1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * linux/fs/ext4/inode.c |
4 | * |
5 | * Copyright (C) 1992, 1993, 1994, 1995 |
6 | * Remy Card (card@masi.ibp.fr) |
7 | * Laboratoire MASI - Institut Blaise Pascal |
8 | * Universite Pierre et Marie Curie (Paris VI) |
9 | * |
10 | * from |
11 | * |
12 | * linux/fs/minix/inode.c |
13 | * |
14 | * Copyright (C) 1991, 1992 Linus Torvalds |
15 | * |
16 | * 64-bit file support on 64-bit platforms by Jakub Jelinek |
17 | * (jj@sunsite.ms.mff.cuni.cz) |
18 | * |
19 | * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 |
20 | */ |
21 | |
22 | #include <linux/fs.h> |
23 | #include <linux/mount.h> |
24 | #include <linux/time.h> |
25 | #include <linux/highuid.h> |
26 | #include <linux/pagemap.h> |
27 | #include <linux/dax.h> |
28 | #include <linux/quotaops.h> |
29 | #include <linux/string.h> |
30 | #include <linux/buffer_head.h> |
31 | #include <linux/writeback.h> |
32 | #include <linux/pagevec.h> |
33 | #include <linux/mpage.h> |
34 | #include <linux/rmap.h> |
35 | #include <linux/namei.h> |
36 | #include <linux/uio.h> |
37 | #include <linux/bio.h> |
38 | #include <linux/workqueue.h> |
39 | #include <linux/kernel.h> |
40 | #include <linux/printk.h> |
41 | #include <linux/slab.h> |
42 | #include <linux/bitops.h> |
43 | #include <linux/iomap.h> |
44 | #include <linux/iversion.h> |
45 | |
46 | #include "ext4_jbd2.h" |
47 | #include "xattr.h" |
48 | #include "acl.h" |
49 | #include "truncate.h" |
50 | |
51 | #include <trace/events/ext4.h> |
52 | |
53 | static void ext4_journalled_zero_new_buffers(handle_t *handle, |
54 | struct inode *inode, |
55 | struct folio *folio, |
56 | unsigned from, unsigned to); |
57 | |
58 | static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, |
59 | struct ext4_inode_info *ei) |
60 | { |
61 | __u32 csum; |
62 | __u16 dummy_csum = 0; |
63 | int offset = offsetof(struct ext4_inode, i_checksum_lo); |
64 | unsigned int csum_size = sizeof(dummy_csum); |
65 | |
66 | csum = ext4_chksum(crc: ei->i_csum_seed, address: (__u8 *)raw, length: offset); |
67 | csum = ext4_chksum(crc: csum, address: (__u8 *)&dummy_csum, length: csum_size); |
68 | offset += csum_size; |
69 | csum = ext4_chksum(crc: csum, address: (__u8 *)raw + offset, |
70 | EXT4_GOOD_OLD_INODE_SIZE - offset); |
71 | |
72 | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { |
73 | offset = offsetof(struct ext4_inode, i_checksum_hi); |
74 | csum = ext4_chksum(crc: csum, address: (__u8 *)raw + EXT4_GOOD_OLD_INODE_SIZE, |
75 | length: offset - EXT4_GOOD_OLD_INODE_SIZE); |
76 | if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { |
77 | csum = ext4_chksum(crc: csum, address: (__u8 *)&dummy_csum, |
78 | length: csum_size); |
79 | offset += csum_size; |
80 | } |
81 | csum = ext4_chksum(crc: csum, address: (__u8 *)raw + offset, |
82 | EXT4_INODE_SIZE(inode->i_sb) - offset); |
83 | } |
84 | |
85 | return csum; |
86 | } |
87 | |
88 | static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, |
89 | struct ext4_inode_info *ei) |
90 | { |
91 | __u32 provided, calculated; |
92 | |
93 | if (EXT4_SB(sb: inode->i_sb)->s_es->s_creator_os != |
94 | cpu_to_le32(EXT4_OS_LINUX) || |
95 | !ext4_has_feature_metadata_csum(sb: inode->i_sb)) |
96 | return 1; |
97 | |
98 | provided = le16_to_cpu(raw->i_checksum_lo); |
99 | calculated = ext4_inode_csum(inode, raw, ei); |
100 | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && |
101 | EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) |
102 | provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; |
103 | else |
104 | calculated &= 0xFFFF; |
105 | |
106 | return provided == calculated; |
107 | } |
108 | |
109 | void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, |
110 | struct ext4_inode_info *ei) |
111 | { |
112 | __u32 csum; |
113 | |
114 | if (EXT4_SB(sb: inode->i_sb)->s_es->s_creator_os != |
115 | cpu_to_le32(EXT4_OS_LINUX) || |
116 | !ext4_has_feature_metadata_csum(sb: inode->i_sb)) |
117 | return; |
118 | |
119 | csum = ext4_inode_csum(inode, raw, ei); |
120 | raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); |
121 | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && |
122 | EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) |
123 | raw->i_checksum_hi = cpu_to_le16(csum >> 16); |
124 | } |
125 | |
126 | static inline int ext4_begin_ordered_truncate(struct inode *inode, |
127 | loff_t new_size) |
128 | { |
129 | trace_ext4_begin_ordered_truncate(inode, new_size); |
130 | /* |
131 | * If jinode is zero, then we never opened the file for |
132 | * writing, so there's no need to call |
133 | * jbd2_journal_begin_ordered_truncate() since there's no |
134 | * outstanding writes we need to flush. |
135 | */ |
136 | if (!EXT4_I(inode)->jinode) |
137 | return 0; |
138 | return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), |
139 | EXT4_I(inode)->jinode, |
140 | new_size); |
141 | } |
142 | |
143 | /* |
144 | * Test whether an inode is a fast symlink. |
145 | * A fast symlink has its symlink data stored in ext4_inode_info->i_data. |
146 | */ |
147 | int ext4_inode_is_fast_symlink(struct inode *inode) |
148 | { |
149 | if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { |
150 | int ea_blocks = EXT4_I(inode)->i_file_acl ? |
151 | EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; |
152 | |
153 | if (ext4_has_inline_data(inode)) |
154 | return 0; |
155 | |
156 | return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); |
157 | } |
158 | return S_ISLNK(inode->i_mode) && inode->i_size && |
159 | (inode->i_size < EXT4_N_BLOCKS * 4); |
160 | } |
161 | |
162 | /* |
163 | * Called at the last iput() if i_nlink is zero. |
164 | */ |
165 | void ext4_evict_inode(struct inode *inode) |
166 | { |
167 | handle_t *handle; |
168 | int err; |
169 | /* |
170 | * Credits for final inode cleanup and freeing: |
171 | * sb + inode (ext4_orphan_del()), block bitmap, group descriptor |
172 | * (xattr block freeing), bitmap, group descriptor (inode freeing) |
173 | */ |
174 | int extra_credits = 6; |
175 | struct ext4_xattr_inode_array *ea_inode_array = NULL; |
176 | bool freeze_protected = false; |
177 | |
178 | trace_ext4_evict_inode(inode); |
179 | |
180 | dax_break_layout_final(inode); |
181 | |
182 | if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) |
183 | ext4_evict_ea_inode(inode); |
184 | if (inode->i_nlink) { |
185 | truncate_inode_pages_final(&inode->i_data); |
186 | |
187 | goto no_delete; |
188 | } |
189 | |
190 | if (is_bad_inode(inode)) |
191 | goto no_delete; |
192 | dquot_initialize(inode); |
193 | |
194 | if (ext4_should_order_data(inode)) |
195 | ext4_begin_ordered_truncate(inode, new_size: 0); |
196 | truncate_inode_pages_final(&inode->i_data); |
197 | |
198 | /* |
199 | * For inodes with journalled data, transaction commit could have |
200 | * dirtied the inode. And for inodes with dioread_nolock, unwritten |
201 | * extents converting worker could merge extents and also have dirtied |
202 | * the inode. Flush worker is ignoring it because of I_FREEING flag but |
203 | * we still need to remove the inode from the writeback lists. |
204 | */ |
205 | if (!list_empty_careful(head: &inode->i_io_list)) |
206 | inode_io_list_del(inode); |
207 | |
208 | /* |
209 | * Protect us against freezing - iput() caller didn't have to have any |
210 | * protection against it. When we are in a running transaction though, |
211 | * we are already protected against freezing and we cannot grab further |
212 | * protection due to lock ordering constraints. |
213 | */ |
214 | if (!ext4_journal_current_handle()) { |
215 | sb_start_intwrite(sb: inode->i_sb); |
216 | freeze_protected = true; |
217 | } |
218 | |
219 | if (!IS_NOQUOTA(inode)) |
220 | extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); |
221 | |
222 | /* |
223 | * Block bitmap, group descriptor, and inode are accounted in both |
224 | * ext4_blocks_for_truncate() and extra_credits. So subtract 3. |
225 | */ |
226 | handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, |
227 | ext4_blocks_for_truncate(inode) + extra_credits - 3); |
228 | if (IS_ERR(ptr: handle)) { |
229 | ext4_std_error(inode->i_sb, PTR_ERR(handle)); |
230 | /* |
231 | * If we're going to skip the normal cleanup, we still need to |
232 | * make sure that the in-core orphan linked list is properly |
233 | * cleaned up. |
234 | */ |
235 | ext4_orphan_del(NULL, inode); |
236 | if (freeze_protected) |
237 | sb_end_intwrite(sb: inode->i_sb); |
238 | goto no_delete; |
239 | } |
240 | |
241 | if (IS_SYNC(inode)) |
242 | ext4_handle_sync(handle); |
243 | |
244 | /* |
245 | * Set inode->i_size to 0 before calling ext4_truncate(). We need |
246 | * special handling of symlinks here because i_size is used to |
247 | * determine whether ext4_inode_info->i_data contains symlink data or |
248 | * block mappings. Setting i_size to 0 will remove its fast symlink |
249 | * status. Erase i_data so that it becomes a valid empty block map. |
250 | */ |
251 | if (ext4_inode_is_fast_symlink(inode)) |
252 | memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); |
253 | inode->i_size = 0; |
254 | err = ext4_mark_inode_dirty(handle, inode); |
255 | if (err) { |
256 | ext4_warning(inode->i_sb, |
257 | "couldn't mark inode dirty (err %d)", err); |
258 | goto stop_handle; |
259 | } |
260 | if (inode->i_blocks) { |
261 | err = ext4_truncate(inode); |
262 | if (err) { |
263 | ext4_error_err(inode->i_sb, -err, |
264 | "couldn't truncate inode %lu (err %d)", |
265 | inode->i_ino, err); |
266 | goto stop_handle; |
267 | } |
268 | } |
269 | |
270 | /* Remove xattr references. */ |
271 | err = ext4_xattr_delete_inode(handle, inode, array: &ea_inode_array, |
272 | extra_credits); |
273 | if (err) { |
274 | ext4_warning(inode->i_sb, "xattr delete (err %d)", err); |
275 | stop_handle: |
276 | ext4_journal_stop(handle); |
277 | ext4_orphan_del(NULL, inode); |
278 | if (freeze_protected) |
279 | sb_end_intwrite(sb: inode->i_sb); |
280 | ext4_xattr_inode_array_free(array: ea_inode_array); |
281 | goto no_delete; |
282 | } |
283 | |
284 | /* |
285 | * Kill off the orphan record which ext4_truncate created. |
286 | * AKPM: I think this can be inside the above `if'. |
287 | * Note that ext4_orphan_del() has to be able to cope with the |
288 | * deletion of a non-existent orphan - this is because we don't |
289 | * know if ext4_truncate() actually created an orphan record. |
290 | * (Well, we could do this if we need to, but heck - it works) |
291 | */ |
292 | ext4_orphan_del(handle, inode); |
293 | EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); |
294 | |
295 | /* |
296 | * One subtle ordering requirement: if anything has gone wrong |
297 | * (transaction abort, IO errors, whatever), then we can still |
298 | * do these next steps (the fs will already have been marked as |
299 | * having errors), but we can't free the inode if the mark_dirty |
300 | * fails. |
301 | */ |
302 | if (ext4_mark_inode_dirty(handle, inode)) |
303 | /* If that failed, just do the required in-core inode clear. */ |
304 | ext4_clear_inode(inode); |
305 | else |
306 | ext4_free_inode(handle, inode); |
307 | ext4_journal_stop(handle); |
308 | if (freeze_protected) |
309 | sb_end_intwrite(sb: inode->i_sb); |
310 | ext4_xattr_inode_array_free(array: ea_inode_array); |
311 | return; |
312 | no_delete: |
313 | /* |
314 | * Check out some where else accidentally dirty the evicting inode, |
315 | * which may probably cause inode use-after-free issues later. |
316 | */ |
317 | WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); |
318 | |
319 | if (!list_empty(head: &EXT4_I(inode)->i_fc_list)) |
320 | ext4_fc_mark_ineligible(sb: inode->i_sb, reason: EXT4_FC_REASON_NOMEM, NULL); |
321 | ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ |
322 | } |
323 | |
324 | #ifdef CONFIG_QUOTA |
325 | qsize_t *ext4_get_reserved_space(struct inode *inode) |
326 | { |
327 | return &EXT4_I(inode)->i_reserved_quota; |
328 | } |
329 | #endif |
330 | |
331 | /* |
332 | * Called with i_data_sem down, which is important since we can call |
333 | * ext4_discard_preallocations() from here. |
334 | */ |
335 | void ext4_da_update_reserve_space(struct inode *inode, |
336 | int used, int quota_claim) |
337 | { |
338 | struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb); |
339 | struct ext4_inode_info *ei = EXT4_I(inode); |
340 | |
341 | spin_lock(lock: &ei->i_block_reservation_lock); |
342 | trace_ext4_da_update_reserve_space(inode, used_blocks: used, quota_claim); |
343 | if (unlikely(used > ei->i_reserved_data_blocks)) { |
344 | ext4_warning(inode->i_sb, "%s: ino %lu, used %d " |
345 | "with only %d reserved data blocks", |
346 | __func__, inode->i_ino, used, |
347 | ei->i_reserved_data_blocks); |
348 | WARN_ON(1); |
349 | used = ei->i_reserved_data_blocks; |
350 | } |
351 | |
352 | /* Update per-inode reservations */ |
353 | ei->i_reserved_data_blocks -= used; |
354 | percpu_counter_sub(fbc: &sbi->s_dirtyclusters_counter, amount: used); |
355 | |
356 | spin_unlock(lock: &ei->i_block_reservation_lock); |
357 | |
358 | /* Update quota subsystem for data blocks */ |
359 | if (quota_claim) |
360 | dquot_claim_block(inode, EXT4_C2B(sbi, used)); |
361 | else { |
362 | /* |
363 | * We did fallocate with an offset that is already delayed |
364 | * allocated. So on delayed allocated writeback we should |
365 | * not re-claim the quota for fallocated blocks. |
366 | */ |
367 | dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); |
368 | } |
369 | |
370 | /* |
371 | * If we have done all the pending block allocations and if |
372 | * there aren't any writers on the inode, we can discard the |
373 | * inode's preallocations. |
374 | */ |
375 | if ((ei->i_reserved_data_blocks == 0) && |
376 | !inode_is_open_for_write(inode)) |
377 | ext4_discard_preallocations(inode); |
378 | } |
379 | |
380 | static int __check_block_validity(struct inode *inode, const char *func, |
381 | unsigned int line, |
382 | struct ext4_map_blocks *map) |
383 | { |
384 | journal_t *journal = EXT4_SB(sb: inode->i_sb)->s_journal; |
385 | |
386 | if (journal && inode == journal->j_inode) |
387 | return 0; |
388 | |
389 | if (!ext4_inode_block_valid(inode, start_blk: map->m_pblk, count: map->m_len)) { |
390 | ext4_error_inode(inode, func, line, map->m_pblk, |
391 | "lblock %lu mapped to illegal pblock %llu " |
392 | "(length %d)", (unsigned long) map->m_lblk, |
393 | map->m_pblk, map->m_len); |
394 | return -EFSCORRUPTED; |
395 | } |
396 | return 0; |
397 | } |
398 | |
399 | int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, |
400 | ext4_lblk_t len) |
401 | { |
402 | int ret; |
403 | |
404 | if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) |
405 | return fscrypt_zeroout_range(inode, lblk, pblk, len); |
406 | |
407 | ret = sb_issue_zeroout(sb: inode->i_sb, block: pblk, nr_blocks: len, GFP_NOFS); |
408 | if (ret > 0) |
409 | ret = 0; |
410 | |
411 | return ret; |
412 | } |
413 | |
414 | /* |
415 | * For generic regular files, when updating the extent tree, Ext4 should |
416 | * hold the i_rwsem and invalidate_lock exclusively. This ensures |
417 | * exclusion against concurrent page faults, as well as reads and writes. |
418 | */ |
419 | #ifdef CONFIG_EXT4_DEBUG |
420 | void ext4_check_map_extents_env(struct inode *inode) |
421 | { |
422 | if (EXT4_SB(sb: inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) |
423 | return; |
424 | |
425 | if (!S_ISREG(inode->i_mode) || |
426 | IS_NOQUOTA(inode) || IS_VERITY(inode) || |
427 | is_special_ino(sb: inode->i_sb, ino: inode->i_ino) || |
428 | (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) || |
429 | ext4_test_inode_flag(inode, bit: EXT4_INODE_EA_INODE) || |
430 | ext4_verity_in_progress(inode)) |
431 | return; |
432 | |
433 | WARN_ON_ONCE(!inode_is_locked(inode) && |
434 | !rwsem_is_locked(&inode->i_mapping->invalidate_lock)); |
435 | } |
436 | #else |
437 | void ext4_check_map_extents_env(struct inode *inode) {} |
438 | #endif |
439 | |
440 | #define check_block_validity(inode, map) \ |
441 | __check_block_validity((inode), __func__, __LINE__, (map)) |
442 | |
443 | #ifdef ES_AGGRESSIVE_TEST |
444 | static void ext4_map_blocks_es_recheck(handle_t *handle, |
445 | struct inode *inode, |
446 | struct ext4_map_blocks *es_map, |
447 | struct ext4_map_blocks *map, |
448 | int flags) |
449 | { |
450 | int retval; |
451 | |
452 | map->m_flags = 0; |
453 | /* |
454 | * There is a race window that the result is not the same. |
455 | * e.g. xfstests #223 when dioread_nolock enables. The reason |
456 | * is that we lookup a block mapping in extent status tree with |
457 | * out taking i_data_sem. So at the time the unwritten extent |
458 | * could be converted. |
459 | */ |
460 | down_read(&EXT4_I(inode)->i_data_sem); |
461 | if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { |
462 | retval = ext4_ext_map_blocks(handle, inode, map, 0); |
463 | } else { |
464 | retval = ext4_ind_map_blocks(handle, inode, map, 0); |
465 | } |
466 | up_read((&EXT4_I(inode)->i_data_sem)); |
467 | |
468 | /* |
469 | * We don't check m_len because extent will be collpased in status |
470 | * tree. So the m_len might not equal. |
471 | */ |
472 | if (es_map->m_lblk != map->m_lblk || |
473 | es_map->m_flags != map->m_flags || |
474 | es_map->m_pblk != map->m_pblk) { |
475 | printk("ES cache assertion failed for inode: %lu " |
476 | "es_cached ex [%d/%d/%llu/%x] != " |
477 | "found ex [%d/%d/%llu/%x] retval %d flags %x\n", |
478 | inode->i_ino, es_map->m_lblk, es_map->m_len, |
479 | es_map->m_pblk, es_map->m_flags, map->m_lblk, |
480 | map->m_len, map->m_pblk, map->m_flags, |
481 | retval, flags); |
482 | } |
483 | } |
484 | #endif /* ES_AGGRESSIVE_TEST */ |
485 | |
486 | static int ext4_map_query_blocks_next_in_leaf(handle_t *handle, |
487 | struct inode *inode, struct ext4_map_blocks *map, |
488 | unsigned int orig_mlen) |
489 | { |
490 | struct ext4_map_blocks map2; |
491 | unsigned int status, status2; |
492 | int retval; |
493 | |
494 | status = map->m_flags & EXT4_MAP_UNWRITTEN ? |
495 | EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; |
496 | |
497 | WARN_ON_ONCE(!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF)); |
498 | WARN_ON_ONCE(orig_mlen <= map->m_len); |
499 | |
500 | /* Prepare map2 for lookup in next leaf block */ |
501 | map2.m_lblk = map->m_lblk + map->m_len; |
502 | map2.m_len = orig_mlen - map->m_len; |
503 | map2.m_flags = 0; |
504 | retval = ext4_ext_map_blocks(handle, inode, map: &map2, flags: 0); |
505 | |
506 | if (retval <= 0) { |
507 | ext4_es_insert_extent(inode, lblk: map->m_lblk, len: map->m_len, |
508 | pblk: map->m_pblk, status, delalloc_reserve_used: false); |
509 | return map->m_len; |
510 | } |
511 | |
512 | if (unlikely(retval != map2.m_len)) { |
513 | ext4_warning(inode->i_sb, |
514 | "ES len assertion failed for inode " |
515 | "%lu: retval %d != map->m_len %d", |
516 | inode->i_ino, retval, map2.m_len); |
517 | WARN_ON(1); |
518 | } |
519 | |
520 | status2 = map2.m_flags & EXT4_MAP_UNWRITTEN ? |
521 | EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; |
522 | |
523 | /* |
524 | * If map2 is contiguous with map, then let's insert it as a single |
525 | * extent in es cache and return the combined length of both the maps. |
526 | */ |
527 | if (map->m_pblk + map->m_len == map2.m_pblk && |
528 | status == status2) { |
529 | ext4_es_insert_extent(inode, lblk: map->m_lblk, |
530 | len: map->m_len + map2.m_len, pblk: map->m_pblk, |
531 | status, delalloc_reserve_used: false); |
532 | map->m_len += map2.m_len; |
533 | } else { |
534 | ext4_es_insert_extent(inode, lblk: map->m_lblk, len: map->m_len, |
535 | pblk: map->m_pblk, status, delalloc_reserve_used: false); |
536 | } |
537 | |
538 | return map->m_len; |
539 | } |
540 | |
541 | static int ext4_map_query_blocks(handle_t *handle, struct inode *inode, |
542 | struct ext4_map_blocks *map, int flags) |
543 | { |
544 | unsigned int status; |
545 | int retval; |
546 | unsigned int orig_mlen = map->m_len; |
547 | |
548 | flags &= EXT4_EX_QUERY_FILTER; |
549 | if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS)) |
550 | retval = ext4_ext_map_blocks(handle, inode, map, flags); |
551 | else |
552 | retval = ext4_ind_map_blocks(handle, inode, map, flags); |
553 | |
554 | if (retval <= 0) |
555 | return retval; |
556 | |
557 | if (unlikely(retval != map->m_len)) { |
558 | ext4_warning(inode->i_sb, |
559 | "ES len assertion failed for inode " |
560 | "%lu: retval %d != map->m_len %d", |
561 | inode->i_ino, retval, map->m_len); |
562 | WARN_ON(1); |
563 | } |
564 | |
565 | /* |
566 | * No need to query next in leaf: |
567 | * - if returned extent is not last in leaf or |
568 | * - if the last in leaf is the full requested range |
569 | */ |
570 | if (!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF) || |
571 | map->m_len == orig_mlen) { |
572 | status = map->m_flags & EXT4_MAP_UNWRITTEN ? |
573 | EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; |
574 | ext4_es_insert_extent(inode, lblk: map->m_lblk, len: map->m_len, |
575 | pblk: map->m_pblk, status, delalloc_reserve_used: false); |
576 | return retval; |
577 | } |
578 | |
579 | return ext4_map_query_blocks_next_in_leaf(handle, inode, map, |
580 | orig_mlen); |
581 | } |
582 | |
583 | static int ext4_map_create_blocks(handle_t *handle, struct inode *inode, |
584 | struct ext4_map_blocks *map, int flags) |
585 | { |
586 | struct extent_status es; |
587 | unsigned int status; |
588 | int err, retval = 0; |
589 | |
590 | /* |
591 | * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE |
592 | * indicates that the blocks and quotas has already been |
593 | * checked when the data was copied into the page cache. |
594 | */ |
595 | if (map->m_flags & EXT4_MAP_DELAYED) |
596 | flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; |
597 | |
598 | /* |
599 | * Here we clear m_flags because after allocating an new extent, |
600 | * it will be set again. |
601 | */ |
602 | map->m_flags &= ~EXT4_MAP_FLAGS; |
603 | |
604 | /* |
605 | * We need to check for EXT4 here because migrate could have |
606 | * changed the inode type in between. |
607 | */ |
608 | if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS)) { |
609 | retval = ext4_ext_map_blocks(handle, inode, map, flags); |
610 | } else { |
611 | retval = ext4_ind_map_blocks(handle, inode, map, flags); |
612 | |
613 | /* |
614 | * We allocated new blocks which will result in i_data's |
615 | * format changing. Force the migrate to fail by clearing |
616 | * migrate flags. |
617 | */ |
618 | if (retval > 0 && map->m_flags & EXT4_MAP_NEW) |
619 | ext4_clear_inode_state(inode, bit: EXT4_STATE_EXT_MIGRATE); |
620 | } |
621 | if (retval <= 0) |
622 | return retval; |
623 | |
624 | if (unlikely(retval != map->m_len)) { |
625 | ext4_warning(inode->i_sb, |
626 | "ES len assertion failed for inode %lu: " |
627 | "retval %d != map->m_len %d", |
628 | inode->i_ino, retval, map->m_len); |
629 | WARN_ON(1); |
630 | } |
631 | |
632 | /* |
633 | * We have to zeroout blocks before inserting them into extent |
634 | * status tree. Otherwise someone could look them up there and |
635 | * use them before they are really zeroed. We also have to |
636 | * unmap metadata before zeroing as otherwise writeback can |
637 | * overwrite zeros with stale data from block device. |
638 | */ |
639 | if (flags & EXT4_GET_BLOCKS_ZERO && |
640 | map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) { |
641 | err = ext4_issue_zeroout(inode, lblk: map->m_lblk, pblk: map->m_pblk, |
642 | len: map->m_len); |
643 | if (err) |
644 | return err; |
645 | } |
646 | |
647 | /* |
648 | * If the extent has been zeroed out, we don't need to update |
649 | * extent status tree. |
650 | */ |
651 | if (flags & EXT4_GET_BLOCKS_PRE_IO && |
652 | ext4_es_lookup_extent(inode, lblk: map->m_lblk, NULL, es: &es)) { |
653 | if (ext4_es_is_written(es: &es)) |
654 | return retval; |
655 | } |
656 | |
657 | status = map->m_flags & EXT4_MAP_UNWRITTEN ? |
658 | EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; |
659 | ext4_es_insert_extent(inode, lblk: map->m_lblk, len: map->m_len, pblk: map->m_pblk, |
660 | status, delalloc_reserve_used: flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE); |
661 | |
662 | return retval; |
663 | } |
664 | |
665 | /* |
666 | * The ext4_map_blocks() function tries to look up the requested blocks, |
667 | * and returns if the blocks are already mapped. |
668 | * |
669 | * Otherwise it takes the write lock of the i_data_sem and allocate blocks |
670 | * and store the allocated blocks in the result buffer head and mark it |
671 | * mapped. |
672 | * |
673 | * If file type is extents based, it will call ext4_ext_map_blocks(), |
674 | * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping |
675 | * based files |
676 | * |
677 | * On success, it returns the number of blocks being mapped or allocated. |
678 | * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are |
679 | * pre-allocated and unwritten, the resulting @map is marked as unwritten. |
680 | * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped. |
681 | * |
682 | * It returns 0 if plain look up failed (blocks have not been allocated), in |
683 | * that case, @map is returned as unmapped but we still do fill map->m_len to |
684 | * indicate the length of a hole starting at map->m_lblk. |
685 | * |
686 | * It returns the error in case of allocation failure. |
687 | */ |
688 | int ext4_map_blocks(handle_t *handle, struct inode *inode, |
689 | struct ext4_map_blocks *map, int flags) |
690 | { |
691 | struct extent_status es; |
692 | int retval; |
693 | int ret = 0; |
694 | unsigned int orig_mlen = map->m_len; |
695 | #ifdef ES_AGGRESSIVE_TEST |
696 | struct ext4_map_blocks orig_map; |
697 | |
698 | memcpy(&orig_map, map, sizeof(*map)); |
699 | #endif |
700 | |
701 | map->m_flags = 0; |
702 | ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", |
703 | flags, map->m_len, (unsigned long) map->m_lblk); |
704 | |
705 | /* |
706 | * ext4_map_blocks returns an int, and m_len is an unsigned int |
707 | */ |
708 | if (unlikely(map->m_len > INT_MAX)) |
709 | map->m_len = INT_MAX; |
710 | |
711 | /* We can handle the block number less than EXT_MAX_BLOCKS */ |
712 | if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) |
713 | return -EFSCORRUPTED; |
714 | |
715 | /* |
716 | * Callers from the context of data submission are the only exceptions |
717 | * for regular files that do not hold the i_rwsem or invalidate_lock. |
718 | * However, caching unrelated ranges is not permitted. |
719 | */ |
720 | if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) |
721 | WARN_ON_ONCE(!(flags & EXT4_EX_NOCACHE)); |
722 | else |
723 | ext4_check_map_extents_env(inode); |
724 | |
725 | /* Lookup extent status tree firstly */ |
726 | if (!(EXT4_SB(sb: inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && |
727 | ext4_es_lookup_extent(inode, lblk: map->m_lblk, NULL, es: &es)) { |
728 | if (ext4_es_is_written(es: &es) || ext4_es_is_unwritten(es: &es)) { |
729 | map->m_pblk = ext4_es_pblock(es: &es) + |
730 | map->m_lblk - es.es_lblk; |
731 | map->m_flags |= ext4_es_is_written(es: &es) ? |
732 | EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; |
733 | retval = es.es_len - (map->m_lblk - es.es_lblk); |
734 | if (retval > map->m_len) |
735 | retval = map->m_len; |
736 | map->m_len = retval; |
737 | } else if (ext4_es_is_delayed(es: &es) || ext4_es_is_hole(es: &es)) { |
738 | map->m_pblk = 0; |
739 | map->m_flags |= ext4_es_is_delayed(es: &es) ? |
740 | EXT4_MAP_DELAYED : 0; |
741 | retval = es.es_len - (map->m_lblk - es.es_lblk); |
742 | if (retval > map->m_len) |
743 | retval = map->m_len; |
744 | map->m_len = retval; |
745 | retval = 0; |
746 | } else { |
747 | BUG(); |
748 | } |
749 | |
750 | if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) |
751 | return retval; |
752 | #ifdef ES_AGGRESSIVE_TEST |
753 | ext4_map_blocks_es_recheck(handle, inode, map, |
754 | &orig_map, flags); |
755 | #endif |
756 | if (!(flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF) || |
757 | orig_mlen == map->m_len) |
758 | goto found; |
759 | |
760 | if (flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF) |
761 | map->m_len = orig_mlen; |
762 | } |
763 | /* |
764 | * In the query cache no-wait mode, nothing we can do more if we |
765 | * cannot find extent in the cache. |
766 | */ |
767 | if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) |
768 | return 0; |
769 | |
770 | /* |
771 | * Try to see if we can get the block without requesting a new |
772 | * file system block. |
773 | */ |
774 | down_read(sem: &EXT4_I(inode)->i_data_sem); |
775 | retval = ext4_map_query_blocks(handle, inode, map, flags); |
776 | up_read(sem: (&EXT4_I(inode)->i_data_sem)); |
777 | |
778 | found: |
779 | if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { |
780 | ret = check_block_validity(inode, map); |
781 | if (ret != 0) |
782 | return ret; |
783 | } |
784 | |
785 | /* If it is only a block(s) look up */ |
786 | if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) |
787 | return retval; |
788 | |
789 | /* |
790 | * Returns if the blocks have already allocated |
791 | * |
792 | * Note that if blocks have been preallocated |
793 | * ext4_ext_map_blocks() returns with buffer head unmapped |
794 | */ |
795 | if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) |
796 | /* |
797 | * If we need to convert extent to unwritten |
798 | * we continue and do the actual work in |
799 | * ext4_ext_map_blocks() |
800 | */ |
801 | if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) |
802 | return retval; |
803 | |
804 | |
805 | ext4_fc_track_inode(handle, inode); |
806 | /* |
807 | * New blocks allocate and/or writing to unwritten extent |
808 | * will possibly result in updating i_data, so we take |
809 | * the write lock of i_data_sem, and call get_block() |
810 | * with create == 1 flag. |
811 | */ |
812 | down_write(sem: &EXT4_I(inode)->i_data_sem); |
813 | retval = ext4_map_create_blocks(handle, inode, map, flags); |
814 | up_write(sem: (&EXT4_I(inode)->i_data_sem)); |
815 | if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { |
816 | ret = check_block_validity(inode, map); |
817 | if (ret != 0) |
818 | return ret; |
819 | |
820 | /* |
821 | * Inodes with freshly allocated blocks where contents will be |
822 | * visible after transaction commit must be on transaction's |
823 | * ordered data list. |
824 | */ |
825 | if (map->m_flags & EXT4_MAP_NEW && |
826 | !(map->m_flags & EXT4_MAP_UNWRITTEN) && |
827 | !(flags & EXT4_GET_BLOCKS_ZERO) && |
828 | !ext4_is_quota_file(inode) && |
829 | ext4_should_order_data(inode)) { |
830 | loff_t start_byte = |
831 | (loff_t)map->m_lblk << inode->i_blkbits; |
832 | loff_t length = (loff_t)map->m_len << inode->i_blkbits; |
833 | |
834 | if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) |
835 | ret = ext4_jbd2_inode_add_wait(handle, inode, |
836 | start_byte, length); |
837 | else |
838 | ret = ext4_jbd2_inode_add_write(handle, inode, |
839 | start_byte, length); |
840 | if (ret) |
841 | return ret; |
842 | } |
843 | } |
844 | if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || |
845 | map->m_flags & EXT4_MAP_MAPPED)) |
846 | ext4_fc_track_range(handle, inode, start: map->m_lblk, |
847 | end: map->m_lblk + map->m_len - 1); |
848 | if (retval < 0) |
849 | ext_debug(inode, "failed with err %d\n", retval); |
850 | return retval; |
851 | } |
852 | |
853 | /* |
854 | * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages |
855 | * we have to be careful as someone else may be manipulating b_state as well. |
856 | */ |
857 | static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) |
858 | { |
859 | unsigned long old_state; |
860 | unsigned long new_state; |
861 | |
862 | flags &= EXT4_MAP_FLAGS; |
863 | |
864 | /* Dummy buffer_head? Set non-atomically. */ |
865 | if (!bh->b_folio) { |
866 | bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; |
867 | return; |
868 | } |
869 | /* |
870 | * Someone else may be modifying b_state. Be careful! This is ugly but |
871 | * once we get rid of using bh as a container for mapping information |
872 | * to pass to / from get_block functions, this can go away. |
873 | */ |
874 | old_state = READ_ONCE(bh->b_state); |
875 | do { |
876 | new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; |
877 | } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); |
878 | } |
879 | |
880 | static int _ext4_get_block(struct inode *inode, sector_t iblock, |
881 | struct buffer_head *bh, int flags) |
882 | { |
883 | struct ext4_map_blocks map; |
884 | int ret = 0; |
885 | |
886 | if (ext4_has_inline_data(inode)) |
887 | return -ERANGE; |
888 | |
889 | map.m_lblk = iblock; |
890 | map.m_len = bh->b_size >> inode->i_blkbits; |
891 | |
892 | ret = ext4_map_blocks(handle: ext4_journal_current_handle(), inode, map: &map, |
893 | flags); |
894 | if (ret > 0) { |
895 | map_bh(bh, sb: inode->i_sb, block: map.m_pblk); |
896 | ext4_update_bh_state(bh, flags: map.m_flags); |
897 | bh->b_size = inode->i_sb->s_blocksize * map.m_len; |
898 | ret = 0; |
899 | } else if (ret == 0) { |
900 | /* hole case, need to fill in bh->b_size */ |
901 | bh->b_size = inode->i_sb->s_blocksize * map.m_len; |
902 | } |
903 | return ret; |
904 | } |
905 | |
906 | int ext4_get_block(struct inode *inode, sector_t iblock, |
907 | struct buffer_head *bh, int create) |
908 | { |
909 | return _ext4_get_block(inode, iblock, bh, |
910 | flags: create ? EXT4_GET_BLOCKS_CREATE : 0); |
911 | } |
912 | |
913 | /* |
914 | * Get block function used when preparing for buffered write if we require |
915 | * creating an unwritten extent if blocks haven't been allocated. The extent |
916 | * will be converted to written after the IO is complete. |
917 | */ |
918 | int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, |
919 | struct buffer_head *bh_result, int create) |
920 | { |
921 | int ret = 0; |
922 | |
923 | ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", |
924 | inode->i_ino, create); |
925 | ret = _ext4_get_block(inode, iblock, bh: bh_result, |
926 | EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); |
927 | |
928 | /* |
929 | * If the buffer is marked unwritten, mark it as new to make sure it is |
930 | * zeroed out correctly in case of partial writes. Otherwise, there is |
931 | * a chance of stale data getting exposed. |
932 | */ |
933 | if (ret == 0 && buffer_unwritten(bh: bh_result)) |
934 | set_buffer_new(bh_result); |
935 | |
936 | return ret; |
937 | } |
938 | |
939 | /* Maximum number of blocks we map for direct IO at once. */ |
940 | #define DIO_MAX_BLOCKS 4096 |
941 | |
942 | /* |
943 | * `handle' can be NULL if create is zero |
944 | */ |
945 | struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, |
946 | ext4_lblk_t block, int map_flags) |
947 | { |
948 | struct ext4_map_blocks map; |
949 | struct buffer_head *bh; |
950 | int create = map_flags & EXT4_GET_BLOCKS_CREATE; |
951 | bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; |
952 | int err; |
953 | |
954 | ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) |
955 | || handle != NULL || create == 0); |
956 | ASSERT(create == 0 || !nowait); |
957 | |
958 | map.m_lblk = block; |
959 | map.m_len = 1; |
960 | err = ext4_map_blocks(handle, inode, map: &map, flags: map_flags); |
961 | |
962 | if (err == 0) |
963 | return create ? ERR_PTR(error: -ENOSPC) : NULL; |
964 | if (err < 0) |
965 | return ERR_PTR(error: err); |
966 | |
967 | if (nowait) |
968 | return sb_find_get_block(sb: inode->i_sb, block: map.m_pblk); |
969 | |
970 | /* |
971 | * Since bh could introduce extra ref count such as referred by |
972 | * journal_head etc. Try to avoid using __GFP_MOVABLE here |
973 | * as it may fail the migration when journal_head remains. |
974 | */ |
975 | bh = getblk_unmovable(bdev: inode->i_sb->s_bdev, block: map.m_pblk, |
976 | size: inode->i_sb->s_blocksize); |
977 | |
978 | if (unlikely(!bh)) |
979 | return ERR_PTR(error: -ENOMEM); |
980 | if (map.m_flags & EXT4_MAP_NEW) { |
981 | ASSERT(create != 0); |
982 | ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) |
983 | || (handle != NULL)); |
984 | |
985 | /* |
986 | * Now that we do not always journal data, we should |
987 | * keep in mind whether this should always journal the |
988 | * new buffer as metadata. For now, regular file |
989 | * writes use ext4_get_block instead, so it's not a |
990 | * problem. |
991 | */ |
992 | lock_buffer(bh); |
993 | BUFFER_TRACE(bh, "call get_create_access"); |
994 | err = ext4_journal_get_create_access(handle, inode->i_sb, bh, |
995 | EXT4_JTR_NONE); |
996 | if (unlikely(err)) { |
997 | unlock_buffer(bh); |
998 | goto errout; |
999 | } |
1000 | if (!buffer_uptodate(bh)) { |
1001 | memset(bh->b_data, 0, inode->i_sb->s_blocksize); |
1002 | set_buffer_uptodate(bh); |
1003 | } |
1004 | unlock_buffer(bh); |
1005 | BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); |
1006 | err = ext4_handle_dirty_metadata(handle, inode, bh); |
1007 | if (unlikely(err)) |
1008 | goto errout; |
1009 | } else |
1010 | BUFFER_TRACE(bh, "not a new buffer"); |
1011 | return bh; |
1012 | errout: |
1013 | brelse(bh); |
1014 | return ERR_PTR(error: err); |
1015 | } |
1016 | |
1017 | struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, |
1018 | ext4_lblk_t block, int map_flags) |
1019 | { |
1020 | struct buffer_head *bh; |
1021 | int ret; |
1022 | |
1023 | bh = ext4_getblk(handle, inode, block, map_flags); |
1024 | if (IS_ERR(ptr: bh)) |
1025 | return bh; |
1026 | if (!bh || ext4_buffer_uptodate(bh)) |
1027 | return bh; |
1028 | |
1029 | ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, wait: true); |
1030 | if (ret) { |
1031 | put_bh(bh); |
1032 | return ERR_PTR(error: ret); |
1033 | } |
1034 | return bh; |
1035 | } |
1036 | |
1037 | /* Read a contiguous batch of blocks. */ |
1038 | int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, |
1039 | bool wait, struct buffer_head **bhs) |
1040 | { |
1041 | int i, err; |
1042 | |
1043 | for (i = 0; i < bh_count; i++) { |
1044 | bhs[i] = ext4_getblk(NULL, inode, block: block + i, map_flags: 0 /* map_flags */); |
1045 | if (IS_ERR(ptr: bhs[i])) { |
1046 | err = PTR_ERR(ptr: bhs[i]); |
1047 | bh_count = i; |
1048 | goto out_brelse; |
1049 | } |
1050 | } |
1051 | |
1052 | for (i = 0; i < bh_count; i++) |
1053 | /* Note that NULL bhs[i] is valid because of holes. */ |
1054 | if (bhs[i] && !ext4_buffer_uptodate(bh: bhs[i])) |
1055 | ext4_read_bh_lock(bh: bhs[i], REQ_META | REQ_PRIO, wait: false); |
1056 | |
1057 | if (!wait) |
1058 | return 0; |
1059 | |
1060 | for (i = 0; i < bh_count; i++) |
1061 | if (bhs[i]) |
1062 | wait_on_buffer(bh: bhs[i]); |
1063 | |
1064 | for (i = 0; i < bh_count; i++) { |
1065 | if (bhs[i] && !buffer_uptodate(bh: bhs[i])) { |
1066 | err = -EIO; |
1067 | goto out_brelse; |
1068 | } |
1069 | } |
1070 | return 0; |
1071 | |
1072 | out_brelse: |
1073 | for (i = 0; i < bh_count; i++) { |
1074 | brelse(bh: bhs[i]); |
1075 | bhs[i] = NULL; |
1076 | } |
1077 | return err; |
1078 | } |
1079 | |
1080 | int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, |
1081 | struct buffer_head *head, |
1082 | unsigned from, |
1083 | unsigned to, |
1084 | int *partial, |
1085 | int (*fn)(handle_t *handle, struct inode *inode, |
1086 | struct buffer_head *bh)) |
1087 | { |
1088 | struct buffer_head *bh; |
1089 | unsigned block_start, block_end; |
1090 | unsigned blocksize = head->b_size; |
1091 | int err, ret = 0; |
1092 | struct buffer_head *next; |
1093 | |
1094 | for (bh = head, block_start = 0; |
1095 | ret == 0 && (bh != head || !block_start); |
1096 | block_start = block_end, bh = next) { |
1097 | next = bh->b_this_page; |
1098 | block_end = block_start + blocksize; |
1099 | if (block_end <= from || block_start >= to) { |
1100 | if (partial && !buffer_uptodate(bh)) |
1101 | *partial = 1; |
1102 | continue; |
1103 | } |
1104 | err = (*fn)(handle, inode, bh); |
1105 | if (!ret) |
1106 | ret = err; |
1107 | } |
1108 | return ret; |
1109 | } |
1110 | |
1111 | /* |
1112 | * Helper for handling dirtying of journalled data. We also mark the folio as |
1113 | * dirty so that writeback code knows about this page (and inode) contains |
1114 | * dirty data. ext4_writepages() then commits appropriate transaction to |
1115 | * make data stable. |
1116 | */ |
1117 | static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) |
1118 | { |
1119 | struct folio *folio = bh->b_folio; |
1120 | struct inode *inode = folio->mapping->host; |
1121 | |
1122 | /* only regular files have a_ops */ |
1123 | if (S_ISREG(inode->i_mode)) |
1124 | folio_mark_dirty(folio); |
1125 | return ext4_handle_dirty_metadata(handle, NULL, bh); |
1126 | } |
1127 | |
1128 | int do_journal_get_write_access(handle_t *handle, struct inode *inode, |
1129 | struct buffer_head *bh) |
1130 | { |
1131 | if (!buffer_mapped(bh) || buffer_freed(bh)) |
1132 | return 0; |
1133 | BUFFER_TRACE(bh, "get write access"); |
1134 | return ext4_journal_get_write_access(handle, inode->i_sb, bh, |
1135 | EXT4_JTR_NONE); |
1136 | } |
1137 | |
1138 | int ext4_block_write_begin(handle_t *handle, struct folio *folio, |
1139 | loff_t pos, unsigned len, |
1140 | get_block_t *get_block) |
1141 | { |
1142 | unsigned int from = offset_in_folio(folio, pos); |
1143 | unsigned to = from + len; |
1144 | struct inode *inode = folio->mapping->host; |
1145 | unsigned block_start, block_end; |
1146 | sector_t block; |
1147 | int err = 0; |
1148 | unsigned blocksize = inode->i_sb->s_blocksize; |
1149 | unsigned bbits; |
1150 | struct buffer_head *bh, *head, *wait[2]; |
1151 | int nr_wait = 0; |
1152 | int i; |
1153 | bool should_journal_data = ext4_should_journal_data(inode); |
1154 | |
1155 | BUG_ON(!folio_test_locked(folio)); |
1156 | BUG_ON(to > folio_size(folio)); |
1157 | BUG_ON(from > to); |
1158 | |
1159 | head = folio_buffers(folio); |
1160 | if (!head) |
1161 | head = create_empty_buffers(folio, blocksize, b_state: 0); |
1162 | bbits = ilog2(blocksize); |
1163 | block = (sector_t)folio->index << (PAGE_SHIFT - bbits); |
1164 | |
1165 | for (bh = head, block_start = 0; bh != head || !block_start; |
1166 | block++, block_start = block_end, bh = bh->b_this_page) { |
1167 | block_end = block_start + blocksize; |
1168 | if (block_end <= from || block_start >= to) { |
1169 | if (folio_test_uptodate(folio)) { |
1170 | set_buffer_uptodate(bh); |
1171 | } |
1172 | continue; |
1173 | } |
1174 | if (buffer_new(bh)) |
1175 | clear_buffer_new(bh); |
1176 | if (!buffer_mapped(bh)) { |
1177 | WARN_ON(bh->b_size != blocksize); |
1178 | err = get_block(inode, block, bh, 1); |
1179 | if (err) |
1180 | break; |
1181 | if (buffer_new(bh)) { |
1182 | /* |
1183 | * We may be zeroing partial buffers or all new |
1184 | * buffers in case of failure. Prepare JBD2 for |
1185 | * that. |
1186 | */ |
1187 | if (should_journal_data) |
1188 | do_journal_get_write_access(handle, |
1189 | inode, bh); |
1190 | if (folio_test_uptodate(folio)) { |
1191 | /* |
1192 | * Unlike __block_write_begin() we leave |
1193 | * dirtying of new uptodate buffers to |
1194 | * ->write_end() time or |
1195 | * folio_zero_new_buffers(). |
1196 | */ |
1197 | set_buffer_uptodate(bh); |
1198 | continue; |
1199 | } |
1200 | if (block_end > to || block_start < from) |
1201 | folio_zero_segments(folio, start1: to, |
1202 | xend1: block_end, |
1203 | start2: block_start, xend2: from); |
1204 | continue; |
1205 | } |
1206 | } |
1207 | if (folio_test_uptodate(folio)) { |
1208 | set_buffer_uptodate(bh); |
1209 | continue; |
1210 | } |
1211 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && |
1212 | !buffer_unwritten(bh) && |
1213 | (block_start < from || block_end > to)) { |
1214 | ext4_read_bh_lock(bh, op_flags: 0, wait: false); |
1215 | wait[nr_wait++] = bh; |
1216 | } |
1217 | } |
1218 | /* |
1219 | * If we issued read requests, let them complete. |
1220 | */ |
1221 | for (i = 0; i < nr_wait; i++) { |
1222 | wait_on_buffer(bh: wait[i]); |
1223 | if (!buffer_uptodate(bh: wait[i])) |
1224 | err = -EIO; |
1225 | } |
1226 | if (unlikely(err)) { |
1227 | if (should_journal_data) |
1228 | ext4_journalled_zero_new_buffers(handle, inode, folio, |
1229 | from, to); |
1230 | else |
1231 | folio_zero_new_buffers(folio, from, to); |
1232 | } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { |
1233 | for (i = 0; i < nr_wait; i++) { |
1234 | int err2; |
1235 | |
1236 | err2 = fscrypt_decrypt_pagecache_blocks(folio, |
1237 | len: blocksize, offs: bh_offset(bh: wait[i])); |
1238 | if (err2) { |
1239 | clear_buffer_uptodate(bh: wait[i]); |
1240 | err = err2; |
1241 | } |
1242 | } |
1243 | } |
1244 | |
1245 | return err; |
1246 | } |
1247 | |
1248 | /* |
1249 | * To preserve ordering, it is essential that the hole instantiation and |
1250 | * the data write be encapsulated in a single transaction. We cannot |
1251 | * close off a transaction and start a new one between the ext4_get_block() |
1252 | * and the ext4_write_end(). So doing the jbd2_journal_start at the start of |
1253 | * ext4_write_begin() is the right place. |
1254 | */ |
1255 | static int ext4_write_begin(struct file *file, struct address_space *mapping, |
1256 | loff_t pos, unsigned len, |
1257 | struct folio **foliop, void **fsdata) |
1258 | { |
1259 | struct inode *inode = mapping->host; |
1260 | int ret, needed_blocks; |
1261 | handle_t *handle; |
1262 | int retries = 0; |
1263 | struct folio *folio; |
1264 | pgoff_t index; |
1265 | unsigned from, to; |
1266 | fgf_t fgp = FGP_WRITEBEGIN; |
1267 | |
1268 | ret = ext4_emergency_state(sb: inode->i_sb); |
1269 | if (unlikely(ret)) |
1270 | return ret; |
1271 | |
1272 | trace_ext4_write_begin(inode, pos, len); |
1273 | /* |
1274 | * Reserve one block more for addition to orphan list in case |
1275 | * we allocate blocks but write fails for some reason |
1276 | */ |
1277 | needed_blocks = ext4_writepage_trans_blocks(inode) + 1; |
1278 | index = pos >> PAGE_SHIFT; |
1279 | |
1280 | if (ext4_test_inode_state(inode, bit: EXT4_STATE_MAY_INLINE_DATA)) { |
1281 | ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, |
1282 | foliop); |
1283 | if (ret < 0) |
1284 | return ret; |
1285 | if (ret == 1) |
1286 | return 0; |
1287 | } |
1288 | |
1289 | /* |
1290 | * __filemap_get_folio() can take a long time if the |
1291 | * system is thrashing due to memory pressure, or if the folio |
1292 | * is being written back. So grab it first before we start |
1293 | * the transaction handle. This also allows us to allocate |
1294 | * the folio (if needed) without using GFP_NOFS. |
1295 | */ |
1296 | retry_grab: |
1297 | fgp |= fgf_set_order(size: len); |
1298 | folio = __filemap_get_folio(mapping, index, fgp_flags: fgp, |
1299 | gfp: mapping_gfp_mask(mapping)); |
1300 | if (IS_ERR(ptr: folio)) |
1301 | return PTR_ERR(ptr: folio); |
1302 | |
1303 | if (pos + len > folio_pos(folio) + folio_size(folio)) |
1304 | len = folio_pos(folio) + folio_size(folio) - pos; |
1305 | |
1306 | from = offset_in_folio(folio, pos); |
1307 | to = from + len; |
1308 | |
1309 | /* |
1310 | * The same as page allocation, we prealloc buffer heads before |
1311 | * starting the handle. |
1312 | */ |
1313 | if (!folio_buffers(folio)) |
1314 | create_empty_buffers(folio, blocksize: inode->i_sb->s_blocksize, b_state: 0); |
1315 | |
1316 | folio_unlock(folio); |
1317 | |
1318 | retry_journal: |
1319 | handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); |
1320 | if (IS_ERR(ptr: handle)) { |
1321 | folio_put(folio); |
1322 | return PTR_ERR(ptr: handle); |
1323 | } |
1324 | |
1325 | folio_lock(folio); |
1326 | if (folio->mapping != mapping) { |
1327 | /* The folio got truncated from under us */ |
1328 | folio_unlock(folio); |
1329 | folio_put(folio); |
1330 | ext4_journal_stop(handle); |
1331 | goto retry_grab; |
1332 | } |
1333 | /* In case writeback began while the folio was unlocked */ |
1334 | folio_wait_stable(folio); |
1335 | |
1336 | if (ext4_should_dioread_nolock(inode)) |
1337 | ret = ext4_block_write_begin(handle, folio, pos, len, |
1338 | get_block: ext4_get_block_unwritten); |
1339 | else |
1340 | ret = ext4_block_write_begin(handle, folio, pos, len, |
1341 | get_block: ext4_get_block); |
1342 | if (!ret && ext4_should_journal_data(inode)) { |
1343 | ret = ext4_walk_page_buffers(handle, inode, |
1344 | folio_buffers(folio), from, to, |
1345 | NULL, fn: do_journal_get_write_access); |
1346 | } |
1347 | |
1348 | if (ret) { |
1349 | bool extended = (pos + len > inode->i_size) && |
1350 | !ext4_verity_in_progress(inode); |
1351 | |
1352 | folio_unlock(folio); |
1353 | /* |
1354 | * ext4_block_write_begin may have instantiated a few blocks |
1355 | * outside i_size. Trim these off again. Don't need |
1356 | * i_size_read because we hold i_rwsem. |
1357 | * |
1358 | * Add inode to orphan list in case we crash before |
1359 | * truncate finishes |
1360 | */ |
1361 | if (extended && ext4_can_truncate(inode)) |
1362 | ext4_orphan_add(handle, inode); |
1363 | |
1364 | ext4_journal_stop(handle); |
1365 | if (extended) { |
1366 | ext4_truncate_failed_write(inode); |
1367 | /* |
1368 | * If truncate failed early the inode might |
1369 | * still be on the orphan list; we need to |
1370 | * make sure the inode is removed from the |
1371 | * orphan list in that case. |
1372 | */ |
1373 | if (inode->i_nlink) |
1374 | ext4_orphan_del(NULL, inode); |
1375 | } |
1376 | |
1377 | if (ret == -ENOSPC && |
1378 | ext4_should_retry_alloc(sb: inode->i_sb, retries: &retries)) |
1379 | goto retry_journal; |
1380 | folio_put(folio); |
1381 | return ret; |
1382 | } |
1383 | *foliop = folio; |
1384 | return ret; |
1385 | } |
1386 | |
1387 | /* For write_end() in data=journal mode */ |
1388 | static int write_end_fn(handle_t *handle, struct inode *inode, |
1389 | struct buffer_head *bh) |
1390 | { |
1391 | int ret; |
1392 | if (!buffer_mapped(bh) || buffer_freed(bh)) |
1393 | return 0; |
1394 | set_buffer_uptodate(bh); |
1395 | ret = ext4_dirty_journalled_data(handle, bh); |
1396 | clear_buffer_meta(bh); |
1397 | clear_buffer_prio(bh); |
1398 | return ret; |
1399 | } |
1400 | |
1401 | /* |
1402 | * We need to pick up the new inode size which generic_commit_write gave us |
1403 | * `file' can be NULL - eg, when called from page_symlink(). |
1404 | * |
1405 | * ext4 never places buffers on inode->i_mapping->i_private_list. metadata |
1406 | * buffers are managed internally. |
1407 | */ |
1408 | static int ext4_write_end(struct file *file, |
1409 | struct address_space *mapping, |
1410 | loff_t pos, unsigned len, unsigned copied, |
1411 | struct folio *folio, void *fsdata) |
1412 | { |
1413 | handle_t *handle = ext4_journal_current_handle(); |
1414 | struct inode *inode = mapping->host; |
1415 | loff_t old_size = inode->i_size; |
1416 | int ret = 0, ret2; |
1417 | int i_size_changed = 0; |
1418 | bool verity = ext4_verity_in_progress(inode); |
1419 | |
1420 | trace_ext4_write_end(inode, pos, len, copied); |
1421 | |
1422 | if (ext4_has_inline_data(inode) && |
1423 | ext4_test_inode_state(inode, bit: EXT4_STATE_MAY_INLINE_DATA)) |
1424 | return ext4_write_inline_data_end(inode, pos, len, copied, |
1425 | folio); |
1426 | |
1427 | copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata); |
1428 | /* |
1429 | * it's important to update i_size while still holding folio lock: |
1430 | * page writeout could otherwise come in and zero beyond i_size. |
1431 | * |
1432 | * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree |
1433 | * blocks are being written past EOF, so skip the i_size update. |
1434 | */ |
1435 | if (!verity) |
1436 | i_size_changed = ext4_update_inode_size(inode, newsize: pos + copied); |
1437 | folio_unlock(folio); |
1438 | folio_put(folio); |
1439 | |
1440 | if (old_size < pos && !verity) { |
1441 | pagecache_isize_extended(inode, from: old_size, to: pos); |
1442 | ext4_zero_partial_blocks(handle, inode, lstart: old_size, lend: pos - old_size); |
1443 | } |
1444 | /* |
1445 | * Don't mark the inode dirty under folio lock. First, it unnecessarily |
1446 | * makes the holding time of folio lock longer. Second, it forces lock |
1447 | * ordering of folio lock and transaction start for journaling |
1448 | * filesystems. |
1449 | */ |
1450 | if (i_size_changed) |
1451 | ret = ext4_mark_inode_dirty(handle, inode); |
1452 | |
1453 | if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) |
1454 | /* if we have allocated more blocks and copied |
1455 | * less. We will have blocks allocated outside |
1456 | * inode->i_size. So truncate them |
1457 | */ |
1458 | ext4_orphan_add(handle, inode); |
1459 | |
1460 | ret2 = ext4_journal_stop(handle); |
1461 | if (!ret) |
1462 | ret = ret2; |
1463 | |
1464 | if (pos + len > inode->i_size && !verity) { |
1465 | ext4_truncate_failed_write(inode); |
1466 | /* |
1467 | * If truncate failed early the inode might still be |
1468 | * on the orphan list; we need to make sure the inode |
1469 | * is removed from the orphan list in that case. |
1470 | */ |
1471 | if (inode->i_nlink) |
1472 | ext4_orphan_del(NULL, inode); |
1473 | } |
1474 | |
1475 | return ret ? ret : copied; |
1476 | } |
1477 | |
1478 | /* |
1479 | * This is a private version of folio_zero_new_buffers() which doesn't |
1480 | * set the buffer to be dirty, since in data=journalled mode we need |
1481 | * to call ext4_dirty_journalled_data() instead. |
1482 | */ |
1483 | static void ext4_journalled_zero_new_buffers(handle_t *handle, |
1484 | struct inode *inode, |
1485 | struct folio *folio, |
1486 | unsigned from, unsigned to) |
1487 | { |
1488 | unsigned int block_start = 0, block_end; |
1489 | struct buffer_head *head, *bh; |
1490 | |
1491 | bh = head = folio_buffers(folio); |
1492 | do { |
1493 | block_end = block_start + bh->b_size; |
1494 | if (buffer_new(bh)) { |
1495 | if (block_end > from && block_start < to) { |
1496 | if (!folio_test_uptodate(folio)) { |
1497 | unsigned start, size; |
1498 | |
1499 | start = max(from, block_start); |
1500 | size = min(to, block_end) - start; |
1501 | |
1502 | folio_zero_range(folio, start, length: size); |
1503 | } |
1504 | clear_buffer_new(bh); |
1505 | write_end_fn(handle, inode, bh); |
1506 | } |
1507 | } |
1508 | block_start = block_end; |
1509 | bh = bh->b_this_page; |
1510 | } while (bh != head); |
1511 | } |
1512 | |
1513 | static int ext4_journalled_write_end(struct file *file, |
1514 | struct address_space *mapping, |
1515 | loff_t pos, unsigned len, unsigned copied, |
1516 | struct folio *folio, void *fsdata) |
1517 | { |
1518 | handle_t *handle = ext4_journal_current_handle(); |
1519 | struct inode *inode = mapping->host; |
1520 | loff_t old_size = inode->i_size; |
1521 | int ret = 0, ret2; |
1522 | int partial = 0; |
1523 | unsigned from, to; |
1524 | int size_changed = 0; |
1525 | bool verity = ext4_verity_in_progress(inode); |
1526 | |
1527 | trace_ext4_journalled_write_end(inode, pos, len, copied); |
1528 | from = pos & (PAGE_SIZE - 1); |
1529 | to = from + len; |
1530 | |
1531 | BUG_ON(!ext4_handle_valid(handle)); |
1532 | |
1533 | if (ext4_has_inline_data(inode)) |
1534 | return ext4_write_inline_data_end(inode, pos, len, copied, |
1535 | folio); |
1536 | |
1537 | if (unlikely(copied < len) && !folio_test_uptodate(folio)) { |
1538 | copied = 0; |
1539 | ext4_journalled_zero_new_buffers(handle, inode, folio, |
1540 | from, to); |
1541 | } else { |
1542 | if (unlikely(copied < len)) |
1543 | ext4_journalled_zero_new_buffers(handle, inode, folio, |
1544 | from: from + copied, to); |
1545 | ret = ext4_walk_page_buffers(handle, inode, |
1546 | folio_buffers(folio), |
1547 | from, to: from + copied, partial: &partial, |
1548 | fn: write_end_fn); |
1549 | if (!partial) |
1550 | folio_mark_uptodate(folio); |
1551 | } |
1552 | if (!verity) |
1553 | size_changed = ext4_update_inode_size(inode, newsize: pos + copied); |
1554 | EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; |
1555 | folio_unlock(folio); |
1556 | folio_put(folio); |
1557 | |
1558 | if (old_size < pos && !verity) { |
1559 | pagecache_isize_extended(inode, from: old_size, to: pos); |
1560 | ext4_zero_partial_blocks(handle, inode, lstart: old_size, lend: pos - old_size); |
1561 | } |
1562 | |
1563 | if (size_changed) { |
1564 | ret2 = ext4_mark_inode_dirty(handle, inode); |
1565 | if (!ret) |
1566 | ret = ret2; |
1567 | } |
1568 | |
1569 | if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) |
1570 | /* if we have allocated more blocks and copied |
1571 | * less. We will have blocks allocated outside |
1572 | * inode->i_size. So truncate them |
1573 | */ |
1574 | ext4_orphan_add(handle, inode); |
1575 | |
1576 | ret2 = ext4_journal_stop(handle); |
1577 | if (!ret) |
1578 | ret = ret2; |
1579 | if (pos + len > inode->i_size && !verity) { |
1580 | ext4_truncate_failed_write(inode); |
1581 | /* |
1582 | * If truncate failed early the inode might still be |
1583 | * on the orphan list; we need to make sure the inode |
1584 | * is removed from the orphan list in that case. |
1585 | */ |
1586 | if (inode->i_nlink) |
1587 | ext4_orphan_del(NULL, inode); |
1588 | } |
1589 | |
1590 | return ret ? ret : copied; |
1591 | } |
1592 | |
1593 | /* |
1594 | * Reserve space for 'nr_resv' clusters |
1595 | */ |
1596 | static int ext4_da_reserve_space(struct inode *inode, int nr_resv) |
1597 | { |
1598 | struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb); |
1599 | struct ext4_inode_info *ei = EXT4_I(inode); |
1600 | int ret; |
1601 | |
1602 | /* |
1603 | * We will charge metadata quota at writeout time; this saves |
1604 | * us from metadata over-estimation, though we may go over by |
1605 | * a small amount in the end. Here we just reserve for data. |
1606 | */ |
1607 | ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv)); |
1608 | if (ret) |
1609 | return ret; |
1610 | |
1611 | spin_lock(lock: &ei->i_block_reservation_lock); |
1612 | if (ext4_claim_free_clusters(sbi, nclusters: nr_resv, flags: 0)) { |
1613 | spin_unlock(lock: &ei->i_block_reservation_lock); |
1614 | dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv)); |
1615 | return -ENOSPC; |
1616 | } |
1617 | ei->i_reserved_data_blocks += nr_resv; |
1618 | trace_ext4_da_reserve_space(inode, nr_resv); |
1619 | spin_unlock(lock: &ei->i_block_reservation_lock); |
1620 | |
1621 | return 0; /* success */ |
1622 | } |
1623 | |
1624 | void ext4_da_release_space(struct inode *inode, int to_free) |
1625 | { |
1626 | struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb); |
1627 | struct ext4_inode_info *ei = EXT4_I(inode); |
1628 | |
1629 | if (!to_free) |
1630 | return; /* Nothing to release, exit */ |
1631 | |
1632 | spin_lock(lock: &EXT4_I(inode)->i_block_reservation_lock); |
1633 | |
1634 | trace_ext4_da_release_space(inode, freed_blocks: to_free); |
1635 | if (unlikely(to_free > ei->i_reserved_data_blocks)) { |
1636 | /* |
1637 | * if there aren't enough reserved blocks, then the |
1638 | * counter is messed up somewhere. Since this |
1639 | * function is called from invalidate page, it's |
1640 | * harmless to return without any action. |
1641 | */ |
1642 | ext4_warning(inode->i_sb, "ext4_da_release_space: " |
1643 | "ino %lu, to_free %d with only %d reserved " |
1644 | "data blocks", inode->i_ino, to_free, |
1645 | ei->i_reserved_data_blocks); |
1646 | WARN_ON(1); |
1647 | to_free = ei->i_reserved_data_blocks; |
1648 | } |
1649 | ei->i_reserved_data_blocks -= to_free; |
1650 | |
1651 | /* update fs dirty data blocks counter */ |
1652 | percpu_counter_sub(fbc: &sbi->s_dirtyclusters_counter, amount: to_free); |
1653 | |
1654 | spin_unlock(lock: &EXT4_I(inode)->i_block_reservation_lock); |
1655 | |
1656 | dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); |
1657 | } |
1658 | |
1659 | /* |
1660 | * Delayed allocation stuff |
1661 | */ |
1662 | |
1663 | struct mpage_da_data { |
1664 | /* These are input fields for ext4_do_writepages() */ |
1665 | struct inode *inode; |
1666 | struct writeback_control *wbc; |
1667 | unsigned int can_map:1; /* Can writepages call map blocks? */ |
1668 | |
1669 | /* These are internal state of ext4_do_writepages() */ |
1670 | pgoff_t first_page; /* The first page to write */ |
1671 | pgoff_t next_page; /* Current page to examine */ |
1672 | pgoff_t last_page; /* Last page to examine */ |
1673 | /* |
1674 | * Extent to map - this can be after first_page because that can be |
1675 | * fully mapped. We somewhat abuse m_flags to store whether the extent |
1676 | * is delalloc or unwritten. |
1677 | */ |
1678 | struct ext4_map_blocks map; |
1679 | struct ext4_io_submit io_submit; /* IO submission data */ |
1680 | unsigned int do_map:1; |
1681 | unsigned int scanned_until_end:1; |
1682 | unsigned int journalled_more_data:1; |
1683 | }; |
1684 | |
1685 | static void mpage_release_unused_pages(struct mpage_da_data *mpd, |
1686 | bool invalidate) |
1687 | { |
1688 | unsigned nr, i; |
1689 | pgoff_t index, end; |
1690 | struct folio_batch fbatch; |
1691 | struct inode *inode = mpd->inode; |
1692 | struct address_space *mapping = inode->i_mapping; |
1693 | |
1694 | /* This is necessary when next_page == 0. */ |
1695 | if (mpd->first_page >= mpd->next_page) |
1696 | return; |
1697 | |
1698 | mpd->scanned_until_end = 0; |
1699 | index = mpd->first_page; |
1700 | end = mpd->next_page - 1; |
1701 | if (invalidate) { |
1702 | ext4_lblk_t start, last; |
1703 | start = index << (PAGE_SHIFT - inode->i_blkbits); |
1704 | last = end << (PAGE_SHIFT - inode->i_blkbits); |
1705 | |
1706 | /* |
1707 | * avoid racing with extent status tree scans made by |
1708 | * ext4_insert_delayed_block() |
1709 | */ |
1710 | down_write(sem: &EXT4_I(inode)->i_data_sem); |
1711 | ext4_es_remove_extent(inode, lblk: start, len: last - start + 1); |
1712 | up_write(sem: &EXT4_I(inode)->i_data_sem); |
1713 | } |
1714 | |
1715 | folio_batch_init(fbatch: &fbatch); |
1716 | while (index <= end) { |
1717 | nr = filemap_get_folios(mapping, start: &index, end, fbatch: &fbatch); |
1718 | if (nr == 0) |
1719 | break; |
1720 | for (i = 0; i < nr; i++) { |
1721 | struct folio *folio = fbatch.folios[i]; |
1722 | |
1723 | if (folio->index < mpd->first_page) |
1724 | continue; |
1725 | if (folio_next_index(folio) - 1 > end) |
1726 | continue; |
1727 | BUG_ON(!folio_test_locked(folio)); |
1728 | BUG_ON(folio_test_writeback(folio)); |
1729 | if (invalidate) { |
1730 | if (folio_mapped(folio)) |
1731 | folio_clear_dirty_for_io(folio); |
1732 | block_invalidate_folio(folio, offset: 0, |
1733 | length: folio_size(folio)); |
1734 | folio_clear_uptodate(folio); |
1735 | } |
1736 | folio_unlock(folio); |
1737 | } |
1738 | folio_batch_release(fbatch: &fbatch); |
1739 | } |
1740 | } |
1741 | |
1742 | static void ext4_print_free_blocks(struct inode *inode) |
1743 | { |
1744 | struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb); |
1745 | struct super_block *sb = inode->i_sb; |
1746 | struct ext4_inode_info *ei = EXT4_I(inode); |
1747 | |
1748 | ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", |
1749 | EXT4_C2B(EXT4_SB(inode->i_sb), |
1750 | ext4_count_free_clusters(sb))); |
1751 | ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); |
1752 | ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", |
1753 | (long long) EXT4_C2B(EXT4_SB(sb), |
1754 | percpu_counter_sum(&sbi->s_freeclusters_counter))); |
1755 | ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", |
1756 | (long long) EXT4_C2B(EXT4_SB(sb), |
1757 | percpu_counter_sum(&sbi->s_dirtyclusters_counter))); |
1758 | ext4_msg(sb, KERN_CRIT, "Block reservation details"); |
1759 | ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", |
1760 | ei->i_reserved_data_blocks); |
1761 | return; |
1762 | } |
1763 | |
1764 | /* |
1765 | * Check whether the cluster containing lblk has been allocated or has |
1766 | * delalloc reservation. |
1767 | * |
1768 | * Returns 0 if the cluster doesn't have either, 1 if it has delalloc |
1769 | * reservation, 2 if it's already been allocated, negative error code on |
1770 | * failure. |
1771 | */ |
1772 | static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk) |
1773 | { |
1774 | struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb); |
1775 | int ret; |
1776 | |
1777 | /* Has delalloc reservation? */ |
1778 | if (ext4_es_scan_clu(inode, matching_fn: &ext4_es_is_delayed, lblk)) |
1779 | return 1; |
1780 | |
1781 | /* Already been allocated? */ |
1782 | if (ext4_es_scan_clu(inode, matching_fn: &ext4_es_is_mapped, lblk)) |
1783 | return 2; |
1784 | ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk)); |
1785 | if (ret < 0) |
1786 | return ret; |
1787 | if (ret > 0) |
1788 | return 2; |
1789 | |
1790 | return 0; |
1791 | } |
1792 | |
1793 | /* |
1794 | * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents |
1795 | * status tree, incrementing the reserved |
1796 | * cluster/block count or making pending |
1797 | * reservations where needed |
1798 | * |
1799 | * @inode - file containing the newly added block |
1800 | * @lblk - start logical block to be added |
1801 | * @len - length of blocks to be added |
1802 | * |
1803 | * Returns 0 on success, negative error code on failure. |
1804 | */ |
1805 | static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk, |
1806 | ext4_lblk_t len) |
1807 | { |
1808 | struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb); |
1809 | int ret; |
1810 | bool lclu_allocated = false; |
1811 | bool end_allocated = false; |
1812 | ext4_lblk_t resv_clu; |
1813 | ext4_lblk_t end = lblk + len - 1; |
1814 | |
1815 | /* |
1816 | * If the cluster containing lblk or end is shared with a delayed, |
1817 | * written, or unwritten extent in a bigalloc file system, it's |
1818 | * already been accounted for and does not need to be reserved. |
1819 | * A pending reservation must be made for the cluster if it's |
1820 | * shared with a written or unwritten extent and doesn't already |
1821 | * have one. Written and unwritten extents can be purged from the |
1822 | * extents status tree if the system is under memory pressure, so |
1823 | * it's necessary to examine the extent tree if a search of the |
1824 | * extents status tree doesn't get a match. |
1825 | */ |
1826 | if (sbi->s_cluster_ratio == 1) { |
1827 | ret = ext4_da_reserve_space(inode, nr_resv: len); |
1828 | if (ret != 0) /* ENOSPC */ |
1829 | return ret; |
1830 | } else { /* bigalloc */ |
1831 | resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1; |
1832 | |
1833 | ret = ext4_clu_alloc_state(inode, lblk); |
1834 | if (ret < 0) |
1835 | return ret; |
1836 | if (ret > 0) { |
1837 | resv_clu--; |
1838 | lclu_allocated = (ret == 2); |
1839 | } |
1840 | |
1841 | if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) { |
1842 | ret = ext4_clu_alloc_state(inode, lblk: end); |
1843 | if (ret < 0) |
1844 | return ret; |
1845 | if (ret > 0) { |
1846 | resv_clu--; |
1847 | end_allocated = (ret == 2); |
1848 | } |
1849 | } |
1850 | |
1851 | if (resv_clu) { |
1852 | ret = ext4_da_reserve_space(inode, nr_resv: resv_clu); |
1853 | if (ret != 0) /* ENOSPC */ |
1854 | return ret; |
1855 | } |
1856 | } |
1857 | |
1858 | ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated, |
1859 | end_allocated); |
1860 | return 0; |
1861 | } |
1862 | |
1863 | /* |
1864 | * Looks up the requested blocks and sets the delalloc extent map. |
1865 | * First try to look up for the extent entry that contains the requested |
1866 | * blocks in the extent status tree without i_data_sem, then try to look |
1867 | * up for the ondisk extent mapping with i_data_sem in read mode, |
1868 | * finally hold i_data_sem in write mode, looks up again and add a |
1869 | * delalloc extent entry if it still couldn't find any extent. Pass out |
1870 | * the mapped extent through @map and return 0 on success. |
1871 | */ |
1872 | static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map) |
1873 | { |
1874 | struct extent_status es; |
1875 | int retval; |
1876 | #ifdef ES_AGGRESSIVE_TEST |
1877 | struct ext4_map_blocks orig_map; |
1878 | |
1879 | memcpy(&orig_map, map, sizeof(*map)); |
1880 | #endif |
1881 | |
1882 | map->m_flags = 0; |
1883 | ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, |
1884 | (unsigned long) map->m_lblk); |
1885 | |
1886 | ext4_check_map_extents_env(inode); |
1887 | |
1888 | /* Lookup extent status tree firstly */ |
1889 | if (ext4_es_lookup_extent(inode, lblk: map->m_lblk, NULL, es: &es)) { |
1890 | map->m_len = min_t(unsigned int, map->m_len, |
1891 | es.es_len - (map->m_lblk - es.es_lblk)); |
1892 | |
1893 | if (ext4_es_is_hole(es: &es)) |
1894 | goto add_delayed; |
1895 | |
1896 | found: |
1897 | /* |
1898 | * Delayed extent could be allocated by fallocate. |
1899 | * So we need to check it. |
1900 | */ |
1901 | if (ext4_es_is_delayed(es: &es)) { |
1902 | map->m_flags |= EXT4_MAP_DELAYED; |
1903 | return 0; |
1904 | } |
1905 | |
1906 | map->m_pblk = ext4_es_pblock(es: &es) + map->m_lblk - es.es_lblk; |
1907 | if (ext4_es_is_written(es: &es)) |
1908 | map->m_flags |= EXT4_MAP_MAPPED; |
1909 | else if (ext4_es_is_unwritten(es: &es)) |
1910 | map->m_flags |= EXT4_MAP_UNWRITTEN; |
1911 | else |
1912 | BUG(); |
1913 | |
1914 | #ifdef ES_AGGRESSIVE_TEST |
1915 | ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); |
1916 | #endif |
1917 | return 0; |
1918 | } |
1919 | |
1920 | /* |
1921 | * Try to see if we can get the block without requesting a new |
1922 | * file system block. |
1923 | */ |
1924 | down_read(sem: &EXT4_I(inode)->i_data_sem); |
1925 | if (ext4_has_inline_data(inode)) |
1926 | retval = 0; |
1927 | else |
1928 | retval = ext4_map_query_blocks(NULL, inode, map, flags: 0); |
1929 | up_read(sem: &EXT4_I(inode)->i_data_sem); |
1930 | if (retval) |
1931 | return retval < 0 ? retval : 0; |
1932 | |
1933 | add_delayed: |
1934 | down_write(sem: &EXT4_I(inode)->i_data_sem); |
1935 | /* |
1936 | * Page fault path (ext4_page_mkwrite does not take i_rwsem) |
1937 | * and fallocate path (no folio lock) can race. Make sure we |
1938 | * lookup the extent status tree here again while i_data_sem |
1939 | * is held in write mode, before inserting a new da entry in |
1940 | * the extent status tree. |
1941 | */ |
1942 | if (ext4_es_lookup_extent(inode, lblk: map->m_lblk, NULL, es: &es)) { |
1943 | map->m_len = min_t(unsigned int, map->m_len, |
1944 | es.es_len - (map->m_lblk - es.es_lblk)); |
1945 | |
1946 | if (!ext4_es_is_hole(es: &es)) { |
1947 | up_write(sem: &EXT4_I(inode)->i_data_sem); |
1948 | goto found; |
1949 | } |
1950 | } else if (!ext4_has_inline_data(inode)) { |
1951 | retval = ext4_map_query_blocks(NULL, inode, map, flags: 0); |
1952 | if (retval) { |
1953 | up_write(sem: &EXT4_I(inode)->i_data_sem); |
1954 | return retval < 0 ? retval : 0; |
1955 | } |
1956 | } |
1957 | |
1958 | map->m_flags |= EXT4_MAP_DELAYED; |
1959 | retval = ext4_insert_delayed_blocks(inode, lblk: map->m_lblk, len: map->m_len); |
1960 | up_write(sem: &EXT4_I(inode)->i_data_sem); |
1961 | |
1962 | return retval; |
1963 | } |
1964 | |
1965 | /* |
1966 | * This is a special get_block_t callback which is used by |
1967 | * ext4_da_write_begin(). It will either return mapped block or |
1968 | * reserve space for a single block. |
1969 | * |
1970 | * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. |
1971 | * We also have b_blocknr = -1 and b_bdev initialized properly |
1972 | * |
1973 | * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. |
1974 | * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev |
1975 | * initialized properly. |
1976 | */ |
1977 | int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, |
1978 | struct buffer_head *bh, int create) |
1979 | { |
1980 | struct ext4_map_blocks map; |
1981 | sector_t invalid_block = ~((sector_t) 0xffff); |
1982 | int ret = 0; |
1983 | |
1984 | BUG_ON(create == 0); |
1985 | BUG_ON(bh->b_size != inode->i_sb->s_blocksize); |
1986 | |
1987 | if (invalid_block < ext4_blocks_count(es: EXT4_SB(sb: inode->i_sb)->s_es)) |
1988 | invalid_block = ~0; |
1989 | |
1990 | map.m_lblk = iblock; |
1991 | map.m_len = 1; |
1992 | |
1993 | /* |
1994 | * first, we need to know whether the block is allocated already |
1995 | * preallocated blocks are unmapped but should treated |
1996 | * the same as allocated blocks. |
1997 | */ |
1998 | ret = ext4_da_map_blocks(inode, map: &map); |
1999 | if (ret < 0) |
2000 | return ret; |
2001 | |
2002 | if (map.m_flags & EXT4_MAP_DELAYED) { |
2003 | map_bh(bh, sb: inode->i_sb, block: invalid_block); |
2004 | set_buffer_new(bh); |
2005 | set_buffer_delay(bh); |
2006 | return 0; |
2007 | } |
2008 | |
2009 | map_bh(bh, sb: inode->i_sb, block: map.m_pblk); |
2010 | ext4_update_bh_state(bh, flags: map.m_flags); |
2011 | |
2012 | if (buffer_unwritten(bh)) { |
2013 | /* A delayed write to unwritten bh should be marked |
2014 | * new and mapped. Mapped ensures that we don't do |
2015 | * get_block multiple times when we write to the same |
2016 | * offset and new ensures that we do proper zero out |
2017 | * for partial write. |
2018 | */ |
2019 | set_buffer_new(bh); |
2020 | set_buffer_mapped(bh); |
2021 | } |
2022 | return 0; |
2023 | } |
2024 | |
2025 | static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) |
2026 | { |
2027 | mpd->first_page += folio_nr_pages(folio); |
2028 | folio_unlock(folio); |
2029 | } |
2030 | |
2031 | static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) |
2032 | { |
2033 | size_t len; |
2034 | loff_t size; |
2035 | int err; |
2036 | |
2037 | BUG_ON(folio->index != mpd->first_page); |
2038 | folio_clear_dirty_for_io(folio); |
2039 | /* |
2040 | * We have to be very careful here! Nothing protects writeback path |
2041 | * against i_size changes and the page can be writeably mapped into |
2042 | * page tables. So an application can be growing i_size and writing |
2043 | * data through mmap while writeback runs. folio_clear_dirty_for_io() |
2044 | * write-protects our page in page tables and the page cannot get |
2045 | * written to again until we release folio lock. So only after |
2046 | * folio_clear_dirty_for_io() we are safe to sample i_size for |
2047 | * ext4_bio_write_folio() to zero-out tail of the written page. We rely |
2048 | * on the barrier provided by folio_test_clear_dirty() in |
2049 | * folio_clear_dirty_for_io() to make sure i_size is really sampled only |
2050 | * after page tables are updated. |
2051 | */ |
2052 | size = i_size_read(inode: mpd->inode); |
2053 | len = folio_size(folio); |
2054 | if (folio_pos(folio) + len > size && |
2055 | !ext4_verity_in_progress(inode: mpd->inode)) |
2056 | len = size & (len - 1); |
2057 | err = ext4_bio_write_folio(io: &mpd->io_submit, page: folio, len); |
2058 | if (!err) |
2059 | mpd->wbc->nr_to_write -= folio_nr_pages(folio); |
2060 | |
2061 | return err; |
2062 | } |
2063 | |
2064 | #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) |
2065 | |
2066 | /* |
2067 | * mballoc gives us at most this number of blocks... |
2068 | * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). |
2069 | * The rest of mballoc seems to handle chunks up to full group size. |
2070 | */ |
2071 | #define MAX_WRITEPAGES_EXTENT_LEN 2048 |
2072 | |
2073 | /* |
2074 | * mpage_add_bh_to_extent - try to add bh to extent of blocks to map |
2075 | * |
2076 | * @mpd - extent of blocks |
2077 | * @lblk - logical number of the block in the file |
2078 | * @bh - buffer head we want to add to the extent |
2079 | * |
2080 | * The function is used to collect contig. blocks in the same state. If the |
2081 | * buffer doesn't require mapping for writeback and we haven't started the |
2082 | * extent of buffers to map yet, the function returns 'true' immediately - the |
2083 | * caller can write the buffer right away. Otherwise the function returns true |
2084 | * if the block has been added to the extent, false if the block couldn't be |
2085 | * added. |
2086 | */ |
2087 | static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, |
2088 | struct buffer_head *bh) |
2089 | { |
2090 | struct ext4_map_blocks *map = &mpd->map; |
2091 | |
2092 | /* Buffer that doesn't need mapping for writeback? */ |
2093 | if (!buffer_dirty(bh) || !buffer_mapped(bh) || |
2094 | (!buffer_delay(bh) && !buffer_unwritten(bh))) { |
2095 | /* So far no extent to map => we write the buffer right away */ |
2096 | if (map->m_len == 0) |
2097 | return true; |
2098 | return false; |
2099 | } |
2100 | |
2101 | /* First block in the extent? */ |
2102 | if (map->m_len == 0) { |
2103 | /* We cannot map unless handle is started... */ |
2104 | if (!mpd->do_map) |
2105 | return false; |
2106 | map->m_lblk = lblk; |
2107 | map->m_len = 1; |
2108 | map->m_flags = bh->b_state & BH_FLAGS; |
2109 | return true; |
2110 | } |
2111 | |
2112 | /* Don't go larger than mballoc is willing to allocate */ |
2113 | if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) |
2114 | return false; |
2115 | |
2116 | /* Can we merge the block to our big extent? */ |
2117 | if (lblk == map->m_lblk + map->m_len && |
2118 | (bh->b_state & BH_FLAGS) == map->m_flags) { |
2119 | map->m_len++; |
2120 | return true; |
2121 | } |
2122 | return false; |
2123 | } |
2124 | |
2125 | /* |
2126 | * mpage_process_page_bufs - submit page buffers for IO or add them to extent |
2127 | * |
2128 | * @mpd - extent of blocks for mapping |
2129 | * @head - the first buffer in the page |
2130 | * @bh - buffer we should start processing from |
2131 | * @lblk - logical number of the block in the file corresponding to @bh |
2132 | * |
2133 | * Walk through page buffers from @bh upto @head (exclusive) and either submit |
2134 | * the page for IO if all buffers in this page were mapped and there's no |
2135 | * accumulated extent of buffers to map or add buffers in the page to the |
2136 | * extent of buffers to map. The function returns 1 if the caller can continue |
2137 | * by processing the next page, 0 if it should stop adding buffers to the |
2138 | * extent to map because we cannot extend it anymore. It can also return value |
2139 | * < 0 in case of error during IO submission. |
2140 | */ |
2141 | static int mpage_process_page_bufs(struct mpage_da_data *mpd, |
2142 | struct buffer_head *head, |
2143 | struct buffer_head *bh, |
2144 | ext4_lblk_t lblk) |
2145 | { |
2146 | struct inode *inode = mpd->inode; |
2147 | int err; |
2148 | ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(node: inode) - 1) |
2149 | >> inode->i_blkbits; |
2150 | |
2151 | if (ext4_verity_in_progress(inode)) |
2152 | blocks = EXT_MAX_BLOCKS; |
2153 | |
2154 | do { |
2155 | BUG_ON(buffer_locked(bh)); |
2156 | |
2157 | if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { |
2158 | /* Found extent to map? */ |
2159 | if (mpd->map.m_len) |
2160 | return 0; |
2161 | /* Buffer needs mapping and handle is not started? */ |
2162 | if (!mpd->do_map) |
2163 | return 0; |
2164 | /* Everything mapped so far and we hit EOF */ |
2165 | break; |
2166 | } |
2167 | } while (lblk++, (bh = bh->b_this_page) != head); |
2168 | /* So far everything mapped? Submit the page for IO. */ |
2169 | if (mpd->map.m_len == 0) { |
2170 | err = mpage_submit_folio(mpd, folio: head->b_folio); |
2171 | if (err < 0) |
2172 | return err; |
2173 | mpage_folio_done(mpd, folio: head->b_folio); |
2174 | } |
2175 | if (lblk >= blocks) { |
2176 | mpd->scanned_until_end = 1; |
2177 | return 0; |
2178 | } |
2179 | return 1; |
2180 | } |
2181 | |
2182 | /* |
2183 | * mpage_process_folio - update folio buffers corresponding to changed extent |
2184 | * and may submit fully mapped page for IO |
2185 | * @mpd: description of extent to map, on return next extent to map |
2186 | * @folio: Contains these buffers. |
2187 | * @m_lblk: logical block mapping. |
2188 | * @m_pblk: corresponding physical mapping. |
2189 | * @map_bh: determines on return whether this page requires any further |
2190 | * mapping or not. |
2191 | * |
2192 | * Scan given folio buffers corresponding to changed extent and update buffer |
2193 | * state according to new extent state. |
2194 | * We map delalloc buffers to their physical location, clear unwritten bits. |
2195 | * If the given folio is not fully mapped, we update @mpd to the next extent in |
2196 | * the given folio that needs mapping & return @map_bh as true. |
2197 | */ |
2198 | static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, |
2199 | ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, |
2200 | bool *map_bh) |
2201 | { |
2202 | struct buffer_head *head, *bh; |
2203 | ext4_io_end_t *io_end = mpd->io_submit.io_end; |
2204 | ext4_lblk_t lblk = *m_lblk; |
2205 | ext4_fsblk_t pblock = *m_pblk; |
2206 | int err = 0; |
2207 | int blkbits = mpd->inode->i_blkbits; |
2208 | ssize_t io_end_size = 0; |
2209 | struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); |
2210 | |
2211 | bh = head = folio_buffers(folio); |
2212 | do { |
2213 | if (lblk < mpd->map.m_lblk) |
2214 | continue; |
2215 | if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { |
2216 | /* |
2217 | * Buffer after end of mapped extent. |
2218 | * Find next buffer in the folio to map. |
2219 | */ |
2220 | mpd->map.m_len = 0; |
2221 | mpd->map.m_flags = 0; |
2222 | io_end_vec->size += io_end_size; |
2223 | |
2224 | err = mpage_process_page_bufs(mpd, head, bh, lblk); |
2225 | if (err > 0) |
2226 | err = 0; |
2227 | if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { |
2228 | io_end_vec = ext4_alloc_io_end_vec(io_end); |
2229 | if (IS_ERR(ptr: io_end_vec)) { |
2230 | err = PTR_ERR(ptr: io_end_vec); |
2231 | goto out; |
2232 | } |
2233 | io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; |
2234 | } |
2235 | *map_bh = true; |
2236 | goto out; |
2237 | } |
2238 | if (buffer_delay(bh)) { |
2239 | clear_buffer_delay(bh); |
2240 | bh->b_blocknr = pblock++; |
2241 | } |
2242 | clear_buffer_unwritten(bh); |
2243 | io_end_size += (1 << blkbits); |
2244 | } while (lblk++, (bh = bh->b_this_page) != head); |
2245 | |
2246 | io_end_vec->size += io_end_size; |
2247 | *map_bh = false; |
2248 | out: |
2249 | *m_lblk = lblk; |
2250 | *m_pblk = pblock; |
2251 | return err; |
2252 | } |
2253 | |
2254 | /* |
2255 | * mpage_map_buffers - update buffers corresponding to changed extent and |
2256 | * submit fully mapped pages for IO |
2257 | * |
2258 | * @mpd - description of extent to map, on return next extent to map |
2259 | * |
2260 | * Scan buffers corresponding to changed extent (we expect corresponding pages |
2261 | * to be already locked) and update buffer state according to new extent state. |
2262 | * We map delalloc buffers to their physical location, clear unwritten bits, |
2263 | * and mark buffers as uninit when we perform writes to unwritten extents |
2264 | * and do extent conversion after IO is finished. If the last page is not fully |
2265 | * mapped, we update @map to the next extent in the last page that needs |
2266 | * mapping. Otherwise we submit the page for IO. |
2267 | */ |
2268 | static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) |
2269 | { |
2270 | struct folio_batch fbatch; |
2271 | unsigned nr, i; |
2272 | struct inode *inode = mpd->inode; |
2273 | int bpp_bits = PAGE_SHIFT - inode->i_blkbits; |
2274 | pgoff_t start, end; |
2275 | ext4_lblk_t lblk; |
2276 | ext4_fsblk_t pblock; |
2277 | int err; |
2278 | bool map_bh = false; |
2279 | |
2280 | start = mpd->map.m_lblk >> bpp_bits; |
2281 | end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; |
2282 | pblock = mpd->map.m_pblk; |
2283 | |
2284 | folio_batch_init(fbatch: &fbatch); |
2285 | while (start <= end) { |
2286 | nr = filemap_get_folios(mapping: inode->i_mapping, start: &start, end, fbatch: &fbatch); |
2287 | if (nr == 0) |
2288 | break; |
2289 | for (i = 0; i < nr; i++) { |
2290 | struct folio *folio = fbatch.folios[i]; |
2291 | |
2292 | lblk = folio->index << bpp_bits; |
2293 | err = mpage_process_folio(mpd, folio, m_lblk: &lblk, m_pblk: &pblock, |
2294 | map_bh: &map_bh); |
2295 | /* |
2296 | * If map_bh is true, means page may require further bh |
2297 | * mapping, or maybe the page was submitted for IO. |
2298 | * So we return to call further extent mapping. |
2299 | */ |
2300 | if (err < 0 || map_bh) |
2301 | goto out; |
2302 | /* Page fully mapped - let IO run! */ |
2303 | err = mpage_submit_folio(mpd, folio); |
2304 | if (err < 0) |
2305 | goto out; |
2306 | mpage_folio_done(mpd, folio); |
2307 | } |
2308 | folio_batch_release(fbatch: &fbatch); |
2309 | } |
2310 | /* Extent fully mapped and matches with page boundary. We are done. */ |
2311 | mpd->map.m_len = 0; |
2312 | mpd->map.m_flags = 0; |
2313 | return 0; |
2314 | out: |
2315 | folio_batch_release(fbatch: &fbatch); |
2316 | return err; |
2317 | } |
2318 | |
2319 | static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) |
2320 | { |
2321 | struct inode *inode = mpd->inode; |
2322 | struct ext4_map_blocks *map = &mpd->map; |
2323 | int get_blocks_flags; |
2324 | int err, dioread_nolock; |
2325 | |
2326 | trace_ext4_da_write_pages_extent(inode, map); |
2327 | /* |
2328 | * Call ext4_map_blocks() to allocate any delayed allocation blocks, or |
2329 | * to convert an unwritten extent to be initialized (in the case |
2330 | * where we have written into one or more preallocated blocks). It is |
2331 | * possible that we're going to need more metadata blocks than |
2332 | * previously reserved. However we must not fail because we're in |
2333 | * writeback and there is nothing we can do about it so it might result |
2334 | * in data loss. So use reserved blocks to allocate metadata if |
2335 | * possible. In addition, do not cache any unrelated extents, as it |
2336 | * only holds the folio lock but does not hold the i_rwsem or |
2337 | * invalidate_lock, which could corrupt the extent status tree. |
2338 | */ |
2339 | get_blocks_flags = EXT4_GET_BLOCKS_CREATE | |
2340 | EXT4_GET_BLOCKS_METADATA_NOFAIL | |
2341 | EXT4_GET_BLOCKS_IO_SUBMIT | |
2342 | EXT4_EX_NOCACHE; |
2343 | |
2344 | dioread_nolock = ext4_should_dioread_nolock(inode); |
2345 | if (dioread_nolock) |
2346 | get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; |
2347 | |
2348 | err = ext4_map_blocks(handle, inode, map, flags: get_blocks_flags); |
2349 | if (err < 0) |
2350 | return err; |
2351 | if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { |
2352 | if (!mpd->io_submit.io_end->handle && |
2353 | ext4_handle_valid(handle)) { |
2354 | mpd->io_submit.io_end->handle = handle->h_rsv_handle; |
2355 | handle->h_rsv_handle = NULL; |
2356 | } |
2357 | ext4_set_io_unwritten_flag(io_end: mpd->io_submit.io_end); |
2358 | } |
2359 | |
2360 | BUG_ON(map->m_len == 0); |
2361 | return 0; |
2362 | } |
2363 | |
2364 | /* |
2365 | * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length |
2366 | * mpd->len and submit pages underlying it for IO |
2367 | * |
2368 | * @handle - handle for journal operations |
2369 | * @mpd - extent to map |
2370 | * @give_up_on_write - we set this to true iff there is a fatal error and there |
2371 | * is no hope of writing the data. The caller should discard |
2372 | * dirty pages to avoid infinite loops. |
2373 | * |
2374 | * The function maps extent starting at mpd->lblk of length mpd->len. If it is |
2375 | * delayed, blocks are allocated, if it is unwritten, we may need to convert |
2376 | * them to initialized or split the described range from larger unwritten |
2377 | * extent. Note that we need not map all the described range since allocation |
2378 | * can return less blocks or the range is covered by more unwritten extents. We |
2379 | * cannot map more because we are limited by reserved transaction credits. On |
2380 | * the other hand we always make sure that the last touched page is fully |
2381 | * mapped so that it can be written out (and thus forward progress is |
2382 | * guaranteed). After mapping we submit all mapped pages for IO. |
2383 | */ |
2384 | static int mpage_map_and_submit_extent(handle_t *handle, |
2385 | struct mpage_da_data *mpd, |
2386 | bool *give_up_on_write) |
2387 | { |
2388 | struct inode *inode = mpd->inode; |
2389 | struct ext4_map_blocks *map = &mpd->map; |
2390 | int err; |
2391 | loff_t disksize; |
2392 | int progress = 0; |
2393 | ext4_io_end_t *io_end = mpd->io_submit.io_end; |
2394 | struct ext4_io_end_vec *io_end_vec; |
2395 | |
2396 | io_end_vec = ext4_alloc_io_end_vec(io_end); |
2397 | if (IS_ERR(ptr: io_end_vec)) |
2398 | return PTR_ERR(ptr: io_end_vec); |
2399 | io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; |
2400 | do { |
2401 | err = mpage_map_one_extent(handle, mpd); |
2402 | if (err < 0) { |
2403 | struct super_block *sb = inode->i_sb; |
2404 | |
2405 | if (ext4_emergency_state(sb)) |
2406 | goto invalidate_dirty_pages; |
2407 | /* |
2408 | * Let the uper layers retry transient errors. |
2409 | * In the case of ENOSPC, if ext4_count_free_blocks() |
2410 | * is non-zero, a commit should free up blocks. |
2411 | */ |
2412 | if ((err == -ENOMEM) || |
2413 | (err == -ENOSPC && ext4_count_free_clusters(sb))) { |
2414 | if (progress) |
2415 | goto update_disksize; |
2416 | return err; |
2417 | } |
2418 | ext4_msg(sb, KERN_CRIT, |
2419 | "Delayed block allocation failed for " |
2420 | "inode %lu at logical offset %llu with" |
2421 | " max blocks %u with error %d", |
2422 | inode->i_ino, |
2423 | (unsigned long long)map->m_lblk, |
2424 | (unsigned)map->m_len, -err); |
2425 | ext4_msg(sb, KERN_CRIT, |
2426 | "This should not happen!! Data will " |
2427 | "be lost\n"); |
2428 | if (err == -ENOSPC) |
2429 | ext4_print_free_blocks(inode); |
2430 | invalidate_dirty_pages: |
2431 | *give_up_on_write = true; |
2432 | return err; |
2433 | } |
2434 | progress = 1; |
2435 | /* |
2436 | * Update buffer state, submit mapped pages, and get us new |
2437 | * extent to map |
2438 | */ |
2439 | err = mpage_map_and_submit_buffers(mpd); |
2440 | if (err < 0) |
2441 | goto update_disksize; |
2442 | } while (map->m_len); |
2443 | |
2444 | update_disksize: |
2445 | /* |
2446 | * Update on-disk size after IO is submitted. Races with |
2447 | * truncate are avoided by checking i_size under i_data_sem. |
2448 | */ |
2449 | disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; |
2450 | if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { |
2451 | int err2; |
2452 | loff_t i_size; |
2453 | |
2454 | down_write(sem: &EXT4_I(inode)->i_data_sem); |
2455 | i_size = i_size_read(inode); |
2456 | if (disksize > i_size) |
2457 | disksize = i_size; |
2458 | if (disksize > EXT4_I(inode)->i_disksize) |
2459 | EXT4_I(inode)->i_disksize = disksize; |
2460 | up_write(sem: &EXT4_I(inode)->i_data_sem); |
2461 | err2 = ext4_mark_inode_dirty(handle, inode); |
2462 | if (err2) { |
2463 | ext4_error_err(inode->i_sb, -err2, |
2464 | "Failed to mark inode %lu dirty", |
2465 | inode->i_ino); |
2466 | } |
2467 | if (!err) |
2468 | err = err2; |
2469 | } |
2470 | return err; |
2471 | } |
2472 | |
2473 | /* |
2474 | * Calculate the total number of credits to reserve for one writepages |
2475 | * iteration. This is called from ext4_writepages(). We map an extent of |
2476 | * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping |
2477 | * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + |
2478 | * bpp - 1 blocks in bpp different extents. |
2479 | */ |
2480 | static int ext4_da_writepages_trans_blocks(struct inode *inode) |
2481 | { |
2482 | int bpp = ext4_journal_blocks_per_folio(inode); |
2483 | |
2484 | return ext4_meta_trans_blocks(inode, |
2485 | MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, pextents: bpp); |
2486 | } |
2487 | |
2488 | static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio, |
2489 | size_t len) |
2490 | { |
2491 | struct buffer_head *page_bufs = folio_buffers(folio); |
2492 | struct inode *inode = folio->mapping->host; |
2493 | int ret, err; |
2494 | |
2495 | ret = ext4_walk_page_buffers(handle, inode, head: page_bufs, from: 0, to: len, |
2496 | NULL, fn: do_journal_get_write_access); |
2497 | err = ext4_walk_page_buffers(handle, inode, head: page_bufs, from: 0, to: len, |
2498 | NULL, fn: write_end_fn); |
2499 | if (ret == 0) |
2500 | ret = err; |
2501 | err = ext4_jbd2_inode_add_write(handle, inode, start_byte: folio_pos(folio), length: len); |
2502 | if (ret == 0) |
2503 | ret = err; |
2504 | EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; |
2505 | |
2506 | return ret; |
2507 | } |
2508 | |
2509 | static int mpage_journal_page_buffers(handle_t *handle, |
2510 | struct mpage_da_data *mpd, |
2511 | struct folio *folio) |
2512 | { |
2513 | struct inode *inode = mpd->inode; |
2514 | loff_t size = i_size_read(inode); |
2515 | size_t len = folio_size(folio); |
2516 | |
2517 | folio_clear_checked(folio); |
2518 | mpd->wbc->nr_to_write -= folio_nr_pages(folio); |
2519 | |
2520 | if (folio_pos(folio) + len > size && |
2521 | !ext4_verity_in_progress(inode)) |
2522 | len = size & (len - 1); |
2523 | |
2524 | return ext4_journal_folio_buffers(handle, folio, len); |
2525 | } |
2526 | |
2527 | /* |
2528 | * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages |
2529 | * needing mapping, submit mapped pages |
2530 | * |
2531 | * @mpd - where to look for pages |
2532 | * |
2533 | * Walk dirty pages in the mapping. If they are fully mapped, submit them for |
2534 | * IO immediately. If we cannot map blocks, we submit just already mapped |
2535 | * buffers in the page for IO and keep page dirty. When we can map blocks and |
2536 | * we find a page which isn't mapped we start accumulating extent of buffers |
2537 | * underlying these pages that needs mapping (formed by either delayed or |
2538 | * unwritten buffers). We also lock the pages containing these buffers. The |
2539 | * extent found is returned in @mpd structure (starting at mpd->lblk with |
2540 | * length mpd->len blocks). |
2541 | * |
2542 | * Note that this function can attach bios to one io_end structure which are |
2543 | * neither logically nor physically contiguous. Although it may seem as an |
2544 | * unnecessary complication, it is actually inevitable in blocksize < pagesize |
2545 | * case as we need to track IO to all buffers underlying a page in one io_end. |
2546 | */ |
2547 | static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) |
2548 | { |
2549 | struct address_space *mapping = mpd->inode->i_mapping; |
2550 | struct folio_batch fbatch; |
2551 | unsigned int nr_folios; |
2552 | pgoff_t index = mpd->first_page; |
2553 | pgoff_t end = mpd->last_page; |
2554 | xa_mark_t tag; |
2555 | int i, err = 0; |
2556 | int blkbits = mpd->inode->i_blkbits; |
2557 | ext4_lblk_t lblk; |
2558 | struct buffer_head *head; |
2559 | handle_t *handle = NULL; |
2560 | int bpp = ext4_journal_blocks_per_folio(inode: mpd->inode); |
2561 | |
2562 | if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) |
2563 | tag = PAGECACHE_TAG_TOWRITE; |
2564 | else |
2565 | tag = PAGECACHE_TAG_DIRTY; |
2566 | |
2567 | mpd->map.m_len = 0; |
2568 | mpd->next_page = index; |
2569 | if (ext4_should_journal_data(inode: mpd->inode)) { |
2570 | handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, |
2571 | bpp); |
2572 | if (IS_ERR(ptr: handle)) |
2573 | return PTR_ERR(ptr: handle); |
2574 | } |
2575 | folio_batch_init(fbatch: &fbatch); |
2576 | while (index <= end) { |
2577 | nr_folios = filemap_get_folios_tag(mapping, start: &index, end, |
2578 | tag, fbatch: &fbatch); |
2579 | if (nr_folios == 0) |
2580 | break; |
2581 | |
2582 | for (i = 0; i < nr_folios; i++) { |
2583 | struct folio *folio = fbatch.folios[i]; |
2584 | |
2585 | /* |
2586 | * Accumulated enough dirty pages? This doesn't apply |
2587 | * to WB_SYNC_ALL mode. For integrity sync we have to |
2588 | * keep going because someone may be concurrently |
2589 | * dirtying pages, and we might have synced a lot of |
2590 | * newly appeared dirty pages, but have not synced all |
2591 | * of the old dirty pages. |
2592 | */ |
2593 | if (mpd->wbc->sync_mode == WB_SYNC_NONE && |
2594 | mpd->wbc->nr_to_write <= |
2595 | mpd->map.m_len >> (PAGE_SHIFT - blkbits)) |
2596 | goto out; |
2597 | |
2598 | /* If we can't merge this page, we are done. */ |
2599 | if (mpd->map.m_len > 0 && mpd->next_page != folio->index) |
2600 | goto out; |
2601 | |
2602 | if (handle) { |
2603 | err = ext4_journal_ensure_credits(handle, credits: bpp, |
2604 | revoke_creds: 0); |
2605 | if (err < 0) |
2606 | goto out; |
2607 | } |
2608 | |
2609 | folio_lock(folio); |
2610 | /* |
2611 | * If the page is no longer dirty, or its mapping no |
2612 | * longer corresponds to inode we are writing (which |
2613 | * means it has been truncated or invalidated), or the |
2614 | * page is already under writeback and we are not doing |
2615 | * a data integrity writeback, skip the page |
2616 | */ |
2617 | if (!folio_test_dirty(folio) || |
2618 | (folio_test_writeback(folio) && |
2619 | (mpd->wbc->sync_mode == WB_SYNC_NONE)) || |
2620 | unlikely(folio->mapping != mapping)) { |
2621 | folio_unlock(folio); |
2622 | continue; |
2623 | } |
2624 | |
2625 | folio_wait_writeback(folio); |
2626 | BUG_ON(folio_test_writeback(folio)); |
2627 | |
2628 | /* |
2629 | * Should never happen but for buggy code in |
2630 | * other subsystems that call |
2631 | * set_page_dirty() without properly warning |
2632 | * the file system first. See [1] for more |
2633 | * information. |
2634 | * |
2635 | * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz |
2636 | */ |
2637 | if (!folio_buffers(folio)) { |
2638 | ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); |
2639 | folio_clear_dirty(folio); |
2640 | folio_unlock(folio); |
2641 | continue; |
2642 | } |
2643 | |
2644 | if (mpd->map.m_len == 0) |
2645 | mpd->first_page = folio->index; |
2646 | mpd->next_page = folio_next_index(folio); |
2647 | /* |
2648 | * Writeout when we cannot modify metadata is simple. |
2649 | * Just submit the page. For data=journal mode we |
2650 | * first handle writeout of the page for checkpoint and |
2651 | * only after that handle delayed page dirtying. This |
2652 | * makes sure current data is checkpointed to the final |
2653 | * location before possibly journalling it again which |
2654 | * is desirable when the page is frequently dirtied |
2655 | * through a pin. |
2656 | */ |
2657 | if (!mpd->can_map) { |
2658 | err = mpage_submit_folio(mpd, folio); |
2659 | if (err < 0) |
2660 | goto out; |
2661 | /* Pending dirtying of journalled data? */ |
2662 | if (folio_test_checked(folio)) { |
2663 | err = mpage_journal_page_buffers(handle, |
2664 | mpd, folio); |
2665 | if (err < 0) |
2666 | goto out; |
2667 | mpd->journalled_more_data = 1; |
2668 | } |
2669 | mpage_folio_done(mpd, folio); |
2670 | } else { |
2671 | /* Add all dirty buffers to mpd */ |
2672 | lblk = ((ext4_lblk_t)folio->index) << |
2673 | (PAGE_SHIFT - blkbits); |
2674 | head = folio_buffers(folio); |
2675 | err = mpage_process_page_bufs(mpd, head, bh: head, |
2676 | lblk); |
2677 | if (err <= 0) |
2678 | goto out; |
2679 | err = 0; |
2680 | } |
2681 | } |
2682 | folio_batch_release(fbatch: &fbatch); |
2683 | cond_resched(); |
2684 | } |
2685 | mpd->scanned_until_end = 1; |
2686 | if (handle) |
2687 | ext4_journal_stop(handle); |
2688 | return 0; |
2689 | out: |
2690 | folio_batch_release(fbatch: &fbatch); |
2691 | if (handle) |
2692 | ext4_journal_stop(handle); |
2693 | return err; |
2694 | } |
2695 | |
2696 | static int ext4_do_writepages(struct mpage_da_data *mpd) |
2697 | { |
2698 | struct writeback_control *wbc = mpd->wbc; |
2699 | pgoff_t writeback_index = 0; |
2700 | long nr_to_write = wbc->nr_to_write; |
2701 | int range_whole = 0; |
2702 | int cycled = 1; |
2703 | handle_t *handle = NULL; |
2704 | struct inode *inode = mpd->inode; |
2705 | struct address_space *mapping = inode->i_mapping; |
2706 | int needed_blocks, rsv_blocks = 0, ret = 0; |
2707 | struct ext4_sb_info *sbi = EXT4_SB(sb: mapping->host->i_sb); |
2708 | struct blk_plug plug; |
2709 | bool give_up_on_write = false; |
2710 | |
2711 | trace_ext4_writepages(inode, wbc); |
2712 | |
2713 | /* |
2714 | * No pages to write? This is mainly a kludge to avoid starting |
2715 | * a transaction for special inodes like journal inode on last iput() |
2716 | * because that could violate lock ordering on umount |
2717 | */ |
2718 | if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) |
2719 | goto out_writepages; |
2720 | |
2721 | /* |
2722 | * If the filesystem has aborted, it is read-only, so return |
2723 | * right away instead of dumping stack traces later on that |
2724 | * will obscure the real source of the problem. We test |
2725 | * fs shutdown state instead of sb->s_flag's SB_RDONLY because |
2726 | * the latter could be true if the filesystem is mounted |
2727 | * read-only, and in that case, ext4_writepages should |
2728 | * *never* be called, so if that ever happens, we would want |
2729 | * the stack trace. |
2730 | */ |
2731 | ret = ext4_emergency_state(sb: mapping->host->i_sb); |
2732 | if (unlikely(ret)) |
2733 | goto out_writepages; |
2734 | |
2735 | /* |
2736 | * If we have inline data and arrive here, it means that |
2737 | * we will soon create the block for the 1st page, so |
2738 | * we'd better clear the inline data here. |
2739 | */ |
2740 | if (ext4_has_inline_data(inode)) { |
2741 | /* Just inode will be modified... */ |
2742 | handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); |
2743 | if (IS_ERR(ptr: handle)) { |
2744 | ret = PTR_ERR(ptr: handle); |
2745 | goto out_writepages; |
2746 | } |
2747 | BUG_ON(ext4_test_inode_state(inode, |
2748 | EXT4_STATE_MAY_INLINE_DATA)); |
2749 | ext4_destroy_inline_data(handle, inode); |
2750 | ext4_journal_stop(handle); |
2751 | } |
2752 | |
2753 | /* |
2754 | * data=journal mode does not do delalloc so we just need to writeout / |
2755 | * journal already mapped buffers. On the other hand we need to commit |
2756 | * transaction to make data stable. We expect all the data to be |
2757 | * already in the journal (the only exception are DMA pinned pages |
2758 | * dirtied behind our back) so we commit transaction here and run the |
2759 | * writeback loop to checkpoint them. The checkpointing is not actually |
2760 | * necessary to make data persistent *but* quite a few places (extent |
2761 | * shifting operations, fsverity, ...) depend on being able to drop |
2762 | * pagecache pages after calling filemap_write_and_wait() and for that |
2763 | * checkpointing needs to happen. |
2764 | */ |
2765 | if (ext4_should_journal_data(inode)) { |
2766 | mpd->can_map = 0; |
2767 | if (wbc->sync_mode == WB_SYNC_ALL) |
2768 | ext4_fc_commit(journal: sbi->s_journal, |
2769 | EXT4_I(inode)->i_datasync_tid); |
2770 | } |
2771 | mpd->journalled_more_data = 0; |
2772 | |
2773 | if (ext4_should_dioread_nolock(inode)) { |
2774 | /* |
2775 | * We may need to convert up to one extent per block in |
2776 | * the page and we may dirty the inode. |
2777 | */ |
2778 | rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, |
2779 | PAGE_SIZE >> inode->i_blkbits); |
2780 | } |
2781 | |
2782 | if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) |
2783 | range_whole = 1; |
2784 | |
2785 | if (wbc->range_cyclic) { |
2786 | writeback_index = mapping->writeback_index; |
2787 | if (writeback_index) |
2788 | cycled = 0; |
2789 | mpd->first_page = writeback_index; |
2790 | mpd->last_page = -1; |
2791 | } else { |
2792 | mpd->first_page = wbc->range_start >> PAGE_SHIFT; |
2793 | mpd->last_page = wbc->range_end >> PAGE_SHIFT; |
2794 | } |
2795 | |
2796 | ext4_io_submit_init(io: &mpd->io_submit, wbc); |
2797 | retry: |
2798 | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) |
2799 | tag_pages_for_writeback(mapping, start: mpd->first_page, |
2800 | end: mpd->last_page); |
2801 | blk_start_plug(&plug); |
2802 | |
2803 | /* |
2804 | * First writeback pages that don't need mapping - we can avoid |
2805 | * starting a transaction unnecessarily and also avoid being blocked |
2806 | * in the block layer on device congestion while having transaction |
2807 | * started. |
2808 | */ |
2809 | mpd->do_map = 0; |
2810 | mpd->scanned_until_end = 0; |
2811 | mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); |
2812 | if (!mpd->io_submit.io_end) { |
2813 | ret = -ENOMEM; |
2814 | goto unplug; |
2815 | } |
2816 | ret = mpage_prepare_extent_to_map(mpd); |
2817 | /* Unlock pages we didn't use */ |
2818 | mpage_release_unused_pages(mpd, invalidate: false); |
2819 | /* Submit prepared bio */ |
2820 | ext4_io_submit(io: &mpd->io_submit); |
2821 | ext4_put_io_end_defer(io_end: mpd->io_submit.io_end); |
2822 | mpd->io_submit.io_end = NULL; |
2823 | if (ret < 0) |
2824 | goto unplug; |
2825 | |
2826 | while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { |
2827 | /* For each extent of pages we use new io_end */ |
2828 | mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); |
2829 | if (!mpd->io_submit.io_end) { |
2830 | ret = -ENOMEM; |
2831 | break; |
2832 | } |
2833 | |
2834 | WARN_ON_ONCE(!mpd->can_map); |
2835 | /* |
2836 | * We have two constraints: We find one extent to map and we |
2837 | * must always write out whole page (makes a difference when |
2838 | * blocksize < pagesize) so that we don't block on IO when we |
2839 | * try to write out the rest of the page. Journalled mode is |
2840 | * not supported by delalloc. |
2841 | */ |
2842 | BUG_ON(ext4_should_journal_data(inode)); |
2843 | needed_blocks = ext4_da_writepages_trans_blocks(inode); |
2844 | |
2845 | /* start a new transaction */ |
2846 | handle = ext4_journal_start_with_reserve(inode, |
2847 | EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); |
2848 | if (IS_ERR(ptr: handle)) { |
2849 | ret = PTR_ERR(ptr: handle); |
2850 | ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " |
2851 | "%ld pages, ino %lu; err %d", __func__, |
2852 | wbc->nr_to_write, inode->i_ino, ret); |
2853 | /* Release allocated io_end */ |
2854 | ext4_put_io_end(io_end: mpd->io_submit.io_end); |
2855 | mpd->io_submit.io_end = NULL; |
2856 | break; |
2857 | } |
2858 | mpd->do_map = 1; |
2859 | |
2860 | trace_ext4_da_write_pages(inode, first_page: mpd->first_page, wbc); |
2861 | ret = mpage_prepare_extent_to_map(mpd); |
2862 | if (!ret && mpd->map.m_len) |
2863 | ret = mpage_map_and_submit_extent(handle, mpd, |
2864 | give_up_on_write: &give_up_on_write); |
2865 | /* |
2866 | * Caution: If the handle is synchronous, |
2867 | * ext4_journal_stop() can wait for transaction commit |
2868 | * to finish which may depend on writeback of pages to |
2869 | * complete or on page lock to be released. In that |
2870 | * case, we have to wait until after we have |
2871 | * submitted all the IO, released page locks we hold, |
2872 | * and dropped io_end reference (for extent conversion |
2873 | * to be able to complete) before stopping the handle. |
2874 | */ |
2875 | if (!ext4_handle_valid(handle) || handle->h_sync == 0) { |
2876 | ext4_journal_stop(handle); |
2877 | handle = NULL; |
2878 | mpd->do_map = 0; |
2879 | } |
2880 | /* Unlock pages we didn't use */ |
2881 | mpage_release_unused_pages(mpd, invalidate: give_up_on_write); |
2882 | /* Submit prepared bio */ |
2883 | ext4_io_submit(io: &mpd->io_submit); |
2884 | |
2885 | /* |
2886 | * Drop our io_end reference we got from init. We have |
2887 | * to be careful and use deferred io_end finishing if |
2888 | * we are still holding the transaction as we can |
2889 | * release the last reference to io_end which may end |
2890 | * up doing unwritten extent conversion. |
2891 | */ |
2892 | if (handle) { |
2893 | ext4_put_io_end_defer(io_end: mpd->io_submit.io_end); |
2894 | ext4_journal_stop(handle); |
2895 | } else |
2896 | ext4_put_io_end(io_end: mpd->io_submit.io_end); |
2897 | mpd->io_submit.io_end = NULL; |
2898 | |
2899 | if (ret == -ENOSPC && sbi->s_journal) { |
2900 | /* |
2901 | * Commit the transaction which would |
2902 | * free blocks released in the transaction |
2903 | * and try again |
2904 | */ |
2905 | jbd2_journal_force_commit_nested(sbi->s_journal); |
2906 | ret = 0; |
2907 | continue; |
2908 | } |
2909 | /* Fatal error - ENOMEM, EIO... */ |
2910 | if (ret) |
2911 | break; |
2912 | } |
2913 | unplug: |
2914 | blk_finish_plug(&plug); |
2915 | if (!ret && !cycled && wbc->nr_to_write > 0) { |
2916 | cycled = 1; |
2917 | mpd->last_page = writeback_index - 1; |
2918 | mpd->first_page = 0; |
2919 | goto retry; |
2920 | } |
2921 | |
2922 | /* Update index */ |
2923 | if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) |
2924 | /* |
2925 | * Set the writeback_index so that range_cyclic |
2926 | * mode will write it back later |
2927 | */ |
2928 | mapping->writeback_index = mpd->first_page; |
2929 | |
2930 | out_writepages: |
2931 | trace_ext4_writepages_result(inode, wbc, ret, |
2932 | pages_written: nr_to_write - wbc->nr_to_write); |
2933 | return ret; |
2934 | } |
2935 | |
2936 | static int ext4_writepages(struct address_space *mapping, |
2937 | struct writeback_control *wbc) |
2938 | { |
2939 | struct super_block *sb = mapping->host->i_sb; |
2940 | struct mpage_da_data mpd = { |
2941 | .inode = mapping->host, |
2942 | .wbc = wbc, |
2943 | .can_map = 1, |
2944 | }; |
2945 | int ret; |
2946 | int alloc_ctx; |
2947 | |
2948 | ret = ext4_emergency_state(sb); |
2949 | if (unlikely(ret)) |
2950 | return ret; |
2951 | |
2952 | alloc_ctx = ext4_writepages_down_read(sb); |
2953 | ret = ext4_do_writepages(mpd: &mpd); |
2954 | /* |
2955 | * For data=journal writeback we could have come across pages marked |
2956 | * for delayed dirtying (PageChecked) which were just added to the |
2957 | * running transaction. Try once more to get them to stable storage. |
2958 | */ |
2959 | if (!ret && mpd.journalled_more_data) |
2960 | ret = ext4_do_writepages(mpd: &mpd); |
2961 | ext4_writepages_up_read(sb, ctx: alloc_ctx); |
2962 | |
2963 | return ret; |
2964 | } |
2965 | |
2966 | int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) |
2967 | { |
2968 | struct writeback_control wbc = { |
2969 | .sync_mode = WB_SYNC_ALL, |
2970 | .nr_to_write = LONG_MAX, |
2971 | .range_start = jinode->i_dirty_start, |
2972 | .range_end = jinode->i_dirty_end, |
2973 | }; |
2974 | struct mpage_da_data mpd = { |
2975 | .inode = jinode->i_vfs_inode, |
2976 | .wbc = &wbc, |
2977 | .can_map = 0, |
2978 | }; |
2979 | return ext4_do_writepages(mpd: &mpd); |
2980 | } |
2981 | |
2982 | static int ext4_dax_writepages(struct address_space *mapping, |
2983 | struct writeback_control *wbc) |
2984 | { |
2985 | int ret; |
2986 | long nr_to_write = wbc->nr_to_write; |
2987 | struct inode *inode = mapping->host; |
2988 | int alloc_ctx; |
2989 | |
2990 | ret = ext4_emergency_state(sb: inode->i_sb); |
2991 | if (unlikely(ret)) |
2992 | return ret; |
2993 | |
2994 | alloc_ctx = ext4_writepages_down_read(sb: inode->i_sb); |
2995 | trace_ext4_writepages(inode, wbc); |
2996 | |
2997 | ret = dax_writeback_mapping_range(mapping, |
2998 | dax_dev: EXT4_SB(sb: inode->i_sb)->s_daxdev, wbc); |
2999 | trace_ext4_writepages_result(inode, wbc, ret, |
3000 | pages_written: nr_to_write - wbc->nr_to_write); |
3001 | ext4_writepages_up_read(sb: inode->i_sb, ctx: alloc_ctx); |
3002 | return ret; |
3003 | } |
3004 | |
3005 | static int ext4_nonda_switch(struct super_block *sb) |
3006 | { |
3007 | s64 free_clusters, dirty_clusters; |
3008 | struct ext4_sb_info *sbi = EXT4_SB(sb); |
3009 | |
3010 | /* |
3011 | * switch to non delalloc mode if we are running low |
3012 | * on free block. The free block accounting via percpu |
3013 | * counters can get slightly wrong with percpu_counter_batch getting |
3014 | * accumulated on each CPU without updating global counters |
3015 | * Delalloc need an accurate free block accounting. So switch |
3016 | * to non delalloc when we are near to error range. |
3017 | */ |
3018 | free_clusters = |
3019 | percpu_counter_read_positive(fbc: &sbi->s_freeclusters_counter); |
3020 | dirty_clusters = |
3021 | percpu_counter_read_positive(fbc: &sbi->s_dirtyclusters_counter); |
3022 | /* |
3023 | * Start pushing delalloc when 1/2 of free blocks are dirty. |
3024 | */ |
3025 | if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) |
3026 | try_to_writeback_inodes_sb(sb, reason: WB_REASON_FS_FREE_SPACE); |
3027 | |
3028 | if (2 * free_clusters < 3 * dirty_clusters || |
3029 | free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { |
3030 | /* |
3031 | * free block count is less than 150% of dirty blocks |
3032 | * or free blocks is less than watermark |
3033 | */ |
3034 | return 1; |
3035 | } |
3036 | return 0; |
3037 | } |
3038 | |
3039 | static int ext4_da_write_begin(struct file *file, struct address_space *mapping, |
3040 | loff_t pos, unsigned len, |
3041 | struct folio **foliop, void **fsdata) |
3042 | { |
3043 | int ret, retries = 0; |
3044 | struct folio *folio; |
3045 | pgoff_t index; |
3046 | struct inode *inode = mapping->host; |
3047 | fgf_t fgp = FGP_WRITEBEGIN; |
3048 | |
3049 | ret = ext4_emergency_state(sb: inode->i_sb); |
3050 | if (unlikely(ret)) |
3051 | return ret; |
3052 | |
3053 | index = pos >> PAGE_SHIFT; |
3054 | |
3055 | if (ext4_nonda_switch(sb: inode->i_sb) || ext4_verity_in_progress(inode)) { |
3056 | *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; |
3057 | return ext4_write_begin(file, mapping, pos, |
3058 | len, foliop, fsdata); |
3059 | } |
3060 | *fsdata = (void *)0; |
3061 | trace_ext4_da_write_begin(inode, pos, len); |
3062 | |
3063 | if (ext4_test_inode_state(inode, bit: EXT4_STATE_MAY_INLINE_DATA)) { |
3064 | ret = ext4_generic_write_inline_data(mapping, inode, pos, len, |
3065 | foliop, fsdata, da: true); |
3066 | if (ret < 0) |
3067 | return ret; |
3068 | if (ret == 1) |
3069 | return 0; |
3070 | } |
3071 | |
3072 | retry: |
3073 | fgp |= fgf_set_order(size: len); |
3074 | folio = __filemap_get_folio(mapping, index, fgp_flags: fgp, |
3075 | gfp: mapping_gfp_mask(mapping)); |
3076 | if (IS_ERR(ptr: folio)) |
3077 | return PTR_ERR(ptr: folio); |
3078 | |
3079 | if (pos + len > folio_pos(folio) + folio_size(folio)) |
3080 | len = folio_pos(folio) + folio_size(folio) - pos; |
3081 | |
3082 | ret = ext4_block_write_begin(NULL, folio, pos, len, |
3083 | get_block: ext4_da_get_block_prep); |
3084 | if (ret < 0) { |
3085 | folio_unlock(folio); |
3086 | folio_put(folio); |
3087 | /* |
3088 | * block_write_begin may have instantiated a few blocks |
3089 | * outside i_size. Trim these off again. Don't need |
3090 | * i_size_read because we hold inode lock. |
3091 | */ |
3092 | if (pos + len > inode->i_size) |
3093 | ext4_truncate_failed_write(inode); |
3094 | |
3095 | if (ret == -ENOSPC && |
3096 | ext4_should_retry_alloc(sb: inode->i_sb, retries: &retries)) |
3097 | goto retry; |
3098 | return ret; |
3099 | } |
3100 | |
3101 | *foliop = folio; |
3102 | return ret; |
3103 | } |
3104 | |
3105 | /* |
3106 | * Check if we should update i_disksize |
3107 | * when write to the end of file but not require block allocation |
3108 | */ |
3109 | static int ext4_da_should_update_i_disksize(struct folio *folio, |
3110 | unsigned long offset) |
3111 | { |
3112 | struct buffer_head *bh; |
3113 | struct inode *inode = folio->mapping->host; |
3114 | unsigned int idx; |
3115 | int i; |
3116 | |
3117 | bh = folio_buffers(folio); |
3118 | idx = offset >> inode->i_blkbits; |
3119 | |
3120 | for (i = 0; i < idx; i++) |
3121 | bh = bh->b_this_page; |
3122 | |
3123 | if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) |
3124 | return 0; |
3125 | return 1; |
3126 | } |
3127 | |
3128 | static int ext4_da_do_write_end(struct address_space *mapping, |
3129 | loff_t pos, unsigned len, unsigned copied, |
3130 | struct folio *folio) |
3131 | { |
3132 | struct inode *inode = mapping->host; |
3133 | loff_t old_size = inode->i_size; |
3134 | bool disksize_changed = false; |
3135 | loff_t new_i_size, zero_len = 0; |
3136 | handle_t *handle; |
3137 | |
3138 | if (unlikely(!folio_buffers(folio))) { |
3139 | folio_unlock(folio); |
3140 | folio_put(folio); |
3141 | return -EIO; |
3142 | } |
3143 | /* |
3144 | * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES |
3145 | * flag, which all that's needed to trigger page writeback. |
3146 | */ |
3147 | copied = block_write_end(NULL, mapping, pos, len, copied, |
3148 | folio, NULL); |
3149 | new_i_size = pos + copied; |
3150 | |
3151 | /* |
3152 | * It's important to update i_size while still holding folio lock, |
3153 | * because folio writeout could otherwise come in and zero beyond |
3154 | * i_size. |
3155 | * |
3156 | * Since we are holding inode lock, we are sure i_disksize <= |
3157 | * i_size. We also know that if i_disksize < i_size, there are |
3158 | * delalloc writes pending in the range up to i_size. If the end of |
3159 | * the current write is <= i_size, there's no need to touch |
3160 | * i_disksize since writeback will push i_disksize up to i_size |
3161 | * eventually. If the end of the current write is > i_size and |
3162 | * inside an allocated block which ext4_da_should_update_i_disksize() |
3163 | * checked, we need to update i_disksize here as certain |
3164 | * ext4_writepages() paths not allocating blocks and update i_disksize. |
3165 | */ |
3166 | if (new_i_size > inode->i_size) { |
3167 | unsigned long end; |
3168 | |
3169 | i_size_write(inode, i_size: new_i_size); |
3170 | end = offset_in_folio(folio, new_i_size - 1); |
3171 | if (copied && ext4_da_should_update_i_disksize(folio, offset: end)) { |
3172 | ext4_update_i_disksize(inode, newsize: new_i_size); |
3173 | disksize_changed = true; |
3174 | } |
3175 | } |
3176 | |
3177 | folio_unlock(folio); |
3178 | folio_put(folio); |
3179 | |
3180 | if (pos > old_size) { |
3181 | pagecache_isize_extended(inode, from: old_size, to: pos); |
3182 | zero_len = pos - old_size; |
3183 | } |
3184 | |
3185 | if (!disksize_changed && !zero_len) |
3186 | return copied; |
3187 | |
3188 | handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); |
3189 | if (IS_ERR(ptr: handle)) |
3190 | return PTR_ERR(ptr: handle); |
3191 | if (zero_len) |
3192 | ext4_zero_partial_blocks(handle, inode, lstart: old_size, lend: zero_len); |
3193 | ext4_mark_inode_dirty(handle, inode); |
3194 | ext4_journal_stop(handle); |
3195 | |
3196 | return copied; |
3197 | } |
3198 | |
3199 | static int ext4_da_write_end(struct file *file, |
3200 | struct address_space *mapping, |
3201 | loff_t pos, unsigned len, unsigned copied, |
3202 | struct folio *folio, void *fsdata) |
3203 | { |
3204 | struct inode *inode = mapping->host; |
3205 | int write_mode = (int)(unsigned long)fsdata; |
3206 | |
3207 | if (write_mode == FALL_BACK_TO_NONDELALLOC) |
3208 | return ext4_write_end(file, mapping, pos, |
3209 | len, copied, folio, fsdata); |
3210 | |
3211 | trace_ext4_da_write_end(inode, pos, len, copied); |
3212 | |
3213 | if (write_mode != CONVERT_INLINE_DATA && |
3214 | ext4_test_inode_state(inode, bit: EXT4_STATE_MAY_INLINE_DATA) && |
3215 | ext4_has_inline_data(inode)) |
3216 | return ext4_write_inline_data_end(inode, pos, len, copied, |
3217 | folio); |
3218 | |
3219 | if (unlikely(copied < len) && !folio_test_uptodate(folio)) |
3220 | copied = 0; |
3221 | |
3222 | return ext4_da_do_write_end(mapping, pos, len, copied, folio); |
3223 | } |
3224 | |
3225 | /* |
3226 | * Force all delayed allocation blocks to be allocated for a given inode. |
3227 | */ |
3228 | int ext4_alloc_da_blocks(struct inode *inode) |
3229 | { |
3230 | trace_ext4_alloc_da_blocks(inode); |
3231 | |
3232 | if (!EXT4_I(inode)->i_reserved_data_blocks) |
3233 | return 0; |
3234 | |
3235 | /* |
3236 | * We do something simple for now. The filemap_flush() will |
3237 | * also start triggering a write of the data blocks, which is |
3238 | * not strictly speaking necessary (and for users of |
3239 | * laptop_mode, not even desirable). However, to do otherwise |
3240 | * would require replicating code paths in: |
3241 | * |
3242 | * ext4_writepages() -> |
3243 | * write_cache_pages() ---> (via passed in callback function) |
3244 | * __mpage_da_writepage() --> |
3245 | * mpage_add_bh_to_extent() |
3246 | * mpage_da_map_blocks() |
3247 | * |
3248 | * The problem is that write_cache_pages(), located in |
3249 | * mm/page-writeback.c, marks pages clean in preparation for |
3250 | * doing I/O, which is not desirable if we're not planning on |
3251 | * doing I/O at all. |
3252 | * |
3253 | * We could call write_cache_pages(), and then redirty all of |
3254 | * the pages by calling redirty_page_for_writepage() but that |
3255 | * would be ugly in the extreme. So instead we would need to |
3256 | * replicate parts of the code in the above functions, |
3257 | * simplifying them because we wouldn't actually intend to |
3258 | * write out the pages, but rather only collect contiguous |
3259 | * logical block extents, call the multi-block allocator, and |
3260 | * then update the buffer heads with the block allocations. |
3261 | * |
3262 | * For now, though, we'll cheat by calling filemap_flush(), |
3263 | * which will map the blocks, and start the I/O, but not |
3264 | * actually wait for the I/O to complete. |
3265 | */ |
3266 | return filemap_flush(inode->i_mapping); |
3267 | } |
3268 | |
3269 | /* |
3270 | * bmap() is special. It gets used by applications such as lilo and by |
3271 | * the swapper to find the on-disk block of a specific piece of data. |
3272 | * |
3273 | * Naturally, this is dangerous if the block concerned is still in the |
3274 | * journal. If somebody makes a swapfile on an ext4 data-journaling |
3275 | * filesystem and enables swap, then they may get a nasty shock when the |
3276 | * data getting swapped to that swapfile suddenly gets overwritten by |
3277 | * the original zero's written out previously to the journal and |
3278 | * awaiting writeback in the kernel's buffer cache. |
3279 | * |
3280 | * So, if we see any bmap calls here on a modified, data-journaled file, |
3281 | * take extra steps to flush any blocks which might be in the cache. |
3282 | */ |
3283 | static sector_t ext4_bmap(struct address_space *mapping, sector_t block) |
3284 | { |
3285 | struct inode *inode = mapping->host; |
3286 | sector_t ret = 0; |
3287 | |
3288 | inode_lock_shared(inode); |
3289 | /* |
3290 | * We can get here for an inline file via the FIBMAP ioctl |
3291 | */ |
3292 | if (ext4_has_inline_data(inode)) |
3293 | goto out; |
3294 | |
3295 | if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && |
3296 | (test_opt(inode->i_sb, DELALLOC) || |
3297 | ext4_should_journal_data(inode))) { |
3298 | /* |
3299 | * With delalloc or journalled data we want to sync the file so |
3300 | * that we can make sure we allocate blocks for file and data |
3301 | * is in place for the user to see it |
3302 | */ |
3303 | filemap_write_and_wait(mapping); |
3304 | } |
3305 | |
3306 | ret = iomap_bmap(mapping, bno: block, ops: &ext4_iomap_ops); |
3307 | |
3308 | out: |
3309 | inode_unlock_shared(inode); |
3310 | return ret; |
3311 | } |
3312 | |
3313 | static int ext4_read_folio(struct file *file, struct folio *folio) |
3314 | { |
3315 | int ret = -EAGAIN; |
3316 | struct inode *inode = folio->mapping->host; |
3317 | |
3318 | trace_ext4_read_folio(inode, folio); |
3319 | |
3320 | if (ext4_has_inline_data(inode)) |
3321 | ret = ext4_readpage_inline(inode, folio); |
3322 | |
3323 | if (ret == -EAGAIN) |
3324 | return ext4_mpage_readpages(inode, NULL, folio); |
3325 | |
3326 | return ret; |
3327 | } |
3328 | |
3329 | static void ext4_readahead(struct readahead_control *rac) |
3330 | { |
3331 | struct inode *inode = rac->mapping->host; |
3332 | |
3333 | /* If the file has inline data, no need to do readahead. */ |
3334 | if (ext4_has_inline_data(inode)) |
3335 | return; |
3336 | |
3337 | ext4_mpage_readpages(inode, rac, NULL); |
3338 | } |
3339 | |
3340 | static void ext4_invalidate_folio(struct folio *folio, size_t offset, |
3341 | size_t length) |
3342 | { |
3343 | trace_ext4_invalidate_folio(folio, offset, length); |
3344 | |
3345 | /* No journalling happens on data buffers when this function is used */ |
3346 | WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); |
3347 | |
3348 | block_invalidate_folio(folio, offset, length); |
3349 | } |
3350 | |
3351 | static int __ext4_journalled_invalidate_folio(struct folio *folio, |
3352 | size_t offset, size_t length) |
3353 | { |
3354 | journal_t *journal = EXT4_JOURNAL(folio->mapping->host); |
3355 | |
3356 | trace_ext4_journalled_invalidate_folio(folio, offset, length); |
3357 | |
3358 | /* |
3359 | * If it's a full truncate we just forget about the pending dirtying |
3360 | */ |
3361 | if (offset == 0 && length == folio_size(folio)) |
3362 | folio_clear_checked(folio); |
3363 | |
3364 | return jbd2_journal_invalidate_folio(journal, folio, offset, length); |
3365 | } |
3366 | |
3367 | /* Wrapper for aops... */ |
3368 | static void ext4_journalled_invalidate_folio(struct folio *folio, |
3369 | size_t offset, |
3370 | size_t length) |
3371 | { |
3372 | WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); |
3373 | } |
3374 | |
3375 | static bool ext4_release_folio(struct folio *folio, gfp_t wait) |
3376 | { |
3377 | struct inode *inode = folio->mapping->host; |
3378 | journal_t *journal = EXT4_JOURNAL(inode); |
3379 | |
3380 | trace_ext4_release_folio(inode, folio); |
3381 | |
3382 | /* Page has dirty journalled data -> cannot release */ |
3383 | if (folio_test_checked(folio)) |
3384 | return false; |
3385 | if (journal) |
3386 | return jbd2_journal_try_to_free_buffers(journal, folio); |
3387 | else |
3388 | return try_to_free_buffers(folio); |
3389 | } |
3390 | |
3391 | static bool ext4_inode_datasync_dirty(struct inode *inode) |
3392 | { |
3393 | journal_t *journal = EXT4_SB(sb: inode->i_sb)->s_journal; |
3394 | |
3395 | if (journal) { |
3396 | if (jbd2_transaction_committed(journal, |
3397 | EXT4_I(inode)->i_datasync_tid)) |
3398 | return false; |
3399 | if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) |
3400 | return !list_empty(head: &EXT4_I(inode)->i_fc_list); |
3401 | return true; |
3402 | } |
3403 | |
3404 | /* Any metadata buffers to write? */ |
3405 | if (!list_empty(head: &inode->i_mapping->i_private_list)) |
3406 | return true; |
3407 | return inode->i_state & I_DIRTY_DATASYNC; |
3408 | } |
3409 | |
3410 | static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, |
3411 | struct ext4_map_blocks *map, loff_t offset, |
3412 | loff_t length, unsigned int flags) |
3413 | { |
3414 | u8 blkbits = inode->i_blkbits; |
3415 | |
3416 | /* |
3417 | * Writes that span EOF might trigger an I/O size update on completion, |
3418 | * so consider them to be dirty for the purpose of O_DSYNC, even if |
3419 | * there is no other metadata changes being made or are pending. |
3420 | */ |
3421 | iomap->flags = 0; |
3422 | if (ext4_inode_datasync_dirty(inode) || |
3423 | offset + length > i_size_read(inode)) |
3424 | iomap->flags |= IOMAP_F_DIRTY; |
3425 | |
3426 | if (map->m_flags & EXT4_MAP_NEW) |
3427 | iomap->flags |= IOMAP_F_NEW; |
3428 | |
3429 | /* HW-offload atomics are always used */ |
3430 | if (flags & IOMAP_ATOMIC) |
3431 | iomap->flags |= IOMAP_F_ATOMIC_BIO; |
3432 | |
3433 | if (flags & IOMAP_DAX) |
3434 | iomap->dax_dev = EXT4_SB(sb: inode->i_sb)->s_daxdev; |
3435 | else |
3436 | iomap->bdev = inode->i_sb->s_bdev; |
3437 | iomap->offset = (u64) map->m_lblk << blkbits; |
3438 | iomap->length = (u64) map->m_len << blkbits; |
3439 | |
3440 | if ((map->m_flags & EXT4_MAP_MAPPED) && |
3441 | !ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS)) |
3442 | iomap->flags |= IOMAP_F_MERGED; |
3443 | |
3444 | /* |
3445 | * Flags passed to ext4_map_blocks() for direct I/O writes can result |
3446 | * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits |
3447 | * set. In order for any allocated unwritten extents to be converted |
3448 | * into written extents correctly within the ->end_io() handler, we |
3449 | * need to ensure that the iomap->type is set appropriately. Hence, the |
3450 | * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has |
3451 | * been set first. |
3452 | */ |
3453 | if (map->m_flags & EXT4_MAP_UNWRITTEN) { |
3454 | iomap->type = IOMAP_UNWRITTEN; |
3455 | iomap->addr = (u64) map->m_pblk << blkbits; |
3456 | if (flags & IOMAP_DAX) |
3457 | iomap->addr += EXT4_SB(sb: inode->i_sb)->s_dax_part_off; |
3458 | } else if (map->m_flags & EXT4_MAP_MAPPED) { |
3459 | iomap->type = IOMAP_MAPPED; |
3460 | iomap->addr = (u64) map->m_pblk << blkbits; |
3461 | if (flags & IOMAP_DAX) |
3462 | iomap->addr += EXT4_SB(sb: inode->i_sb)->s_dax_part_off; |
3463 | } else if (map->m_flags & EXT4_MAP_DELAYED) { |
3464 | iomap->type = IOMAP_DELALLOC; |
3465 | iomap->addr = IOMAP_NULL_ADDR; |
3466 | } else { |
3467 | iomap->type = IOMAP_HOLE; |
3468 | iomap->addr = IOMAP_NULL_ADDR; |
3469 | } |
3470 | } |
3471 | |
3472 | static int ext4_map_blocks_atomic_write_slow(handle_t *handle, |
3473 | struct inode *inode, struct ext4_map_blocks *map) |
3474 | { |
3475 | ext4_lblk_t m_lblk = map->m_lblk; |
3476 | unsigned int m_len = map->m_len; |
3477 | unsigned int mapped_len = 0, m_flags = 0; |
3478 | ext4_fsblk_t next_pblk; |
3479 | bool check_next_pblk = false; |
3480 | int ret = 0; |
3481 | |
3482 | WARN_ON_ONCE(!ext4_has_feature_bigalloc(inode->i_sb)); |
3483 | |
3484 | /* |
3485 | * This is a slow path in case of mixed mapping. We use |
3486 | * EXT4_GET_BLOCKS_CREATE_ZERO flag here to make sure we get a single |
3487 | * contiguous mapped mapping. This will ensure any unwritten or hole |
3488 | * regions within the requested range is zeroed out and we return |
3489 | * a single contiguous mapped extent. |
3490 | */ |
3491 | m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; |
3492 | |
3493 | do { |
3494 | ret = ext4_map_blocks(handle, inode, map, flags: m_flags); |
3495 | if (ret < 0 && ret != -ENOSPC) |
3496 | goto out_err; |
3497 | /* |
3498 | * This should never happen, but let's return an error code to |
3499 | * avoid an infinite loop in here. |
3500 | */ |
3501 | if (ret == 0) { |
3502 | ret = -EFSCORRUPTED; |
3503 | ext4_warning_inode(inode, |
3504 | "ext4_map_blocks() couldn't allocate blocks m_flags: 0x%x, ret:%d", |
3505 | m_flags, ret); |
3506 | goto out_err; |
3507 | } |
3508 | /* |
3509 | * With bigalloc we should never get ENOSPC nor discontiguous |
3510 | * physical extents. |
3511 | */ |
3512 | if ((check_next_pblk && next_pblk != map->m_pblk) || |
3513 | ret == -ENOSPC) { |
3514 | ext4_warning_inode(inode, |
3515 | "Non-contiguous allocation detected: expected %llu, got %llu, " |
3516 | "or ext4_map_blocks() returned out of space ret: %d", |
3517 | next_pblk, map->m_pblk, ret); |
3518 | ret = -EFSCORRUPTED; |
3519 | goto out_err; |
3520 | } |
3521 | next_pblk = map->m_pblk + map->m_len; |
3522 | check_next_pblk = true; |
3523 | |
3524 | mapped_len += map->m_len; |
3525 | map->m_lblk += map->m_len; |
3526 | map->m_len = m_len - mapped_len; |
3527 | } while (mapped_len < m_len); |
3528 | |
3529 | /* |
3530 | * We might have done some work in above loop, so we need to query the |
3531 | * start of the physical extent, based on the origin m_lblk and m_len. |
3532 | * Let's also ensure we were able to allocate the required range for |
3533 | * mixed mapping case. |
3534 | */ |
3535 | map->m_lblk = m_lblk; |
3536 | map->m_len = m_len; |
3537 | map->m_flags = 0; |
3538 | |
3539 | ret = ext4_map_blocks(handle, inode, map, |
3540 | EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF); |
3541 | if (ret != m_len) { |
3542 | ext4_warning_inode(inode, |
3543 | "allocation failed for atomic write request m_lblk:%u, m_len:%u, ret:%d\n", |
3544 | m_lblk, m_len, ret); |
3545 | ret = -EINVAL; |
3546 | } |
3547 | return ret; |
3548 | |
3549 | out_err: |
3550 | /* reset map before returning an error */ |
3551 | map->m_lblk = m_lblk; |
3552 | map->m_len = m_len; |
3553 | map->m_flags = 0; |
3554 | return ret; |
3555 | } |
3556 | |
3557 | /* |
3558 | * ext4_map_blocks_atomic: Helper routine to ensure the entire requested |
3559 | * range in @map [lblk, lblk + len) is one single contiguous extent with no |
3560 | * mixed mappings. |
3561 | * |
3562 | * We first use m_flags passed to us by our caller (ext4_iomap_alloc()). |
3563 | * We only call EXT4_GET_BLOCKS_ZERO in the slow path, when the underlying |
3564 | * physical extent for the requested range does not have a single contiguous |
3565 | * mapping type i.e. (Hole, Mapped, or Unwritten) throughout. |
3566 | * In that case we will loop over the requested range to allocate and zero out |
3567 | * the unwritten / holes in between, to get a single mapped extent from |
3568 | * [m_lblk, m_lblk + m_len). Note that this is only possible because we know |
3569 | * this can be called only with bigalloc enabled filesystem where the underlying |
3570 | * cluster is already allocated. This avoids allocating discontiguous extents |
3571 | * in the slow path due to multiple calls to ext4_map_blocks(). |
3572 | * The slow path is mostly non-performance critical path, so it should be ok to |
3573 | * loop using ext4_map_blocks() with appropriate flags to allocate & zero the |
3574 | * underlying short holes/unwritten extents within the requested range. |
3575 | */ |
3576 | static int ext4_map_blocks_atomic_write(handle_t *handle, struct inode *inode, |
3577 | struct ext4_map_blocks *map, int m_flags, |
3578 | bool *force_commit) |
3579 | { |
3580 | ext4_lblk_t m_lblk = map->m_lblk; |
3581 | unsigned int m_len = map->m_len; |
3582 | int ret = 0; |
3583 | |
3584 | WARN_ON_ONCE(m_len > 1 && !ext4_has_feature_bigalloc(inode->i_sb)); |
3585 | |
3586 | ret = ext4_map_blocks(handle, inode, map, flags: m_flags); |
3587 | if (ret < 0 || ret == m_len) |
3588 | goto out; |
3589 | /* |
3590 | * This is a mixed mapping case where we were not able to allocate |
3591 | * a single contiguous extent. In that case let's reset requested |
3592 | * mapping and call the slow path. |
3593 | */ |
3594 | map->m_lblk = m_lblk; |
3595 | map->m_len = m_len; |
3596 | map->m_flags = 0; |
3597 | |
3598 | /* |
3599 | * slow path means we have mixed mapping, that means we will need |
3600 | * to force txn commit. |
3601 | */ |
3602 | *force_commit = true; |
3603 | return ext4_map_blocks_atomic_write_slow(handle, inode, map); |
3604 | out: |
3605 | return ret; |
3606 | } |
3607 | |
3608 | static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, |
3609 | unsigned int flags) |
3610 | { |
3611 | handle_t *handle; |
3612 | u8 blkbits = inode->i_blkbits; |
3613 | int ret, dio_credits, m_flags = 0, retries = 0; |
3614 | bool force_commit = false; |
3615 | |
3616 | /* |
3617 | * Trim the mapping request to the maximum value that we can map at |
3618 | * once for direct I/O. |
3619 | */ |
3620 | if (map->m_len > DIO_MAX_BLOCKS) |
3621 | map->m_len = DIO_MAX_BLOCKS; |
3622 | |
3623 | /* |
3624 | * journal credits estimation for atomic writes. We call |
3625 | * ext4_map_blocks(), to find if there could be a mixed mapping. If yes, |
3626 | * then let's assume the no. of pextents required can be m_len i.e. |
3627 | * every alternate block can be unwritten and hole. |
3628 | */ |
3629 | if (flags & IOMAP_ATOMIC) { |
3630 | unsigned int orig_mlen = map->m_len; |
3631 | |
3632 | ret = ext4_map_blocks(NULL, inode, map, flags: 0); |
3633 | if (ret < 0) |
3634 | return ret; |
3635 | if (map->m_len < orig_mlen) { |
3636 | map->m_len = orig_mlen; |
3637 | dio_credits = ext4_meta_trans_blocks(inode, lblocks: orig_mlen, |
3638 | pextents: map->m_len); |
3639 | } else { |
3640 | dio_credits = ext4_chunk_trans_blocks(inode, |
3641 | nrblocks: map->m_len); |
3642 | } |
3643 | } else { |
3644 | dio_credits = ext4_chunk_trans_blocks(inode, nrblocks: map->m_len); |
3645 | } |
3646 | |
3647 | retry: |
3648 | /* |
3649 | * Either we allocate blocks and then don't get an unwritten extent, so |
3650 | * in that case we have reserved enough credits. Or, the blocks are |
3651 | * already allocated and unwritten. In that case, the extent conversion |
3652 | * fits into the credits as well. |
3653 | */ |
3654 | handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); |
3655 | if (IS_ERR(ptr: handle)) |
3656 | return PTR_ERR(ptr: handle); |
3657 | |
3658 | /* |
3659 | * DAX and direct I/O are the only two operations that are currently |
3660 | * supported with IOMAP_WRITE. |
3661 | */ |
3662 | WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); |
3663 | if (flags & IOMAP_DAX) |
3664 | m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; |
3665 | /* |
3666 | * We use i_size instead of i_disksize here because delalloc writeback |
3667 | * can complete at any point during the I/O and subsequently push the |
3668 | * i_disksize out to i_size. This could be beyond where direct I/O is |
3669 | * happening and thus expose allocated blocks to direct I/O reads. |
3670 | */ |
3671 | else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) |
3672 | m_flags = EXT4_GET_BLOCKS_CREATE; |
3673 | else if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS)) |
3674 | m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; |
3675 | |
3676 | if (flags & IOMAP_ATOMIC) |
3677 | ret = ext4_map_blocks_atomic_write(handle, inode, map, m_flags, |
3678 | force_commit: &force_commit); |
3679 | else |
3680 | ret = ext4_map_blocks(handle, inode, map, flags: m_flags); |
3681 | |
3682 | /* |
3683 | * We cannot fill holes in indirect tree based inodes as that could |
3684 | * expose stale data in the case of a crash. Use the magic error code |
3685 | * to fallback to buffered I/O. |
3686 | */ |
3687 | if (!m_flags && !ret) |
3688 | ret = -ENOTBLK; |
3689 | |
3690 | ext4_journal_stop(handle); |
3691 | if (ret == -ENOSPC && ext4_should_retry_alloc(sb: inode->i_sb, retries: &retries)) |
3692 | goto retry; |
3693 | |
3694 | /* |
3695 | * Force commit the current transaction if the allocation spans a mixed |
3696 | * mapping range. This ensures any pending metadata updates (like |
3697 | * unwritten to written extents conversion) in this range are in |
3698 | * consistent state with the file data blocks, before performing the |
3699 | * actual write I/O. If the commit fails, the whole I/O must be aborted |
3700 | * to prevent any possible torn writes. |
3701 | */ |
3702 | if (ret > 0 && force_commit) { |
3703 | int ret2; |
3704 | |
3705 | ret2 = ext4_force_commit(sb: inode->i_sb); |
3706 | if (ret2) |
3707 | return ret2; |
3708 | } |
3709 | |
3710 | return ret; |
3711 | } |
3712 | |
3713 | |
3714 | static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, |
3715 | unsigned flags, struct iomap *iomap, struct iomap *srcmap) |
3716 | { |
3717 | int ret; |
3718 | struct ext4_map_blocks map; |
3719 | u8 blkbits = inode->i_blkbits; |
3720 | unsigned int orig_mlen; |
3721 | |
3722 | if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) |
3723 | return -EINVAL; |
3724 | |
3725 | if (WARN_ON_ONCE(ext4_has_inline_data(inode))) |
3726 | return -ERANGE; |
3727 | |
3728 | /* |
3729 | * Calculate the first and last logical blocks respectively. |
3730 | */ |
3731 | map.m_lblk = offset >> blkbits; |
3732 | map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, |
3733 | EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; |
3734 | orig_mlen = map.m_len; |
3735 | |
3736 | if (flags & IOMAP_WRITE) { |
3737 | /* |
3738 | * We check here if the blocks are already allocated, then we |
3739 | * don't need to start a journal txn and we can directly return |
3740 | * the mapping information. This could boost performance |
3741 | * especially in multi-threaded overwrite requests. |
3742 | */ |
3743 | if (offset + length <= i_size_read(inode)) { |
3744 | ret = ext4_map_blocks(NULL, inode, map: &map, flags: 0); |
3745 | /* |
3746 | * For atomic writes the entire requested length should |
3747 | * be mapped. |
3748 | */ |
3749 | if (map.m_flags & EXT4_MAP_MAPPED) { |
3750 | if ((!(flags & IOMAP_ATOMIC) && ret > 0) || |
3751 | (flags & IOMAP_ATOMIC && ret >= orig_mlen)) |
3752 | goto out; |
3753 | } |
3754 | map.m_len = orig_mlen; |
3755 | } |
3756 | ret = ext4_iomap_alloc(inode, map: &map, flags); |
3757 | } else { |
3758 | /* |
3759 | * This can be called for overwrites path from |
3760 | * ext4_iomap_overwrite_begin(). |
3761 | */ |
3762 | ret = ext4_map_blocks(NULL, inode, map: &map, flags: 0); |
3763 | } |
3764 | |
3765 | if (ret < 0) |
3766 | return ret; |
3767 | out: |
3768 | /* |
3769 | * When inline encryption is enabled, sometimes I/O to an encrypted file |
3770 | * has to be broken up to guarantee DUN contiguity. Handle this by |
3771 | * limiting the length of the mapping returned. |
3772 | */ |
3773 | map.m_len = fscrypt_limit_io_blocks(inode, lblk: map.m_lblk, nr_blocks: map.m_len); |
3774 | |
3775 | /* |
3776 | * Before returning to iomap, let's ensure the allocated mapping |
3777 | * covers the entire requested length for atomic writes. |
3778 | */ |
3779 | if (flags & IOMAP_ATOMIC) { |
3780 | if (map.m_len < (length >> blkbits)) { |
3781 | WARN_ON_ONCE(1); |
3782 | return -EINVAL; |
3783 | } |
3784 | } |
3785 | ext4_set_iomap(inode, iomap, map: &map, offset, length, flags); |
3786 | |
3787 | return 0; |
3788 | } |
3789 | |
3790 | static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, |
3791 | loff_t length, unsigned flags, struct iomap *iomap, |
3792 | struct iomap *srcmap) |
3793 | { |
3794 | int ret; |
3795 | |
3796 | /* |
3797 | * Even for writes we don't need to allocate blocks, so just pretend |
3798 | * we are reading to save overhead of starting a transaction. |
3799 | */ |
3800 | flags &= ~IOMAP_WRITE; |
3801 | ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); |
3802 | WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED); |
3803 | return ret; |
3804 | } |
3805 | |
3806 | static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written) |
3807 | { |
3808 | /* must be a directio to fall back to buffered */ |
3809 | if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) != |
3810 | (IOMAP_WRITE | IOMAP_DIRECT)) |
3811 | return false; |
3812 | |
3813 | /* atomic writes are all-or-nothing */ |
3814 | if (flags & IOMAP_ATOMIC) |
3815 | return false; |
3816 | |
3817 | /* can only try again if we wrote nothing */ |
3818 | return written == 0; |
3819 | } |
3820 | |
3821 | static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, |
3822 | ssize_t written, unsigned flags, struct iomap *iomap) |
3823 | { |
3824 | /* |
3825 | * Check to see whether an error occurred while writing out the data to |
3826 | * the allocated blocks. If so, return the magic error code for |
3827 | * non-atomic write so that we fallback to buffered I/O and attempt to |
3828 | * complete the remainder of the I/O. |
3829 | * For non-atomic writes, any blocks that may have been |
3830 | * allocated in preparation for the direct I/O will be reused during |
3831 | * buffered I/O. For atomic write, we never fallback to buffered-io. |
3832 | */ |
3833 | if (ext4_want_directio_fallback(flags, written)) |
3834 | return -ENOTBLK; |
3835 | |
3836 | return 0; |
3837 | } |
3838 | |
3839 | const struct iomap_ops ext4_iomap_ops = { |
3840 | .iomap_begin = ext4_iomap_begin, |
3841 | .iomap_end = ext4_iomap_end, |
3842 | }; |
3843 | |
3844 | const struct iomap_ops ext4_iomap_overwrite_ops = { |
3845 | .iomap_begin = ext4_iomap_overwrite_begin, |
3846 | .iomap_end = ext4_iomap_end, |
3847 | }; |
3848 | |
3849 | static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, |
3850 | loff_t length, unsigned int flags, |
3851 | struct iomap *iomap, struct iomap *srcmap) |
3852 | { |
3853 | int ret; |
3854 | struct ext4_map_blocks map; |
3855 | u8 blkbits = inode->i_blkbits; |
3856 | |
3857 | if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) |
3858 | return -EINVAL; |
3859 | |
3860 | if (ext4_has_inline_data(inode)) { |
3861 | ret = ext4_inline_data_iomap(inode, iomap); |
3862 | if (ret != -EAGAIN) { |
3863 | if (ret == 0 && offset >= iomap->length) |
3864 | ret = -ENOENT; |
3865 | return ret; |
3866 | } |
3867 | } |
3868 | |
3869 | /* |
3870 | * Calculate the first and last logical block respectively. |
3871 | */ |
3872 | map.m_lblk = offset >> blkbits; |
3873 | map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, |
3874 | EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; |
3875 | |
3876 | /* |
3877 | * Fiemap callers may call for offset beyond s_bitmap_maxbytes. |
3878 | * So handle it here itself instead of querying ext4_map_blocks(). |
3879 | * Since ext4_map_blocks() will warn about it and will return |
3880 | * -EIO error. |
3881 | */ |
3882 | if (!(ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))) { |
3883 | struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb); |
3884 | |
3885 | if (offset >= sbi->s_bitmap_maxbytes) { |
3886 | map.m_flags = 0; |
3887 | goto set_iomap; |
3888 | } |
3889 | } |
3890 | |
3891 | ret = ext4_map_blocks(NULL, inode, map: &map, flags: 0); |
3892 | if (ret < 0) |
3893 | return ret; |
3894 | set_iomap: |
3895 | ext4_set_iomap(inode, iomap, map: &map, offset, length, flags); |
3896 | |
3897 | return 0; |
3898 | } |
3899 | |
3900 | const struct iomap_ops ext4_iomap_report_ops = { |
3901 | .iomap_begin = ext4_iomap_begin_report, |
3902 | }; |
3903 | |
3904 | /* |
3905 | * For data=journal mode, folio should be marked dirty only when it was |
3906 | * writeably mapped. When that happens, it was already attached to the |
3907 | * transaction and marked as jbddirty (we take care of this in |
3908 | * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings |
3909 | * so we should have nothing to do here, except for the case when someone |
3910 | * had the page pinned and dirtied the page through this pin (e.g. by doing |
3911 | * direct IO to it). In that case we'd need to attach buffers here to the |
3912 | * transaction but we cannot due to lock ordering. We cannot just dirty the |
3913 | * folio and leave attached buffers clean, because the buffers' dirty state is |
3914 | * "definitive". We cannot just set the buffers dirty or jbddirty because all |
3915 | * the journalling code will explode. So what we do is to mark the folio |
3916 | * "pending dirty" and next time ext4_writepages() is called, attach buffers |
3917 | * to the transaction appropriately. |
3918 | */ |
3919 | static bool ext4_journalled_dirty_folio(struct address_space *mapping, |
3920 | struct folio *folio) |
3921 | { |
3922 | WARN_ON_ONCE(!folio_buffers(folio)); |
3923 | if (folio_maybe_dma_pinned(folio)) |
3924 | folio_set_checked(folio); |
3925 | return filemap_dirty_folio(mapping, folio); |
3926 | } |
3927 | |
3928 | static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) |
3929 | { |
3930 | WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); |
3931 | WARN_ON_ONCE(!folio_buffers(folio)); |
3932 | return block_dirty_folio(mapping, folio); |
3933 | } |
3934 | |
3935 | static int ext4_iomap_swap_activate(struct swap_info_struct *sis, |
3936 | struct file *file, sector_t *span) |
3937 | { |
3938 | return iomap_swapfile_activate(sis, swap_file: file, pagespan: span, |
3939 | ops: &ext4_iomap_report_ops); |
3940 | } |
3941 | |
3942 | static const struct address_space_operations ext4_aops = { |
3943 | .read_folio = ext4_read_folio, |
3944 | .readahead = ext4_readahead, |
3945 | .writepages = ext4_writepages, |
3946 | .write_begin = ext4_write_begin, |
3947 | .write_end = ext4_write_end, |
3948 | .dirty_folio = ext4_dirty_folio, |
3949 | .bmap = ext4_bmap, |
3950 | .invalidate_folio = ext4_invalidate_folio, |
3951 | .release_folio = ext4_release_folio, |
3952 | .migrate_folio = buffer_migrate_folio, |
3953 | .is_partially_uptodate = block_is_partially_uptodate, |
3954 | .error_remove_folio = generic_error_remove_folio, |
3955 | .swap_activate = ext4_iomap_swap_activate, |
3956 | }; |
3957 | |
3958 | static const struct address_space_operations ext4_journalled_aops = { |
3959 | .read_folio = ext4_read_folio, |
3960 | .readahead = ext4_readahead, |
3961 | .writepages = ext4_writepages, |
3962 | .write_begin = ext4_write_begin, |
3963 | .write_end = ext4_journalled_write_end, |
3964 | .dirty_folio = ext4_journalled_dirty_folio, |
3965 | .bmap = ext4_bmap, |
3966 | .invalidate_folio = ext4_journalled_invalidate_folio, |
3967 | .release_folio = ext4_release_folio, |
3968 | .migrate_folio = buffer_migrate_folio_norefs, |
3969 | .is_partially_uptodate = block_is_partially_uptodate, |
3970 | .error_remove_folio = generic_error_remove_folio, |
3971 | .swap_activate = ext4_iomap_swap_activate, |
3972 | }; |
3973 | |
3974 | static const struct address_space_operations ext4_da_aops = { |
3975 | .read_folio = ext4_read_folio, |
3976 | .readahead = ext4_readahead, |
3977 | .writepages = ext4_writepages, |
3978 | .write_begin = ext4_da_write_begin, |
3979 | .write_end = ext4_da_write_end, |
3980 | .dirty_folio = ext4_dirty_folio, |
3981 | .bmap = ext4_bmap, |
3982 | .invalidate_folio = ext4_invalidate_folio, |
3983 | .release_folio = ext4_release_folio, |
3984 | .migrate_folio = buffer_migrate_folio, |
3985 | .is_partially_uptodate = block_is_partially_uptodate, |
3986 | .error_remove_folio = generic_error_remove_folio, |
3987 | .swap_activate = ext4_iomap_swap_activate, |
3988 | }; |
3989 | |
3990 | static const struct address_space_operations ext4_dax_aops = { |
3991 | .writepages = ext4_dax_writepages, |
3992 | .dirty_folio = noop_dirty_folio, |
3993 | .bmap = ext4_bmap, |
3994 | .swap_activate = ext4_iomap_swap_activate, |
3995 | }; |
3996 | |
3997 | void ext4_set_aops(struct inode *inode) |
3998 | { |
3999 | switch (ext4_inode_journal_mode(inode)) { |
4000 | case EXT4_INODE_ORDERED_DATA_MODE: |
4001 | case EXT4_INODE_WRITEBACK_DATA_MODE: |
4002 | break; |
4003 | case EXT4_INODE_JOURNAL_DATA_MODE: |
4004 | inode->i_mapping->a_ops = &ext4_journalled_aops; |
4005 | return; |
4006 | default: |
4007 | BUG(); |
4008 | } |
4009 | if (IS_DAX(inode)) |
4010 | inode->i_mapping->a_ops = &ext4_dax_aops; |
4011 | else if (test_opt(inode->i_sb, DELALLOC)) |
4012 | inode->i_mapping->a_ops = &ext4_da_aops; |
4013 | else |
4014 | inode->i_mapping->a_ops = &ext4_aops; |
4015 | } |
4016 | |
4017 | /* |
4018 | * Here we can't skip an unwritten buffer even though it usually reads zero |
4019 | * because it might have data in pagecache (eg, if called from ext4_zero_range, |
4020 | * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a |
4021 | * racing writeback can come later and flush the stale pagecache to disk. |
4022 | */ |
4023 | static int __ext4_block_zero_page_range(handle_t *handle, |
4024 | struct address_space *mapping, loff_t from, loff_t length) |
4025 | { |
4026 | unsigned int offset, blocksize, pos; |
4027 | ext4_lblk_t iblock; |
4028 | struct inode *inode = mapping->host; |
4029 | struct buffer_head *bh; |
4030 | struct folio *folio; |
4031 | int err = 0; |
4032 | |
4033 | folio = __filemap_get_folio(mapping, index: from >> PAGE_SHIFT, |
4034 | FGP_LOCK | FGP_ACCESSED | FGP_CREAT, |
4035 | gfp: mapping_gfp_constraint(mapping, gfp_mask: ~__GFP_FS)); |
4036 | if (IS_ERR(ptr: folio)) |
4037 | return PTR_ERR(ptr: folio); |
4038 | |
4039 | blocksize = inode->i_sb->s_blocksize; |
4040 | |
4041 | iblock = folio->index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); |
4042 | |
4043 | bh = folio_buffers(folio); |
4044 | if (!bh) |
4045 | bh = create_empty_buffers(folio, blocksize, b_state: 0); |
4046 | |
4047 | /* Find the buffer that contains "offset" */ |
4048 | offset = offset_in_folio(folio, from); |
4049 | pos = blocksize; |
4050 | while (offset >= pos) { |
4051 | bh = bh->b_this_page; |
4052 | iblock++; |
4053 | pos += blocksize; |
4054 | } |
4055 | if (buffer_freed(bh)) { |
4056 | BUFFER_TRACE(bh, "freed: skip"); |
4057 | goto unlock; |
4058 | } |
4059 | if (!buffer_mapped(bh)) { |
4060 | BUFFER_TRACE(bh, "unmapped"); |
4061 | ext4_get_block(inode, iblock, bh, create: 0); |
4062 | /* unmapped? It's a hole - nothing to do */ |
4063 | if (!buffer_mapped(bh)) { |
4064 | BUFFER_TRACE(bh, "still unmapped"); |
4065 | goto unlock; |
4066 | } |
4067 | } |
4068 | |
4069 | /* Ok, it's mapped. Make sure it's up-to-date */ |
4070 | if (folio_test_uptodate(folio)) |
4071 | set_buffer_uptodate(bh); |
4072 | |
4073 | if (!buffer_uptodate(bh)) { |
4074 | err = ext4_read_bh_lock(bh, op_flags: 0, wait: true); |
4075 | if (err) |
4076 | goto unlock; |
4077 | if (fscrypt_inode_uses_fs_layer_crypto(inode)) { |
4078 | /* We expect the key to be set. */ |
4079 | BUG_ON(!fscrypt_has_encryption_key(inode)); |
4080 | err = fscrypt_decrypt_pagecache_blocks(folio, |
4081 | len: blocksize, |
4082 | offs: bh_offset(bh)); |
4083 | if (err) { |
4084 | clear_buffer_uptodate(bh); |
4085 | goto unlock; |
4086 | } |
4087 | } |
4088 | } |
4089 | if (ext4_should_journal_data(inode)) { |
4090 | BUFFER_TRACE(bh, "get write access"); |
4091 | err = ext4_journal_get_write_access(handle, inode->i_sb, bh, |
4092 | EXT4_JTR_NONE); |
4093 | if (err) |
4094 | goto unlock; |
4095 | } |
4096 | folio_zero_range(folio, start: offset, length); |
4097 | BUFFER_TRACE(bh, "zeroed end of block"); |
4098 | |
4099 | if (ext4_should_journal_data(inode)) { |
4100 | err = ext4_dirty_journalled_data(handle, bh); |
4101 | } else { |
4102 | err = 0; |
4103 | mark_buffer_dirty(bh); |
4104 | if (ext4_should_order_data(inode)) |
4105 | err = ext4_jbd2_inode_add_write(handle, inode, start_byte: from, |
4106 | length); |
4107 | } |
4108 | |
4109 | unlock: |
4110 | folio_unlock(folio); |
4111 | folio_put(folio); |
4112 | return err; |
4113 | } |
4114 | |
4115 | /* |
4116 | * ext4_block_zero_page_range() zeros out a mapping of length 'length' |
4117 | * starting from file offset 'from'. The range to be zero'd must |
4118 | * be contained with in one block. If the specified range exceeds |
4119 | * the end of the block it will be shortened to end of the block |
4120 | * that corresponds to 'from' |
4121 | */ |
4122 | static int ext4_block_zero_page_range(handle_t *handle, |
4123 | struct address_space *mapping, loff_t from, loff_t length) |
4124 | { |
4125 | struct inode *inode = mapping->host; |
4126 | unsigned offset = from & (PAGE_SIZE-1); |
4127 | unsigned blocksize = inode->i_sb->s_blocksize; |
4128 | unsigned max = blocksize - (offset & (blocksize - 1)); |
4129 | |
4130 | /* |
4131 | * correct length if it does not fall between |
4132 | * 'from' and the end of the block |
4133 | */ |
4134 | if (length > max || length < 0) |
4135 | length = max; |
4136 | |
4137 | if (IS_DAX(inode)) { |
4138 | return dax_zero_range(inode, pos: from, len: length, NULL, |
4139 | ops: &ext4_iomap_ops); |
4140 | } |
4141 | return __ext4_block_zero_page_range(handle, mapping, from, length); |
4142 | } |
4143 | |
4144 | /* |
4145 | * ext4_block_truncate_page() zeroes out a mapping from file offset `from' |
4146 | * up to the end of the block which corresponds to `from'. |
4147 | * This required during truncate. We need to physically zero the tail end |
4148 | * of that block so it doesn't yield old data if the file is later grown. |
4149 | */ |
4150 | static int ext4_block_truncate_page(handle_t *handle, |
4151 | struct address_space *mapping, loff_t from) |
4152 | { |
4153 | unsigned offset = from & (PAGE_SIZE-1); |
4154 | unsigned length; |
4155 | unsigned blocksize; |
4156 | struct inode *inode = mapping->host; |
4157 | |
4158 | /* If we are processing an encrypted inode during orphan list handling */ |
4159 | if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) |
4160 | return 0; |
4161 | |
4162 | blocksize = inode->i_sb->s_blocksize; |
4163 | length = blocksize - (offset & (blocksize - 1)); |
4164 | |
4165 | return ext4_block_zero_page_range(handle, mapping, from, length); |
4166 | } |
4167 | |
4168 | int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, |
4169 | loff_t lstart, loff_t length) |
4170 | { |
4171 | struct super_block *sb = inode->i_sb; |
4172 | struct address_space *mapping = inode->i_mapping; |
4173 | unsigned partial_start, partial_end; |
4174 | ext4_fsblk_t start, end; |
4175 | loff_t byte_end = (lstart + length - 1); |
4176 | int err = 0; |
4177 | |
4178 | partial_start = lstart & (sb->s_blocksize - 1); |
4179 | partial_end = byte_end & (sb->s_blocksize - 1); |
4180 | |
4181 | start = lstart >> sb->s_blocksize_bits; |
4182 | end = byte_end >> sb->s_blocksize_bits; |
4183 | |
4184 | /* Handle partial zero within the single block */ |
4185 | if (start == end && |
4186 | (partial_start || (partial_end != sb->s_blocksize - 1))) { |
4187 | err = ext4_block_zero_page_range(handle, mapping, |
4188 | from: lstart, length); |
4189 | return err; |
4190 | } |
4191 | /* Handle partial zero out on the start of the range */ |
4192 | if (partial_start) { |
4193 | err = ext4_block_zero_page_range(handle, mapping, |
4194 | from: lstart, length: sb->s_blocksize); |
4195 | if (err) |
4196 | return err; |
4197 | } |
4198 | /* Handle partial zero out on the end of the range */ |
4199 | if (partial_end != sb->s_blocksize - 1) |
4200 | err = ext4_block_zero_page_range(handle, mapping, |
4201 | from: byte_end - partial_end, |
4202 | length: partial_end + 1); |
4203 | return err; |
4204 | } |
4205 | |
4206 | int ext4_can_truncate(struct inode *inode) |
4207 | { |
4208 | if (S_ISREG(inode->i_mode)) |
4209 | return 1; |
4210 | if (S_ISDIR(inode->i_mode)) |
4211 | return 1; |
4212 | if (S_ISLNK(inode->i_mode)) |
4213 | return !ext4_inode_is_fast_symlink(inode); |
4214 | return 0; |
4215 | } |
4216 | |
4217 | /* |
4218 | * We have to make sure i_disksize gets properly updated before we truncate |
4219 | * page cache due to hole punching or zero range. Otherwise i_disksize update |
4220 | * can get lost as it may have been postponed to submission of writeback but |
4221 | * that will never happen after we truncate page cache. |
4222 | */ |
4223 | int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, |
4224 | loff_t len) |
4225 | { |
4226 | handle_t *handle; |
4227 | int ret; |
4228 | |
4229 | loff_t size = i_size_read(inode); |
4230 | |
4231 | WARN_ON(!inode_is_locked(inode)); |
4232 | if (offset > size || offset + len < size) |
4233 | return 0; |
4234 | |
4235 | if (EXT4_I(inode)->i_disksize >= size) |
4236 | return 0; |
4237 | |
4238 | handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); |
4239 | if (IS_ERR(ptr: handle)) |
4240 | return PTR_ERR(ptr: handle); |
4241 | ext4_update_i_disksize(inode, newsize: size); |
4242 | ret = ext4_mark_inode_dirty(handle, inode); |
4243 | ext4_journal_stop(handle); |
4244 | |
4245 | return ret; |
4246 | } |
4247 | |
4248 | static inline void ext4_truncate_folio(struct inode *inode, |
4249 | loff_t start, loff_t end) |
4250 | { |
4251 | unsigned long blocksize = i_blocksize(node: inode); |
4252 | struct folio *folio; |
4253 | |
4254 | /* Nothing to be done if no complete block needs to be truncated. */ |
4255 | if (round_up(start, blocksize) >= round_down(end, blocksize)) |
4256 | return; |
4257 | |
4258 | folio = filemap_lock_folio(mapping: inode->i_mapping, index: start >> PAGE_SHIFT); |
4259 | if (IS_ERR(ptr: folio)) |
4260 | return; |
4261 | |
4262 | if (folio_mkclean(folio)) |
4263 | folio_mark_dirty(folio); |
4264 | folio_unlock(folio); |
4265 | folio_put(folio); |
4266 | } |
4267 | |
4268 | int ext4_truncate_page_cache_block_range(struct inode *inode, |
4269 | loff_t start, loff_t end) |
4270 | { |
4271 | unsigned long blocksize = i_blocksize(node: inode); |
4272 | int ret; |
4273 | |
4274 | /* |
4275 | * For journalled data we need to write (and checkpoint) pages |
4276 | * before discarding page cache to avoid inconsitent data on disk |
4277 | * in case of crash before freeing or unwritten converting trans |
4278 | * is committed. |
4279 | */ |
4280 | if (ext4_should_journal_data(inode)) { |
4281 | ret = filemap_write_and_wait_range(mapping: inode->i_mapping, lstart: start, |
4282 | lend: end - 1); |
4283 | if (ret) |
4284 | return ret; |
4285 | goto truncate_pagecache; |
4286 | } |
4287 | |
4288 | /* |
4289 | * If the block size is less than the page size, the file's mapped |
4290 | * blocks within one page could be freed or converted to unwritten. |
4291 | * So it's necessary to remove writable userspace mappings, and then |
4292 | * ext4_page_mkwrite() can be called during subsequent write access |
4293 | * to these partial folios. |
4294 | */ |
4295 | if (!IS_ALIGNED(start | end, PAGE_SIZE) && |
4296 | blocksize < PAGE_SIZE && start < inode->i_size) { |
4297 | loff_t page_boundary = round_up(start, PAGE_SIZE); |
4298 | |
4299 | ext4_truncate_folio(inode, start, min(page_boundary, end)); |
4300 | if (end > page_boundary) |
4301 | ext4_truncate_folio(inode, |
4302 | round_down(end, PAGE_SIZE), end); |
4303 | } |
4304 | |
4305 | truncate_pagecache: |
4306 | truncate_pagecache_range(inode, offset: start, end: end - 1); |
4307 | return 0; |
4308 | } |
4309 | |
4310 | static void ext4_wait_dax_page(struct inode *inode) |
4311 | { |
4312 | filemap_invalidate_unlock(mapping: inode->i_mapping); |
4313 | schedule(); |
4314 | filemap_invalidate_lock(mapping: inode->i_mapping); |
4315 | } |
4316 | |
4317 | int ext4_break_layouts(struct inode *inode) |
4318 | { |
4319 | if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) |
4320 | return -EINVAL; |
4321 | |
4322 | return dax_break_layout_inode(inode, cb: ext4_wait_dax_page); |
4323 | } |
4324 | |
4325 | /* |
4326 | * ext4_punch_hole: punches a hole in a file by releasing the blocks |
4327 | * associated with the given offset and length |
4328 | * |
4329 | * @inode: File inode |
4330 | * @offset: The offset where the hole will begin |
4331 | * @len: The length of the hole |
4332 | * |
4333 | * Returns: 0 on success or negative on failure |
4334 | */ |
4335 | |
4336 | int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) |
4337 | { |
4338 | struct inode *inode = file_inode(f: file); |
4339 | struct super_block *sb = inode->i_sb; |
4340 | ext4_lblk_t start_lblk, end_lblk; |
4341 | loff_t max_end = sb->s_maxbytes; |
4342 | loff_t end = offset + length; |
4343 | handle_t *handle; |
4344 | unsigned int credits; |
4345 | int ret; |
4346 | |
4347 | trace_ext4_punch_hole(inode, offset, len: length, mode: 0); |
4348 | WARN_ON_ONCE(!inode_is_locked(inode)); |
4349 | |
4350 | /* |
4351 | * For indirect-block based inodes, make sure that the hole within |
4352 | * one block before last range. |
4353 | */ |
4354 | if (!ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS)) |
4355 | max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize; |
4356 | |
4357 | /* No need to punch hole beyond i_size */ |
4358 | if (offset >= inode->i_size || offset >= max_end) |
4359 | return 0; |
4360 | |
4361 | /* |
4362 | * If the hole extends beyond i_size, set the hole to end after |
4363 | * the page that contains i_size. |
4364 | */ |
4365 | if (end > inode->i_size) |
4366 | end = round_up(inode->i_size, PAGE_SIZE); |
4367 | if (end > max_end) |
4368 | end = max_end; |
4369 | length = end - offset; |
4370 | |
4371 | /* |
4372 | * Attach jinode to inode for jbd2 if we do any zeroing of partial |
4373 | * block. |
4374 | */ |
4375 | if (!IS_ALIGNED(offset | end, sb->s_blocksize)) { |
4376 | ret = ext4_inode_attach_jinode(inode); |
4377 | if (ret < 0) |
4378 | return ret; |
4379 | } |
4380 | |
4381 | |
4382 | ret = ext4_update_disksize_before_punch(inode, offset, len: length); |
4383 | if (ret) |
4384 | return ret; |
4385 | |
4386 | /* Now release the pages and zero block aligned part of pages*/ |
4387 | ret = ext4_truncate_page_cache_block_range(inode, start: offset, end); |
4388 | if (ret) |
4389 | return ret; |
4390 | |
4391 | if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS)) |
4392 | credits = ext4_writepage_trans_blocks(inode); |
4393 | else |
4394 | credits = ext4_blocks_for_truncate(inode); |
4395 | handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); |
4396 | if (IS_ERR(ptr: handle)) { |
4397 | ret = PTR_ERR(ptr: handle); |
4398 | ext4_std_error(sb, ret); |
4399 | return ret; |
4400 | } |
4401 | |
4402 | ret = ext4_zero_partial_blocks(handle, inode, lstart: offset, length); |
4403 | if (ret) |
4404 | goto out_handle; |
4405 | |
4406 | /* If there are blocks to remove, do it */ |
4407 | start_lblk = EXT4_B_TO_LBLK(inode, offset); |
4408 | end_lblk = end >> inode->i_blkbits; |
4409 | |
4410 | if (end_lblk > start_lblk) { |
4411 | ext4_lblk_t hole_len = end_lblk - start_lblk; |
4412 | |
4413 | ext4_fc_track_inode(handle, inode); |
4414 | ext4_check_map_extents_env(inode); |
4415 | down_write(sem: &EXT4_I(inode)->i_data_sem); |
4416 | ext4_discard_preallocations(inode); |
4417 | |
4418 | ext4_es_remove_extent(inode, lblk: start_lblk, len: hole_len); |
4419 | |
4420 | if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS)) |
4421 | ret = ext4_ext_remove_space(inode, start: start_lblk, |
4422 | end: end_lblk - 1); |
4423 | else |
4424 | ret = ext4_ind_remove_space(handle, inode, start: start_lblk, |
4425 | end: end_lblk); |
4426 | if (ret) { |
4427 | up_write(sem: &EXT4_I(inode)->i_data_sem); |
4428 | goto out_handle; |
4429 | } |
4430 | |
4431 | ext4_es_insert_extent(inode, lblk: start_lblk, len: hole_len, pblk: ~0, |
4432 | EXTENT_STATUS_HOLE, delalloc_reserve_used: 0); |
4433 | up_write(sem: &EXT4_I(inode)->i_data_sem); |
4434 | } |
4435 | ext4_fc_track_range(handle, inode, start: start_lblk, end: end_lblk); |
4436 | |
4437 | ret = ext4_mark_inode_dirty(handle, inode); |
4438 | if (unlikely(ret)) |
4439 | goto out_handle; |
4440 | |
4441 | ext4_update_inode_fsync_trans(handle, inode, datasync: 1); |
4442 | if (IS_SYNC(inode)) |
4443 | ext4_handle_sync(handle); |
4444 | out_handle: |
4445 | ext4_journal_stop(handle); |
4446 | return ret; |
4447 | } |
4448 | |
4449 | int ext4_inode_attach_jinode(struct inode *inode) |
4450 | { |
4451 | struct ext4_inode_info *ei = EXT4_I(inode); |
4452 | struct jbd2_inode *jinode; |
4453 | |
4454 | if (ei->jinode || !EXT4_SB(sb: inode->i_sb)->s_journal) |
4455 | return 0; |
4456 | |
4457 | jinode = jbd2_alloc_inode(GFP_KERNEL); |
4458 | spin_lock(lock: &inode->i_lock); |
4459 | if (!ei->jinode) { |
4460 | if (!jinode) { |
4461 | spin_unlock(lock: &inode->i_lock); |
4462 | return -ENOMEM; |
4463 | } |
4464 | ei->jinode = jinode; |
4465 | jbd2_journal_init_jbd_inode(jinode: ei->jinode, inode); |
4466 | jinode = NULL; |
4467 | } |
4468 | spin_unlock(lock: &inode->i_lock); |
4469 | if (unlikely(jinode != NULL)) |
4470 | jbd2_free_inode(jinode); |
4471 | return 0; |
4472 | } |
4473 | |
4474 | /* |
4475 | * ext4_truncate() |
4476 | * |
4477 | * We block out ext4_get_block() block instantiations across the entire |
4478 | * transaction, and VFS/VM ensures that ext4_truncate() cannot run |
4479 | * simultaneously on behalf of the same inode. |
4480 | * |
4481 | * As we work through the truncate and commit bits of it to the journal there |
4482 | * is one core, guiding principle: the file's tree must always be consistent on |
4483 | * disk. We must be able to restart the truncate after a crash. |
4484 | * |
4485 | * The file's tree may be transiently inconsistent in memory (although it |
4486 | * probably isn't), but whenever we close off and commit a journal transaction, |
4487 | * the contents of (the filesystem + the journal) must be consistent and |
4488 | * restartable. It's pretty simple, really: bottom up, right to left (although |
4489 | * left-to-right works OK too). |
4490 | * |
4491 | * Note that at recovery time, journal replay occurs *before* the restart of |
4492 | * truncate against the orphan inode list. |
4493 | * |
4494 | * The committed inode has the new, desired i_size (which is the same as |
4495 | * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see |
4496 | * that this inode's truncate did not complete and it will again call |
4497 | * ext4_truncate() to have another go. So there will be instantiated blocks |
4498 | * to the right of the truncation point in a crashed ext4 filesystem. But |
4499 | * that's fine - as long as they are linked from the inode, the post-crash |
4500 | * ext4_truncate() run will find them and release them. |
4501 | */ |
4502 | int ext4_truncate(struct inode *inode) |
4503 | { |
4504 | struct ext4_inode_info *ei = EXT4_I(inode); |
4505 | unsigned int credits; |
4506 | int err = 0, err2; |
4507 | handle_t *handle; |
4508 | struct address_space *mapping = inode->i_mapping; |
4509 | |
4510 | /* |
4511 | * There is a possibility that we're either freeing the inode |
4512 | * or it's a completely new inode. In those cases we might not |
4513 | * have i_rwsem locked because it's not necessary. |
4514 | */ |
4515 | if (!(inode->i_state & (I_NEW|I_FREEING))) |
4516 | WARN_ON(!inode_is_locked(inode)); |
4517 | trace_ext4_truncate_enter(inode); |
4518 | |
4519 | if (!ext4_can_truncate(inode)) |
4520 | goto out_trace; |
4521 | |
4522 | if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) |
4523 | ext4_set_inode_state(inode, bit: EXT4_STATE_DA_ALLOC_CLOSE); |
4524 | |
4525 | if (ext4_has_inline_data(inode)) { |
4526 | int has_inline = 1; |
4527 | |
4528 | err = ext4_inline_data_truncate(inode, has_inline: &has_inline); |
4529 | if (err || has_inline) |
4530 | goto out_trace; |
4531 | } |
4532 | |
4533 | /* If we zero-out tail of the page, we have to create jinode for jbd2 */ |
4534 | if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { |
4535 | err = ext4_inode_attach_jinode(inode); |
4536 | if (err) |
4537 | goto out_trace; |
4538 | } |
4539 | |
4540 | if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS)) |
4541 | credits = ext4_writepage_trans_blocks(inode); |
4542 | else |
4543 | credits = ext4_blocks_for_truncate(inode); |
4544 | |
4545 | handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); |
4546 | if (IS_ERR(ptr: handle)) { |
4547 | err = PTR_ERR(ptr: handle); |
4548 | goto out_trace; |
4549 | } |
4550 | |
4551 | if (inode->i_size & (inode->i_sb->s_blocksize - 1)) |
4552 | ext4_block_truncate_page(handle, mapping, from: inode->i_size); |
4553 | |
4554 | /* |
4555 | * We add the inode to the orphan list, so that if this |
4556 | * truncate spans multiple transactions, and we crash, we will |
4557 | * resume the truncate when the filesystem recovers. It also |
4558 | * marks the inode dirty, to catch the new size. |
4559 | * |
4560 | * Implication: the file must always be in a sane, consistent |
4561 | * truncatable state while each transaction commits. |
4562 | */ |
4563 | err = ext4_orphan_add(handle, inode); |
4564 | if (err) |
4565 | goto out_stop; |
4566 | |
4567 | ext4_fc_track_inode(handle, inode); |
4568 | ext4_check_map_extents_env(inode); |
4569 | |
4570 | down_write(sem: &EXT4_I(inode)->i_data_sem); |
4571 | ext4_discard_preallocations(inode); |
4572 | |
4573 | if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS)) |
4574 | err = ext4_ext_truncate(handle, inode); |
4575 | else |
4576 | ext4_ind_truncate(handle, inode); |
4577 | |
4578 | up_write(sem: &ei->i_data_sem); |
4579 | if (err) |
4580 | goto out_stop; |
4581 | |
4582 | if (IS_SYNC(inode)) |
4583 | ext4_handle_sync(handle); |
4584 | |
4585 | out_stop: |
4586 | /* |
4587 | * If this was a simple ftruncate() and the file will remain alive, |
4588 | * then we need to clear up the orphan record which we created above. |
4589 | * However, if this was a real unlink then we were called by |
4590 | * ext4_evict_inode(), and we allow that function to clean up the |
4591 | * orphan info for us. |
4592 | */ |
4593 | if (inode->i_nlink) |
4594 | ext4_orphan_del(handle, inode); |
4595 | |
4596 | inode_set_mtime_to_ts(inode, ts: inode_set_ctime_current(inode)); |
4597 | err2 = ext4_mark_inode_dirty(handle, inode); |
4598 | if (unlikely(err2 && !err)) |
4599 | err = err2; |
4600 | ext4_journal_stop(handle); |
4601 | |
4602 | out_trace: |
4603 | trace_ext4_truncate_exit(inode); |
4604 | return err; |
4605 | } |
4606 | |
4607 | static inline u64 ext4_inode_peek_iversion(const struct inode *inode) |
4608 | { |
4609 | if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) |
4610 | return inode_peek_iversion_raw(inode); |
4611 | else |
4612 | return inode_peek_iversion(inode); |
4613 | } |
4614 | |
4615 | static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, |
4616 | struct ext4_inode_info *ei) |
4617 | { |
4618 | struct inode *inode = &(ei->vfs_inode); |
4619 | u64 i_blocks = READ_ONCE(inode->i_blocks); |
4620 | struct super_block *sb = inode->i_sb; |
4621 | |
4622 | if (i_blocks <= ~0U) { |
4623 | /* |
4624 | * i_blocks can be represented in a 32 bit variable |
4625 | * as multiple of 512 bytes |
4626 | */ |
4627 | raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); |
4628 | raw_inode->i_blocks_high = 0; |
4629 | ext4_clear_inode_flag(inode, bit: EXT4_INODE_HUGE_FILE); |
4630 | return 0; |
4631 | } |
4632 | |
4633 | /* |
4634 | * This should never happen since sb->s_maxbytes should not have |
4635 | * allowed this, sb->s_maxbytes was set according to the huge_file |
4636 | * feature in ext4_fill_super(). |
4637 | */ |
4638 | if (!ext4_has_feature_huge_file(sb)) |
4639 | return -EFSCORRUPTED; |
4640 | |
4641 | if (i_blocks <= 0xffffffffffffULL) { |
4642 | /* |
4643 | * i_blocks can be represented in a 48 bit variable |
4644 | * as multiple of 512 bytes |
4645 | */ |
4646 | raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); |
4647 | raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); |
4648 | ext4_clear_inode_flag(inode, bit: EXT4_INODE_HUGE_FILE); |
4649 | } else { |
4650 | ext4_set_inode_flag(inode, bit: EXT4_INODE_HUGE_FILE); |
4651 | /* i_block is stored in file system block size */ |
4652 | i_blocks = i_blocks >> (inode->i_blkbits - 9); |
4653 | raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); |
4654 | raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); |
4655 | } |
4656 | return 0; |
4657 | } |
4658 | |
4659 | static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) |
4660 | { |
4661 | struct ext4_inode_info *ei = EXT4_I(inode); |
4662 | uid_t i_uid; |
4663 | gid_t i_gid; |
4664 | projid_t i_projid; |
4665 | int block; |
4666 | int err; |
4667 | |
4668 | err = ext4_inode_blocks_set(raw_inode, ei); |
4669 | |
4670 | raw_inode->i_mode = cpu_to_le16(inode->i_mode); |
4671 | i_uid = i_uid_read(inode); |
4672 | i_gid = i_gid_read(inode); |
4673 | i_projid = from_kprojid(to: &init_user_ns, projid: ei->i_projid); |
4674 | if (!(test_opt(inode->i_sb, NO_UID32))) { |
4675 | raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); |
4676 | raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); |
4677 | /* |
4678 | * Fix up interoperability with old kernels. Otherwise, |
4679 | * old inodes get re-used with the upper 16 bits of the |
4680 | * uid/gid intact. |
4681 | */ |
4682 | if (ei->i_dtime && list_empty(head: &ei->i_orphan)) { |
4683 | raw_inode->i_uid_high = 0; |
4684 | raw_inode->i_gid_high = 0; |
4685 | } else { |
4686 | raw_inode->i_uid_high = |
4687 | cpu_to_le16(high_16_bits(i_uid)); |
4688 | raw_inode->i_gid_high = |
4689 | cpu_to_le16(high_16_bits(i_gid)); |
4690 | } |
4691 | } else { |
4692 | raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); |
4693 | raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); |
4694 | raw_inode->i_uid_high = 0; |
4695 | raw_inode->i_gid_high = 0; |
4696 | } |
4697 | raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); |
4698 | |
4699 | EXT4_INODE_SET_CTIME(inode, raw_inode); |
4700 | EXT4_INODE_SET_MTIME(inode, raw_inode); |
4701 | EXT4_INODE_SET_ATIME(inode, raw_inode); |
4702 | EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); |
4703 | |
4704 | raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); |
4705 | raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); |
4706 | if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) |
4707 | raw_inode->i_file_acl_high = |
4708 | cpu_to_le16(ei->i_file_acl >> 32); |
4709 | raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); |
4710 | ext4_isize_set(raw_inode, i_size: ei->i_disksize); |
4711 | |
4712 | raw_inode->i_generation = cpu_to_le32(inode->i_generation); |
4713 | if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { |
4714 | if (old_valid_dev(dev: inode->i_rdev)) { |
4715 | raw_inode->i_block[0] = |
4716 | cpu_to_le32(old_encode_dev(inode->i_rdev)); |
4717 | raw_inode->i_block[1] = 0; |
4718 | } else { |
4719 | raw_inode->i_block[0] = 0; |
4720 | raw_inode->i_block[1] = |
4721 | cpu_to_le32(new_encode_dev(inode->i_rdev)); |
4722 | raw_inode->i_block[2] = 0; |
4723 | } |
4724 | } else if (!ext4_has_inline_data(inode)) { |
4725 | for (block = 0; block < EXT4_N_BLOCKS; block++) |
4726 | raw_inode->i_block[block] = ei->i_data[block]; |
4727 | } |
4728 | |
4729 | if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { |
4730 | u64 ivers = ext4_inode_peek_iversion(inode); |
4731 | |
4732 | raw_inode->i_disk_version = cpu_to_le32(ivers); |
4733 | if (ei->i_extra_isize) { |
4734 | if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) |
4735 | raw_inode->i_version_hi = |
4736 | cpu_to_le32(ivers >> 32); |
4737 | raw_inode->i_extra_isize = |
4738 | cpu_to_le16(ei->i_extra_isize); |
4739 | } |
4740 | } |
4741 | |
4742 | if (i_projid != EXT4_DEF_PROJID && |
4743 | !ext4_has_feature_project(sb: inode->i_sb)) |
4744 | err = err ?: -EFSCORRUPTED; |
4745 | |
4746 | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && |
4747 | EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) |
4748 | raw_inode->i_projid = cpu_to_le32(i_projid); |
4749 | |
4750 | ext4_inode_csum_set(inode, raw: raw_inode, ei); |
4751 | return err; |
4752 | } |
4753 | |
4754 | /* |
4755 | * ext4_get_inode_loc returns with an extra refcount against the inode's |
4756 | * underlying buffer_head on success. If we pass 'inode' and it does not |
4757 | * have in-inode xattr, we have all inode data in memory that is needed |
4758 | * to recreate the on-disk version of this inode. |
4759 | */ |
4760 | static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, |
4761 | struct inode *inode, struct ext4_iloc *iloc, |
4762 | ext4_fsblk_t *ret_block) |
4763 | { |
4764 | struct ext4_group_desc *gdp; |
4765 | struct buffer_head *bh; |
4766 | ext4_fsblk_t block; |
4767 | struct blk_plug plug; |
4768 | int inodes_per_block, inode_offset; |
4769 | |
4770 | iloc->bh = NULL; |
4771 | if (ino < EXT4_ROOT_INO || |
4772 | ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) |
4773 | return -EFSCORRUPTED; |
4774 | |
4775 | iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); |
4776 | gdp = ext4_get_group_desc(sb, block_group: iloc->block_group, NULL); |
4777 | if (!gdp) |
4778 | return -EIO; |
4779 | |
4780 | /* |
4781 | * Figure out the offset within the block group inode table |
4782 | */ |
4783 | inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; |
4784 | inode_offset = ((ino - 1) % |
4785 | EXT4_INODES_PER_GROUP(sb)); |
4786 | iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); |
4787 | |
4788 | block = ext4_inode_table(sb, bg: gdp); |
4789 | if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || |
4790 | (block >= ext4_blocks_count(es: EXT4_SB(sb)->s_es))) { |
4791 | ext4_error(sb, "Invalid inode table block %llu in " |
4792 | "block_group %u", block, iloc->block_group); |
4793 | return -EFSCORRUPTED; |
4794 | } |
4795 | block += (inode_offset / inodes_per_block); |
4796 | |
4797 | bh = sb_getblk(sb, block); |
4798 | if (unlikely(!bh)) |
4799 | return -ENOMEM; |
4800 | if (ext4_buffer_uptodate(bh)) |
4801 | goto has_buffer; |
4802 | |
4803 | lock_buffer(bh); |
4804 | if (ext4_buffer_uptodate(bh)) { |
4805 | /* Someone brought it uptodate while we waited */ |
4806 | unlock_buffer(bh); |
4807 | goto has_buffer; |
4808 | } |
4809 | |
4810 | /* |
4811 | * If we have all information of the inode in memory and this |
4812 | * is the only valid inode in the block, we need not read the |
4813 | * block. |
4814 | */ |
4815 | if (inode && !ext4_test_inode_state(inode, bit: EXT4_STATE_XATTR)) { |
4816 | struct buffer_head *bitmap_bh; |
4817 | int i, start; |
4818 | |
4819 | start = inode_offset & ~(inodes_per_block - 1); |
4820 | |
4821 | /* Is the inode bitmap in cache? */ |
4822 | bitmap_bh = sb_getblk(sb, block: ext4_inode_bitmap(sb, bg: gdp)); |
4823 | if (unlikely(!bitmap_bh)) |
4824 | goto make_io; |
4825 | |
4826 | /* |
4827 | * If the inode bitmap isn't in cache then the |
4828 | * optimisation may end up performing two reads instead |
4829 | * of one, so skip it. |
4830 | */ |
4831 | if (!buffer_uptodate(bh: bitmap_bh)) { |
4832 | brelse(bh: bitmap_bh); |
4833 | goto make_io; |
4834 | } |
4835 | for (i = start; i < start + inodes_per_block; i++) { |
4836 | if (i == inode_offset) |
4837 | continue; |
4838 | if (ext4_test_bit(nr: i, addr: bitmap_bh->b_data)) |
4839 | break; |
4840 | } |
4841 | brelse(bh: bitmap_bh); |
4842 | if (i == start + inodes_per_block) { |
4843 | struct ext4_inode *raw_inode = |
4844 | (struct ext4_inode *) (bh->b_data + iloc->offset); |
4845 | |
4846 | /* all other inodes are free, so skip I/O */ |
4847 | memset(bh->b_data, 0, bh->b_size); |
4848 | if (!ext4_test_inode_state(inode, bit: EXT4_STATE_NEW)) |
4849 | ext4_fill_raw_inode(inode, raw_inode); |
4850 | set_buffer_uptodate(bh); |
4851 | unlock_buffer(bh); |
4852 | goto has_buffer; |
4853 | } |
4854 | } |
4855 | |
4856 | make_io: |
4857 | /* |
4858 | * If we need to do any I/O, try to pre-readahead extra |
4859 | * blocks from the inode table. |
4860 | */ |
4861 | blk_start_plug(&plug); |
4862 | if (EXT4_SB(sb)->s_inode_readahead_blks) { |
4863 | ext4_fsblk_t b, end, table; |
4864 | unsigned num; |
4865 | __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; |
4866 | |
4867 | table = ext4_inode_table(sb, bg: gdp); |
4868 | /* s_inode_readahead_blks is always a power of 2 */ |
4869 | b = block & ~((ext4_fsblk_t) ra_blks - 1); |
4870 | if (table > b) |
4871 | b = table; |
4872 | end = b + ra_blks; |
4873 | num = EXT4_INODES_PER_GROUP(sb); |
4874 | if (ext4_has_group_desc_csum(sb)) |
4875 | num -= ext4_itable_unused_count(sb, bg: gdp); |
4876 | table += num / inodes_per_block; |
4877 | if (end > table) |
4878 | end = table; |
4879 | while (b <= end) |
4880 | ext4_sb_breadahead_unmovable(sb, block: b++); |
4881 | } |
4882 | |
4883 | /* |
4884 | * There are other valid inodes in the buffer, this inode |
4885 | * has in-inode xattrs, or we don't have this inode in memory. |
4886 | * Read the block from disk. |
4887 | */ |
4888 | trace_ext4_load_inode(sb, ino); |
4889 | ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL, |
4890 | simu_fail: ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)); |
4891 | blk_finish_plug(&plug); |
4892 | wait_on_buffer(bh); |
4893 | if (!buffer_uptodate(bh)) { |
4894 | if (ret_block) |
4895 | *ret_block = block; |
4896 | brelse(bh); |
4897 | return -EIO; |
4898 | } |
4899 | has_buffer: |
4900 | iloc->bh = bh; |
4901 | return 0; |
4902 | } |
4903 | |
4904 | static int __ext4_get_inode_loc_noinmem(struct inode *inode, |
4905 | struct ext4_iloc *iloc) |
4906 | { |
4907 | ext4_fsblk_t err_blk = 0; |
4908 | int ret; |
4909 | |
4910 | ret = __ext4_get_inode_loc(sb: inode->i_sb, ino: inode->i_ino, NULL, iloc, |
4911 | ret_block: &err_blk); |
4912 | |
4913 | if (ret == -EIO) |
4914 | ext4_error_inode_block(inode, err_blk, EIO, |
4915 | "unable to read itable block"); |
4916 | |
4917 | return ret; |
4918 | } |
4919 | |
4920 | int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) |
4921 | { |
4922 | ext4_fsblk_t err_blk = 0; |
4923 | int ret; |
4924 | |
4925 | ret = __ext4_get_inode_loc(sb: inode->i_sb, ino: inode->i_ino, inode, iloc, |
4926 | ret_block: &err_blk); |
4927 | |
4928 | if (ret == -EIO) |
4929 | ext4_error_inode_block(inode, err_blk, EIO, |
4930 | "unable to read itable block"); |
4931 | |
4932 | return ret; |
4933 | } |
4934 | |
4935 | |
4936 | int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, |
4937 | struct ext4_iloc *iloc) |
4938 | { |
4939 | return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); |
4940 | } |
4941 | |
4942 | static bool ext4_should_enable_dax(struct inode *inode) |
4943 | { |
4944 | struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb); |
4945 | |
4946 | if (test_opt2(inode->i_sb, DAX_NEVER)) |
4947 | return false; |
4948 | if (!S_ISREG(inode->i_mode)) |
4949 | return false; |
4950 | if (ext4_should_journal_data(inode)) |
4951 | return false; |
4952 | if (ext4_has_inline_data(inode)) |
4953 | return false; |
4954 | if (ext4_test_inode_flag(inode, bit: EXT4_INODE_ENCRYPT)) |
4955 | return false; |
4956 | if (ext4_test_inode_flag(inode, bit: EXT4_INODE_VERITY)) |
4957 | return false; |
4958 | if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) |
4959 | return false; |
4960 | if (test_opt(inode->i_sb, DAX_ALWAYS)) |
4961 | return true; |
4962 | |
4963 | return ext4_test_inode_flag(inode, bit: EXT4_INODE_DAX); |
4964 | } |
4965 | |
4966 | void ext4_set_inode_flags(struct inode *inode, bool init) |
4967 | { |
4968 | unsigned int flags = EXT4_I(inode)->i_flags; |
4969 | unsigned int new_fl = 0; |
4970 | |
4971 | WARN_ON_ONCE(IS_DAX(inode) && init); |
4972 | |
4973 | if (flags & EXT4_SYNC_FL) |
4974 | new_fl |= S_SYNC; |
4975 | if (flags & EXT4_APPEND_FL) |
4976 | new_fl |= S_APPEND; |
4977 | if (flags & EXT4_IMMUTABLE_FL) |
4978 | new_fl |= S_IMMUTABLE; |
4979 | if (flags & EXT4_NOATIME_FL) |
4980 | new_fl |= S_NOATIME; |
4981 | if (flags & EXT4_DIRSYNC_FL) |
4982 | new_fl |= S_DIRSYNC; |
4983 | |
4984 | /* Because of the way inode_set_flags() works we must preserve S_DAX |
4985 | * here if already set. */ |
4986 | new_fl |= (inode->i_flags & S_DAX); |
4987 | if (init && ext4_should_enable_dax(inode)) |
4988 | new_fl |= S_DAX; |
4989 | |
4990 | if (flags & EXT4_ENCRYPT_FL) |
4991 | new_fl |= S_ENCRYPTED; |
4992 | if (flags & EXT4_CASEFOLD_FL) |
4993 | new_fl |= S_CASEFOLD; |
4994 | if (flags & EXT4_VERITY_FL) |
4995 | new_fl |= S_VERITY; |
4996 | inode_set_flags(inode, flags: new_fl, |
4997 | S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| |
4998 | S_ENCRYPTED|S_CASEFOLD|S_VERITY); |
4999 | } |
5000 | |
5001 | static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, |
5002 | struct ext4_inode_info *ei) |
5003 | { |
5004 | blkcnt_t i_blocks ; |
5005 | struct inode *inode = &(ei->vfs_inode); |
5006 | struct super_block *sb = inode->i_sb; |
5007 | |
5008 | if (ext4_has_feature_huge_file(sb)) { |
5009 | /* we are using combined 48 bit field */ |
5010 | i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | |
5011 | le32_to_cpu(raw_inode->i_blocks_lo); |
5012 | if (ext4_test_inode_flag(inode, bit: EXT4_INODE_HUGE_FILE)) { |
5013 | /* i_blocks represent file system block size */ |
5014 | return i_blocks << (inode->i_blkbits - 9); |
5015 | } else { |
5016 | return i_blocks; |
5017 | } |
5018 | } else { |
5019 | return le32_to_cpu(raw_inode->i_blocks_lo); |
5020 | } |
5021 | } |
5022 | |
5023 | static inline int ext4_iget_extra_inode(struct inode *inode, |
5024 | struct ext4_inode *raw_inode, |
5025 | struct ext4_inode_info *ei) |
5026 | { |
5027 | __le32 *magic = (void *)raw_inode + |
5028 | EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; |
5029 | |
5030 | if (EXT4_INODE_HAS_XATTR_SPACE(inode) && |
5031 | *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { |
5032 | int err; |
5033 | |
5034 | err = xattr_check_inode(inode, IHDR(inode, raw_inode), |
5035 | ITAIL(inode, raw_inode)); |
5036 | if (err) |
5037 | return err; |
5038 | |
5039 | ext4_set_inode_state(inode, bit: EXT4_STATE_XATTR); |
5040 | err = ext4_find_inline_data_nolock(inode); |
5041 | if (!err && ext4_has_inline_data(inode)) |
5042 | ext4_set_inode_state(inode, bit: EXT4_STATE_MAY_INLINE_DATA); |
5043 | return err; |
5044 | } else |
5045 | EXT4_I(inode)->i_inline_off = 0; |
5046 | return 0; |
5047 | } |
5048 | |
5049 | int ext4_get_projid(struct inode *inode, kprojid_t *projid) |
5050 | { |
5051 | if (!ext4_has_feature_project(sb: inode->i_sb)) |
5052 | return -EOPNOTSUPP; |
5053 | *projid = EXT4_I(inode)->i_projid; |
5054 | return 0; |
5055 | } |
5056 | |
5057 | /* |
5058 | * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of |
5059 | * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag |
5060 | * set. |
5061 | */ |
5062 | static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) |
5063 | { |
5064 | if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) |
5065 | inode_set_iversion_raw(inode, val); |
5066 | else |
5067 | inode_set_iversion_queried(inode, val); |
5068 | } |
5069 | |
5070 | static int check_igot_inode(struct inode *inode, ext4_iget_flags flags, |
5071 | const char *function, unsigned int line) |
5072 | { |
5073 | const char *err_str; |
5074 | |
5075 | if (flags & EXT4_IGET_EA_INODE) { |
5076 | if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { |
5077 | err_str = "missing EA_INODE flag"; |
5078 | goto error; |
5079 | } |
5080 | if (ext4_test_inode_state(inode, bit: EXT4_STATE_XATTR) || |
5081 | EXT4_I(inode)->i_file_acl) { |
5082 | err_str = "ea_inode with extended attributes"; |
5083 | goto error; |
5084 | } |
5085 | } else { |
5086 | if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { |
5087 | /* |
5088 | * open_by_handle_at() could provide an old inode number |
5089 | * that has since been reused for an ea_inode; this does |
5090 | * not indicate filesystem corruption |
5091 | */ |
5092 | if (flags & EXT4_IGET_HANDLE) |
5093 | return -ESTALE; |
5094 | err_str = "unexpected EA_INODE flag"; |
5095 | goto error; |
5096 | } |
5097 | } |
5098 | if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) { |
5099 | err_str = "unexpected bad inode w/o EXT4_IGET_BAD"; |
5100 | goto error; |
5101 | } |
5102 | return 0; |
5103 | |
5104 | error: |
5105 | ext4_error_inode(inode, function, line, 0, "%s", err_str); |
5106 | return -EFSCORRUPTED; |
5107 | } |
5108 | |
5109 | bool ext4_should_enable_large_folio(struct inode *inode) |
5110 | { |
5111 | struct super_block *sb = inode->i_sb; |
5112 | |
5113 | if (!S_ISREG(inode->i_mode)) |
5114 | return false; |
5115 | if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA || |
5116 | ext4_test_inode_flag(inode, bit: EXT4_INODE_JOURNAL_DATA)) |
5117 | return false; |
5118 | if (ext4_has_feature_verity(sb)) |
5119 | return false; |
5120 | if (ext4_has_feature_encrypt(sb)) |
5121 | return false; |
5122 | |
5123 | return true; |
5124 | } |
5125 | |
5126 | struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, |
5127 | ext4_iget_flags flags, const char *function, |
5128 | unsigned int line) |
5129 | { |
5130 | struct ext4_iloc iloc; |
5131 | struct ext4_inode *raw_inode; |
5132 | struct ext4_inode_info *ei; |
5133 | struct ext4_super_block *es = EXT4_SB(sb)->s_es; |
5134 | struct inode *inode; |
5135 | journal_t *journal = EXT4_SB(sb)->s_journal; |
5136 | long ret; |
5137 | loff_t size; |
5138 | int block; |
5139 | uid_t i_uid; |
5140 | gid_t i_gid; |
5141 | projid_t i_projid; |
5142 | |
5143 | if ((!(flags & EXT4_IGET_SPECIAL) && is_special_ino(sb, ino)) || |
5144 | (ino < EXT4_ROOT_INO) || |
5145 | (ino > le32_to_cpu(es->s_inodes_count))) { |
5146 | if (flags & EXT4_IGET_HANDLE) |
5147 | return ERR_PTR(error: -ESTALE); |
5148 | __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, |
5149 | "inode #%lu: comm %s: iget: illegal inode #", |
5150 | ino, current->comm); |
5151 | return ERR_PTR(error: -EFSCORRUPTED); |
5152 | } |
5153 | |
5154 | inode = iget_locked(sb, ino); |
5155 | if (!inode) |
5156 | return ERR_PTR(error: -ENOMEM); |
5157 | if (!(inode->i_state & I_NEW)) { |
5158 | ret = check_igot_inode(inode, flags, function, line); |
5159 | if (ret) { |
5160 | iput(inode); |
5161 | return ERR_PTR(error: ret); |
5162 | } |
5163 | return inode; |
5164 | } |
5165 | |
5166 | ei = EXT4_I(inode); |
5167 | iloc.bh = NULL; |
5168 | |
5169 | ret = __ext4_get_inode_loc_noinmem(inode, iloc: &iloc); |
5170 | if (ret < 0) |
5171 | goto bad_inode; |
5172 | raw_inode = ext4_raw_inode(iloc: &iloc); |
5173 | |
5174 | if ((flags & EXT4_IGET_HANDLE) && |
5175 | (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { |
5176 | ret = -ESTALE; |
5177 | goto bad_inode; |
5178 | } |
5179 | |
5180 | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { |
5181 | ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); |
5182 | if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > |
5183 | EXT4_INODE_SIZE(inode->i_sb) || |
5184 | (ei->i_extra_isize & 3)) { |
5185 | ext4_error_inode(inode, function, line, 0, |
5186 | "iget: bad extra_isize %u " |
5187 | "(inode size %u)", |
5188 | ei->i_extra_isize, |
5189 | EXT4_INODE_SIZE(inode->i_sb)); |
5190 | ret = -EFSCORRUPTED; |
5191 | goto bad_inode; |
5192 | } |
5193 | } else |
5194 | ei->i_extra_isize = 0; |
5195 | |
5196 | /* Precompute checksum seed for inode metadata */ |
5197 | if (ext4_has_feature_metadata_csum(sb)) { |
5198 | struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb); |
5199 | __u32 csum; |
5200 | __le32 inum = cpu_to_le32(inode->i_ino); |
5201 | __le32 gen = raw_inode->i_generation; |
5202 | csum = ext4_chksum(crc: sbi->s_csum_seed, address: (__u8 *)&inum, |
5203 | length: sizeof(inum)); |
5204 | ei->i_csum_seed = ext4_chksum(crc: csum, address: (__u8 *)&gen, length: sizeof(gen)); |
5205 | } |
5206 | |
5207 | if ((!ext4_inode_csum_verify(inode, raw: raw_inode, ei) || |
5208 | ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && |
5209 | (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { |
5210 | ext4_error_inode_err(inode, function, line, 0, |
5211 | EFSBADCRC, "iget: checksum invalid"); |
5212 | ret = -EFSBADCRC; |
5213 | goto bad_inode; |
5214 | } |
5215 | |
5216 | inode->i_mode = le16_to_cpu(raw_inode->i_mode); |
5217 | i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); |
5218 | i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); |
5219 | if (ext4_has_feature_project(sb) && |
5220 | EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && |
5221 | EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) |
5222 | i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); |
5223 | else |
5224 | i_projid = EXT4_DEF_PROJID; |
5225 | |
5226 | if (!(test_opt(inode->i_sb, NO_UID32))) { |
5227 | i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; |
5228 | i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; |
5229 | } |
5230 | i_uid_write(inode, uid: i_uid); |
5231 | i_gid_write(inode, gid: i_gid); |
5232 | ei->i_projid = make_kprojid(from: &init_user_ns, projid: i_projid); |
5233 | set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); |
5234 | |
5235 | ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ |
5236 | ei->i_inline_off = 0; |
5237 | ei->i_dir_start_lookup = 0; |
5238 | ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); |
5239 | /* We now have enough fields to check if the inode was active or not. |
5240 | * This is needed because nfsd might try to access dead inodes |
5241 | * the test is that same one that e2fsck uses |
5242 | * NeilBrown 1999oct15 |
5243 | */ |
5244 | if (inode->i_nlink == 0) { |
5245 | if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || |
5246 | !(EXT4_SB(sb: inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && |
5247 | ino != EXT4_BOOT_LOADER_INO) { |
5248 | /* this inode is deleted or unallocated */ |
5249 | if (flags & EXT4_IGET_SPECIAL) { |
5250 | ext4_error_inode(inode, function, line, 0, |
5251 | "iget: special inode unallocated"); |
5252 | ret = -EFSCORRUPTED; |
5253 | } else |
5254 | ret = -ESTALE; |
5255 | goto bad_inode; |
5256 | } |
5257 | /* The only unlinked inodes we let through here have |
5258 | * valid i_mode and are being read by the orphan |
5259 | * recovery code: that's fine, we're about to complete |
5260 | * the process of deleting those. |
5261 | * OR it is the EXT4_BOOT_LOADER_INO which is |
5262 | * not initialized on a new filesystem. */ |
5263 | } |
5264 | ei->i_flags = le32_to_cpu(raw_inode->i_flags); |
5265 | ext4_set_inode_flags(inode, init: true); |
5266 | inode->i_blocks = ext4_inode_blocks(raw_inode, ei); |
5267 | ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); |
5268 | if (ext4_has_feature_64bit(sb)) |
5269 | ei->i_file_acl |= |
5270 | ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; |
5271 | inode->i_size = ext4_isize(sb, raw_inode); |
5272 | size = i_size_read(inode); |
5273 | if (size < 0 || size > ext4_get_maxbytes(inode)) { |
5274 | ext4_error_inode(inode, function, line, 0, |
5275 | "iget: bad i_size value: %lld", size); |
5276 | ret = -EFSCORRUPTED; |
5277 | goto bad_inode; |
5278 | } |
5279 | /* |
5280 | * If dir_index is not enabled but there's dir with INDEX flag set, |
5281 | * we'd normally treat htree data as empty space. But with metadata |
5282 | * checksumming that corrupts checksums so forbid that. |
5283 | */ |
5284 | if (!ext4_has_feature_dir_index(sb) && |
5285 | ext4_has_feature_metadata_csum(sb) && |
5286 | ext4_test_inode_flag(inode, bit: EXT4_INODE_INDEX)) { |
5287 | ext4_error_inode(inode, function, line, 0, |
5288 | "iget: Dir with htree data on filesystem without dir_index feature."); |
5289 | ret = -EFSCORRUPTED; |
5290 | goto bad_inode; |
5291 | } |
5292 | ei->i_disksize = inode->i_size; |
5293 | #ifdef CONFIG_QUOTA |
5294 | ei->i_reserved_quota = 0; |
5295 | #endif |
5296 | inode->i_generation = le32_to_cpu(raw_inode->i_generation); |
5297 | ei->i_block_group = iloc.block_group; |
5298 | ei->i_last_alloc_group = ~0; |
5299 | /* |
5300 | * NOTE! The in-memory inode i_data array is in little-endian order |
5301 | * even on big-endian machines: we do NOT byteswap the block numbers! |
5302 | */ |
5303 | for (block = 0; block < EXT4_N_BLOCKS; block++) |
5304 | ei->i_data[block] = raw_inode->i_block[block]; |
5305 | INIT_LIST_HEAD(list: &ei->i_orphan); |
5306 | ext4_fc_init_inode(inode: &ei->vfs_inode); |
5307 | |
5308 | /* |
5309 | * Set transaction id's of transactions that have to be committed |
5310 | * to finish f[data]sync. We set them to currently running transaction |
5311 | * as we cannot be sure that the inode or some of its metadata isn't |
5312 | * part of the transaction - the inode could have been reclaimed and |
5313 | * now it is reread from disk. |
5314 | */ |
5315 | if (journal) { |
5316 | transaction_t *transaction; |
5317 | tid_t tid; |
5318 | |
5319 | read_lock(&journal->j_state_lock); |
5320 | if (journal->j_running_transaction) |
5321 | transaction = journal->j_running_transaction; |
5322 | else |
5323 | transaction = journal->j_committing_transaction; |
5324 | if (transaction) |
5325 | tid = transaction->t_tid; |
5326 | else |
5327 | tid = journal->j_commit_sequence; |
5328 | read_unlock(&journal->j_state_lock); |
5329 | ei->i_sync_tid = tid; |
5330 | ei->i_datasync_tid = tid; |
5331 | } |
5332 | |
5333 | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { |
5334 | if (ei->i_extra_isize == 0) { |
5335 | /* The extra space is currently unused. Use it. */ |
5336 | BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); |
5337 | ei->i_extra_isize = sizeof(struct ext4_inode) - |
5338 | EXT4_GOOD_OLD_INODE_SIZE; |
5339 | } else { |
5340 | ret = ext4_iget_extra_inode(inode, raw_inode, ei); |
5341 | if (ret) |
5342 | goto bad_inode; |
5343 | } |
5344 | } |
5345 | |
5346 | EXT4_INODE_GET_CTIME(inode, raw_inode); |
5347 | EXT4_INODE_GET_ATIME(inode, raw_inode); |
5348 | EXT4_INODE_GET_MTIME(inode, raw_inode); |
5349 | EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); |
5350 | |
5351 | if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { |
5352 | u64 ivers = le32_to_cpu(raw_inode->i_disk_version); |
5353 | |
5354 | if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { |
5355 | if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) |
5356 | ivers |= |
5357 | (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; |
5358 | } |
5359 | ext4_inode_set_iversion_queried(inode, val: ivers); |
5360 | } |
5361 | |
5362 | ret = 0; |
5363 | if (ei->i_file_acl && |
5364 | !ext4_inode_block_valid(inode, start_blk: ei->i_file_acl, count: 1)) { |
5365 | ext4_error_inode(inode, function, line, 0, |
5366 | "iget: bad extended attribute block %llu", |
5367 | ei->i_file_acl); |
5368 | ret = -EFSCORRUPTED; |
5369 | goto bad_inode; |
5370 | } else if (!ext4_has_inline_data(inode)) { |
5371 | /* validate the block references in the inode */ |
5372 | if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && |
5373 | (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || |
5374 | (S_ISLNK(inode->i_mode) && |
5375 | !ext4_inode_is_fast_symlink(inode)))) { |
5376 | if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS)) |
5377 | ret = ext4_ext_check_inode(inode); |
5378 | else |
5379 | ret = ext4_ind_check_inode(inode); |
5380 | } |
5381 | } |
5382 | if (ret) |
5383 | goto bad_inode; |
5384 | |
5385 | if (S_ISREG(inode->i_mode)) { |
5386 | inode->i_op = &ext4_file_inode_operations; |
5387 | inode->i_fop = &ext4_file_operations; |
5388 | ext4_set_aops(inode); |
5389 | } else if (S_ISDIR(inode->i_mode)) { |
5390 | inode->i_op = &ext4_dir_inode_operations; |
5391 | inode->i_fop = &ext4_dir_operations; |
5392 | } else if (S_ISLNK(inode->i_mode)) { |
5393 | /* VFS does not allow setting these so must be corruption */ |
5394 | if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { |
5395 | ext4_error_inode(inode, function, line, 0, |
5396 | "iget: immutable or append flags " |
5397 | "not allowed on symlinks"); |
5398 | ret = -EFSCORRUPTED; |
5399 | goto bad_inode; |
5400 | } |
5401 | if (IS_ENCRYPTED(inode)) { |
5402 | inode->i_op = &ext4_encrypted_symlink_inode_operations; |
5403 | } else if (ext4_inode_is_fast_symlink(inode)) { |
5404 | inode->i_op = &ext4_fast_symlink_inode_operations; |
5405 | if (inode->i_size == 0 || |
5406 | inode->i_size >= sizeof(ei->i_data) || |
5407 | strnlen(p: (char *)ei->i_data, maxlen: inode->i_size + 1) != |
5408 | inode->i_size) { |
5409 | ext4_error_inode(inode, function, line, 0, |
5410 | "invalid fast symlink length %llu", |
5411 | (unsigned long long)inode->i_size); |
5412 | ret = -EFSCORRUPTED; |
5413 | goto bad_inode; |
5414 | } |
5415 | inode_set_cached_link(inode, link: (char *)ei->i_data, |
5416 | linklen: inode->i_size); |
5417 | } else { |
5418 | inode->i_op = &ext4_symlink_inode_operations; |
5419 | } |
5420 | } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || |
5421 | S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { |
5422 | inode->i_op = &ext4_special_inode_operations; |
5423 | if (raw_inode->i_block[0]) |
5424 | init_special_inode(inode, inode->i_mode, |
5425 | old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); |
5426 | else |
5427 | init_special_inode(inode, inode->i_mode, |
5428 | new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); |
5429 | } else if (ino == EXT4_BOOT_LOADER_INO) { |
5430 | make_bad_inode(inode); |
5431 | } else { |
5432 | ret = -EFSCORRUPTED; |
5433 | ext4_error_inode(inode, function, line, 0, |
5434 | "iget: bogus i_mode (%o)", inode->i_mode); |
5435 | goto bad_inode; |
5436 | } |
5437 | if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(sb: inode->i_sb)) { |
5438 | ext4_error_inode(inode, function, line, 0, |
5439 | "casefold flag without casefold feature"); |
5440 | ret = -EFSCORRUPTED; |
5441 | goto bad_inode; |
5442 | } |
5443 | if (ext4_should_enable_large_folio(inode)) |
5444 | mapping_set_large_folios(mapping: inode->i_mapping); |
5445 | |
5446 | ret = check_igot_inode(inode, flags, function, line); |
5447 | /* |
5448 | * -ESTALE here means there is nothing inherently wrong with the inode, |
5449 | * it's just not an inode we can return for an fhandle lookup. |
5450 | */ |
5451 | if (ret == -ESTALE) { |
5452 | brelse(bh: iloc.bh); |
5453 | unlock_new_inode(inode); |
5454 | iput(inode); |
5455 | return ERR_PTR(error: -ESTALE); |
5456 | } |
5457 | if (ret) |
5458 | goto bad_inode; |
5459 | brelse(bh: iloc.bh); |
5460 | |
5461 | unlock_new_inode(inode); |
5462 | return inode; |
5463 | |
5464 | bad_inode: |
5465 | brelse(bh: iloc.bh); |
5466 | iget_failed(inode); |
5467 | return ERR_PTR(error: ret); |
5468 | } |
5469 | |
5470 | static void __ext4_update_other_inode_time(struct super_block *sb, |
5471 | unsigned long orig_ino, |
5472 | unsigned long ino, |
5473 | struct ext4_inode *raw_inode) |
5474 | { |
5475 | struct inode *inode; |
5476 | |
5477 | inode = find_inode_by_ino_rcu(sb, ino); |
5478 | if (!inode) |
5479 | return; |
5480 | |
5481 | if (!inode_is_dirtytime_only(inode)) |
5482 | return; |
5483 | |
5484 | spin_lock(lock: &inode->i_lock); |
5485 | if (inode_is_dirtytime_only(inode)) { |
5486 | struct ext4_inode_info *ei = EXT4_I(inode); |
5487 | |
5488 | inode->i_state &= ~I_DIRTY_TIME; |
5489 | spin_unlock(lock: &inode->i_lock); |
5490 | |
5491 | spin_lock(lock: &ei->i_raw_lock); |
5492 | EXT4_INODE_SET_CTIME(inode, raw_inode); |
5493 | EXT4_INODE_SET_MTIME(inode, raw_inode); |
5494 | EXT4_INODE_SET_ATIME(inode, raw_inode); |
5495 | ext4_inode_csum_set(inode, raw: raw_inode, ei); |
5496 | spin_unlock(lock: &ei->i_raw_lock); |
5497 | trace_ext4_other_inode_update_time(inode, orig_ino); |
5498 | return; |
5499 | } |
5500 | spin_unlock(lock: &inode->i_lock); |
5501 | } |
5502 | |
5503 | /* |
5504 | * Opportunistically update the other time fields for other inodes in |
5505 | * the same inode table block. |
5506 | */ |
5507 | static void ext4_update_other_inodes_time(struct super_block *sb, |
5508 | unsigned long orig_ino, char *buf) |
5509 | { |
5510 | unsigned long ino; |
5511 | int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; |
5512 | int inode_size = EXT4_INODE_SIZE(sb); |
5513 | |
5514 | /* |
5515 | * Calculate the first inode in the inode table block. Inode |
5516 | * numbers are one-based. That is, the first inode in a block |
5517 | * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). |
5518 | */ |
5519 | ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; |
5520 | rcu_read_lock(); |
5521 | for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { |
5522 | if (ino == orig_ino) |
5523 | continue; |
5524 | __ext4_update_other_inode_time(sb, orig_ino, ino, |
5525 | raw_inode: (struct ext4_inode *)buf); |
5526 | } |
5527 | rcu_read_unlock(); |
5528 | } |
5529 | |
5530 | /* |
5531 | * Post the struct inode info into an on-disk inode location in the |
5532 | * buffer-cache. This gobbles the caller's reference to the |
5533 | * buffer_head in the inode location struct. |
5534 | * |
5535 | * The caller must have write access to iloc->bh. |
5536 | */ |
5537 | static int ext4_do_update_inode(handle_t *handle, |
5538 | struct inode *inode, |
5539 | struct ext4_iloc *iloc) |
5540 | { |
5541 | struct ext4_inode *raw_inode = ext4_raw_inode(iloc); |
5542 | struct ext4_inode_info *ei = EXT4_I(inode); |
5543 | struct buffer_head *bh = iloc->bh; |
5544 | struct super_block *sb = inode->i_sb; |
5545 | int err; |
5546 | int need_datasync = 0, set_large_file = 0; |
5547 | |
5548 | spin_lock(lock: &ei->i_raw_lock); |
5549 | |
5550 | /* |
5551 | * For fields not tracked in the in-memory inode, initialise them |
5552 | * to zero for new inodes. |
5553 | */ |
5554 | if (ext4_test_inode_state(inode, bit: EXT4_STATE_NEW)) |
5555 | memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); |
5556 | |
5557 | if (READ_ONCE(ei->i_disksize) != ext4_isize(sb: inode->i_sb, raw_inode)) |
5558 | need_datasync = 1; |
5559 | if (ei->i_disksize > 0x7fffffffULL) { |
5560 | if (!ext4_has_feature_large_file(sb) || |
5561 | EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) |
5562 | set_large_file = 1; |
5563 | } |
5564 | |
5565 | err = ext4_fill_raw_inode(inode, raw_inode); |
5566 | spin_unlock(lock: &ei->i_raw_lock); |
5567 | if (err) { |
5568 | EXT4_ERROR_INODE(inode, "corrupted inode contents"); |
5569 | goto out_brelse; |
5570 | } |
5571 | |
5572 | if (inode->i_sb->s_flags & SB_LAZYTIME) |
5573 | ext4_update_other_inodes_time(sb: inode->i_sb, orig_ino: inode->i_ino, |
5574 | buf: bh->b_data); |
5575 | |
5576 | BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); |
5577 | err = ext4_handle_dirty_metadata(handle, NULL, bh); |
5578 | if (err) |
5579 | goto out_error; |
5580 | ext4_clear_inode_state(inode, bit: EXT4_STATE_NEW); |
5581 | if (set_large_file) { |
5582 | BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); |
5583 | err = ext4_journal_get_write_access(handle, sb, |
5584 | EXT4_SB(sb)->s_sbh, |
5585 | EXT4_JTR_NONE); |
5586 | if (err) |
5587 | goto out_error; |
5588 | lock_buffer(bh: EXT4_SB(sb)->s_sbh); |
5589 | ext4_set_feature_large_file(sb); |
5590 | ext4_superblock_csum_set(sb); |
5591 | unlock_buffer(bh: EXT4_SB(sb)->s_sbh); |
5592 | ext4_handle_sync(handle); |
5593 | err = ext4_handle_dirty_metadata(handle, NULL, |
5594 | EXT4_SB(sb)->s_sbh); |
5595 | } |
5596 | ext4_update_inode_fsync_trans(handle, inode, datasync: need_datasync); |
5597 | out_error: |
5598 | ext4_std_error(inode->i_sb, err); |
5599 | out_brelse: |
5600 | brelse(bh); |
5601 | return err; |
5602 | } |
5603 | |
5604 | /* |
5605 | * ext4_write_inode() |
5606 | * |
5607 | * We are called from a few places: |
5608 | * |
5609 | * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. |
5610 | * Here, there will be no transaction running. We wait for any running |
5611 | * transaction to commit. |
5612 | * |
5613 | * - Within flush work (sys_sync(), kupdate and such). |
5614 | * We wait on commit, if told to. |
5615 | * |
5616 | * - Within iput_final() -> write_inode_now() |
5617 | * We wait on commit, if told to. |
5618 | * |
5619 | * In all cases it is actually safe for us to return without doing anything, |
5620 | * because the inode has been copied into a raw inode buffer in |
5621 | * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL |
5622 | * writeback. |
5623 | * |
5624 | * Note that we are absolutely dependent upon all inode dirtiers doing the |
5625 | * right thing: they *must* call mark_inode_dirty() after dirtying info in |
5626 | * which we are interested. |
5627 | * |
5628 | * It would be a bug for them to not do this. The code: |
5629 | * |
5630 | * mark_inode_dirty(inode) |
5631 | * stuff(); |
5632 | * inode->i_size = expr; |
5633 | * |
5634 | * is in error because write_inode() could occur while `stuff()' is running, |
5635 | * and the new i_size will be lost. Plus the inode will no longer be on the |
5636 | * superblock's dirty inode list. |
5637 | */ |
5638 | int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) |
5639 | { |
5640 | int err; |
5641 | |
5642 | if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) |
5643 | return 0; |
5644 | |
5645 | err = ext4_emergency_state(sb: inode->i_sb); |
5646 | if (unlikely(err)) |
5647 | return err; |
5648 | |
5649 | if (EXT4_SB(sb: inode->i_sb)->s_journal) { |
5650 | if (ext4_journal_current_handle()) { |
5651 | ext4_debug("called recursively, non-PF_MEMALLOC!\n"); |
5652 | dump_stack(); |
5653 | return -EIO; |
5654 | } |
5655 | |
5656 | /* |
5657 | * No need to force transaction in WB_SYNC_NONE mode. Also |
5658 | * ext4_sync_fs() will force the commit after everything is |
5659 | * written. |
5660 | */ |
5661 | if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) |
5662 | return 0; |
5663 | |
5664 | err = ext4_fc_commit(journal: EXT4_SB(sb: inode->i_sb)->s_journal, |
5665 | EXT4_I(inode)->i_sync_tid); |
5666 | } else { |
5667 | struct ext4_iloc iloc; |
5668 | |
5669 | err = __ext4_get_inode_loc_noinmem(inode, iloc: &iloc); |
5670 | if (err) |
5671 | return err; |
5672 | /* |
5673 | * sync(2) will flush the whole buffer cache. No need to do |
5674 | * it here separately for each inode. |
5675 | */ |
5676 | if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) |
5677 | sync_dirty_buffer(bh: iloc.bh); |
5678 | if (buffer_req(bh: iloc.bh) && !buffer_uptodate(bh: iloc.bh)) { |
5679 | ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, |
5680 | "IO error syncing inode"); |
5681 | err = -EIO; |
5682 | } |
5683 | brelse(bh: iloc.bh); |
5684 | } |
5685 | return err; |
5686 | } |
5687 | |
5688 | /* |
5689 | * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate |
5690 | * buffers that are attached to a folio straddling i_size and are undergoing |
5691 | * commit. In that case we have to wait for commit to finish and try again. |
5692 | */ |
5693 | static void ext4_wait_for_tail_page_commit(struct inode *inode) |
5694 | { |
5695 | unsigned offset; |
5696 | journal_t *journal = EXT4_SB(sb: inode->i_sb)->s_journal; |
5697 | tid_t commit_tid; |
5698 | int ret; |
5699 | bool has_transaction; |
5700 | |
5701 | offset = inode->i_size & (PAGE_SIZE - 1); |
5702 | /* |
5703 | * If the folio is fully truncated, we don't need to wait for any commit |
5704 | * (and we even should not as __ext4_journalled_invalidate_folio() may |
5705 | * strip all buffers from the folio but keep the folio dirty which can then |
5706 | * confuse e.g. concurrent ext4_writepages() seeing dirty folio without |
5707 | * buffers). Also we don't need to wait for any commit if all buffers in |
5708 | * the folio remain valid. This is most beneficial for the common case of |
5709 | * blocksize == PAGESIZE. |
5710 | */ |
5711 | if (!offset || offset > (PAGE_SIZE - i_blocksize(node: inode))) |
5712 | return; |
5713 | while (1) { |
5714 | struct folio *folio = filemap_lock_folio(mapping: inode->i_mapping, |
5715 | index: inode->i_size >> PAGE_SHIFT); |
5716 | if (IS_ERR(ptr: folio)) |
5717 | return; |
5718 | ret = __ext4_journalled_invalidate_folio(folio, offset, |
5719 | length: folio_size(folio) - offset); |
5720 | folio_unlock(folio); |
5721 | folio_put(folio); |
5722 | if (ret != -EBUSY) |
5723 | return; |
5724 | has_transaction = false; |
5725 | read_lock(&journal->j_state_lock); |
5726 | if (journal->j_committing_transaction) { |
5727 | commit_tid = journal->j_committing_transaction->t_tid; |
5728 | has_transaction = true; |
5729 | } |
5730 | read_unlock(&journal->j_state_lock); |
5731 | if (has_transaction) |
5732 | jbd2_log_wait_commit(journal, tid: commit_tid); |
5733 | } |
5734 | } |
5735 | |
5736 | /* |
5737 | * ext4_setattr() |
5738 | * |
5739 | * Called from notify_change. |
5740 | * |
5741 | * We want to trap VFS attempts to truncate the file as soon as |
5742 | * possible. In particular, we want to make sure that when the VFS |
5743 | * shrinks i_size, we put the inode on the orphan list and modify |
5744 | * i_disksize immediately, so that during the subsequent flushing of |
5745 | * dirty pages and freeing of disk blocks, we can guarantee that any |
5746 | * commit will leave the blocks being flushed in an unused state on |
5747 | * disk. (On recovery, the inode will get truncated and the blocks will |
5748 | * be freed, so we have a strong guarantee that no future commit will |
5749 | * leave these blocks visible to the user.) |
5750 | * |
5751 | * Another thing we have to assure is that if we are in ordered mode |
5752 | * and inode is still attached to the committing transaction, we must |
5753 | * we start writeout of all the dirty pages which are being truncated. |
5754 | * This way we are sure that all the data written in the previous |
5755 | * transaction are already on disk (truncate waits for pages under |
5756 | * writeback). |
5757 | * |
5758 | * Called with inode->i_rwsem down. |
5759 | */ |
5760 | int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, |
5761 | struct iattr *attr) |
5762 | { |
5763 | struct inode *inode = d_inode(dentry); |
5764 | int error, rc = 0; |
5765 | int orphan = 0; |
5766 | const unsigned int ia_valid = attr->ia_valid; |
5767 | bool inc_ivers = true; |
5768 | |
5769 | error = ext4_emergency_state(sb: inode->i_sb); |
5770 | if (unlikely(error)) |
5771 | return error; |
5772 | |
5773 | if (unlikely(IS_IMMUTABLE(inode))) |
5774 | return -EPERM; |
5775 | |
5776 | if (unlikely(IS_APPEND(inode) && |
5777 | (ia_valid & (ATTR_MODE | ATTR_UID | |
5778 | ATTR_GID | ATTR_TIMES_SET)))) |
5779 | return -EPERM; |
5780 | |
5781 | error = setattr_prepare(idmap, dentry, attr); |
5782 | if (error) |
5783 | return error; |
5784 | |
5785 | error = fscrypt_prepare_setattr(dentry, attr); |
5786 | if (error) |
5787 | return error; |
5788 | |
5789 | error = fsverity_prepare_setattr(dentry, attr); |
5790 | if (error) |
5791 | return error; |
5792 | |
5793 | if (is_quota_modification(idmap, inode, ia: attr)) { |
5794 | error = dquot_initialize(inode); |
5795 | if (error) |
5796 | return error; |
5797 | } |
5798 | |
5799 | if (i_uid_needs_update(idmap, attr, inode) || |
5800 | i_gid_needs_update(idmap, attr, inode)) { |
5801 | handle_t *handle; |
5802 | |
5803 | /* (user+group)*(old+new) structure, inode write (sb, |
5804 | * inode block, ? - but truncate inode update has it) */ |
5805 | handle = ext4_journal_start(inode, EXT4_HT_QUOTA, |
5806 | (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + |
5807 | EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); |
5808 | if (IS_ERR(ptr: handle)) { |
5809 | error = PTR_ERR(ptr: handle); |
5810 | goto err_out; |
5811 | } |
5812 | |
5813 | /* dquot_transfer() calls back ext4_get_inode_usage() which |
5814 | * counts xattr inode references. |
5815 | */ |
5816 | down_read(sem: &EXT4_I(inode)->xattr_sem); |
5817 | error = dquot_transfer(idmap, inode, iattr: attr); |
5818 | up_read(sem: &EXT4_I(inode)->xattr_sem); |
5819 | |
5820 | if (error) { |
5821 | ext4_journal_stop(handle); |
5822 | return error; |
5823 | } |
5824 | /* Update corresponding info in inode so that everything is in |
5825 | * one transaction */ |
5826 | i_uid_update(idmap, attr, inode); |
5827 | i_gid_update(idmap, attr, inode); |
5828 | error = ext4_mark_inode_dirty(handle, inode); |
5829 | ext4_journal_stop(handle); |
5830 | if (unlikely(error)) { |
5831 | return error; |
5832 | } |
5833 | } |
5834 | |
5835 | if (attr->ia_valid & ATTR_SIZE) { |
5836 | handle_t *handle; |
5837 | loff_t oldsize = inode->i_size; |
5838 | loff_t old_disksize; |
5839 | int shrink = (attr->ia_size < inode->i_size); |
5840 | |
5841 | if (!(ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))) { |
5842 | struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb); |
5843 | |
5844 | if (attr->ia_size > sbi->s_bitmap_maxbytes) { |
5845 | return -EFBIG; |
5846 | } |
5847 | } |
5848 | if (!S_ISREG(inode->i_mode)) { |
5849 | return -EINVAL; |
5850 | } |
5851 | |
5852 | if (attr->ia_size == inode->i_size) |
5853 | inc_ivers = false; |
5854 | |
5855 | if (shrink) { |
5856 | if (ext4_should_order_data(inode)) { |
5857 | error = ext4_begin_ordered_truncate(inode, |
5858 | new_size: attr->ia_size); |
5859 | if (error) |
5860 | goto err_out; |
5861 | } |
5862 | /* |
5863 | * Blocks are going to be removed from the inode. Wait |
5864 | * for dio in flight. |
5865 | */ |
5866 | inode_dio_wait(inode); |
5867 | } |
5868 | |
5869 | filemap_invalidate_lock(mapping: inode->i_mapping); |
5870 | |
5871 | rc = ext4_break_layouts(inode); |
5872 | if (rc) { |
5873 | filemap_invalidate_unlock(mapping: inode->i_mapping); |
5874 | goto err_out; |
5875 | } |
5876 | |
5877 | if (attr->ia_size != inode->i_size) { |
5878 | /* attach jbd2 jinode for EOF folio tail zeroing */ |
5879 | if (attr->ia_size & (inode->i_sb->s_blocksize - 1) || |
5880 | oldsize & (inode->i_sb->s_blocksize - 1)) { |
5881 | error = ext4_inode_attach_jinode(inode); |
5882 | if (error) |
5883 | goto out_mmap_sem; |
5884 | } |
5885 | |
5886 | handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); |
5887 | if (IS_ERR(ptr: handle)) { |
5888 | error = PTR_ERR(ptr: handle); |
5889 | goto out_mmap_sem; |
5890 | } |
5891 | if (ext4_handle_valid(handle) && shrink) { |
5892 | error = ext4_orphan_add(handle, inode); |
5893 | orphan = 1; |
5894 | } |
5895 | /* |
5896 | * Update c/mtime and tail zero the EOF folio on |
5897 | * truncate up. ext4_truncate() handles the shrink case |
5898 | * below. |
5899 | */ |
5900 | if (!shrink) { |
5901 | inode_set_mtime_to_ts(inode, |
5902 | ts: inode_set_ctime_current(inode)); |
5903 | if (oldsize & (inode->i_sb->s_blocksize - 1)) |
5904 | ext4_block_truncate_page(handle, |
5905 | mapping: inode->i_mapping, from: oldsize); |
5906 | } |
5907 | |
5908 | if (shrink) |
5909 | ext4_fc_track_range(handle, inode, |
5910 | start: (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> |
5911 | inode->i_sb->s_blocksize_bits, |
5912 | EXT_MAX_BLOCKS - 1); |
5913 | else |
5914 | ext4_fc_track_range( |
5915 | handle, inode, |
5916 | start: (oldsize > 0 ? oldsize - 1 : oldsize) >> |
5917 | inode->i_sb->s_blocksize_bits, |
5918 | end: (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> |
5919 | inode->i_sb->s_blocksize_bits); |
5920 | |
5921 | down_write(sem: &EXT4_I(inode)->i_data_sem); |
5922 | old_disksize = EXT4_I(inode)->i_disksize; |
5923 | EXT4_I(inode)->i_disksize = attr->ia_size; |
5924 | |
5925 | /* |
5926 | * We have to update i_size under i_data_sem together |
5927 | * with i_disksize to avoid races with writeback code |
5928 | * running ext4_wb_update_i_disksize(). |
5929 | */ |
5930 | if (!error) |
5931 | i_size_write(inode, i_size: attr->ia_size); |
5932 | else |
5933 | EXT4_I(inode)->i_disksize = old_disksize; |
5934 | up_write(sem: &EXT4_I(inode)->i_data_sem); |
5935 | rc = ext4_mark_inode_dirty(handle, inode); |
5936 | if (!error) |
5937 | error = rc; |
5938 | ext4_journal_stop(handle); |
5939 | if (error) |
5940 | goto out_mmap_sem; |
5941 | if (!shrink) { |
5942 | pagecache_isize_extended(inode, from: oldsize, |
5943 | to: inode->i_size); |
5944 | } else if (ext4_should_journal_data(inode)) { |
5945 | ext4_wait_for_tail_page_commit(inode); |
5946 | } |
5947 | } |
5948 | |
5949 | /* |
5950 | * Truncate pagecache after we've waited for commit |
5951 | * in data=journal mode to make pages freeable. |
5952 | */ |
5953 | truncate_pagecache(inode, new: inode->i_size); |
5954 | /* |
5955 | * Call ext4_truncate() even if i_size didn't change to |
5956 | * truncate possible preallocated blocks. |
5957 | */ |
5958 | if (attr->ia_size <= oldsize) { |
5959 | rc = ext4_truncate(inode); |
5960 | if (rc) |
5961 | error = rc; |
5962 | } |
5963 | out_mmap_sem: |
5964 | filemap_invalidate_unlock(mapping: inode->i_mapping); |
5965 | } |
5966 | |
5967 | if (!error) { |
5968 | if (inc_ivers) |
5969 | inode_inc_iversion(inode); |
5970 | setattr_copy(idmap, inode, attr); |
5971 | mark_inode_dirty(inode); |
5972 | } |
5973 | |
5974 | /* |
5975 | * If the call to ext4_truncate failed to get a transaction handle at |
5976 | * all, we need to clean up the in-core orphan list manually. |
5977 | */ |
5978 | if (orphan && inode->i_nlink) |
5979 | ext4_orphan_del(NULL, inode); |
5980 | |
5981 | if (!error && (ia_valid & ATTR_MODE)) |
5982 | rc = posix_acl_chmod(idmap, dentry, inode->i_mode); |
5983 | |
5984 | err_out: |
5985 | if (error) |
5986 | ext4_std_error(inode->i_sb, error); |
5987 | if (!error) |
5988 | error = rc; |
5989 | return error; |
5990 | } |
5991 | |
5992 | u32 ext4_dio_alignment(struct inode *inode) |
5993 | { |
5994 | if (fsverity_active(inode)) |
5995 | return 0; |
5996 | if (ext4_should_journal_data(inode)) |
5997 | return 0; |
5998 | if (ext4_has_inline_data(inode)) |
5999 | return 0; |
6000 | if (IS_ENCRYPTED(inode)) { |
6001 | if (!fscrypt_dio_supported(inode)) |
6002 | return 0; |
6003 | return i_blocksize(node: inode); |
6004 | } |
6005 | return 1; /* use the iomap defaults */ |
6006 | } |
6007 | |
6008 | int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, |
6009 | struct kstat *stat, u32 request_mask, unsigned int query_flags) |
6010 | { |
6011 | struct inode *inode = d_inode(dentry: path->dentry); |
6012 | struct ext4_inode *raw_inode; |
6013 | struct ext4_inode_info *ei = EXT4_I(inode); |
6014 | unsigned int flags; |
6015 | |
6016 | if ((request_mask & STATX_BTIME) && |
6017 | EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { |
6018 | stat->result_mask |= STATX_BTIME; |
6019 | stat->btime.tv_sec = ei->i_crtime.tv_sec; |
6020 | stat->btime.tv_nsec = ei->i_crtime.tv_nsec; |
6021 | } |
6022 | |
6023 | /* |
6024 | * Return the DIO alignment restrictions if requested. We only return |
6025 | * this information when requested, since on encrypted files it might |
6026 | * take a fair bit of work to get if the file wasn't opened recently. |
6027 | */ |
6028 | if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { |
6029 | u32 dio_align = ext4_dio_alignment(inode); |
6030 | |
6031 | stat->result_mask |= STATX_DIOALIGN; |
6032 | if (dio_align == 1) { |
6033 | struct block_device *bdev = inode->i_sb->s_bdev; |
6034 | |
6035 | /* iomap defaults */ |
6036 | stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; |
6037 | stat->dio_offset_align = bdev_logical_block_size(bdev); |
6038 | } else { |
6039 | stat->dio_mem_align = dio_align; |
6040 | stat->dio_offset_align = dio_align; |
6041 | } |
6042 | } |
6043 | |
6044 | if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) { |
6045 | struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb); |
6046 | unsigned int awu_min = 0, awu_max = 0; |
6047 | |
6048 | if (ext4_inode_can_atomic_write(inode)) { |
6049 | awu_min = sbi->s_awu_min; |
6050 | awu_max = sbi->s_awu_max; |
6051 | } |
6052 | |
6053 | generic_fill_statx_atomic_writes(stat, unit_min: awu_min, unit_max: awu_max, unit_max_opt: 0); |
6054 | } |
6055 | |
6056 | flags = ei->i_flags & EXT4_FL_USER_VISIBLE; |
6057 | if (flags & EXT4_APPEND_FL) |
6058 | stat->attributes |= STATX_ATTR_APPEND; |
6059 | if (flags & EXT4_COMPR_FL) |
6060 | stat->attributes |= STATX_ATTR_COMPRESSED; |
6061 | if (flags & EXT4_ENCRYPT_FL) |
6062 | stat->attributes |= STATX_ATTR_ENCRYPTED; |
6063 | if (flags & EXT4_IMMUTABLE_FL) |
6064 | stat->attributes |= STATX_ATTR_IMMUTABLE; |
6065 | if (flags & EXT4_NODUMP_FL) |
6066 | stat->attributes |= STATX_ATTR_NODUMP; |
6067 | if (flags & EXT4_VERITY_FL) |
6068 | stat->attributes |= STATX_ATTR_VERITY; |
6069 | |
6070 | stat->attributes_mask |= (STATX_ATTR_APPEND | |
6071 | STATX_ATTR_COMPRESSED | |
6072 | STATX_ATTR_ENCRYPTED | |
6073 | STATX_ATTR_IMMUTABLE | |
6074 | STATX_ATTR_NODUMP | |
6075 | STATX_ATTR_VERITY); |
6076 | |
6077 | generic_fillattr(idmap, request_mask, inode, stat); |
6078 | return 0; |
6079 | } |
6080 | |
6081 | int ext4_file_getattr(struct mnt_idmap *idmap, |
6082 | const struct path *path, struct kstat *stat, |
6083 | u32 request_mask, unsigned int query_flags) |
6084 | { |
6085 | struct inode *inode = d_inode(dentry: path->dentry); |
6086 | u64 delalloc_blocks; |
6087 | |
6088 | ext4_getattr(idmap, path, stat, request_mask, query_flags); |
6089 | |
6090 | /* |
6091 | * If there is inline data in the inode, the inode will normally not |
6092 | * have data blocks allocated (it may have an external xattr block). |
6093 | * Report at least one sector for such files, so tools like tar, rsync, |
6094 | * others don't incorrectly think the file is completely sparse. |
6095 | */ |
6096 | if (unlikely(ext4_has_inline_data(inode))) |
6097 | stat->blocks += (stat->size + 511) >> 9; |
6098 | |
6099 | /* |
6100 | * We can't update i_blocks if the block allocation is delayed |
6101 | * otherwise in the case of system crash before the real block |
6102 | * allocation is done, we will have i_blocks inconsistent with |
6103 | * on-disk file blocks. |
6104 | * We always keep i_blocks updated together with real |
6105 | * allocation. But to not confuse with user, stat |
6106 | * will return the blocks that include the delayed allocation |
6107 | * blocks for this file. |
6108 | */ |
6109 | delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), |
6110 | EXT4_I(inode)->i_reserved_data_blocks); |
6111 | stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); |
6112 | return 0; |
6113 | } |
6114 | |
6115 | static int ext4_index_trans_blocks(struct inode *inode, int lblocks, |
6116 | int pextents) |
6117 | { |
6118 | if (!(ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))) |
6119 | return ext4_ind_trans_blocks(inode, nrblocks: lblocks); |
6120 | return ext4_ext_index_trans_blocks(inode, extents: pextents); |
6121 | } |
6122 | |
6123 | /* |
6124 | * Account for index blocks, block groups bitmaps and block group |
6125 | * descriptor blocks if modify datablocks and index blocks |
6126 | * worse case, the indexs blocks spread over different block groups |
6127 | * |
6128 | * If datablocks are discontiguous, they are possible to spread over |
6129 | * different block groups too. If they are contiguous, with flexbg, |
6130 | * they could still across block group boundary. |
6131 | * |
6132 | * Also account for superblock, inode, quota and xattr blocks |
6133 | */ |
6134 | int ext4_meta_trans_blocks(struct inode *inode, int lblocks, int pextents) |
6135 | { |
6136 | ext4_group_t groups, ngroups = ext4_get_groups_count(sb: inode->i_sb); |
6137 | int gdpblocks; |
6138 | int idxblocks; |
6139 | int ret; |
6140 | |
6141 | /* |
6142 | * How many index and lead blocks need to touch to map @lblocks |
6143 | * logical blocks to @pextents physical extents? |
6144 | */ |
6145 | idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); |
6146 | |
6147 | /* |
6148 | * Now let's see how many group bitmaps and group descriptors need |
6149 | * to account |
6150 | */ |
6151 | groups = idxblocks; |
6152 | gdpblocks = groups; |
6153 | if (groups > ngroups) |
6154 | groups = ngroups; |
6155 | if (groups > EXT4_SB(sb: inode->i_sb)->s_gdb_count) |
6156 | gdpblocks = EXT4_SB(sb: inode->i_sb)->s_gdb_count; |
6157 | |
6158 | /* bitmaps and block group descriptor blocks */ |
6159 | ret = idxblocks + groups + gdpblocks; |
6160 | |
6161 | /* Blocks for super block, inode, quota and xattr blocks */ |
6162 | ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); |
6163 | |
6164 | return ret; |
6165 | } |
6166 | |
6167 | /* |
6168 | * Calculate the total number of credits to reserve to fit |
6169 | * the modification of a single pages into a single transaction, |
6170 | * which may include multiple chunks of block allocations. |
6171 | * |
6172 | * This could be called via ext4_write_begin() |
6173 | * |
6174 | * We need to consider the worse case, when |
6175 | * one new block per extent. |
6176 | */ |
6177 | int ext4_writepage_trans_blocks(struct inode *inode) |
6178 | { |
6179 | int bpp = ext4_journal_blocks_per_folio(inode); |
6180 | int ret; |
6181 | |
6182 | ret = ext4_meta_trans_blocks(inode, lblocks: bpp, pextents: bpp); |
6183 | |
6184 | /* Account for data blocks for journalled mode */ |
6185 | if (ext4_should_journal_data(inode)) |
6186 | ret += bpp; |
6187 | return ret; |
6188 | } |
6189 | |
6190 | /* |
6191 | * Calculate the journal credits for a chunk of data modification. |
6192 | * |
6193 | * This is called from DIO, fallocate or whoever calling |
6194 | * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. |
6195 | * |
6196 | * journal buffers for data blocks are not included here, as DIO |
6197 | * and fallocate do no need to journal data buffers. |
6198 | */ |
6199 | int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) |
6200 | { |
6201 | return ext4_meta_trans_blocks(inode, lblocks: nrblocks, pextents: 1); |
6202 | } |
6203 | |
6204 | /* |
6205 | * The caller must have previously called ext4_reserve_inode_write(). |
6206 | * Give this, we know that the caller already has write access to iloc->bh. |
6207 | */ |
6208 | int ext4_mark_iloc_dirty(handle_t *handle, |
6209 | struct inode *inode, struct ext4_iloc *iloc) |
6210 | { |
6211 | int err = 0; |
6212 | |
6213 | err = ext4_emergency_state(sb: inode->i_sb); |
6214 | if (unlikely(err)) { |
6215 | put_bh(bh: iloc->bh); |
6216 | return err; |
6217 | } |
6218 | ext4_fc_track_inode(handle, inode); |
6219 | |
6220 | /* the do_update_inode consumes one bh->b_count */ |
6221 | get_bh(bh: iloc->bh); |
6222 | |
6223 | /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ |
6224 | err = ext4_do_update_inode(handle, inode, iloc); |
6225 | put_bh(bh: iloc->bh); |
6226 | return err; |
6227 | } |
6228 | |
6229 | /* |
6230 | * On success, We end up with an outstanding reference count against |
6231 | * iloc->bh. This _must_ be cleaned up later. |
6232 | */ |
6233 | |
6234 | int |
6235 | ext4_reserve_inode_write(handle_t *handle, struct inode *inode, |
6236 | struct ext4_iloc *iloc) |
6237 | { |
6238 | int err; |
6239 | |
6240 | err = ext4_emergency_state(sb: inode->i_sb); |
6241 | if (unlikely(err)) |
6242 | return err; |
6243 | |
6244 | err = ext4_get_inode_loc(inode, iloc); |
6245 | if (!err) { |
6246 | BUFFER_TRACE(iloc->bh, "get_write_access"); |
6247 | err = ext4_journal_get_write_access(handle, inode->i_sb, |
6248 | iloc->bh, EXT4_JTR_NONE); |
6249 | if (err) { |
6250 | brelse(bh: iloc->bh); |
6251 | iloc->bh = NULL; |
6252 | } |
6253 | ext4_fc_track_inode(handle, inode); |
6254 | } |
6255 | ext4_std_error(inode->i_sb, err); |
6256 | return err; |
6257 | } |
6258 | |
6259 | static int __ext4_expand_extra_isize(struct inode *inode, |
6260 | unsigned int new_extra_isize, |
6261 | struct ext4_iloc *iloc, |
6262 | handle_t *handle, int *no_expand) |
6263 | { |
6264 | struct ext4_inode *raw_inode; |
6265 | struct ext4_xattr_ibody_header *header; |
6266 | unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); |
6267 | struct ext4_inode_info *ei = EXT4_I(inode); |
6268 | int error; |
6269 | |
6270 | /* this was checked at iget time, but double check for good measure */ |
6271 | if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || |
6272 | (ei->i_extra_isize & 3)) { |
6273 | EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", |
6274 | ei->i_extra_isize, |
6275 | EXT4_INODE_SIZE(inode->i_sb)); |
6276 | return -EFSCORRUPTED; |
6277 | } |
6278 | if ((new_extra_isize < ei->i_extra_isize) || |
6279 | (new_extra_isize < 4) || |
6280 | (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) |
6281 | return -EINVAL; /* Should never happen */ |
6282 | |
6283 | raw_inode = ext4_raw_inode(iloc); |
6284 | |
6285 | header = IHDR(inode, raw_inode); |
6286 | |
6287 | /* No extended attributes present */ |
6288 | if (!ext4_test_inode_state(inode, bit: EXT4_STATE_XATTR) || |
6289 | header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { |
6290 | memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + |
6291 | EXT4_I(inode)->i_extra_isize, 0, |
6292 | new_extra_isize - EXT4_I(inode)->i_extra_isize); |
6293 | EXT4_I(inode)->i_extra_isize = new_extra_isize; |
6294 | return 0; |
6295 | } |
6296 | |
6297 | /* |
6298 | * We may need to allocate external xattr block so we need quotas |
6299 | * initialized. Here we can be called with various locks held so we |
6300 | * cannot affort to initialize quotas ourselves. So just bail. |
6301 | */ |
6302 | if (dquot_initialize_needed(inode)) |
6303 | return -EAGAIN; |
6304 | |
6305 | /* try to expand with EAs present */ |
6306 | error = ext4_expand_extra_isize_ea(inode, new_extra_isize, |
6307 | raw_inode, handle); |
6308 | if (error) { |
6309 | /* |
6310 | * Inode size expansion failed; don't try again |
6311 | */ |
6312 | *no_expand = 1; |
6313 | } |
6314 | |
6315 | return error; |
6316 | } |
6317 | |
6318 | /* |
6319 | * Expand an inode by new_extra_isize bytes. |
6320 | * Returns 0 on success or negative error number on failure. |
6321 | */ |
6322 | static int ext4_try_to_expand_extra_isize(struct inode *inode, |
6323 | unsigned int new_extra_isize, |
6324 | struct ext4_iloc iloc, |
6325 | handle_t *handle) |
6326 | { |
6327 | int no_expand; |
6328 | int error; |
6329 | |
6330 | if (ext4_test_inode_state(inode, bit: EXT4_STATE_NO_EXPAND)) |
6331 | return -EOVERFLOW; |
6332 | |
6333 | /* |
6334 | * In nojournal mode, we can immediately attempt to expand |
6335 | * the inode. When journaled, we first need to obtain extra |
6336 | * buffer credits since we may write into the EA block |
6337 | * with this same handle. If journal_extend fails, then it will |
6338 | * only result in a minor loss of functionality for that inode. |
6339 | * If this is felt to be critical, then e2fsck should be run to |
6340 | * force a large enough s_min_extra_isize. |
6341 | */ |
6342 | if (ext4_journal_extend(handle, |
6343 | EXT4_DATA_TRANS_BLOCKS(inode->i_sb), revoke: 0) != 0) |
6344 | return -ENOSPC; |
6345 | |
6346 | if (ext4_write_trylock_xattr(inode, save: &no_expand) == 0) |
6347 | return -EBUSY; |
6348 | |
6349 | error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc: &iloc, |
6350 | handle, no_expand: &no_expand); |
6351 | ext4_write_unlock_xattr(inode, save: &no_expand); |
6352 | |
6353 | return error; |
6354 | } |
6355 | |
6356 | int ext4_expand_extra_isize(struct inode *inode, |
6357 | unsigned int new_extra_isize, |
6358 | struct ext4_iloc *iloc) |
6359 | { |
6360 | handle_t *handle; |
6361 | int no_expand; |
6362 | int error, rc; |
6363 | |
6364 | if (ext4_test_inode_state(inode, bit: EXT4_STATE_NO_EXPAND)) { |
6365 | brelse(bh: iloc->bh); |
6366 | return -EOVERFLOW; |
6367 | } |
6368 | |
6369 | handle = ext4_journal_start(inode, EXT4_HT_INODE, |
6370 | EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); |
6371 | if (IS_ERR(ptr: handle)) { |
6372 | error = PTR_ERR(ptr: handle); |
6373 | brelse(bh: iloc->bh); |
6374 | return error; |
6375 | } |
6376 | |
6377 | ext4_write_lock_xattr(inode, save: &no_expand); |
6378 | |
6379 | BUFFER_TRACE(iloc->bh, "get_write_access"); |
6380 | error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, |
6381 | EXT4_JTR_NONE); |
6382 | if (error) { |
6383 | brelse(bh: iloc->bh); |
6384 | goto out_unlock; |
6385 | } |
6386 | |
6387 | error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, |
6388 | handle, no_expand: &no_expand); |
6389 | |
6390 | rc = ext4_mark_iloc_dirty(handle, inode, iloc); |
6391 | if (!error) |
6392 | error = rc; |
6393 | |
6394 | out_unlock: |
6395 | ext4_write_unlock_xattr(inode, save: &no_expand); |
6396 | ext4_journal_stop(handle); |
6397 | return error; |
6398 | } |
6399 | |
6400 | /* |
6401 | * What we do here is to mark the in-core inode as clean with respect to inode |
6402 | * dirtiness (it may still be data-dirty). |
6403 | * This means that the in-core inode may be reaped by prune_icache |
6404 | * without having to perform any I/O. This is a very good thing, |
6405 | * because *any* task may call prune_icache - even ones which |
6406 | * have a transaction open against a different journal. |
6407 | * |
6408 | * Is this cheating? Not really. Sure, we haven't written the |
6409 | * inode out, but prune_icache isn't a user-visible syncing function. |
6410 | * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) |
6411 | * we start and wait on commits. |
6412 | */ |
6413 | int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, |
6414 | const char *func, unsigned int line) |
6415 | { |
6416 | struct ext4_iloc iloc; |
6417 | struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb); |
6418 | int err; |
6419 | |
6420 | might_sleep(); |
6421 | trace_ext4_mark_inode_dirty(inode, _RET_IP_); |
6422 | err = ext4_reserve_inode_write(handle, inode, iloc: &iloc); |
6423 | if (err) |
6424 | goto out; |
6425 | |
6426 | if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) |
6427 | ext4_try_to_expand_extra_isize(inode, new_extra_isize: sbi->s_want_extra_isize, |
6428 | iloc, handle); |
6429 | |
6430 | err = ext4_mark_iloc_dirty(handle, inode, iloc: &iloc); |
6431 | out: |
6432 | if (unlikely(err)) |
6433 | ext4_error_inode_err(inode, func, line, 0, err, |
6434 | "mark_inode_dirty error"); |
6435 | return err; |
6436 | } |
6437 | |
6438 | /* |
6439 | * ext4_dirty_inode() is called from __mark_inode_dirty() |
6440 | * |
6441 | * We're really interested in the case where a file is being extended. |
6442 | * i_size has been changed by generic_commit_write() and we thus need |
6443 | * to include the updated inode in the current transaction. |
6444 | * |
6445 | * Also, dquot_alloc_block() will always dirty the inode when blocks |
6446 | * are allocated to the file. |
6447 | * |
6448 | * If the inode is marked synchronous, we don't honour that here - doing |
6449 | * so would cause a commit on atime updates, which we don't bother doing. |
6450 | * We handle synchronous inodes at the highest possible level. |
6451 | */ |
6452 | void ext4_dirty_inode(struct inode *inode, int flags) |
6453 | { |
6454 | handle_t *handle; |
6455 | |
6456 | handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); |
6457 | if (IS_ERR(ptr: handle)) |
6458 | return; |
6459 | ext4_mark_inode_dirty(handle, inode); |
6460 | ext4_journal_stop(handle); |
6461 | } |
6462 | |
6463 | int ext4_change_inode_journal_flag(struct inode *inode, int val) |
6464 | { |
6465 | journal_t *journal; |
6466 | handle_t *handle; |
6467 | int err; |
6468 | int alloc_ctx; |
6469 | |
6470 | /* |
6471 | * We have to be very careful here: changing a data block's |
6472 | * journaling status dynamically is dangerous. If we write a |
6473 | * data block to the journal, change the status and then delete |
6474 | * that block, we risk forgetting to revoke the old log record |
6475 | * from the journal and so a subsequent replay can corrupt data. |
6476 | * So, first we make sure that the journal is empty and that |
6477 | * nobody is changing anything. |
6478 | */ |
6479 | |
6480 | journal = EXT4_JOURNAL(inode); |
6481 | if (!journal) |
6482 | return 0; |
6483 | if (is_journal_aborted(journal)) |
6484 | return -EROFS; |
6485 | |
6486 | /* Wait for all existing dio workers */ |
6487 | inode_dio_wait(inode); |
6488 | |
6489 | /* |
6490 | * Before flushing the journal and switching inode's aops, we have |
6491 | * to flush all dirty data the inode has. There can be outstanding |
6492 | * delayed allocations, there can be unwritten extents created by |
6493 | * fallocate or buffered writes in dioread_nolock mode covered by |
6494 | * dirty data which can be converted only after flushing the dirty |
6495 | * data (and journalled aops don't know how to handle these cases). |
6496 | */ |
6497 | if (val) { |
6498 | filemap_invalidate_lock(mapping: inode->i_mapping); |
6499 | err = filemap_write_and_wait(mapping: inode->i_mapping); |
6500 | if (err < 0) { |
6501 | filemap_invalidate_unlock(mapping: inode->i_mapping); |
6502 | return err; |
6503 | } |
6504 | } |
6505 | |
6506 | alloc_ctx = ext4_writepages_down_write(sb: inode->i_sb); |
6507 | jbd2_journal_lock_updates(journal); |
6508 | |
6509 | /* |
6510 | * OK, there are no updates running now, and all cached data is |
6511 | * synced to disk. We are now in a completely consistent state |
6512 | * which doesn't have anything in the journal, and we know that |
6513 | * no filesystem updates are running, so it is safe to modify |
6514 | * the inode's in-core data-journaling state flag now. |
6515 | */ |
6516 | |
6517 | if (val) |
6518 | ext4_set_inode_flag(inode, bit: EXT4_INODE_JOURNAL_DATA); |
6519 | else { |
6520 | err = jbd2_journal_flush(journal, flags: 0); |
6521 | if (err < 0) { |
6522 | jbd2_journal_unlock_updates(journal); |
6523 | ext4_writepages_up_write(sb: inode->i_sb, ctx: alloc_ctx); |
6524 | return err; |
6525 | } |
6526 | ext4_clear_inode_flag(inode, bit: EXT4_INODE_JOURNAL_DATA); |
6527 | } |
6528 | ext4_set_aops(inode); |
6529 | |
6530 | jbd2_journal_unlock_updates(journal); |
6531 | ext4_writepages_up_write(sb: inode->i_sb, ctx: alloc_ctx); |
6532 | |
6533 | if (val) |
6534 | filemap_invalidate_unlock(mapping: inode->i_mapping); |
6535 | |
6536 | /* Finally we can mark the inode as dirty. */ |
6537 | |
6538 | handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); |
6539 | if (IS_ERR(ptr: handle)) |
6540 | return PTR_ERR(ptr: handle); |
6541 | |
6542 | ext4_fc_mark_ineligible(sb: inode->i_sb, |
6543 | reason: EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); |
6544 | err = ext4_mark_inode_dirty(handle, inode); |
6545 | ext4_handle_sync(handle); |
6546 | ext4_journal_stop(handle); |
6547 | ext4_std_error(inode->i_sb, err); |
6548 | |
6549 | return err; |
6550 | } |
6551 | |
6552 | static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, |
6553 | struct buffer_head *bh) |
6554 | { |
6555 | return !buffer_mapped(bh); |
6556 | } |
6557 | |
6558 | vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) |
6559 | { |
6560 | struct vm_area_struct *vma = vmf->vma; |
6561 | struct folio *folio = page_folio(vmf->page); |
6562 | loff_t size; |
6563 | unsigned long len; |
6564 | int err; |
6565 | vm_fault_t ret; |
6566 | struct file *file = vma->vm_file; |
6567 | struct inode *inode = file_inode(f: file); |
6568 | struct address_space *mapping = inode->i_mapping; |
6569 | handle_t *handle; |
6570 | get_block_t *get_block; |
6571 | int retries = 0; |
6572 | |
6573 | if (unlikely(IS_IMMUTABLE(inode))) |
6574 | return VM_FAULT_SIGBUS; |
6575 | |
6576 | sb_start_pagefault(sb: inode->i_sb); |
6577 | file_update_time(file: vma->vm_file); |
6578 | |
6579 | filemap_invalidate_lock_shared(mapping); |
6580 | |
6581 | err = ext4_convert_inline_data(inode); |
6582 | if (err) |
6583 | goto out_ret; |
6584 | |
6585 | /* |
6586 | * On data journalling we skip straight to the transaction handle: |
6587 | * there's no delalloc; page truncated will be checked later; the |
6588 | * early return w/ all buffers mapped (calculates size/len) can't |
6589 | * be used; and there's no dioread_nolock, so only ext4_get_block. |
6590 | */ |
6591 | if (ext4_should_journal_data(inode)) |
6592 | goto retry_alloc; |
6593 | |
6594 | /* Delalloc case is easy... */ |
6595 | if (test_opt(inode->i_sb, DELALLOC) && |
6596 | !ext4_nonda_switch(sb: inode->i_sb)) { |
6597 | do { |
6598 | err = block_page_mkwrite(vma, vmf, |
6599 | get_block: ext4_da_get_block_prep); |
6600 | } while (err == -ENOSPC && |
6601 | ext4_should_retry_alloc(sb: inode->i_sb, retries: &retries)); |
6602 | goto out_ret; |
6603 | } |
6604 | |
6605 | folio_lock(folio); |
6606 | size = i_size_read(inode); |
6607 | /* Page got truncated from under us? */ |
6608 | if (folio->mapping != mapping || folio_pos(folio) > size) { |
6609 | folio_unlock(folio); |
6610 | ret = VM_FAULT_NOPAGE; |
6611 | goto out; |
6612 | } |
6613 | |
6614 | len = folio_size(folio); |
6615 | if (folio_pos(folio) + len > size) |
6616 | len = size - folio_pos(folio); |
6617 | /* |
6618 | * Return if we have all the buffers mapped. This avoids the need to do |
6619 | * journal_start/journal_stop which can block and take a long time |
6620 | * |
6621 | * This cannot be done for data journalling, as we have to add the |
6622 | * inode to the transaction's list to writeprotect pages on commit. |
6623 | */ |
6624 | if (folio_buffers(folio)) { |
6625 | if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), |
6626 | from: 0, to: len, NULL, |
6627 | fn: ext4_bh_unmapped)) { |
6628 | /* Wait so that we don't change page under IO */ |
6629 | folio_wait_stable(folio); |
6630 | ret = VM_FAULT_LOCKED; |
6631 | goto out; |
6632 | } |
6633 | } |
6634 | folio_unlock(folio); |
6635 | /* OK, we need to fill the hole... */ |
6636 | if (ext4_should_dioread_nolock(inode)) |
6637 | get_block = ext4_get_block_unwritten; |
6638 | else |
6639 | get_block = ext4_get_block; |
6640 | retry_alloc: |
6641 | handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, |
6642 | ext4_writepage_trans_blocks(inode)); |
6643 | if (IS_ERR(ptr: handle)) { |
6644 | ret = VM_FAULT_SIGBUS; |
6645 | goto out; |
6646 | } |
6647 | /* |
6648 | * Data journalling can't use block_page_mkwrite() because it |
6649 | * will set_buffer_dirty() before do_journal_get_write_access() |
6650 | * thus might hit warning messages for dirty metadata buffers. |
6651 | */ |
6652 | if (!ext4_should_journal_data(inode)) { |
6653 | err = block_page_mkwrite(vma, vmf, get_block); |
6654 | } else { |
6655 | folio_lock(folio); |
6656 | size = i_size_read(inode); |
6657 | /* Page got truncated from under us? */ |
6658 | if (folio->mapping != mapping || folio_pos(folio) > size) { |
6659 | ret = VM_FAULT_NOPAGE; |
6660 | goto out_error; |
6661 | } |
6662 | |
6663 | len = folio_size(folio); |
6664 | if (folio_pos(folio) + len > size) |
6665 | len = size - folio_pos(folio); |
6666 | |
6667 | err = ext4_block_write_begin(handle, folio, pos: 0, len, |
6668 | get_block: ext4_get_block); |
6669 | if (!err) { |
6670 | ret = VM_FAULT_SIGBUS; |
6671 | if (ext4_journal_folio_buffers(handle, folio, len)) |
6672 | goto out_error; |
6673 | } else { |
6674 | folio_unlock(folio); |
6675 | } |
6676 | } |
6677 | ext4_journal_stop(handle); |
6678 | if (err == -ENOSPC && ext4_should_retry_alloc(sb: inode->i_sb, retries: &retries)) |
6679 | goto retry_alloc; |
6680 | out_ret: |
6681 | ret = vmf_fs_error(err); |
6682 | out: |
6683 | filemap_invalidate_unlock_shared(mapping); |
6684 | sb_end_pagefault(sb: inode->i_sb); |
6685 | return ret; |
6686 | out_error: |
6687 | folio_unlock(folio); |
6688 | ext4_journal_stop(handle); |
6689 | goto out; |
6690 | } |
6691 |
Definitions
- ext4_inode_csum
- ext4_inode_csum_verify
- ext4_inode_csum_set
- ext4_begin_ordered_truncate
- ext4_inode_is_fast_symlink
- ext4_evict_inode
- ext4_get_reserved_space
- ext4_da_update_reserve_space
- __check_block_validity
- ext4_issue_zeroout
- ext4_check_map_extents_env
- ext4_map_query_blocks_next_in_leaf
- ext4_map_query_blocks
- ext4_map_create_blocks
- ext4_map_blocks
- ext4_update_bh_state
- _ext4_get_block
- ext4_get_block
- ext4_get_block_unwritten
- ext4_getblk
- ext4_bread
- ext4_bread_batch
- ext4_walk_page_buffers
- ext4_dirty_journalled_data
- do_journal_get_write_access
- ext4_block_write_begin
- ext4_write_begin
- write_end_fn
- ext4_write_end
- ext4_journalled_zero_new_buffers
- ext4_journalled_write_end
- ext4_da_reserve_space
- ext4_da_release_space
- mpage_da_data
- mpage_release_unused_pages
- ext4_print_free_blocks
- ext4_clu_alloc_state
- ext4_insert_delayed_blocks
- ext4_da_map_blocks
- ext4_da_get_block_prep
- mpage_folio_done
- mpage_submit_folio
- mpage_add_bh_to_extent
- mpage_process_page_bufs
- mpage_process_folio
- mpage_map_and_submit_buffers
- mpage_map_one_extent
- mpage_map_and_submit_extent
- ext4_da_writepages_trans_blocks
- ext4_journal_folio_buffers
- mpage_journal_page_buffers
- mpage_prepare_extent_to_map
- ext4_do_writepages
- ext4_writepages
- ext4_normal_submit_inode_data_buffers
- ext4_dax_writepages
- ext4_nonda_switch
- ext4_da_write_begin
- ext4_da_should_update_i_disksize
- ext4_da_do_write_end
- ext4_da_write_end
- ext4_alloc_da_blocks
- ext4_bmap
- ext4_read_folio
- ext4_readahead
- ext4_invalidate_folio
- __ext4_journalled_invalidate_folio
- ext4_journalled_invalidate_folio
- ext4_release_folio
- ext4_inode_datasync_dirty
- ext4_set_iomap
- ext4_map_blocks_atomic_write_slow
- ext4_map_blocks_atomic_write
- ext4_iomap_alloc
- ext4_iomap_begin
- ext4_iomap_overwrite_begin
- ext4_want_directio_fallback
- ext4_iomap_end
- ext4_iomap_ops
- ext4_iomap_overwrite_ops
- ext4_iomap_begin_report
- ext4_iomap_report_ops
- ext4_journalled_dirty_folio
- ext4_dirty_folio
- ext4_iomap_swap_activate
- ext4_aops
- ext4_journalled_aops
- ext4_da_aops
- ext4_dax_aops
- ext4_set_aops
- __ext4_block_zero_page_range
- ext4_block_zero_page_range
- ext4_block_truncate_page
- ext4_zero_partial_blocks
- ext4_can_truncate
- ext4_update_disksize_before_punch
- ext4_truncate_folio
- ext4_truncate_page_cache_block_range
- ext4_wait_dax_page
- ext4_break_layouts
- ext4_punch_hole
- ext4_inode_attach_jinode
- ext4_truncate
- ext4_inode_peek_iversion
- ext4_inode_blocks_set
- ext4_fill_raw_inode
- __ext4_get_inode_loc
- __ext4_get_inode_loc_noinmem
- ext4_get_inode_loc
- ext4_get_fc_inode_loc
- ext4_should_enable_dax
- ext4_set_inode_flags
- ext4_inode_blocks
- ext4_iget_extra_inode
- ext4_get_projid
- ext4_inode_set_iversion_queried
- check_igot_inode
- ext4_should_enable_large_folio
- __ext4_iget
- __ext4_update_other_inode_time
- ext4_update_other_inodes_time
- ext4_do_update_inode
- ext4_write_inode
- ext4_wait_for_tail_page_commit
- ext4_setattr
- ext4_dio_alignment
- ext4_getattr
- ext4_file_getattr
- ext4_index_trans_blocks
- ext4_meta_trans_blocks
- ext4_writepage_trans_blocks
- ext4_chunk_trans_blocks
- ext4_mark_iloc_dirty
- ext4_reserve_inode_write
- __ext4_expand_extra_isize
- ext4_try_to_expand_extra_isize
- ext4_expand_extra_isize
- __ext4_mark_inode_dirty
- ext4_dirty_inode
- ext4_change_inode_journal_flag
- ext4_bh_unmapped
Improve your Profiling and Debugging skills
Find out more