| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * linux/fs/ext4/file.c |
| 4 | * |
| 5 | * Copyright (C) 1992, 1993, 1994, 1995 |
| 6 | * Remy Card (card@masi.ibp.fr) |
| 7 | * Laboratoire MASI - Institut Blaise Pascal |
| 8 | * Universite Pierre et Marie Curie (Paris VI) |
| 9 | * |
| 10 | * from |
| 11 | * |
| 12 | * linux/fs/minix/file.c |
| 13 | * |
| 14 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 15 | * |
| 16 | * ext4 fs regular file handling primitives |
| 17 | * |
| 18 | * 64-bit file support on 64-bit platforms by Jakub Jelinek |
| 19 | * (jj@sunsite.ms.mff.cuni.cz) |
| 20 | */ |
| 21 | |
| 22 | #include <linux/time.h> |
| 23 | #include <linux/fs.h> |
| 24 | #include <linux/iomap.h> |
| 25 | #include <linux/mount.h> |
| 26 | #include <linux/path.h> |
| 27 | #include <linux/dax.h> |
| 28 | #include <linux/quotaops.h> |
| 29 | #include <linux/pagevec.h> |
| 30 | #include <linux/uio.h> |
| 31 | #include <linux/mman.h> |
| 32 | #include <linux/backing-dev.h> |
| 33 | #include "ext4.h" |
| 34 | #include "ext4_jbd2.h" |
| 35 | #include "xattr.h" |
| 36 | #include "acl.h" |
| 37 | #include "truncate.h" |
| 38 | |
| 39 | /* |
| 40 | * Returns %true if the given DIO request should be attempted with DIO, or |
| 41 | * %false if it should fall back to buffered I/O. |
| 42 | * |
| 43 | * DIO isn't well specified; when it's unsupported (either due to the request |
| 44 | * being misaligned, or due to the file not supporting DIO at all), filesystems |
| 45 | * either fall back to buffered I/O or return EINVAL. For files that don't use |
| 46 | * any special features like encryption or verity, ext4 has traditionally |
| 47 | * returned EINVAL for misaligned DIO. iomap_dio_rw() uses this convention too. |
| 48 | * In this case, we should attempt the DIO, *not* fall back to buffered I/O. |
| 49 | * |
| 50 | * In contrast, in cases where DIO is unsupported due to ext4 features, ext4 |
| 51 | * traditionally falls back to buffered I/O. |
| 52 | * |
| 53 | * This function implements the traditional ext4 behavior in all these cases. |
| 54 | */ |
| 55 | static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter) |
| 56 | { |
| 57 | struct inode *inode = file_inode(f: iocb->ki_filp); |
| 58 | u32 dio_align = ext4_dio_alignment(inode); |
| 59 | |
| 60 | if (dio_align == 0) |
| 61 | return false; |
| 62 | |
| 63 | if (dio_align == 1) |
| 64 | return true; |
| 65 | |
| 66 | return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align); |
| 67 | } |
| 68 | |
| 69 | static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) |
| 70 | { |
| 71 | ssize_t ret; |
| 72 | struct inode *inode = file_inode(f: iocb->ki_filp); |
| 73 | |
| 74 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 75 | if (!inode_trylock_shared(inode)) |
| 76 | return -EAGAIN; |
| 77 | } else { |
| 78 | inode_lock_shared(inode); |
| 79 | } |
| 80 | |
| 81 | if (!ext4_should_use_dio(iocb, iter: to)) { |
| 82 | inode_unlock_shared(inode); |
| 83 | /* |
| 84 | * Fallback to buffered I/O if the operation being performed on |
| 85 | * the inode is not supported by direct I/O. The IOCB_DIRECT |
| 86 | * flag needs to be cleared here in order to ensure that the |
| 87 | * direct I/O path within generic_file_read_iter() is not |
| 88 | * taken. |
| 89 | */ |
| 90 | iocb->ki_flags &= ~IOCB_DIRECT; |
| 91 | return generic_file_read_iter(iocb, to); |
| 92 | } |
| 93 | |
| 94 | ret = iomap_dio_rw(iocb, iter: to, ops: &ext4_iomap_ops, NULL, dio_flags: 0, NULL, done_before: 0); |
| 95 | inode_unlock_shared(inode); |
| 96 | |
| 97 | file_accessed(file: iocb->ki_filp); |
| 98 | return ret; |
| 99 | } |
| 100 | |
| 101 | #ifdef CONFIG_FS_DAX |
| 102 | static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to) |
| 103 | { |
| 104 | struct inode *inode = file_inode(f: iocb->ki_filp); |
| 105 | ssize_t ret; |
| 106 | |
| 107 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 108 | if (!inode_trylock_shared(inode)) |
| 109 | return -EAGAIN; |
| 110 | } else { |
| 111 | inode_lock_shared(inode); |
| 112 | } |
| 113 | /* |
| 114 | * Recheck under inode lock - at this point we are sure it cannot |
| 115 | * change anymore |
| 116 | */ |
| 117 | if (!IS_DAX(inode)) { |
| 118 | inode_unlock_shared(inode); |
| 119 | /* Fallback to buffered IO in case we cannot support DAX */ |
| 120 | return generic_file_read_iter(iocb, to); |
| 121 | } |
| 122 | ret = dax_iomap_rw(iocb, iter: to, ops: &ext4_iomap_ops); |
| 123 | inode_unlock_shared(inode); |
| 124 | |
| 125 | file_accessed(file: iocb->ki_filp); |
| 126 | return ret; |
| 127 | } |
| 128 | #endif |
| 129 | |
| 130 | static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to) |
| 131 | { |
| 132 | struct inode *inode = file_inode(f: iocb->ki_filp); |
| 133 | |
| 134 | if (unlikely(ext4_forced_shutdown(inode->i_sb))) |
| 135 | return -EIO; |
| 136 | |
| 137 | if (!iov_iter_count(i: to)) |
| 138 | return 0; /* skip atime */ |
| 139 | |
| 140 | #ifdef CONFIG_FS_DAX |
| 141 | if (IS_DAX(inode)) |
| 142 | return ext4_dax_read_iter(iocb, to); |
| 143 | #endif |
| 144 | if (iocb->ki_flags & IOCB_DIRECT) |
| 145 | return ext4_dio_read_iter(iocb, to); |
| 146 | |
| 147 | return generic_file_read_iter(iocb, to); |
| 148 | } |
| 149 | |
| 150 | static ssize_t ext4_file_splice_read(struct file *in, loff_t *ppos, |
| 151 | struct pipe_inode_info *pipe, |
| 152 | size_t len, unsigned int flags) |
| 153 | { |
| 154 | struct inode *inode = file_inode(f: in); |
| 155 | |
| 156 | if (unlikely(ext4_forced_shutdown(inode->i_sb))) |
| 157 | return -EIO; |
| 158 | return filemap_splice_read(in, ppos, pipe, len, flags); |
| 159 | } |
| 160 | |
| 161 | /* |
| 162 | * Called when an inode is released. Note that this is different |
| 163 | * from ext4_file_open: open gets called at every open, but release |
| 164 | * gets called only when /all/ the files are closed. |
| 165 | */ |
| 166 | static int ext4_release_file(struct inode *inode, struct file *filp) |
| 167 | { |
| 168 | if (ext4_test_inode_state(inode, bit: EXT4_STATE_DA_ALLOC_CLOSE)) { |
| 169 | ext4_alloc_da_blocks(inode); |
| 170 | ext4_clear_inode_state(inode, bit: EXT4_STATE_DA_ALLOC_CLOSE); |
| 171 | } |
| 172 | /* if we are the last writer on the inode, drop the block reservation */ |
| 173 | if ((filp->f_mode & FMODE_WRITE) && |
| 174 | (atomic_read(v: &inode->i_writecount) == 1) && |
| 175 | !EXT4_I(inode)->i_reserved_data_blocks) { |
| 176 | down_write(sem: &EXT4_I(inode)->i_data_sem); |
| 177 | ext4_discard_preallocations(inode); |
| 178 | up_write(sem: &EXT4_I(inode)->i_data_sem); |
| 179 | } |
| 180 | if (is_dx(inode) && filp->private_data) |
| 181 | ext4_htree_free_dir_info(p: filp->private_data); |
| 182 | |
| 183 | return 0; |
| 184 | } |
| 185 | |
| 186 | /* |
| 187 | * This tests whether the IO in question is block-aligned or not. |
| 188 | * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they |
| 189 | * are converted to written only after the IO is complete. Until they are |
| 190 | * mapped, these blocks appear as holes, so dio_zero_block() will assume that |
| 191 | * it needs to zero out portions of the start and/or end block. If 2 AIO |
| 192 | * threads are at work on the same unwritten block, they must be synchronized |
| 193 | * or one thread will zero the other's data, causing corruption. |
| 194 | */ |
| 195 | static bool |
| 196 | ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos) |
| 197 | { |
| 198 | struct super_block *sb = inode->i_sb; |
| 199 | unsigned long blockmask = sb->s_blocksize - 1; |
| 200 | |
| 201 | if ((pos | iov_iter_alignment(i: from)) & blockmask) |
| 202 | return true; |
| 203 | |
| 204 | return false; |
| 205 | } |
| 206 | |
| 207 | static bool |
| 208 | ext4_extending_io(struct inode *inode, loff_t offset, size_t len) |
| 209 | { |
| 210 | if (offset + len > i_size_read(inode) || |
| 211 | offset + len > EXT4_I(inode)->i_disksize) |
| 212 | return true; |
| 213 | return false; |
| 214 | } |
| 215 | |
| 216 | /* Is IO overwriting allocated or initialized blocks? */ |
| 217 | static bool ext4_overwrite_io(struct inode *inode, |
| 218 | loff_t pos, loff_t len, bool *unwritten) |
| 219 | { |
| 220 | struct ext4_map_blocks map; |
| 221 | unsigned int blkbits = inode->i_blkbits; |
| 222 | int err, blklen; |
| 223 | |
| 224 | if (pos + len > i_size_read(inode)) |
| 225 | return false; |
| 226 | |
| 227 | map.m_lblk = pos >> blkbits; |
| 228 | map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits); |
| 229 | blklen = map.m_len; |
| 230 | |
| 231 | err = ext4_map_blocks(NULL, inode, map: &map, flags: 0); |
| 232 | if (err != blklen) |
| 233 | return false; |
| 234 | /* |
| 235 | * 'err==len' means that all of the blocks have been preallocated, |
| 236 | * regardless of whether they have been initialized or not. We need to |
| 237 | * check m_flags to distinguish the unwritten extents. |
| 238 | */ |
| 239 | *unwritten = !(map.m_flags & EXT4_MAP_MAPPED); |
| 240 | return true; |
| 241 | } |
| 242 | |
| 243 | static ssize_t ext4_generic_write_checks(struct kiocb *iocb, |
| 244 | struct iov_iter *from) |
| 245 | { |
| 246 | struct inode *inode = file_inode(f: iocb->ki_filp); |
| 247 | ssize_t ret; |
| 248 | |
| 249 | if (unlikely(IS_IMMUTABLE(inode))) |
| 250 | return -EPERM; |
| 251 | |
| 252 | ret = generic_write_checks(iocb, from); |
| 253 | if (ret <= 0) |
| 254 | return ret; |
| 255 | |
| 256 | /* |
| 257 | * If we have encountered a bitmap-format file, the size limit |
| 258 | * is smaller than s_maxbytes, which is for extent-mapped files. |
| 259 | */ |
| 260 | if (!(ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))) { |
| 261 | struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb); |
| 262 | |
| 263 | if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) |
| 264 | return -EFBIG; |
| 265 | iov_iter_truncate(i: from, count: sbi->s_bitmap_maxbytes - iocb->ki_pos); |
| 266 | } |
| 267 | |
| 268 | return iov_iter_count(i: from); |
| 269 | } |
| 270 | |
| 271 | static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from) |
| 272 | { |
| 273 | ssize_t ret, count; |
| 274 | |
| 275 | count = ext4_generic_write_checks(iocb, from); |
| 276 | if (count <= 0) |
| 277 | return count; |
| 278 | |
| 279 | ret = file_modified(file: iocb->ki_filp); |
| 280 | if (ret) |
| 281 | return ret; |
| 282 | return count; |
| 283 | } |
| 284 | |
| 285 | static ssize_t ext4_buffered_write_iter(struct kiocb *iocb, |
| 286 | struct iov_iter *from) |
| 287 | { |
| 288 | ssize_t ret; |
| 289 | struct inode *inode = file_inode(f: iocb->ki_filp); |
| 290 | |
| 291 | if (iocb->ki_flags & IOCB_NOWAIT) |
| 292 | return -EOPNOTSUPP; |
| 293 | |
| 294 | inode_lock(inode); |
| 295 | ret = ext4_write_checks(iocb, from); |
| 296 | if (ret <= 0) |
| 297 | goto out; |
| 298 | |
| 299 | ret = generic_perform_write(iocb, from); |
| 300 | |
| 301 | out: |
| 302 | inode_unlock(inode); |
| 303 | if (unlikely(ret <= 0)) |
| 304 | return ret; |
| 305 | return generic_write_sync(iocb, count: ret); |
| 306 | } |
| 307 | |
| 308 | static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset, |
| 309 | ssize_t written, ssize_t count) |
| 310 | { |
| 311 | handle_t *handle; |
| 312 | |
| 313 | lockdep_assert_held_write(&inode->i_rwsem); |
| 314 | handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); |
| 315 | if (IS_ERR(ptr: handle)) |
| 316 | return PTR_ERR(ptr: handle); |
| 317 | |
| 318 | if (ext4_update_inode_size(inode, newsize: offset + written)) { |
| 319 | int ret = ext4_mark_inode_dirty(handle, inode); |
| 320 | if (unlikely(ret)) { |
| 321 | ext4_journal_stop(handle); |
| 322 | return ret; |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | if ((written == count) && inode->i_nlink) |
| 327 | ext4_orphan_del(handle, inode); |
| 328 | ext4_journal_stop(handle); |
| 329 | |
| 330 | return written; |
| 331 | } |
| 332 | |
| 333 | /* |
| 334 | * Clean up the inode after DIO or DAX extending write has completed and the |
| 335 | * inode size has been updated using ext4_handle_inode_extension(). |
| 336 | */ |
| 337 | static void ext4_inode_extension_cleanup(struct inode *inode, bool need_trunc) |
| 338 | { |
| 339 | lockdep_assert_held_write(&inode->i_rwsem); |
| 340 | if (need_trunc) { |
| 341 | ext4_truncate_failed_write(inode); |
| 342 | /* |
| 343 | * If the truncate operation failed early, then the inode may |
| 344 | * still be on the orphan list. In that case, we need to try |
| 345 | * remove the inode from the in-memory linked list. |
| 346 | */ |
| 347 | if (inode->i_nlink) |
| 348 | ext4_orphan_del(NULL, inode); |
| 349 | return; |
| 350 | } |
| 351 | /* |
| 352 | * If i_disksize got extended either due to writeback of delalloc |
| 353 | * blocks or extending truncate while the DIO was running we could fail |
| 354 | * to cleanup the orphan list in ext4_handle_inode_extension(). Do it |
| 355 | * now. |
| 356 | */ |
| 357 | if (!list_empty(head: &EXT4_I(inode)->i_orphan) && inode->i_nlink) { |
| 358 | handle_t *handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); |
| 359 | |
| 360 | if (IS_ERR(ptr: handle)) { |
| 361 | /* |
| 362 | * The write has successfully completed. Not much to |
| 363 | * do with the error here so just cleanup the orphan |
| 364 | * list and hope for the best. |
| 365 | */ |
| 366 | ext4_orphan_del(NULL, inode); |
| 367 | return; |
| 368 | } |
| 369 | ext4_orphan_del(handle, inode); |
| 370 | ext4_journal_stop(handle); |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size, |
| 375 | int error, unsigned int flags) |
| 376 | { |
| 377 | loff_t pos = iocb->ki_pos; |
| 378 | struct inode *inode = file_inode(f: iocb->ki_filp); |
| 379 | |
| 380 | |
| 381 | if (!error && size && (flags & IOMAP_DIO_UNWRITTEN) && |
| 382 | (iocb->ki_flags & IOCB_ATOMIC)) |
| 383 | error = ext4_convert_unwritten_extents_atomic(NULL, inode, offset: pos, |
| 384 | len: size); |
| 385 | else if (!error && size && flags & IOMAP_DIO_UNWRITTEN) |
| 386 | error = ext4_convert_unwritten_extents(NULL, inode, offset: pos, len: size); |
| 387 | if (error) |
| 388 | return error; |
| 389 | /* |
| 390 | * Note that EXT4_I(inode)->i_disksize can get extended up to |
| 391 | * inode->i_size while the I/O was running due to writeback of delalloc |
| 392 | * blocks. But the code in ext4_iomap_alloc() is careful to use |
| 393 | * zeroed/unwritten extents if this is possible; thus we won't leave |
| 394 | * uninitialized blocks in a file even if we didn't succeed in writing |
| 395 | * as much as we intended. Also we can race with truncate or write |
| 396 | * expanding the file so we have to be a bit careful here. |
| 397 | */ |
| 398 | if (pos + size <= READ_ONCE(EXT4_I(inode)->i_disksize) && |
| 399 | pos + size <= i_size_read(inode)) |
| 400 | return 0; |
| 401 | error = ext4_handle_inode_extension(inode, offset: pos, written: size, count: size); |
| 402 | return error < 0 ? error : 0; |
| 403 | } |
| 404 | |
| 405 | static const struct iomap_dio_ops ext4_dio_write_ops = { |
| 406 | .end_io = ext4_dio_write_end_io, |
| 407 | }; |
| 408 | |
| 409 | /* |
| 410 | * The intention here is to start with shared lock acquired then see if any |
| 411 | * condition requires an exclusive inode lock. If yes, then we restart the |
| 412 | * whole operation by releasing the shared lock and acquiring exclusive lock. |
| 413 | * |
| 414 | * - For unaligned_io we never take shared lock as it may cause data corruption |
| 415 | * when two unaligned IO tries to modify the same block e.g. while zeroing. |
| 416 | * |
| 417 | * - For extending writes case we don't take the shared lock, since it requires |
| 418 | * updating inode i_disksize and/or orphan handling with exclusive lock. |
| 419 | * |
| 420 | * - shared locking will only be true mostly with overwrites, including |
| 421 | * initialized blocks and unwritten blocks. For overwrite unwritten blocks |
| 422 | * we protect splitting extents by i_data_sem in ext4_inode_info, so we can |
| 423 | * also release exclusive i_rwsem lock. |
| 424 | * |
| 425 | * - Otherwise we will switch to exclusive i_rwsem lock. |
| 426 | */ |
| 427 | static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from, |
| 428 | bool *ilock_shared, bool *extend, |
| 429 | bool *unwritten, int *dio_flags) |
| 430 | { |
| 431 | struct file *file = iocb->ki_filp; |
| 432 | struct inode *inode = file_inode(f: file); |
| 433 | loff_t offset; |
| 434 | size_t count; |
| 435 | ssize_t ret; |
| 436 | bool overwrite, unaligned_io; |
| 437 | |
| 438 | restart: |
| 439 | ret = ext4_generic_write_checks(iocb, from); |
| 440 | if (ret <= 0) |
| 441 | goto out; |
| 442 | |
| 443 | offset = iocb->ki_pos; |
| 444 | count = ret; |
| 445 | |
| 446 | unaligned_io = ext4_unaligned_io(inode, from, pos: offset); |
| 447 | *extend = ext4_extending_io(inode, offset, len: count); |
| 448 | overwrite = ext4_overwrite_io(inode, pos: offset, len: count, unwritten); |
| 449 | |
| 450 | /* |
| 451 | * Determine whether we need to upgrade to an exclusive lock. This is |
| 452 | * required to change security info in file_modified(), for extending |
| 453 | * I/O, any form of non-overwrite I/O, and unaligned I/O to unwritten |
| 454 | * extents (as partial block zeroing may be required). |
| 455 | * |
| 456 | * Note that unaligned writes are allowed under shared lock so long as |
| 457 | * they are pure overwrites. Otherwise, concurrent unaligned writes risk |
| 458 | * data corruption due to partial block zeroing in the dio layer, and so |
| 459 | * the I/O must occur exclusively. |
| 460 | */ |
| 461 | if (*ilock_shared && |
| 462 | ((!IS_NOSEC(inode) || *extend || !overwrite || |
| 463 | (unaligned_io && *unwritten)))) { |
| 464 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 465 | ret = -EAGAIN; |
| 466 | goto out; |
| 467 | } |
| 468 | inode_unlock_shared(inode); |
| 469 | *ilock_shared = false; |
| 470 | inode_lock(inode); |
| 471 | goto restart; |
| 472 | } |
| 473 | |
| 474 | /* |
| 475 | * Now that locking is settled, determine dio flags and exclusivity |
| 476 | * requirements. We don't use DIO_OVERWRITE_ONLY because we enforce |
| 477 | * behavior already. The inode lock is already held exclusive if the |
| 478 | * write is non-overwrite or extending, so drain all outstanding dio and |
| 479 | * set the force wait dio flag. |
| 480 | */ |
| 481 | if (!*ilock_shared && (unaligned_io || *extend)) { |
| 482 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 483 | ret = -EAGAIN; |
| 484 | goto out; |
| 485 | } |
| 486 | if (unaligned_io && (!overwrite || *unwritten)) |
| 487 | inode_dio_wait(inode); |
| 488 | *dio_flags = IOMAP_DIO_FORCE_WAIT; |
| 489 | } |
| 490 | |
| 491 | ret = file_modified(file); |
| 492 | if (ret < 0) |
| 493 | goto out; |
| 494 | |
| 495 | return count; |
| 496 | out: |
| 497 | if (*ilock_shared) |
| 498 | inode_unlock_shared(inode); |
| 499 | else |
| 500 | inode_unlock(inode); |
| 501 | return ret; |
| 502 | } |
| 503 | |
| 504 | static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from) |
| 505 | { |
| 506 | ssize_t ret; |
| 507 | handle_t *handle; |
| 508 | struct inode *inode = file_inode(f: iocb->ki_filp); |
| 509 | loff_t offset = iocb->ki_pos; |
| 510 | size_t count = iov_iter_count(i: from); |
| 511 | const struct iomap_ops *iomap_ops = &ext4_iomap_ops; |
| 512 | bool extend = false, unwritten = false; |
| 513 | bool ilock_shared = true; |
| 514 | int dio_flags = 0; |
| 515 | |
| 516 | /* |
| 517 | * Quick check here without any i_rwsem lock to see if it is extending |
| 518 | * IO. A more reliable check is done in ext4_dio_write_checks() with |
| 519 | * proper locking in place. |
| 520 | */ |
| 521 | if (offset + count > i_size_read(inode)) |
| 522 | ilock_shared = false; |
| 523 | |
| 524 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 525 | if (ilock_shared) { |
| 526 | if (!inode_trylock_shared(inode)) |
| 527 | return -EAGAIN; |
| 528 | } else { |
| 529 | if (!inode_trylock(inode)) |
| 530 | return -EAGAIN; |
| 531 | } |
| 532 | } else { |
| 533 | if (ilock_shared) |
| 534 | inode_lock_shared(inode); |
| 535 | else |
| 536 | inode_lock(inode); |
| 537 | } |
| 538 | |
| 539 | /* Fallback to buffered I/O if the inode does not support direct I/O. */ |
| 540 | if (!ext4_should_use_dio(iocb, iter: from)) { |
| 541 | if (ilock_shared) |
| 542 | inode_unlock_shared(inode); |
| 543 | else |
| 544 | inode_unlock(inode); |
| 545 | return ext4_buffered_write_iter(iocb, from); |
| 546 | } |
| 547 | |
| 548 | /* |
| 549 | * Prevent inline data from being created since we are going to allocate |
| 550 | * blocks for DIO. We know the inode does not currently have inline data |
| 551 | * because ext4_should_use_dio() checked for it, but we have to clear |
| 552 | * the state flag before the write checks because a lock cycle could |
| 553 | * introduce races with other writers. |
| 554 | */ |
| 555 | ext4_clear_inode_state(inode, bit: EXT4_STATE_MAY_INLINE_DATA); |
| 556 | |
| 557 | ret = ext4_dio_write_checks(iocb, from, ilock_shared: &ilock_shared, extend: &extend, |
| 558 | unwritten: &unwritten, dio_flags: &dio_flags); |
| 559 | if (ret <= 0) |
| 560 | return ret; |
| 561 | |
| 562 | offset = iocb->ki_pos; |
| 563 | count = ret; |
| 564 | |
| 565 | if (extend) { |
| 566 | handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); |
| 567 | if (IS_ERR(ptr: handle)) { |
| 568 | ret = PTR_ERR(ptr: handle); |
| 569 | goto out; |
| 570 | } |
| 571 | |
| 572 | ret = ext4_orphan_add(handle, inode); |
| 573 | ext4_journal_stop(handle); |
| 574 | if (ret) |
| 575 | goto out; |
| 576 | } |
| 577 | |
| 578 | if (ilock_shared && !unwritten) |
| 579 | iomap_ops = &ext4_iomap_overwrite_ops; |
| 580 | ret = iomap_dio_rw(iocb, iter: from, ops: iomap_ops, dops: &ext4_dio_write_ops, |
| 581 | dio_flags, NULL, done_before: 0); |
| 582 | if (ret == -ENOTBLK) |
| 583 | ret = 0; |
| 584 | if (extend) { |
| 585 | /* |
| 586 | * We always perform extending DIO write synchronously so by |
| 587 | * now the IO is completed and ext4_handle_inode_extension() |
| 588 | * was called. Cleanup the inode in case of error or race with |
| 589 | * writeback of delalloc blocks. |
| 590 | */ |
| 591 | WARN_ON_ONCE(ret == -EIOCBQUEUED); |
| 592 | ext4_inode_extension_cleanup(inode, need_trunc: ret < 0); |
| 593 | } |
| 594 | |
| 595 | out: |
| 596 | if (ilock_shared) |
| 597 | inode_unlock_shared(inode); |
| 598 | else |
| 599 | inode_unlock(inode); |
| 600 | |
| 601 | if (ret >= 0 && iov_iter_count(i: from)) { |
| 602 | ssize_t err; |
| 603 | loff_t endbyte; |
| 604 | |
| 605 | /* |
| 606 | * There is no support for atomic writes on buffered-io yet, |
| 607 | * we should never fallback to buffered-io for DIO atomic |
| 608 | * writes. |
| 609 | */ |
| 610 | WARN_ON_ONCE(iocb->ki_flags & IOCB_ATOMIC); |
| 611 | |
| 612 | offset = iocb->ki_pos; |
| 613 | err = ext4_buffered_write_iter(iocb, from); |
| 614 | if (err < 0) |
| 615 | return err; |
| 616 | |
| 617 | /* |
| 618 | * We need to ensure that the pages within the page cache for |
| 619 | * the range covered by this I/O are written to disk and |
| 620 | * invalidated. This is in attempt to preserve the expected |
| 621 | * direct I/O semantics in the case we fallback to buffered I/O |
| 622 | * to complete off the I/O request. |
| 623 | */ |
| 624 | ret += err; |
| 625 | endbyte = offset + err - 1; |
| 626 | err = filemap_write_and_wait_range(mapping: iocb->ki_filp->f_mapping, |
| 627 | lstart: offset, lend: endbyte); |
| 628 | if (!err) |
| 629 | invalidate_mapping_pages(mapping: iocb->ki_filp->f_mapping, |
| 630 | start: offset >> PAGE_SHIFT, |
| 631 | end: endbyte >> PAGE_SHIFT); |
| 632 | } |
| 633 | |
| 634 | return ret; |
| 635 | } |
| 636 | |
| 637 | #ifdef CONFIG_FS_DAX |
| 638 | static ssize_t |
| 639 | ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from) |
| 640 | { |
| 641 | ssize_t ret; |
| 642 | size_t count; |
| 643 | loff_t offset; |
| 644 | handle_t *handle; |
| 645 | bool extend = false; |
| 646 | struct inode *inode = file_inode(f: iocb->ki_filp); |
| 647 | |
| 648 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 649 | if (!inode_trylock(inode)) |
| 650 | return -EAGAIN; |
| 651 | } else { |
| 652 | inode_lock(inode); |
| 653 | } |
| 654 | |
| 655 | ret = ext4_write_checks(iocb, from); |
| 656 | if (ret <= 0) |
| 657 | goto out; |
| 658 | |
| 659 | offset = iocb->ki_pos; |
| 660 | count = iov_iter_count(i: from); |
| 661 | |
| 662 | if (offset + count > EXT4_I(inode)->i_disksize) { |
| 663 | handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); |
| 664 | if (IS_ERR(ptr: handle)) { |
| 665 | ret = PTR_ERR(ptr: handle); |
| 666 | goto out; |
| 667 | } |
| 668 | |
| 669 | ret = ext4_orphan_add(handle, inode); |
| 670 | if (ret) { |
| 671 | ext4_journal_stop(handle); |
| 672 | goto out; |
| 673 | } |
| 674 | |
| 675 | extend = true; |
| 676 | ext4_journal_stop(handle); |
| 677 | } |
| 678 | |
| 679 | ret = dax_iomap_rw(iocb, iter: from, ops: &ext4_iomap_ops); |
| 680 | |
| 681 | if (extend) { |
| 682 | ret = ext4_handle_inode_extension(inode, offset, written: ret, count); |
| 683 | ext4_inode_extension_cleanup(inode, need_trunc: ret < (ssize_t)count); |
| 684 | } |
| 685 | out: |
| 686 | inode_unlock(inode); |
| 687 | if (ret > 0) |
| 688 | ret = generic_write_sync(iocb, count: ret); |
| 689 | return ret; |
| 690 | } |
| 691 | #endif |
| 692 | |
| 693 | static ssize_t |
| 694 | ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from) |
| 695 | { |
| 696 | int ret; |
| 697 | struct inode *inode = file_inode(f: iocb->ki_filp); |
| 698 | |
| 699 | ret = ext4_emergency_state(sb: inode->i_sb); |
| 700 | if (unlikely(ret)) |
| 701 | return ret; |
| 702 | |
| 703 | #ifdef CONFIG_FS_DAX |
| 704 | if (IS_DAX(inode)) |
| 705 | return ext4_dax_write_iter(iocb, from); |
| 706 | #endif |
| 707 | |
| 708 | if (iocb->ki_flags & IOCB_ATOMIC) { |
| 709 | size_t len = iov_iter_count(i: from); |
| 710 | |
| 711 | if (len < EXT4_SB(sb: inode->i_sb)->s_awu_min || |
| 712 | len > EXT4_SB(sb: inode->i_sb)->s_awu_max) |
| 713 | return -EINVAL; |
| 714 | |
| 715 | ret = generic_atomic_write_valid(iocb, iter: from); |
| 716 | if (ret) |
| 717 | return ret; |
| 718 | } |
| 719 | |
| 720 | if (iocb->ki_flags & IOCB_DIRECT) |
| 721 | return ext4_dio_write_iter(iocb, from); |
| 722 | else |
| 723 | return ext4_buffered_write_iter(iocb, from); |
| 724 | } |
| 725 | |
| 726 | #ifdef CONFIG_FS_DAX |
| 727 | static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf, unsigned int order) |
| 728 | { |
| 729 | int error = 0; |
| 730 | vm_fault_t result; |
| 731 | int retries = 0; |
| 732 | handle_t *handle = NULL; |
| 733 | struct inode *inode = file_inode(f: vmf->vma->vm_file); |
| 734 | struct super_block *sb = inode->i_sb; |
| 735 | |
| 736 | /* |
| 737 | * We have to distinguish real writes from writes which will result in a |
| 738 | * COW page; COW writes should *not* poke the journal (the file will not |
| 739 | * be changed). Doing so would cause unintended failures when mounted |
| 740 | * read-only. |
| 741 | * |
| 742 | * We check for VM_SHARED rather than vmf->cow_page since the latter is |
| 743 | * unset for order != 0 (i.e. only in do_cow_fault); for |
| 744 | * other sizes, dax_iomap_fault will handle splitting / fallback so that |
| 745 | * we eventually come back with a COW page. |
| 746 | */ |
| 747 | bool write = (vmf->flags & FAULT_FLAG_WRITE) && |
| 748 | (vmf->vma->vm_flags & VM_SHARED); |
| 749 | struct address_space *mapping = vmf->vma->vm_file->f_mapping; |
| 750 | pfn_t pfn; |
| 751 | |
| 752 | if (write) { |
| 753 | sb_start_pagefault(sb); |
| 754 | file_update_time(file: vmf->vma->vm_file); |
| 755 | filemap_invalidate_lock_shared(mapping); |
| 756 | retry: |
| 757 | handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE, |
| 758 | EXT4_DATA_TRANS_BLOCKS(sb)); |
| 759 | if (IS_ERR(ptr: handle)) { |
| 760 | filemap_invalidate_unlock_shared(mapping); |
| 761 | sb_end_pagefault(sb); |
| 762 | return VM_FAULT_SIGBUS; |
| 763 | } |
| 764 | } else { |
| 765 | filemap_invalidate_lock_shared(mapping); |
| 766 | } |
| 767 | result = dax_iomap_fault(vmf, order, pfnp: &pfn, errp: &error, ops: &ext4_iomap_ops); |
| 768 | if (write) { |
| 769 | ext4_journal_stop(handle); |
| 770 | |
| 771 | if ((result & VM_FAULT_ERROR) && error == -ENOSPC && |
| 772 | ext4_should_retry_alloc(sb, retries: &retries)) |
| 773 | goto retry; |
| 774 | /* Handling synchronous page fault? */ |
| 775 | if (result & VM_FAULT_NEEDDSYNC) |
| 776 | result = dax_finish_sync_fault(vmf, order, pfn); |
| 777 | filemap_invalidate_unlock_shared(mapping); |
| 778 | sb_end_pagefault(sb); |
| 779 | } else { |
| 780 | filemap_invalidate_unlock_shared(mapping); |
| 781 | } |
| 782 | |
| 783 | return result; |
| 784 | } |
| 785 | |
| 786 | static vm_fault_t ext4_dax_fault(struct vm_fault *vmf) |
| 787 | { |
| 788 | return ext4_dax_huge_fault(vmf, order: 0); |
| 789 | } |
| 790 | |
| 791 | static const struct vm_operations_struct ext4_dax_vm_ops = { |
| 792 | .fault = ext4_dax_fault, |
| 793 | .huge_fault = ext4_dax_huge_fault, |
| 794 | .page_mkwrite = ext4_dax_fault, |
| 795 | .pfn_mkwrite = ext4_dax_fault, |
| 796 | }; |
| 797 | #else |
| 798 | #define ext4_dax_vm_ops ext4_file_vm_ops |
| 799 | #endif |
| 800 | |
| 801 | static const struct vm_operations_struct ext4_file_vm_ops = { |
| 802 | .fault = filemap_fault, |
| 803 | .map_pages = filemap_map_pages, |
| 804 | .page_mkwrite = ext4_page_mkwrite, |
| 805 | }; |
| 806 | |
| 807 | static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma) |
| 808 | { |
| 809 | int ret; |
| 810 | struct inode *inode = file->f_mapping->host; |
| 811 | struct dax_device *dax_dev = EXT4_SB(sb: inode->i_sb)->s_daxdev; |
| 812 | |
| 813 | if (file->f_mode & FMODE_WRITE) |
| 814 | ret = ext4_emergency_state(sb: inode->i_sb); |
| 815 | else |
| 816 | ret = ext4_forced_shutdown(sb: inode->i_sb) ? -EIO : 0; |
| 817 | if (unlikely(ret)) |
| 818 | return ret; |
| 819 | |
| 820 | /* |
| 821 | * We don't support synchronous mappings for non-DAX files and |
| 822 | * for DAX files if underneath dax_device is not synchronous. |
| 823 | */ |
| 824 | if (!daxdev_mapping_supported(vma, dax_dev)) |
| 825 | return -EOPNOTSUPP; |
| 826 | |
| 827 | file_accessed(file); |
| 828 | if (IS_DAX(file_inode(file))) { |
| 829 | vma->vm_ops = &ext4_dax_vm_ops; |
| 830 | vm_flags_set(vma, VM_HUGEPAGE); |
| 831 | } else { |
| 832 | vma->vm_ops = &ext4_file_vm_ops; |
| 833 | } |
| 834 | return 0; |
| 835 | } |
| 836 | |
| 837 | static int ext4_sample_last_mounted(struct super_block *sb, |
| 838 | struct vfsmount *mnt) |
| 839 | { |
| 840 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
| 841 | struct path path; |
| 842 | char buf[64], *cp; |
| 843 | handle_t *handle; |
| 844 | int err; |
| 845 | |
| 846 | if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED))) |
| 847 | return 0; |
| 848 | |
| 849 | if (ext4_emergency_state(sb) || sb_rdonly(sb) || |
| 850 | !sb_start_intwrite_trylock(sb)) |
| 851 | return 0; |
| 852 | |
| 853 | ext4_set_mount_flag(sb, bit: EXT4_MF_MNTDIR_SAMPLED); |
| 854 | /* |
| 855 | * Sample where the filesystem has been mounted and |
| 856 | * store it in the superblock for sysadmin convenience |
| 857 | * when trying to sort through large numbers of block |
| 858 | * devices or filesystem images. |
| 859 | */ |
| 860 | memset(buf, 0, sizeof(buf)); |
| 861 | path.mnt = mnt; |
| 862 | path.dentry = mnt->mnt_root; |
| 863 | cp = d_path(&path, buf, sizeof(buf)); |
| 864 | err = 0; |
| 865 | if (IS_ERR(ptr: cp)) |
| 866 | goto out; |
| 867 | |
| 868 | handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1); |
| 869 | err = PTR_ERR(ptr: handle); |
| 870 | if (IS_ERR(ptr: handle)) |
| 871 | goto out; |
| 872 | BUFFER_TRACE(sbi->s_sbh, "get_write_access" ); |
| 873 | err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh, |
| 874 | EXT4_JTR_NONE); |
| 875 | if (err) |
| 876 | goto out_journal; |
| 877 | lock_buffer(bh: sbi->s_sbh); |
| 878 | strtomem_pad(sbi->s_es->s_last_mounted, cp, 0); |
| 879 | ext4_superblock_csum_set(sb); |
| 880 | unlock_buffer(bh: sbi->s_sbh); |
| 881 | ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh); |
| 882 | out_journal: |
| 883 | ext4_journal_stop(handle); |
| 884 | out: |
| 885 | sb_end_intwrite(sb); |
| 886 | return err; |
| 887 | } |
| 888 | |
| 889 | static int ext4_file_open(struct inode *inode, struct file *filp) |
| 890 | { |
| 891 | int ret; |
| 892 | |
| 893 | if (filp->f_mode & FMODE_WRITE) |
| 894 | ret = ext4_emergency_state(sb: inode->i_sb); |
| 895 | else |
| 896 | ret = ext4_forced_shutdown(sb: inode->i_sb) ? -EIO : 0; |
| 897 | if (unlikely(ret)) |
| 898 | return ret; |
| 899 | |
| 900 | ret = ext4_sample_last_mounted(sb: inode->i_sb, mnt: filp->f_path.mnt); |
| 901 | if (ret) |
| 902 | return ret; |
| 903 | |
| 904 | ret = fscrypt_file_open(inode, filp); |
| 905 | if (ret) |
| 906 | return ret; |
| 907 | |
| 908 | ret = fsverity_file_open(inode, filp); |
| 909 | if (ret) |
| 910 | return ret; |
| 911 | |
| 912 | /* |
| 913 | * Set up the jbd2_inode if we are opening the inode for |
| 914 | * writing and the journal is present |
| 915 | */ |
| 916 | if (filp->f_mode & FMODE_WRITE) { |
| 917 | ret = ext4_inode_attach_jinode(inode); |
| 918 | if (ret < 0) |
| 919 | return ret; |
| 920 | } |
| 921 | |
| 922 | if (ext4_inode_can_atomic_write(inode)) |
| 923 | filp->f_mode |= FMODE_CAN_ATOMIC_WRITE; |
| 924 | |
| 925 | filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT; |
| 926 | return dquot_file_open(inode, file: filp); |
| 927 | } |
| 928 | |
| 929 | /* |
| 930 | * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values |
| 931 | * by calling generic_file_llseek_size() with the appropriate maxbytes |
| 932 | * value for each. |
| 933 | */ |
| 934 | loff_t ext4_llseek(struct file *file, loff_t offset, int whence) |
| 935 | { |
| 936 | struct inode *inode = file->f_mapping->host; |
| 937 | loff_t maxbytes = ext4_get_maxbytes(inode); |
| 938 | |
| 939 | switch (whence) { |
| 940 | default: |
| 941 | return generic_file_llseek_size(file, offset, whence, |
| 942 | maxsize: maxbytes, eof: i_size_read(inode)); |
| 943 | case SEEK_HOLE: |
| 944 | inode_lock_shared(inode); |
| 945 | offset = iomap_seek_hole(inode, offset, |
| 946 | ops: &ext4_iomap_report_ops); |
| 947 | inode_unlock_shared(inode); |
| 948 | break; |
| 949 | case SEEK_DATA: |
| 950 | inode_lock_shared(inode); |
| 951 | offset = iomap_seek_data(inode, offset, |
| 952 | ops: &ext4_iomap_report_ops); |
| 953 | inode_unlock_shared(inode); |
| 954 | break; |
| 955 | } |
| 956 | |
| 957 | if (offset < 0) |
| 958 | return offset; |
| 959 | return vfs_setpos(file, offset, maxsize: maxbytes); |
| 960 | } |
| 961 | |
| 962 | const struct file_operations ext4_file_operations = { |
| 963 | .llseek = ext4_llseek, |
| 964 | .read_iter = ext4_file_read_iter, |
| 965 | .write_iter = ext4_file_write_iter, |
| 966 | .iopoll = iocb_bio_iopoll, |
| 967 | .unlocked_ioctl = ext4_ioctl, |
| 968 | #ifdef CONFIG_COMPAT |
| 969 | .compat_ioctl = ext4_compat_ioctl, |
| 970 | #endif |
| 971 | .mmap = ext4_file_mmap, |
| 972 | .open = ext4_file_open, |
| 973 | .release = ext4_release_file, |
| 974 | .fsync = ext4_sync_file, |
| 975 | .get_unmapped_area = thp_get_unmapped_area, |
| 976 | .splice_read = ext4_file_splice_read, |
| 977 | .splice_write = iter_file_splice_write, |
| 978 | .fallocate = ext4_fallocate, |
| 979 | .fop_flags = FOP_MMAP_SYNC | FOP_BUFFER_RASYNC | |
| 980 | FOP_DIO_PARALLEL_WRITE, |
| 981 | }; |
| 982 | |
| 983 | const struct inode_operations ext4_file_inode_operations = { |
| 984 | .setattr = ext4_setattr, |
| 985 | .getattr = ext4_file_getattr, |
| 986 | .listxattr = ext4_listxattr, |
| 987 | .get_inode_acl = ext4_get_acl, |
| 988 | .set_acl = ext4_set_acl, |
| 989 | .fiemap = ext4_fiemap, |
| 990 | .fileattr_get = ext4_fileattr_get, |
| 991 | .fileattr_set = ext4_fileattr_set, |
| 992 | }; |
| 993 | |
| 994 | |