1 | // SPDX-License-Identifier: GPL-2.0-only |
---|---|
2 | /* |
3 | * fs/direct-io.c |
4 | * |
5 | * Copyright (C) 2002, Linus Torvalds. |
6 | * |
7 | * O_DIRECT |
8 | * |
9 | * 04Jul2002 Andrew Morton |
10 | * Initial version |
11 | * 11Sep2002 janetinc@us.ibm.com |
12 | * added readv/writev support. |
13 | * 29Oct2002 Andrew Morton |
14 | * rewrote bio_add_page() support. |
15 | * 30Oct2002 pbadari@us.ibm.com |
16 | * added support for non-aligned IO. |
17 | * 06Nov2002 pbadari@us.ibm.com |
18 | * added asynchronous IO support. |
19 | * 21Jul2003 nathans@sgi.com |
20 | * added IO completion notifier. |
21 | */ |
22 | |
23 | #include <linux/kernel.h> |
24 | #include <linux/module.h> |
25 | #include <linux/types.h> |
26 | #include <linux/fs.h> |
27 | #include <linux/mm.h> |
28 | #include <linux/slab.h> |
29 | #include <linux/highmem.h> |
30 | #include <linux/pagemap.h> |
31 | #include <linux/task_io_accounting_ops.h> |
32 | #include <linux/bio.h> |
33 | #include <linux/wait.h> |
34 | #include <linux/err.h> |
35 | #include <linux/blkdev.h> |
36 | #include <linux/buffer_head.h> |
37 | #include <linux/rwsem.h> |
38 | #include <linux/uio.h> |
39 | #include <linux/atomic.h> |
40 | |
41 | #include "internal.h" |
42 | |
43 | /* |
44 | * How many user pages to map in one call to iov_iter_extract_pages(). This |
45 | * determines the size of a structure in the slab cache |
46 | */ |
47 | #define DIO_PAGES 64 |
48 | |
49 | /* |
50 | * Flags for dio_complete() |
51 | */ |
52 | #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ |
53 | #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ |
54 | |
55 | /* |
56 | * This code generally works in units of "dio_blocks". A dio_block is |
57 | * somewhere between the hard sector size and the filesystem block size. it |
58 | * is determined on a per-invocation basis. When talking to the filesystem |
59 | * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity |
60 | * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted |
61 | * to bio_block quantities by shifting left by blkfactor. |
62 | * |
63 | * If blkfactor is zero then the user's request was aligned to the filesystem's |
64 | * blocksize. |
65 | */ |
66 | |
67 | /* dio_state only used in the submission path */ |
68 | |
69 | struct dio_submit { |
70 | struct bio *bio; /* bio under assembly */ |
71 | unsigned blkbits; /* doesn't change */ |
72 | unsigned blkfactor; /* When we're using an alignment which |
73 | is finer than the filesystem's soft |
74 | blocksize, this specifies how much |
75 | finer. blkfactor=2 means 1/4-block |
76 | alignment. Does not change */ |
77 | unsigned start_zero_done; /* flag: sub-blocksize zeroing has |
78 | been performed at the start of a |
79 | write */ |
80 | int pages_in_io; /* approximate total IO pages */ |
81 | sector_t block_in_file; /* Current offset into the underlying |
82 | file in dio_block units. */ |
83 | unsigned blocks_available; /* At block_in_file. changes */ |
84 | int reap_counter; /* rate limit reaping */ |
85 | sector_t final_block_in_request;/* doesn't change */ |
86 | int boundary; /* prev block is at a boundary */ |
87 | get_block_t *get_block; /* block mapping function */ |
88 | |
89 | loff_t logical_offset_in_bio; /* current first logical block in bio */ |
90 | sector_t final_block_in_bio; /* current final block in bio + 1 */ |
91 | sector_t next_block_for_io; /* next block to be put under IO, |
92 | in dio_blocks units */ |
93 | |
94 | /* |
95 | * Deferred addition of a page to the dio. These variables are |
96 | * private to dio_send_cur_page(), submit_page_section() and |
97 | * dio_bio_add_page(). |
98 | */ |
99 | struct page *cur_page; /* The page */ |
100 | unsigned cur_page_offset; /* Offset into it, in bytes */ |
101 | unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ |
102 | sector_t cur_page_block; /* Where it starts */ |
103 | loff_t cur_page_fs_offset; /* Offset in file */ |
104 | |
105 | struct iov_iter *iter; |
106 | /* |
107 | * Page queue. These variables belong to dio_refill_pages() and |
108 | * dio_get_page(). |
109 | */ |
110 | unsigned head; /* next page to process */ |
111 | unsigned tail; /* last valid page + 1 */ |
112 | size_t from, to; |
113 | }; |
114 | |
115 | /* dio_state communicated between submission path and end_io */ |
116 | struct dio { |
117 | int flags; /* doesn't change */ |
118 | blk_opf_t opf; /* request operation type and flags */ |
119 | struct gendisk *bio_disk; |
120 | struct inode *inode; |
121 | loff_t i_size; /* i_size when submitted */ |
122 | dio_iodone_t *end_io; /* IO completion function */ |
123 | bool is_pinned; /* T if we have pins on the pages */ |
124 | |
125 | void *private; /* copy from map_bh.b_private */ |
126 | |
127 | /* BIO completion state */ |
128 | spinlock_t bio_lock; /* protects BIO fields below */ |
129 | int page_errors; /* err from iov_iter_extract_pages() */ |
130 | int is_async; /* is IO async ? */ |
131 | bool defer_completion; /* defer AIO completion to workqueue? */ |
132 | bool should_dirty; /* if pages should be dirtied */ |
133 | int io_error; /* IO error in completion path */ |
134 | unsigned long refcount; /* direct_io_worker() and bios */ |
135 | struct bio *bio_list; /* singly linked via bi_private */ |
136 | struct task_struct *waiter; /* waiting task (NULL if none) */ |
137 | |
138 | /* AIO related stuff */ |
139 | struct kiocb *iocb; /* kiocb */ |
140 | ssize_t result; /* IO result */ |
141 | |
142 | /* |
143 | * pages[] (and any fields placed after it) are not zeroed out at |
144 | * allocation time. Don't add new fields after pages[] unless you |
145 | * wish that they not be zeroed. |
146 | */ |
147 | union { |
148 | struct page *pages[DIO_PAGES]; /* page buffer */ |
149 | struct work_struct complete_work;/* deferred AIO completion */ |
150 | }; |
151 | } ____cacheline_aligned_in_smp; |
152 | |
153 | static struct kmem_cache *dio_cache __ro_after_init; |
154 | |
155 | /* |
156 | * How many pages are in the queue? |
157 | */ |
158 | static inline unsigned dio_pages_present(struct dio_submit *sdio) |
159 | { |
160 | return sdio->tail - sdio->head; |
161 | } |
162 | |
163 | /* |
164 | * Go grab and pin some userspace pages. Typically we'll get 64 at a time. |
165 | */ |
166 | static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) |
167 | { |
168 | struct page **pages = dio->pages; |
169 | const enum req_op dio_op = dio->opf & REQ_OP_MASK; |
170 | ssize_t ret; |
171 | |
172 | ret = iov_iter_extract_pages(i: sdio->iter, pages: &pages, LONG_MAX, |
173 | DIO_PAGES, extraction_flags: 0, offset0: &sdio->from); |
174 | |
175 | if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) { |
176 | /* |
177 | * A memory fault, but the filesystem has some outstanding |
178 | * mapped blocks. We need to use those blocks up to avoid |
179 | * leaking stale data in the file. |
180 | */ |
181 | if (dio->page_errors == 0) |
182 | dio->page_errors = ret; |
183 | dio->pages[0] = ZERO_PAGE(0); |
184 | sdio->head = 0; |
185 | sdio->tail = 1; |
186 | sdio->from = 0; |
187 | sdio->to = PAGE_SIZE; |
188 | return 0; |
189 | } |
190 | |
191 | if (ret >= 0) { |
192 | ret += sdio->from; |
193 | sdio->head = 0; |
194 | sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; |
195 | sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; |
196 | return 0; |
197 | } |
198 | return ret; |
199 | } |
200 | |
201 | /* |
202 | * Get another userspace page. Returns an ERR_PTR on error. Pages are |
203 | * buffered inside the dio so that we can call iov_iter_extract_pages() |
204 | * against a decent number of pages, less frequently. To provide nicer use of |
205 | * the L1 cache. |
206 | */ |
207 | static inline struct page *dio_get_page(struct dio *dio, |
208 | struct dio_submit *sdio) |
209 | { |
210 | if (dio_pages_present(sdio) == 0) { |
211 | int ret; |
212 | |
213 | ret = dio_refill_pages(dio, sdio); |
214 | if (ret) |
215 | return ERR_PTR(error: ret); |
216 | BUG_ON(dio_pages_present(sdio) == 0); |
217 | } |
218 | return dio->pages[sdio->head]; |
219 | } |
220 | |
221 | static void dio_pin_page(struct dio *dio, struct page *page) |
222 | { |
223 | if (dio->is_pinned) |
224 | folio_add_pin(page_folio(page)); |
225 | } |
226 | |
227 | static void dio_unpin_page(struct dio *dio, struct page *page) |
228 | { |
229 | if (dio->is_pinned) |
230 | unpin_user_page(page); |
231 | } |
232 | |
233 | /* |
234 | * dio_complete() - called when all DIO BIO I/O has been completed |
235 | * |
236 | * This drops i_dio_count, lets interested parties know that a DIO operation |
237 | * has completed, and calculates the resulting return code for the operation. |
238 | * |
239 | * It lets the filesystem know if it registered an interest earlier via |
240 | * get_block. Pass the private field of the map buffer_head so that |
241 | * filesystems can use it to hold additional state between get_block calls and |
242 | * dio_complete. |
243 | */ |
244 | static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) |
245 | { |
246 | const enum req_op dio_op = dio->opf & REQ_OP_MASK; |
247 | loff_t offset = dio->iocb->ki_pos; |
248 | ssize_t transferred = 0; |
249 | int err; |
250 | |
251 | /* |
252 | * AIO submission can race with bio completion to get here while |
253 | * expecting to have the last io completed by bio completion. |
254 | * In that case -EIOCBQUEUED is in fact not an error we want |
255 | * to preserve through this call. |
256 | */ |
257 | if (ret == -EIOCBQUEUED) |
258 | ret = 0; |
259 | |
260 | if (dio->result) { |
261 | transferred = dio->result; |
262 | |
263 | /* Check for short read case */ |
264 | if (dio_op == REQ_OP_READ && |
265 | ((offset + transferred) > dio->i_size)) |
266 | transferred = dio->i_size - offset; |
267 | /* ignore EFAULT if some IO has been done */ |
268 | if (unlikely(ret == -EFAULT) && transferred) |
269 | ret = 0; |
270 | } |
271 | |
272 | if (ret == 0) |
273 | ret = dio->page_errors; |
274 | if (ret == 0) |
275 | ret = dio->io_error; |
276 | if (ret == 0) |
277 | ret = transferred; |
278 | |
279 | if (dio->end_io) { |
280 | // XXX: ki_pos?? |
281 | err = dio->end_io(dio->iocb, offset, ret, dio->private); |
282 | if (err) |
283 | ret = err; |
284 | } |
285 | |
286 | /* |
287 | * Try again to invalidate clean pages which might have been cached by |
288 | * non-direct readahead, or faulted in by get_user_pages() if the source |
289 | * of the write was an mmap'ed region of the file we're writing. Either |
290 | * one is a pretty crazy thing to do, so we don't support it 100%. If |
291 | * this invalidation fails, tough, the write still worked... |
292 | * |
293 | * And this page cache invalidation has to be after dio->end_io(), as |
294 | * some filesystems convert unwritten extents to real allocations in |
295 | * end_io() when necessary, otherwise a racing buffer read would cache |
296 | * zeros from unwritten extents. |
297 | */ |
298 | if (flags & DIO_COMPLETE_INVALIDATE && |
299 | ret > 0 && dio_op == REQ_OP_WRITE) |
300 | kiocb_invalidate_post_direct_write(iocb: dio->iocb, count: ret); |
301 | |
302 | inode_dio_end(inode: dio->inode); |
303 | |
304 | if (flags & DIO_COMPLETE_ASYNC) { |
305 | /* |
306 | * generic_write_sync expects ki_pos to have been updated |
307 | * already, but the submission path only does this for |
308 | * synchronous I/O. |
309 | */ |
310 | dio->iocb->ki_pos += transferred; |
311 | |
312 | if (ret > 0 && dio_op == REQ_OP_WRITE) |
313 | ret = generic_write_sync(iocb: dio->iocb, count: ret); |
314 | dio->iocb->ki_complete(dio->iocb, ret); |
315 | } |
316 | |
317 | kmem_cache_free(s: dio_cache, objp: dio); |
318 | return ret; |
319 | } |
320 | |
321 | static void dio_aio_complete_work(struct work_struct *work) |
322 | { |
323 | struct dio *dio = container_of(work, struct dio, complete_work); |
324 | |
325 | dio_complete(dio, ret: 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); |
326 | } |
327 | |
328 | static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); |
329 | |
330 | /* |
331 | * Asynchronous IO callback. |
332 | */ |
333 | static void dio_bio_end_aio(struct bio *bio) |
334 | { |
335 | struct dio *dio = bio->bi_private; |
336 | const enum req_op dio_op = dio->opf & REQ_OP_MASK; |
337 | unsigned long remaining; |
338 | unsigned long flags; |
339 | bool defer_completion = false; |
340 | |
341 | /* cleanup the bio */ |
342 | dio_bio_complete(dio, bio); |
343 | |
344 | spin_lock_irqsave(&dio->bio_lock, flags); |
345 | remaining = --dio->refcount; |
346 | if (remaining == 1 && dio->waiter) |
347 | wake_up_process(tsk: dio->waiter); |
348 | spin_unlock_irqrestore(lock: &dio->bio_lock, flags); |
349 | |
350 | if (remaining == 0) { |
351 | /* |
352 | * Defer completion when defer_completion is set or |
353 | * when the inode has pages mapped and this is AIO write. |
354 | * We need to invalidate those pages because there is a |
355 | * chance they contain stale data in the case buffered IO |
356 | * went in between AIO submission and completion into the |
357 | * same region. |
358 | */ |
359 | if (dio->result) |
360 | defer_completion = dio->defer_completion || |
361 | (dio_op == REQ_OP_WRITE && |
362 | dio->inode->i_mapping->nrpages); |
363 | if (defer_completion) { |
364 | INIT_WORK(&dio->complete_work, dio_aio_complete_work); |
365 | queue_work(wq: dio->inode->i_sb->s_dio_done_wq, |
366 | work: &dio->complete_work); |
367 | } else { |
368 | dio_complete(dio, ret: 0, DIO_COMPLETE_ASYNC); |
369 | } |
370 | } |
371 | } |
372 | |
373 | /* |
374 | * The BIO completion handler simply queues the BIO up for the process-context |
375 | * handler. |
376 | * |
377 | * During I/O bi_private points at the dio. After I/O, bi_private is used to |
378 | * implement a singly-linked list of completed BIOs, at dio->bio_list. |
379 | */ |
380 | static void dio_bio_end_io(struct bio *bio) |
381 | { |
382 | struct dio *dio = bio->bi_private; |
383 | unsigned long flags; |
384 | |
385 | spin_lock_irqsave(&dio->bio_lock, flags); |
386 | bio->bi_private = dio->bio_list; |
387 | dio->bio_list = bio; |
388 | if (--dio->refcount == 1 && dio->waiter) |
389 | wake_up_process(tsk: dio->waiter); |
390 | spin_unlock_irqrestore(lock: &dio->bio_lock, flags); |
391 | } |
392 | |
393 | static inline void |
394 | dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, |
395 | struct block_device *bdev, |
396 | sector_t first_sector, int nr_vecs) |
397 | { |
398 | struct bio *bio; |
399 | |
400 | /* |
401 | * bio_alloc() is guaranteed to return a bio when allowed to sleep and |
402 | * we request a valid number of vectors. |
403 | */ |
404 | bio = bio_alloc(bdev, nr_vecs, opf: dio->opf, GFP_KERNEL); |
405 | bio->bi_iter.bi_sector = first_sector; |
406 | if (dio->is_async) |
407 | bio->bi_end_io = dio_bio_end_aio; |
408 | else |
409 | bio->bi_end_io = dio_bio_end_io; |
410 | if (dio->is_pinned) |
411 | bio_set_flag(bio, bit: BIO_PAGE_PINNED); |
412 | bio->bi_write_hint = file_inode(f: dio->iocb->ki_filp)->i_write_hint; |
413 | |
414 | sdio->bio = bio; |
415 | sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; |
416 | } |
417 | |
418 | /* |
419 | * In the AIO read case we speculatively dirty the pages before starting IO. |
420 | * During IO completion, any of these pages which happen to have been written |
421 | * back will be redirtied by bio_check_pages_dirty(). |
422 | * |
423 | * bios hold a dio reference between submit_bio and ->end_io. |
424 | */ |
425 | static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) |
426 | { |
427 | const enum req_op dio_op = dio->opf & REQ_OP_MASK; |
428 | struct bio *bio = sdio->bio; |
429 | unsigned long flags; |
430 | |
431 | bio->bi_private = dio; |
432 | |
433 | spin_lock_irqsave(&dio->bio_lock, flags); |
434 | dio->refcount++; |
435 | spin_unlock_irqrestore(lock: &dio->bio_lock, flags); |
436 | |
437 | if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty) |
438 | bio_set_pages_dirty(bio); |
439 | |
440 | dio->bio_disk = bio->bi_bdev->bd_disk; |
441 | |
442 | submit_bio(bio); |
443 | |
444 | sdio->bio = NULL; |
445 | sdio->boundary = 0; |
446 | sdio->logical_offset_in_bio = 0; |
447 | } |
448 | |
449 | /* |
450 | * Release any resources in case of a failure |
451 | */ |
452 | static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) |
453 | { |
454 | if (dio->is_pinned) |
455 | unpin_user_pages(pages: dio->pages + sdio->head, |
456 | npages: sdio->tail - sdio->head); |
457 | sdio->head = sdio->tail; |
458 | } |
459 | |
460 | /* |
461 | * Wait for the next BIO to complete. Remove it and return it. NULL is |
462 | * returned once all BIOs have been completed. This must only be called once |
463 | * all bios have been issued so that dio->refcount can only decrease. This |
464 | * requires that the caller hold a reference on the dio. |
465 | */ |
466 | static struct bio *dio_await_one(struct dio *dio) |
467 | { |
468 | unsigned long flags; |
469 | struct bio *bio = NULL; |
470 | |
471 | spin_lock_irqsave(&dio->bio_lock, flags); |
472 | |
473 | /* |
474 | * Wait as long as the list is empty and there are bios in flight. bio |
475 | * completion drops the count, maybe adds to the list, and wakes while |
476 | * holding the bio_lock so we don't need set_current_state()'s barrier |
477 | * and can call it after testing our condition. |
478 | */ |
479 | while (dio->refcount > 1 && dio->bio_list == NULL) { |
480 | __set_current_state(TASK_UNINTERRUPTIBLE); |
481 | dio->waiter = current; |
482 | spin_unlock_irqrestore(lock: &dio->bio_lock, flags); |
483 | blk_io_schedule(); |
484 | /* wake up sets us TASK_RUNNING */ |
485 | spin_lock_irqsave(&dio->bio_lock, flags); |
486 | dio->waiter = NULL; |
487 | } |
488 | if (dio->bio_list) { |
489 | bio = dio->bio_list; |
490 | dio->bio_list = bio->bi_private; |
491 | } |
492 | spin_unlock_irqrestore(lock: &dio->bio_lock, flags); |
493 | return bio; |
494 | } |
495 | |
496 | /* |
497 | * Process one completed BIO. No locks are held. |
498 | */ |
499 | static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) |
500 | { |
501 | blk_status_t err = bio->bi_status; |
502 | const enum req_op dio_op = dio->opf & REQ_OP_MASK; |
503 | bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty; |
504 | |
505 | if (err) { |
506 | if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) |
507 | dio->io_error = -EAGAIN; |
508 | else |
509 | dio->io_error = -EIO; |
510 | } |
511 | |
512 | if (dio->is_async && should_dirty) { |
513 | bio_check_pages_dirty(bio); /* transfers ownership */ |
514 | } else { |
515 | bio_release_pages(bio, mark_dirty: should_dirty); |
516 | bio_put(bio); |
517 | } |
518 | return err; |
519 | } |
520 | |
521 | /* |
522 | * Wait on and process all in-flight BIOs. This must only be called once |
523 | * all bios have been issued so that the refcount can only decrease. |
524 | * This just waits for all bios to make it through dio_bio_complete. IO |
525 | * errors are propagated through dio->io_error and should be propagated via |
526 | * dio_complete(). |
527 | */ |
528 | static void dio_await_completion(struct dio *dio) |
529 | { |
530 | struct bio *bio; |
531 | do { |
532 | bio = dio_await_one(dio); |
533 | if (bio) |
534 | dio_bio_complete(dio, bio); |
535 | } while (bio); |
536 | } |
537 | |
538 | /* |
539 | * A really large O_DIRECT read or write can generate a lot of BIOs. So |
540 | * to keep the memory consumption sane we periodically reap any completed BIOs |
541 | * during the BIO generation phase. |
542 | * |
543 | * This also helps to limit the peak amount of pinned userspace memory. |
544 | */ |
545 | static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) |
546 | { |
547 | int ret = 0; |
548 | |
549 | if (sdio->reap_counter++ >= 64) { |
550 | while (dio->bio_list) { |
551 | unsigned long flags; |
552 | struct bio *bio; |
553 | int ret2; |
554 | |
555 | spin_lock_irqsave(&dio->bio_lock, flags); |
556 | bio = dio->bio_list; |
557 | dio->bio_list = bio->bi_private; |
558 | spin_unlock_irqrestore(lock: &dio->bio_lock, flags); |
559 | ret2 = blk_status_to_errno(status: dio_bio_complete(dio, bio)); |
560 | if (ret == 0) |
561 | ret = ret2; |
562 | } |
563 | sdio->reap_counter = 0; |
564 | } |
565 | return ret; |
566 | } |
567 | |
568 | static int dio_set_defer_completion(struct dio *dio) |
569 | { |
570 | struct super_block *sb = dio->inode->i_sb; |
571 | |
572 | if (dio->defer_completion) |
573 | return 0; |
574 | dio->defer_completion = true; |
575 | if (!sb->s_dio_done_wq) |
576 | return sb_init_dio_done_wq(sb); |
577 | return 0; |
578 | } |
579 | |
580 | /* |
581 | * Call into the fs to map some more disk blocks. We record the current number |
582 | * of available blocks at sdio->blocks_available. These are in units of the |
583 | * fs blocksize, i_blocksize(inode). |
584 | * |
585 | * The fs is allowed to map lots of blocks at once. If it wants to do that, |
586 | * it uses the passed inode-relative block number as the file offset, as usual. |
587 | * |
588 | * get_block() is passed the number of i_blkbits-sized blocks which direct_io |
589 | * has remaining to do. The fs should not map more than this number of blocks. |
590 | * |
591 | * If the fs has mapped a lot of blocks, it should populate bh->b_size to |
592 | * indicate how much contiguous disk space has been made available at |
593 | * bh->b_blocknr. |
594 | * |
595 | * If *any* of the mapped blocks are new, then the fs must set buffer_new(). |
596 | * This isn't very efficient... |
597 | * |
598 | * In the case of filesystem holes: the fs may return an arbitrarily-large |
599 | * hole by returning an appropriate value in b_size and by clearing |
600 | * buffer_mapped(). However the direct-io code will only process holes one |
601 | * block at a time - it will repeatedly call get_block() as it walks the hole. |
602 | */ |
603 | static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, |
604 | struct buffer_head *map_bh) |
605 | { |
606 | const enum req_op dio_op = dio->opf & REQ_OP_MASK; |
607 | int ret; |
608 | sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ |
609 | sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ |
610 | unsigned long fs_count; /* Number of filesystem-sized blocks */ |
611 | int create; |
612 | unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; |
613 | loff_t i_size; |
614 | |
615 | /* |
616 | * If there was a memory error and we've overwritten all the |
617 | * mapped blocks then we can now return that memory error |
618 | */ |
619 | ret = dio->page_errors; |
620 | if (ret == 0) { |
621 | BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); |
622 | fs_startblk = sdio->block_in_file >> sdio->blkfactor; |
623 | fs_endblk = (sdio->final_block_in_request - 1) >> |
624 | sdio->blkfactor; |
625 | fs_count = fs_endblk - fs_startblk + 1; |
626 | |
627 | map_bh->b_state = 0; |
628 | map_bh->b_size = fs_count << i_blkbits; |
629 | |
630 | /* |
631 | * For writes that could fill holes inside i_size on a |
632 | * DIO_SKIP_HOLES filesystem we forbid block creations: only |
633 | * overwrites are permitted. We will return early to the caller |
634 | * once we see an unmapped buffer head returned, and the caller |
635 | * will fall back to buffered I/O. |
636 | * |
637 | * Otherwise the decision is left to the get_blocks method, |
638 | * which may decide to handle it or also return an unmapped |
639 | * buffer head. |
640 | */ |
641 | create = dio_op == REQ_OP_WRITE; |
642 | if (dio->flags & DIO_SKIP_HOLES) { |
643 | i_size = i_size_read(inode: dio->inode); |
644 | if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) |
645 | create = 0; |
646 | } |
647 | |
648 | ret = (*sdio->get_block)(dio->inode, fs_startblk, |
649 | map_bh, create); |
650 | |
651 | /* Store for completion */ |
652 | dio->private = map_bh->b_private; |
653 | |
654 | if (ret == 0 && buffer_defer_completion(bh: map_bh)) |
655 | ret = dio_set_defer_completion(dio); |
656 | } |
657 | return ret; |
658 | } |
659 | |
660 | /* |
661 | * There is no bio. Make one now. |
662 | */ |
663 | static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, |
664 | sector_t start_sector, struct buffer_head *map_bh) |
665 | { |
666 | sector_t sector; |
667 | int ret, nr_pages; |
668 | |
669 | ret = dio_bio_reap(dio, sdio); |
670 | if (ret) |
671 | goto out; |
672 | sector = start_sector << (sdio->blkbits - 9); |
673 | nr_pages = bio_max_segs(nr_segs: sdio->pages_in_io); |
674 | BUG_ON(nr_pages <= 0); |
675 | dio_bio_alloc(dio, sdio, bdev: map_bh->b_bdev, first_sector: sector, nr_vecs: nr_pages); |
676 | sdio->boundary = 0; |
677 | out: |
678 | return ret; |
679 | } |
680 | |
681 | /* |
682 | * Attempt to put the current chunk of 'cur_page' into the current BIO. If |
683 | * that was successful then update final_block_in_bio and take a ref against |
684 | * the just-added page. |
685 | * |
686 | * Return zero on success. Non-zero means the caller needs to start a new BIO. |
687 | */ |
688 | static inline int dio_bio_add_page(struct dio *dio, struct dio_submit *sdio) |
689 | { |
690 | int ret; |
691 | |
692 | ret = bio_add_page(bio: sdio->bio, page: sdio->cur_page, |
693 | len: sdio->cur_page_len, off: sdio->cur_page_offset); |
694 | if (ret == sdio->cur_page_len) { |
695 | /* |
696 | * Decrement count only, if we are done with this page |
697 | */ |
698 | if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) |
699 | sdio->pages_in_io--; |
700 | dio_pin_page(dio, page: sdio->cur_page); |
701 | sdio->final_block_in_bio = sdio->cur_page_block + |
702 | (sdio->cur_page_len >> sdio->blkbits); |
703 | ret = 0; |
704 | } else { |
705 | ret = 1; |
706 | } |
707 | return ret; |
708 | } |
709 | |
710 | /* |
711 | * Put cur_page under IO. The section of cur_page which is described by |
712 | * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page |
713 | * starts on-disk at cur_page_block. |
714 | * |
715 | * We take a ref against the page here (on behalf of its presence in the bio). |
716 | * |
717 | * The caller of this function is responsible for removing cur_page from the |
718 | * dio, and for dropping the refcount which came from that presence. |
719 | */ |
720 | static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, |
721 | struct buffer_head *map_bh) |
722 | { |
723 | int ret = 0; |
724 | |
725 | if (sdio->bio) { |
726 | loff_t cur_offset = sdio->cur_page_fs_offset; |
727 | loff_t bio_next_offset = sdio->logical_offset_in_bio + |
728 | sdio->bio->bi_iter.bi_size; |
729 | |
730 | /* |
731 | * See whether this new request is contiguous with the old. |
732 | * |
733 | * Btrfs cannot handle having logically non-contiguous requests |
734 | * submitted. For example if you have |
735 | * |
736 | * Logical: [0-4095][HOLE][8192-12287] |
737 | * Physical: [0-4095] [4096-8191] |
738 | * |
739 | * We cannot submit those pages together as one BIO. So if our |
740 | * current logical offset in the file does not equal what would |
741 | * be the next logical offset in the bio, submit the bio we |
742 | * have. |
743 | */ |
744 | if (sdio->final_block_in_bio != sdio->cur_page_block || |
745 | cur_offset != bio_next_offset) |
746 | dio_bio_submit(dio, sdio); |
747 | } |
748 | |
749 | if (sdio->bio == NULL) { |
750 | ret = dio_new_bio(dio, sdio, start_sector: sdio->cur_page_block, map_bh); |
751 | if (ret) |
752 | goto out; |
753 | } |
754 | |
755 | if (dio_bio_add_page(dio, sdio) != 0) { |
756 | dio_bio_submit(dio, sdio); |
757 | ret = dio_new_bio(dio, sdio, start_sector: sdio->cur_page_block, map_bh); |
758 | if (ret == 0) { |
759 | ret = dio_bio_add_page(dio, sdio); |
760 | BUG_ON(ret != 0); |
761 | } |
762 | } |
763 | out: |
764 | return ret; |
765 | } |
766 | |
767 | /* |
768 | * An autonomous function to put a chunk of a page under deferred IO. |
769 | * |
770 | * The caller doesn't actually know (or care) whether this piece of page is in |
771 | * a BIO, or is under IO or whatever. We just take care of all possible |
772 | * situations here. The separation between the logic of do_direct_IO() and |
773 | * that of submit_page_section() is important for clarity. Please don't break. |
774 | * |
775 | * The chunk of page starts on-disk at blocknr. |
776 | * |
777 | * We perform deferred IO, by recording the last-submitted page inside our |
778 | * private part of the dio structure. If possible, we just expand the IO |
779 | * across that page here. |
780 | * |
781 | * If that doesn't work out then we put the old page into the bio and add this |
782 | * page to the dio instead. |
783 | */ |
784 | static inline int |
785 | submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, |
786 | unsigned offset, unsigned len, sector_t blocknr, |
787 | struct buffer_head *map_bh) |
788 | { |
789 | const enum req_op dio_op = dio->opf & REQ_OP_MASK; |
790 | int ret = 0; |
791 | int boundary = sdio->boundary; /* dio_send_cur_page may clear it */ |
792 | |
793 | if (dio_op == REQ_OP_WRITE) { |
794 | /* |
795 | * Read accounting is performed in submit_bio() |
796 | */ |
797 | task_io_account_write(bytes: len); |
798 | } |
799 | |
800 | /* |
801 | * Can we just grow the current page's presence in the dio? |
802 | */ |
803 | if (sdio->cur_page == page && |
804 | sdio->cur_page_offset + sdio->cur_page_len == offset && |
805 | sdio->cur_page_block + |
806 | (sdio->cur_page_len >> sdio->blkbits) == blocknr) { |
807 | sdio->cur_page_len += len; |
808 | goto out; |
809 | } |
810 | |
811 | /* |
812 | * If there's a deferred page already there then send it. |
813 | */ |
814 | if (sdio->cur_page) { |
815 | ret = dio_send_cur_page(dio, sdio, map_bh); |
816 | dio_unpin_page(dio, page: sdio->cur_page); |
817 | sdio->cur_page = NULL; |
818 | if (ret) |
819 | return ret; |
820 | } |
821 | |
822 | dio_pin_page(dio, page); /* It is in dio */ |
823 | sdio->cur_page = page; |
824 | sdio->cur_page_offset = offset; |
825 | sdio->cur_page_len = len; |
826 | sdio->cur_page_block = blocknr; |
827 | sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; |
828 | out: |
829 | /* |
830 | * If boundary then we want to schedule the IO now to |
831 | * avoid metadata seeks. |
832 | */ |
833 | if (boundary) { |
834 | ret = dio_send_cur_page(dio, sdio, map_bh); |
835 | if (sdio->bio) |
836 | dio_bio_submit(dio, sdio); |
837 | dio_unpin_page(dio, page: sdio->cur_page); |
838 | sdio->cur_page = NULL; |
839 | } |
840 | return ret; |
841 | } |
842 | |
843 | /* |
844 | * If we are not writing the entire block and get_block() allocated |
845 | * the block for us, we need to fill-in the unused portion of the |
846 | * block with zeros. This happens only if user-buffer, fileoffset or |
847 | * io length is not filesystem block-size multiple. |
848 | * |
849 | * `end' is zero if we're doing the start of the IO, 1 at the end of the |
850 | * IO. |
851 | */ |
852 | static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, |
853 | int end, struct buffer_head *map_bh) |
854 | { |
855 | unsigned dio_blocks_per_fs_block; |
856 | unsigned this_chunk_blocks; /* In dio_blocks */ |
857 | unsigned this_chunk_bytes; |
858 | struct page *page; |
859 | |
860 | sdio->start_zero_done = 1; |
861 | if (!sdio->blkfactor || !buffer_new(bh: map_bh)) |
862 | return; |
863 | |
864 | dio_blocks_per_fs_block = 1 << sdio->blkfactor; |
865 | this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); |
866 | |
867 | if (!this_chunk_blocks) |
868 | return; |
869 | |
870 | /* |
871 | * We need to zero out part of an fs block. It is either at the |
872 | * beginning or the end of the fs block. |
873 | */ |
874 | if (end) |
875 | this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; |
876 | |
877 | this_chunk_bytes = this_chunk_blocks << sdio->blkbits; |
878 | |
879 | page = ZERO_PAGE(0); |
880 | if (submit_page_section(dio, sdio, page, offset: 0, len: this_chunk_bytes, |
881 | blocknr: sdio->next_block_for_io, map_bh)) |
882 | return; |
883 | |
884 | sdio->next_block_for_io += this_chunk_blocks; |
885 | } |
886 | |
887 | /* |
888 | * Walk the user pages, and the file, mapping blocks to disk and generating |
889 | * a sequence of (page,offset,len,block) mappings. These mappings are injected |
890 | * into submit_page_section(), which takes care of the next stage of submission |
891 | * |
892 | * Direct IO against a blockdev is different from a file. Because we can |
893 | * happily perform page-sized but 512-byte aligned IOs. It is important that |
894 | * blockdev IO be able to have fine alignment and large sizes. |
895 | * |
896 | * So what we do is to permit the ->get_block function to populate bh.b_size |
897 | * with the size of IO which is permitted at this offset and this i_blkbits. |
898 | * |
899 | * For best results, the blockdev should be set up with 512-byte i_blkbits and |
900 | * it should set b_size to PAGE_SIZE or more inside get_block(). This gives |
901 | * fine alignment but still allows this function to work in PAGE_SIZE units. |
902 | */ |
903 | static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, |
904 | struct buffer_head *map_bh) |
905 | { |
906 | const enum req_op dio_op = dio->opf & REQ_OP_MASK; |
907 | const unsigned blkbits = sdio->blkbits; |
908 | const unsigned i_blkbits = blkbits + sdio->blkfactor; |
909 | int ret = 0; |
910 | |
911 | while (sdio->block_in_file < sdio->final_block_in_request) { |
912 | struct page *page; |
913 | size_t from, to; |
914 | |
915 | page = dio_get_page(dio, sdio); |
916 | if (IS_ERR(ptr: page)) { |
917 | ret = PTR_ERR(ptr: page); |
918 | goto out; |
919 | } |
920 | from = sdio->head ? 0 : sdio->from; |
921 | to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; |
922 | sdio->head++; |
923 | |
924 | while (from < to) { |
925 | unsigned this_chunk_bytes; /* # of bytes mapped */ |
926 | unsigned this_chunk_blocks; /* # of blocks */ |
927 | unsigned u; |
928 | |
929 | if (sdio->blocks_available == 0) { |
930 | /* |
931 | * Need to go and map some more disk |
932 | */ |
933 | unsigned long blkmask; |
934 | unsigned long dio_remainder; |
935 | |
936 | ret = get_more_blocks(dio, sdio, map_bh); |
937 | if (ret) { |
938 | dio_unpin_page(dio, page); |
939 | goto out; |
940 | } |
941 | if (!buffer_mapped(bh: map_bh)) |
942 | goto do_holes; |
943 | |
944 | sdio->blocks_available = |
945 | map_bh->b_size >> blkbits; |
946 | sdio->next_block_for_io = |
947 | map_bh->b_blocknr << sdio->blkfactor; |
948 | if (buffer_new(bh: map_bh)) { |
949 | clean_bdev_aliases( |
950 | bdev: map_bh->b_bdev, |
951 | block: map_bh->b_blocknr, |
952 | len: map_bh->b_size >> i_blkbits); |
953 | } |
954 | |
955 | if (!sdio->blkfactor) |
956 | goto do_holes; |
957 | |
958 | blkmask = (1 << sdio->blkfactor) - 1; |
959 | dio_remainder = (sdio->block_in_file & blkmask); |
960 | |
961 | /* |
962 | * If we are at the start of IO and that IO |
963 | * starts partway into a fs-block, |
964 | * dio_remainder will be non-zero. If the IO |
965 | * is a read then we can simply advance the IO |
966 | * cursor to the first block which is to be |
967 | * read. But if the IO is a write and the |
968 | * block was newly allocated we cannot do that; |
969 | * the start of the fs block must be zeroed out |
970 | * on-disk |
971 | */ |
972 | if (!buffer_new(bh: map_bh)) |
973 | sdio->next_block_for_io += dio_remainder; |
974 | sdio->blocks_available -= dio_remainder; |
975 | } |
976 | do_holes: |
977 | /* Handle holes */ |
978 | if (!buffer_mapped(bh: map_bh)) { |
979 | loff_t i_size_aligned; |
980 | |
981 | /* AKPM: eargh, -ENOTBLK is a hack */ |
982 | if (dio_op == REQ_OP_WRITE) { |
983 | dio_unpin_page(dio, page); |
984 | return -ENOTBLK; |
985 | } |
986 | |
987 | /* |
988 | * Be sure to account for a partial block as the |
989 | * last block in the file |
990 | */ |
991 | i_size_aligned = ALIGN(i_size_read(dio->inode), |
992 | 1 << blkbits); |
993 | if (sdio->block_in_file >= |
994 | i_size_aligned >> blkbits) { |
995 | /* We hit eof */ |
996 | dio_unpin_page(dio, page); |
997 | goto out; |
998 | } |
999 | zero_user(page, start: from, size: 1 << blkbits); |
1000 | sdio->block_in_file++; |
1001 | from += 1 << blkbits; |
1002 | dio->result += 1 << blkbits; |
1003 | goto next_block; |
1004 | } |
1005 | |
1006 | /* |
1007 | * If we're performing IO which has an alignment which |
1008 | * is finer than the underlying fs, go check to see if |
1009 | * we must zero out the start of this block. |
1010 | */ |
1011 | if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) |
1012 | dio_zero_block(dio, sdio, end: 0, map_bh); |
1013 | |
1014 | /* |
1015 | * Work out, in this_chunk_blocks, how much disk we |
1016 | * can add to this page |
1017 | */ |
1018 | this_chunk_blocks = sdio->blocks_available; |
1019 | u = (to - from) >> blkbits; |
1020 | if (this_chunk_blocks > u) |
1021 | this_chunk_blocks = u; |
1022 | u = sdio->final_block_in_request - sdio->block_in_file; |
1023 | if (this_chunk_blocks > u) |
1024 | this_chunk_blocks = u; |
1025 | this_chunk_bytes = this_chunk_blocks << blkbits; |
1026 | BUG_ON(this_chunk_bytes == 0); |
1027 | |
1028 | if (this_chunk_blocks == sdio->blocks_available) |
1029 | sdio->boundary = buffer_boundary(bh: map_bh); |
1030 | ret = submit_page_section(dio, sdio, page, |
1031 | offset: from, |
1032 | len: this_chunk_bytes, |
1033 | blocknr: sdio->next_block_for_io, |
1034 | map_bh); |
1035 | if (ret) { |
1036 | dio_unpin_page(dio, page); |
1037 | goto out; |
1038 | } |
1039 | sdio->next_block_for_io += this_chunk_blocks; |
1040 | |
1041 | sdio->block_in_file += this_chunk_blocks; |
1042 | from += this_chunk_bytes; |
1043 | dio->result += this_chunk_bytes; |
1044 | sdio->blocks_available -= this_chunk_blocks; |
1045 | next_block: |
1046 | BUG_ON(sdio->block_in_file > sdio->final_block_in_request); |
1047 | if (sdio->block_in_file == sdio->final_block_in_request) |
1048 | break; |
1049 | } |
1050 | |
1051 | /* Drop the pin which was taken in get_user_pages() */ |
1052 | dio_unpin_page(dio, page); |
1053 | } |
1054 | out: |
1055 | return ret; |
1056 | } |
1057 | |
1058 | static inline int drop_refcount(struct dio *dio) |
1059 | { |
1060 | int ret2; |
1061 | unsigned long flags; |
1062 | |
1063 | /* |
1064 | * Sync will always be dropping the final ref and completing the |
1065 | * operation. AIO can if it was a broken operation described above or |
1066 | * in fact if all the bios race to complete before we get here. In |
1067 | * that case dio_complete() translates the EIOCBQUEUED into the proper |
1068 | * return code that the caller will hand to ->complete(). |
1069 | * |
1070 | * This is managed by the bio_lock instead of being an atomic_t so that |
1071 | * completion paths can drop their ref and use the remaining count to |
1072 | * decide to wake the submission path atomically. |
1073 | */ |
1074 | spin_lock_irqsave(&dio->bio_lock, flags); |
1075 | ret2 = --dio->refcount; |
1076 | spin_unlock_irqrestore(lock: &dio->bio_lock, flags); |
1077 | return ret2; |
1078 | } |
1079 | |
1080 | /* |
1081 | * This is a library function for use by filesystem drivers. |
1082 | * |
1083 | * The locking rules are governed by the flags parameter: |
1084 | * - if the flags value contains DIO_LOCKING we use a fancy locking |
1085 | * scheme for dumb filesystems. |
1086 | * For writes this function is called under i_mutex and returns with |
1087 | * i_mutex held, for reads, i_mutex is not held on entry, but it is |
1088 | * taken and dropped again before returning. |
1089 | * - if the flags value does NOT contain DIO_LOCKING we don't use any |
1090 | * internal locking but rather rely on the filesystem to synchronize |
1091 | * direct I/O reads/writes versus each other and truncate. |
1092 | * |
1093 | * To help with locking against truncate we incremented the i_dio_count |
1094 | * counter before starting direct I/O, and decrement it once we are done. |
1095 | * Truncate can wait for it to reach zero to provide exclusion. It is |
1096 | * expected that filesystem provide exclusion between new direct I/O |
1097 | * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, |
1098 | * but other filesystems need to take care of this on their own. |
1099 | * |
1100 | * NOTE: if you pass "sdio" to anything by pointer make sure that function |
1101 | * is always inlined. Otherwise gcc is unable to split the structure into |
1102 | * individual fields and will generate much worse code. This is important |
1103 | * for the whole file. |
1104 | */ |
1105 | ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, |
1106 | struct block_device *bdev, struct iov_iter *iter, |
1107 | get_block_t get_block, dio_iodone_t end_io, |
1108 | int flags) |
1109 | { |
1110 | unsigned i_blkbits = READ_ONCE(inode->i_blkbits); |
1111 | unsigned blkbits = i_blkbits; |
1112 | unsigned blocksize_mask = (1 << blkbits) - 1; |
1113 | ssize_t retval = -EINVAL; |
1114 | const size_t count = iov_iter_count(i: iter); |
1115 | loff_t offset = iocb->ki_pos; |
1116 | const loff_t end = offset + count; |
1117 | struct dio *dio; |
1118 | struct dio_submit sdio = { NULL, }; |
1119 | struct buffer_head map_bh = { 0, }; |
1120 | struct blk_plug plug; |
1121 | unsigned long align = offset | iov_iter_alignment(i: iter); |
1122 | |
1123 | /* watch out for a 0 len io from a tricksy fs */ |
1124 | if (iov_iter_rw(i: iter) == READ && !count) |
1125 | return 0; |
1126 | |
1127 | dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); |
1128 | if (!dio) |
1129 | return -ENOMEM; |
1130 | /* |
1131 | * Believe it or not, zeroing out the page array caused a .5% |
1132 | * performance regression in a database benchmark. So, we take |
1133 | * care to only zero out what's needed. |
1134 | */ |
1135 | memset(dio, 0, offsetof(struct dio, pages)); |
1136 | |
1137 | dio->flags = flags; |
1138 | if (dio->flags & DIO_LOCKING && iov_iter_rw(i: iter) == READ) { |
1139 | /* will be released by direct_io_worker */ |
1140 | inode_lock(inode); |
1141 | } |
1142 | dio->is_pinned = iov_iter_extract_will_pin(iter); |
1143 | |
1144 | /* Once we sampled i_size check for reads beyond EOF */ |
1145 | dio->i_size = i_size_read(inode); |
1146 | if (iov_iter_rw(i: iter) == READ && offset >= dio->i_size) { |
1147 | retval = 0; |
1148 | goto fail_dio; |
1149 | } |
1150 | |
1151 | if (align & blocksize_mask) { |
1152 | if (bdev) |
1153 | blkbits = blksize_bits(size: bdev_logical_block_size(bdev)); |
1154 | blocksize_mask = (1 << blkbits) - 1; |
1155 | if (align & blocksize_mask) |
1156 | goto fail_dio; |
1157 | } |
1158 | |
1159 | if (dio->flags & DIO_LOCKING && iov_iter_rw(i: iter) == READ) { |
1160 | struct address_space *mapping = iocb->ki_filp->f_mapping; |
1161 | |
1162 | retval = filemap_write_and_wait_range(mapping, lstart: offset, lend: end - 1); |
1163 | if (retval) |
1164 | goto fail_dio; |
1165 | } |
1166 | |
1167 | /* |
1168 | * For file extending writes updating i_size before data writeouts |
1169 | * complete can expose uninitialized blocks in dumb filesystems. |
1170 | * In that case we need to wait for I/O completion even if asked |
1171 | * for an asynchronous write. |
1172 | */ |
1173 | if (is_sync_kiocb(kiocb: iocb)) |
1174 | dio->is_async = false; |
1175 | else if (iov_iter_rw(i: iter) == WRITE && end > i_size_read(inode)) |
1176 | dio->is_async = false; |
1177 | else |
1178 | dio->is_async = true; |
1179 | |
1180 | dio->inode = inode; |
1181 | if (iov_iter_rw(i: iter) == WRITE) { |
1182 | dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; |
1183 | if (iocb->ki_flags & IOCB_NOWAIT) |
1184 | dio->opf |= REQ_NOWAIT; |
1185 | } else { |
1186 | dio->opf = REQ_OP_READ; |
1187 | } |
1188 | |
1189 | /* |
1190 | * For AIO O_(D)SYNC writes we need to defer completions to a workqueue |
1191 | * so that we can call ->fsync. |
1192 | */ |
1193 | if (dio->is_async && iov_iter_rw(i: iter) == WRITE) { |
1194 | retval = 0; |
1195 | if (iocb_is_dsync(iocb)) |
1196 | retval = dio_set_defer_completion(dio); |
1197 | else if (!dio->inode->i_sb->s_dio_done_wq) { |
1198 | /* |
1199 | * In case of AIO write racing with buffered read we |
1200 | * need to defer completion. We can't decide this now, |
1201 | * however the workqueue needs to be initialized here. |
1202 | */ |
1203 | retval = sb_init_dio_done_wq(sb: dio->inode->i_sb); |
1204 | } |
1205 | if (retval) |
1206 | goto fail_dio; |
1207 | } |
1208 | |
1209 | /* |
1210 | * Will be decremented at I/O completion time. |
1211 | */ |
1212 | inode_dio_begin(inode); |
1213 | |
1214 | sdio.blkbits = blkbits; |
1215 | sdio.blkfactor = i_blkbits - blkbits; |
1216 | sdio.block_in_file = offset >> blkbits; |
1217 | |
1218 | sdio.get_block = get_block; |
1219 | dio->end_io = end_io; |
1220 | sdio.final_block_in_bio = -1; |
1221 | sdio.next_block_for_io = -1; |
1222 | |
1223 | dio->iocb = iocb; |
1224 | |
1225 | spin_lock_init(&dio->bio_lock); |
1226 | dio->refcount = 1; |
1227 | |
1228 | dio->should_dirty = user_backed_iter(i: iter) && iov_iter_rw(i: iter) == READ; |
1229 | sdio.iter = iter; |
1230 | sdio.final_block_in_request = end >> blkbits; |
1231 | |
1232 | /* |
1233 | * In case of non-aligned buffers, we may need 2 more |
1234 | * pages since we need to zero out first and last block. |
1235 | */ |
1236 | if (unlikely(sdio.blkfactor)) |
1237 | sdio.pages_in_io = 2; |
1238 | |
1239 | sdio.pages_in_io += iov_iter_npages(i: iter, INT_MAX); |
1240 | |
1241 | blk_start_plug(&plug); |
1242 | |
1243 | retval = do_direct_IO(dio, sdio: &sdio, map_bh: &map_bh); |
1244 | if (retval) |
1245 | dio_cleanup(dio, sdio: &sdio); |
1246 | |
1247 | if (retval == -ENOTBLK) { |
1248 | /* |
1249 | * The remaining part of the request will be |
1250 | * handled by buffered I/O when we return |
1251 | */ |
1252 | retval = 0; |
1253 | } |
1254 | /* |
1255 | * There may be some unwritten disk at the end of a part-written |
1256 | * fs-block-sized block. Go zero that now. |
1257 | */ |
1258 | dio_zero_block(dio, sdio: &sdio, end: 1, map_bh: &map_bh); |
1259 | |
1260 | if (sdio.cur_page) { |
1261 | ssize_t ret2; |
1262 | |
1263 | ret2 = dio_send_cur_page(dio, sdio: &sdio, map_bh: &map_bh); |
1264 | if (retval == 0) |
1265 | retval = ret2; |
1266 | dio_unpin_page(dio, page: sdio.cur_page); |
1267 | sdio.cur_page = NULL; |
1268 | } |
1269 | if (sdio.bio) |
1270 | dio_bio_submit(dio, sdio: &sdio); |
1271 | |
1272 | blk_finish_plug(&plug); |
1273 | |
1274 | /* |
1275 | * It is possible that, we return short IO due to end of file. |
1276 | * In that case, we need to release all the pages we got hold on. |
1277 | */ |
1278 | dio_cleanup(dio, sdio: &sdio); |
1279 | |
1280 | /* |
1281 | * All block lookups have been performed. For READ requests |
1282 | * we can let i_mutex go now that its achieved its purpose |
1283 | * of protecting us from looking up uninitialized blocks. |
1284 | */ |
1285 | if (iov_iter_rw(i: iter) == READ && (dio->flags & DIO_LOCKING)) |
1286 | inode_unlock(inode: dio->inode); |
1287 | |
1288 | /* |
1289 | * The only time we want to leave bios in flight is when a successful |
1290 | * partial aio read or full aio write have been setup. In that case |
1291 | * bio completion will call aio_complete. The only time it's safe to |
1292 | * call aio_complete is when we return -EIOCBQUEUED, so we key on that. |
1293 | * This had *better* be the only place that raises -EIOCBQUEUED. |
1294 | */ |
1295 | BUG_ON(retval == -EIOCBQUEUED); |
1296 | if (dio->is_async && retval == 0 && dio->result && |
1297 | (iov_iter_rw(i: iter) == READ || dio->result == count)) |
1298 | retval = -EIOCBQUEUED; |
1299 | else |
1300 | dio_await_completion(dio); |
1301 | |
1302 | if (drop_refcount(dio) == 0) { |
1303 | retval = dio_complete(dio, ret: retval, DIO_COMPLETE_INVALIDATE); |
1304 | } else |
1305 | BUG_ON(retval != -EIOCBQUEUED); |
1306 | |
1307 | return retval; |
1308 | |
1309 | fail_dio: |
1310 | if (dio->flags & DIO_LOCKING && iov_iter_rw(i: iter) == READ) |
1311 | inode_unlock(inode); |
1312 | |
1313 | kmem_cache_free(s: dio_cache, objp: dio); |
1314 | return retval; |
1315 | } |
1316 | EXPORT_SYMBOL(__blockdev_direct_IO); |
1317 | |
1318 | static __init int dio_init(void) |
1319 | { |
1320 | dio_cache = KMEM_CACHE(dio, SLAB_PANIC); |
1321 | return 0; |
1322 | } |
1323 | module_init(dio_init) |
1324 |
Definitions
- dio_submit
- dio
- dio_cache
- dio_pages_present
- dio_refill_pages
- dio_get_page
- dio_pin_page
- dio_unpin_page
- dio_complete
- dio_aio_complete_work
- dio_bio_end_aio
- dio_bio_end_io
- dio_bio_alloc
- dio_bio_submit
- dio_cleanup
- dio_await_one
- dio_bio_complete
- dio_await_completion
- dio_bio_reap
- dio_set_defer_completion
- get_more_blocks
- dio_new_bio
- dio_bio_add_page
- dio_send_cur_page
- submit_page_section
- dio_zero_block
- do_direct_IO
- drop_refcount
- __blockdev_direct_IO
Improve your Profiling and Debugging skills
Find out more