1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/fsnotify.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/mount.h>
17#include <linux/namei.h>
18#include <linux/writeback.h>
19#include <linux/compat.h>
20#include <linux/security.h>
21#include <linux/xattr.h>
22#include <linux/mm.h>
23#include <linux/slab.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include <linux/btrfs.h>
27#include <linux/uaccess.h>
28#include <linux/iversion.h>
29#include <linux/fileattr.h>
30#include <linux/fsverity.h>
31#include <linux/sched/xacct.h>
32#include "ctree.h"
33#include "disk-io.h"
34#include "export.h"
35#include "transaction.h"
36#include "btrfs_inode.h"
37#include "volumes.h"
38#include "locking.h"
39#include "backref.h"
40#include "send.h"
41#include "dev-replace.h"
42#include "props.h"
43#include "sysfs.h"
44#include "qgroup.h"
45#include "tree-log.h"
46#include "compression.h"
47#include "space-info.h"
48#include "block-group.h"
49#include "fs.h"
50#include "accessors.h"
51#include "extent-tree.h"
52#include "root-tree.h"
53#include "defrag.h"
54#include "dir-item.h"
55#include "uuid-tree.h"
56#include "ioctl.h"
57#include "file.h"
58#include "scrub.h"
59#include "super.h"
60
61#ifdef CONFIG_64BIT
62/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
63 * structures are incorrect, as the timespec structure from userspace
64 * is 4 bytes too small. We define these alternatives here to teach
65 * the kernel about the 32-bit struct packing.
66 */
67struct btrfs_ioctl_timespec_32 {
68 __u64 sec;
69 __u32 nsec;
70} __attribute__ ((__packed__));
71
72struct btrfs_ioctl_received_subvol_args_32 {
73 char uuid[BTRFS_UUID_SIZE]; /* in */
74 __u64 stransid; /* in */
75 __u64 rtransid; /* out */
76 struct btrfs_ioctl_timespec_32 stime; /* in */
77 struct btrfs_ioctl_timespec_32 rtime; /* out */
78 __u64 flags; /* in */
79 __u64 reserved[16]; /* in */
80} __attribute__ ((__packed__));
81
82#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
83 struct btrfs_ioctl_received_subvol_args_32)
84#endif
85
86#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
87struct btrfs_ioctl_send_args_32 {
88 __s64 send_fd; /* in */
89 __u64 clone_sources_count; /* in */
90 compat_uptr_t clone_sources; /* in */
91 __u64 parent_root; /* in */
92 __u64 flags; /* in */
93 __u32 version; /* in */
94 __u8 reserved[28]; /* in */
95} __attribute__ ((__packed__));
96
97#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
98 struct btrfs_ioctl_send_args_32)
99
100struct btrfs_ioctl_encoded_io_args_32 {
101 compat_uptr_t iov;
102 compat_ulong_t iovcnt;
103 __s64 offset;
104 __u64 flags;
105 __u64 len;
106 __u64 unencoded_len;
107 __u64 unencoded_offset;
108 __u32 compression;
109 __u32 encryption;
110 __u8 reserved[64];
111};
112
113#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
114 struct btrfs_ioctl_encoded_io_args_32)
115#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
116 struct btrfs_ioctl_encoded_io_args_32)
117#endif
118
119/* Mask out flags that are inappropriate for the given type of inode. */
120static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
121 unsigned int flags)
122{
123 if (S_ISDIR(inode->i_mode))
124 return flags;
125 else if (S_ISREG(inode->i_mode))
126 return flags & ~FS_DIRSYNC_FL;
127 else
128 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
129}
130
131/*
132 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
133 * ioctl.
134 */
135static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
136{
137 unsigned int iflags = 0;
138 u32 flags = binode->flags;
139 u32 ro_flags = binode->ro_flags;
140
141 if (flags & BTRFS_INODE_SYNC)
142 iflags |= FS_SYNC_FL;
143 if (flags & BTRFS_INODE_IMMUTABLE)
144 iflags |= FS_IMMUTABLE_FL;
145 if (flags & BTRFS_INODE_APPEND)
146 iflags |= FS_APPEND_FL;
147 if (flags & BTRFS_INODE_NODUMP)
148 iflags |= FS_NODUMP_FL;
149 if (flags & BTRFS_INODE_NOATIME)
150 iflags |= FS_NOATIME_FL;
151 if (flags & BTRFS_INODE_DIRSYNC)
152 iflags |= FS_DIRSYNC_FL;
153 if (flags & BTRFS_INODE_NODATACOW)
154 iflags |= FS_NOCOW_FL;
155 if (ro_flags & BTRFS_INODE_RO_VERITY)
156 iflags |= FS_VERITY_FL;
157
158 if (flags & BTRFS_INODE_NOCOMPRESS)
159 iflags |= FS_NOCOMP_FL;
160 else if (flags & BTRFS_INODE_COMPRESS)
161 iflags |= FS_COMPR_FL;
162
163 return iflags;
164}
165
166/*
167 * Update inode->i_flags based on the btrfs internal flags.
168 */
169void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
170{
171 struct btrfs_inode *binode = BTRFS_I(inode);
172 unsigned int new_fl = 0;
173
174 if (binode->flags & BTRFS_INODE_SYNC)
175 new_fl |= S_SYNC;
176 if (binode->flags & BTRFS_INODE_IMMUTABLE)
177 new_fl |= S_IMMUTABLE;
178 if (binode->flags & BTRFS_INODE_APPEND)
179 new_fl |= S_APPEND;
180 if (binode->flags & BTRFS_INODE_NOATIME)
181 new_fl |= S_NOATIME;
182 if (binode->flags & BTRFS_INODE_DIRSYNC)
183 new_fl |= S_DIRSYNC;
184 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
185 new_fl |= S_VERITY;
186
187 set_mask_bits(&inode->i_flags,
188 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
189 S_VERITY, new_fl);
190}
191
192/*
193 * Check if @flags are a supported and valid set of FS_*_FL flags and that
194 * the old and new flags are not conflicting
195 */
196static int check_fsflags(unsigned int old_flags, unsigned int flags)
197{
198 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 FS_NOATIME_FL | FS_NODUMP_FL | \
200 FS_SYNC_FL | FS_DIRSYNC_FL | \
201 FS_NOCOMP_FL | FS_COMPR_FL |
202 FS_NOCOW_FL))
203 return -EOPNOTSUPP;
204
205 /* COMPR and NOCOMP on new/old are valid */
206 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
207 return -EINVAL;
208
209 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
210 return -EINVAL;
211
212 /* NOCOW and compression options are mutually exclusive */
213 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214 return -EINVAL;
215 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
216 return -EINVAL;
217
218 return 0;
219}
220
221static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
222 unsigned int flags)
223{
224 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
225 return -EPERM;
226
227 return 0;
228}
229
230int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
231{
232 if (memchr(p: vol_args->name, c: 0, size: sizeof(vol_args->name)) == NULL)
233 return -ENAMETOOLONG;
234 return 0;
235}
236
237static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
238{
239 if (memchr(p: vol_args2->name, c: 0, size: sizeof(vol_args2->name)) == NULL)
240 return -ENAMETOOLONG;
241 return 0;
242}
243
244/*
245 * Set flags/xflags from the internal inode flags. The remaining items of
246 * fsxattr are zeroed.
247 */
248int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
249{
250 struct btrfs_inode *binode = BTRFS_I(inode: d_inode(dentry));
251
252 fileattr_fill_flags(fa, flags: btrfs_inode_flags_to_fsflags(binode));
253 return 0;
254}
255
256int btrfs_fileattr_set(struct mnt_idmap *idmap,
257 struct dentry *dentry, struct fileattr *fa)
258{
259 struct inode *inode = d_inode(dentry);
260 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
261 struct btrfs_inode *binode = BTRFS_I(inode);
262 struct btrfs_root *root = binode->root;
263 struct btrfs_trans_handle *trans;
264 unsigned int fsflags, old_fsflags;
265 int ret;
266 const char *comp = NULL;
267 u32 binode_flags;
268
269 if (btrfs_root_readonly(root))
270 return -EROFS;
271
272 if (fileattr_has_fsx(fa))
273 return -EOPNOTSUPP;
274
275 fsflags = btrfs_mask_fsflags_for_type(inode, flags: fa->flags);
276 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
277 ret = check_fsflags(old_flags: old_fsflags, flags: fsflags);
278 if (ret)
279 return ret;
280
281 ret = check_fsflags_compatible(fs_info, flags: fsflags);
282 if (ret)
283 return ret;
284
285 binode_flags = binode->flags;
286 if (fsflags & FS_SYNC_FL)
287 binode_flags |= BTRFS_INODE_SYNC;
288 else
289 binode_flags &= ~BTRFS_INODE_SYNC;
290 if (fsflags & FS_IMMUTABLE_FL)
291 binode_flags |= BTRFS_INODE_IMMUTABLE;
292 else
293 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
294 if (fsflags & FS_APPEND_FL)
295 binode_flags |= BTRFS_INODE_APPEND;
296 else
297 binode_flags &= ~BTRFS_INODE_APPEND;
298 if (fsflags & FS_NODUMP_FL)
299 binode_flags |= BTRFS_INODE_NODUMP;
300 else
301 binode_flags &= ~BTRFS_INODE_NODUMP;
302 if (fsflags & FS_NOATIME_FL)
303 binode_flags |= BTRFS_INODE_NOATIME;
304 else
305 binode_flags &= ~BTRFS_INODE_NOATIME;
306
307 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
308 if (!fa->flags_valid) {
309 /* 1 item for the inode */
310 trans = btrfs_start_transaction(root, num_items: 1);
311 if (IS_ERR(ptr: trans))
312 return PTR_ERR(ptr: trans);
313 goto update_flags;
314 }
315
316 if (fsflags & FS_DIRSYNC_FL)
317 binode_flags |= BTRFS_INODE_DIRSYNC;
318 else
319 binode_flags &= ~BTRFS_INODE_DIRSYNC;
320 if (fsflags & FS_NOCOW_FL) {
321 if (S_ISREG(inode->i_mode)) {
322 /*
323 * It's safe to turn csums off here, no extents exist.
324 * Otherwise we want the flag to reflect the real COW
325 * status of the file and will not set it.
326 */
327 if (inode->i_size == 0)
328 binode_flags |= BTRFS_INODE_NODATACOW |
329 BTRFS_INODE_NODATASUM;
330 } else {
331 binode_flags |= BTRFS_INODE_NODATACOW;
332 }
333 } else {
334 /*
335 * Revert back under same assumptions as above
336 */
337 if (S_ISREG(inode->i_mode)) {
338 if (inode->i_size == 0)
339 binode_flags &= ~(BTRFS_INODE_NODATACOW |
340 BTRFS_INODE_NODATASUM);
341 } else {
342 binode_flags &= ~BTRFS_INODE_NODATACOW;
343 }
344 }
345
346 /*
347 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
348 * flag may be changed automatically if compression code won't make
349 * things smaller.
350 */
351 if (fsflags & FS_NOCOMP_FL) {
352 binode_flags &= ~BTRFS_INODE_COMPRESS;
353 binode_flags |= BTRFS_INODE_NOCOMPRESS;
354 } else if (fsflags & FS_COMPR_FL) {
355
356 if (IS_SWAPFILE(inode))
357 return -ETXTBSY;
358
359 binode_flags |= BTRFS_INODE_COMPRESS;
360 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
361
362 comp = btrfs_compress_type2str(type: fs_info->compress_type);
363 if (!comp || comp[0] == 0)
364 comp = btrfs_compress_type2str(type: BTRFS_COMPRESS_ZLIB);
365 } else {
366 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
367 }
368
369 /*
370 * 1 for inode item
371 * 2 for properties
372 */
373 trans = btrfs_start_transaction(root, num_items: 3);
374 if (IS_ERR(ptr: trans))
375 return PTR_ERR(ptr: trans);
376
377 if (comp) {
378 ret = btrfs_set_prop(trans, inode, name: "btrfs.compression", value: comp,
379 strlen(comp), flags: 0);
380 if (ret) {
381 btrfs_abort_transaction(trans, ret);
382 goto out_end_trans;
383 }
384 } else {
385 ret = btrfs_set_prop(trans, inode, name: "btrfs.compression", NULL,
386 value_len: 0, flags: 0);
387 if (ret && ret != -ENODATA) {
388 btrfs_abort_transaction(trans, ret);
389 goto out_end_trans;
390 }
391 }
392
393update_flags:
394 binode->flags = binode_flags;
395 btrfs_sync_inode_flags_to_i_flags(inode);
396 inode_inc_iversion(inode);
397 inode_set_ctime_current(inode);
398 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode));
399
400 out_end_trans:
401 btrfs_end_transaction(trans);
402 return ret;
403}
404
405/*
406 * Start exclusive operation @type, return true on success
407 */
408bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
409 enum btrfs_exclusive_operation type)
410{
411 bool ret = false;
412
413 spin_lock(lock: &fs_info->super_lock);
414 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
415 fs_info->exclusive_operation = type;
416 ret = true;
417 }
418 spin_unlock(lock: &fs_info->super_lock);
419
420 return ret;
421}
422
423/*
424 * Conditionally allow to enter the exclusive operation in case it's compatible
425 * with the running one. This must be paired with btrfs_exclop_start_unlock and
426 * btrfs_exclop_finish.
427 *
428 * Compatibility:
429 * - the same type is already running
430 * - when trying to add a device and balance has been paused
431 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
432 * must check the condition first that would allow none -> @type
433 */
434bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
435 enum btrfs_exclusive_operation type)
436{
437 spin_lock(lock: &fs_info->super_lock);
438 if (fs_info->exclusive_operation == type ||
439 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
440 type == BTRFS_EXCLOP_DEV_ADD))
441 return true;
442
443 spin_unlock(lock: &fs_info->super_lock);
444 return false;
445}
446
447void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
448{
449 spin_unlock(lock: &fs_info->super_lock);
450}
451
452void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
453{
454 spin_lock(lock: &fs_info->super_lock);
455 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
456 spin_unlock(lock: &fs_info->super_lock);
457 sysfs_notify(kobj: &fs_info->fs_devices->fsid_kobj, NULL, attr: "exclusive_operation");
458}
459
460void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
461 enum btrfs_exclusive_operation op)
462{
463 switch (op) {
464 case BTRFS_EXCLOP_BALANCE_PAUSED:
465 spin_lock(lock: &fs_info->super_lock);
466 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
467 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
468 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
469 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
470 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
471 spin_unlock(lock: &fs_info->super_lock);
472 break;
473 case BTRFS_EXCLOP_BALANCE:
474 spin_lock(lock: &fs_info->super_lock);
475 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
476 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
477 spin_unlock(lock: &fs_info->super_lock);
478 break;
479 default:
480 btrfs_warn(fs_info,
481 "invalid exclop balance operation %d requested", op);
482 }
483}
484
485static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
486{
487 return put_user(inode->i_generation, arg);
488}
489
490static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
491 void __user *arg)
492{
493 struct btrfs_device *device;
494 struct fstrim_range range;
495 u64 minlen = ULLONG_MAX;
496 u64 num_devices = 0;
497 int ret;
498
499 if (!capable(CAP_SYS_ADMIN))
500 return -EPERM;
501
502 /*
503 * btrfs_trim_block_group() depends on space cache, which is not
504 * available in zoned filesystem. So, disallow fitrim on a zoned
505 * filesystem for now.
506 */
507 if (btrfs_is_zoned(fs_info))
508 return -EOPNOTSUPP;
509
510 /*
511 * If the fs is mounted with nologreplay, which requires it to be
512 * mounted in RO mode as well, we can not allow discard on free space
513 * inside block groups, because log trees refer to extents that are not
514 * pinned in a block group's free space cache (pinning the extents is
515 * precisely the first phase of replaying a log tree).
516 */
517 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
518 return -EROFS;
519
520 rcu_read_lock();
521 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
522 dev_list) {
523 if (!device->bdev || !bdev_max_discard_sectors(bdev: device->bdev))
524 continue;
525 num_devices++;
526 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
527 minlen);
528 }
529 rcu_read_unlock();
530
531 if (!num_devices)
532 return -EOPNOTSUPP;
533 if (copy_from_user(to: &range, from: arg, n: sizeof(range)))
534 return -EFAULT;
535
536 /*
537 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
538 * block group is in the logical address space, which can be any
539 * sectorsize aligned bytenr in the range [0, U64_MAX].
540 */
541 if (range.len < fs_info->sectorsize)
542 return -EINVAL;
543
544 range.minlen = max(range.minlen, minlen);
545 ret = btrfs_trim_fs(fs_info, range: &range);
546 if (ret < 0)
547 return ret;
548
549 if (copy_to_user(to: arg, from: &range, n: sizeof(range)))
550 return -EFAULT;
551
552 return 0;
553}
554
555int __pure btrfs_is_empty_uuid(u8 *uuid)
556{
557 int i;
558
559 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
560 if (uuid[i])
561 return 0;
562 }
563 return 1;
564}
565
566/*
567 * Calculate the number of transaction items to reserve for creating a subvolume
568 * or snapshot, not including the inode, directory entries, or parent directory.
569 */
570static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
571{
572 /*
573 * 1 to add root block
574 * 1 to add root item
575 * 1 to add root ref
576 * 1 to add root backref
577 * 1 to add UUID item
578 * 1 to add qgroup info
579 * 1 to add qgroup limit
580 *
581 * Ideally the last two would only be accounted if qgroups are enabled,
582 * but that can change between now and the time we would insert them.
583 */
584 unsigned int num_items = 7;
585
586 if (inherit) {
587 /* 2 to add qgroup relations for each inherited qgroup */
588 num_items += 2 * inherit->num_qgroups;
589 }
590 return num_items;
591}
592
593static noinline int create_subvol(struct mnt_idmap *idmap,
594 struct inode *dir, struct dentry *dentry,
595 struct btrfs_qgroup_inherit *inherit)
596{
597 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
598 struct btrfs_trans_handle *trans;
599 struct btrfs_key key;
600 struct btrfs_root_item *root_item;
601 struct btrfs_inode_item *inode_item;
602 struct extent_buffer *leaf;
603 struct btrfs_root *root = BTRFS_I(inode: dir)->root;
604 struct btrfs_root *new_root;
605 struct btrfs_block_rsv block_rsv;
606 struct timespec64 cur_time = current_time(inode: dir);
607 struct btrfs_new_inode_args new_inode_args = {
608 .dir = dir,
609 .dentry = dentry,
610 .subvol = true,
611 };
612 unsigned int trans_num_items;
613 int ret;
614 dev_t anon_dev;
615 u64 objectid;
616 u64 qgroup_reserved = 0;
617
618 root_item = kzalloc(size: sizeof(*root_item), GFP_KERNEL);
619 if (!root_item)
620 return -ENOMEM;
621
622 ret = btrfs_get_free_objectid(root: fs_info->tree_root, objectid: &objectid);
623 if (ret)
624 goto out_root_item;
625
626 /*
627 * Don't create subvolume whose level is not zero. Or qgroup will be
628 * screwed up since it assumes subvolume qgroup's level to be 0.
629 */
630 if (btrfs_qgroup_level(qgroupid: objectid)) {
631 ret = -ENOSPC;
632 goto out_root_item;
633 }
634
635 ret = get_anon_bdev(&anon_dev);
636 if (ret < 0)
637 goto out_root_item;
638
639 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
640 if (!new_inode_args.inode) {
641 ret = -ENOMEM;
642 goto out_anon_dev;
643 }
644 ret = btrfs_new_inode_prepare(args: &new_inode_args, trans_num_items: &trans_num_items);
645 if (ret)
646 goto out_inode;
647 trans_num_items += create_subvol_num_items(inherit);
648
649 btrfs_init_block_rsv(rsv: &block_rsv, type: BTRFS_BLOCK_RSV_TEMP);
650 ret = btrfs_subvolume_reserve_metadata(root, rsv: &block_rsv,
651 nitems: trans_num_items, use_global_rsv: false);
652 if (ret)
653 goto out_new_inode_args;
654 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
655
656 trans = btrfs_start_transaction(root, num_items: 0);
657 if (IS_ERR(ptr: trans)) {
658 ret = PTR_ERR(ptr: trans);
659 goto out_release_rsv;
660 }
661 ret = btrfs_record_root_in_trans(trans, root: BTRFS_I(inode: dir)->root);
662 if (ret)
663 goto out;
664 btrfs_qgroup_convert_reserved_meta(root, num_bytes: qgroup_reserved);
665 qgroup_reserved = 0;
666 trans->block_rsv = &block_rsv;
667 trans->bytes_reserved = block_rsv.size;
668 /* Tree log can't currently deal with an inode which is a new root. */
669 btrfs_set_log_full_commit(trans);
670
671 ret = btrfs_qgroup_inherit(trans, srcid: 0, objectid, inode_rootid: root->root_key.objectid, inherit);
672 if (ret)
673 goto out;
674
675 leaf = btrfs_alloc_tree_block(trans, root, parent: 0, root_objectid: objectid, NULL, level: 0, hint: 0, empty_size: 0,
676 reloc_src_root: 0, nest: BTRFS_NESTING_NORMAL);
677 if (IS_ERR(ptr: leaf)) {
678 ret = PTR_ERR(ptr: leaf);
679 goto out;
680 }
681
682 btrfs_mark_buffer_dirty(trans, buf: leaf);
683
684 inode_item = &root_item->inode;
685 btrfs_set_stack_inode_generation(s: inode_item, val: 1);
686 btrfs_set_stack_inode_size(s: inode_item, val: 3);
687 btrfs_set_stack_inode_nlink(s: inode_item, val: 1);
688 btrfs_set_stack_inode_nbytes(s: inode_item,
689 val: fs_info->nodesize);
690 btrfs_set_stack_inode_mode(s: inode_item, S_IFDIR | 0755);
691
692 btrfs_set_root_flags(s: root_item, val: 0);
693 btrfs_set_root_limit(s: root_item, val: 0);
694 btrfs_set_stack_inode_flags(s: inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
695
696 btrfs_set_root_bytenr(s: root_item, val: leaf->start);
697 btrfs_set_root_generation(s: root_item, val: trans->transid);
698 btrfs_set_root_level(s: root_item, val: 0);
699 btrfs_set_root_refs(s: root_item, val: 1);
700 btrfs_set_root_used(s: root_item, val: leaf->len);
701 btrfs_set_root_last_snapshot(s: root_item, val: 0);
702
703 btrfs_set_root_generation_v2(s: root_item,
704 val: btrfs_root_generation(s: root_item));
705 generate_random_guid(guid: root_item->uuid);
706 btrfs_set_stack_timespec_sec(s: &root_item->otime, val: cur_time.tv_sec);
707 btrfs_set_stack_timespec_nsec(s: &root_item->otime, val: cur_time.tv_nsec);
708 root_item->ctime = root_item->otime;
709 btrfs_set_root_ctransid(s: root_item, val: trans->transid);
710 btrfs_set_root_otransid(s: root_item, val: trans->transid);
711
712 btrfs_tree_unlock(eb: leaf);
713
714 btrfs_set_root_dirid(s: root_item, BTRFS_FIRST_FREE_OBJECTID);
715
716 key.objectid = objectid;
717 key.offset = 0;
718 key.type = BTRFS_ROOT_ITEM_KEY;
719 ret = btrfs_insert_root(trans, root: fs_info->tree_root, key: &key,
720 item: root_item);
721 if (ret) {
722 /*
723 * Since we don't abort the transaction in this case, free the
724 * tree block so that we don't leak space and leave the
725 * filesystem in an inconsistent state (an extent item in the
726 * extent tree with a backreference for a root that does not
727 * exists).
728 */
729 btrfs_tree_lock(eb: leaf);
730 btrfs_clear_buffer_dirty(trans, buf: leaf);
731 btrfs_tree_unlock(eb: leaf);
732 btrfs_free_tree_block(trans, root_id: objectid, buf: leaf, parent: 0, last_ref: 1);
733 free_extent_buffer(eb: leaf);
734 goto out;
735 }
736
737 free_extent_buffer(eb: leaf);
738 leaf = NULL;
739
740 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev: &anon_dev);
741 if (IS_ERR(ptr: new_root)) {
742 ret = PTR_ERR(ptr: new_root);
743 btrfs_abort_transaction(trans, ret);
744 goto out;
745 }
746 /* anon_dev is owned by new_root now. */
747 anon_dev = 0;
748 BTRFS_I(inode: new_inode_args.inode)->root = new_root;
749 /* ... and new_root is owned by new_inode_args.inode now. */
750
751 ret = btrfs_record_root_in_trans(trans, root: new_root);
752 if (ret) {
753 btrfs_abort_transaction(trans, ret);
754 goto out;
755 }
756
757 ret = btrfs_uuid_tree_add(trans, uuid: root_item->uuid,
758 BTRFS_UUID_KEY_SUBVOL, subid: objectid);
759 if (ret) {
760 btrfs_abort_transaction(trans, ret);
761 goto out;
762 }
763
764 ret = btrfs_create_new_inode(trans, args: &new_inode_args);
765 if (ret) {
766 btrfs_abort_transaction(trans, ret);
767 goto out;
768 }
769
770 d_instantiate_new(dentry, new_inode_args.inode);
771 new_inode_args.inode = NULL;
772
773out:
774 trans->block_rsv = NULL;
775 trans->bytes_reserved = 0;
776 btrfs_end_transaction(trans);
777out_release_rsv:
778 btrfs_block_rsv_release(fs_info, block_rsv: &block_rsv, num_bytes: (u64)-1, NULL);
779 if (qgroup_reserved)
780 btrfs_qgroup_free_meta_prealloc(root, num_bytes: qgroup_reserved);
781out_new_inode_args:
782 btrfs_new_inode_args_destroy(args: &new_inode_args);
783out_inode:
784 iput(new_inode_args.inode);
785out_anon_dev:
786 if (anon_dev)
787 free_anon_bdev(anon_dev);
788out_root_item:
789 kfree(objp: root_item);
790 return ret;
791}
792
793static int create_snapshot(struct btrfs_root *root, struct inode *dir,
794 struct dentry *dentry, bool readonly,
795 struct btrfs_qgroup_inherit *inherit)
796{
797 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
798 struct inode *inode;
799 struct btrfs_pending_snapshot *pending_snapshot;
800 unsigned int trans_num_items;
801 struct btrfs_trans_handle *trans;
802 struct btrfs_block_rsv *block_rsv;
803 u64 qgroup_reserved = 0;
804 int ret;
805
806 /* We do not support snapshotting right now. */
807 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
808 btrfs_warn(fs_info,
809 "extent tree v2 doesn't support snapshotting yet");
810 return -EOPNOTSUPP;
811 }
812
813 if (btrfs_root_refs(s: &root->root_item) == 0)
814 return -ENOENT;
815
816 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
817 return -EINVAL;
818
819 if (atomic_read(v: &root->nr_swapfiles)) {
820 btrfs_warn(fs_info,
821 "cannot snapshot subvolume with active swapfile");
822 return -ETXTBSY;
823 }
824
825 pending_snapshot = kzalloc(size: sizeof(*pending_snapshot), GFP_KERNEL);
826 if (!pending_snapshot)
827 return -ENOMEM;
828
829 ret = get_anon_bdev(&pending_snapshot->anon_dev);
830 if (ret < 0)
831 goto free_pending;
832 pending_snapshot->root_item = kzalloc(size: sizeof(struct btrfs_root_item),
833 GFP_KERNEL);
834 pending_snapshot->path = btrfs_alloc_path();
835 if (!pending_snapshot->root_item || !pending_snapshot->path) {
836 ret = -ENOMEM;
837 goto free_pending;
838 }
839
840 block_rsv = &pending_snapshot->block_rsv;
841 btrfs_init_block_rsv(rsv: block_rsv, type: BTRFS_BLOCK_RSV_TEMP);
842 /*
843 * 1 to add dir item
844 * 1 to add dir index
845 * 1 to update parent inode item
846 */
847 trans_num_items = create_subvol_num_items(inherit) + 3;
848 ret = btrfs_subvolume_reserve_metadata(root: BTRFS_I(inode: dir)->root, rsv: block_rsv,
849 nitems: trans_num_items, use_global_rsv: false);
850 if (ret)
851 goto free_pending;
852 qgroup_reserved = block_rsv->qgroup_rsv_reserved;
853
854 pending_snapshot->dentry = dentry;
855 pending_snapshot->root = root;
856 pending_snapshot->readonly = readonly;
857 pending_snapshot->dir = dir;
858 pending_snapshot->inherit = inherit;
859
860 trans = btrfs_start_transaction(root, num_items: 0);
861 if (IS_ERR(ptr: trans)) {
862 ret = PTR_ERR(ptr: trans);
863 goto fail;
864 }
865 ret = btrfs_record_root_in_trans(trans, root: BTRFS_I(inode: dir)->root);
866 if (ret) {
867 btrfs_end_transaction(trans);
868 goto fail;
869 }
870 btrfs_qgroup_convert_reserved_meta(root, num_bytes: qgroup_reserved);
871 qgroup_reserved = 0;
872
873 trans->pending_snapshot = pending_snapshot;
874
875 ret = btrfs_commit_transaction(trans);
876 if (ret)
877 goto fail;
878
879 ret = pending_snapshot->error;
880 if (ret)
881 goto fail;
882
883 ret = btrfs_orphan_cleanup(root: pending_snapshot->snap);
884 if (ret)
885 goto fail;
886
887 inode = btrfs_lookup_dentry(dir: d_inode(dentry: dentry->d_parent), dentry);
888 if (IS_ERR(ptr: inode)) {
889 ret = PTR_ERR(ptr: inode);
890 goto fail;
891 }
892
893 d_instantiate(dentry, inode);
894 ret = 0;
895 pending_snapshot->anon_dev = 0;
896fail:
897 /* Prevent double freeing of anon_dev */
898 if (ret && pending_snapshot->snap)
899 pending_snapshot->snap->anon_dev = 0;
900 btrfs_put_root(root: pending_snapshot->snap);
901 btrfs_block_rsv_release(fs_info, block_rsv, num_bytes: (u64)-1, NULL);
902 if (qgroup_reserved)
903 btrfs_qgroup_free_meta_prealloc(root, num_bytes: qgroup_reserved);
904free_pending:
905 if (pending_snapshot->anon_dev)
906 free_anon_bdev(pending_snapshot->anon_dev);
907 kfree(objp: pending_snapshot->root_item);
908 btrfs_free_path(p: pending_snapshot->path);
909 kfree(objp: pending_snapshot);
910
911 return ret;
912}
913
914/* copy of may_delete in fs/namei.c()
915 * Check whether we can remove a link victim from directory dir, check
916 * whether the type of victim is right.
917 * 1. We can't do it if dir is read-only (done in permission())
918 * 2. We should have write and exec permissions on dir
919 * 3. We can't remove anything from append-only dir
920 * 4. We can't do anything with immutable dir (done in permission())
921 * 5. If the sticky bit on dir is set we should either
922 * a. be owner of dir, or
923 * b. be owner of victim, or
924 * c. have CAP_FOWNER capability
925 * 6. If the victim is append-only or immutable we can't do anything with
926 * links pointing to it.
927 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
928 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
929 * 9. We can't remove a root or mountpoint.
930 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
931 * nfs_async_unlink().
932 */
933
934static int btrfs_may_delete(struct mnt_idmap *idmap,
935 struct inode *dir, struct dentry *victim, int isdir)
936{
937 int error;
938
939 if (d_really_is_negative(dentry: victim))
940 return -ENOENT;
941
942 /* The @victim is not inside @dir. */
943 if (d_inode(dentry: victim->d_parent) != dir)
944 return -EINVAL;
945 audit_inode_child(parent: dir, dentry: victim, AUDIT_TYPE_CHILD_DELETE);
946
947 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
948 if (error)
949 return error;
950 if (IS_APPEND(dir))
951 return -EPERM;
952 if (check_sticky(idmap, dir, inode: d_inode(dentry: victim)) ||
953 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
954 IS_SWAPFILE(d_inode(victim)))
955 return -EPERM;
956 if (isdir) {
957 if (!d_is_dir(dentry: victim))
958 return -ENOTDIR;
959 if (IS_ROOT(victim))
960 return -EBUSY;
961 } else if (d_is_dir(dentry: victim))
962 return -EISDIR;
963 if (IS_DEADDIR(dir))
964 return -ENOENT;
965 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
966 return -EBUSY;
967 return 0;
968}
969
970/* copy of may_create in fs/namei.c() */
971static inline int btrfs_may_create(struct mnt_idmap *idmap,
972 struct inode *dir, struct dentry *child)
973{
974 if (d_really_is_positive(dentry: child))
975 return -EEXIST;
976 if (IS_DEADDIR(dir))
977 return -ENOENT;
978 if (!fsuidgid_has_mapping(sb: dir->i_sb, idmap))
979 return -EOVERFLOW;
980 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
981}
982
983/*
984 * Create a new subvolume below @parent. This is largely modeled after
985 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
986 * inside this filesystem so it's quite a bit simpler.
987 */
988static noinline int btrfs_mksubvol(const struct path *parent,
989 struct mnt_idmap *idmap,
990 const char *name, int namelen,
991 struct btrfs_root *snap_src,
992 bool readonly,
993 struct btrfs_qgroup_inherit *inherit)
994{
995 struct inode *dir = d_inode(dentry: parent->dentry);
996 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
997 struct dentry *dentry;
998 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
999 int error;
1000
1001 error = down_write_killable_nested(sem: &dir->i_rwsem, subclass: I_MUTEX_PARENT);
1002 if (error == -EINTR)
1003 return error;
1004
1005 dentry = lookup_one(idmap, name, parent->dentry, namelen);
1006 error = PTR_ERR(ptr: dentry);
1007 if (IS_ERR(ptr: dentry))
1008 goto out_unlock;
1009
1010 error = btrfs_may_create(idmap, dir, child: dentry);
1011 if (error)
1012 goto out_dput;
1013
1014 /*
1015 * even if this name doesn't exist, we may get hash collisions.
1016 * check for them now when we can safely fail
1017 */
1018 error = btrfs_check_dir_item_collision(root: BTRFS_I(inode: dir)->root,
1019 dir: dir->i_ino, name: &name_str);
1020 if (error)
1021 goto out_dput;
1022
1023 down_read(sem: &fs_info->subvol_sem);
1024
1025 if (btrfs_root_refs(s: &BTRFS_I(inode: dir)->root->root_item) == 0)
1026 goto out_up_read;
1027
1028 if (snap_src)
1029 error = create_snapshot(root: snap_src, dir, dentry, readonly, inherit);
1030 else
1031 error = create_subvol(idmap, dir, dentry, inherit);
1032
1033 if (!error)
1034 fsnotify_mkdir(dir, dentry);
1035out_up_read:
1036 up_read(sem: &fs_info->subvol_sem);
1037out_dput:
1038 dput(dentry);
1039out_unlock:
1040 btrfs_inode_unlock(inode: BTRFS_I(inode: dir), ilock_flags: 0);
1041 return error;
1042}
1043
1044static noinline int btrfs_mksnapshot(const struct path *parent,
1045 struct mnt_idmap *idmap,
1046 const char *name, int namelen,
1047 struct btrfs_root *root,
1048 bool readonly,
1049 struct btrfs_qgroup_inherit *inherit)
1050{
1051 int ret;
1052 bool snapshot_force_cow = false;
1053
1054 /*
1055 * Force new buffered writes to reserve space even when NOCOW is
1056 * possible. This is to avoid later writeback (running dealloc) to
1057 * fallback to COW mode and unexpectedly fail with ENOSPC.
1058 */
1059 btrfs_drew_read_lock(lock: &root->snapshot_lock);
1060
1061 ret = btrfs_start_delalloc_snapshot(root, in_reclaim_context: false);
1062 if (ret)
1063 goto out;
1064
1065 /*
1066 * All previous writes have started writeback in NOCOW mode, so now
1067 * we force future writes to fallback to COW mode during snapshot
1068 * creation.
1069 */
1070 atomic_inc(v: &root->snapshot_force_cow);
1071 snapshot_force_cow = true;
1072
1073 btrfs_wait_ordered_extents(root, U64_MAX, range_start: 0, range_len: (u64)-1);
1074
1075 ret = btrfs_mksubvol(parent, idmap, name, namelen,
1076 snap_src: root, readonly, inherit);
1077out:
1078 if (snapshot_force_cow)
1079 atomic_dec(v: &root->snapshot_force_cow);
1080 btrfs_drew_read_unlock(lock: &root->snapshot_lock);
1081 return ret;
1082}
1083
1084/*
1085 * Try to start exclusive operation @type or cancel it if it's running.
1086 *
1087 * Return:
1088 * 0 - normal mode, newly claimed op started
1089 * >0 - normal mode, something else is running,
1090 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1091 * ECANCELED - cancel mode, successful cancel
1092 * ENOTCONN - cancel mode, operation not running anymore
1093 */
1094static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1095 enum btrfs_exclusive_operation type, bool cancel)
1096{
1097 if (!cancel) {
1098 /* Start normal op */
1099 if (!btrfs_exclop_start(fs_info, type))
1100 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1101 /* Exclusive operation is now claimed */
1102 return 0;
1103 }
1104
1105 /* Cancel running op */
1106 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1107 /*
1108 * This blocks any exclop finish from setting it to NONE, so we
1109 * request cancellation. Either it runs and we will wait for it,
1110 * or it has finished and no waiting will happen.
1111 */
1112 atomic_inc(v: &fs_info->reloc_cancel_req);
1113 btrfs_exclop_start_unlock(fs_info);
1114
1115 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1116 wait_on_bit(word: &fs_info->flags, bit: BTRFS_FS_RELOC_RUNNING,
1117 TASK_INTERRUPTIBLE);
1118
1119 return -ECANCELED;
1120 }
1121
1122 /* Something else is running or none */
1123 return -ENOTCONN;
1124}
1125
1126static noinline int btrfs_ioctl_resize(struct file *file,
1127 void __user *arg)
1128{
1129 BTRFS_DEV_LOOKUP_ARGS(args);
1130 struct inode *inode = file_inode(f: file);
1131 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1132 u64 new_size;
1133 u64 old_size;
1134 u64 devid = 1;
1135 struct btrfs_root *root = BTRFS_I(inode)->root;
1136 struct btrfs_ioctl_vol_args *vol_args;
1137 struct btrfs_trans_handle *trans;
1138 struct btrfs_device *device = NULL;
1139 char *sizestr;
1140 char *retptr;
1141 char *devstr = NULL;
1142 int ret = 0;
1143 int mod = 0;
1144 bool cancel;
1145
1146 if (!capable(CAP_SYS_ADMIN))
1147 return -EPERM;
1148
1149 ret = mnt_want_write_file(file);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * Read the arguments before checking exclusivity to be able to
1155 * distinguish regular resize and cancel
1156 */
1157 vol_args = memdup_user(arg, sizeof(*vol_args));
1158 if (IS_ERR(ptr: vol_args)) {
1159 ret = PTR_ERR(ptr: vol_args);
1160 goto out_drop;
1161 }
1162 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1163 if (ret < 0)
1164 goto out_free;
1165
1166 sizestr = vol_args->name;
1167 cancel = (strcmp("cancel", sizestr) == 0);
1168 ret = exclop_start_or_cancel_reloc(fs_info, type: BTRFS_EXCLOP_RESIZE, cancel);
1169 if (ret)
1170 goto out_free;
1171 /* Exclusive operation is now claimed */
1172
1173 devstr = strchr(sizestr, ':');
1174 if (devstr) {
1175 sizestr = devstr + 1;
1176 *devstr = '\0';
1177 devstr = vol_args->name;
1178 ret = kstrtoull(s: devstr, base: 10, res: &devid);
1179 if (ret)
1180 goto out_finish;
1181 if (!devid) {
1182 ret = -EINVAL;
1183 goto out_finish;
1184 }
1185 btrfs_info(fs_info, "resizing devid %llu", devid);
1186 }
1187
1188 args.devid = devid;
1189 device = btrfs_find_device(fs_devices: fs_info->fs_devices, args: &args);
1190 if (!device) {
1191 btrfs_info(fs_info, "resizer unable to find device %llu",
1192 devid);
1193 ret = -ENODEV;
1194 goto out_finish;
1195 }
1196
1197 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1198 btrfs_info(fs_info,
1199 "resizer unable to apply on readonly device %llu",
1200 devid);
1201 ret = -EPERM;
1202 goto out_finish;
1203 }
1204
1205 if (!strcmp(sizestr, "max"))
1206 new_size = bdev_nr_bytes(bdev: device->bdev);
1207 else {
1208 if (sizestr[0] == '-') {
1209 mod = -1;
1210 sizestr++;
1211 } else if (sizestr[0] == '+') {
1212 mod = 1;
1213 sizestr++;
1214 }
1215 new_size = memparse(ptr: sizestr, retptr: &retptr);
1216 if (*retptr != '\0' || new_size == 0) {
1217 ret = -EINVAL;
1218 goto out_finish;
1219 }
1220 }
1221
1222 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1223 ret = -EPERM;
1224 goto out_finish;
1225 }
1226
1227 old_size = btrfs_device_get_total_bytes(dev: device);
1228
1229 if (mod < 0) {
1230 if (new_size > old_size) {
1231 ret = -EINVAL;
1232 goto out_finish;
1233 }
1234 new_size = old_size - new_size;
1235 } else if (mod > 0) {
1236 if (new_size > ULLONG_MAX - old_size) {
1237 ret = -ERANGE;
1238 goto out_finish;
1239 }
1240 new_size = old_size + new_size;
1241 }
1242
1243 if (new_size < SZ_256M) {
1244 ret = -EINVAL;
1245 goto out_finish;
1246 }
1247 if (new_size > bdev_nr_bytes(bdev: device->bdev)) {
1248 ret = -EFBIG;
1249 goto out_finish;
1250 }
1251
1252 new_size = round_down(new_size, fs_info->sectorsize);
1253
1254 if (new_size > old_size) {
1255 trans = btrfs_start_transaction(root, num_items: 0);
1256 if (IS_ERR(ptr: trans)) {
1257 ret = PTR_ERR(ptr: trans);
1258 goto out_finish;
1259 }
1260 ret = btrfs_grow_device(trans, device, new_size);
1261 btrfs_commit_transaction(trans);
1262 } else if (new_size < old_size) {
1263 ret = btrfs_shrink_device(device, new_size);
1264 } /* equal, nothing need to do */
1265
1266 if (ret == 0 && new_size != old_size)
1267 btrfs_info_in_rcu(fs_info,
1268 "resize device %s (devid %llu) from %llu to %llu",
1269 btrfs_dev_name(device), device->devid,
1270 old_size, new_size);
1271out_finish:
1272 btrfs_exclop_finish(fs_info);
1273out_free:
1274 kfree(objp: vol_args);
1275out_drop:
1276 mnt_drop_write_file(file);
1277 return ret;
1278}
1279
1280static noinline int __btrfs_ioctl_snap_create(struct file *file,
1281 struct mnt_idmap *idmap,
1282 const char *name, unsigned long fd, int subvol,
1283 bool readonly,
1284 struct btrfs_qgroup_inherit *inherit)
1285{
1286 int namelen;
1287 int ret = 0;
1288
1289 if (!S_ISDIR(file_inode(file)->i_mode))
1290 return -ENOTDIR;
1291
1292 ret = mnt_want_write_file(file);
1293 if (ret)
1294 goto out;
1295
1296 namelen = strlen(name);
1297 if (strchr(name, '/')) {
1298 ret = -EINVAL;
1299 goto out_drop_write;
1300 }
1301
1302 if (name[0] == '.' &&
1303 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1304 ret = -EEXIST;
1305 goto out_drop_write;
1306 }
1307
1308 if (subvol) {
1309 ret = btrfs_mksubvol(parent: &file->f_path, idmap, name,
1310 namelen, NULL, readonly, inherit);
1311 } else {
1312 struct fd src = fdget(fd);
1313 struct inode *src_inode;
1314 if (!src.file) {
1315 ret = -EINVAL;
1316 goto out_drop_write;
1317 }
1318
1319 src_inode = file_inode(f: src.file);
1320 if (src_inode->i_sb != file_inode(f: file)->i_sb) {
1321 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1322 "Snapshot src from another FS");
1323 ret = -EXDEV;
1324 } else if (!inode_owner_or_capable(idmap, inode: src_inode)) {
1325 /*
1326 * Subvolume creation is not restricted, but snapshots
1327 * are limited to own subvolumes only
1328 */
1329 ret = -EPERM;
1330 } else if (btrfs_ino(inode: BTRFS_I(inode: src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1331 /*
1332 * Snapshots must be made with the src_inode referring
1333 * to the subvolume inode, otherwise the permission
1334 * checking above is useless because we may have
1335 * permission on a lower directory but not the subvol
1336 * itself.
1337 */
1338 ret = -EINVAL;
1339 } else {
1340 ret = btrfs_mksnapshot(parent: &file->f_path, idmap,
1341 name, namelen,
1342 root: BTRFS_I(inode: src_inode)->root,
1343 readonly, inherit);
1344 }
1345 fdput(fd: src);
1346 }
1347out_drop_write:
1348 mnt_drop_write_file(file);
1349out:
1350 return ret;
1351}
1352
1353static noinline int btrfs_ioctl_snap_create(struct file *file,
1354 void __user *arg, int subvol)
1355{
1356 struct btrfs_ioctl_vol_args *vol_args;
1357 int ret;
1358
1359 if (!S_ISDIR(file_inode(file)->i_mode))
1360 return -ENOTDIR;
1361
1362 vol_args = memdup_user(arg, sizeof(*vol_args));
1363 if (IS_ERR(ptr: vol_args))
1364 return PTR_ERR(ptr: vol_args);
1365 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1366 if (ret < 0)
1367 goto out;
1368
1369 ret = __btrfs_ioctl_snap_create(file, idmap: file_mnt_idmap(file),
1370 name: vol_args->name, fd: vol_args->fd, subvol,
1371 readonly: false, NULL);
1372
1373out:
1374 kfree(objp: vol_args);
1375 return ret;
1376}
1377
1378static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1379 void __user *arg, int subvol)
1380{
1381 struct btrfs_ioctl_vol_args_v2 *vol_args;
1382 int ret;
1383 bool readonly = false;
1384 struct btrfs_qgroup_inherit *inherit = NULL;
1385
1386 if (!S_ISDIR(file_inode(file)->i_mode))
1387 return -ENOTDIR;
1388
1389 vol_args = memdup_user(arg, sizeof(*vol_args));
1390 if (IS_ERR(ptr: vol_args))
1391 return PTR_ERR(ptr: vol_args);
1392 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2: vol_args);
1393 if (ret < 0)
1394 goto free_args;
1395
1396 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1397 ret = -EOPNOTSUPP;
1398 goto free_args;
1399 }
1400
1401 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1402 readonly = true;
1403 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1404 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1405
1406 if (vol_args->size < sizeof(*inherit) ||
1407 vol_args->size > PAGE_SIZE) {
1408 ret = -EINVAL;
1409 goto free_args;
1410 }
1411 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1412 if (IS_ERR(ptr: inherit)) {
1413 ret = PTR_ERR(ptr: inherit);
1414 goto free_args;
1415 }
1416
1417 ret = btrfs_qgroup_check_inherit(fs_info, inherit, size: vol_args->size);
1418 if (ret < 0)
1419 goto free_inherit;
1420 }
1421
1422 ret = __btrfs_ioctl_snap_create(file, idmap: file_mnt_idmap(file),
1423 name: vol_args->name, fd: vol_args->fd, subvol,
1424 readonly, inherit);
1425 if (ret)
1426 goto free_inherit;
1427free_inherit:
1428 kfree(objp: inherit);
1429free_args:
1430 kfree(objp: vol_args);
1431 return ret;
1432}
1433
1434static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1435 void __user *arg)
1436{
1437 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1438 struct btrfs_root *root = BTRFS_I(inode)->root;
1439 int ret = 0;
1440 u64 flags = 0;
1441
1442 if (btrfs_ino(inode: BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1443 return -EINVAL;
1444
1445 down_read(sem: &fs_info->subvol_sem);
1446 if (btrfs_root_readonly(root))
1447 flags |= BTRFS_SUBVOL_RDONLY;
1448 up_read(sem: &fs_info->subvol_sem);
1449
1450 if (copy_to_user(to: arg, from: &flags, n: sizeof(flags)))
1451 ret = -EFAULT;
1452
1453 return ret;
1454}
1455
1456static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1457 void __user *arg)
1458{
1459 struct inode *inode = file_inode(f: file);
1460 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1461 struct btrfs_root *root = BTRFS_I(inode)->root;
1462 struct btrfs_trans_handle *trans;
1463 u64 root_flags;
1464 u64 flags;
1465 int ret = 0;
1466
1467 if (!inode_owner_or_capable(idmap: file_mnt_idmap(file), inode))
1468 return -EPERM;
1469
1470 ret = mnt_want_write_file(file);
1471 if (ret)
1472 goto out;
1473
1474 if (btrfs_ino(inode: BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1475 ret = -EINVAL;
1476 goto out_drop_write;
1477 }
1478
1479 if (copy_from_user(to: &flags, from: arg, n: sizeof(flags))) {
1480 ret = -EFAULT;
1481 goto out_drop_write;
1482 }
1483
1484 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1485 ret = -EOPNOTSUPP;
1486 goto out_drop_write;
1487 }
1488
1489 down_write(sem: &fs_info->subvol_sem);
1490
1491 /* nothing to do */
1492 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1493 goto out_drop_sem;
1494
1495 root_flags = btrfs_root_flags(s: &root->root_item);
1496 if (flags & BTRFS_SUBVOL_RDONLY) {
1497 btrfs_set_root_flags(s: &root->root_item,
1498 val: root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1499 } else {
1500 /*
1501 * Block RO -> RW transition if this subvolume is involved in
1502 * send
1503 */
1504 spin_lock(lock: &root->root_item_lock);
1505 if (root->send_in_progress == 0) {
1506 btrfs_set_root_flags(s: &root->root_item,
1507 val: root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1508 spin_unlock(lock: &root->root_item_lock);
1509 } else {
1510 spin_unlock(lock: &root->root_item_lock);
1511 btrfs_warn(fs_info,
1512 "Attempt to set subvolume %llu read-write during send",
1513 root->root_key.objectid);
1514 ret = -EPERM;
1515 goto out_drop_sem;
1516 }
1517 }
1518
1519 trans = btrfs_start_transaction(root, num_items: 1);
1520 if (IS_ERR(ptr: trans)) {
1521 ret = PTR_ERR(ptr: trans);
1522 goto out_reset;
1523 }
1524
1525 ret = btrfs_update_root(trans, root: fs_info->tree_root,
1526 key: &root->root_key, item: &root->root_item);
1527 if (ret < 0) {
1528 btrfs_end_transaction(trans);
1529 goto out_reset;
1530 }
1531
1532 ret = btrfs_commit_transaction(trans);
1533
1534out_reset:
1535 if (ret)
1536 btrfs_set_root_flags(s: &root->root_item, val: root_flags);
1537out_drop_sem:
1538 up_write(sem: &fs_info->subvol_sem);
1539out_drop_write:
1540 mnt_drop_write_file(file);
1541out:
1542 return ret;
1543}
1544
1545static noinline int key_in_sk(struct btrfs_key *key,
1546 struct btrfs_ioctl_search_key *sk)
1547{
1548 struct btrfs_key test;
1549 int ret;
1550
1551 test.objectid = sk->min_objectid;
1552 test.type = sk->min_type;
1553 test.offset = sk->min_offset;
1554
1555 ret = btrfs_comp_cpu_keys(k1: key, k2: &test);
1556 if (ret < 0)
1557 return 0;
1558
1559 test.objectid = sk->max_objectid;
1560 test.type = sk->max_type;
1561 test.offset = sk->max_offset;
1562
1563 ret = btrfs_comp_cpu_keys(k1: key, k2: &test);
1564 if (ret > 0)
1565 return 0;
1566 return 1;
1567}
1568
1569static noinline int copy_to_sk(struct btrfs_path *path,
1570 struct btrfs_key *key,
1571 struct btrfs_ioctl_search_key *sk,
1572 u64 *buf_size,
1573 char __user *ubuf,
1574 unsigned long *sk_offset,
1575 int *num_found)
1576{
1577 u64 found_transid;
1578 struct extent_buffer *leaf;
1579 struct btrfs_ioctl_search_header sh;
1580 struct btrfs_key test;
1581 unsigned long item_off;
1582 unsigned long item_len;
1583 int nritems;
1584 int i;
1585 int slot;
1586 int ret = 0;
1587
1588 leaf = path->nodes[0];
1589 slot = path->slots[0];
1590 nritems = btrfs_header_nritems(eb: leaf);
1591
1592 if (btrfs_header_generation(eb: leaf) > sk->max_transid) {
1593 i = nritems;
1594 goto advance_key;
1595 }
1596 found_transid = btrfs_header_generation(eb: leaf);
1597
1598 for (i = slot; i < nritems; i++) {
1599 item_off = btrfs_item_ptr_offset(leaf, i);
1600 item_len = btrfs_item_size(eb: leaf, slot: i);
1601
1602 btrfs_item_key_to_cpu(eb: leaf, cpu_key: key, nr: i);
1603 if (!key_in_sk(key, sk))
1604 continue;
1605
1606 if (sizeof(sh) + item_len > *buf_size) {
1607 if (*num_found) {
1608 ret = 1;
1609 goto out;
1610 }
1611
1612 /*
1613 * return one empty item back for v1, which does not
1614 * handle -EOVERFLOW
1615 */
1616
1617 *buf_size = sizeof(sh) + item_len;
1618 item_len = 0;
1619 ret = -EOVERFLOW;
1620 }
1621
1622 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1623 ret = 1;
1624 goto out;
1625 }
1626
1627 sh.objectid = key->objectid;
1628 sh.offset = key->offset;
1629 sh.type = key->type;
1630 sh.len = item_len;
1631 sh.transid = found_transid;
1632
1633 /*
1634 * Copy search result header. If we fault then loop again so we
1635 * can fault in the pages and -EFAULT there if there's a
1636 * problem. Otherwise we'll fault and then copy the buffer in
1637 * properly this next time through
1638 */
1639 if (copy_to_user_nofault(dst: ubuf + *sk_offset, src: &sh, size: sizeof(sh))) {
1640 ret = 0;
1641 goto out;
1642 }
1643
1644 *sk_offset += sizeof(sh);
1645
1646 if (item_len) {
1647 char __user *up = ubuf + *sk_offset;
1648 /*
1649 * Copy the item, same behavior as above, but reset the
1650 * * sk_offset so we copy the full thing again.
1651 */
1652 if (read_extent_buffer_to_user_nofault(eb: leaf, dst: up,
1653 start: item_off, len: item_len)) {
1654 ret = 0;
1655 *sk_offset -= sizeof(sh);
1656 goto out;
1657 }
1658
1659 *sk_offset += item_len;
1660 }
1661 (*num_found)++;
1662
1663 if (ret) /* -EOVERFLOW from above */
1664 goto out;
1665
1666 if (*num_found >= sk->nr_items) {
1667 ret = 1;
1668 goto out;
1669 }
1670 }
1671advance_key:
1672 ret = 0;
1673 test.objectid = sk->max_objectid;
1674 test.type = sk->max_type;
1675 test.offset = sk->max_offset;
1676 if (btrfs_comp_cpu_keys(k1: key, k2: &test) >= 0)
1677 ret = 1;
1678 else if (key->offset < (u64)-1)
1679 key->offset++;
1680 else if (key->type < (u8)-1) {
1681 key->offset = 0;
1682 key->type++;
1683 } else if (key->objectid < (u64)-1) {
1684 key->offset = 0;
1685 key->type = 0;
1686 key->objectid++;
1687 } else
1688 ret = 1;
1689out:
1690 /*
1691 * 0: all items from this leaf copied, continue with next
1692 * 1: * more items can be copied, but unused buffer is too small
1693 * * all items were found
1694 * Either way, it will stops the loop which iterates to the next
1695 * leaf
1696 * -EOVERFLOW: item was to large for buffer
1697 * -EFAULT: could not copy extent buffer back to userspace
1698 */
1699 return ret;
1700}
1701
1702static noinline int search_ioctl(struct inode *inode,
1703 struct btrfs_ioctl_search_key *sk,
1704 u64 *buf_size,
1705 char __user *ubuf)
1706{
1707 struct btrfs_fs_info *info = inode_to_fs_info(inode);
1708 struct btrfs_root *root;
1709 struct btrfs_key key;
1710 struct btrfs_path *path;
1711 int ret;
1712 int num_found = 0;
1713 unsigned long sk_offset = 0;
1714
1715 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1716 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1717 return -EOVERFLOW;
1718 }
1719
1720 path = btrfs_alloc_path();
1721 if (!path)
1722 return -ENOMEM;
1723
1724 if (sk->tree_id == 0) {
1725 /* search the root of the inode that was passed */
1726 root = btrfs_grab_root(root: BTRFS_I(inode)->root);
1727 } else {
1728 root = btrfs_get_fs_root(fs_info: info, objectid: sk->tree_id, check_ref: true);
1729 if (IS_ERR(ptr: root)) {
1730 btrfs_free_path(p: path);
1731 return PTR_ERR(ptr: root);
1732 }
1733 }
1734
1735 key.objectid = sk->min_objectid;
1736 key.type = sk->min_type;
1737 key.offset = sk->min_offset;
1738
1739 while (1) {
1740 ret = -EFAULT;
1741 /*
1742 * Ensure that the whole user buffer is faulted in at sub-page
1743 * granularity, otherwise the loop may live-lock.
1744 */
1745 if (fault_in_subpage_writeable(uaddr: ubuf + sk_offset,
1746 size: *buf_size - sk_offset))
1747 break;
1748
1749 ret = btrfs_search_forward(root, min_key: &key, path, min_trans: sk->min_transid);
1750 if (ret != 0) {
1751 if (ret > 0)
1752 ret = 0;
1753 goto err;
1754 }
1755 ret = copy_to_sk(path, key: &key, sk, buf_size, ubuf,
1756 sk_offset: &sk_offset, num_found: &num_found);
1757 btrfs_release_path(p: path);
1758 if (ret)
1759 break;
1760
1761 }
1762 if (ret > 0)
1763 ret = 0;
1764err:
1765 sk->nr_items = num_found;
1766 btrfs_put_root(root);
1767 btrfs_free_path(p: path);
1768 return ret;
1769}
1770
1771static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1772 void __user *argp)
1773{
1774 struct btrfs_ioctl_search_args __user *uargs = argp;
1775 struct btrfs_ioctl_search_key sk;
1776 int ret;
1777 u64 buf_size;
1778
1779 if (!capable(CAP_SYS_ADMIN))
1780 return -EPERM;
1781
1782 if (copy_from_user(to: &sk, from: &uargs->key, n: sizeof(sk)))
1783 return -EFAULT;
1784
1785 buf_size = sizeof(uargs->buf);
1786
1787 ret = search_ioctl(inode, sk: &sk, buf_size: &buf_size, ubuf: uargs->buf);
1788
1789 /*
1790 * In the origin implementation an overflow is handled by returning a
1791 * search header with a len of zero, so reset ret.
1792 */
1793 if (ret == -EOVERFLOW)
1794 ret = 0;
1795
1796 if (ret == 0 && copy_to_user(to: &uargs->key, from: &sk, n: sizeof(sk)))
1797 ret = -EFAULT;
1798 return ret;
1799}
1800
1801static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1802 void __user *argp)
1803{
1804 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1805 struct btrfs_ioctl_search_args_v2 args;
1806 int ret;
1807 u64 buf_size;
1808 const u64 buf_limit = SZ_16M;
1809
1810 if (!capable(CAP_SYS_ADMIN))
1811 return -EPERM;
1812
1813 /* copy search header and buffer size */
1814 if (copy_from_user(to: &args, from: uarg, n: sizeof(args)))
1815 return -EFAULT;
1816
1817 buf_size = args.buf_size;
1818
1819 /* limit result size to 16MB */
1820 if (buf_size > buf_limit)
1821 buf_size = buf_limit;
1822
1823 ret = search_ioctl(inode, sk: &args.key, buf_size: &buf_size,
1824 ubuf: (char __user *)(&uarg->buf[0]));
1825 if (ret == 0 && copy_to_user(to: &uarg->key, from: &args.key, n: sizeof(args.key)))
1826 ret = -EFAULT;
1827 else if (ret == -EOVERFLOW &&
1828 copy_to_user(to: &uarg->buf_size, from: &buf_size, n: sizeof(buf_size)))
1829 ret = -EFAULT;
1830
1831 return ret;
1832}
1833
1834/*
1835 * Search INODE_REFs to identify path name of 'dirid' directory
1836 * in a 'tree_id' tree. and sets path name to 'name'.
1837 */
1838static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1839 u64 tree_id, u64 dirid, char *name)
1840{
1841 struct btrfs_root *root;
1842 struct btrfs_key key;
1843 char *ptr;
1844 int ret = -1;
1845 int slot;
1846 int len;
1847 int total_len = 0;
1848 struct btrfs_inode_ref *iref;
1849 struct extent_buffer *l;
1850 struct btrfs_path *path;
1851
1852 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1853 name[0]='\0';
1854 return 0;
1855 }
1856
1857 path = btrfs_alloc_path();
1858 if (!path)
1859 return -ENOMEM;
1860
1861 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1862
1863 root = btrfs_get_fs_root(fs_info: info, objectid: tree_id, check_ref: true);
1864 if (IS_ERR(ptr: root)) {
1865 ret = PTR_ERR(ptr: root);
1866 root = NULL;
1867 goto out;
1868 }
1869
1870 key.objectid = dirid;
1871 key.type = BTRFS_INODE_REF_KEY;
1872 key.offset = (u64)-1;
1873
1874 while (1) {
1875 ret = btrfs_search_backwards(root, key: &key, path);
1876 if (ret < 0)
1877 goto out;
1878 else if (ret > 0) {
1879 ret = -ENOENT;
1880 goto out;
1881 }
1882
1883 l = path->nodes[0];
1884 slot = path->slots[0];
1885
1886 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1887 len = btrfs_inode_ref_name_len(eb: l, s: iref);
1888 ptr -= len + 1;
1889 total_len += len + 1;
1890 if (ptr < name) {
1891 ret = -ENAMETOOLONG;
1892 goto out;
1893 }
1894
1895 *(ptr + len) = '/';
1896 read_extent_buffer(eb: l, dst: ptr, start: (unsigned long)(iref + 1), len);
1897
1898 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1899 break;
1900
1901 btrfs_release_path(p: path);
1902 key.objectid = key.offset;
1903 key.offset = (u64)-1;
1904 dirid = key.objectid;
1905 }
1906 memmove(name, ptr, total_len);
1907 name[total_len] = '\0';
1908 ret = 0;
1909out:
1910 btrfs_put_root(root);
1911 btrfs_free_path(p: path);
1912 return ret;
1913}
1914
1915static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1916 struct inode *inode,
1917 struct btrfs_ioctl_ino_lookup_user_args *args)
1918{
1919 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1920 struct super_block *sb = inode->i_sb;
1921 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1922 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1923 u64 dirid = args->dirid;
1924 unsigned long item_off;
1925 unsigned long item_len;
1926 struct btrfs_inode_ref *iref;
1927 struct btrfs_root_ref *rref;
1928 struct btrfs_root *root = NULL;
1929 struct btrfs_path *path;
1930 struct btrfs_key key, key2;
1931 struct extent_buffer *leaf;
1932 struct inode *temp_inode;
1933 char *ptr;
1934 int slot;
1935 int len;
1936 int total_len = 0;
1937 int ret;
1938
1939 path = btrfs_alloc_path();
1940 if (!path)
1941 return -ENOMEM;
1942
1943 /*
1944 * If the bottom subvolume does not exist directly under upper_limit,
1945 * construct the path in from the bottom up.
1946 */
1947 if (dirid != upper_limit.objectid) {
1948 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1949
1950 root = btrfs_get_fs_root(fs_info, objectid: treeid, check_ref: true);
1951 if (IS_ERR(ptr: root)) {
1952 ret = PTR_ERR(ptr: root);
1953 goto out;
1954 }
1955
1956 key.objectid = dirid;
1957 key.type = BTRFS_INODE_REF_KEY;
1958 key.offset = (u64)-1;
1959 while (1) {
1960 ret = btrfs_search_backwards(root, key: &key, path);
1961 if (ret < 0)
1962 goto out_put;
1963 else if (ret > 0) {
1964 ret = -ENOENT;
1965 goto out_put;
1966 }
1967
1968 leaf = path->nodes[0];
1969 slot = path->slots[0];
1970
1971 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1972 len = btrfs_inode_ref_name_len(eb: leaf, s: iref);
1973 ptr -= len + 1;
1974 total_len += len + 1;
1975 if (ptr < args->path) {
1976 ret = -ENAMETOOLONG;
1977 goto out_put;
1978 }
1979
1980 *(ptr + len) = '/';
1981 read_extent_buffer(eb: leaf, dst: ptr,
1982 start: (unsigned long)(iref + 1), len);
1983
1984 /* Check the read+exec permission of this directory */
1985 ret = btrfs_previous_item(root, path, min_objectid: dirid,
1986 BTRFS_INODE_ITEM_KEY);
1987 if (ret < 0) {
1988 goto out_put;
1989 } else if (ret > 0) {
1990 ret = -ENOENT;
1991 goto out_put;
1992 }
1993
1994 leaf = path->nodes[0];
1995 slot = path->slots[0];
1996 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key2, nr: slot);
1997 if (key2.objectid != dirid) {
1998 ret = -ENOENT;
1999 goto out_put;
2000 }
2001
2002 /*
2003 * We don't need the path anymore, so release it and
2004 * avoid deadlocks and lockdep warnings in case
2005 * btrfs_iget() needs to lookup the inode from its root
2006 * btree and lock the same leaf.
2007 */
2008 btrfs_release_path(p: path);
2009 temp_inode = btrfs_iget(s: sb, ino: key2.objectid, root);
2010 if (IS_ERR(ptr: temp_inode)) {
2011 ret = PTR_ERR(ptr: temp_inode);
2012 goto out_put;
2013 }
2014 ret = inode_permission(idmap, temp_inode,
2015 MAY_READ | MAY_EXEC);
2016 iput(temp_inode);
2017 if (ret) {
2018 ret = -EACCES;
2019 goto out_put;
2020 }
2021
2022 if (key.offset == upper_limit.objectid)
2023 break;
2024 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2025 ret = -EACCES;
2026 goto out_put;
2027 }
2028
2029 key.objectid = key.offset;
2030 key.offset = (u64)-1;
2031 dirid = key.objectid;
2032 }
2033
2034 memmove(args->path, ptr, total_len);
2035 args->path[total_len] = '\0';
2036 btrfs_put_root(root);
2037 root = NULL;
2038 btrfs_release_path(p: path);
2039 }
2040
2041 /* Get the bottom subvolume's name from ROOT_REF */
2042 key.objectid = treeid;
2043 key.type = BTRFS_ROOT_REF_KEY;
2044 key.offset = args->treeid;
2045 ret = btrfs_search_slot(NULL, root: fs_info->tree_root, key: &key, p: path, ins_len: 0, cow: 0);
2046 if (ret < 0) {
2047 goto out;
2048 } else if (ret > 0) {
2049 ret = -ENOENT;
2050 goto out;
2051 }
2052
2053 leaf = path->nodes[0];
2054 slot = path->slots[0];
2055 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
2056
2057 item_off = btrfs_item_ptr_offset(leaf, slot);
2058 item_len = btrfs_item_size(eb: leaf, slot);
2059 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2060 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2061 if (args->dirid != btrfs_root_ref_dirid(eb: leaf, s: rref)) {
2062 ret = -EINVAL;
2063 goto out;
2064 }
2065
2066 /* Copy subvolume's name */
2067 item_off += sizeof(struct btrfs_root_ref);
2068 item_len -= sizeof(struct btrfs_root_ref);
2069 read_extent_buffer(eb: leaf, dst: args->name, start: item_off, len: item_len);
2070 args->name[item_len] = 0;
2071
2072out_put:
2073 btrfs_put_root(root);
2074out:
2075 btrfs_free_path(p: path);
2076 return ret;
2077}
2078
2079static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2080 void __user *argp)
2081{
2082 struct btrfs_ioctl_ino_lookup_args *args;
2083 int ret = 0;
2084
2085 args = memdup_user(argp, sizeof(*args));
2086 if (IS_ERR(ptr: args))
2087 return PTR_ERR(ptr: args);
2088
2089 /*
2090 * Unprivileged query to obtain the containing subvolume root id. The
2091 * path is reset so it's consistent with btrfs_search_path_in_tree.
2092 */
2093 if (args->treeid == 0)
2094 args->treeid = root->root_key.objectid;
2095
2096 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2097 args->name[0] = 0;
2098 goto out;
2099 }
2100
2101 if (!capable(CAP_SYS_ADMIN)) {
2102 ret = -EPERM;
2103 goto out;
2104 }
2105
2106 ret = btrfs_search_path_in_tree(info: root->fs_info,
2107 tree_id: args->treeid, dirid: args->objectid,
2108 name: args->name);
2109
2110out:
2111 if (ret == 0 && copy_to_user(to: argp, from: args, n: sizeof(*args)))
2112 ret = -EFAULT;
2113
2114 kfree(objp: args);
2115 return ret;
2116}
2117
2118/*
2119 * Version of ino_lookup ioctl (unprivileged)
2120 *
2121 * The main differences from ino_lookup ioctl are:
2122 *
2123 * 1. Read + Exec permission will be checked using inode_permission() during
2124 * path construction. -EACCES will be returned in case of failure.
2125 * 2. Path construction will be stopped at the inode number which corresponds
2126 * to the fd with which this ioctl is called. If constructed path does not
2127 * exist under fd's inode, -EACCES will be returned.
2128 * 3. The name of bottom subvolume is also searched and filled.
2129 */
2130static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2131{
2132 struct btrfs_ioctl_ino_lookup_user_args *args;
2133 struct inode *inode;
2134 int ret;
2135
2136 args = memdup_user(argp, sizeof(*args));
2137 if (IS_ERR(ptr: args))
2138 return PTR_ERR(ptr: args);
2139
2140 inode = file_inode(f: file);
2141
2142 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2143 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2144 /*
2145 * The subvolume does not exist under fd with which this is
2146 * called
2147 */
2148 kfree(objp: args);
2149 return -EACCES;
2150 }
2151
2152 ret = btrfs_search_path_in_tree_user(idmap: file_mnt_idmap(file), inode, args);
2153
2154 if (ret == 0 && copy_to_user(to: argp, from: args, n: sizeof(*args)))
2155 ret = -EFAULT;
2156
2157 kfree(objp: args);
2158 return ret;
2159}
2160
2161/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2162static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2163{
2164 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2165 struct btrfs_fs_info *fs_info;
2166 struct btrfs_root *root;
2167 struct btrfs_path *path;
2168 struct btrfs_key key;
2169 struct btrfs_root_item *root_item;
2170 struct btrfs_root_ref *rref;
2171 struct extent_buffer *leaf;
2172 unsigned long item_off;
2173 unsigned long item_len;
2174 int slot;
2175 int ret = 0;
2176
2177 path = btrfs_alloc_path();
2178 if (!path)
2179 return -ENOMEM;
2180
2181 subvol_info = kzalloc(size: sizeof(*subvol_info), GFP_KERNEL);
2182 if (!subvol_info) {
2183 btrfs_free_path(p: path);
2184 return -ENOMEM;
2185 }
2186
2187 fs_info = BTRFS_I(inode)->root->fs_info;
2188
2189 /* Get root_item of inode's subvolume */
2190 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2191 root = btrfs_get_fs_root(fs_info, objectid: key.objectid, check_ref: true);
2192 if (IS_ERR(ptr: root)) {
2193 ret = PTR_ERR(ptr: root);
2194 goto out_free;
2195 }
2196 root_item = &root->root_item;
2197
2198 subvol_info->treeid = key.objectid;
2199
2200 subvol_info->generation = btrfs_root_generation(s: root_item);
2201 subvol_info->flags = btrfs_root_flags(s: root_item);
2202
2203 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2204 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2205 BTRFS_UUID_SIZE);
2206 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2207 BTRFS_UUID_SIZE);
2208
2209 subvol_info->ctransid = btrfs_root_ctransid(s: root_item);
2210 subvol_info->ctime.sec = btrfs_stack_timespec_sec(s: &root_item->ctime);
2211 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(s: &root_item->ctime);
2212
2213 subvol_info->otransid = btrfs_root_otransid(s: root_item);
2214 subvol_info->otime.sec = btrfs_stack_timespec_sec(s: &root_item->otime);
2215 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(s: &root_item->otime);
2216
2217 subvol_info->stransid = btrfs_root_stransid(s: root_item);
2218 subvol_info->stime.sec = btrfs_stack_timespec_sec(s: &root_item->stime);
2219 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(s: &root_item->stime);
2220
2221 subvol_info->rtransid = btrfs_root_rtransid(s: root_item);
2222 subvol_info->rtime.sec = btrfs_stack_timespec_sec(s: &root_item->rtime);
2223 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(s: &root_item->rtime);
2224
2225 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2226 /* Search root tree for ROOT_BACKREF of this subvolume */
2227 key.type = BTRFS_ROOT_BACKREF_KEY;
2228 key.offset = 0;
2229 ret = btrfs_search_slot(NULL, root: fs_info->tree_root, key: &key, p: path, ins_len: 0, cow: 0);
2230 if (ret < 0) {
2231 goto out;
2232 } else if (path->slots[0] >=
2233 btrfs_header_nritems(eb: path->nodes[0])) {
2234 ret = btrfs_next_leaf(root: fs_info->tree_root, path);
2235 if (ret < 0) {
2236 goto out;
2237 } else if (ret > 0) {
2238 ret = -EUCLEAN;
2239 goto out;
2240 }
2241 }
2242
2243 leaf = path->nodes[0];
2244 slot = path->slots[0];
2245 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
2246 if (key.objectid == subvol_info->treeid &&
2247 key.type == BTRFS_ROOT_BACKREF_KEY) {
2248 subvol_info->parent_id = key.offset;
2249
2250 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2251 subvol_info->dirid = btrfs_root_ref_dirid(eb: leaf, s: rref);
2252
2253 item_off = btrfs_item_ptr_offset(leaf, slot)
2254 + sizeof(struct btrfs_root_ref);
2255 item_len = btrfs_item_size(eb: leaf, slot)
2256 - sizeof(struct btrfs_root_ref);
2257 read_extent_buffer(eb: leaf, dst: subvol_info->name,
2258 start: item_off, len: item_len);
2259 } else {
2260 ret = -ENOENT;
2261 goto out;
2262 }
2263 }
2264
2265 btrfs_free_path(p: path);
2266 path = NULL;
2267 if (copy_to_user(to: argp, from: subvol_info, n: sizeof(*subvol_info)))
2268 ret = -EFAULT;
2269
2270out:
2271 btrfs_put_root(root);
2272out_free:
2273 btrfs_free_path(p: path);
2274 kfree(objp: subvol_info);
2275 return ret;
2276}
2277
2278/*
2279 * Return ROOT_REF information of the subvolume containing this inode
2280 * except the subvolume name.
2281 */
2282static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2283 void __user *argp)
2284{
2285 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2286 struct btrfs_root_ref *rref;
2287 struct btrfs_path *path;
2288 struct btrfs_key key;
2289 struct extent_buffer *leaf;
2290 u64 objectid;
2291 int slot;
2292 int ret;
2293 u8 found;
2294
2295 path = btrfs_alloc_path();
2296 if (!path)
2297 return -ENOMEM;
2298
2299 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2300 if (IS_ERR(ptr: rootrefs)) {
2301 btrfs_free_path(p: path);
2302 return PTR_ERR(ptr: rootrefs);
2303 }
2304
2305 objectid = root->root_key.objectid;
2306 key.objectid = objectid;
2307 key.type = BTRFS_ROOT_REF_KEY;
2308 key.offset = rootrefs->min_treeid;
2309 found = 0;
2310
2311 root = root->fs_info->tree_root;
2312 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
2313 if (ret < 0) {
2314 goto out;
2315 } else if (path->slots[0] >=
2316 btrfs_header_nritems(eb: path->nodes[0])) {
2317 ret = btrfs_next_leaf(root, path);
2318 if (ret < 0) {
2319 goto out;
2320 } else if (ret > 0) {
2321 ret = -EUCLEAN;
2322 goto out;
2323 }
2324 }
2325 while (1) {
2326 leaf = path->nodes[0];
2327 slot = path->slots[0];
2328
2329 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
2330 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2331 ret = 0;
2332 goto out;
2333 }
2334
2335 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2336 ret = -EOVERFLOW;
2337 goto out;
2338 }
2339
2340 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2341 rootrefs->rootref[found].treeid = key.offset;
2342 rootrefs->rootref[found].dirid =
2343 btrfs_root_ref_dirid(eb: leaf, s: rref);
2344 found++;
2345
2346 ret = btrfs_next_item(root, p: path);
2347 if (ret < 0) {
2348 goto out;
2349 } else if (ret > 0) {
2350 ret = -EUCLEAN;
2351 goto out;
2352 }
2353 }
2354
2355out:
2356 btrfs_free_path(p: path);
2357
2358 if (!ret || ret == -EOVERFLOW) {
2359 rootrefs->num_items = found;
2360 /* update min_treeid for next search */
2361 if (found)
2362 rootrefs->min_treeid =
2363 rootrefs->rootref[found - 1].treeid + 1;
2364 if (copy_to_user(to: argp, from: rootrefs, n: sizeof(*rootrefs)))
2365 ret = -EFAULT;
2366 }
2367
2368 kfree(objp: rootrefs);
2369
2370 return ret;
2371}
2372
2373static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2374 void __user *arg,
2375 bool destroy_v2)
2376{
2377 struct dentry *parent = file->f_path.dentry;
2378 struct dentry *dentry;
2379 struct inode *dir = d_inode(dentry: parent);
2380 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2381 struct inode *inode;
2382 struct btrfs_root *root = BTRFS_I(inode: dir)->root;
2383 struct btrfs_root *dest = NULL;
2384 struct btrfs_ioctl_vol_args *vol_args = NULL;
2385 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2386 struct mnt_idmap *idmap = file_mnt_idmap(file);
2387 char *subvol_name, *subvol_name_ptr = NULL;
2388 int subvol_namelen;
2389 int err = 0;
2390 bool destroy_parent = false;
2391
2392 /* We don't support snapshots with extent tree v2 yet. */
2393 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2394 btrfs_err(fs_info,
2395 "extent tree v2 doesn't support snapshot deletion yet");
2396 return -EOPNOTSUPP;
2397 }
2398
2399 if (destroy_v2) {
2400 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2401 if (IS_ERR(ptr: vol_args2))
2402 return PTR_ERR(ptr: vol_args2);
2403
2404 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2405 err = -EOPNOTSUPP;
2406 goto out;
2407 }
2408
2409 /*
2410 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2411 * name, same as v1 currently does.
2412 */
2413 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2414 err = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2415 if (err < 0)
2416 goto out;
2417 subvol_name = vol_args2->name;
2418
2419 err = mnt_want_write_file(file);
2420 if (err)
2421 goto out;
2422 } else {
2423 struct inode *old_dir;
2424
2425 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2426 err = -EINVAL;
2427 goto out;
2428 }
2429
2430 err = mnt_want_write_file(file);
2431 if (err)
2432 goto out;
2433
2434 dentry = btrfs_get_dentry(sb: fs_info->sb,
2435 BTRFS_FIRST_FREE_OBJECTID,
2436 root_objectid: vol_args2->subvolid, generation: 0);
2437 if (IS_ERR(ptr: dentry)) {
2438 err = PTR_ERR(ptr: dentry);
2439 goto out_drop_write;
2440 }
2441
2442 /*
2443 * Change the default parent since the subvolume being
2444 * deleted can be outside of the current mount point.
2445 */
2446 parent = btrfs_get_parent(child: dentry);
2447
2448 /*
2449 * At this point dentry->d_name can point to '/' if the
2450 * subvolume we want to destroy is outsite of the
2451 * current mount point, so we need to release the
2452 * current dentry and execute the lookup to return a new
2453 * one with ->d_name pointing to the
2454 * <mount point>/subvol_name.
2455 */
2456 dput(dentry);
2457 if (IS_ERR(ptr: parent)) {
2458 err = PTR_ERR(ptr: parent);
2459 goto out_drop_write;
2460 }
2461 old_dir = dir;
2462 dir = d_inode(dentry: parent);
2463
2464 /*
2465 * If v2 was used with SPEC_BY_ID, a new parent was
2466 * allocated since the subvolume can be outside of the
2467 * current mount point. Later on we need to release this
2468 * new parent dentry.
2469 */
2470 destroy_parent = true;
2471
2472 /*
2473 * On idmapped mounts, deletion via subvolid is
2474 * restricted to subvolumes that are immediate
2475 * ancestors of the inode referenced by the file
2476 * descriptor in the ioctl. Otherwise the idmapping
2477 * could potentially be abused to delete subvolumes
2478 * anywhere in the filesystem the user wouldn't be able
2479 * to delete without an idmapped mount.
2480 */
2481 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2482 err = -EOPNOTSUPP;
2483 goto free_parent;
2484 }
2485
2486 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2487 fs_info, subvol_objectid: vol_args2->subvolid);
2488 if (IS_ERR(ptr: subvol_name_ptr)) {
2489 err = PTR_ERR(ptr: subvol_name_ptr);
2490 goto free_parent;
2491 }
2492 /* subvol_name_ptr is already nul terminated */
2493 subvol_name = (char *)kbasename(path: subvol_name_ptr);
2494 }
2495 } else {
2496 vol_args = memdup_user(arg, sizeof(*vol_args));
2497 if (IS_ERR(ptr: vol_args))
2498 return PTR_ERR(ptr: vol_args);
2499
2500 err = btrfs_check_ioctl_vol_args_path(vol_args);
2501 if (err < 0)
2502 goto out;
2503
2504 subvol_name = vol_args->name;
2505
2506 err = mnt_want_write_file(file);
2507 if (err)
2508 goto out;
2509 }
2510
2511 subvol_namelen = strlen(subvol_name);
2512
2513 if (strchr(subvol_name, '/') ||
2514 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2515 err = -EINVAL;
2516 goto free_subvol_name;
2517 }
2518
2519 if (!S_ISDIR(dir->i_mode)) {
2520 err = -ENOTDIR;
2521 goto free_subvol_name;
2522 }
2523
2524 err = down_write_killable_nested(sem: &dir->i_rwsem, subclass: I_MUTEX_PARENT);
2525 if (err == -EINTR)
2526 goto free_subvol_name;
2527 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2528 if (IS_ERR(ptr: dentry)) {
2529 err = PTR_ERR(ptr: dentry);
2530 goto out_unlock_dir;
2531 }
2532
2533 if (d_really_is_negative(dentry)) {
2534 err = -ENOENT;
2535 goto out_dput;
2536 }
2537
2538 inode = d_inode(dentry);
2539 dest = BTRFS_I(inode)->root;
2540 if (!capable(CAP_SYS_ADMIN)) {
2541 /*
2542 * Regular user. Only allow this with a special mount
2543 * option, when the user has write+exec access to the
2544 * subvol root, and when rmdir(2) would have been
2545 * allowed.
2546 *
2547 * Note that this is _not_ check that the subvol is
2548 * empty or doesn't contain data that we wouldn't
2549 * otherwise be able to delete.
2550 *
2551 * Users who want to delete empty subvols should try
2552 * rmdir(2).
2553 */
2554 err = -EPERM;
2555 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2556 goto out_dput;
2557
2558 /*
2559 * Do not allow deletion if the parent dir is the same
2560 * as the dir to be deleted. That means the ioctl
2561 * must be called on the dentry referencing the root
2562 * of the subvol, not a random directory contained
2563 * within it.
2564 */
2565 err = -EINVAL;
2566 if (root == dest)
2567 goto out_dput;
2568
2569 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2570 if (err)
2571 goto out_dput;
2572 }
2573
2574 /* check if subvolume may be deleted by a user */
2575 err = btrfs_may_delete(idmap, dir, victim: dentry, isdir: 1);
2576 if (err)
2577 goto out_dput;
2578
2579 if (btrfs_ino(inode: BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2580 err = -EINVAL;
2581 goto out_dput;
2582 }
2583
2584 btrfs_inode_lock(inode: BTRFS_I(inode), ilock_flags: 0);
2585 err = btrfs_delete_subvolume(dir: BTRFS_I(inode: dir), dentry);
2586 btrfs_inode_unlock(inode: BTRFS_I(inode), ilock_flags: 0);
2587 if (!err)
2588 d_delete_notify(dir, dentry);
2589
2590out_dput:
2591 dput(dentry);
2592out_unlock_dir:
2593 btrfs_inode_unlock(inode: BTRFS_I(inode: dir), ilock_flags: 0);
2594free_subvol_name:
2595 kfree(objp: subvol_name_ptr);
2596free_parent:
2597 if (destroy_parent)
2598 dput(parent);
2599out_drop_write:
2600 mnt_drop_write_file(file);
2601out:
2602 kfree(objp: vol_args2);
2603 kfree(objp: vol_args);
2604 return err;
2605}
2606
2607static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2608{
2609 struct inode *inode = file_inode(f: file);
2610 struct btrfs_root *root = BTRFS_I(inode)->root;
2611 struct btrfs_ioctl_defrag_range_args range = {0};
2612 int ret;
2613
2614 ret = mnt_want_write_file(file);
2615 if (ret)
2616 return ret;
2617
2618 if (btrfs_root_readonly(root)) {
2619 ret = -EROFS;
2620 goto out;
2621 }
2622
2623 switch (inode->i_mode & S_IFMT) {
2624 case S_IFDIR:
2625 if (!capable(CAP_SYS_ADMIN)) {
2626 ret = -EPERM;
2627 goto out;
2628 }
2629 ret = btrfs_defrag_root(root);
2630 break;
2631 case S_IFREG:
2632 /*
2633 * Note that this does not check the file descriptor for write
2634 * access. This prevents defragmenting executables that are
2635 * running and allows defrag on files open in read-only mode.
2636 */
2637 if (!capable(CAP_SYS_ADMIN) &&
2638 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2639 ret = -EPERM;
2640 goto out;
2641 }
2642
2643 if (argp) {
2644 if (copy_from_user(to: &range, from: argp, n: sizeof(range))) {
2645 ret = -EFAULT;
2646 goto out;
2647 }
2648 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2649 ret = -EOPNOTSUPP;
2650 goto out;
2651 }
2652 /* compression requires us to start the IO */
2653 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2654 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2655 range.extent_thresh = (u32)-1;
2656 }
2657 } else {
2658 /* the rest are all set to zero by kzalloc */
2659 range.len = (u64)-1;
2660 }
2661 ret = btrfs_defrag_file(inode: file_inode(f: file), ra: &file->f_ra,
2662 range: &range, BTRFS_OLDEST_GENERATION, max_to_defrag: 0);
2663 if (ret > 0)
2664 ret = 0;
2665 break;
2666 default:
2667 ret = -EINVAL;
2668 }
2669out:
2670 mnt_drop_write_file(file);
2671 return ret;
2672}
2673
2674static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2675{
2676 struct btrfs_ioctl_vol_args *vol_args;
2677 bool restore_op = false;
2678 int ret;
2679
2680 if (!capable(CAP_SYS_ADMIN))
2681 return -EPERM;
2682
2683 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2684 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2685 return -EINVAL;
2686 }
2687
2688 if (fs_info->fs_devices->temp_fsid) {
2689 btrfs_err(fs_info,
2690 "device add not supported on cloned temp-fsid mount");
2691 return -EINVAL;
2692 }
2693
2694 if (!btrfs_exclop_start(fs_info, type: BTRFS_EXCLOP_DEV_ADD)) {
2695 if (!btrfs_exclop_start_try_lock(fs_info, type: BTRFS_EXCLOP_DEV_ADD))
2696 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2697
2698 /*
2699 * We can do the device add because we have a paused balanced,
2700 * change the exclusive op type and remember we should bring
2701 * back the paused balance
2702 */
2703 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2704 btrfs_exclop_start_unlock(fs_info);
2705 restore_op = true;
2706 }
2707
2708 vol_args = memdup_user(arg, sizeof(*vol_args));
2709 if (IS_ERR(ptr: vol_args)) {
2710 ret = PTR_ERR(ptr: vol_args);
2711 goto out;
2712 }
2713
2714 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2715 if (ret < 0)
2716 goto out_free;
2717
2718 ret = btrfs_init_new_device(fs_info, path: vol_args->name);
2719
2720 if (!ret)
2721 btrfs_info(fs_info, "disk added %s", vol_args->name);
2722
2723out_free:
2724 kfree(objp: vol_args);
2725out:
2726 if (restore_op)
2727 btrfs_exclop_balance(fs_info, op: BTRFS_EXCLOP_BALANCE_PAUSED);
2728 else
2729 btrfs_exclop_finish(fs_info);
2730 return ret;
2731}
2732
2733static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2734{
2735 BTRFS_DEV_LOOKUP_ARGS(args);
2736 struct inode *inode = file_inode(f: file);
2737 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2738 struct btrfs_ioctl_vol_args_v2 *vol_args;
2739 struct file *bdev_file = NULL;
2740 int ret;
2741 bool cancel = false;
2742
2743 if (!capable(CAP_SYS_ADMIN))
2744 return -EPERM;
2745
2746 vol_args = memdup_user(arg, sizeof(*vol_args));
2747 if (IS_ERR(ptr: vol_args))
2748 return PTR_ERR(ptr: vol_args);
2749
2750 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2751 ret = -EOPNOTSUPP;
2752 goto out;
2753 }
2754
2755 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2: vol_args);
2756 if (ret < 0)
2757 goto out;
2758
2759 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2760 args.devid = vol_args->devid;
2761 } else if (!strcmp("cancel", vol_args->name)) {
2762 cancel = true;
2763 } else {
2764 ret = btrfs_get_dev_args_from_path(fs_info, args: &args, path: vol_args->name);
2765 if (ret)
2766 goto out;
2767 }
2768
2769 ret = mnt_want_write_file(file);
2770 if (ret)
2771 goto out;
2772
2773 ret = exclop_start_or_cancel_reloc(fs_info, type: BTRFS_EXCLOP_DEV_REMOVE,
2774 cancel);
2775 if (ret)
2776 goto err_drop;
2777
2778 /* Exclusive operation is now claimed */
2779 ret = btrfs_rm_device(fs_info, args: &args, bdev_file: &bdev_file);
2780
2781 btrfs_exclop_finish(fs_info);
2782
2783 if (!ret) {
2784 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2785 btrfs_info(fs_info, "device deleted: id %llu",
2786 vol_args->devid);
2787 else
2788 btrfs_info(fs_info, "device deleted: %s",
2789 vol_args->name);
2790 }
2791err_drop:
2792 mnt_drop_write_file(file);
2793 if (bdev_file)
2794 fput(bdev_file);
2795out:
2796 btrfs_put_dev_args_from_path(args: &args);
2797 kfree(objp: vol_args);
2798 return ret;
2799}
2800
2801static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2802{
2803 BTRFS_DEV_LOOKUP_ARGS(args);
2804 struct inode *inode = file_inode(f: file);
2805 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2806 struct btrfs_ioctl_vol_args *vol_args;
2807 struct file *bdev_file = NULL;
2808 int ret;
2809 bool cancel = false;
2810
2811 if (!capable(CAP_SYS_ADMIN))
2812 return -EPERM;
2813
2814 vol_args = memdup_user(arg, sizeof(*vol_args));
2815 if (IS_ERR(ptr: vol_args))
2816 return PTR_ERR(ptr: vol_args);
2817
2818 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2819 if (ret < 0)
2820 goto out_free;
2821
2822 if (!strcmp("cancel", vol_args->name)) {
2823 cancel = true;
2824 } else {
2825 ret = btrfs_get_dev_args_from_path(fs_info, args: &args, path: vol_args->name);
2826 if (ret)
2827 goto out;
2828 }
2829
2830 ret = mnt_want_write_file(file);
2831 if (ret)
2832 goto out;
2833
2834 ret = exclop_start_or_cancel_reloc(fs_info, type: BTRFS_EXCLOP_DEV_REMOVE,
2835 cancel);
2836 if (ret == 0) {
2837 ret = btrfs_rm_device(fs_info, args: &args, bdev_file: &bdev_file);
2838 if (!ret)
2839 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2840 btrfs_exclop_finish(fs_info);
2841 }
2842
2843 mnt_drop_write_file(file);
2844 if (bdev_file)
2845 fput(bdev_file);
2846out:
2847 btrfs_put_dev_args_from_path(args: &args);
2848out_free:
2849 kfree(objp: vol_args);
2850 return ret;
2851}
2852
2853static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2854 void __user *arg)
2855{
2856 struct btrfs_ioctl_fs_info_args *fi_args;
2857 struct btrfs_device *device;
2858 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2859 u64 flags_in;
2860 int ret = 0;
2861
2862 fi_args = memdup_user(arg, sizeof(*fi_args));
2863 if (IS_ERR(ptr: fi_args))
2864 return PTR_ERR(ptr: fi_args);
2865
2866 flags_in = fi_args->flags;
2867 memset(fi_args, 0, sizeof(*fi_args));
2868
2869 rcu_read_lock();
2870 fi_args->num_devices = fs_devices->num_devices;
2871
2872 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2873 if (device->devid > fi_args->max_id)
2874 fi_args->max_id = device->devid;
2875 }
2876 rcu_read_unlock();
2877
2878 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2879 fi_args->nodesize = fs_info->nodesize;
2880 fi_args->sectorsize = fs_info->sectorsize;
2881 fi_args->clone_alignment = fs_info->sectorsize;
2882
2883 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2884 fi_args->csum_type = btrfs_super_csum_type(s: fs_info->super_copy);
2885 fi_args->csum_size = btrfs_super_csum_size(s: fs_info->super_copy);
2886 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2887 }
2888
2889 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2890 fi_args->generation = btrfs_get_fs_generation(fs_info);
2891 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2892 }
2893
2894 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2895 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2896 sizeof(fi_args->metadata_uuid));
2897 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2898 }
2899
2900 if (copy_to_user(to: arg, from: fi_args, n: sizeof(*fi_args)))
2901 ret = -EFAULT;
2902
2903 kfree(objp: fi_args);
2904 return ret;
2905}
2906
2907static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2908 void __user *arg)
2909{
2910 BTRFS_DEV_LOOKUP_ARGS(args);
2911 struct btrfs_ioctl_dev_info_args *di_args;
2912 struct btrfs_device *dev;
2913 int ret = 0;
2914
2915 di_args = memdup_user(arg, sizeof(*di_args));
2916 if (IS_ERR(ptr: di_args))
2917 return PTR_ERR(ptr: di_args);
2918
2919 args.devid = di_args->devid;
2920 if (!btrfs_is_empty_uuid(uuid: di_args->uuid))
2921 args.uuid = di_args->uuid;
2922
2923 rcu_read_lock();
2924 dev = btrfs_find_device(fs_devices: fs_info->fs_devices, args: &args);
2925 if (!dev) {
2926 ret = -ENODEV;
2927 goto out;
2928 }
2929
2930 di_args->devid = dev->devid;
2931 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2932 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2933 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2934 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2935 if (dev->name)
2936 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2937 else
2938 di_args->path[0] = '\0';
2939
2940out:
2941 rcu_read_unlock();
2942 if (ret == 0 && copy_to_user(to: arg, from: di_args, n: sizeof(*di_args)))
2943 ret = -EFAULT;
2944
2945 kfree(objp: di_args);
2946 return ret;
2947}
2948
2949static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2950{
2951 struct inode *inode = file_inode(f: file);
2952 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2953 struct btrfs_root *root = BTRFS_I(inode)->root;
2954 struct btrfs_root *new_root;
2955 struct btrfs_dir_item *di;
2956 struct btrfs_trans_handle *trans;
2957 struct btrfs_path *path = NULL;
2958 struct btrfs_disk_key disk_key;
2959 struct fscrypt_str name = FSTR_INIT("default", 7);
2960 u64 objectid = 0;
2961 u64 dir_id;
2962 int ret;
2963
2964 if (!capable(CAP_SYS_ADMIN))
2965 return -EPERM;
2966
2967 ret = mnt_want_write_file(file);
2968 if (ret)
2969 return ret;
2970
2971 if (copy_from_user(to: &objectid, from: argp, n: sizeof(objectid))) {
2972 ret = -EFAULT;
2973 goto out;
2974 }
2975
2976 if (!objectid)
2977 objectid = BTRFS_FS_TREE_OBJECTID;
2978
2979 new_root = btrfs_get_fs_root(fs_info, objectid, check_ref: true);
2980 if (IS_ERR(ptr: new_root)) {
2981 ret = PTR_ERR(ptr: new_root);
2982 goto out;
2983 }
2984 if (!is_fstree(rootid: new_root->root_key.objectid)) {
2985 ret = -ENOENT;
2986 goto out_free;
2987 }
2988
2989 path = btrfs_alloc_path();
2990 if (!path) {
2991 ret = -ENOMEM;
2992 goto out_free;
2993 }
2994
2995 trans = btrfs_start_transaction(root, num_items: 1);
2996 if (IS_ERR(ptr: trans)) {
2997 ret = PTR_ERR(ptr: trans);
2998 goto out_free;
2999 }
3000
3001 dir_id = btrfs_super_root_dir(s: fs_info->super_copy);
3002 di = btrfs_lookup_dir_item(trans, root: fs_info->tree_root, path,
3003 dir: dir_id, name: &name, mod: 1);
3004 if (IS_ERR_OR_NULL(ptr: di)) {
3005 btrfs_release_path(p: path);
3006 btrfs_end_transaction(trans);
3007 btrfs_err(fs_info,
3008 "Umm, you don't have the default diritem, this isn't going to work");
3009 ret = -ENOENT;
3010 goto out_free;
3011 }
3012
3013 btrfs_cpu_key_to_disk(disk_key: &disk_key, cpu_key: &new_root->root_key);
3014 btrfs_set_dir_item_key(eb: path->nodes[0], item: di, key: &disk_key);
3015 btrfs_mark_buffer_dirty(trans, buf: path->nodes[0]);
3016 btrfs_release_path(p: path);
3017
3018 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3019 btrfs_end_transaction(trans);
3020out_free:
3021 btrfs_put_root(root: new_root);
3022 btrfs_free_path(p: path);
3023out:
3024 mnt_drop_write_file(file);
3025 return ret;
3026}
3027
3028static void get_block_group_info(struct list_head *groups_list,
3029 struct btrfs_ioctl_space_info *space)
3030{
3031 struct btrfs_block_group *block_group;
3032
3033 space->total_bytes = 0;
3034 space->used_bytes = 0;
3035 space->flags = 0;
3036 list_for_each_entry(block_group, groups_list, list) {
3037 space->flags = block_group->flags;
3038 space->total_bytes += block_group->length;
3039 space->used_bytes += block_group->used;
3040 }
3041}
3042
3043static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3044 void __user *arg)
3045{
3046 struct btrfs_ioctl_space_args space_args = { 0 };
3047 struct btrfs_ioctl_space_info space;
3048 struct btrfs_ioctl_space_info *dest;
3049 struct btrfs_ioctl_space_info *dest_orig;
3050 struct btrfs_ioctl_space_info __user *user_dest;
3051 struct btrfs_space_info *info;
3052 static const u64 types[] = {
3053 BTRFS_BLOCK_GROUP_DATA,
3054 BTRFS_BLOCK_GROUP_SYSTEM,
3055 BTRFS_BLOCK_GROUP_METADATA,
3056 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3057 };
3058 int num_types = 4;
3059 int alloc_size;
3060 int ret = 0;
3061 u64 slot_count = 0;
3062 int i, c;
3063
3064 if (copy_from_user(to: &space_args,
3065 from: (struct btrfs_ioctl_space_args __user *)arg,
3066 n: sizeof(space_args)))
3067 return -EFAULT;
3068
3069 for (i = 0; i < num_types; i++) {
3070 struct btrfs_space_info *tmp;
3071
3072 info = NULL;
3073 list_for_each_entry(tmp, &fs_info->space_info, list) {
3074 if (tmp->flags == types[i]) {
3075 info = tmp;
3076 break;
3077 }
3078 }
3079
3080 if (!info)
3081 continue;
3082
3083 down_read(sem: &info->groups_sem);
3084 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3085 if (!list_empty(head: &info->block_groups[c]))
3086 slot_count++;
3087 }
3088 up_read(sem: &info->groups_sem);
3089 }
3090
3091 /*
3092 * Global block reserve, exported as a space_info
3093 */
3094 slot_count++;
3095
3096 /* space_slots == 0 means they are asking for a count */
3097 if (space_args.space_slots == 0) {
3098 space_args.total_spaces = slot_count;
3099 goto out;
3100 }
3101
3102 slot_count = min_t(u64, space_args.space_slots, slot_count);
3103
3104 alloc_size = sizeof(*dest) * slot_count;
3105
3106 /* we generally have at most 6 or so space infos, one for each raid
3107 * level. So, a whole page should be more than enough for everyone
3108 */
3109 if (alloc_size > PAGE_SIZE)
3110 return -ENOMEM;
3111
3112 space_args.total_spaces = 0;
3113 dest = kmalloc(size: alloc_size, GFP_KERNEL);
3114 if (!dest)
3115 return -ENOMEM;
3116 dest_orig = dest;
3117
3118 /* now we have a buffer to copy into */
3119 for (i = 0; i < num_types; i++) {
3120 struct btrfs_space_info *tmp;
3121
3122 if (!slot_count)
3123 break;
3124
3125 info = NULL;
3126 list_for_each_entry(tmp, &fs_info->space_info, list) {
3127 if (tmp->flags == types[i]) {
3128 info = tmp;
3129 break;
3130 }
3131 }
3132
3133 if (!info)
3134 continue;
3135 down_read(sem: &info->groups_sem);
3136 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3137 if (!list_empty(head: &info->block_groups[c])) {
3138 get_block_group_info(groups_list: &info->block_groups[c],
3139 space: &space);
3140 memcpy(dest, &space, sizeof(space));
3141 dest++;
3142 space_args.total_spaces++;
3143 slot_count--;
3144 }
3145 if (!slot_count)
3146 break;
3147 }
3148 up_read(sem: &info->groups_sem);
3149 }
3150
3151 /*
3152 * Add global block reserve
3153 */
3154 if (slot_count) {
3155 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3156
3157 spin_lock(lock: &block_rsv->lock);
3158 space.total_bytes = block_rsv->size;
3159 space.used_bytes = block_rsv->size - block_rsv->reserved;
3160 spin_unlock(lock: &block_rsv->lock);
3161 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3162 memcpy(dest, &space, sizeof(space));
3163 space_args.total_spaces++;
3164 }
3165
3166 user_dest = (struct btrfs_ioctl_space_info __user *)
3167 (arg + sizeof(struct btrfs_ioctl_space_args));
3168
3169 if (copy_to_user(to: user_dest, from: dest_orig, n: alloc_size))
3170 ret = -EFAULT;
3171
3172 kfree(objp: dest_orig);
3173out:
3174 if (ret == 0 && copy_to_user(to: arg, from: &space_args, n: sizeof(space_args)))
3175 ret = -EFAULT;
3176
3177 return ret;
3178}
3179
3180static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3181 void __user *argp)
3182{
3183 struct btrfs_trans_handle *trans;
3184 u64 transid;
3185
3186 /*
3187 * Start orphan cleanup here for the given root in case it hasn't been
3188 * started already by other means. Errors are handled in the other
3189 * functions during transaction commit.
3190 */
3191 btrfs_orphan_cleanup(root);
3192
3193 trans = btrfs_attach_transaction_barrier(root);
3194 if (IS_ERR(ptr: trans)) {
3195 if (PTR_ERR(ptr: trans) != -ENOENT)
3196 return PTR_ERR(ptr: trans);
3197
3198 /* No running transaction, don't bother */
3199 transid = btrfs_get_last_trans_committed(fs_info: root->fs_info);
3200 goto out;
3201 }
3202 transid = trans->transid;
3203 btrfs_commit_transaction_async(trans);
3204out:
3205 if (argp)
3206 if (copy_to_user(to: argp, from: &transid, n: sizeof(transid)))
3207 return -EFAULT;
3208 return 0;
3209}
3210
3211static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3212 void __user *argp)
3213{
3214 /* By default wait for the current transaction. */
3215 u64 transid = 0;
3216
3217 if (argp)
3218 if (copy_from_user(to: &transid, from: argp, n: sizeof(transid)))
3219 return -EFAULT;
3220
3221 return btrfs_wait_for_commit(fs_info, transid);
3222}
3223
3224static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3225{
3226 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3227 struct btrfs_ioctl_scrub_args *sa;
3228 int ret;
3229
3230 if (!capable(CAP_SYS_ADMIN))
3231 return -EPERM;
3232
3233 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3234 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3235 return -EINVAL;
3236 }
3237
3238 sa = memdup_user(arg, sizeof(*sa));
3239 if (IS_ERR(ptr: sa))
3240 return PTR_ERR(ptr: sa);
3241
3242 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3243 ret = -EOPNOTSUPP;
3244 goto out;
3245 }
3246
3247 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3248 ret = mnt_want_write_file(file);
3249 if (ret)
3250 goto out;
3251 }
3252
3253 ret = btrfs_scrub_dev(fs_info, devid: sa->devid, start: sa->start, end: sa->end,
3254 progress: &sa->progress, readonly: sa->flags & BTRFS_SCRUB_READONLY,
3255 is_dev_replace: 0);
3256
3257 /*
3258 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3259 * error. This is important as it allows user space to know how much
3260 * progress scrub has done. For example, if scrub is canceled we get
3261 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3262 * space. Later user space can inspect the progress from the structure
3263 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3264 * previously (btrfs-progs does this).
3265 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3266 * then return -EFAULT to signal the structure was not copied or it may
3267 * be corrupt and unreliable due to a partial copy.
3268 */
3269 if (copy_to_user(to: arg, from: sa, n: sizeof(*sa)))
3270 ret = -EFAULT;
3271
3272 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3273 mnt_drop_write_file(file);
3274out:
3275 kfree(objp: sa);
3276 return ret;
3277}
3278
3279static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3280{
3281 if (!capable(CAP_SYS_ADMIN))
3282 return -EPERM;
3283
3284 return btrfs_scrub_cancel(info: fs_info);
3285}
3286
3287static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3288 void __user *arg)
3289{
3290 struct btrfs_ioctl_scrub_args *sa;
3291 int ret;
3292
3293 if (!capable(CAP_SYS_ADMIN))
3294 return -EPERM;
3295
3296 sa = memdup_user(arg, sizeof(*sa));
3297 if (IS_ERR(ptr: sa))
3298 return PTR_ERR(ptr: sa);
3299
3300 ret = btrfs_scrub_progress(fs_info, devid: sa->devid, progress: &sa->progress);
3301
3302 if (ret == 0 && copy_to_user(to: arg, from: sa, n: sizeof(*sa)))
3303 ret = -EFAULT;
3304
3305 kfree(objp: sa);
3306 return ret;
3307}
3308
3309static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3310 void __user *arg)
3311{
3312 struct btrfs_ioctl_get_dev_stats *sa;
3313 int ret;
3314
3315 sa = memdup_user(arg, sizeof(*sa));
3316 if (IS_ERR(ptr: sa))
3317 return PTR_ERR(ptr: sa);
3318
3319 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3320 kfree(objp: sa);
3321 return -EPERM;
3322 }
3323
3324 ret = btrfs_get_dev_stats(fs_info, stats: sa);
3325
3326 if (ret == 0 && copy_to_user(to: arg, from: sa, n: sizeof(*sa)))
3327 ret = -EFAULT;
3328
3329 kfree(objp: sa);
3330 return ret;
3331}
3332
3333static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3334 void __user *arg)
3335{
3336 struct btrfs_ioctl_dev_replace_args *p;
3337 int ret;
3338
3339 if (!capable(CAP_SYS_ADMIN))
3340 return -EPERM;
3341
3342 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3343 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3344 return -EINVAL;
3345 }
3346
3347 p = memdup_user(arg, sizeof(*p));
3348 if (IS_ERR(ptr: p))
3349 return PTR_ERR(ptr: p);
3350
3351 switch (p->cmd) {
3352 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3353 if (sb_rdonly(sb: fs_info->sb)) {
3354 ret = -EROFS;
3355 goto out;
3356 }
3357 if (!btrfs_exclop_start(fs_info, type: BTRFS_EXCLOP_DEV_REPLACE)) {
3358 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3359 } else {
3360 ret = btrfs_dev_replace_by_ioctl(fs_info, args: p);
3361 btrfs_exclop_finish(fs_info);
3362 }
3363 break;
3364 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3365 btrfs_dev_replace_status(fs_info, args: p);
3366 ret = 0;
3367 break;
3368 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3369 p->result = btrfs_dev_replace_cancel(fs_info);
3370 ret = 0;
3371 break;
3372 default:
3373 ret = -EINVAL;
3374 break;
3375 }
3376
3377 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(to: arg, from: p, n: sizeof(*p)))
3378 ret = -EFAULT;
3379out:
3380 kfree(objp: p);
3381 return ret;
3382}
3383
3384static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3385{
3386 int ret = 0;
3387 int i;
3388 u64 rel_ptr;
3389 int size;
3390 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3391 struct inode_fs_paths *ipath = NULL;
3392 struct btrfs_path *path;
3393
3394 if (!capable(CAP_DAC_READ_SEARCH))
3395 return -EPERM;
3396
3397 path = btrfs_alloc_path();
3398 if (!path) {
3399 ret = -ENOMEM;
3400 goto out;
3401 }
3402
3403 ipa = memdup_user(arg, sizeof(*ipa));
3404 if (IS_ERR(ptr: ipa)) {
3405 ret = PTR_ERR(ptr: ipa);
3406 ipa = NULL;
3407 goto out;
3408 }
3409
3410 size = min_t(u32, ipa->size, 4096);
3411 ipath = init_ipath(total_bytes: size, fs_root: root, path);
3412 if (IS_ERR(ptr: ipath)) {
3413 ret = PTR_ERR(ptr: ipath);
3414 ipath = NULL;
3415 goto out;
3416 }
3417
3418 ret = paths_from_inode(inum: ipa->inum, ipath);
3419 if (ret < 0)
3420 goto out;
3421
3422 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3423 rel_ptr = ipath->fspath->val[i] -
3424 (u64)(unsigned long)ipath->fspath->val;
3425 ipath->fspath->val[i] = rel_ptr;
3426 }
3427
3428 btrfs_free_path(p: path);
3429 path = NULL;
3430 ret = copy_to_user(to: (void __user *)(unsigned long)ipa->fspath,
3431 from: ipath->fspath, n: size);
3432 if (ret) {
3433 ret = -EFAULT;
3434 goto out;
3435 }
3436
3437out:
3438 btrfs_free_path(p: path);
3439 free_ipath(ipath);
3440 kfree(objp: ipa);
3441
3442 return ret;
3443}
3444
3445static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3446 void __user *arg, int version)
3447{
3448 int ret = 0;
3449 int size;
3450 struct btrfs_ioctl_logical_ino_args *loi;
3451 struct btrfs_data_container *inodes = NULL;
3452 struct btrfs_path *path = NULL;
3453 bool ignore_offset;
3454
3455 if (!capable(CAP_SYS_ADMIN))
3456 return -EPERM;
3457
3458 loi = memdup_user(arg, sizeof(*loi));
3459 if (IS_ERR(ptr: loi))
3460 return PTR_ERR(ptr: loi);
3461
3462 if (version == 1) {
3463 ignore_offset = false;
3464 size = min_t(u32, loi->size, SZ_64K);
3465 } else {
3466 /* All reserved bits must be 0 for now */
3467 if (memchr_inv(p: loi->reserved, c: 0, size: sizeof(loi->reserved))) {
3468 ret = -EINVAL;
3469 goto out_loi;
3470 }
3471 /* Only accept flags we have defined so far */
3472 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3473 ret = -EINVAL;
3474 goto out_loi;
3475 }
3476 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3477 size = min_t(u32, loi->size, SZ_16M);
3478 }
3479
3480 inodes = init_data_container(total_bytes: size);
3481 if (IS_ERR(ptr: inodes)) {
3482 ret = PTR_ERR(ptr: inodes);
3483 goto out_loi;
3484 }
3485
3486 path = btrfs_alloc_path();
3487 if (!path) {
3488 ret = -ENOMEM;
3489 goto out;
3490 }
3491 ret = iterate_inodes_from_logical(logical: loi->logical, fs_info, path,
3492 ctx: inodes, ignore_offset);
3493 btrfs_free_path(p: path);
3494 if (ret == -EINVAL)
3495 ret = -ENOENT;
3496 if (ret < 0)
3497 goto out;
3498
3499 ret = copy_to_user(to: (void __user *)(unsigned long)loi->inodes, from: inodes,
3500 n: size);
3501 if (ret)
3502 ret = -EFAULT;
3503
3504out:
3505 kvfree(addr: inodes);
3506out_loi:
3507 kfree(objp: loi);
3508
3509 return ret;
3510}
3511
3512void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3513 struct btrfs_ioctl_balance_args *bargs)
3514{
3515 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3516
3517 bargs->flags = bctl->flags;
3518
3519 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3520 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3521 if (atomic_read(v: &fs_info->balance_pause_req))
3522 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3523 if (atomic_read(v: &fs_info->balance_cancel_req))
3524 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3525
3526 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3527 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3528 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3529
3530 spin_lock(lock: &fs_info->balance_lock);
3531 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3532 spin_unlock(lock: &fs_info->balance_lock);
3533}
3534
3535/*
3536 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3537 * required.
3538 *
3539 * @fs_info: the filesystem
3540 * @excl_acquired: ptr to boolean value which is set to false in case balance
3541 * is being resumed
3542 *
3543 * Return 0 on success in which case both fs_info::balance is acquired as well
3544 * as exclusive ops are blocked. In case of failure return an error code.
3545 */
3546static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3547{
3548 int ret;
3549
3550 /*
3551 * Exclusive operation is locked. Three possibilities:
3552 * (1) some other op is running
3553 * (2) balance is running
3554 * (3) balance is paused -- special case (think resume)
3555 */
3556 while (1) {
3557 if (btrfs_exclop_start(fs_info, type: BTRFS_EXCLOP_BALANCE)) {
3558 *excl_acquired = true;
3559 mutex_lock(&fs_info->balance_mutex);
3560 return 0;
3561 }
3562
3563 mutex_lock(&fs_info->balance_mutex);
3564 if (fs_info->balance_ctl) {
3565 /* This is either (2) or (3) */
3566 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3567 /* This is (2) */
3568 ret = -EINPROGRESS;
3569 goto out_failure;
3570
3571 } else {
3572 mutex_unlock(lock: &fs_info->balance_mutex);
3573 /*
3574 * Lock released to allow other waiters to
3575 * continue, we'll reexamine the status again.
3576 */
3577 mutex_lock(&fs_info->balance_mutex);
3578
3579 if (fs_info->balance_ctl &&
3580 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3581 /* This is (3) */
3582 *excl_acquired = false;
3583 return 0;
3584 }
3585 }
3586 } else {
3587 /* This is (1) */
3588 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3589 goto out_failure;
3590 }
3591
3592 mutex_unlock(lock: &fs_info->balance_mutex);
3593 }
3594
3595out_failure:
3596 mutex_unlock(lock: &fs_info->balance_mutex);
3597 *excl_acquired = false;
3598 return ret;
3599}
3600
3601static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3602{
3603 struct btrfs_root *root = BTRFS_I(inode: file_inode(f: file))->root;
3604 struct btrfs_fs_info *fs_info = root->fs_info;
3605 struct btrfs_ioctl_balance_args *bargs;
3606 struct btrfs_balance_control *bctl;
3607 bool need_unlock = true;
3608 int ret;
3609
3610 if (!capable(CAP_SYS_ADMIN))
3611 return -EPERM;
3612
3613 ret = mnt_want_write_file(file);
3614 if (ret)
3615 return ret;
3616
3617 bargs = memdup_user(arg, sizeof(*bargs));
3618 if (IS_ERR(ptr: bargs)) {
3619 ret = PTR_ERR(ptr: bargs);
3620 bargs = NULL;
3621 goto out;
3622 }
3623
3624 ret = btrfs_try_lock_balance(fs_info, excl_acquired: &need_unlock);
3625 if (ret)
3626 goto out;
3627
3628 lockdep_assert_held(&fs_info->balance_mutex);
3629
3630 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3631 if (!fs_info->balance_ctl) {
3632 ret = -ENOTCONN;
3633 goto out_unlock;
3634 }
3635
3636 bctl = fs_info->balance_ctl;
3637 spin_lock(lock: &fs_info->balance_lock);
3638 bctl->flags |= BTRFS_BALANCE_RESUME;
3639 spin_unlock(lock: &fs_info->balance_lock);
3640 btrfs_exclop_balance(fs_info, op: BTRFS_EXCLOP_BALANCE);
3641
3642 goto do_balance;
3643 }
3644
3645 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3646 ret = -EINVAL;
3647 goto out_unlock;
3648 }
3649
3650 if (fs_info->balance_ctl) {
3651 ret = -EINPROGRESS;
3652 goto out_unlock;
3653 }
3654
3655 bctl = kzalloc(size: sizeof(*bctl), GFP_KERNEL);
3656 if (!bctl) {
3657 ret = -ENOMEM;
3658 goto out_unlock;
3659 }
3660
3661 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3662 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3663 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3664
3665 bctl->flags = bargs->flags;
3666do_balance:
3667 /*
3668 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3669 * bctl is freed in reset_balance_state, or, if restriper was paused
3670 * all the way until unmount, in free_fs_info. The flag should be
3671 * cleared after reset_balance_state.
3672 */
3673 need_unlock = false;
3674
3675 ret = btrfs_balance(fs_info, bctl, bargs);
3676 bctl = NULL;
3677
3678 if (ret == 0 || ret == -ECANCELED) {
3679 if (copy_to_user(to: arg, from: bargs, n: sizeof(*bargs)))
3680 ret = -EFAULT;
3681 }
3682
3683 kfree(objp: bctl);
3684out_unlock:
3685 mutex_unlock(lock: &fs_info->balance_mutex);
3686 if (need_unlock)
3687 btrfs_exclop_finish(fs_info);
3688out:
3689 mnt_drop_write_file(file);
3690 kfree(objp: bargs);
3691 return ret;
3692}
3693
3694static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3695{
3696 if (!capable(CAP_SYS_ADMIN))
3697 return -EPERM;
3698
3699 switch (cmd) {
3700 case BTRFS_BALANCE_CTL_PAUSE:
3701 return btrfs_pause_balance(fs_info);
3702 case BTRFS_BALANCE_CTL_CANCEL:
3703 return btrfs_cancel_balance(fs_info);
3704 }
3705
3706 return -EINVAL;
3707}
3708
3709static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3710 void __user *arg)
3711{
3712 struct btrfs_ioctl_balance_args *bargs;
3713 int ret = 0;
3714
3715 if (!capable(CAP_SYS_ADMIN))
3716 return -EPERM;
3717
3718 mutex_lock(&fs_info->balance_mutex);
3719 if (!fs_info->balance_ctl) {
3720 ret = -ENOTCONN;
3721 goto out;
3722 }
3723
3724 bargs = kzalloc(size: sizeof(*bargs), GFP_KERNEL);
3725 if (!bargs) {
3726 ret = -ENOMEM;
3727 goto out;
3728 }
3729
3730 btrfs_update_ioctl_balance_args(fs_info, bargs);
3731
3732 if (copy_to_user(to: arg, from: bargs, n: sizeof(*bargs)))
3733 ret = -EFAULT;
3734
3735 kfree(objp: bargs);
3736out:
3737 mutex_unlock(lock: &fs_info->balance_mutex);
3738 return ret;
3739}
3740
3741static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3742{
3743 struct inode *inode = file_inode(f: file);
3744 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3745 struct btrfs_ioctl_quota_ctl_args *sa;
3746 int ret;
3747
3748 if (!capable(CAP_SYS_ADMIN))
3749 return -EPERM;
3750
3751 ret = mnt_want_write_file(file);
3752 if (ret)
3753 return ret;
3754
3755 sa = memdup_user(arg, sizeof(*sa));
3756 if (IS_ERR(ptr: sa)) {
3757 ret = PTR_ERR(ptr: sa);
3758 goto drop_write;
3759 }
3760
3761 down_write(sem: &fs_info->subvol_sem);
3762
3763 switch (sa->cmd) {
3764 case BTRFS_QUOTA_CTL_ENABLE:
3765 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3766 ret = btrfs_quota_enable(fs_info, quota_ctl_args: sa);
3767 break;
3768 case BTRFS_QUOTA_CTL_DISABLE:
3769 ret = btrfs_quota_disable(fs_info);
3770 break;
3771 default:
3772 ret = -EINVAL;
3773 break;
3774 }
3775
3776 kfree(objp: sa);
3777 up_write(sem: &fs_info->subvol_sem);
3778drop_write:
3779 mnt_drop_write_file(file);
3780 return ret;
3781}
3782
3783static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3784{
3785 struct inode *inode = file_inode(f: file);
3786 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3787 struct btrfs_root *root = BTRFS_I(inode)->root;
3788 struct btrfs_ioctl_qgroup_assign_args *sa;
3789 struct btrfs_trans_handle *trans;
3790 int ret;
3791 int err;
3792
3793 if (!capable(CAP_SYS_ADMIN))
3794 return -EPERM;
3795
3796 ret = mnt_want_write_file(file);
3797 if (ret)
3798 return ret;
3799
3800 sa = memdup_user(arg, sizeof(*sa));
3801 if (IS_ERR(ptr: sa)) {
3802 ret = PTR_ERR(ptr: sa);
3803 goto drop_write;
3804 }
3805
3806 trans = btrfs_join_transaction(root);
3807 if (IS_ERR(ptr: trans)) {
3808 ret = PTR_ERR(ptr: trans);
3809 goto out;
3810 }
3811
3812 if (sa->assign) {
3813 ret = btrfs_add_qgroup_relation(trans, src: sa->src, dst: sa->dst);
3814 } else {
3815 ret = btrfs_del_qgroup_relation(trans, src: sa->src, dst: sa->dst);
3816 }
3817
3818 /* update qgroup status and info */
3819 mutex_lock(&fs_info->qgroup_ioctl_lock);
3820 err = btrfs_run_qgroups(trans);
3821 mutex_unlock(lock: &fs_info->qgroup_ioctl_lock);
3822 if (err < 0)
3823 btrfs_handle_fs_error(fs_info, err,
3824 "failed to update qgroup status and info");
3825 err = btrfs_end_transaction(trans);
3826 if (err && !ret)
3827 ret = err;
3828
3829out:
3830 kfree(objp: sa);
3831drop_write:
3832 mnt_drop_write_file(file);
3833 return ret;
3834}
3835
3836static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3837{
3838 struct inode *inode = file_inode(f: file);
3839 struct btrfs_root *root = BTRFS_I(inode)->root;
3840 struct btrfs_ioctl_qgroup_create_args *sa;
3841 struct btrfs_trans_handle *trans;
3842 int ret;
3843 int err;
3844
3845 if (!capable(CAP_SYS_ADMIN))
3846 return -EPERM;
3847
3848 ret = mnt_want_write_file(file);
3849 if (ret)
3850 return ret;
3851
3852 sa = memdup_user(arg, sizeof(*sa));
3853 if (IS_ERR(ptr: sa)) {
3854 ret = PTR_ERR(ptr: sa);
3855 goto drop_write;
3856 }
3857
3858 if (!sa->qgroupid) {
3859 ret = -EINVAL;
3860 goto out;
3861 }
3862
3863 if (sa->create && is_fstree(rootid: sa->qgroupid)) {
3864 ret = -EINVAL;
3865 goto out;
3866 }
3867
3868 trans = btrfs_join_transaction(root);
3869 if (IS_ERR(ptr: trans)) {
3870 ret = PTR_ERR(ptr: trans);
3871 goto out;
3872 }
3873
3874 if (sa->create) {
3875 ret = btrfs_create_qgroup(trans, qgroupid: sa->qgroupid);
3876 } else {
3877 ret = btrfs_remove_qgroup(trans, qgroupid: sa->qgroupid);
3878 }
3879
3880 err = btrfs_end_transaction(trans);
3881 if (err && !ret)
3882 ret = err;
3883
3884out:
3885 kfree(objp: sa);
3886drop_write:
3887 mnt_drop_write_file(file);
3888 return ret;
3889}
3890
3891static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3892{
3893 struct inode *inode = file_inode(f: file);
3894 struct btrfs_root *root = BTRFS_I(inode)->root;
3895 struct btrfs_ioctl_qgroup_limit_args *sa;
3896 struct btrfs_trans_handle *trans;
3897 int ret;
3898 int err;
3899 u64 qgroupid;
3900
3901 if (!capable(CAP_SYS_ADMIN))
3902 return -EPERM;
3903
3904 ret = mnt_want_write_file(file);
3905 if (ret)
3906 return ret;
3907
3908 sa = memdup_user(arg, sizeof(*sa));
3909 if (IS_ERR(ptr: sa)) {
3910 ret = PTR_ERR(ptr: sa);
3911 goto drop_write;
3912 }
3913
3914 trans = btrfs_join_transaction(root);
3915 if (IS_ERR(ptr: trans)) {
3916 ret = PTR_ERR(ptr: trans);
3917 goto out;
3918 }
3919
3920 qgroupid = sa->qgroupid;
3921 if (!qgroupid) {
3922 /* take the current subvol as qgroup */
3923 qgroupid = root->root_key.objectid;
3924 }
3925
3926 ret = btrfs_limit_qgroup(trans, qgroupid, limit: &sa->lim);
3927
3928 err = btrfs_end_transaction(trans);
3929 if (err && !ret)
3930 ret = err;
3931
3932out:
3933 kfree(objp: sa);
3934drop_write:
3935 mnt_drop_write_file(file);
3936 return ret;
3937}
3938
3939static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3940{
3941 struct inode *inode = file_inode(f: file);
3942 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3943 struct btrfs_ioctl_quota_rescan_args *qsa;
3944 int ret;
3945
3946 if (!capable(CAP_SYS_ADMIN))
3947 return -EPERM;
3948
3949 ret = mnt_want_write_file(file);
3950 if (ret)
3951 return ret;
3952
3953 qsa = memdup_user(arg, sizeof(*qsa));
3954 if (IS_ERR(ptr: qsa)) {
3955 ret = PTR_ERR(ptr: qsa);
3956 goto drop_write;
3957 }
3958
3959 if (qsa->flags) {
3960 ret = -EINVAL;
3961 goto out;
3962 }
3963
3964 ret = btrfs_qgroup_rescan(fs_info);
3965
3966out:
3967 kfree(objp: qsa);
3968drop_write:
3969 mnt_drop_write_file(file);
3970 return ret;
3971}
3972
3973static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3974 void __user *arg)
3975{
3976 struct btrfs_ioctl_quota_rescan_args qsa = {0};
3977
3978 if (!capable(CAP_SYS_ADMIN))
3979 return -EPERM;
3980
3981 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3982 qsa.flags = 1;
3983 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3984 }
3985
3986 if (copy_to_user(to: arg, from: &qsa, n: sizeof(qsa)))
3987 return -EFAULT;
3988
3989 return 0;
3990}
3991
3992static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3993 void __user *arg)
3994{
3995 if (!capable(CAP_SYS_ADMIN))
3996 return -EPERM;
3997
3998 return btrfs_qgroup_wait_for_completion(fs_info, interruptible: true);
3999}
4000
4001static long _btrfs_ioctl_set_received_subvol(struct file *file,
4002 struct mnt_idmap *idmap,
4003 struct btrfs_ioctl_received_subvol_args *sa)
4004{
4005 struct inode *inode = file_inode(f: file);
4006 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4007 struct btrfs_root *root = BTRFS_I(inode)->root;
4008 struct btrfs_root_item *root_item = &root->root_item;
4009 struct btrfs_trans_handle *trans;
4010 struct timespec64 ct = current_time(inode);
4011 int ret = 0;
4012 int received_uuid_changed;
4013
4014 if (!inode_owner_or_capable(idmap, inode))
4015 return -EPERM;
4016
4017 ret = mnt_want_write_file(file);
4018 if (ret < 0)
4019 return ret;
4020
4021 down_write(sem: &fs_info->subvol_sem);
4022
4023 if (btrfs_ino(inode: BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4024 ret = -EINVAL;
4025 goto out;
4026 }
4027
4028 if (btrfs_root_readonly(root)) {
4029 ret = -EROFS;
4030 goto out;
4031 }
4032
4033 /*
4034 * 1 - root item
4035 * 2 - uuid items (received uuid + subvol uuid)
4036 */
4037 trans = btrfs_start_transaction(root, num_items: 3);
4038 if (IS_ERR(ptr: trans)) {
4039 ret = PTR_ERR(ptr: trans);
4040 trans = NULL;
4041 goto out;
4042 }
4043
4044 sa->rtransid = trans->transid;
4045 sa->rtime.sec = ct.tv_sec;
4046 sa->rtime.nsec = ct.tv_nsec;
4047
4048 received_uuid_changed = memcmp(p: root_item->received_uuid, q: sa->uuid,
4049 BTRFS_UUID_SIZE);
4050 if (received_uuid_changed &&
4051 !btrfs_is_empty_uuid(uuid: root_item->received_uuid)) {
4052 ret = btrfs_uuid_tree_remove(trans, uuid: root_item->received_uuid,
4053 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4054 subid: root->root_key.objectid);
4055 if (ret && ret != -ENOENT) {
4056 btrfs_abort_transaction(trans, ret);
4057 btrfs_end_transaction(trans);
4058 goto out;
4059 }
4060 }
4061 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4062 btrfs_set_root_stransid(s: root_item, val: sa->stransid);
4063 btrfs_set_root_rtransid(s: root_item, val: sa->rtransid);
4064 btrfs_set_stack_timespec_sec(s: &root_item->stime, val: sa->stime.sec);
4065 btrfs_set_stack_timespec_nsec(s: &root_item->stime, val: sa->stime.nsec);
4066 btrfs_set_stack_timespec_sec(s: &root_item->rtime, val: sa->rtime.sec);
4067 btrfs_set_stack_timespec_nsec(s: &root_item->rtime, val: sa->rtime.nsec);
4068
4069 ret = btrfs_update_root(trans, root: fs_info->tree_root,
4070 key: &root->root_key, item: &root->root_item);
4071 if (ret < 0) {
4072 btrfs_end_transaction(trans);
4073 goto out;
4074 }
4075 if (received_uuid_changed && !btrfs_is_empty_uuid(uuid: sa->uuid)) {
4076 ret = btrfs_uuid_tree_add(trans, uuid: sa->uuid,
4077 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4078 subid: root->root_key.objectid);
4079 if (ret < 0 && ret != -EEXIST) {
4080 btrfs_abort_transaction(trans, ret);
4081 btrfs_end_transaction(trans);
4082 goto out;
4083 }
4084 }
4085 ret = btrfs_commit_transaction(trans);
4086out:
4087 up_write(sem: &fs_info->subvol_sem);
4088 mnt_drop_write_file(file);
4089 return ret;
4090}
4091
4092#ifdef CONFIG_64BIT
4093static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4094 void __user *arg)
4095{
4096 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4097 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4098 int ret = 0;
4099
4100 args32 = memdup_user(arg, sizeof(*args32));
4101 if (IS_ERR(ptr: args32))
4102 return PTR_ERR(ptr: args32);
4103
4104 args64 = kmalloc(size: sizeof(*args64), GFP_KERNEL);
4105 if (!args64) {
4106 ret = -ENOMEM;
4107 goto out;
4108 }
4109
4110 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4111 args64->stransid = args32->stransid;
4112 args64->rtransid = args32->rtransid;
4113 args64->stime.sec = args32->stime.sec;
4114 args64->stime.nsec = args32->stime.nsec;
4115 args64->rtime.sec = args32->rtime.sec;
4116 args64->rtime.nsec = args32->rtime.nsec;
4117 args64->flags = args32->flags;
4118
4119 ret = _btrfs_ioctl_set_received_subvol(file, idmap: file_mnt_idmap(file), sa: args64);
4120 if (ret)
4121 goto out;
4122
4123 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4124 args32->stransid = args64->stransid;
4125 args32->rtransid = args64->rtransid;
4126 args32->stime.sec = args64->stime.sec;
4127 args32->stime.nsec = args64->stime.nsec;
4128 args32->rtime.sec = args64->rtime.sec;
4129 args32->rtime.nsec = args64->rtime.nsec;
4130 args32->flags = args64->flags;
4131
4132 ret = copy_to_user(to: arg, from: args32, n: sizeof(*args32));
4133 if (ret)
4134 ret = -EFAULT;
4135
4136out:
4137 kfree(objp: args32);
4138 kfree(objp: args64);
4139 return ret;
4140}
4141#endif
4142
4143static long btrfs_ioctl_set_received_subvol(struct file *file,
4144 void __user *arg)
4145{
4146 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4147 int ret = 0;
4148
4149 sa = memdup_user(arg, sizeof(*sa));
4150 if (IS_ERR(ptr: sa))
4151 return PTR_ERR(ptr: sa);
4152
4153 ret = _btrfs_ioctl_set_received_subvol(file, idmap: file_mnt_idmap(file), sa);
4154
4155 if (ret)
4156 goto out;
4157
4158 ret = copy_to_user(to: arg, from: sa, n: sizeof(*sa));
4159 if (ret)
4160 ret = -EFAULT;
4161
4162out:
4163 kfree(objp: sa);
4164 return ret;
4165}
4166
4167static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4168 void __user *arg)
4169{
4170 size_t len;
4171 int ret;
4172 char label[BTRFS_LABEL_SIZE];
4173
4174 spin_lock(lock: &fs_info->super_lock);
4175 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4176 spin_unlock(lock: &fs_info->super_lock);
4177
4178 len = strnlen(p: label, BTRFS_LABEL_SIZE);
4179
4180 if (len == BTRFS_LABEL_SIZE) {
4181 btrfs_warn(fs_info,
4182 "label is too long, return the first %zu bytes",
4183 --len);
4184 }
4185
4186 ret = copy_to_user(to: arg, from: label, n: len);
4187
4188 return ret ? -EFAULT : 0;
4189}
4190
4191static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4192{
4193 struct inode *inode = file_inode(f: file);
4194 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4195 struct btrfs_root *root = BTRFS_I(inode)->root;
4196 struct btrfs_super_block *super_block = fs_info->super_copy;
4197 struct btrfs_trans_handle *trans;
4198 char label[BTRFS_LABEL_SIZE];
4199 int ret;
4200
4201 if (!capable(CAP_SYS_ADMIN))
4202 return -EPERM;
4203
4204 if (copy_from_user(to: label, from: arg, n: sizeof(label)))
4205 return -EFAULT;
4206
4207 if (strnlen(p: label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4208 btrfs_err(fs_info,
4209 "unable to set label with more than %d bytes",
4210 BTRFS_LABEL_SIZE - 1);
4211 return -EINVAL;
4212 }
4213
4214 ret = mnt_want_write_file(file);
4215 if (ret)
4216 return ret;
4217
4218 trans = btrfs_start_transaction(root, num_items: 0);
4219 if (IS_ERR(ptr: trans)) {
4220 ret = PTR_ERR(ptr: trans);
4221 goto out_unlock;
4222 }
4223
4224 spin_lock(lock: &fs_info->super_lock);
4225 strcpy(p: super_block->label, q: label);
4226 spin_unlock(lock: &fs_info->super_lock);
4227 ret = btrfs_commit_transaction(trans);
4228
4229out_unlock:
4230 mnt_drop_write_file(file);
4231 return ret;
4232}
4233
4234#define INIT_FEATURE_FLAGS(suffix) \
4235 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4236 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4237 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4238
4239int btrfs_ioctl_get_supported_features(void __user *arg)
4240{
4241 static const struct btrfs_ioctl_feature_flags features[3] = {
4242 INIT_FEATURE_FLAGS(SUPP),
4243 INIT_FEATURE_FLAGS(SAFE_SET),
4244 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4245 };
4246
4247 if (copy_to_user(to: arg, from: &features, n: sizeof(features)))
4248 return -EFAULT;
4249
4250 return 0;
4251}
4252
4253static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4254 void __user *arg)
4255{
4256 struct btrfs_super_block *super_block = fs_info->super_copy;
4257 struct btrfs_ioctl_feature_flags features;
4258
4259 features.compat_flags = btrfs_super_compat_flags(s: super_block);
4260 features.compat_ro_flags = btrfs_super_compat_ro_flags(s: super_block);
4261 features.incompat_flags = btrfs_super_incompat_flags(s: super_block);
4262
4263 if (copy_to_user(to: arg, from: &features, n: sizeof(features)))
4264 return -EFAULT;
4265
4266 return 0;
4267}
4268
4269static int check_feature_bits(struct btrfs_fs_info *fs_info,
4270 enum btrfs_feature_set set,
4271 u64 change_mask, u64 flags, u64 supported_flags,
4272 u64 safe_set, u64 safe_clear)
4273{
4274 const char *type = btrfs_feature_set_name(set);
4275 char *names;
4276 u64 disallowed, unsupported;
4277 u64 set_mask = flags & change_mask;
4278 u64 clear_mask = ~flags & change_mask;
4279
4280 unsupported = set_mask & ~supported_flags;
4281 if (unsupported) {
4282 names = btrfs_printable_features(set, flags: unsupported);
4283 if (names) {
4284 btrfs_warn(fs_info,
4285 "this kernel does not support the %s feature bit%s",
4286 names, strchr(names, ',') ? "s" : "");
4287 kfree(objp: names);
4288 } else
4289 btrfs_warn(fs_info,
4290 "this kernel does not support %s bits 0x%llx",
4291 type, unsupported);
4292 return -EOPNOTSUPP;
4293 }
4294
4295 disallowed = set_mask & ~safe_set;
4296 if (disallowed) {
4297 names = btrfs_printable_features(set, flags: disallowed);
4298 if (names) {
4299 btrfs_warn(fs_info,
4300 "can't set the %s feature bit%s while mounted",
4301 names, strchr(names, ',') ? "s" : "");
4302 kfree(objp: names);
4303 } else
4304 btrfs_warn(fs_info,
4305 "can't set %s bits 0x%llx while mounted",
4306 type, disallowed);
4307 return -EPERM;
4308 }
4309
4310 disallowed = clear_mask & ~safe_clear;
4311 if (disallowed) {
4312 names = btrfs_printable_features(set, flags: disallowed);
4313 if (names) {
4314 btrfs_warn(fs_info,
4315 "can't clear the %s feature bit%s while mounted",
4316 names, strchr(names, ',') ? "s" : "");
4317 kfree(objp: names);
4318 } else
4319 btrfs_warn(fs_info,
4320 "can't clear %s bits 0x%llx while mounted",
4321 type, disallowed);
4322 return -EPERM;
4323 }
4324
4325 return 0;
4326}
4327
4328#define check_feature(fs_info, change_mask, flags, mask_base) \
4329check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4330 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4331 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4332 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4333
4334static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4335{
4336 struct inode *inode = file_inode(f: file);
4337 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4338 struct btrfs_root *root = BTRFS_I(inode)->root;
4339 struct btrfs_super_block *super_block = fs_info->super_copy;
4340 struct btrfs_ioctl_feature_flags flags[2];
4341 struct btrfs_trans_handle *trans;
4342 u64 newflags;
4343 int ret;
4344
4345 if (!capable(CAP_SYS_ADMIN))
4346 return -EPERM;
4347
4348 if (copy_from_user(to: flags, from: arg, n: sizeof(flags)))
4349 return -EFAULT;
4350
4351 /* Nothing to do */
4352 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4353 !flags[0].incompat_flags)
4354 return 0;
4355
4356 ret = check_feature(fs_info, flags[0].compat_flags,
4357 flags[1].compat_flags, COMPAT);
4358 if (ret)
4359 return ret;
4360
4361 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4362 flags[1].compat_ro_flags, COMPAT_RO);
4363 if (ret)
4364 return ret;
4365
4366 ret = check_feature(fs_info, flags[0].incompat_flags,
4367 flags[1].incompat_flags, INCOMPAT);
4368 if (ret)
4369 return ret;
4370
4371 ret = mnt_want_write_file(file);
4372 if (ret)
4373 return ret;
4374
4375 trans = btrfs_start_transaction(root, num_items: 0);
4376 if (IS_ERR(ptr: trans)) {
4377 ret = PTR_ERR(ptr: trans);
4378 goto out_drop_write;
4379 }
4380
4381 spin_lock(lock: &fs_info->super_lock);
4382 newflags = btrfs_super_compat_flags(s: super_block);
4383 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4384 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4385 btrfs_set_super_compat_flags(s: super_block, val: newflags);
4386
4387 newflags = btrfs_super_compat_ro_flags(s: super_block);
4388 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4389 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4390 btrfs_set_super_compat_ro_flags(s: super_block, val: newflags);
4391
4392 newflags = btrfs_super_incompat_flags(s: super_block);
4393 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4394 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4395 btrfs_set_super_incompat_flags(s: super_block, val: newflags);
4396 spin_unlock(lock: &fs_info->super_lock);
4397
4398 ret = btrfs_commit_transaction(trans);
4399out_drop_write:
4400 mnt_drop_write_file(file);
4401
4402 return ret;
4403}
4404
4405static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4406{
4407 struct btrfs_ioctl_send_args *arg;
4408 int ret;
4409
4410 if (compat) {
4411#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4412 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4413
4414 ret = copy_from_user(to: &args32, from: argp, n: sizeof(args32));
4415 if (ret)
4416 return -EFAULT;
4417 arg = kzalloc(size: sizeof(*arg), GFP_KERNEL);
4418 if (!arg)
4419 return -ENOMEM;
4420 arg->send_fd = args32.send_fd;
4421 arg->clone_sources_count = args32.clone_sources_count;
4422 arg->clone_sources = compat_ptr(uptr: args32.clone_sources);
4423 arg->parent_root = args32.parent_root;
4424 arg->flags = args32.flags;
4425 arg->version = args32.version;
4426 memcpy(arg->reserved, args32.reserved,
4427 sizeof(args32.reserved));
4428#else
4429 return -ENOTTY;
4430#endif
4431 } else {
4432 arg = memdup_user(argp, sizeof(*arg));
4433 if (IS_ERR(ptr: arg))
4434 return PTR_ERR(ptr: arg);
4435 }
4436 ret = btrfs_ioctl_send(inode, arg);
4437 kfree(objp: arg);
4438 return ret;
4439}
4440
4441static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4442 bool compat)
4443{
4444 struct btrfs_ioctl_encoded_io_args args = { 0 };
4445 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4446 flags);
4447 size_t copy_end;
4448 struct iovec iovstack[UIO_FASTIOV];
4449 struct iovec *iov = iovstack;
4450 struct iov_iter iter;
4451 loff_t pos;
4452 struct kiocb kiocb;
4453 ssize_t ret;
4454
4455 if (!capable(CAP_SYS_ADMIN)) {
4456 ret = -EPERM;
4457 goto out_acct;
4458 }
4459
4460 if (compat) {
4461#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4462 struct btrfs_ioctl_encoded_io_args_32 args32;
4463
4464 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4465 flags);
4466 if (copy_from_user(to: &args32, from: argp, n: copy_end)) {
4467 ret = -EFAULT;
4468 goto out_acct;
4469 }
4470 args.iov = compat_ptr(uptr: args32.iov);
4471 args.iovcnt = args32.iovcnt;
4472 args.offset = args32.offset;
4473 args.flags = args32.flags;
4474#else
4475 return -ENOTTY;
4476#endif
4477 } else {
4478 copy_end = copy_end_kernel;
4479 if (copy_from_user(to: &args, from: argp, n: copy_end)) {
4480 ret = -EFAULT;
4481 goto out_acct;
4482 }
4483 }
4484 if (args.flags != 0) {
4485 ret = -EINVAL;
4486 goto out_acct;
4487 }
4488
4489 ret = import_iovec(ITER_DEST, uvec: args.iov, nr_segs: args.iovcnt, ARRAY_SIZE(iovstack),
4490 iovp: &iov, i: &iter);
4491 if (ret < 0)
4492 goto out_acct;
4493
4494 if (iov_iter_count(i: &iter) == 0) {
4495 ret = 0;
4496 goto out_iov;
4497 }
4498 pos = args.offset;
4499 ret = rw_verify_area(READ, file, &pos, args.len);
4500 if (ret < 0)
4501 goto out_iov;
4502
4503 init_sync_kiocb(kiocb: &kiocb, filp: file);
4504 kiocb.ki_pos = pos;
4505
4506 ret = btrfs_encoded_read(iocb: &kiocb, iter: &iter, encoded: &args);
4507 if (ret >= 0) {
4508 fsnotify_access(file);
4509 if (copy_to_user(to: argp + copy_end,
4510 from: (char *)&args + copy_end_kernel,
4511 n: sizeof(args) - copy_end_kernel))
4512 ret = -EFAULT;
4513 }
4514
4515out_iov:
4516 kfree(objp: iov);
4517out_acct:
4518 if (ret > 0)
4519 add_rchar(current, amt: ret);
4520 inc_syscr(current);
4521 return ret;
4522}
4523
4524static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4525{
4526 struct btrfs_ioctl_encoded_io_args args;
4527 struct iovec iovstack[UIO_FASTIOV];
4528 struct iovec *iov = iovstack;
4529 struct iov_iter iter;
4530 loff_t pos;
4531 struct kiocb kiocb;
4532 ssize_t ret;
4533
4534 if (!capable(CAP_SYS_ADMIN)) {
4535 ret = -EPERM;
4536 goto out_acct;
4537 }
4538
4539 if (!(file->f_mode & FMODE_WRITE)) {
4540 ret = -EBADF;
4541 goto out_acct;
4542 }
4543
4544 if (compat) {
4545#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4546 struct btrfs_ioctl_encoded_io_args_32 args32;
4547
4548 if (copy_from_user(to: &args32, from: argp, n: sizeof(args32))) {
4549 ret = -EFAULT;
4550 goto out_acct;
4551 }
4552 args.iov = compat_ptr(uptr: args32.iov);
4553 args.iovcnt = args32.iovcnt;
4554 args.offset = args32.offset;
4555 args.flags = args32.flags;
4556 args.len = args32.len;
4557 args.unencoded_len = args32.unencoded_len;
4558 args.unencoded_offset = args32.unencoded_offset;
4559 args.compression = args32.compression;
4560 args.encryption = args32.encryption;
4561 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4562#else
4563 return -ENOTTY;
4564#endif
4565 } else {
4566 if (copy_from_user(to: &args, from: argp, n: sizeof(args))) {
4567 ret = -EFAULT;
4568 goto out_acct;
4569 }
4570 }
4571
4572 ret = -EINVAL;
4573 if (args.flags != 0)
4574 goto out_acct;
4575 if (memchr_inv(p: args.reserved, c: 0, size: sizeof(args.reserved)))
4576 goto out_acct;
4577 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4578 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4579 goto out_acct;
4580 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4581 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4582 goto out_acct;
4583 if (args.unencoded_offset > args.unencoded_len)
4584 goto out_acct;
4585 if (args.len > args.unencoded_len - args.unencoded_offset)
4586 goto out_acct;
4587
4588 ret = import_iovec(ITER_SOURCE, uvec: args.iov, nr_segs: args.iovcnt, ARRAY_SIZE(iovstack),
4589 iovp: &iov, i: &iter);
4590 if (ret < 0)
4591 goto out_acct;
4592
4593 if (iov_iter_count(i: &iter) == 0) {
4594 ret = 0;
4595 goto out_iov;
4596 }
4597 pos = args.offset;
4598 ret = rw_verify_area(WRITE, file, &pos, args.len);
4599 if (ret < 0)
4600 goto out_iov;
4601
4602 init_sync_kiocb(kiocb: &kiocb, filp: file);
4603 ret = kiocb_set_rw_flags(ki: &kiocb, flags: 0);
4604 if (ret)
4605 goto out_iov;
4606 kiocb.ki_pos = pos;
4607
4608 file_start_write(file);
4609
4610 ret = btrfs_do_write_iter(iocb: &kiocb, from: &iter, encoded: &args);
4611 if (ret > 0)
4612 fsnotify_modify(file);
4613
4614 file_end_write(file);
4615out_iov:
4616 kfree(objp: iov);
4617out_acct:
4618 if (ret > 0)
4619 add_wchar(current, amt: ret);
4620 inc_syscw(current);
4621 return ret;
4622}
4623
4624long btrfs_ioctl(struct file *file, unsigned int
4625 cmd, unsigned long arg)
4626{
4627 struct inode *inode = file_inode(f: file);
4628 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4629 struct btrfs_root *root = BTRFS_I(inode)->root;
4630 void __user *argp = (void __user *)arg;
4631
4632 switch (cmd) {
4633 case FS_IOC_GETVERSION:
4634 return btrfs_ioctl_getversion(inode, arg: argp);
4635 case FS_IOC_GETFSLABEL:
4636 return btrfs_ioctl_get_fslabel(fs_info, arg: argp);
4637 case FS_IOC_SETFSLABEL:
4638 return btrfs_ioctl_set_fslabel(file, arg: argp);
4639 case FITRIM:
4640 return btrfs_ioctl_fitrim(fs_info, arg: argp);
4641 case BTRFS_IOC_SNAP_CREATE:
4642 return btrfs_ioctl_snap_create(file, arg: argp, subvol: 0);
4643 case BTRFS_IOC_SNAP_CREATE_V2:
4644 return btrfs_ioctl_snap_create_v2(file, arg: argp, subvol: 0);
4645 case BTRFS_IOC_SUBVOL_CREATE:
4646 return btrfs_ioctl_snap_create(file, arg: argp, subvol: 1);
4647 case BTRFS_IOC_SUBVOL_CREATE_V2:
4648 return btrfs_ioctl_snap_create_v2(file, arg: argp, subvol: 1);
4649 case BTRFS_IOC_SNAP_DESTROY:
4650 return btrfs_ioctl_snap_destroy(file, arg: argp, destroy_v2: false);
4651 case BTRFS_IOC_SNAP_DESTROY_V2:
4652 return btrfs_ioctl_snap_destroy(file, arg: argp, destroy_v2: true);
4653 case BTRFS_IOC_SUBVOL_GETFLAGS:
4654 return btrfs_ioctl_subvol_getflags(inode, arg: argp);
4655 case BTRFS_IOC_SUBVOL_SETFLAGS:
4656 return btrfs_ioctl_subvol_setflags(file, arg: argp);
4657 case BTRFS_IOC_DEFAULT_SUBVOL:
4658 return btrfs_ioctl_default_subvol(file, argp);
4659 case BTRFS_IOC_DEFRAG:
4660 return btrfs_ioctl_defrag(file, NULL);
4661 case BTRFS_IOC_DEFRAG_RANGE:
4662 return btrfs_ioctl_defrag(file, argp);
4663 case BTRFS_IOC_RESIZE:
4664 return btrfs_ioctl_resize(file, arg: argp);
4665 case BTRFS_IOC_ADD_DEV:
4666 return btrfs_ioctl_add_dev(fs_info, arg: argp);
4667 case BTRFS_IOC_RM_DEV:
4668 return btrfs_ioctl_rm_dev(file, arg: argp);
4669 case BTRFS_IOC_RM_DEV_V2:
4670 return btrfs_ioctl_rm_dev_v2(file, arg: argp);
4671 case BTRFS_IOC_FS_INFO:
4672 return btrfs_ioctl_fs_info(fs_info, arg: argp);
4673 case BTRFS_IOC_DEV_INFO:
4674 return btrfs_ioctl_dev_info(fs_info, arg: argp);
4675 case BTRFS_IOC_TREE_SEARCH:
4676 return btrfs_ioctl_tree_search(inode, argp);
4677 case BTRFS_IOC_TREE_SEARCH_V2:
4678 return btrfs_ioctl_tree_search_v2(inode, argp);
4679 case BTRFS_IOC_INO_LOOKUP:
4680 return btrfs_ioctl_ino_lookup(root, argp);
4681 case BTRFS_IOC_INO_PATHS:
4682 return btrfs_ioctl_ino_to_path(root, arg: argp);
4683 case BTRFS_IOC_LOGICAL_INO:
4684 return btrfs_ioctl_logical_to_ino(fs_info, arg: argp, version: 1);
4685 case BTRFS_IOC_LOGICAL_INO_V2:
4686 return btrfs_ioctl_logical_to_ino(fs_info, arg: argp, version: 2);
4687 case BTRFS_IOC_SPACE_INFO:
4688 return btrfs_ioctl_space_info(fs_info, arg: argp);
4689 case BTRFS_IOC_SYNC: {
4690 int ret;
4691
4692 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, in_reclaim_context: false);
4693 if (ret)
4694 return ret;
4695 ret = btrfs_sync_fs(sb: inode->i_sb, wait: 1);
4696 /*
4697 * The transaction thread may want to do more work,
4698 * namely it pokes the cleaner kthread that will start
4699 * processing uncleaned subvols.
4700 */
4701 wake_up_process(tsk: fs_info->transaction_kthread);
4702 return ret;
4703 }
4704 case BTRFS_IOC_START_SYNC:
4705 return btrfs_ioctl_start_sync(root, argp);
4706 case BTRFS_IOC_WAIT_SYNC:
4707 return btrfs_ioctl_wait_sync(fs_info, argp);
4708 case BTRFS_IOC_SCRUB:
4709 return btrfs_ioctl_scrub(file, arg: argp);
4710 case BTRFS_IOC_SCRUB_CANCEL:
4711 return btrfs_ioctl_scrub_cancel(fs_info);
4712 case BTRFS_IOC_SCRUB_PROGRESS:
4713 return btrfs_ioctl_scrub_progress(fs_info, arg: argp);
4714 case BTRFS_IOC_BALANCE_V2:
4715 return btrfs_ioctl_balance(file, arg: argp);
4716 case BTRFS_IOC_BALANCE_CTL:
4717 return btrfs_ioctl_balance_ctl(fs_info, cmd: arg);
4718 case BTRFS_IOC_BALANCE_PROGRESS:
4719 return btrfs_ioctl_balance_progress(fs_info, arg: argp);
4720 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4721 return btrfs_ioctl_set_received_subvol(file, arg: argp);
4722#ifdef CONFIG_64BIT
4723 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4724 return btrfs_ioctl_set_received_subvol_32(file, arg: argp);
4725#endif
4726 case BTRFS_IOC_SEND:
4727 return _btrfs_ioctl_send(inode, argp, compat: false);
4728#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4729 case BTRFS_IOC_SEND_32:
4730 return _btrfs_ioctl_send(inode, argp, compat: true);
4731#endif
4732 case BTRFS_IOC_GET_DEV_STATS:
4733 return btrfs_ioctl_get_dev_stats(fs_info, arg: argp);
4734 case BTRFS_IOC_QUOTA_CTL:
4735 return btrfs_ioctl_quota_ctl(file, arg: argp);
4736 case BTRFS_IOC_QGROUP_ASSIGN:
4737 return btrfs_ioctl_qgroup_assign(file, arg: argp);
4738 case BTRFS_IOC_QGROUP_CREATE:
4739 return btrfs_ioctl_qgroup_create(file, arg: argp);
4740 case BTRFS_IOC_QGROUP_LIMIT:
4741 return btrfs_ioctl_qgroup_limit(file, arg: argp);
4742 case BTRFS_IOC_QUOTA_RESCAN:
4743 return btrfs_ioctl_quota_rescan(file, arg: argp);
4744 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4745 return btrfs_ioctl_quota_rescan_status(fs_info, arg: argp);
4746 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4747 return btrfs_ioctl_quota_rescan_wait(fs_info, arg: argp);
4748 case BTRFS_IOC_DEV_REPLACE:
4749 return btrfs_ioctl_dev_replace(fs_info, arg: argp);
4750 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4751 return btrfs_ioctl_get_supported_features(arg: argp);
4752 case BTRFS_IOC_GET_FEATURES:
4753 return btrfs_ioctl_get_features(fs_info, arg: argp);
4754 case BTRFS_IOC_SET_FEATURES:
4755 return btrfs_ioctl_set_features(file, arg: argp);
4756 case BTRFS_IOC_GET_SUBVOL_INFO:
4757 return btrfs_ioctl_get_subvol_info(inode, argp);
4758 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4759 return btrfs_ioctl_get_subvol_rootref(root, argp);
4760 case BTRFS_IOC_INO_LOOKUP_USER:
4761 return btrfs_ioctl_ino_lookup_user(file, argp);
4762 case FS_IOC_ENABLE_VERITY:
4763 return fsverity_ioctl_enable(filp: file, arg: (const void __user *)argp);
4764 case FS_IOC_MEASURE_VERITY:
4765 return fsverity_ioctl_measure(filp: file, arg: argp);
4766 case BTRFS_IOC_ENCODED_READ:
4767 return btrfs_ioctl_encoded_read(file, argp, compat: false);
4768 case BTRFS_IOC_ENCODED_WRITE:
4769 return btrfs_ioctl_encoded_write(file, argp, compat: false);
4770#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4771 case BTRFS_IOC_ENCODED_READ_32:
4772 return btrfs_ioctl_encoded_read(file, argp, compat: true);
4773 case BTRFS_IOC_ENCODED_WRITE_32:
4774 return btrfs_ioctl_encoded_write(file, argp, compat: true);
4775#endif
4776 }
4777
4778 return -ENOTTY;
4779}
4780
4781#ifdef CONFIG_COMPAT
4782long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4783{
4784 /*
4785 * These all access 32-bit values anyway so no further
4786 * handling is necessary.
4787 */
4788 switch (cmd) {
4789 case FS_IOC32_GETVERSION:
4790 cmd = FS_IOC_GETVERSION;
4791 break;
4792 }
4793
4794 return btrfs_ioctl(file, cmd, arg: (unsigned long) compat_ptr(uptr: arg));
4795}
4796#endif
4797

source code of linux/fs/btrfs/ioctl.c