_map.h" |
| 34 | #include "subpage.h" |
| 35 | #include "messages.h" |
| 36 | #include "super.h" |
| 37 | |
| 38 | static struct bio_set btrfs_compressed_bioset; |
| 39 | |
| 40 | static const char* const btrfs_compress_types[] = { "" , "zlib" , "lzo" , "zstd" }; |
| 41 | |
| 42 | const char* btrfs_compress_type2str(enum btrfs_compression_type type) |
| 43 | { |
| 44 | switch (type) { |
| 45 | case BTRFS_COMPRESS_ZLIB: |
| 46 | case BTRFS_COMPRESS_LZO: |
| 47 | case BTRFS_COMPRESS_ZSTD: |
| 48 | case BTRFS_COMPRESS_NONE: |
| 49 | return btrfs_compress_types[type]; |
| 50 | default: |
| 51 | break; |
| 52 | } |
| 53 | |
| 54 | return NULL; |
| 55 | } |
| 56 | |
| 57 | static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio) |
| 58 | { |
| 59 | return container_of(bbio, struct compressed_bio, bbio); |
| 60 | } |
| 61 | |
| 62 | static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode, |
| 63 | u64 start, blk_opf_t op, |
| 64 | btrfs_bio_end_io_t end_io) |
| 65 | { |
| 66 | struct btrfs_bio *bbio; |
| 67 | |
| 68 | bbio = btrfs_bio(bio: bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, opf: op, |
| 69 | GFP_NOFS, bs: &btrfs_compressed_bioset)); |
| 70 | btrfs_bio_init(bbio, inode, file_offset: start, end_io, NULL); |
| 71 | return to_compressed_bio(bbio); |
| 72 | } |
| 73 | |
| 74 | bool btrfs_compress_is_valid_type(const char *str, size_t len) |
| 75 | { |
| 76 | int i; |
| 77 | |
| 78 | for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { |
| 79 | size_t comp_len = strlen(btrfs_compress_types[i]); |
| 80 | |
| 81 | if (len < comp_len) |
| 82 | continue; |
| 83 | |
| 84 | if (!strncmp(btrfs_compress_types[i], str, comp_len)) |
| 85 | return true; |
| 86 | } |
| 87 | return false; |
| 88 | } |
| 89 | |
| 90 | static int compression_compress_pages(int type, struct list_head *ws, |
| 91 | struct btrfs_inode *inode, u64 start, |
| 92 | struct folio **folios, unsigned long *out_folios, |
| 93 | unsigned long *total_in, unsigned long *total_out) |
| 94 | { |
| 95 | switch (type) { |
| 96 | case BTRFS_COMPRESS_ZLIB: |
| 97 | return zlib_compress_folios(ws, inode, start, folios, |
| 98 | out_folios, total_in, total_out); |
| 99 | case BTRFS_COMPRESS_LZO: |
| 100 | return lzo_compress_folios(ws, inode, start, folios, |
| 101 | out_folios, total_in, total_out); |
| 102 | case BTRFS_COMPRESS_ZSTD: |
| 103 | return zstd_compress_folios(ws, inode, start, folios, |
| 104 | out_folios, total_in, total_out); |
| 105 | case BTRFS_COMPRESS_NONE: |
| 106 | default: |
| 107 | /* |
| 108 | * This can happen when compression races with remount setting |
| 109 | * it to 'no compress', while caller doesn't call |
| 110 | * inode_need_compress() to check if we really need to |
| 111 | * compress. |
| 112 | * |
| 113 | * Not a big deal, just need to inform caller that we |
| 114 | * haven't allocated any pages yet. |
| 115 | */ |
| 116 | *out_folios = 0; |
| 117 | return -E2BIG; |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | static int compression_decompress_bio(struct list_head *ws, |
| 122 | struct compressed_bio *cb) |
| 123 | { |
| 124 | switch (cb->compress_type) { |
| 125 | case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); |
| 126 | case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); |
| 127 | case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); |
| 128 | case BTRFS_COMPRESS_NONE: |
| 129 | default: |
| 130 | /* |
| 131 | * This can't happen, the type is validated several times |
| 132 | * before we get here. |
| 133 | */ |
| 134 | BUG(); |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | static int compression_decompress(int type, struct list_head *ws, |
| 139 | const u8 *data_in, struct folio *dest_folio, |
| 140 | unsigned long dest_pgoff, size_t srclen, size_t destlen) |
| 141 | { |
| 142 | switch (type) { |
| 143 | case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_folio, |
| 144 | dest_pgoff, srclen, destlen); |
| 145 | case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_folio, |
| 146 | dest_pgoff, srclen, destlen); |
| 147 | case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_folio, |
| 148 | dest_pgoff, srclen, destlen); |
| 149 | case BTRFS_COMPRESS_NONE: |
| 150 | default: |
| 151 | /* |
| 152 | * This can't happen, the type is validated several times |
| 153 | * before we get here. |
| 154 | */ |
| 155 | BUG(); |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | static void btrfs_free_compressed_folios(struct compressed_bio *cb) |
| 160 | { |
| 161 | for (unsigned int i = 0; i < cb->nr_folios; i++) |
| 162 | btrfs_free_compr_folio(folio: cb->compressed_folios[i]); |
| 163 | kfree(objp: cb->compressed_folios); |
| 164 | } |
| 165 | |
| 166 | static int btrfs_decompress_bio(struct compressed_bio *cb); |
| 167 | |
| 168 | /* |
| 169 | * Global cache of last unused pages for compression/decompression. |
| 170 | */ |
| 171 | static struct btrfs_compr_pool { |
| 172 | struct shrinker *shrinker; |
| 173 | spinlock_t lock; |
| 174 | struct list_head list; |
| 175 | int count; |
| 176 | int thresh; |
| 177 | } compr_pool; |
| 178 | |
| 179 | static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc) |
| 180 | { |
| 181 | int ret; |
| 182 | |
| 183 | /* |
| 184 | * We must not read the values more than once if 'ret' gets expanded in |
| 185 | * the return statement so we don't accidentally return a negative |
| 186 | * number, even if the first condition finds it positive. |
| 187 | */ |
| 188 | ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh); |
| 189 | |
| 190 | return ret > 0 ? ret : 0; |
| 191 | } |
| 192 | |
| 193 | static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc) |
| 194 | { |
| 195 | LIST_HEAD(remove); |
| 196 | struct list_head *tmp, *next; |
| 197 | int freed; |
| 198 | |
| 199 | if (compr_pool.count == 0) |
| 200 | return SHRINK_STOP; |
| 201 | |
| 202 | /* For now, just simply drain the whole list. */ |
| 203 | spin_lock(lock: &compr_pool.lock); |
| 204 | list_splice_init(list: &compr_pool.list, head: &remove); |
| 205 | freed = compr_pool.count; |
| 206 | compr_pool.count = 0; |
| 207 | spin_unlock(lock: &compr_pool.lock); |
| 208 | |
| 209 | list_for_each_safe(tmp, next, &remove) { |
| 210 | struct page *page = list_entry(tmp, struct page, lru); |
| 211 | |
| 212 | ASSERT(page_ref_count(page) == 1); |
| 213 | put_page(page); |
| 214 | } |
| 215 | |
| 216 | return freed; |
| 217 | } |
| 218 | |
| 219 | /* |
| 220 | * Common wrappers for page allocation from compression wrappers |
| 221 | */ |
| 222 | struct folio *btrfs_alloc_compr_folio(struct btrfs_fs_info *fs_info) |
| 223 | { |
| 224 | struct folio *folio = NULL; |
| 225 | |
| 226 | /* For bs > ps cases, no cached folio pool for now. */ |
| 227 | if (fs_info->block_min_order) |
| 228 | goto alloc; |
| 229 | |
| 230 | spin_lock(lock: &compr_pool.lock); |
| 231 | if (compr_pool.count > 0) { |
| 232 | folio = list_first_entry(&compr_pool.list, struct folio, lru); |
| 233 | list_del_init(entry: &folio->lru); |
| 234 | compr_pool.count--; |
| 235 | } |
| 236 | spin_unlock(lock: &compr_pool.lock); |
| 237 | |
| 238 | if (folio) |
| 239 | return folio; |
| 240 | |
| 241 | alloc: |
| 242 | return folio_alloc(GFP_NOFS, fs_info->block_min_order); |
| 243 | } |
| 244 | |
| 245 | void btrfs_free_compr_folio(struct folio *folio) |
| 246 | { |
| 247 | bool do_free = false; |
| 248 | |
| 249 | /* The folio is from bs > ps fs, no cached pool for now. */ |
| 250 | if (folio_order(folio)) |
| 251 | goto free; |
| 252 | |
| 253 | spin_lock(lock: &compr_pool.lock); |
| 254 | if (compr_pool.count > compr_pool.thresh) { |
| 255 | do_free = true; |
| 256 | } else { |
| 257 | list_add(new: &folio->lru, head: &compr_pool.list); |
| 258 | compr_pool.count++; |
| 259 | } |
| 260 | spin_unlock(lock: &compr_pool.lock); |
| 261 | |
| 262 | if (!do_free) |
| 263 | return; |
| 264 | |
| 265 | free: |
| 266 | ASSERT(folio_ref_count(folio) == 1); |
| 267 | folio_put(folio); |
| 268 | } |
| 269 | |
| 270 | static void end_bbio_compressed_read(struct btrfs_bio *bbio) |
| 271 | { |
| 272 | struct compressed_bio *cb = to_compressed_bio(bbio); |
| 273 | blk_status_t status = bbio->bio.bi_status; |
| 274 | |
| 275 | if (!status) |
| 276 | status = errno_to_blk_status(errno: btrfs_decompress_bio(cb)); |
| 277 | |
| 278 | btrfs_free_compressed_folios(cb); |
| 279 | btrfs_bio_end_io(bbio: cb->orig_bbio, status); |
| 280 | bio_put(&bbio->bio); |
| 281 | } |
| 282 | |
| 283 | /* |
| 284 | * Clear the writeback bits on all of the file |
| 285 | * pages for a compressed write |
| 286 | */ |
| 287 | static noinline void end_compressed_writeback(const struct compressed_bio *cb) |
| 288 | { |
| 289 | struct inode *inode = &cb->bbio.inode->vfs_inode; |
| 290 | struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); |
| 291 | pgoff_t index = cb->start >> PAGE_SHIFT; |
| 292 | const pgoff_t end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; |
| 293 | struct folio_batch fbatch; |
| 294 | int i; |
| 295 | int ret; |
| 296 | |
| 297 | ret = blk_status_to_errno(status: cb->bbio.bio.bi_status); |
| 298 | if (ret) |
| 299 | mapping_set_error(mapping: inode->i_mapping, error: ret); |
| 300 | |
| 301 | folio_batch_init(fbatch: &fbatch); |
| 302 | while (index <= end_index) { |
| 303 | ret = filemap_get_folios(mapping: inode->i_mapping, start: &index, end: end_index, |
| 304 | fbatch: &fbatch); |
| 305 | |
| 306 | if (ret == 0) |
| 307 | return; |
| 308 | |
| 309 | for (i = 0; i < ret; i++) { |
| 310 | struct folio *folio = fbatch.folios[i]; |
| 311 | |
| 312 | btrfs_folio_clamp_clear_writeback(fs_info, folio, |
| 313 | start: cb->start, len: cb->len); |
| 314 | } |
| 315 | folio_batch_release(fbatch: &fbatch); |
| 316 | } |
| 317 | /* the inode may be gone now */ |
| 318 | } |
| 319 | |
| 320 | /* |
| 321 | * Do the cleanup once all the compressed pages hit the disk. This will clear |
| 322 | * writeback on the file pages and free the compressed pages. |
| 323 | * |
| 324 | * This also calls the writeback end hooks for the file pages so that metadata |
| 325 | * and checksums can be updated in the file. |
| 326 | */ |
| 327 | static void end_bbio_compressed_write(struct btrfs_bio *bbio) |
| 328 | { |
| 329 | struct compressed_bio *cb = to_compressed_bio(bbio); |
| 330 | |
| 331 | btrfs_finish_ordered_extent(ordered: cb->bbio.ordered, NULL, file_offset: cb->start, len: cb->len, |
| 332 | uptodate: cb->bbio.bio.bi_status == BLK_STS_OK); |
| 333 | |
| 334 | if (cb->writeback) |
| 335 | end_compressed_writeback(cb); |
| 336 | /* Note, our inode could be gone now. */ |
| 337 | btrfs_free_compressed_folios(cb); |
| 338 | bio_put(&cb->bbio.bio); |
| 339 | } |
| 340 | |
| 341 | static void btrfs_add_compressed_bio_folios(struct compressed_bio *cb) |
| 342 | { |
| 343 | struct bio *bio = &cb->bbio.bio; |
| 344 | u32 offset = 0; |
| 345 | unsigned int findex = 0; |
| 346 | |
| 347 | while (offset < cb->compressed_len) { |
| 348 | struct folio *folio = cb->compressed_folios[findex]; |
| 349 | u32 len = min_t(u32, cb->compressed_len - offset, folio_size(folio)); |
| 350 | int ret; |
| 351 | |
| 352 | /* Maximum compressed extent is smaller than bio size limit. */ |
| 353 | ret = bio_add_folio(bio, folio, len, off: 0); |
| 354 | ASSERT(ret); |
| 355 | offset += len; |
| 356 | findex++; |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | /* |
| 361 | * worker function to build and submit bios for previously compressed pages. |
| 362 | * The corresponding pages in the inode should be marked for writeback |
| 363 | * and the compressed pages should have a reference on them for dropping |
| 364 | * when the IO is complete. |
| 365 | * |
| 366 | * This also checksums the file bytes and gets things ready for |
| 367 | * the end io hooks. |
| 368 | */ |
| 369 | void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered, |
| 370 | struct folio **compressed_folios, |
| 371 | unsigned int nr_folios, |
| 372 | blk_opf_t write_flags, |
| 373 | bool writeback) |
| 374 | { |
| 375 | struct btrfs_inode *inode = ordered->inode; |
| 376 | struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| 377 | struct compressed_bio *cb; |
| 378 | |
| 379 | ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize)); |
| 380 | ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize)); |
| 381 | |
| 382 | cb = alloc_compressed_bio(inode, start: ordered->file_offset, |
| 383 | op: REQ_OP_WRITE | write_flags, |
| 384 | end_io: end_bbio_compressed_write); |
| 385 | cb->start = ordered->file_offset; |
| 386 | cb->len = ordered->num_bytes; |
| 387 | cb->compressed_folios = compressed_folios; |
| 388 | cb->compressed_len = ordered->disk_num_bytes; |
| 389 | cb->writeback = writeback; |
| 390 | cb->nr_folios = nr_folios; |
| 391 | cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT; |
| 392 | cb->bbio.ordered = ordered; |
| 393 | btrfs_add_compressed_bio_folios(cb); |
| 394 | |
| 395 | btrfs_submit_bbio(bbio: &cb->bbio, mirror_num: 0); |
| 396 | } |
| 397 | |
| 398 | /* |
| 399 | * Add extra pages in the same compressed file extent so that we don't need to |
| 400 | * re-read the same extent again and again. |
| 401 | * |
| 402 | * NOTE: this won't work well for subpage, as for subpage read, we lock the |
| 403 | * full page then submit bio for each compressed/regular extents. |
| 404 | * |
| 405 | * This means, if we have several sectors in the same page points to the same |
| 406 | * on-disk compressed data, we will re-read the same extent many times and |
| 407 | * this function can only help for the next page. |
| 408 | */ |
| 409 | static noinline int add_ra_bio_pages(struct inode *inode, |
| 410 | u64 compressed_end, |
| 411 | struct compressed_bio *cb, |
| 412 | int *memstall, unsigned long *pflags) |
| 413 | { |
| 414 | struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); |
| 415 | pgoff_t end_index; |
| 416 | struct bio *orig_bio = &cb->orig_bbio->bio; |
| 417 | u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size; |
| 418 | u64 isize = i_size_read(inode); |
| 419 | int ret; |
| 420 | struct folio *folio; |
| 421 | struct extent_map *em; |
| 422 | struct address_space *mapping = inode->i_mapping; |
| 423 | struct extent_map_tree *em_tree; |
| 424 | struct extent_io_tree *tree; |
| 425 | int sectors_missed = 0; |
| 426 | |
| 427 | em_tree = &BTRFS_I(inode)->extent_tree; |
| 428 | tree = &BTRFS_I(inode)->io_tree; |
| 429 | |
| 430 | if (isize == 0) |
| 431 | return 0; |
| 432 | |
| 433 | /* |
| 434 | * For current subpage support, we only support 64K page size, |
| 435 | * which means maximum compressed extent size (128K) is just 2x page |
| 436 | * size. |
| 437 | * This makes readahead less effective, so here disable readahead for |
| 438 | * subpage for now, until full compressed write is supported. |
| 439 | */ |
| 440 | if (fs_info->sectorsize < PAGE_SIZE) |
| 441 | return 0; |
| 442 | |
| 443 | /* For bs > ps cases, we don't support readahead for compressed folios for now. */ |
| 444 | if (fs_info->block_min_order) |
| 445 | return 0; |
| 446 | |
| 447 | end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; |
| 448 | |
| 449 | while (cur < compressed_end) { |
| 450 | pgoff_t page_end; |
| 451 | pgoff_t pg_index = cur >> PAGE_SHIFT; |
| 452 | u32 add_size; |
| 453 | |
| 454 | if (pg_index > end_index) |
| 455 | break; |
| 456 | |
| 457 | folio = filemap_get_folio(mapping, index: pg_index); |
| 458 | if (!IS_ERR(ptr: folio)) { |
| 459 | u64 folio_sz = folio_size(folio); |
| 460 | u64 offset = offset_in_folio(folio, cur); |
| 461 | |
| 462 | folio_put(folio); |
| 463 | sectors_missed += (folio_sz - offset) >> |
| 464 | fs_info->sectorsize_bits; |
| 465 | |
| 466 | /* Beyond threshold, no need to continue */ |
| 467 | if (sectors_missed > 4) |
| 468 | break; |
| 469 | |
| 470 | /* |
| 471 | * Jump to next page start as we already have page for |
| 472 | * current offset. |
| 473 | */ |
| 474 | cur += (folio_sz - offset); |
| 475 | continue; |
| 476 | } |
| 477 | |
| 478 | folio = filemap_alloc_folio(mapping_gfp_constraint(mapping, ~__GFP_FS), |
| 479 | 0, NULL); |
| 480 | if (!folio) |
| 481 | break; |
| 482 | |
| 483 | if (filemap_add_folio(mapping, folio, index: pg_index, GFP_NOFS)) { |
| 484 | /* There is already a page, skip to page end */ |
| 485 | cur += folio_size(folio); |
| 486 | folio_put(folio); |
| 487 | continue; |
| 488 | } |
| 489 | |
| 490 | if (!*memstall && folio_test_workingset(folio)) { |
| 491 | psi_memstall_enter(flags: pflags); |
| 492 | *memstall = 1; |
| 493 | } |
| 494 | |
| 495 | ret = set_folio_extent_mapped(folio); |
| 496 | if (ret < 0) { |
| 497 | folio_unlock(folio); |
| 498 | folio_put(folio); |
| 499 | break; |
| 500 | } |
| 501 | |
| 502 | page_end = (pg_index << PAGE_SHIFT) + folio_size(folio) - 1; |
| 503 | btrfs_lock_extent(tree, start: cur, end: page_end, NULL); |
| 504 | read_lock(&em_tree->lock); |
| 505 | em = btrfs_lookup_extent_mapping(tree: em_tree, start: cur, len: page_end + 1 - cur); |
| 506 | read_unlock(&em_tree->lock); |
| 507 | |
| 508 | /* |
| 509 | * At this point, we have a locked page in the page cache for |
| 510 | * these bytes in the file. But, we have to make sure they map |
| 511 | * to this compressed extent on disk. |
| 512 | */ |
| 513 | if (!em || cur < em->start || |
| 514 | (cur + fs_info->sectorsize > btrfs_extent_map_end(em)) || |
| 515 | (btrfs_extent_map_block_start(em) >> SECTOR_SHIFT) != |
| 516 | orig_bio->bi_iter.bi_sector) { |
| 517 | btrfs_free_extent_map(em); |
| 518 | btrfs_unlock_extent(tree, start: cur, end: page_end, NULL); |
| 519 | folio_unlock(folio); |
| 520 | folio_put(folio); |
| 521 | break; |
| 522 | } |
| 523 | add_size = min(em->start + em->len, page_end + 1) - cur; |
| 524 | btrfs_free_extent_map(em); |
| 525 | btrfs_unlock_extent(tree, start: cur, end: page_end, NULL); |
| 526 | |
| 527 | if (folio_contains(folio, index: end_index)) { |
| 528 | size_t zero_offset = offset_in_folio(folio, isize); |
| 529 | |
| 530 | if (zero_offset) { |
| 531 | int zeros; |
| 532 | zeros = folio_size(folio) - zero_offset; |
| 533 | folio_zero_range(folio, start: zero_offset, length: zeros); |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | if (!bio_add_folio(bio: orig_bio, folio, len: add_size, |
| 538 | offset_in_folio(folio, cur))) { |
| 539 | folio_unlock(folio); |
| 540 | folio_put(folio); |
| 541 | break; |
| 542 | } |
| 543 | /* |
| 544 | * If it's subpage, we also need to increase its |
| 545 | * subpage::readers number, as at endio we will decrease |
| 546 | * subpage::readers and to unlock the page. |
| 547 | */ |
| 548 | if (fs_info->sectorsize < PAGE_SIZE) |
| 549 | btrfs_folio_set_lock(fs_info, folio, start: cur, len: add_size); |
| 550 | folio_put(folio); |
| 551 | cur += add_size; |
| 552 | } |
| 553 | return 0; |
| 554 | } |
| 555 | |
| 556 | /* |
| 557 | * for a compressed read, the bio we get passed has all the inode pages |
| 558 | * in it. We don't actually do IO on those pages but allocate new ones |
| 559 | * to hold the compressed pages on disk. |
| 560 | * |
| 561 | * bio->bi_iter.bi_sector points to the compressed extent on disk |
| 562 | * bio->bi_io_vec points to all of the inode pages |
| 563 | * |
| 564 | * After the compressed pages are read, we copy the bytes into the |
| 565 | * bio we were passed and then call the bio end_io calls |
| 566 | */ |
| 567 | void btrfs_submit_compressed_read(struct btrfs_bio *bbio) |
| 568 | { |
| 569 | struct btrfs_inode *inode = bbio->inode; |
| 570 | struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| 571 | struct extent_map_tree *em_tree = &inode->extent_tree; |
| 572 | struct compressed_bio *cb; |
| 573 | unsigned int compressed_len; |
| 574 | u64 file_offset = bbio->file_offset; |
| 575 | u64 em_len; |
| 576 | u64 em_start; |
| 577 | struct extent_map *em; |
| 578 | unsigned long pflags; |
| 579 | int memstall = 0; |
| 580 | blk_status_t status; |
| 581 | int ret; |
| 582 | |
| 583 | /* we need the actual starting offset of this extent in the file */ |
| 584 | read_lock(&em_tree->lock); |
| 585 | em = btrfs_lookup_extent_mapping(tree: em_tree, start: file_offset, len: fs_info->sectorsize); |
| 586 | read_unlock(&em_tree->lock); |
| 587 | if (!em) { |
| 588 | status = BLK_STS_IOERR; |
| 589 | goto out; |
| 590 | } |
| 591 | |
| 592 | ASSERT(btrfs_extent_map_is_compressed(em)); |
| 593 | compressed_len = em->disk_num_bytes; |
| 594 | |
| 595 | cb = alloc_compressed_bio(inode, start: file_offset, op: REQ_OP_READ, |
| 596 | end_io: end_bbio_compressed_read); |
| 597 | |
| 598 | cb->start = em->start - em->offset; |
| 599 | em_len = em->len; |
| 600 | em_start = em->start; |
| 601 | |
| 602 | cb->len = bbio->bio.bi_iter.bi_size; |
| 603 | cb->compressed_len = compressed_len; |
| 604 | cb->compress_type = btrfs_extent_map_compression(em); |
| 605 | cb->orig_bbio = bbio; |
| 606 | cb->bbio.csum_search_commit_root = bbio->csum_search_commit_root; |
| 607 | |
| 608 | btrfs_free_extent_map(em); |
| 609 | |
| 610 | cb->nr_folios = DIV_ROUND_UP(compressed_len, btrfs_min_folio_size(fs_info)); |
| 611 | cb->compressed_folios = kcalloc(cb->nr_folios, sizeof(struct folio *), GFP_NOFS); |
| 612 | if (!cb->compressed_folios) { |
| 613 | status = BLK_STS_RESOURCE; |
| 614 | goto out_free_bio; |
| 615 | } |
| 616 | |
| 617 | ret = btrfs_alloc_folio_array(nr_folios: cb->nr_folios, order: fs_info->block_min_order, |
| 618 | folio_array: cb->compressed_folios); |
| 619 | if (ret) { |
| 620 | status = BLK_STS_RESOURCE; |
| 621 | goto out_free_compressed_pages; |
| 622 | } |
| 623 | |
| 624 | add_ra_bio_pages(inode: &inode->vfs_inode, compressed_end: em_start + em_len, cb, memstall: &memstall, |
| 625 | pflags: &pflags); |
| 626 | |
| 627 | /* include any pages we added in add_ra-bio_pages */ |
| 628 | cb->len = bbio->bio.bi_iter.bi_size; |
| 629 | cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector; |
| 630 | btrfs_add_compressed_bio_folios(cb); |
| 631 | |
| 632 | if (memstall) |
| 633 | psi_memstall_leave(flags: &pflags); |
| 634 | |
| 635 | btrfs_submit_bbio(bbio: &cb->bbio, mirror_num: 0); |
| 636 | return; |
| 637 | |
| 638 | out_free_compressed_pages: |
| 639 | kfree(objp: cb->compressed_folios); |
| 640 | out_free_bio: |
| 641 | bio_put(&cb->bbio.bio); |
| 642 | out: |
| 643 | btrfs_bio_end_io(bbio, status); |
| 644 | } |
| 645 | |
| 646 | /* |
| 647 | * Heuristic uses systematic sampling to collect data from the input data |
| 648 | * range, the logic can be tuned by the following constants: |
| 649 | * |
| 650 | * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample |
| 651 | * @SAMPLING_INTERVAL - range from which the sampled data can be collected |
| 652 | */ |
| 653 | #define SAMPLING_READ_SIZE (16) |
| 654 | #define SAMPLING_INTERVAL (256) |
| 655 | |
| 656 | /* |
| 657 | * For statistical analysis of the input data we consider bytes that form a |
| 658 | * Galois Field of 256 objects. Each object has an attribute count, ie. how |
| 659 | * many times the object appeared in the sample. |
| 660 | */ |
| 661 | #define BUCKET_SIZE (256) |
| 662 | |
| 663 | /* |
| 664 | * The size of the sample is based on a statistical sampling rule of thumb. |
| 665 | * The common way is to perform sampling tests as long as the number of |
| 666 | * elements in each cell is at least 5. |
| 667 | * |
| 668 | * Instead of 5, we choose 32 to obtain more accurate results. |
| 669 | * If the data contain the maximum number of symbols, which is 256, we obtain a |
| 670 | * sample size bound by 8192. |
| 671 | * |
| 672 | * For a sample of at most 8KB of data per data range: 16 consecutive bytes |
| 673 | * from up to 512 locations. |
| 674 | */ |
| 675 | #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ |
| 676 | SAMPLING_READ_SIZE / SAMPLING_INTERVAL) |
| 677 | |
| 678 | struct bucket_item { |
| 679 | u32 count; |
| 680 | }; |
| 681 | |
| 682 | struct heuristic_ws { |
| 683 | /* Partial copy of input data */ |
| 684 | u8 *sample; |
| 685 | u32 sample_size; |
| 686 | /* Buckets store counters for each byte value */ |
| 687 | struct bucket_item *bucket; |
| 688 | /* Sorting buffer */ |
| 689 | struct bucket_item *bucket_b; |
| 690 | struct list_head list; |
| 691 | }; |
| 692 | |
| 693 | static void free_heuristic_ws(struct list_head *ws) |
| 694 | { |
| 695 | struct heuristic_ws *workspace; |
| 696 | |
| 697 | workspace = list_entry(ws, struct heuristic_ws, list); |
| 698 | |
| 699 | kvfree(addr: workspace->sample); |
| 700 | kfree(objp: workspace->bucket); |
| 701 | kfree(objp: workspace->bucket_b); |
| 702 | kfree(objp: workspace); |
| 703 | } |
| 704 | |
| 705 | static struct list_head *alloc_heuristic_ws(struct btrfs_fs_info *fs_info) |
| 706 | { |
| 707 | struct heuristic_ws *ws; |
| 708 | |
| 709 | ws = kzalloc(sizeof(*ws), GFP_KERNEL); |
| 710 | if (!ws) |
| 711 | return ERR_PTR(error: -ENOMEM); |
| 712 | |
| 713 | ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); |
| 714 | if (!ws->sample) |
| 715 | goto fail; |
| 716 | |
| 717 | ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); |
| 718 | if (!ws->bucket) |
| 719 | goto fail; |
| 720 | |
| 721 | ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); |
| 722 | if (!ws->bucket_b) |
| 723 | goto fail; |
| 724 | |
| 725 | INIT_LIST_HEAD(list: &ws->list); |
| 726 | return &ws->list; |
| 727 | fail: |
| 728 | free_heuristic_ws(ws: &ws->list); |
| 729 | return ERR_PTR(error: -ENOMEM); |
| 730 | } |
| 731 | |
| 732 | const struct btrfs_compress_levels btrfs_heuristic_compress = { 0 }; |
| 733 | |
| 734 | static const struct btrfs_compress_levels * const btrfs_compress_levels[] = { |
| 735 | /* The heuristic is represented as compression type 0 */ |
| 736 | &btrfs_heuristic_compress, |
| 737 | &btrfs_zlib_compress, |
| 738 | &btrfs_lzo_compress, |
| 739 | &btrfs_zstd_compress, |
| 740 | }; |
| 741 | |
| 742 | static struct list_head *alloc_workspace(struct btrfs_fs_info *fs_info, int type, int level) |
| 743 | { |
| 744 | switch (type) { |
| 745 | case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(fs_info); |
| 746 | case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(fs_info, level); |
| 747 | case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(fs_info); |
| 748 | case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(fs_info, level); |
| 749 | default: |
| 750 | /* |
| 751 | * This can't happen, the type is validated several times |
| 752 | * before we get here. |
| 753 | */ |
| 754 | BUG(); |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | static void free_workspace(int type, struct list_head *ws) |
| 759 | { |
| 760 | switch (type) { |
| 761 | case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); |
| 762 | case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); |
| 763 | case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); |
| 764 | case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); |
| 765 | default: |
| 766 | /* |
| 767 | * This can't happen, the type is validated several times |
| 768 | * before we get here. |
| 769 | */ |
| 770 | BUG(); |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | static int alloc_workspace_manager(struct btrfs_fs_info *fs_info, |
| 775 | enum btrfs_compression_type type) |
| 776 | { |
| 777 | struct workspace_manager *gwsm; |
| 778 | struct list_head *workspace; |
| 779 | |
| 780 | ASSERT(fs_info->compr_wsm[type] == NULL); |
| 781 | gwsm = kzalloc(sizeof(*gwsm), GFP_KERNEL); |
| 782 | if (!gwsm) |
| 783 | return -ENOMEM; |
| 784 | |
| 785 | INIT_LIST_HEAD(list: &gwsm->idle_ws); |
| 786 | spin_lock_init(&gwsm->ws_lock); |
| 787 | atomic_set(v: &gwsm->total_ws, i: 0); |
| 788 | init_waitqueue_head(&gwsm->ws_wait); |
| 789 | fs_info->compr_wsm[type] = gwsm; |
| 790 | |
| 791 | /* |
| 792 | * Preallocate one workspace for each compression type so we can |
| 793 | * guarantee forward progress in the worst case |
| 794 | */ |
| 795 | workspace = alloc_workspace(fs_info, type, level: 0); |
| 796 | if (IS_ERR(ptr: workspace)) { |
| 797 | btrfs_warn(fs_info, |
| 798 | "cannot preallocate compression workspace for %s, will try later" , |
| 799 | btrfs_compress_type2str(type)); |
| 800 | } else { |
| 801 | atomic_set(v: &gwsm->total_ws, i: 1); |
| 802 | gwsm->free_ws = 1; |
| 803 | list_add(new: workspace, head: &gwsm->idle_ws); |
| 804 | } |
| 805 | return 0; |
| 806 | } |
| 807 | |
| 808 | static void free_workspace_manager(struct btrfs_fs_info *fs_info, |
| 809 | enum btrfs_compression_type type) |
| 810 | { |
| 811 | struct list_head *ws; |
| 812 | struct workspace_manager *gwsm = fs_info->compr_wsm[type]; |
| 813 | |
| 814 | /* ZSTD uses its own workspace manager, should enter here. */ |
| 815 | ASSERT(type != BTRFS_COMPRESS_ZSTD && type < BTRFS_NR_COMPRESS_TYPES); |
| 816 | if (!gwsm) |
| 817 | return; |
| 818 | fs_info->compr_wsm[type] = NULL; |
| 819 | while (!list_empty(head: &gwsm->idle_ws)) { |
| 820 | ws = gwsm->idle_ws.next; |
| 821 | list_del(entry: ws); |
| 822 | free_workspace(type, ws); |
| 823 | atomic_dec(v: &gwsm->total_ws); |
| 824 | } |
| 825 | kfree(objp: gwsm); |
| 826 | } |
| 827 | |
| 828 | /* |
| 829 | * This finds an available workspace or allocates a new one. |
| 830 | * If it's not possible to allocate a new one, waits until there's one. |
| 831 | * Preallocation makes a forward progress guarantees and we do not return |
| 832 | * errors. |
| 833 | */ |
| 834 | struct list_head *btrfs_get_workspace(struct btrfs_fs_info *fs_info, int type, int level) |
| 835 | { |
| 836 | struct workspace_manager *wsm = fs_info->compr_wsm[type]; |
| 837 | struct list_head *workspace; |
| 838 | int cpus = num_online_cpus(); |
| 839 | unsigned nofs_flag; |
| 840 | struct list_head *idle_ws; |
| 841 | spinlock_t *ws_lock; |
| 842 | atomic_t *total_ws; |
| 843 | wait_queue_head_t *ws_wait; |
| 844 | int *free_ws; |
| 845 | |
| 846 | ASSERT(wsm); |
| 847 | idle_ws = &wsm->idle_ws; |
| 848 | ws_lock = &wsm->ws_lock; |
| 849 | total_ws = &wsm->total_ws; |
| 850 | ws_wait = &wsm->ws_wait; |
| 851 | free_ws = &wsm->free_ws; |
| 852 | |
| 853 | again: |
| 854 | spin_lock(lock: ws_lock); |
| 855 | if (!list_empty(head: idle_ws)) { |
| 856 | workspace = idle_ws->next; |
| 857 | list_del(entry: workspace); |
| 858 | (*free_ws)--; |
| 859 | spin_unlock(lock: ws_lock); |
| 860 | return workspace; |
| 861 | |
| 862 | } |
| 863 | if (atomic_read(v: total_ws) > cpus) { |
| 864 | DEFINE_WAIT(wait); |
| 865 | |
| 866 | spin_unlock(lock: ws_lock); |
| 867 | prepare_to_wait(wq_head: ws_wait, wq_entry: &wait, TASK_UNINTERRUPTIBLE); |
| 868 | if (atomic_read(v: total_ws) > cpus && !*free_ws) |
| 869 | schedule(); |
| 870 | finish_wait(wq_head: ws_wait, wq_entry: &wait); |
| 871 | goto again; |
| 872 | } |
| 873 | atomic_inc(v: total_ws); |
| 874 | spin_unlock(lock: ws_lock); |
| 875 | |
| 876 | /* |
| 877 | * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have |
| 878 | * to turn it off here because we might get called from the restricted |
| 879 | * context of btrfs_compress_bio/btrfs_compress_pages |
| 880 | */ |
| 881 | nofs_flag = memalloc_nofs_save(); |
| 882 | workspace = alloc_workspace(fs_info, type, level); |
| 883 | memalloc_nofs_restore(flags: nofs_flag); |
| 884 | |
| 885 | if (IS_ERR(ptr: workspace)) { |
| 886 | atomic_dec(v: total_ws); |
| 887 | wake_up(ws_wait); |
| 888 | |
| 889 | /* |
| 890 | * Do not return the error but go back to waiting. There's a |
| 891 | * workspace preallocated for each type and the compression |
| 892 | * time is bounded so we get to a workspace eventually. This |
| 893 | * makes our caller's life easier. |
| 894 | * |
| 895 | * To prevent silent and low-probability deadlocks (when the |
| 896 | * initial preallocation fails), check if there are any |
| 897 | * workspaces at all. |
| 898 | */ |
| 899 | if (atomic_read(v: total_ws) == 0) { |
| 900 | static DEFINE_RATELIMIT_STATE(_rs, |
| 901 | /* once per minute */ 60 * HZ, |
| 902 | /* no burst */ 1); |
| 903 | |
| 904 | if (__ratelimit(&_rs)) |
| 905 | btrfs_warn(fs_info, |
| 906 | "no compression workspaces, low memory, retrying" ); |
| 907 | } |
| 908 | goto again; |
| 909 | } |
| 910 | return workspace; |
| 911 | } |
| 912 | |
| 913 | static struct list_head *get_workspace(struct btrfs_fs_info *fs_info, int type, int level) |
| 914 | { |
| 915 | switch (type) { |
| 916 | case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(fs_info, type, level); |
| 917 | case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(fs_info, level); |
| 918 | case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(fs_info, type, level); |
| 919 | case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(fs_info, level); |
| 920 | default: |
| 921 | /* |
| 922 | * This can't happen, the type is validated several times |
| 923 | * before we get here. |
| 924 | */ |
| 925 | BUG(); |
| 926 | } |
| 927 | } |
| 928 | |
| 929 | /* |
| 930 | * put a workspace struct back on the list or free it if we have enough |
| 931 | * idle ones sitting around |
| 932 | */ |
| 933 | void btrfs_put_workspace(struct btrfs_fs_info *fs_info, int type, struct list_head *ws) |
| 934 | { |
| 935 | struct workspace_manager *gwsm = fs_info->compr_wsm[type]; |
| 936 | struct list_head *idle_ws; |
| 937 | spinlock_t *ws_lock; |
| 938 | atomic_t *total_ws; |
| 939 | wait_queue_head_t *ws_wait; |
| 940 | int *free_ws; |
| 941 | |
| 942 | ASSERT(gwsm); |
| 943 | idle_ws = &gwsm->idle_ws; |
| 944 | ws_lock = &gwsm->ws_lock; |
| 945 | total_ws = &gwsm->total_ws; |
| 946 | ws_wait = &gwsm->ws_wait; |
| 947 | free_ws = &gwsm->free_ws; |
| 948 | |
| 949 | spin_lock(lock: ws_lock); |
| 950 | if (*free_ws <= num_online_cpus()) { |
| 951 | list_add(new: ws, head: idle_ws); |
| 952 | (*free_ws)++; |
| 953 | spin_unlock(lock: ws_lock); |
| 954 | goto wake; |
| 955 | } |
| 956 | spin_unlock(lock: ws_lock); |
| 957 | |
| 958 | free_workspace(type, ws); |
| 959 | atomic_dec(v: total_ws); |
| 960 | wake: |
| 961 | cond_wake_up(wq: ws_wait); |
| 962 | } |
| 963 | |
| 964 | static void put_workspace(struct btrfs_fs_info *fs_info, int type, struct list_head *ws) |
| 965 | { |
| 966 | switch (type) { |
| 967 | case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(fs_info, type, ws); |
| 968 | case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(fs_info, type, ws); |
| 969 | case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(fs_info, type, ws); |
| 970 | case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(fs_info, ws); |
| 971 | default: |
| 972 | /* |
| 973 | * This can't happen, the type is validated several times |
| 974 | * before we get here. |
| 975 | */ |
| 976 | BUG(); |
| 977 | } |
| 978 | } |
| 979 | |
| 980 | /* |
| 981 | * Adjust @level according to the limits of the compression algorithm or |
| 982 | * fallback to default |
| 983 | */ |
| 984 | static int btrfs_compress_set_level(unsigned int type, int level) |
| 985 | { |
| 986 | const struct btrfs_compress_levels *levels = btrfs_compress_levels[type]; |
| 987 | |
| 988 | if (level == 0) |
| 989 | level = levels->default_level; |
| 990 | else |
| 991 | level = clamp(level, levels->min_level, levels->max_level); |
| 992 | |
| 993 | return level; |
| 994 | } |
| 995 | |
| 996 | /* |
| 997 | * Check whether the @level is within the valid range for the given type. |
| 998 | */ |
| 999 | bool btrfs_compress_level_valid(unsigned int type, int level) |
| 1000 | { |
| 1001 | const struct btrfs_compress_levels *levels = btrfs_compress_levels[type]; |
| 1002 | |
| 1003 | return levels->min_level <= level && level <= levels->max_level; |
| 1004 | } |
| 1005 | |
| 1006 | /* Wrapper around find_get_page(), with extra error message. */ |
| 1007 | int btrfs_compress_filemap_get_folio(struct address_space *mapping, u64 start, |
| 1008 | struct folio **in_folio_ret) |
| 1009 | { |
| 1010 | struct folio *in_folio; |
| 1011 | |
| 1012 | /* |
| 1013 | * The compressed write path should have the folio locked already, thus |
| 1014 | * we only need to grab one reference. |
| 1015 | */ |
| 1016 | in_folio = filemap_get_folio(mapping, index: start >> PAGE_SHIFT); |
| 1017 | if (IS_ERR(ptr: in_folio)) { |
| 1018 | struct btrfs_inode *inode = BTRFS_I(mapping->host); |
| 1019 | |
| 1020 | btrfs_crit(inode->root->fs_info, |
| 1021 | "failed to get page cache, root %lld ino %llu file offset %llu" , |
| 1022 | btrfs_root_id(inode->root), btrfs_ino(inode), start); |
| 1023 | return -ENOENT; |
| 1024 | } |
| 1025 | *in_folio_ret = in_folio; |
| 1026 | return 0; |
| 1027 | } |
| 1028 | |
| 1029 | /* |
| 1030 | * Given an address space and start and length, compress the bytes into @pages |
| 1031 | * that are allocated on demand. |
| 1032 | * |
| 1033 | * @type_level is encoded algorithm and level, where level 0 means whatever |
| 1034 | * default the algorithm chooses and is opaque here; |
| 1035 | * - compression algo are 0-3 |
| 1036 | * - the level are bits 4-7 |
| 1037 | * |
| 1038 | * @out_folios is an in/out parameter, holds maximum number of folios to allocate |
| 1039 | * and returns number of actually allocated folios |
| 1040 | * |
| 1041 | * @total_in is used to return the number of bytes actually read. It |
| 1042 | * may be smaller than the input length if we had to exit early because we |
| 1043 | * ran out of room in the folios array or because we cross the |
| 1044 | * max_out threshold. |
| 1045 | * |
| 1046 | * @total_out is an in/out parameter, must be set to the input length and will |
| 1047 | * be also used to return the total number of compressed bytes |
| 1048 | */ |
| 1049 | int btrfs_compress_folios(unsigned int type, int level, struct btrfs_inode *inode, |
| 1050 | u64 start, struct folio **folios, unsigned long *out_folios, |
| 1051 | unsigned long *total_in, unsigned long *total_out) |
| 1052 | { |
| 1053 | struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| 1054 | const unsigned long orig_len = *total_out; |
| 1055 | struct list_head *workspace; |
| 1056 | int ret; |
| 1057 | |
| 1058 | level = btrfs_compress_set_level(type, level); |
| 1059 | workspace = get_workspace(fs_info, type, level); |
| 1060 | ret = compression_compress_pages(type, ws: workspace, inode, start, folios, |
| 1061 | out_folios, total_in, total_out); |
| 1062 | /* The total read-in bytes should be no larger than the input. */ |
| 1063 | ASSERT(*total_in <= orig_len); |
| 1064 | put_workspace(fs_info, type, ws: workspace); |
| 1065 | return ret; |
| 1066 | } |
| 1067 | |
| 1068 | static int btrfs_decompress_bio(struct compressed_bio *cb) |
| 1069 | { |
| 1070 | struct btrfs_fs_info *fs_info = cb_to_fs_info(cb); |
| 1071 | struct list_head *workspace; |
| 1072 | int ret; |
| 1073 | int type = cb->compress_type; |
| 1074 | |
| 1075 | workspace = get_workspace(fs_info, type, level: 0); |
| 1076 | ret = compression_decompress_bio(ws: workspace, cb); |
| 1077 | put_workspace(fs_info, type, ws: workspace); |
| 1078 | |
| 1079 | if (!ret) |
| 1080 | zero_fill_bio(bio: &cb->orig_bbio->bio); |
| 1081 | return ret; |
| 1082 | } |
| 1083 | |
| 1084 | /* |
| 1085 | * a less complex decompression routine. Our compressed data fits in a |
| 1086 | * single page, and we want to read a single page out of it. |
| 1087 | * dest_pgoff tells us the offset into the destination folio where we write the |
| 1088 | * decompressed data. |
| 1089 | */ |
| 1090 | int btrfs_decompress(int type, const u8 *data_in, struct folio *dest_folio, |
| 1091 | unsigned long dest_pgoff, size_t srclen, size_t destlen) |
| 1092 | { |
| 1093 | struct btrfs_fs_info *fs_info = folio_to_fs_info(dest_folio); |
| 1094 | struct list_head *workspace; |
| 1095 | const u32 sectorsize = fs_info->sectorsize; |
| 1096 | int ret; |
| 1097 | |
| 1098 | /* |
| 1099 | * The full destination folio range should not exceed the folio size. |
| 1100 | * And the @destlen should not exceed sectorsize, as this is only called for |
| 1101 | * inline file extents, which should not exceed sectorsize. |
| 1102 | */ |
| 1103 | ASSERT(dest_pgoff + destlen <= folio_size(dest_folio) && destlen <= sectorsize); |
| 1104 | |
| 1105 | workspace = get_workspace(fs_info, type, level: 0); |
| 1106 | ret = compression_decompress(type, ws: workspace, data_in, dest_folio, |
| 1107 | dest_pgoff, srclen, destlen); |
| 1108 | put_workspace(fs_info, type, ws: workspace); |
| 1109 | |
| 1110 | return ret; |
| 1111 | } |
| 1112 | |
| 1113 | int btrfs_alloc_compress_wsm(struct btrfs_fs_info *fs_info) |
| 1114 | { |
| 1115 | int ret; |
| 1116 | |
| 1117 | ret = alloc_workspace_manager(fs_info, type: BTRFS_COMPRESS_NONE); |
| 1118 | if (ret < 0) |
| 1119 | goto error; |
| 1120 | ret = alloc_workspace_manager(fs_info, type: BTRFS_COMPRESS_ZLIB); |
| 1121 | if (ret < 0) |
| 1122 | goto error; |
| 1123 | ret = alloc_workspace_manager(fs_info, type: BTRFS_COMPRESS_LZO); |
| 1124 | if (ret < 0) |
| 1125 | goto error; |
| 1126 | ret = zstd_alloc_workspace_manager(fs_info); |
| 1127 | if (ret < 0) |
| 1128 | goto error; |
| 1129 | return 0; |
| 1130 | error: |
| 1131 | btrfs_free_compress_wsm(fs_info); |
| 1132 | return ret; |
| 1133 | } |
| 1134 | |
| 1135 | void btrfs_free_compress_wsm(struct btrfs_fs_info *fs_info) |
| 1136 | { |
| 1137 | free_workspace_manager(fs_info, type: BTRFS_COMPRESS_NONE); |
| 1138 | free_workspace_manager(fs_info, type: BTRFS_COMPRESS_ZLIB); |
| 1139 | free_workspace_manager(fs_info, type: BTRFS_COMPRESS_LZO); |
| 1140 | zstd_free_workspace_manager(fs_info); |
| 1141 | } |
| 1142 | |
| 1143 | int __init btrfs_init_compress(void) |
| 1144 | { |
| 1145 | if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE, |
| 1146 | offsetof(struct compressed_bio, bbio.bio), |
| 1147 | flags: BIOSET_NEED_BVECS)) |
| 1148 | return -ENOMEM; |
| 1149 | |
| 1150 | compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, fmt: "btrfs-compr-pages" ); |
| 1151 | if (!compr_pool.shrinker) |
| 1152 | return -ENOMEM; |
| 1153 | |
| 1154 | spin_lock_init(&compr_pool.lock); |
| 1155 | INIT_LIST_HEAD(list: &compr_pool.list); |
| 1156 | compr_pool.count = 0; |
| 1157 | /* 128K / 4K = 32, for 8 threads is 256 pages. */ |
| 1158 | compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8; |
| 1159 | compr_pool.shrinker->count_objects = btrfs_compr_pool_count; |
| 1160 | compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan; |
| 1161 | compr_pool.shrinker->batch = 32; |
| 1162 | compr_pool.shrinker->seeks = DEFAULT_SEEKS; |
| 1163 | shrinker_register(shrinker: compr_pool.shrinker); |
| 1164 | |
| 1165 | return 0; |
| 1166 | } |
| 1167 | |
| 1168 | void __cold btrfs_exit_compress(void) |
| 1169 | { |
| 1170 | /* For now scan drains all pages and does not touch the parameters. */ |
| 1171 | btrfs_compr_pool_scan(NULL, NULL); |
| 1172 | shrinker_free(shrinker: compr_pool.shrinker); |
| 1173 | |
| 1174 | bioset_exit(&btrfs_compressed_bioset); |
| 1175 | } |
| 1176 | |
| 1177 | /* |
| 1178 | * The bvec is a single page bvec from a bio that contains folios from a filemap. |
| 1179 | * |
| 1180 | * Since the folio may be a large one, and if the bv_page is not a head page of |
| 1181 | * a large folio, then page->index is unreliable. |
| 1182 | * |
| 1183 | * Thus we need this helper to grab the proper file offset. |
| 1184 | */ |
| 1185 | static u64 file_offset_from_bvec(const struct bio_vec *bvec) |
| 1186 | { |
| 1187 | const struct page *page = bvec->bv_page; |
| 1188 | const struct folio *folio = page_folio(page); |
| 1189 | |
| 1190 | return (page_pgoff(folio, page) << PAGE_SHIFT) + bvec->bv_offset; |
| 1191 | } |
| 1192 | |
| 1193 | /* |
| 1194 | * Copy decompressed data from working buffer to pages. |
| 1195 | * |
| 1196 | * @buf: The decompressed data buffer |
| 1197 | * @buf_len: The decompressed data length |
| 1198 | * @decompressed: Number of bytes that are already decompressed inside the |
| 1199 | * compressed extent |
| 1200 | * @cb: The compressed extent descriptor |
| 1201 | * @orig_bio: The original bio that the caller wants to read for |
| 1202 | * |
| 1203 | * An easier to understand graph is like below: |
| 1204 | * |
| 1205 | * |<- orig_bio ->| |<- orig_bio->| |
| 1206 | * |<------- full decompressed extent ----->| |
| 1207 | * |<----------- @cb range ---->| |
| 1208 | * | |<-- @buf_len -->| |
| 1209 | * |<--- @decompressed --->| |
| 1210 | * |
| 1211 | * Note that, @cb can be a subpage of the full decompressed extent, but |
| 1212 | * @cb->start always has the same as the orig_file_offset value of the full |
| 1213 | * decompressed extent. |
| 1214 | * |
| 1215 | * When reading compressed extent, we have to read the full compressed extent, |
| 1216 | * while @orig_bio may only want part of the range. |
| 1217 | * Thus this function will ensure only data covered by @orig_bio will be copied |
| 1218 | * to. |
| 1219 | * |
| 1220 | * Return 0 if we have copied all needed contents for @orig_bio. |
| 1221 | * Return >0 if we need continue decompress. |
| 1222 | */ |
| 1223 | int btrfs_decompress_buf2page(const char *buf, u32 buf_len, |
| 1224 | struct compressed_bio *cb, u32 decompressed) |
| 1225 | { |
| 1226 | struct bio *orig_bio = &cb->orig_bbio->bio; |
| 1227 | /* Offset inside the full decompressed extent */ |
| 1228 | u32 cur_offset; |
| 1229 | |
| 1230 | cur_offset = decompressed; |
| 1231 | /* The main loop to do the copy */ |
| 1232 | while (cur_offset < decompressed + buf_len) { |
| 1233 | struct bio_vec bvec; |
| 1234 | size_t copy_len; |
| 1235 | u32 copy_start; |
| 1236 | /* Offset inside the full decompressed extent */ |
| 1237 | u32 bvec_offset; |
| 1238 | void *kaddr; |
| 1239 | |
| 1240 | bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); |
| 1241 | /* |
| 1242 | * cb->start may underflow, but subtracting that value can still |
| 1243 | * give us correct offset inside the full decompressed extent. |
| 1244 | */ |
| 1245 | bvec_offset = file_offset_from_bvec(bvec: &bvec) - cb->start; |
| 1246 | |
| 1247 | /* Haven't reached the bvec range, exit */ |
| 1248 | if (decompressed + buf_len <= bvec_offset) |
| 1249 | return 1; |
| 1250 | |
| 1251 | copy_start = max(cur_offset, bvec_offset); |
| 1252 | copy_len = min(bvec_offset + bvec.bv_len, |
| 1253 | decompressed + buf_len) - copy_start; |
| 1254 | ASSERT(copy_len); |
| 1255 | |
| 1256 | /* |
| 1257 | * Extra range check to ensure we didn't go beyond |
| 1258 | * @buf + @buf_len. |
| 1259 | */ |
| 1260 | ASSERT(copy_start - decompressed < buf_len); |
| 1261 | |
| 1262 | kaddr = bvec_kmap_local(bvec: &bvec); |
| 1263 | memcpy(kaddr, buf + copy_start - decompressed, copy_len); |
| 1264 | kunmap_local(kaddr); |
| 1265 | |
| 1266 | cur_offset += copy_len; |
| 1267 | bio_advance(bio: orig_bio, nbytes: copy_len); |
| 1268 | /* Finished the bio */ |
| 1269 | if (!orig_bio->bi_iter.bi_size) |
| 1270 | return 0; |
| 1271 | } |
| 1272 | return 1; |
| 1273 | } |
| 1274 | |
| 1275 | /* |
| 1276 | * Shannon Entropy calculation |
| 1277 | * |
| 1278 | * Pure byte distribution analysis fails to determine compressibility of data. |
| 1279 | * Try calculating entropy to estimate the average minimum number of bits |
| 1280 | * needed to encode the sampled data. |
| 1281 | * |
| 1282 | * For convenience, return the percentage of needed bits, instead of amount of |
| 1283 | * bits directly. |
| 1284 | * |
| 1285 | * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy |
| 1286 | * and can be compressible with high probability |
| 1287 | * |
| 1288 | * @ENTROPY_LVL_HIGH - data are not compressible with high probability |
| 1289 | * |
| 1290 | * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. |
| 1291 | */ |
| 1292 | #define ENTROPY_LVL_ACEPTABLE (65) |
| 1293 | #define ENTROPY_LVL_HIGH (80) |
| 1294 | |
| 1295 | /* |
| 1296 | * For increased precision in shannon_entropy calculation, |
| 1297 | * let's do pow(n, M) to save more digits after comma: |
| 1298 | * |
| 1299 | * - maximum int bit length is 64 |
| 1300 | * - ilog2(MAX_SAMPLE_SIZE) -> 13 |
| 1301 | * - 13 * 4 = 52 < 64 -> M = 4 |
| 1302 | * |
| 1303 | * So use pow(n, 4). |
| 1304 | */ |
| 1305 | static inline u32 ilog2_w(u64 n) |
| 1306 | { |
| 1307 | return ilog2(n * n * n * n); |
| 1308 | } |
| 1309 | |
| 1310 | static u32 shannon_entropy(struct heuristic_ws *ws) |
| 1311 | { |
| 1312 | const u32 entropy_max = 8 * ilog2_w(n: 2); |
| 1313 | u32 entropy_sum = 0; |
| 1314 | u32 p, p_base, sz_base; |
| 1315 | u32 i; |
| 1316 | |
| 1317 | sz_base = ilog2_w(n: ws->sample_size); |
| 1318 | for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { |
| 1319 | p = ws->bucket[i].count; |
| 1320 | p_base = ilog2_w(n: p); |
| 1321 | entropy_sum += p * (sz_base - p_base); |
| 1322 | } |
| 1323 | |
| 1324 | entropy_sum /= ws->sample_size; |
| 1325 | return entropy_sum * 100 / entropy_max; |
| 1326 | } |
| 1327 | |
| 1328 | #define RADIX_BASE 4U |
| 1329 | #define COUNTERS_SIZE (1U << RADIX_BASE) |
| 1330 | |
| 1331 | static u8 get4bits(u64 num, int shift) { |
| 1332 | u8 low4bits; |
| 1333 | |
| 1334 | num >>= shift; |
| 1335 | /* Reverse order */ |
| 1336 | low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); |
| 1337 | return low4bits; |
| 1338 | } |
| 1339 | |
| 1340 | /* |
| 1341 | * Use 4 bits as radix base |
| 1342 | * Use 16 u32 counters for calculating new position in buf array |
| 1343 | * |
| 1344 | * @array - array that will be sorted |
| 1345 | * @array_buf - buffer array to store sorting results |
| 1346 | * must be equal in size to @array |
| 1347 | * @num - array size |
| 1348 | */ |
| 1349 | static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, |
| 1350 | int num) |
| 1351 | { |
| 1352 | u64 max_num; |
| 1353 | u64 buf_num; |
| 1354 | u32 counters[COUNTERS_SIZE]; |
| 1355 | u32 new_addr; |
| 1356 | u32 addr; |
| 1357 | int bitlen; |
| 1358 | int shift; |
| 1359 | int i; |
| 1360 | |
| 1361 | /* |
| 1362 | * Try avoid useless loop iterations for small numbers stored in big |
| 1363 | * counters. Example: 48 33 4 ... in 64bit array |
| 1364 | */ |
| 1365 | max_num = array[0].count; |
| 1366 | for (i = 1; i < num; i++) { |
| 1367 | buf_num = array[i].count; |
| 1368 | if (buf_num > max_num) |
| 1369 | max_num = buf_num; |
| 1370 | } |
| 1371 | |
| 1372 | buf_num = ilog2(max_num); |
| 1373 | bitlen = ALIGN(buf_num, RADIX_BASE * 2); |
| 1374 | |
| 1375 | shift = 0; |
| 1376 | while (shift < bitlen) { |
| 1377 | memset(counters, 0, sizeof(counters)); |
| 1378 | |
| 1379 | for (i = 0; i < num; i++) { |
| 1380 | buf_num = array[i].count; |
| 1381 | addr = get4bits(num: buf_num, shift); |
| 1382 | counters[addr]++; |
| 1383 | } |
| 1384 | |
| 1385 | for (i = 1; i < COUNTERS_SIZE; i++) |
| 1386 | counters[i] += counters[i - 1]; |
| 1387 | |
| 1388 | for (i = num - 1; i >= 0; i--) { |
| 1389 | buf_num = array[i].count; |
| 1390 | addr = get4bits(num: buf_num, shift); |
| 1391 | counters[addr]--; |
| 1392 | new_addr = counters[addr]; |
| 1393 | array_buf[new_addr] = array[i]; |
| 1394 | } |
| 1395 | |
| 1396 | shift += RADIX_BASE; |
| 1397 | |
| 1398 | /* |
| 1399 | * Normal radix expects to move data from a temporary array, to |
| 1400 | * the main one. But that requires some CPU time. Avoid that |
| 1401 | * by doing another sort iteration to original array instead of |
| 1402 | * memcpy() |
| 1403 | */ |
| 1404 | memset(counters, 0, sizeof(counters)); |
| 1405 | |
| 1406 | for (i = 0; i < num; i ++) { |
| 1407 | buf_num = array_buf[i].count; |
| 1408 | addr = get4bits(num: buf_num, shift); |
| 1409 | counters[addr]++; |
| 1410 | } |
| 1411 | |
| 1412 | for (i = 1; i < COUNTERS_SIZE; i++) |
| 1413 | counters[i] += counters[i - 1]; |
| 1414 | |
| 1415 | for (i = num - 1; i >= 0; i--) { |
| 1416 | buf_num = array_buf[i].count; |
| 1417 | addr = get4bits(num: buf_num, shift); |
| 1418 | counters[addr]--; |
| 1419 | new_addr = counters[addr]; |
| 1420 | array[new_addr] = array_buf[i]; |
| 1421 | } |
| 1422 | |
| 1423 | shift += RADIX_BASE; |
| 1424 | } |
| 1425 | } |
| 1426 | |
| 1427 | /* |
| 1428 | * Size of the core byte set - how many bytes cover 90% of the sample |
| 1429 | * |
| 1430 | * There are several types of structured binary data that use nearly all byte |
| 1431 | * values. The distribution can be uniform and counts in all buckets will be |
| 1432 | * nearly the same (eg. encrypted data). Unlikely to be compressible. |
| 1433 | * |
| 1434 | * Other possibility is normal (Gaussian) distribution, where the data could |
| 1435 | * be potentially compressible, but we have to take a few more steps to decide |
| 1436 | * how much. |
| 1437 | * |
| 1438 | * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, |
| 1439 | * compression algo can easy fix that |
| 1440 | * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high |
| 1441 | * probability is not compressible |
| 1442 | */ |
| 1443 | #define BYTE_CORE_SET_LOW (64) |
| 1444 | #define BYTE_CORE_SET_HIGH (200) |
| 1445 | |
| 1446 | static int byte_core_set_size(struct heuristic_ws *ws) |
| 1447 | { |
| 1448 | u32 i; |
| 1449 | u32 coreset_sum = 0; |
| 1450 | const u32 core_set_threshold = ws->sample_size * 90 / 100; |
| 1451 | struct bucket_item *bucket = ws->bucket; |
| 1452 | |
| 1453 | /* Sort in reverse order */ |
| 1454 | radix_sort(array: ws->bucket, array_buf: ws->bucket_b, BUCKET_SIZE); |
| 1455 | |
| 1456 | for (i = 0; i < BYTE_CORE_SET_LOW; i++) |
| 1457 | coreset_sum += bucket[i].count; |
| 1458 | |
| 1459 | if (coreset_sum > core_set_threshold) |
| 1460 | return i; |
| 1461 | |
| 1462 | for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { |
| 1463 | coreset_sum += bucket[i].count; |
| 1464 | if (coreset_sum > core_set_threshold) |
| 1465 | break; |
| 1466 | } |
| 1467 | |
| 1468 | return i; |
| 1469 | } |
| 1470 | |
| 1471 | /* |
| 1472 | * Count byte values in buckets. |
| 1473 | * This heuristic can detect textual data (configs, xml, json, html, etc). |
| 1474 | * Because in most text-like data byte set is restricted to limited number of |
| 1475 | * possible characters, and that restriction in most cases makes data easy to |
| 1476 | * compress. |
| 1477 | * |
| 1478 | * @BYTE_SET_THRESHOLD - consider all data within this byte set size: |
| 1479 | * less - compressible |
| 1480 | * more - need additional analysis |
| 1481 | */ |
| 1482 | #define BYTE_SET_THRESHOLD (64) |
| 1483 | |
| 1484 | static u32 byte_set_size(const struct heuristic_ws *ws) |
| 1485 | { |
| 1486 | u32 i; |
| 1487 | u32 byte_set_size = 0; |
| 1488 | |
| 1489 | for (i = 0; i < BYTE_SET_THRESHOLD; i++) { |
| 1490 | if (ws->bucket[i].count > 0) |
| 1491 | byte_set_size++; |
| 1492 | } |
| 1493 | |
| 1494 | /* |
| 1495 | * Continue collecting count of byte values in buckets. If the byte |
| 1496 | * set size is bigger then the threshold, it's pointless to continue, |
| 1497 | * the detection technique would fail for this type of data. |
| 1498 | */ |
| 1499 | for (; i < BUCKET_SIZE; i++) { |
| 1500 | if (ws->bucket[i].count > 0) { |
| 1501 | byte_set_size++; |
| 1502 | if (byte_set_size > BYTE_SET_THRESHOLD) |
| 1503 | return byte_set_size; |
| 1504 | } |
| 1505 | } |
| 1506 | |
| 1507 | return byte_set_size; |
| 1508 | } |
| 1509 | |
| 1510 | static bool sample_repeated_patterns(struct heuristic_ws *ws) |
| 1511 | { |
| 1512 | const u32 half_of_sample = ws->sample_size / 2; |
| 1513 | const u8 *data = ws->sample; |
| 1514 | |
| 1515 | return memcmp(p: &data[0], q: &data[half_of_sample], size: half_of_sample) == 0; |
| 1516 | } |
| 1517 | |
| 1518 | static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, |
| 1519 | struct heuristic_ws *ws) |
| 1520 | { |
| 1521 | struct page *page; |
| 1522 | pgoff_t index, index_end; |
| 1523 | u32 i, curr_sample_pos; |
| 1524 | u8 *in_data; |
| 1525 | |
| 1526 | /* |
| 1527 | * Compression handles the input data by chunks of 128KiB |
| 1528 | * (defined by BTRFS_MAX_UNCOMPRESSED) |
| 1529 | * |
| 1530 | * We do the same for the heuristic and loop over the whole range. |
| 1531 | * |
| 1532 | * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will |
| 1533 | * process no more than BTRFS_MAX_UNCOMPRESSED at a time. |
| 1534 | */ |
| 1535 | if (end - start > BTRFS_MAX_UNCOMPRESSED) |
| 1536 | end = start + BTRFS_MAX_UNCOMPRESSED; |
| 1537 | |
| 1538 | index = start >> PAGE_SHIFT; |
| 1539 | index_end = end >> PAGE_SHIFT; |
| 1540 | |
| 1541 | /* Don't miss unaligned end */ |
| 1542 | if (!PAGE_ALIGNED(end)) |
| 1543 | index_end++; |
| 1544 | |
| 1545 | curr_sample_pos = 0; |
| 1546 | while (index < index_end) { |
| 1547 | page = find_get_page(mapping: inode->i_mapping, offset: index); |
| 1548 | in_data = kmap_local_page(page); |
| 1549 | /* Handle case where the start is not aligned to PAGE_SIZE */ |
| 1550 | i = start % PAGE_SIZE; |
| 1551 | while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { |
| 1552 | /* Don't sample any garbage from the last page */ |
| 1553 | if (start > end - SAMPLING_READ_SIZE) |
| 1554 | break; |
| 1555 | memcpy(&ws->sample[curr_sample_pos], &in_data[i], |
| 1556 | SAMPLING_READ_SIZE); |
| 1557 | i += SAMPLING_INTERVAL; |
| 1558 | start += SAMPLING_INTERVAL; |
| 1559 | curr_sample_pos += SAMPLING_READ_SIZE; |
| 1560 | } |
| 1561 | kunmap_local(in_data); |
| 1562 | put_page(page); |
| 1563 | |
| 1564 | index++; |
| 1565 | } |
| 1566 | |
| 1567 | ws->sample_size = curr_sample_pos; |
| 1568 | } |
| 1569 | |
| 1570 | /* |
| 1571 | * Compression heuristic. |
| 1572 | * |
| 1573 | * The following types of analysis can be performed: |
| 1574 | * - detect mostly zero data |
| 1575 | * - detect data with low "byte set" size (text, etc) |
| 1576 | * - detect data with low/high "core byte" set |
| 1577 | * |
| 1578 | * Return non-zero if the compression should be done, 0 otherwise. |
| 1579 | */ |
| 1580 | int btrfs_compress_heuristic(struct btrfs_inode *inode, u64 start, u64 end) |
| 1581 | { |
| 1582 | struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| 1583 | struct list_head *ws_list = get_workspace(fs_info, type: 0, level: 0); |
| 1584 | struct heuristic_ws *ws; |
| 1585 | u32 i; |
| 1586 | u8 byte; |
| 1587 | int ret = 0; |
| 1588 | |
| 1589 | ws = list_entry(ws_list, struct heuristic_ws, list); |
| 1590 | |
| 1591 | heuristic_collect_sample(inode: &inode->vfs_inode, start, end, ws); |
| 1592 | |
| 1593 | if (sample_repeated_patterns(ws)) { |
| 1594 | ret = 1; |
| 1595 | goto out; |
| 1596 | } |
| 1597 | |
| 1598 | memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); |
| 1599 | |
| 1600 | for (i = 0; i < ws->sample_size; i++) { |
| 1601 | byte = ws->sample[i]; |
| 1602 | ws->bucket[byte].count++; |
| 1603 | } |
| 1604 | |
| 1605 | i = byte_set_size(ws); |
| 1606 | if (i < BYTE_SET_THRESHOLD) { |
| 1607 | ret = 2; |
| 1608 | goto out; |
| 1609 | } |
| 1610 | |
| 1611 | i = byte_core_set_size(ws); |
| 1612 | if (i <= BYTE_CORE_SET_LOW) { |
| 1613 | ret = 3; |
| 1614 | goto out; |
| 1615 | } |
| 1616 | |
| 1617 | if (i >= BYTE_CORE_SET_HIGH) { |
| 1618 | ret = 0; |
| 1619 | goto out; |
| 1620 | } |
| 1621 | |
| 1622 | i = shannon_entropy(ws); |
| 1623 | if (i <= ENTROPY_LVL_ACEPTABLE) { |
| 1624 | ret = 4; |
| 1625 | goto out; |
| 1626 | } |
| 1627 | |
| 1628 | /* |
| 1629 | * For the levels below ENTROPY_LVL_HIGH, additional analysis would be |
| 1630 | * needed to give green light to compression. |
| 1631 | * |
| 1632 | * For now just assume that compression at that level is not worth the |
| 1633 | * resources because: |
| 1634 | * |
| 1635 | * 1. it is possible to defrag the data later |
| 1636 | * |
| 1637 | * 2. the data would turn out to be hardly compressible, eg. 150 byte |
| 1638 | * values, every bucket has counter at level ~54. The heuristic would |
| 1639 | * be confused. This can happen when data have some internal repeated |
| 1640 | * patterns like "abbacbbc...". This can be detected by analyzing |
| 1641 | * pairs of bytes, which is too costly. |
| 1642 | */ |
| 1643 | if (i < ENTROPY_LVL_HIGH) { |
| 1644 | ret = 5; |
| 1645 | goto out; |
| 1646 | } else { |
| 1647 | ret = 0; |
| 1648 | goto out; |
| 1649 | } |
| 1650 | |
| 1651 | out: |
| 1652 | put_workspace(fs_info, type: 0, ws: ws_list); |
| 1653 | return ret; |
| 1654 | } |
| 1655 | |
| 1656 | /* |
| 1657 | * Convert the compression suffix (eg. after "zlib" starting with ":") to level. |
| 1658 | * |
| 1659 | * If the resulting level exceeds the algo's supported levels, it will be clamped. |
| 1660 | * |
| 1661 | * Return <0 if no valid string can be found. |
| 1662 | * Return 0 if everything is fine. |
| 1663 | */ |
| 1664 | int btrfs_compress_str2level(unsigned int type, const char *str, int *level_ret) |
| 1665 | { |
| 1666 | int level = 0; |
| 1667 | int ret; |
| 1668 | |
| 1669 | if (!type) { |
| 1670 | *level_ret = btrfs_compress_set_level(type, level); |
| 1671 | return 0; |
| 1672 | } |
| 1673 | |
| 1674 | if (str[0] == ':') { |
| 1675 | ret = kstrtoint(s: str + 1, base: 10, res: &level); |
| 1676 | if (ret) |
| 1677 | return ret; |
| 1678 | } |
| 1679 | |
| 1680 | *level_ret = btrfs_compress_set_level(type, level); |
| 1681 | return 0; |
| 1682 | } |
| 1683 | |