1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/mount.h>
24#include <linux/time.h>
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/dax.h>
28#include <linux/quotaops.h>
29#include <linux/string.h>
30#include <linux/buffer_head.h>
31#include <linux/writeback.h>
32#include <linux/pagevec.h>
33#include <linux/mpage.h>
34#include <linux/namei.h>
35#include <linux/uio.h>
36#include <linux/bio.h>
37#include <linux/workqueue.h>
38#include <linux/kernel.h>
39#include <linux/printk.h>
40#include <linux/slab.h>
41#include <linux/bitops.h>
42#include <linux/iomap.h>
43#include <linux/iversion.h>
44
45#include "ext4_jbd2.h"
46#include "xattr.h"
47#include "acl.h"
48#include "truncate.h"
49
50#include <trace/events/ext4.h>
51
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
56 __u32 csum;
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
60
61 csum = ext4_chksum(sbi, crc: ei->i_csum_seed, address: (__u8 *)raw, length: offset);
62 csum = ext4_chksum(sbi, crc: csum, address: (__u8 *)&dummy_csum, length: csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, crc: csum, address: (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, crc: csum, address: (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 length: offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, crc: csum, address: (__u8 *)&dummy_csum,
74 length: csum_size);
75 offset += csum_size;
76 }
77 csum = ext4_chksum(sbi, crc: csum, address: (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 }
80
81 return csum;
82}
83
84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86{
87 __u32 provided, calculated;
88
89 if (EXT4_SB(sb: inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(sb: inode->i_sb))
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103}
104
105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107{
108 __u32 csum;
109
110 if (EXT4_SB(sb: inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(sb: inode->i_sb))
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120}
121
122static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124{
125 trace_ext4_begin_ordered_truncate(inode, new_size);
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
137}
138
139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
141
142/*
143 * Test whether an inode is a fast symlink.
144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
145 */
146int ext4_inode_is_fast_symlink(struct inode *inode)
147{
148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
149 int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151
152 if (ext4_has_inline_data(inode))
153 return 0;
154
155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156 }
157 return S_ISLNK(inode->i_mode) && inode->i_size &&
158 (inode->i_size < EXT4_N_BLOCKS * 4);
159}
160
161/*
162 * Called at the last iput() if i_nlink is zero.
163 */
164void ext4_evict_inode(struct inode *inode)
165{
166 handle_t *handle;
167 int err;
168 /*
169 * Credits for final inode cleanup and freeing:
170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
171 * (xattr block freeing), bitmap, group descriptor (inode freeing)
172 */
173 int extra_credits = 6;
174 struct ext4_xattr_inode_array *ea_inode_array = NULL;
175 bool freeze_protected = false;
176
177 trace_ext4_evict_inode(inode);
178
179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
180 ext4_evict_ea_inode(inode);
181 if (inode->i_nlink) {
182 truncate_inode_pages_final(&inode->i_data);
183
184 goto no_delete;
185 }
186
187 if (is_bad_inode(inode))
188 goto no_delete;
189 dquot_initialize(inode);
190
191 if (ext4_should_order_data(inode))
192 ext4_begin_ordered_truncate(inode, new_size: 0);
193 truncate_inode_pages_final(&inode->i_data);
194
195 /*
196 * For inodes with journalled data, transaction commit could have
197 * dirtied the inode. And for inodes with dioread_nolock, unwritten
198 * extents converting worker could merge extents and also have dirtied
199 * the inode. Flush worker is ignoring it because of I_FREEING flag but
200 * we still need to remove the inode from the writeback lists.
201 */
202 if (!list_empty_careful(head: &inode->i_io_list))
203 inode_io_list_del(inode);
204
205 /*
206 * Protect us against freezing - iput() caller didn't have to have any
207 * protection against it. When we are in a running transaction though,
208 * we are already protected against freezing and we cannot grab further
209 * protection due to lock ordering constraints.
210 */
211 if (!ext4_journal_current_handle()) {
212 sb_start_intwrite(sb: inode->i_sb);
213 freeze_protected = true;
214 }
215
216 if (!IS_NOQUOTA(inode))
217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
218
219 /*
220 * Block bitmap, group descriptor, and inode are accounted in both
221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
222 */
223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
224 ext4_blocks_for_truncate(inode) + extra_credits - 3);
225 if (IS_ERR(ptr: handle)) {
226 ext4_std_error(inode->i_sb, PTR_ERR(handle));
227 /*
228 * If we're going to skip the normal cleanup, we still need to
229 * make sure that the in-core orphan linked list is properly
230 * cleaned up.
231 */
232 ext4_orphan_del(NULL, inode);
233 if (freeze_protected)
234 sb_end_intwrite(sb: inode->i_sb);
235 goto no_delete;
236 }
237
238 if (IS_SYNC(inode))
239 ext4_handle_sync(handle);
240
241 /*
242 * Set inode->i_size to 0 before calling ext4_truncate(). We need
243 * special handling of symlinks here because i_size is used to
244 * determine whether ext4_inode_info->i_data contains symlink data or
245 * block mappings. Setting i_size to 0 will remove its fast symlink
246 * status. Erase i_data so that it becomes a valid empty block map.
247 */
248 if (ext4_inode_is_fast_symlink(inode))
249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
250 inode->i_size = 0;
251 err = ext4_mark_inode_dirty(handle, inode);
252 if (err) {
253 ext4_warning(inode->i_sb,
254 "couldn't mark inode dirty (err %d)", err);
255 goto stop_handle;
256 }
257 if (inode->i_blocks) {
258 err = ext4_truncate(inode);
259 if (err) {
260 ext4_error_err(inode->i_sb, -err,
261 "couldn't truncate inode %lu (err %d)",
262 inode->i_ino, err);
263 goto stop_handle;
264 }
265 }
266
267 /* Remove xattr references. */
268 err = ext4_xattr_delete_inode(handle, inode, array: &ea_inode_array,
269 extra_credits);
270 if (err) {
271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
272stop_handle:
273 ext4_journal_stop(handle);
274 ext4_orphan_del(NULL, inode);
275 if (freeze_protected)
276 sb_end_intwrite(sb: inode->i_sb);
277 ext4_xattr_inode_array_free(array: ea_inode_array);
278 goto no_delete;
279 }
280
281 /*
282 * Kill off the orphan record which ext4_truncate created.
283 * AKPM: I think this can be inside the above `if'.
284 * Note that ext4_orphan_del() has to be able to cope with the
285 * deletion of a non-existent orphan - this is because we don't
286 * know if ext4_truncate() actually created an orphan record.
287 * (Well, we could do this if we need to, but heck - it works)
288 */
289 ext4_orphan_del(handle, inode);
290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
291
292 /*
293 * One subtle ordering requirement: if anything has gone wrong
294 * (transaction abort, IO errors, whatever), then we can still
295 * do these next steps (the fs will already have been marked as
296 * having errors), but we can't free the inode if the mark_dirty
297 * fails.
298 */
299 if (ext4_mark_inode_dirty(handle, inode))
300 /* If that failed, just do the required in-core inode clear. */
301 ext4_clear_inode(inode);
302 else
303 ext4_free_inode(handle, inode);
304 ext4_journal_stop(handle);
305 if (freeze_protected)
306 sb_end_intwrite(sb: inode->i_sb);
307 ext4_xattr_inode_array_free(array: ea_inode_array);
308 return;
309no_delete:
310 /*
311 * Check out some where else accidentally dirty the evicting inode,
312 * which may probably cause inode use-after-free issues later.
313 */
314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
315
316 if (!list_empty(head: &EXT4_I(inode)->i_fc_list))
317 ext4_fc_mark_ineligible(sb: inode->i_sb, reason: EXT4_FC_REASON_NOMEM, NULL);
318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
319}
320
321#ifdef CONFIG_QUOTA
322qsize_t *ext4_get_reserved_space(struct inode *inode)
323{
324 return &EXT4_I(inode)->i_reserved_quota;
325}
326#endif
327
328/*
329 * Called with i_data_sem down, which is important since we can call
330 * ext4_discard_preallocations() from here.
331 */
332void ext4_da_update_reserve_space(struct inode *inode,
333 int used, int quota_claim)
334{
335 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
336 struct ext4_inode_info *ei = EXT4_I(inode);
337
338 spin_lock(lock: &ei->i_block_reservation_lock);
339 trace_ext4_da_update_reserve_space(inode, used_blocks: used, quota_claim);
340 if (unlikely(used > ei->i_reserved_data_blocks)) {
341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
342 "with only %d reserved data blocks",
343 __func__, inode->i_ino, used,
344 ei->i_reserved_data_blocks);
345 WARN_ON(1);
346 used = ei->i_reserved_data_blocks;
347 }
348
349 /* Update per-inode reservations */
350 ei->i_reserved_data_blocks -= used;
351 percpu_counter_sub(fbc: &sbi->s_dirtyclusters_counter, amount: used);
352
353 spin_unlock(lock: &ei->i_block_reservation_lock);
354
355 /* Update quota subsystem for data blocks */
356 if (quota_claim)
357 dquot_claim_block(inode, EXT4_C2B(sbi, used));
358 else {
359 /*
360 * We did fallocate with an offset that is already delayed
361 * allocated. So on delayed allocated writeback we should
362 * not re-claim the quota for fallocated blocks.
363 */
364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
365 }
366
367 /*
368 * If we have done all the pending block allocations and if
369 * there aren't any writers on the inode, we can discard the
370 * inode's preallocations.
371 */
372 if ((ei->i_reserved_data_blocks == 0) &&
373 !inode_is_open_for_write(inode))
374 ext4_discard_preallocations(inode);
375}
376
377static int __check_block_validity(struct inode *inode, const char *func,
378 unsigned int line,
379 struct ext4_map_blocks *map)
380{
381 if (ext4_has_feature_journal(sb: inode->i_sb) &&
382 (inode->i_ino ==
383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
384 return 0;
385 if (!ext4_inode_block_valid(inode, start_blk: map->m_pblk, count: map->m_len)) {
386 ext4_error_inode(inode, func, line, map->m_pblk,
387 "lblock %lu mapped to illegal pblock %llu "
388 "(length %d)", (unsigned long) map->m_lblk,
389 map->m_pblk, map->m_len);
390 return -EFSCORRUPTED;
391 }
392 return 0;
393}
394
395int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396 ext4_lblk_t len)
397{
398 int ret;
399
400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
401 return fscrypt_zeroout_range(inode, lblk, pblk, len);
402
403 ret = sb_issue_zeroout(sb: inode->i_sb, block: pblk, nr_blocks: len, GFP_NOFS);
404 if (ret > 0)
405 ret = 0;
406
407 return ret;
408}
409
410#define check_block_validity(inode, map) \
411 __check_block_validity((inode), __func__, __LINE__, (map))
412
413#ifdef ES_AGGRESSIVE_TEST
414static void ext4_map_blocks_es_recheck(handle_t *handle,
415 struct inode *inode,
416 struct ext4_map_blocks *es_map,
417 struct ext4_map_blocks *map,
418 int flags)
419{
420 int retval;
421
422 map->m_flags = 0;
423 /*
424 * There is a race window that the result is not the same.
425 * e.g. xfstests #223 when dioread_nolock enables. The reason
426 * is that we lookup a block mapping in extent status tree with
427 * out taking i_data_sem. So at the time the unwritten extent
428 * could be converted.
429 */
430 down_read(&EXT4_I(inode)->i_data_sem);
431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432 retval = ext4_ext_map_blocks(handle, inode, map, 0);
433 } else {
434 retval = ext4_ind_map_blocks(handle, inode, map, 0);
435 }
436 up_read((&EXT4_I(inode)->i_data_sem));
437
438 /*
439 * We don't check m_len because extent will be collpased in status
440 * tree. So the m_len might not equal.
441 */
442 if (es_map->m_lblk != map->m_lblk ||
443 es_map->m_flags != map->m_flags ||
444 es_map->m_pblk != map->m_pblk) {
445 printk("ES cache assertion failed for inode: %lu "
446 "es_cached ex [%d/%d/%llu/%x] != "
447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
448 inode->i_ino, es_map->m_lblk, es_map->m_len,
449 es_map->m_pblk, es_map->m_flags, map->m_lblk,
450 map->m_len, map->m_pblk, map->m_flags,
451 retval, flags);
452 }
453}
454#endif /* ES_AGGRESSIVE_TEST */
455
456/*
457 * The ext4_map_blocks() function tries to look up the requested blocks,
458 * and returns if the blocks are already mapped.
459 *
460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
461 * and store the allocated blocks in the result buffer head and mark it
462 * mapped.
463 *
464 * If file type is extents based, it will call ext4_ext_map_blocks(),
465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
466 * based files
467 *
468 * On success, it returns the number of blocks being mapped or allocated.
469 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
470 * pre-allocated and unwritten, the resulting @map is marked as unwritten.
471 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
472 *
473 * It returns 0 if plain look up failed (blocks have not been allocated), in
474 * that case, @map is returned as unmapped but we still do fill map->m_len to
475 * indicate the length of a hole starting at map->m_lblk.
476 *
477 * It returns the error in case of allocation failure.
478 */
479int ext4_map_blocks(handle_t *handle, struct inode *inode,
480 struct ext4_map_blocks *map, int flags)
481{
482 struct extent_status es;
483 int retval;
484 int ret = 0;
485#ifdef ES_AGGRESSIVE_TEST
486 struct ext4_map_blocks orig_map;
487
488 memcpy(&orig_map, map, sizeof(*map));
489#endif
490
491 map->m_flags = 0;
492 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
493 flags, map->m_len, (unsigned long) map->m_lblk);
494
495 /*
496 * ext4_map_blocks returns an int, and m_len is an unsigned int
497 */
498 if (unlikely(map->m_len > INT_MAX))
499 map->m_len = INT_MAX;
500
501 /* We can handle the block number less than EXT_MAX_BLOCKS */
502 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
503 return -EFSCORRUPTED;
504
505 /* Lookup extent status tree firstly */
506 if (!(EXT4_SB(sb: inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
507 ext4_es_lookup_extent(inode, lblk: map->m_lblk, NULL, es: &es)) {
508 if (ext4_es_is_written(es: &es) || ext4_es_is_unwritten(es: &es)) {
509 map->m_pblk = ext4_es_pblock(es: &es) +
510 map->m_lblk - es.es_lblk;
511 map->m_flags |= ext4_es_is_written(es: &es) ?
512 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
513 retval = es.es_len - (map->m_lblk - es.es_lblk);
514 if (retval > map->m_len)
515 retval = map->m_len;
516 map->m_len = retval;
517 } else if (ext4_es_is_delayed(es: &es) || ext4_es_is_hole(es: &es)) {
518 map->m_pblk = 0;
519 map->m_flags |= ext4_es_is_delayed(es: &es) ?
520 EXT4_MAP_DELAYED : 0;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
525 retval = 0;
526 } else {
527 BUG();
528 }
529
530 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
531 return retval;
532#ifdef ES_AGGRESSIVE_TEST
533 ext4_map_blocks_es_recheck(handle, inode, map,
534 &orig_map, flags);
535#endif
536 goto found;
537 }
538 /*
539 * In the query cache no-wait mode, nothing we can do more if we
540 * cannot find extent in the cache.
541 */
542 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
543 return 0;
544
545 /*
546 * Try to see if we can get the block without requesting a new
547 * file system block.
548 */
549 down_read(sem: &EXT4_I(inode)->i_data_sem);
550 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS)) {
551 retval = ext4_ext_map_blocks(handle, inode, map, flags: 0);
552 } else {
553 retval = ext4_ind_map_blocks(handle, inode, map, flags: 0);
554 }
555 if (retval > 0) {
556 unsigned int status;
557
558 if (unlikely(retval != map->m_len)) {
559 ext4_warning(inode->i_sb,
560 "ES len assertion failed for inode "
561 "%lu: retval %d != map->m_len %d",
562 inode->i_ino, retval, map->m_len);
563 WARN_ON(1);
564 }
565
566 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 !(status & EXTENT_STATUS_WRITTEN) &&
570 ext4_es_scan_range(inode, matching_fn: &ext4_es_is_delayed, lblk: map->m_lblk,
571 end: map->m_lblk + map->m_len - 1))
572 status |= EXTENT_STATUS_DELAYED;
573 ext4_es_insert_extent(inode, lblk: map->m_lblk, len: map->m_len,
574 pblk: map->m_pblk, status);
575 }
576 up_read(sem: (&EXT4_I(inode)->i_data_sem));
577
578found:
579 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
580 ret = check_block_validity(inode, map);
581 if (ret != 0)
582 return ret;
583 }
584
585 /* If it is only a block(s) look up */
586 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
587 return retval;
588
589 /*
590 * Returns if the blocks have already allocated
591 *
592 * Note that if blocks have been preallocated
593 * ext4_ext_map_blocks() returns with buffer head unmapped
594 */
595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
596 /*
597 * If we need to convert extent to unwritten
598 * we continue and do the actual work in
599 * ext4_ext_map_blocks()
600 */
601 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
602 return retval;
603
604 /*
605 * Here we clear m_flags because after allocating an new extent,
606 * it will be set again.
607 */
608 map->m_flags &= ~EXT4_MAP_FLAGS;
609
610 /*
611 * New blocks allocate and/or writing to unwritten extent
612 * will possibly result in updating i_data, so we take
613 * the write lock of i_data_sem, and call get_block()
614 * with create == 1 flag.
615 */
616 down_write(sem: &EXT4_I(inode)->i_data_sem);
617
618 /*
619 * We need to check for EXT4 here because migrate
620 * could have changed the inode type in between
621 */
622 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS)) {
623 retval = ext4_ext_map_blocks(handle, inode, map, flags);
624 } else {
625 retval = ext4_ind_map_blocks(handle, inode, map, flags);
626
627 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
628 /*
629 * We allocated new blocks which will result in
630 * i_data's format changing. Force the migrate
631 * to fail by clearing migrate flags
632 */
633 ext4_clear_inode_state(inode, bit: EXT4_STATE_EXT_MIGRATE);
634 }
635 }
636
637 if (retval > 0) {
638 unsigned int status;
639
640 if (unlikely(retval != map->m_len)) {
641 ext4_warning(inode->i_sb,
642 "ES len assertion failed for inode "
643 "%lu: retval %d != map->m_len %d",
644 inode->i_ino, retval, map->m_len);
645 WARN_ON(1);
646 }
647
648 /*
649 * We have to zeroout blocks before inserting them into extent
650 * status tree. Otherwise someone could look them up there and
651 * use them before they are really zeroed. We also have to
652 * unmap metadata before zeroing as otherwise writeback can
653 * overwrite zeros with stale data from block device.
654 */
655 if (flags & EXT4_GET_BLOCKS_ZERO &&
656 map->m_flags & EXT4_MAP_MAPPED &&
657 map->m_flags & EXT4_MAP_NEW) {
658 ret = ext4_issue_zeroout(inode, lblk: map->m_lblk,
659 pblk: map->m_pblk, len: map->m_len);
660 if (ret) {
661 retval = ret;
662 goto out_sem;
663 }
664 }
665
666 /*
667 * If the extent has been zeroed out, we don't need to update
668 * extent status tree.
669 */
670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671 ext4_es_lookup_extent(inode, lblk: map->m_lblk, NULL, es: &es)) {
672 if (ext4_es_is_written(es: &es))
673 goto out_sem;
674 }
675 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678 !(status & EXTENT_STATUS_WRITTEN) &&
679 ext4_es_scan_range(inode, matching_fn: &ext4_es_is_delayed, lblk: map->m_lblk,
680 end: map->m_lblk + map->m_len - 1))
681 status |= EXTENT_STATUS_DELAYED;
682 ext4_es_insert_extent(inode, lblk: map->m_lblk, len: map->m_len,
683 pblk: map->m_pblk, status);
684 }
685
686out_sem:
687 up_write(sem: (&EXT4_I(inode)->i_data_sem));
688 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
689 ret = check_block_validity(inode, map);
690 if (ret != 0)
691 return ret;
692
693 /*
694 * Inodes with freshly allocated blocks where contents will be
695 * visible after transaction commit must be on transaction's
696 * ordered data list.
697 */
698 if (map->m_flags & EXT4_MAP_NEW &&
699 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
700 !(flags & EXT4_GET_BLOCKS_ZERO) &&
701 !ext4_is_quota_file(inode) &&
702 ext4_should_order_data(inode)) {
703 loff_t start_byte =
704 (loff_t)map->m_lblk << inode->i_blkbits;
705 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
706
707 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
708 ret = ext4_jbd2_inode_add_wait(handle, inode,
709 start_byte, length);
710 else
711 ret = ext4_jbd2_inode_add_write(handle, inode,
712 start_byte, length);
713 if (ret)
714 return ret;
715 }
716 }
717 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
718 map->m_flags & EXT4_MAP_MAPPED))
719 ext4_fc_track_range(handle, inode, start: map->m_lblk,
720 end: map->m_lblk + map->m_len - 1);
721 if (retval < 0)
722 ext_debug(inode, "failed with err %d\n", retval);
723 return retval;
724}
725
726/*
727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728 * we have to be careful as someone else may be manipulating b_state as well.
729 */
730static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731{
732 unsigned long old_state;
733 unsigned long new_state;
734
735 flags &= EXT4_MAP_FLAGS;
736
737 /* Dummy buffer_head? Set non-atomically. */
738 if (!bh->b_page) {
739 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740 return;
741 }
742 /*
743 * Someone else may be modifying b_state. Be careful! This is ugly but
744 * once we get rid of using bh as a container for mapping information
745 * to pass to / from get_block functions, this can go away.
746 */
747 old_state = READ_ONCE(bh->b_state);
748 do {
749 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
751}
752
753static int _ext4_get_block(struct inode *inode, sector_t iblock,
754 struct buffer_head *bh, int flags)
755{
756 struct ext4_map_blocks map;
757 int ret = 0;
758
759 if (ext4_has_inline_data(inode))
760 return -ERANGE;
761
762 map.m_lblk = iblock;
763 map.m_len = bh->b_size >> inode->i_blkbits;
764
765 ret = ext4_map_blocks(handle: ext4_journal_current_handle(), inode, map: &map,
766 flags);
767 if (ret > 0) {
768 map_bh(bh, sb: inode->i_sb, block: map.m_pblk);
769 ext4_update_bh_state(bh, flags: map.m_flags);
770 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
771 ret = 0;
772 } else if (ret == 0) {
773 /* hole case, need to fill in bh->b_size */
774 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
775 }
776 return ret;
777}
778
779int ext4_get_block(struct inode *inode, sector_t iblock,
780 struct buffer_head *bh, int create)
781{
782 return _ext4_get_block(inode, iblock, bh,
783 flags: create ? EXT4_GET_BLOCKS_CREATE : 0);
784}
785
786/*
787 * Get block function used when preparing for buffered write if we require
788 * creating an unwritten extent if blocks haven't been allocated. The extent
789 * will be converted to written after the IO is complete.
790 */
791int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
792 struct buffer_head *bh_result, int create)
793{
794 int ret = 0;
795
796 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
797 inode->i_ino, create);
798 ret = _ext4_get_block(inode, iblock, bh: bh_result,
799 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
800
801 /*
802 * If the buffer is marked unwritten, mark it as new to make sure it is
803 * zeroed out correctly in case of partial writes. Otherwise, there is
804 * a chance of stale data getting exposed.
805 */
806 if (ret == 0 && buffer_unwritten(bh: bh_result))
807 set_buffer_new(bh_result);
808
809 return ret;
810}
811
812/* Maximum number of blocks we map for direct IO at once. */
813#define DIO_MAX_BLOCKS 4096
814
815/*
816 * `handle' can be NULL if create is zero
817 */
818struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
819 ext4_lblk_t block, int map_flags)
820{
821 struct ext4_map_blocks map;
822 struct buffer_head *bh;
823 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
824 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
825 int err;
826
827 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
828 || handle != NULL || create == 0);
829 ASSERT(create == 0 || !nowait);
830
831 map.m_lblk = block;
832 map.m_len = 1;
833 err = ext4_map_blocks(handle, inode, map: &map, flags: map_flags);
834
835 if (err == 0)
836 return create ? ERR_PTR(error: -ENOSPC) : NULL;
837 if (err < 0)
838 return ERR_PTR(error: err);
839
840 if (nowait)
841 return sb_find_get_block(sb: inode->i_sb, block: map.m_pblk);
842
843 bh = sb_getblk(sb: inode->i_sb, block: map.m_pblk);
844 if (unlikely(!bh))
845 return ERR_PTR(error: -ENOMEM);
846 if (map.m_flags & EXT4_MAP_NEW) {
847 ASSERT(create != 0);
848 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
849 || (handle != NULL));
850
851 /*
852 * Now that we do not always journal data, we should
853 * keep in mind whether this should always journal the
854 * new buffer as metadata. For now, regular file
855 * writes use ext4_get_block instead, so it's not a
856 * problem.
857 */
858 lock_buffer(bh);
859 BUFFER_TRACE(bh, "call get_create_access");
860 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
861 EXT4_JTR_NONE);
862 if (unlikely(err)) {
863 unlock_buffer(bh);
864 goto errout;
865 }
866 if (!buffer_uptodate(bh)) {
867 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
868 set_buffer_uptodate(bh);
869 }
870 unlock_buffer(bh);
871 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
872 err = ext4_handle_dirty_metadata(handle, inode, bh);
873 if (unlikely(err))
874 goto errout;
875 } else
876 BUFFER_TRACE(bh, "not a new buffer");
877 return bh;
878errout:
879 brelse(bh);
880 return ERR_PTR(error: err);
881}
882
883struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
884 ext4_lblk_t block, int map_flags)
885{
886 struct buffer_head *bh;
887 int ret;
888
889 bh = ext4_getblk(handle, inode, block, map_flags);
890 if (IS_ERR(ptr: bh))
891 return bh;
892 if (!bh || ext4_buffer_uptodate(bh))
893 return bh;
894
895 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, wait: true);
896 if (ret) {
897 put_bh(bh);
898 return ERR_PTR(error: ret);
899 }
900 return bh;
901}
902
903/* Read a contiguous batch of blocks. */
904int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
905 bool wait, struct buffer_head **bhs)
906{
907 int i, err;
908
909 for (i = 0; i < bh_count; i++) {
910 bhs[i] = ext4_getblk(NULL, inode, block: block + i, map_flags: 0 /* map_flags */);
911 if (IS_ERR(ptr: bhs[i])) {
912 err = PTR_ERR(ptr: bhs[i]);
913 bh_count = i;
914 goto out_brelse;
915 }
916 }
917
918 for (i = 0; i < bh_count; i++)
919 /* Note that NULL bhs[i] is valid because of holes. */
920 if (bhs[i] && !ext4_buffer_uptodate(bh: bhs[i]))
921 ext4_read_bh_lock(bh: bhs[i], REQ_META | REQ_PRIO, wait: false);
922
923 if (!wait)
924 return 0;
925
926 for (i = 0; i < bh_count; i++)
927 if (bhs[i])
928 wait_on_buffer(bh: bhs[i]);
929
930 for (i = 0; i < bh_count; i++) {
931 if (bhs[i] && !buffer_uptodate(bh: bhs[i])) {
932 err = -EIO;
933 goto out_brelse;
934 }
935 }
936 return 0;
937
938out_brelse:
939 for (i = 0; i < bh_count; i++) {
940 brelse(bh: bhs[i]);
941 bhs[i] = NULL;
942 }
943 return err;
944}
945
946int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
947 struct buffer_head *head,
948 unsigned from,
949 unsigned to,
950 int *partial,
951 int (*fn)(handle_t *handle, struct inode *inode,
952 struct buffer_head *bh))
953{
954 struct buffer_head *bh;
955 unsigned block_start, block_end;
956 unsigned blocksize = head->b_size;
957 int err, ret = 0;
958 struct buffer_head *next;
959
960 for (bh = head, block_start = 0;
961 ret == 0 && (bh != head || !block_start);
962 block_start = block_end, bh = next) {
963 next = bh->b_this_page;
964 block_end = block_start + blocksize;
965 if (block_end <= from || block_start >= to) {
966 if (partial && !buffer_uptodate(bh))
967 *partial = 1;
968 continue;
969 }
970 err = (*fn)(handle, inode, bh);
971 if (!ret)
972 ret = err;
973 }
974 return ret;
975}
976
977/*
978 * Helper for handling dirtying of journalled data. We also mark the folio as
979 * dirty so that writeback code knows about this page (and inode) contains
980 * dirty data. ext4_writepages() then commits appropriate transaction to
981 * make data stable.
982 */
983static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
984{
985 folio_mark_dirty(folio: bh->b_folio);
986 return ext4_handle_dirty_metadata(handle, NULL, bh);
987}
988
989int do_journal_get_write_access(handle_t *handle, struct inode *inode,
990 struct buffer_head *bh)
991{
992 int dirty = buffer_dirty(bh);
993 int ret;
994
995 if (!buffer_mapped(bh) || buffer_freed(bh))
996 return 0;
997 /*
998 * __block_write_begin() could have dirtied some buffers. Clean
999 * the dirty bit as jbd2_journal_get_write_access() could complain
1000 * otherwise about fs integrity issues. Setting of the dirty bit
1001 * by __block_write_begin() isn't a real problem here as we clear
1002 * the bit before releasing a page lock and thus writeback cannot
1003 * ever write the buffer.
1004 */
1005 if (dirty)
1006 clear_buffer_dirty(bh);
1007 BUFFER_TRACE(bh, "get write access");
1008 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1009 EXT4_JTR_NONE);
1010 if (!ret && dirty)
1011 ret = ext4_dirty_journalled_data(handle, bh);
1012 return ret;
1013}
1014
1015#ifdef CONFIG_FS_ENCRYPTION
1016static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len,
1017 get_block_t *get_block)
1018{
1019 unsigned from = pos & (PAGE_SIZE - 1);
1020 unsigned to = from + len;
1021 struct inode *inode = folio->mapping->host;
1022 unsigned block_start, block_end;
1023 sector_t block;
1024 int err = 0;
1025 unsigned blocksize = inode->i_sb->s_blocksize;
1026 unsigned bbits;
1027 struct buffer_head *bh, *head, *wait[2];
1028 int nr_wait = 0;
1029 int i;
1030
1031 BUG_ON(!folio_test_locked(folio));
1032 BUG_ON(from > PAGE_SIZE);
1033 BUG_ON(to > PAGE_SIZE);
1034 BUG_ON(from > to);
1035
1036 head = folio_buffers(folio);
1037 if (!head)
1038 head = create_empty_buffers(folio, blocksize, b_state: 0);
1039 bbits = ilog2(blocksize);
1040 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1041
1042 for (bh = head, block_start = 0; bh != head || !block_start;
1043 block++, block_start = block_end, bh = bh->b_this_page) {
1044 block_end = block_start + blocksize;
1045 if (block_end <= from || block_start >= to) {
1046 if (folio_test_uptodate(folio)) {
1047 set_buffer_uptodate(bh);
1048 }
1049 continue;
1050 }
1051 if (buffer_new(bh))
1052 clear_buffer_new(bh);
1053 if (!buffer_mapped(bh)) {
1054 WARN_ON(bh->b_size != blocksize);
1055 err = get_block(inode, block, bh, 1);
1056 if (err)
1057 break;
1058 if (buffer_new(bh)) {
1059 if (folio_test_uptodate(folio)) {
1060 clear_buffer_new(bh);
1061 set_buffer_uptodate(bh);
1062 mark_buffer_dirty(bh);
1063 continue;
1064 }
1065 if (block_end > to || block_start < from)
1066 folio_zero_segments(folio, start1: to,
1067 xend1: block_end,
1068 start2: block_start, xend2: from);
1069 continue;
1070 }
1071 }
1072 if (folio_test_uptodate(folio)) {
1073 set_buffer_uptodate(bh);
1074 continue;
1075 }
1076 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1077 !buffer_unwritten(bh) &&
1078 (block_start < from || block_end > to)) {
1079 ext4_read_bh_lock(bh, op_flags: 0, wait: false);
1080 wait[nr_wait++] = bh;
1081 }
1082 }
1083 /*
1084 * If we issued read requests, let them complete.
1085 */
1086 for (i = 0; i < nr_wait; i++) {
1087 wait_on_buffer(bh: wait[i]);
1088 if (!buffer_uptodate(bh: wait[i]))
1089 err = -EIO;
1090 }
1091 if (unlikely(err)) {
1092 folio_zero_new_buffers(folio, from, to);
1093 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1094 for (i = 0; i < nr_wait; i++) {
1095 int err2;
1096
1097 err2 = fscrypt_decrypt_pagecache_blocks(folio,
1098 len: blocksize, offs: bh_offset(bh: wait[i]));
1099 if (err2) {
1100 clear_buffer_uptodate(bh: wait[i]);
1101 err = err2;
1102 }
1103 }
1104 }
1105
1106 return err;
1107}
1108#endif
1109
1110/*
1111 * To preserve ordering, it is essential that the hole instantiation and
1112 * the data write be encapsulated in a single transaction. We cannot
1113 * close off a transaction and start a new one between the ext4_get_block()
1114 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of
1115 * ext4_write_begin() is the right place.
1116 */
1117static int ext4_write_begin(struct file *file, struct address_space *mapping,
1118 loff_t pos, unsigned len,
1119 struct page **pagep, void **fsdata)
1120{
1121 struct inode *inode = mapping->host;
1122 int ret, needed_blocks;
1123 handle_t *handle;
1124 int retries = 0;
1125 struct folio *folio;
1126 pgoff_t index;
1127 unsigned from, to;
1128
1129 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1130 return -EIO;
1131
1132 trace_ext4_write_begin(inode, pos, len);
1133 /*
1134 * Reserve one block more for addition to orphan list in case
1135 * we allocate blocks but write fails for some reason
1136 */
1137 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1138 index = pos >> PAGE_SHIFT;
1139 from = pos & (PAGE_SIZE - 1);
1140 to = from + len;
1141
1142 if (ext4_test_inode_state(inode, bit: EXT4_STATE_MAY_INLINE_DATA)) {
1143 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1144 pagep);
1145 if (ret < 0)
1146 return ret;
1147 if (ret == 1)
1148 return 0;
1149 }
1150
1151 /*
1152 * __filemap_get_folio() can take a long time if the
1153 * system is thrashing due to memory pressure, or if the folio
1154 * is being written back. So grab it first before we start
1155 * the transaction handle. This also allows us to allocate
1156 * the folio (if needed) without using GFP_NOFS.
1157 */
1158retry_grab:
1159 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1160 gfp: mapping_gfp_mask(mapping));
1161 if (IS_ERR(ptr: folio))
1162 return PTR_ERR(ptr: folio);
1163 /*
1164 * The same as page allocation, we prealloc buffer heads before
1165 * starting the handle.
1166 */
1167 if (!folio_buffers(folio))
1168 create_empty_buffers(folio, blocksize: inode->i_sb->s_blocksize, b_state: 0);
1169
1170 folio_unlock(folio);
1171
1172retry_journal:
1173 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1174 if (IS_ERR(ptr: handle)) {
1175 folio_put(folio);
1176 return PTR_ERR(ptr: handle);
1177 }
1178
1179 folio_lock(folio);
1180 if (folio->mapping != mapping) {
1181 /* The folio got truncated from under us */
1182 folio_unlock(folio);
1183 folio_put(folio);
1184 ext4_journal_stop(handle);
1185 goto retry_grab;
1186 }
1187 /* In case writeback began while the folio was unlocked */
1188 folio_wait_stable(folio);
1189
1190#ifdef CONFIG_FS_ENCRYPTION
1191 if (ext4_should_dioread_nolock(inode))
1192 ret = ext4_block_write_begin(folio, pos, len,
1193 get_block: ext4_get_block_unwritten);
1194 else
1195 ret = ext4_block_write_begin(folio, pos, len, get_block: ext4_get_block);
1196#else
1197 if (ext4_should_dioread_nolock(inode))
1198 ret = __block_write_begin(&folio->page, pos, len,
1199 ext4_get_block_unwritten);
1200 else
1201 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block);
1202#endif
1203 if (!ret && ext4_should_journal_data(inode)) {
1204 ret = ext4_walk_page_buffers(handle, inode,
1205 folio_buffers(folio), from, to,
1206 NULL, fn: do_journal_get_write_access);
1207 }
1208
1209 if (ret) {
1210 bool extended = (pos + len > inode->i_size) &&
1211 !ext4_verity_in_progress(inode);
1212
1213 folio_unlock(folio);
1214 /*
1215 * __block_write_begin may have instantiated a few blocks
1216 * outside i_size. Trim these off again. Don't need
1217 * i_size_read because we hold i_rwsem.
1218 *
1219 * Add inode to orphan list in case we crash before
1220 * truncate finishes
1221 */
1222 if (extended && ext4_can_truncate(inode))
1223 ext4_orphan_add(handle, inode);
1224
1225 ext4_journal_stop(handle);
1226 if (extended) {
1227 ext4_truncate_failed_write(inode);
1228 /*
1229 * If truncate failed early the inode might
1230 * still be on the orphan list; we need to
1231 * make sure the inode is removed from the
1232 * orphan list in that case.
1233 */
1234 if (inode->i_nlink)
1235 ext4_orphan_del(NULL, inode);
1236 }
1237
1238 if (ret == -ENOSPC &&
1239 ext4_should_retry_alloc(sb: inode->i_sb, retries: &retries))
1240 goto retry_journal;
1241 folio_put(folio);
1242 return ret;
1243 }
1244 *pagep = &folio->page;
1245 return ret;
1246}
1247
1248/* For write_end() in data=journal mode */
1249static int write_end_fn(handle_t *handle, struct inode *inode,
1250 struct buffer_head *bh)
1251{
1252 int ret;
1253 if (!buffer_mapped(bh) || buffer_freed(bh))
1254 return 0;
1255 set_buffer_uptodate(bh);
1256 ret = ext4_dirty_journalled_data(handle, bh);
1257 clear_buffer_meta(bh);
1258 clear_buffer_prio(bh);
1259 return ret;
1260}
1261
1262/*
1263 * We need to pick up the new inode size which generic_commit_write gave us
1264 * `file' can be NULL - eg, when called from page_symlink().
1265 *
1266 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata
1267 * buffers are managed internally.
1268 */
1269static int ext4_write_end(struct file *file,
1270 struct address_space *mapping,
1271 loff_t pos, unsigned len, unsigned copied,
1272 struct page *page, void *fsdata)
1273{
1274 struct folio *folio = page_folio(page);
1275 handle_t *handle = ext4_journal_current_handle();
1276 struct inode *inode = mapping->host;
1277 loff_t old_size = inode->i_size;
1278 int ret = 0, ret2;
1279 int i_size_changed = 0;
1280 bool verity = ext4_verity_in_progress(inode);
1281
1282 trace_ext4_write_end(inode, pos, len, copied);
1283
1284 if (ext4_has_inline_data(inode) &&
1285 ext4_test_inode_state(inode, bit: EXT4_STATE_MAY_INLINE_DATA))
1286 return ext4_write_inline_data_end(inode, pos, len, copied,
1287 folio);
1288
1289 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1290 /*
1291 * it's important to update i_size while still holding folio lock:
1292 * page writeout could otherwise come in and zero beyond i_size.
1293 *
1294 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1295 * blocks are being written past EOF, so skip the i_size update.
1296 */
1297 if (!verity)
1298 i_size_changed = ext4_update_inode_size(inode, newsize: pos + copied);
1299 folio_unlock(folio);
1300 folio_put(folio);
1301
1302 if (old_size < pos && !verity)
1303 pagecache_isize_extended(inode, from: old_size, to: pos);
1304 /*
1305 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1306 * makes the holding time of folio lock longer. Second, it forces lock
1307 * ordering of folio lock and transaction start for journaling
1308 * filesystems.
1309 */
1310 if (i_size_changed)
1311 ret = ext4_mark_inode_dirty(handle, inode);
1312
1313 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1314 /* if we have allocated more blocks and copied
1315 * less. We will have blocks allocated outside
1316 * inode->i_size. So truncate them
1317 */
1318 ext4_orphan_add(handle, inode);
1319
1320 ret2 = ext4_journal_stop(handle);
1321 if (!ret)
1322 ret = ret2;
1323
1324 if (pos + len > inode->i_size && !verity) {
1325 ext4_truncate_failed_write(inode);
1326 /*
1327 * If truncate failed early the inode might still be
1328 * on the orphan list; we need to make sure the inode
1329 * is removed from the orphan list in that case.
1330 */
1331 if (inode->i_nlink)
1332 ext4_orphan_del(NULL, inode);
1333 }
1334
1335 return ret ? ret : copied;
1336}
1337
1338/*
1339 * This is a private version of folio_zero_new_buffers() which doesn't
1340 * set the buffer to be dirty, since in data=journalled mode we need
1341 * to call ext4_dirty_journalled_data() instead.
1342 */
1343static void ext4_journalled_zero_new_buffers(handle_t *handle,
1344 struct inode *inode,
1345 struct folio *folio,
1346 unsigned from, unsigned to)
1347{
1348 unsigned int block_start = 0, block_end;
1349 struct buffer_head *head, *bh;
1350
1351 bh = head = folio_buffers(folio);
1352 do {
1353 block_end = block_start + bh->b_size;
1354 if (buffer_new(bh)) {
1355 if (block_end > from && block_start < to) {
1356 if (!folio_test_uptodate(folio)) {
1357 unsigned start, size;
1358
1359 start = max(from, block_start);
1360 size = min(to, block_end) - start;
1361
1362 folio_zero_range(folio, start, length: size);
1363 write_end_fn(handle, inode, bh);
1364 }
1365 clear_buffer_new(bh);
1366 }
1367 }
1368 block_start = block_end;
1369 bh = bh->b_this_page;
1370 } while (bh != head);
1371}
1372
1373static int ext4_journalled_write_end(struct file *file,
1374 struct address_space *mapping,
1375 loff_t pos, unsigned len, unsigned copied,
1376 struct page *page, void *fsdata)
1377{
1378 struct folio *folio = page_folio(page);
1379 handle_t *handle = ext4_journal_current_handle();
1380 struct inode *inode = mapping->host;
1381 loff_t old_size = inode->i_size;
1382 int ret = 0, ret2;
1383 int partial = 0;
1384 unsigned from, to;
1385 int size_changed = 0;
1386 bool verity = ext4_verity_in_progress(inode);
1387
1388 trace_ext4_journalled_write_end(inode, pos, len, copied);
1389 from = pos & (PAGE_SIZE - 1);
1390 to = from + len;
1391
1392 BUG_ON(!ext4_handle_valid(handle));
1393
1394 if (ext4_has_inline_data(inode))
1395 return ext4_write_inline_data_end(inode, pos, len, copied,
1396 folio);
1397
1398 if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1399 copied = 0;
1400 ext4_journalled_zero_new_buffers(handle, inode, folio,
1401 from, to);
1402 } else {
1403 if (unlikely(copied < len))
1404 ext4_journalled_zero_new_buffers(handle, inode, folio,
1405 from: from + copied, to);
1406 ret = ext4_walk_page_buffers(handle, inode,
1407 folio_buffers(folio),
1408 from, to: from + copied, partial: &partial,
1409 fn: write_end_fn);
1410 if (!partial)
1411 folio_mark_uptodate(folio);
1412 }
1413 if (!verity)
1414 size_changed = ext4_update_inode_size(inode, newsize: pos + copied);
1415 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1416 folio_unlock(folio);
1417 folio_put(folio);
1418
1419 if (old_size < pos && !verity)
1420 pagecache_isize_extended(inode, from: old_size, to: pos);
1421
1422 if (size_changed) {
1423 ret2 = ext4_mark_inode_dirty(handle, inode);
1424 if (!ret)
1425 ret = ret2;
1426 }
1427
1428 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1429 /* if we have allocated more blocks and copied
1430 * less. We will have blocks allocated outside
1431 * inode->i_size. So truncate them
1432 */
1433 ext4_orphan_add(handle, inode);
1434
1435 ret2 = ext4_journal_stop(handle);
1436 if (!ret)
1437 ret = ret2;
1438 if (pos + len > inode->i_size && !verity) {
1439 ext4_truncate_failed_write(inode);
1440 /*
1441 * If truncate failed early the inode might still be
1442 * on the orphan list; we need to make sure the inode
1443 * is removed from the orphan list in that case.
1444 */
1445 if (inode->i_nlink)
1446 ext4_orphan_del(NULL, inode);
1447 }
1448
1449 return ret ? ret : copied;
1450}
1451
1452/*
1453 * Reserve space for a single cluster
1454 */
1455static int ext4_da_reserve_space(struct inode *inode)
1456{
1457 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
1458 struct ext4_inode_info *ei = EXT4_I(inode);
1459 int ret;
1460
1461 /*
1462 * We will charge metadata quota at writeout time; this saves
1463 * us from metadata over-estimation, though we may go over by
1464 * a small amount in the end. Here we just reserve for data.
1465 */
1466 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1467 if (ret)
1468 return ret;
1469
1470 spin_lock(lock: &ei->i_block_reservation_lock);
1471 if (ext4_claim_free_clusters(sbi, nclusters: 1, flags: 0)) {
1472 spin_unlock(lock: &ei->i_block_reservation_lock);
1473 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1474 return -ENOSPC;
1475 }
1476 ei->i_reserved_data_blocks++;
1477 trace_ext4_da_reserve_space(inode);
1478 spin_unlock(lock: &ei->i_block_reservation_lock);
1479
1480 return 0; /* success */
1481}
1482
1483void ext4_da_release_space(struct inode *inode, int to_free)
1484{
1485 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
1486 struct ext4_inode_info *ei = EXT4_I(inode);
1487
1488 if (!to_free)
1489 return; /* Nothing to release, exit */
1490
1491 spin_lock(lock: &EXT4_I(inode)->i_block_reservation_lock);
1492
1493 trace_ext4_da_release_space(inode, freed_blocks: to_free);
1494 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1495 /*
1496 * if there aren't enough reserved blocks, then the
1497 * counter is messed up somewhere. Since this
1498 * function is called from invalidate page, it's
1499 * harmless to return without any action.
1500 */
1501 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1502 "ino %lu, to_free %d with only %d reserved "
1503 "data blocks", inode->i_ino, to_free,
1504 ei->i_reserved_data_blocks);
1505 WARN_ON(1);
1506 to_free = ei->i_reserved_data_blocks;
1507 }
1508 ei->i_reserved_data_blocks -= to_free;
1509
1510 /* update fs dirty data blocks counter */
1511 percpu_counter_sub(fbc: &sbi->s_dirtyclusters_counter, amount: to_free);
1512
1513 spin_unlock(lock: &EXT4_I(inode)->i_block_reservation_lock);
1514
1515 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1516}
1517
1518/*
1519 * Delayed allocation stuff
1520 */
1521
1522struct mpage_da_data {
1523 /* These are input fields for ext4_do_writepages() */
1524 struct inode *inode;
1525 struct writeback_control *wbc;
1526 unsigned int can_map:1; /* Can writepages call map blocks? */
1527
1528 /* These are internal state of ext4_do_writepages() */
1529 pgoff_t first_page; /* The first page to write */
1530 pgoff_t next_page; /* Current page to examine */
1531 pgoff_t last_page; /* Last page to examine */
1532 /*
1533 * Extent to map - this can be after first_page because that can be
1534 * fully mapped. We somewhat abuse m_flags to store whether the extent
1535 * is delalloc or unwritten.
1536 */
1537 struct ext4_map_blocks map;
1538 struct ext4_io_submit io_submit; /* IO submission data */
1539 unsigned int do_map:1;
1540 unsigned int scanned_until_end:1;
1541 unsigned int journalled_more_data:1;
1542};
1543
1544static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1545 bool invalidate)
1546{
1547 unsigned nr, i;
1548 pgoff_t index, end;
1549 struct folio_batch fbatch;
1550 struct inode *inode = mpd->inode;
1551 struct address_space *mapping = inode->i_mapping;
1552
1553 /* This is necessary when next_page == 0. */
1554 if (mpd->first_page >= mpd->next_page)
1555 return;
1556
1557 mpd->scanned_until_end = 0;
1558 index = mpd->first_page;
1559 end = mpd->next_page - 1;
1560 if (invalidate) {
1561 ext4_lblk_t start, last;
1562 start = index << (PAGE_SHIFT - inode->i_blkbits);
1563 last = end << (PAGE_SHIFT - inode->i_blkbits);
1564
1565 /*
1566 * avoid racing with extent status tree scans made by
1567 * ext4_insert_delayed_block()
1568 */
1569 down_write(sem: &EXT4_I(inode)->i_data_sem);
1570 ext4_es_remove_extent(inode, lblk: start, len: last - start + 1);
1571 up_write(sem: &EXT4_I(inode)->i_data_sem);
1572 }
1573
1574 folio_batch_init(fbatch: &fbatch);
1575 while (index <= end) {
1576 nr = filemap_get_folios(mapping, start: &index, end, fbatch: &fbatch);
1577 if (nr == 0)
1578 break;
1579 for (i = 0; i < nr; i++) {
1580 struct folio *folio = fbatch.folios[i];
1581
1582 if (folio->index < mpd->first_page)
1583 continue;
1584 if (folio_next_index(folio) - 1 > end)
1585 continue;
1586 BUG_ON(!folio_test_locked(folio));
1587 BUG_ON(folio_test_writeback(folio));
1588 if (invalidate) {
1589 if (folio_mapped(folio))
1590 folio_clear_dirty_for_io(folio);
1591 block_invalidate_folio(folio, offset: 0,
1592 length: folio_size(folio));
1593 folio_clear_uptodate(folio);
1594 }
1595 folio_unlock(folio);
1596 }
1597 folio_batch_release(fbatch: &fbatch);
1598 }
1599}
1600
1601static void ext4_print_free_blocks(struct inode *inode)
1602{
1603 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
1604 struct super_block *sb = inode->i_sb;
1605 struct ext4_inode_info *ei = EXT4_I(inode);
1606
1607 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1608 EXT4_C2B(EXT4_SB(inode->i_sb),
1609 ext4_count_free_clusters(sb)));
1610 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1611 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1612 (long long) EXT4_C2B(EXT4_SB(sb),
1613 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1614 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1615 (long long) EXT4_C2B(EXT4_SB(sb),
1616 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1617 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1618 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1619 ei->i_reserved_data_blocks);
1620 return;
1621}
1622
1623/*
1624 * ext4_insert_delayed_block - adds a delayed block to the extents status
1625 * tree, incrementing the reserved cluster/block
1626 * count or making a pending reservation
1627 * where needed
1628 *
1629 * @inode - file containing the newly added block
1630 * @lblk - logical block to be added
1631 *
1632 * Returns 0 on success, negative error code on failure.
1633 */
1634static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1635{
1636 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
1637 int ret;
1638 bool allocated = false;
1639
1640 /*
1641 * If the cluster containing lblk is shared with a delayed,
1642 * written, or unwritten extent in a bigalloc file system, it's
1643 * already been accounted for and does not need to be reserved.
1644 * A pending reservation must be made for the cluster if it's
1645 * shared with a written or unwritten extent and doesn't already
1646 * have one. Written and unwritten extents can be purged from the
1647 * extents status tree if the system is under memory pressure, so
1648 * it's necessary to examine the extent tree if a search of the
1649 * extents status tree doesn't get a match.
1650 */
1651 if (sbi->s_cluster_ratio == 1) {
1652 ret = ext4_da_reserve_space(inode);
1653 if (ret != 0) /* ENOSPC */
1654 return ret;
1655 } else { /* bigalloc */
1656 if (!ext4_es_scan_clu(inode, matching_fn: &ext4_es_is_delonly, lblk)) {
1657 if (!ext4_es_scan_clu(inode,
1658 matching_fn: &ext4_es_is_mapped, lblk)) {
1659 ret = ext4_clu_mapped(inode,
1660 EXT4_B2C(sbi, lblk));
1661 if (ret < 0)
1662 return ret;
1663 if (ret == 0) {
1664 ret = ext4_da_reserve_space(inode);
1665 if (ret != 0) /* ENOSPC */
1666 return ret;
1667 } else {
1668 allocated = true;
1669 }
1670 } else {
1671 allocated = true;
1672 }
1673 }
1674 }
1675
1676 ext4_es_insert_delayed_block(inode, lblk, allocated);
1677 return 0;
1678}
1679
1680/*
1681 * This function is grabs code from the very beginning of
1682 * ext4_map_blocks, but assumes that the caller is from delayed write
1683 * time. This function looks up the requested blocks and sets the
1684 * buffer delay bit under the protection of i_data_sem.
1685 */
1686static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1687 struct ext4_map_blocks *map,
1688 struct buffer_head *bh)
1689{
1690 struct extent_status es;
1691 int retval;
1692 sector_t invalid_block = ~((sector_t) 0xffff);
1693#ifdef ES_AGGRESSIVE_TEST
1694 struct ext4_map_blocks orig_map;
1695
1696 memcpy(&orig_map, map, sizeof(*map));
1697#endif
1698
1699 if (invalid_block < ext4_blocks_count(es: EXT4_SB(sb: inode->i_sb)->s_es))
1700 invalid_block = ~0;
1701
1702 map->m_flags = 0;
1703 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1704 (unsigned long) map->m_lblk);
1705
1706 /* Lookup extent status tree firstly */
1707 if (ext4_es_lookup_extent(inode, lblk: iblock, NULL, es: &es)) {
1708 if (ext4_es_is_hole(es: &es))
1709 goto add_delayed;
1710
1711 /*
1712 * Delayed extent could be allocated by fallocate.
1713 * So we need to check it.
1714 */
1715 if (ext4_es_is_delayed(es: &es) && !ext4_es_is_unwritten(es: &es)) {
1716 map_bh(bh, sb: inode->i_sb, block: invalid_block);
1717 set_buffer_new(bh);
1718 set_buffer_delay(bh);
1719 return 0;
1720 }
1721
1722 map->m_pblk = ext4_es_pblock(es: &es) + iblock - es.es_lblk;
1723 retval = es.es_len - (iblock - es.es_lblk);
1724 if (retval > map->m_len)
1725 retval = map->m_len;
1726 map->m_len = retval;
1727 if (ext4_es_is_written(es: &es))
1728 map->m_flags |= EXT4_MAP_MAPPED;
1729 else if (ext4_es_is_unwritten(es: &es))
1730 map->m_flags |= EXT4_MAP_UNWRITTEN;
1731 else
1732 BUG();
1733
1734#ifdef ES_AGGRESSIVE_TEST
1735 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1736#endif
1737 return retval;
1738 }
1739
1740 /*
1741 * Try to see if we can get the block without requesting a new
1742 * file system block.
1743 */
1744 down_read(sem: &EXT4_I(inode)->i_data_sem);
1745 if (ext4_has_inline_data(inode))
1746 retval = 0;
1747 else if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))
1748 retval = ext4_ext_map_blocks(NULL, inode, map, flags: 0);
1749 else
1750 retval = ext4_ind_map_blocks(NULL, inode, map, flags: 0);
1751 if (retval < 0) {
1752 up_read(sem: &EXT4_I(inode)->i_data_sem);
1753 return retval;
1754 }
1755 if (retval > 0) {
1756 unsigned int status;
1757
1758 if (unlikely(retval != map->m_len)) {
1759 ext4_warning(inode->i_sb,
1760 "ES len assertion failed for inode "
1761 "%lu: retval %d != map->m_len %d",
1762 inode->i_ino, retval, map->m_len);
1763 WARN_ON(1);
1764 }
1765
1766 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1767 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1768 ext4_es_insert_extent(inode, lblk: map->m_lblk, len: map->m_len,
1769 pblk: map->m_pblk, status);
1770 up_read(sem: &EXT4_I(inode)->i_data_sem);
1771 return retval;
1772 }
1773 up_read(sem: &EXT4_I(inode)->i_data_sem);
1774
1775add_delayed:
1776 down_write(sem: &EXT4_I(inode)->i_data_sem);
1777 retval = ext4_insert_delayed_block(inode, lblk: map->m_lblk);
1778 up_write(sem: &EXT4_I(inode)->i_data_sem);
1779 if (retval)
1780 return retval;
1781
1782 map_bh(bh, sb: inode->i_sb, block: invalid_block);
1783 set_buffer_new(bh);
1784 set_buffer_delay(bh);
1785 return retval;
1786}
1787
1788/*
1789 * This is a special get_block_t callback which is used by
1790 * ext4_da_write_begin(). It will either return mapped block or
1791 * reserve space for a single block.
1792 *
1793 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1794 * We also have b_blocknr = -1 and b_bdev initialized properly
1795 *
1796 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1797 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1798 * initialized properly.
1799 */
1800int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1801 struct buffer_head *bh, int create)
1802{
1803 struct ext4_map_blocks map;
1804 int ret = 0;
1805
1806 BUG_ON(create == 0);
1807 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1808
1809 map.m_lblk = iblock;
1810 map.m_len = 1;
1811
1812 /*
1813 * first, we need to know whether the block is allocated already
1814 * preallocated blocks are unmapped but should treated
1815 * the same as allocated blocks.
1816 */
1817 ret = ext4_da_map_blocks(inode, iblock, map: &map, bh);
1818 if (ret <= 0)
1819 return ret;
1820
1821 map_bh(bh, sb: inode->i_sb, block: map.m_pblk);
1822 ext4_update_bh_state(bh, flags: map.m_flags);
1823
1824 if (buffer_unwritten(bh)) {
1825 /* A delayed write to unwritten bh should be marked
1826 * new and mapped. Mapped ensures that we don't do
1827 * get_block multiple times when we write to the same
1828 * offset and new ensures that we do proper zero out
1829 * for partial write.
1830 */
1831 set_buffer_new(bh);
1832 set_buffer_mapped(bh);
1833 }
1834 return 0;
1835}
1836
1837static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1838{
1839 mpd->first_page += folio_nr_pages(folio);
1840 folio_unlock(folio);
1841}
1842
1843static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1844{
1845 size_t len;
1846 loff_t size;
1847 int err;
1848
1849 BUG_ON(folio->index != mpd->first_page);
1850 folio_clear_dirty_for_io(folio);
1851 /*
1852 * We have to be very careful here! Nothing protects writeback path
1853 * against i_size changes and the page can be writeably mapped into
1854 * page tables. So an application can be growing i_size and writing
1855 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1856 * write-protects our page in page tables and the page cannot get
1857 * written to again until we release folio lock. So only after
1858 * folio_clear_dirty_for_io() we are safe to sample i_size for
1859 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1860 * on the barrier provided by folio_test_clear_dirty() in
1861 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1862 * after page tables are updated.
1863 */
1864 size = i_size_read(inode: mpd->inode);
1865 len = folio_size(folio);
1866 if (folio_pos(folio) + len > size &&
1867 !ext4_verity_in_progress(inode: mpd->inode))
1868 len = size & ~PAGE_MASK;
1869 err = ext4_bio_write_folio(io: &mpd->io_submit, page: folio, len);
1870 if (!err)
1871 mpd->wbc->nr_to_write--;
1872
1873 return err;
1874}
1875
1876#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1877
1878/*
1879 * mballoc gives us at most this number of blocks...
1880 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1881 * The rest of mballoc seems to handle chunks up to full group size.
1882 */
1883#define MAX_WRITEPAGES_EXTENT_LEN 2048
1884
1885/*
1886 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1887 *
1888 * @mpd - extent of blocks
1889 * @lblk - logical number of the block in the file
1890 * @bh - buffer head we want to add to the extent
1891 *
1892 * The function is used to collect contig. blocks in the same state. If the
1893 * buffer doesn't require mapping for writeback and we haven't started the
1894 * extent of buffers to map yet, the function returns 'true' immediately - the
1895 * caller can write the buffer right away. Otherwise the function returns true
1896 * if the block has been added to the extent, false if the block couldn't be
1897 * added.
1898 */
1899static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1900 struct buffer_head *bh)
1901{
1902 struct ext4_map_blocks *map = &mpd->map;
1903
1904 /* Buffer that doesn't need mapping for writeback? */
1905 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1906 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1907 /* So far no extent to map => we write the buffer right away */
1908 if (map->m_len == 0)
1909 return true;
1910 return false;
1911 }
1912
1913 /* First block in the extent? */
1914 if (map->m_len == 0) {
1915 /* We cannot map unless handle is started... */
1916 if (!mpd->do_map)
1917 return false;
1918 map->m_lblk = lblk;
1919 map->m_len = 1;
1920 map->m_flags = bh->b_state & BH_FLAGS;
1921 return true;
1922 }
1923
1924 /* Don't go larger than mballoc is willing to allocate */
1925 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1926 return false;
1927
1928 /* Can we merge the block to our big extent? */
1929 if (lblk == map->m_lblk + map->m_len &&
1930 (bh->b_state & BH_FLAGS) == map->m_flags) {
1931 map->m_len++;
1932 return true;
1933 }
1934 return false;
1935}
1936
1937/*
1938 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1939 *
1940 * @mpd - extent of blocks for mapping
1941 * @head - the first buffer in the page
1942 * @bh - buffer we should start processing from
1943 * @lblk - logical number of the block in the file corresponding to @bh
1944 *
1945 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1946 * the page for IO if all buffers in this page were mapped and there's no
1947 * accumulated extent of buffers to map or add buffers in the page to the
1948 * extent of buffers to map. The function returns 1 if the caller can continue
1949 * by processing the next page, 0 if it should stop adding buffers to the
1950 * extent to map because we cannot extend it anymore. It can also return value
1951 * < 0 in case of error during IO submission.
1952 */
1953static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1954 struct buffer_head *head,
1955 struct buffer_head *bh,
1956 ext4_lblk_t lblk)
1957{
1958 struct inode *inode = mpd->inode;
1959 int err;
1960 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(node: inode) - 1)
1961 >> inode->i_blkbits;
1962
1963 if (ext4_verity_in_progress(inode))
1964 blocks = EXT_MAX_BLOCKS;
1965
1966 do {
1967 BUG_ON(buffer_locked(bh));
1968
1969 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1970 /* Found extent to map? */
1971 if (mpd->map.m_len)
1972 return 0;
1973 /* Buffer needs mapping and handle is not started? */
1974 if (!mpd->do_map)
1975 return 0;
1976 /* Everything mapped so far and we hit EOF */
1977 break;
1978 }
1979 } while (lblk++, (bh = bh->b_this_page) != head);
1980 /* So far everything mapped? Submit the page for IO. */
1981 if (mpd->map.m_len == 0) {
1982 err = mpage_submit_folio(mpd, folio: head->b_folio);
1983 if (err < 0)
1984 return err;
1985 mpage_folio_done(mpd, folio: head->b_folio);
1986 }
1987 if (lblk >= blocks) {
1988 mpd->scanned_until_end = 1;
1989 return 0;
1990 }
1991 return 1;
1992}
1993
1994/*
1995 * mpage_process_folio - update folio buffers corresponding to changed extent
1996 * and may submit fully mapped page for IO
1997 * @mpd: description of extent to map, on return next extent to map
1998 * @folio: Contains these buffers.
1999 * @m_lblk: logical block mapping.
2000 * @m_pblk: corresponding physical mapping.
2001 * @map_bh: determines on return whether this page requires any further
2002 * mapping or not.
2003 *
2004 * Scan given folio buffers corresponding to changed extent and update buffer
2005 * state according to new extent state.
2006 * We map delalloc buffers to their physical location, clear unwritten bits.
2007 * If the given folio is not fully mapped, we update @mpd to the next extent in
2008 * the given folio that needs mapping & return @map_bh as true.
2009 */
2010static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2011 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2012 bool *map_bh)
2013{
2014 struct buffer_head *head, *bh;
2015 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2016 ext4_lblk_t lblk = *m_lblk;
2017 ext4_fsblk_t pblock = *m_pblk;
2018 int err = 0;
2019 int blkbits = mpd->inode->i_blkbits;
2020 ssize_t io_end_size = 0;
2021 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2022
2023 bh = head = folio_buffers(folio);
2024 do {
2025 if (lblk < mpd->map.m_lblk)
2026 continue;
2027 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2028 /*
2029 * Buffer after end of mapped extent.
2030 * Find next buffer in the folio to map.
2031 */
2032 mpd->map.m_len = 0;
2033 mpd->map.m_flags = 0;
2034 io_end_vec->size += io_end_size;
2035
2036 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2037 if (err > 0)
2038 err = 0;
2039 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2040 io_end_vec = ext4_alloc_io_end_vec(io_end);
2041 if (IS_ERR(ptr: io_end_vec)) {
2042 err = PTR_ERR(ptr: io_end_vec);
2043 goto out;
2044 }
2045 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2046 }
2047 *map_bh = true;
2048 goto out;
2049 }
2050 if (buffer_delay(bh)) {
2051 clear_buffer_delay(bh);
2052 bh->b_blocknr = pblock++;
2053 }
2054 clear_buffer_unwritten(bh);
2055 io_end_size += (1 << blkbits);
2056 } while (lblk++, (bh = bh->b_this_page) != head);
2057
2058 io_end_vec->size += io_end_size;
2059 *map_bh = false;
2060out:
2061 *m_lblk = lblk;
2062 *m_pblk = pblock;
2063 return err;
2064}
2065
2066/*
2067 * mpage_map_buffers - update buffers corresponding to changed extent and
2068 * submit fully mapped pages for IO
2069 *
2070 * @mpd - description of extent to map, on return next extent to map
2071 *
2072 * Scan buffers corresponding to changed extent (we expect corresponding pages
2073 * to be already locked) and update buffer state according to new extent state.
2074 * We map delalloc buffers to their physical location, clear unwritten bits,
2075 * and mark buffers as uninit when we perform writes to unwritten extents
2076 * and do extent conversion after IO is finished. If the last page is not fully
2077 * mapped, we update @map to the next extent in the last page that needs
2078 * mapping. Otherwise we submit the page for IO.
2079 */
2080static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2081{
2082 struct folio_batch fbatch;
2083 unsigned nr, i;
2084 struct inode *inode = mpd->inode;
2085 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2086 pgoff_t start, end;
2087 ext4_lblk_t lblk;
2088 ext4_fsblk_t pblock;
2089 int err;
2090 bool map_bh = false;
2091
2092 start = mpd->map.m_lblk >> bpp_bits;
2093 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2094 lblk = start << bpp_bits;
2095 pblock = mpd->map.m_pblk;
2096
2097 folio_batch_init(fbatch: &fbatch);
2098 while (start <= end) {
2099 nr = filemap_get_folios(mapping: inode->i_mapping, start: &start, end, fbatch: &fbatch);
2100 if (nr == 0)
2101 break;
2102 for (i = 0; i < nr; i++) {
2103 struct folio *folio = fbatch.folios[i];
2104
2105 err = mpage_process_folio(mpd, folio, m_lblk: &lblk, m_pblk: &pblock,
2106 map_bh: &map_bh);
2107 /*
2108 * If map_bh is true, means page may require further bh
2109 * mapping, or maybe the page was submitted for IO.
2110 * So we return to call further extent mapping.
2111 */
2112 if (err < 0 || map_bh)
2113 goto out;
2114 /* Page fully mapped - let IO run! */
2115 err = mpage_submit_folio(mpd, folio);
2116 if (err < 0)
2117 goto out;
2118 mpage_folio_done(mpd, folio);
2119 }
2120 folio_batch_release(fbatch: &fbatch);
2121 }
2122 /* Extent fully mapped and matches with page boundary. We are done. */
2123 mpd->map.m_len = 0;
2124 mpd->map.m_flags = 0;
2125 return 0;
2126out:
2127 folio_batch_release(fbatch: &fbatch);
2128 return err;
2129}
2130
2131static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2132{
2133 struct inode *inode = mpd->inode;
2134 struct ext4_map_blocks *map = &mpd->map;
2135 int get_blocks_flags;
2136 int err, dioread_nolock;
2137
2138 trace_ext4_da_write_pages_extent(inode, map);
2139 /*
2140 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2141 * to convert an unwritten extent to be initialized (in the case
2142 * where we have written into one or more preallocated blocks). It is
2143 * possible that we're going to need more metadata blocks than
2144 * previously reserved. However we must not fail because we're in
2145 * writeback and there is nothing we can do about it so it might result
2146 * in data loss. So use reserved blocks to allocate metadata if
2147 * possible.
2148 *
2149 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2150 * the blocks in question are delalloc blocks. This indicates
2151 * that the blocks and quotas has already been checked when
2152 * the data was copied into the page cache.
2153 */
2154 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2155 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2156 EXT4_GET_BLOCKS_IO_SUBMIT;
2157 dioread_nolock = ext4_should_dioread_nolock(inode);
2158 if (dioread_nolock)
2159 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2160 if (map->m_flags & BIT(BH_Delay))
2161 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2162
2163 err = ext4_map_blocks(handle, inode, map, flags: get_blocks_flags);
2164 if (err < 0)
2165 return err;
2166 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2167 if (!mpd->io_submit.io_end->handle &&
2168 ext4_handle_valid(handle)) {
2169 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2170 handle->h_rsv_handle = NULL;
2171 }
2172 ext4_set_io_unwritten_flag(inode, io_end: mpd->io_submit.io_end);
2173 }
2174
2175 BUG_ON(map->m_len == 0);
2176 return 0;
2177}
2178
2179/*
2180 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2181 * mpd->len and submit pages underlying it for IO
2182 *
2183 * @handle - handle for journal operations
2184 * @mpd - extent to map
2185 * @give_up_on_write - we set this to true iff there is a fatal error and there
2186 * is no hope of writing the data. The caller should discard
2187 * dirty pages to avoid infinite loops.
2188 *
2189 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2190 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2191 * them to initialized or split the described range from larger unwritten
2192 * extent. Note that we need not map all the described range since allocation
2193 * can return less blocks or the range is covered by more unwritten extents. We
2194 * cannot map more because we are limited by reserved transaction credits. On
2195 * the other hand we always make sure that the last touched page is fully
2196 * mapped so that it can be written out (and thus forward progress is
2197 * guaranteed). After mapping we submit all mapped pages for IO.
2198 */
2199static int mpage_map_and_submit_extent(handle_t *handle,
2200 struct mpage_da_data *mpd,
2201 bool *give_up_on_write)
2202{
2203 struct inode *inode = mpd->inode;
2204 struct ext4_map_blocks *map = &mpd->map;
2205 int err;
2206 loff_t disksize;
2207 int progress = 0;
2208 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2209 struct ext4_io_end_vec *io_end_vec;
2210
2211 io_end_vec = ext4_alloc_io_end_vec(io_end);
2212 if (IS_ERR(ptr: io_end_vec))
2213 return PTR_ERR(ptr: io_end_vec);
2214 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2215 do {
2216 err = mpage_map_one_extent(handle, mpd);
2217 if (err < 0) {
2218 struct super_block *sb = inode->i_sb;
2219
2220 if (ext4_forced_shutdown(sb))
2221 goto invalidate_dirty_pages;
2222 /*
2223 * Let the uper layers retry transient errors.
2224 * In the case of ENOSPC, if ext4_count_free_blocks()
2225 * is non-zero, a commit should free up blocks.
2226 */
2227 if ((err == -ENOMEM) ||
2228 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2229 if (progress)
2230 goto update_disksize;
2231 return err;
2232 }
2233 ext4_msg(sb, KERN_CRIT,
2234 "Delayed block allocation failed for "
2235 "inode %lu at logical offset %llu with"
2236 " max blocks %u with error %d",
2237 inode->i_ino,
2238 (unsigned long long)map->m_lblk,
2239 (unsigned)map->m_len, -err);
2240 ext4_msg(sb, KERN_CRIT,
2241 "This should not happen!! Data will "
2242 "be lost\n");
2243 if (err == -ENOSPC)
2244 ext4_print_free_blocks(inode);
2245 invalidate_dirty_pages:
2246 *give_up_on_write = true;
2247 return err;
2248 }
2249 progress = 1;
2250 /*
2251 * Update buffer state, submit mapped pages, and get us new
2252 * extent to map
2253 */
2254 err = mpage_map_and_submit_buffers(mpd);
2255 if (err < 0)
2256 goto update_disksize;
2257 } while (map->m_len);
2258
2259update_disksize:
2260 /*
2261 * Update on-disk size after IO is submitted. Races with
2262 * truncate are avoided by checking i_size under i_data_sem.
2263 */
2264 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2265 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2266 int err2;
2267 loff_t i_size;
2268
2269 down_write(sem: &EXT4_I(inode)->i_data_sem);
2270 i_size = i_size_read(inode);
2271 if (disksize > i_size)
2272 disksize = i_size;
2273 if (disksize > EXT4_I(inode)->i_disksize)
2274 EXT4_I(inode)->i_disksize = disksize;
2275 up_write(sem: &EXT4_I(inode)->i_data_sem);
2276 err2 = ext4_mark_inode_dirty(handle, inode);
2277 if (err2) {
2278 ext4_error_err(inode->i_sb, -err2,
2279 "Failed to mark inode %lu dirty",
2280 inode->i_ino);
2281 }
2282 if (!err)
2283 err = err2;
2284 }
2285 return err;
2286}
2287
2288/*
2289 * Calculate the total number of credits to reserve for one writepages
2290 * iteration. This is called from ext4_writepages(). We map an extent of
2291 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2292 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2293 * bpp - 1 blocks in bpp different extents.
2294 */
2295static int ext4_da_writepages_trans_blocks(struct inode *inode)
2296{
2297 int bpp = ext4_journal_blocks_per_page(inode);
2298
2299 return ext4_meta_trans_blocks(inode,
2300 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, pextents: bpp);
2301}
2302
2303static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2304 size_t len)
2305{
2306 struct buffer_head *page_bufs = folio_buffers(folio);
2307 struct inode *inode = folio->mapping->host;
2308 int ret, err;
2309
2310 ret = ext4_walk_page_buffers(handle, inode, head: page_bufs, from: 0, to: len,
2311 NULL, fn: do_journal_get_write_access);
2312 err = ext4_walk_page_buffers(handle, inode, head: page_bufs, from: 0, to: len,
2313 NULL, fn: write_end_fn);
2314 if (ret == 0)
2315 ret = err;
2316 err = ext4_jbd2_inode_add_write(handle, inode, start_byte: folio_pos(folio), length: len);
2317 if (ret == 0)
2318 ret = err;
2319 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2320
2321 return ret;
2322}
2323
2324static int mpage_journal_page_buffers(handle_t *handle,
2325 struct mpage_da_data *mpd,
2326 struct folio *folio)
2327{
2328 struct inode *inode = mpd->inode;
2329 loff_t size = i_size_read(inode);
2330 size_t len = folio_size(folio);
2331
2332 folio_clear_checked(folio);
2333 mpd->wbc->nr_to_write--;
2334
2335 if (folio_pos(folio) + len > size &&
2336 !ext4_verity_in_progress(inode))
2337 len = size - folio_pos(folio);
2338
2339 return ext4_journal_folio_buffers(handle, folio, len);
2340}
2341
2342/*
2343 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2344 * needing mapping, submit mapped pages
2345 *
2346 * @mpd - where to look for pages
2347 *
2348 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2349 * IO immediately. If we cannot map blocks, we submit just already mapped
2350 * buffers in the page for IO and keep page dirty. When we can map blocks and
2351 * we find a page which isn't mapped we start accumulating extent of buffers
2352 * underlying these pages that needs mapping (formed by either delayed or
2353 * unwritten buffers). We also lock the pages containing these buffers. The
2354 * extent found is returned in @mpd structure (starting at mpd->lblk with
2355 * length mpd->len blocks).
2356 *
2357 * Note that this function can attach bios to one io_end structure which are
2358 * neither logically nor physically contiguous. Although it may seem as an
2359 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2360 * case as we need to track IO to all buffers underlying a page in one io_end.
2361 */
2362static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2363{
2364 struct address_space *mapping = mpd->inode->i_mapping;
2365 struct folio_batch fbatch;
2366 unsigned int nr_folios;
2367 pgoff_t index = mpd->first_page;
2368 pgoff_t end = mpd->last_page;
2369 xa_mark_t tag;
2370 int i, err = 0;
2371 int blkbits = mpd->inode->i_blkbits;
2372 ext4_lblk_t lblk;
2373 struct buffer_head *head;
2374 handle_t *handle = NULL;
2375 int bpp = ext4_journal_blocks_per_page(inode: mpd->inode);
2376
2377 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2378 tag = PAGECACHE_TAG_TOWRITE;
2379 else
2380 tag = PAGECACHE_TAG_DIRTY;
2381
2382 mpd->map.m_len = 0;
2383 mpd->next_page = index;
2384 if (ext4_should_journal_data(inode: mpd->inode)) {
2385 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2386 bpp);
2387 if (IS_ERR(ptr: handle))
2388 return PTR_ERR(ptr: handle);
2389 }
2390 folio_batch_init(fbatch: &fbatch);
2391 while (index <= end) {
2392 nr_folios = filemap_get_folios_tag(mapping, start: &index, end,
2393 tag, fbatch: &fbatch);
2394 if (nr_folios == 0)
2395 break;
2396
2397 for (i = 0; i < nr_folios; i++) {
2398 struct folio *folio = fbatch.folios[i];
2399
2400 /*
2401 * Accumulated enough dirty pages? This doesn't apply
2402 * to WB_SYNC_ALL mode. For integrity sync we have to
2403 * keep going because someone may be concurrently
2404 * dirtying pages, and we might have synced a lot of
2405 * newly appeared dirty pages, but have not synced all
2406 * of the old dirty pages.
2407 */
2408 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2409 mpd->wbc->nr_to_write <=
2410 mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2411 goto out;
2412
2413 /* If we can't merge this page, we are done. */
2414 if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2415 goto out;
2416
2417 if (handle) {
2418 err = ext4_journal_ensure_credits(handle, credits: bpp,
2419 revoke_creds: 0);
2420 if (err < 0)
2421 goto out;
2422 }
2423
2424 folio_lock(folio);
2425 /*
2426 * If the page is no longer dirty, or its mapping no
2427 * longer corresponds to inode we are writing (which
2428 * means it has been truncated or invalidated), or the
2429 * page is already under writeback and we are not doing
2430 * a data integrity writeback, skip the page
2431 */
2432 if (!folio_test_dirty(folio) ||
2433 (folio_test_writeback(folio) &&
2434 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2435 unlikely(folio->mapping != mapping)) {
2436 folio_unlock(folio);
2437 continue;
2438 }
2439
2440 folio_wait_writeback(folio);
2441 BUG_ON(folio_test_writeback(folio));
2442
2443 /*
2444 * Should never happen but for buggy code in
2445 * other subsystems that call
2446 * set_page_dirty() without properly warning
2447 * the file system first. See [1] for more
2448 * information.
2449 *
2450 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2451 */
2452 if (!folio_buffers(folio)) {
2453 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2454 folio_clear_dirty(folio);
2455 folio_unlock(folio);
2456 continue;
2457 }
2458
2459 if (mpd->map.m_len == 0)
2460 mpd->first_page = folio->index;
2461 mpd->next_page = folio_next_index(folio);
2462 /*
2463 * Writeout when we cannot modify metadata is simple.
2464 * Just submit the page. For data=journal mode we
2465 * first handle writeout of the page for checkpoint and
2466 * only after that handle delayed page dirtying. This
2467 * makes sure current data is checkpointed to the final
2468 * location before possibly journalling it again which
2469 * is desirable when the page is frequently dirtied
2470 * through a pin.
2471 */
2472 if (!mpd->can_map) {
2473 err = mpage_submit_folio(mpd, folio);
2474 if (err < 0)
2475 goto out;
2476 /* Pending dirtying of journalled data? */
2477 if (folio_test_checked(folio)) {
2478 err = mpage_journal_page_buffers(handle,
2479 mpd, folio);
2480 if (err < 0)
2481 goto out;
2482 mpd->journalled_more_data = 1;
2483 }
2484 mpage_folio_done(mpd, folio);
2485 } else {
2486 /* Add all dirty buffers to mpd */
2487 lblk = ((ext4_lblk_t)folio->index) <<
2488 (PAGE_SHIFT - blkbits);
2489 head = folio_buffers(folio);
2490 err = mpage_process_page_bufs(mpd, head, bh: head,
2491 lblk);
2492 if (err <= 0)
2493 goto out;
2494 err = 0;
2495 }
2496 }
2497 folio_batch_release(fbatch: &fbatch);
2498 cond_resched();
2499 }
2500 mpd->scanned_until_end = 1;
2501 if (handle)
2502 ext4_journal_stop(handle);
2503 return 0;
2504out:
2505 folio_batch_release(fbatch: &fbatch);
2506 if (handle)
2507 ext4_journal_stop(handle);
2508 return err;
2509}
2510
2511static int ext4_do_writepages(struct mpage_da_data *mpd)
2512{
2513 struct writeback_control *wbc = mpd->wbc;
2514 pgoff_t writeback_index = 0;
2515 long nr_to_write = wbc->nr_to_write;
2516 int range_whole = 0;
2517 int cycled = 1;
2518 handle_t *handle = NULL;
2519 struct inode *inode = mpd->inode;
2520 struct address_space *mapping = inode->i_mapping;
2521 int needed_blocks, rsv_blocks = 0, ret = 0;
2522 struct ext4_sb_info *sbi = EXT4_SB(sb: mapping->host->i_sb);
2523 struct blk_plug plug;
2524 bool give_up_on_write = false;
2525
2526 trace_ext4_writepages(inode, wbc);
2527
2528 /*
2529 * No pages to write? This is mainly a kludge to avoid starting
2530 * a transaction for special inodes like journal inode on last iput()
2531 * because that could violate lock ordering on umount
2532 */
2533 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2534 goto out_writepages;
2535
2536 /*
2537 * If the filesystem has aborted, it is read-only, so return
2538 * right away instead of dumping stack traces later on that
2539 * will obscure the real source of the problem. We test
2540 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2541 * the latter could be true if the filesystem is mounted
2542 * read-only, and in that case, ext4_writepages should
2543 * *never* be called, so if that ever happens, we would want
2544 * the stack trace.
2545 */
2546 if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2547 ret = -EROFS;
2548 goto out_writepages;
2549 }
2550
2551 /*
2552 * If we have inline data and arrive here, it means that
2553 * we will soon create the block for the 1st page, so
2554 * we'd better clear the inline data here.
2555 */
2556 if (ext4_has_inline_data(inode)) {
2557 /* Just inode will be modified... */
2558 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2559 if (IS_ERR(ptr: handle)) {
2560 ret = PTR_ERR(ptr: handle);
2561 goto out_writepages;
2562 }
2563 BUG_ON(ext4_test_inode_state(inode,
2564 EXT4_STATE_MAY_INLINE_DATA));
2565 ext4_destroy_inline_data(handle, inode);
2566 ext4_journal_stop(handle);
2567 }
2568
2569 /*
2570 * data=journal mode does not do delalloc so we just need to writeout /
2571 * journal already mapped buffers. On the other hand we need to commit
2572 * transaction to make data stable. We expect all the data to be
2573 * already in the journal (the only exception are DMA pinned pages
2574 * dirtied behind our back) so we commit transaction here and run the
2575 * writeback loop to checkpoint them. The checkpointing is not actually
2576 * necessary to make data persistent *but* quite a few places (extent
2577 * shifting operations, fsverity, ...) depend on being able to drop
2578 * pagecache pages after calling filemap_write_and_wait() and for that
2579 * checkpointing needs to happen.
2580 */
2581 if (ext4_should_journal_data(inode)) {
2582 mpd->can_map = 0;
2583 if (wbc->sync_mode == WB_SYNC_ALL)
2584 ext4_fc_commit(journal: sbi->s_journal,
2585 EXT4_I(inode)->i_datasync_tid);
2586 }
2587 mpd->journalled_more_data = 0;
2588
2589 if (ext4_should_dioread_nolock(inode)) {
2590 /*
2591 * We may need to convert up to one extent per block in
2592 * the page and we may dirty the inode.
2593 */
2594 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2595 PAGE_SIZE >> inode->i_blkbits);
2596 }
2597
2598 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2599 range_whole = 1;
2600
2601 if (wbc->range_cyclic) {
2602 writeback_index = mapping->writeback_index;
2603 if (writeback_index)
2604 cycled = 0;
2605 mpd->first_page = writeback_index;
2606 mpd->last_page = -1;
2607 } else {
2608 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2609 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2610 }
2611
2612 ext4_io_submit_init(io: &mpd->io_submit, wbc);
2613retry:
2614 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2615 tag_pages_for_writeback(mapping, start: mpd->first_page,
2616 end: mpd->last_page);
2617 blk_start_plug(&plug);
2618
2619 /*
2620 * First writeback pages that don't need mapping - we can avoid
2621 * starting a transaction unnecessarily and also avoid being blocked
2622 * in the block layer on device congestion while having transaction
2623 * started.
2624 */
2625 mpd->do_map = 0;
2626 mpd->scanned_until_end = 0;
2627 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2628 if (!mpd->io_submit.io_end) {
2629 ret = -ENOMEM;
2630 goto unplug;
2631 }
2632 ret = mpage_prepare_extent_to_map(mpd);
2633 /* Unlock pages we didn't use */
2634 mpage_release_unused_pages(mpd, invalidate: false);
2635 /* Submit prepared bio */
2636 ext4_io_submit(io: &mpd->io_submit);
2637 ext4_put_io_end_defer(io_end: mpd->io_submit.io_end);
2638 mpd->io_submit.io_end = NULL;
2639 if (ret < 0)
2640 goto unplug;
2641
2642 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2643 /* For each extent of pages we use new io_end */
2644 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2645 if (!mpd->io_submit.io_end) {
2646 ret = -ENOMEM;
2647 break;
2648 }
2649
2650 WARN_ON_ONCE(!mpd->can_map);
2651 /*
2652 * We have two constraints: We find one extent to map and we
2653 * must always write out whole page (makes a difference when
2654 * blocksize < pagesize) so that we don't block on IO when we
2655 * try to write out the rest of the page. Journalled mode is
2656 * not supported by delalloc.
2657 */
2658 BUG_ON(ext4_should_journal_data(inode));
2659 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2660
2661 /* start a new transaction */
2662 handle = ext4_journal_start_with_reserve(inode,
2663 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2664 if (IS_ERR(ptr: handle)) {
2665 ret = PTR_ERR(ptr: handle);
2666 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2667 "%ld pages, ino %lu; err %d", __func__,
2668 wbc->nr_to_write, inode->i_ino, ret);
2669 /* Release allocated io_end */
2670 ext4_put_io_end(io_end: mpd->io_submit.io_end);
2671 mpd->io_submit.io_end = NULL;
2672 break;
2673 }
2674 mpd->do_map = 1;
2675
2676 trace_ext4_da_write_pages(inode, first_page: mpd->first_page, wbc);
2677 ret = mpage_prepare_extent_to_map(mpd);
2678 if (!ret && mpd->map.m_len)
2679 ret = mpage_map_and_submit_extent(handle, mpd,
2680 give_up_on_write: &give_up_on_write);
2681 /*
2682 * Caution: If the handle is synchronous,
2683 * ext4_journal_stop() can wait for transaction commit
2684 * to finish which may depend on writeback of pages to
2685 * complete or on page lock to be released. In that
2686 * case, we have to wait until after we have
2687 * submitted all the IO, released page locks we hold,
2688 * and dropped io_end reference (for extent conversion
2689 * to be able to complete) before stopping the handle.
2690 */
2691 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2692 ext4_journal_stop(handle);
2693 handle = NULL;
2694 mpd->do_map = 0;
2695 }
2696 /* Unlock pages we didn't use */
2697 mpage_release_unused_pages(mpd, invalidate: give_up_on_write);
2698 /* Submit prepared bio */
2699 ext4_io_submit(io: &mpd->io_submit);
2700
2701 /*
2702 * Drop our io_end reference we got from init. We have
2703 * to be careful and use deferred io_end finishing if
2704 * we are still holding the transaction as we can
2705 * release the last reference to io_end which may end
2706 * up doing unwritten extent conversion.
2707 */
2708 if (handle) {
2709 ext4_put_io_end_defer(io_end: mpd->io_submit.io_end);
2710 ext4_journal_stop(handle);
2711 } else
2712 ext4_put_io_end(io_end: mpd->io_submit.io_end);
2713 mpd->io_submit.io_end = NULL;
2714
2715 if (ret == -ENOSPC && sbi->s_journal) {
2716 /*
2717 * Commit the transaction which would
2718 * free blocks released in the transaction
2719 * and try again
2720 */
2721 jbd2_journal_force_commit_nested(sbi->s_journal);
2722 ret = 0;
2723 continue;
2724 }
2725 /* Fatal error - ENOMEM, EIO... */
2726 if (ret)
2727 break;
2728 }
2729unplug:
2730 blk_finish_plug(&plug);
2731 if (!ret && !cycled && wbc->nr_to_write > 0) {
2732 cycled = 1;
2733 mpd->last_page = writeback_index - 1;
2734 mpd->first_page = 0;
2735 goto retry;
2736 }
2737
2738 /* Update index */
2739 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2740 /*
2741 * Set the writeback_index so that range_cyclic
2742 * mode will write it back later
2743 */
2744 mapping->writeback_index = mpd->first_page;
2745
2746out_writepages:
2747 trace_ext4_writepages_result(inode, wbc, ret,
2748 pages_written: nr_to_write - wbc->nr_to_write);
2749 return ret;
2750}
2751
2752static int ext4_writepages(struct address_space *mapping,
2753 struct writeback_control *wbc)
2754{
2755 struct super_block *sb = mapping->host->i_sb;
2756 struct mpage_da_data mpd = {
2757 .inode = mapping->host,
2758 .wbc = wbc,
2759 .can_map = 1,
2760 };
2761 int ret;
2762 int alloc_ctx;
2763
2764 if (unlikely(ext4_forced_shutdown(sb)))
2765 return -EIO;
2766
2767 alloc_ctx = ext4_writepages_down_read(sb);
2768 ret = ext4_do_writepages(mpd: &mpd);
2769 /*
2770 * For data=journal writeback we could have come across pages marked
2771 * for delayed dirtying (PageChecked) which were just added to the
2772 * running transaction. Try once more to get them to stable storage.
2773 */
2774 if (!ret && mpd.journalled_more_data)
2775 ret = ext4_do_writepages(mpd: &mpd);
2776 ext4_writepages_up_read(sb, ctx: alloc_ctx);
2777
2778 return ret;
2779}
2780
2781int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2782{
2783 struct writeback_control wbc = {
2784 .sync_mode = WB_SYNC_ALL,
2785 .nr_to_write = LONG_MAX,
2786 .range_start = jinode->i_dirty_start,
2787 .range_end = jinode->i_dirty_end,
2788 };
2789 struct mpage_da_data mpd = {
2790 .inode = jinode->i_vfs_inode,
2791 .wbc = &wbc,
2792 .can_map = 0,
2793 };
2794 return ext4_do_writepages(mpd: &mpd);
2795}
2796
2797static int ext4_dax_writepages(struct address_space *mapping,
2798 struct writeback_control *wbc)
2799{
2800 int ret;
2801 long nr_to_write = wbc->nr_to_write;
2802 struct inode *inode = mapping->host;
2803 int alloc_ctx;
2804
2805 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2806 return -EIO;
2807
2808 alloc_ctx = ext4_writepages_down_read(sb: inode->i_sb);
2809 trace_ext4_writepages(inode, wbc);
2810
2811 ret = dax_writeback_mapping_range(mapping,
2812 dax_dev: EXT4_SB(sb: inode->i_sb)->s_daxdev, wbc);
2813 trace_ext4_writepages_result(inode, wbc, ret,
2814 pages_written: nr_to_write - wbc->nr_to_write);
2815 ext4_writepages_up_read(sb: inode->i_sb, ctx: alloc_ctx);
2816 return ret;
2817}
2818
2819static int ext4_nonda_switch(struct super_block *sb)
2820{
2821 s64 free_clusters, dirty_clusters;
2822 struct ext4_sb_info *sbi = EXT4_SB(sb);
2823
2824 /*
2825 * switch to non delalloc mode if we are running low
2826 * on free block. The free block accounting via percpu
2827 * counters can get slightly wrong with percpu_counter_batch getting
2828 * accumulated on each CPU without updating global counters
2829 * Delalloc need an accurate free block accounting. So switch
2830 * to non delalloc when we are near to error range.
2831 */
2832 free_clusters =
2833 percpu_counter_read_positive(fbc: &sbi->s_freeclusters_counter);
2834 dirty_clusters =
2835 percpu_counter_read_positive(fbc: &sbi->s_dirtyclusters_counter);
2836 /*
2837 * Start pushing delalloc when 1/2 of free blocks are dirty.
2838 */
2839 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2840 try_to_writeback_inodes_sb(sb, reason: WB_REASON_FS_FREE_SPACE);
2841
2842 if (2 * free_clusters < 3 * dirty_clusters ||
2843 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2844 /*
2845 * free block count is less than 150% of dirty blocks
2846 * or free blocks is less than watermark
2847 */
2848 return 1;
2849 }
2850 return 0;
2851}
2852
2853static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2854 loff_t pos, unsigned len,
2855 struct page **pagep, void **fsdata)
2856{
2857 int ret, retries = 0;
2858 struct folio *folio;
2859 pgoff_t index;
2860 struct inode *inode = mapping->host;
2861
2862 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2863 return -EIO;
2864
2865 index = pos >> PAGE_SHIFT;
2866
2867 if (ext4_nonda_switch(sb: inode->i_sb) || ext4_verity_in_progress(inode)) {
2868 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2869 return ext4_write_begin(file, mapping, pos,
2870 len, pagep, fsdata);
2871 }
2872 *fsdata = (void *)0;
2873 trace_ext4_da_write_begin(inode, pos, len);
2874
2875 if (ext4_test_inode_state(inode, bit: EXT4_STATE_MAY_INLINE_DATA)) {
2876 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2877 pagep, fsdata);
2878 if (ret < 0)
2879 return ret;
2880 if (ret == 1)
2881 return 0;
2882 }
2883
2884retry:
2885 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2886 gfp: mapping_gfp_mask(mapping));
2887 if (IS_ERR(ptr: folio))
2888 return PTR_ERR(ptr: folio);
2889
2890 /* In case writeback began while the folio was unlocked */
2891 folio_wait_stable(folio);
2892
2893#ifdef CONFIG_FS_ENCRYPTION
2894 ret = ext4_block_write_begin(folio, pos, len, get_block: ext4_da_get_block_prep);
2895#else
2896 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep);
2897#endif
2898 if (ret < 0) {
2899 folio_unlock(folio);
2900 folio_put(folio);
2901 /*
2902 * block_write_begin may have instantiated a few blocks
2903 * outside i_size. Trim these off again. Don't need
2904 * i_size_read because we hold inode lock.
2905 */
2906 if (pos + len > inode->i_size)
2907 ext4_truncate_failed_write(inode);
2908
2909 if (ret == -ENOSPC &&
2910 ext4_should_retry_alloc(sb: inode->i_sb, retries: &retries))
2911 goto retry;
2912 return ret;
2913 }
2914
2915 *pagep = &folio->page;
2916 return ret;
2917}
2918
2919/*
2920 * Check if we should update i_disksize
2921 * when write to the end of file but not require block allocation
2922 */
2923static int ext4_da_should_update_i_disksize(struct folio *folio,
2924 unsigned long offset)
2925{
2926 struct buffer_head *bh;
2927 struct inode *inode = folio->mapping->host;
2928 unsigned int idx;
2929 int i;
2930
2931 bh = folio_buffers(folio);
2932 idx = offset >> inode->i_blkbits;
2933
2934 for (i = 0; i < idx; i++)
2935 bh = bh->b_this_page;
2936
2937 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2938 return 0;
2939 return 1;
2940}
2941
2942static int ext4_da_do_write_end(struct address_space *mapping,
2943 loff_t pos, unsigned len, unsigned copied,
2944 struct folio *folio)
2945{
2946 struct inode *inode = mapping->host;
2947 loff_t old_size = inode->i_size;
2948 bool disksize_changed = false;
2949 loff_t new_i_size;
2950
2951 /*
2952 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
2953 * flag, which all that's needed to trigger page writeback.
2954 */
2955 copied = block_write_end(NULL, mapping, pos, len, copied,
2956 &folio->page, NULL);
2957 new_i_size = pos + copied;
2958
2959 /*
2960 * It's important to update i_size while still holding folio lock,
2961 * because folio writeout could otherwise come in and zero beyond
2962 * i_size.
2963 *
2964 * Since we are holding inode lock, we are sure i_disksize <=
2965 * i_size. We also know that if i_disksize < i_size, there are
2966 * delalloc writes pending in the range up to i_size. If the end of
2967 * the current write is <= i_size, there's no need to touch
2968 * i_disksize since writeback will push i_disksize up to i_size
2969 * eventually. If the end of the current write is > i_size and
2970 * inside an allocated block which ext4_da_should_update_i_disksize()
2971 * checked, we need to update i_disksize here as certain
2972 * ext4_writepages() paths not allocating blocks and update i_disksize.
2973 */
2974 if (new_i_size > inode->i_size) {
2975 unsigned long end;
2976
2977 i_size_write(inode, i_size: new_i_size);
2978 end = (new_i_size - 1) & (PAGE_SIZE - 1);
2979 if (copied && ext4_da_should_update_i_disksize(folio, offset: end)) {
2980 ext4_update_i_disksize(inode, newsize: new_i_size);
2981 disksize_changed = true;
2982 }
2983 }
2984
2985 folio_unlock(folio);
2986 folio_put(folio);
2987
2988 if (old_size < pos)
2989 pagecache_isize_extended(inode, from: old_size, to: pos);
2990
2991 if (disksize_changed) {
2992 handle_t *handle;
2993
2994 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
2995 if (IS_ERR(ptr: handle))
2996 return PTR_ERR(ptr: handle);
2997 ext4_mark_inode_dirty(handle, inode);
2998 ext4_journal_stop(handle);
2999 }
3000
3001 return copied;
3002}
3003
3004static int ext4_da_write_end(struct file *file,
3005 struct address_space *mapping,
3006 loff_t pos, unsigned len, unsigned copied,
3007 struct page *page, void *fsdata)
3008{
3009 struct inode *inode = mapping->host;
3010 int write_mode = (int)(unsigned long)fsdata;
3011 struct folio *folio = page_folio(page);
3012
3013 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3014 return ext4_write_end(file, mapping, pos,
3015 len, copied, page: &folio->page, fsdata);
3016
3017 trace_ext4_da_write_end(inode, pos, len, copied);
3018
3019 if (write_mode != CONVERT_INLINE_DATA &&
3020 ext4_test_inode_state(inode, bit: EXT4_STATE_MAY_INLINE_DATA) &&
3021 ext4_has_inline_data(inode))
3022 return ext4_write_inline_data_end(inode, pos, len, copied,
3023 folio);
3024
3025 if (unlikely(copied < len) && !folio_test_uptodate(folio))
3026 copied = 0;
3027
3028 return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3029}
3030
3031/*
3032 * Force all delayed allocation blocks to be allocated for a given inode.
3033 */
3034int ext4_alloc_da_blocks(struct inode *inode)
3035{
3036 trace_ext4_alloc_da_blocks(inode);
3037
3038 if (!EXT4_I(inode)->i_reserved_data_blocks)
3039 return 0;
3040
3041 /*
3042 * We do something simple for now. The filemap_flush() will
3043 * also start triggering a write of the data blocks, which is
3044 * not strictly speaking necessary (and for users of
3045 * laptop_mode, not even desirable). However, to do otherwise
3046 * would require replicating code paths in:
3047 *
3048 * ext4_writepages() ->
3049 * write_cache_pages() ---> (via passed in callback function)
3050 * __mpage_da_writepage() -->
3051 * mpage_add_bh_to_extent()
3052 * mpage_da_map_blocks()
3053 *
3054 * The problem is that write_cache_pages(), located in
3055 * mm/page-writeback.c, marks pages clean in preparation for
3056 * doing I/O, which is not desirable if we're not planning on
3057 * doing I/O at all.
3058 *
3059 * We could call write_cache_pages(), and then redirty all of
3060 * the pages by calling redirty_page_for_writepage() but that
3061 * would be ugly in the extreme. So instead we would need to
3062 * replicate parts of the code in the above functions,
3063 * simplifying them because we wouldn't actually intend to
3064 * write out the pages, but rather only collect contiguous
3065 * logical block extents, call the multi-block allocator, and
3066 * then update the buffer heads with the block allocations.
3067 *
3068 * For now, though, we'll cheat by calling filemap_flush(),
3069 * which will map the blocks, and start the I/O, but not
3070 * actually wait for the I/O to complete.
3071 */
3072 return filemap_flush(inode->i_mapping);
3073}
3074
3075/*
3076 * bmap() is special. It gets used by applications such as lilo and by
3077 * the swapper to find the on-disk block of a specific piece of data.
3078 *
3079 * Naturally, this is dangerous if the block concerned is still in the
3080 * journal. If somebody makes a swapfile on an ext4 data-journaling
3081 * filesystem and enables swap, then they may get a nasty shock when the
3082 * data getting swapped to that swapfile suddenly gets overwritten by
3083 * the original zero's written out previously to the journal and
3084 * awaiting writeback in the kernel's buffer cache.
3085 *
3086 * So, if we see any bmap calls here on a modified, data-journaled file,
3087 * take extra steps to flush any blocks which might be in the cache.
3088 */
3089static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3090{
3091 struct inode *inode = mapping->host;
3092 sector_t ret = 0;
3093
3094 inode_lock_shared(inode);
3095 /*
3096 * We can get here for an inline file via the FIBMAP ioctl
3097 */
3098 if (ext4_has_inline_data(inode))
3099 goto out;
3100
3101 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3102 (test_opt(inode->i_sb, DELALLOC) ||
3103 ext4_should_journal_data(inode))) {
3104 /*
3105 * With delalloc or journalled data we want to sync the file so
3106 * that we can make sure we allocate blocks for file and data
3107 * is in place for the user to see it
3108 */
3109 filemap_write_and_wait(mapping);
3110 }
3111
3112 ret = iomap_bmap(mapping, bno: block, ops: &ext4_iomap_ops);
3113
3114out:
3115 inode_unlock_shared(inode);
3116 return ret;
3117}
3118
3119static int ext4_read_folio(struct file *file, struct folio *folio)
3120{
3121 int ret = -EAGAIN;
3122 struct inode *inode = folio->mapping->host;
3123
3124 trace_ext4_read_folio(inode, folio);
3125
3126 if (ext4_has_inline_data(inode))
3127 ret = ext4_readpage_inline(inode, folio);
3128
3129 if (ret == -EAGAIN)
3130 return ext4_mpage_readpages(inode, NULL, folio);
3131
3132 return ret;
3133}
3134
3135static void ext4_readahead(struct readahead_control *rac)
3136{
3137 struct inode *inode = rac->mapping->host;
3138
3139 /* If the file has inline data, no need to do readahead. */
3140 if (ext4_has_inline_data(inode))
3141 return;
3142
3143 ext4_mpage_readpages(inode, rac, NULL);
3144}
3145
3146static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3147 size_t length)
3148{
3149 trace_ext4_invalidate_folio(folio, offset, length);
3150
3151 /* No journalling happens on data buffers when this function is used */
3152 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3153
3154 block_invalidate_folio(folio, offset, length);
3155}
3156
3157static int __ext4_journalled_invalidate_folio(struct folio *folio,
3158 size_t offset, size_t length)
3159{
3160 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3161
3162 trace_ext4_journalled_invalidate_folio(folio, offset, length);
3163
3164 /*
3165 * If it's a full truncate we just forget about the pending dirtying
3166 */
3167 if (offset == 0 && length == folio_size(folio))
3168 folio_clear_checked(folio);
3169
3170 return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3171}
3172
3173/* Wrapper for aops... */
3174static void ext4_journalled_invalidate_folio(struct folio *folio,
3175 size_t offset,
3176 size_t length)
3177{
3178 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3179}
3180
3181static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3182{
3183 struct inode *inode = folio->mapping->host;
3184 journal_t *journal = EXT4_JOURNAL(inode);
3185
3186 trace_ext4_release_folio(inode, folio);
3187
3188 /* Page has dirty journalled data -> cannot release */
3189 if (folio_test_checked(folio))
3190 return false;
3191 if (journal)
3192 return jbd2_journal_try_to_free_buffers(journal, folio);
3193 else
3194 return try_to_free_buffers(folio);
3195}
3196
3197static bool ext4_inode_datasync_dirty(struct inode *inode)
3198{
3199 journal_t *journal = EXT4_SB(sb: inode->i_sb)->s_journal;
3200
3201 if (journal) {
3202 if (jbd2_transaction_committed(journal,
3203 EXT4_I(inode)->i_datasync_tid))
3204 return false;
3205 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3206 return !list_empty(head: &EXT4_I(inode)->i_fc_list);
3207 return true;
3208 }
3209
3210 /* Any metadata buffers to write? */
3211 if (!list_empty(head: &inode->i_mapping->i_private_list))
3212 return true;
3213 return inode->i_state & I_DIRTY_DATASYNC;
3214}
3215
3216static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3217 struct ext4_map_blocks *map, loff_t offset,
3218 loff_t length, unsigned int flags)
3219{
3220 u8 blkbits = inode->i_blkbits;
3221
3222 /*
3223 * Writes that span EOF might trigger an I/O size update on completion,
3224 * so consider them to be dirty for the purpose of O_DSYNC, even if
3225 * there is no other metadata changes being made or are pending.
3226 */
3227 iomap->flags = 0;
3228 if (ext4_inode_datasync_dirty(inode) ||
3229 offset + length > i_size_read(inode))
3230 iomap->flags |= IOMAP_F_DIRTY;
3231
3232 if (map->m_flags & EXT4_MAP_NEW)
3233 iomap->flags |= IOMAP_F_NEW;
3234
3235 if (flags & IOMAP_DAX)
3236 iomap->dax_dev = EXT4_SB(sb: inode->i_sb)->s_daxdev;
3237 else
3238 iomap->bdev = inode->i_sb->s_bdev;
3239 iomap->offset = (u64) map->m_lblk << blkbits;
3240 iomap->length = (u64) map->m_len << blkbits;
3241
3242 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3243 !ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))
3244 iomap->flags |= IOMAP_F_MERGED;
3245
3246 /*
3247 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3248 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3249 * set. In order for any allocated unwritten extents to be converted
3250 * into written extents correctly within the ->end_io() handler, we
3251 * need to ensure that the iomap->type is set appropriately. Hence, the
3252 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3253 * been set first.
3254 */
3255 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3256 iomap->type = IOMAP_UNWRITTEN;
3257 iomap->addr = (u64) map->m_pblk << blkbits;
3258 if (flags & IOMAP_DAX)
3259 iomap->addr += EXT4_SB(sb: inode->i_sb)->s_dax_part_off;
3260 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3261 iomap->type = IOMAP_MAPPED;
3262 iomap->addr = (u64) map->m_pblk << blkbits;
3263 if (flags & IOMAP_DAX)
3264 iomap->addr += EXT4_SB(sb: inode->i_sb)->s_dax_part_off;
3265 } else if (map->m_flags & EXT4_MAP_DELAYED) {
3266 iomap->type = IOMAP_DELALLOC;
3267 iomap->addr = IOMAP_NULL_ADDR;
3268 } else {
3269 iomap->type = IOMAP_HOLE;
3270 iomap->addr = IOMAP_NULL_ADDR;
3271 }
3272}
3273
3274static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3275 unsigned int flags)
3276{
3277 handle_t *handle;
3278 u8 blkbits = inode->i_blkbits;
3279 int ret, dio_credits, m_flags = 0, retries = 0;
3280
3281 /*
3282 * Trim the mapping request to the maximum value that we can map at
3283 * once for direct I/O.
3284 */
3285 if (map->m_len > DIO_MAX_BLOCKS)
3286 map->m_len = DIO_MAX_BLOCKS;
3287 dio_credits = ext4_chunk_trans_blocks(inode, nrblocks: map->m_len);
3288
3289retry:
3290 /*
3291 * Either we allocate blocks and then don't get an unwritten extent, so
3292 * in that case we have reserved enough credits. Or, the blocks are
3293 * already allocated and unwritten. In that case, the extent conversion
3294 * fits into the credits as well.
3295 */
3296 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3297 if (IS_ERR(ptr: handle))
3298 return PTR_ERR(ptr: handle);
3299
3300 /*
3301 * DAX and direct I/O are the only two operations that are currently
3302 * supported with IOMAP_WRITE.
3303 */
3304 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3305 if (flags & IOMAP_DAX)
3306 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3307 /*
3308 * We use i_size instead of i_disksize here because delalloc writeback
3309 * can complete at any point during the I/O and subsequently push the
3310 * i_disksize out to i_size. This could be beyond where direct I/O is
3311 * happening and thus expose allocated blocks to direct I/O reads.
3312 */
3313 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3314 m_flags = EXT4_GET_BLOCKS_CREATE;
3315 else if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))
3316 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3317
3318 ret = ext4_map_blocks(handle, inode, map, flags: m_flags);
3319
3320 /*
3321 * We cannot fill holes in indirect tree based inodes as that could
3322 * expose stale data in the case of a crash. Use the magic error code
3323 * to fallback to buffered I/O.
3324 */
3325 if (!m_flags && !ret)
3326 ret = -ENOTBLK;
3327
3328 ext4_journal_stop(handle);
3329 if (ret == -ENOSPC && ext4_should_retry_alloc(sb: inode->i_sb, retries: &retries))
3330 goto retry;
3331
3332 return ret;
3333}
3334
3335
3336static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3337 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3338{
3339 int ret;
3340 struct ext4_map_blocks map;
3341 u8 blkbits = inode->i_blkbits;
3342
3343 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3344 return -EINVAL;
3345
3346 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3347 return -ERANGE;
3348
3349 /*
3350 * Calculate the first and last logical blocks respectively.
3351 */
3352 map.m_lblk = offset >> blkbits;
3353 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3354 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3355
3356 if (flags & IOMAP_WRITE) {
3357 /*
3358 * We check here if the blocks are already allocated, then we
3359 * don't need to start a journal txn and we can directly return
3360 * the mapping information. This could boost performance
3361 * especially in multi-threaded overwrite requests.
3362 */
3363 if (offset + length <= i_size_read(inode)) {
3364 ret = ext4_map_blocks(NULL, inode, map: &map, flags: 0);
3365 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3366 goto out;
3367 }
3368 ret = ext4_iomap_alloc(inode, map: &map, flags);
3369 } else {
3370 ret = ext4_map_blocks(NULL, inode, map: &map, flags: 0);
3371 }
3372
3373 if (ret < 0)
3374 return ret;
3375out:
3376 /*
3377 * When inline encryption is enabled, sometimes I/O to an encrypted file
3378 * has to be broken up to guarantee DUN contiguity. Handle this by
3379 * limiting the length of the mapping returned.
3380 */
3381 map.m_len = fscrypt_limit_io_blocks(inode, lblk: map.m_lblk, nr_blocks: map.m_len);
3382
3383 ext4_set_iomap(inode, iomap, map: &map, offset, length, flags);
3384
3385 return 0;
3386}
3387
3388static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3389 loff_t length, unsigned flags, struct iomap *iomap,
3390 struct iomap *srcmap)
3391{
3392 int ret;
3393
3394 /*
3395 * Even for writes we don't need to allocate blocks, so just pretend
3396 * we are reading to save overhead of starting a transaction.
3397 */
3398 flags &= ~IOMAP_WRITE;
3399 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3400 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3401 return ret;
3402}
3403
3404static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3405 ssize_t written, unsigned flags, struct iomap *iomap)
3406{
3407 /*
3408 * Check to see whether an error occurred while writing out the data to
3409 * the allocated blocks. If so, return the magic error code so that we
3410 * fallback to buffered I/O and attempt to complete the remainder of
3411 * the I/O. Any blocks that may have been allocated in preparation for
3412 * the direct I/O will be reused during buffered I/O.
3413 */
3414 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3415 return -ENOTBLK;
3416
3417 return 0;
3418}
3419
3420const struct iomap_ops ext4_iomap_ops = {
3421 .iomap_begin = ext4_iomap_begin,
3422 .iomap_end = ext4_iomap_end,
3423};
3424
3425const struct iomap_ops ext4_iomap_overwrite_ops = {
3426 .iomap_begin = ext4_iomap_overwrite_begin,
3427 .iomap_end = ext4_iomap_end,
3428};
3429
3430static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3431 loff_t length, unsigned int flags,
3432 struct iomap *iomap, struct iomap *srcmap)
3433{
3434 int ret;
3435 struct ext4_map_blocks map;
3436 u8 blkbits = inode->i_blkbits;
3437
3438 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3439 return -EINVAL;
3440
3441 if (ext4_has_inline_data(inode)) {
3442 ret = ext4_inline_data_iomap(inode, iomap);
3443 if (ret != -EAGAIN) {
3444 if (ret == 0 && offset >= iomap->length)
3445 ret = -ENOENT;
3446 return ret;
3447 }
3448 }
3449
3450 /*
3451 * Calculate the first and last logical block respectively.
3452 */
3453 map.m_lblk = offset >> blkbits;
3454 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3455 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3456
3457 /*
3458 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3459 * So handle it here itself instead of querying ext4_map_blocks().
3460 * Since ext4_map_blocks() will warn about it and will return
3461 * -EIO error.
3462 */
3463 if (!(ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))) {
3464 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
3465
3466 if (offset >= sbi->s_bitmap_maxbytes) {
3467 map.m_flags = 0;
3468 goto set_iomap;
3469 }
3470 }
3471
3472 ret = ext4_map_blocks(NULL, inode, map: &map, flags: 0);
3473 if (ret < 0)
3474 return ret;
3475set_iomap:
3476 ext4_set_iomap(inode, iomap, map: &map, offset, length, flags);
3477
3478 return 0;
3479}
3480
3481const struct iomap_ops ext4_iomap_report_ops = {
3482 .iomap_begin = ext4_iomap_begin_report,
3483};
3484
3485/*
3486 * For data=journal mode, folio should be marked dirty only when it was
3487 * writeably mapped. When that happens, it was already attached to the
3488 * transaction and marked as jbddirty (we take care of this in
3489 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3490 * so we should have nothing to do here, except for the case when someone
3491 * had the page pinned and dirtied the page through this pin (e.g. by doing
3492 * direct IO to it). In that case we'd need to attach buffers here to the
3493 * transaction but we cannot due to lock ordering. We cannot just dirty the
3494 * folio and leave attached buffers clean, because the buffers' dirty state is
3495 * "definitive". We cannot just set the buffers dirty or jbddirty because all
3496 * the journalling code will explode. So what we do is to mark the folio
3497 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3498 * to the transaction appropriately.
3499 */
3500static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3501 struct folio *folio)
3502{
3503 WARN_ON_ONCE(!folio_buffers(folio));
3504 if (folio_maybe_dma_pinned(folio))
3505 folio_set_checked(folio);
3506 return filemap_dirty_folio(mapping, folio);
3507}
3508
3509static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3510{
3511 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3512 WARN_ON_ONCE(!folio_buffers(folio));
3513 return block_dirty_folio(mapping, folio);
3514}
3515
3516static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3517 struct file *file, sector_t *span)
3518{
3519 return iomap_swapfile_activate(sis, swap_file: file, pagespan: span,
3520 ops: &ext4_iomap_report_ops);
3521}
3522
3523static const struct address_space_operations ext4_aops = {
3524 .read_folio = ext4_read_folio,
3525 .readahead = ext4_readahead,
3526 .writepages = ext4_writepages,
3527 .write_begin = ext4_write_begin,
3528 .write_end = ext4_write_end,
3529 .dirty_folio = ext4_dirty_folio,
3530 .bmap = ext4_bmap,
3531 .invalidate_folio = ext4_invalidate_folio,
3532 .release_folio = ext4_release_folio,
3533 .direct_IO = noop_direct_IO,
3534 .migrate_folio = buffer_migrate_folio,
3535 .is_partially_uptodate = block_is_partially_uptodate,
3536 .error_remove_folio = generic_error_remove_folio,
3537 .swap_activate = ext4_iomap_swap_activate,
3538};
3539
3540static const struct address_space_operations ext4_journalled_aops = {
3541 .read_folio = ext4_read_folio,
3542 .readahead = ext4_readahead,
3543 .writepages = ext4_writepages,
3544 .write_begin = ext4_write_begin,
3545 .write_end = ext4_journalled_write_end,
3546 .dirty_folio = ext4_journalled_dirty_folio,
3547 .bmap = ext4_bmap,
3548 .invalidate_folio = ext4_journalled_invalidate_folio,
3549 .release_folio = ext4_release_folio,
3550 .direct_IO = noop_direct_IO,
3551 .migrate_folio = buffer_migrate_folio_norefs,
3552 .is_partially_uptodate = block_is_partially_uptodate,
3553 .error_remove_folio = generic_error_remove_folio,
3554 .swap_activate = ext4_iomap_swap_activate,
3555};
3556
3557static const struct address_space_operations ext4_da_aops = {
3558 .read_folio = ext4_read_folio,
3559 .readahead = ext4_readahead,
3560 .writepages = ext4_writepages,
3561 .write_begin = ext4_da_write_begin,
3562 .write_end = ext4_da_write_end,
3563 .dirty_folio = ext4_dirty_folio,
3564 .bmap = ext4_bmap,
3565 .invalidate_folio = ext4_invalidate_folio,
3566 .release_folio = ext4_release_folio,
3567 .direct_IO = noop_direct_IO,
3568 .migrate_folio = buffer_migrate_folio,
3569 .is_partially_uptodate = block_is_partially_uptodate,
3570 .error_remove_folio = generic_error_remove_folio,
3571 .swap_activate = ext4_iomap_swap_activate,
3572};
3573
3574static const struct address_space_operations ext4_dax_aops = {
3575 .writepages = ext4_dax_writepages,
3576 .direct_IO = noop_direct_IO,
3577 .dirty_folio = noop_dirty_folio,
3578 .bmap = ext4_bmap,
3579 .swap_activate = ext4_iomap_swap_activate,
3580};
3581
3582void ext4_set_aops(struct inode *inode)
3583{
3584 switch (ext4_inode_journal_mode(inode)) {
3585 case EXT4_INODE_ORDERED_DATA_MODE:
3586 case EXT4_INODE_WRITEBACK_DATA_MODE:
3587 break;
3588 case EXT4_INODE_JOURNAL_DATA_MODE:
3589 inode->i_mapping->a_ops = &ext4_journalled_aops;
3590 return;
3591 default:
3592 BUG();
3593 }
3594 if (IS_DAX(inode))
3595 inode->i_mapping->a_ops = &ext4_dax_aops;
3596 else if (test_opt(inode->i_sb, DELALLOC))
3597 inode->i_mapping->a_ops = &ext4_da_aops;
3598 else
3599 inode->i_mapping->a_ops = &ext4_aops;
3600}
3601
3602/*
3603 * Here we can't skip an unwritten buffer even though it usually reads zero
3604 * because it might have data in pagecache (eg, if called from ext4_zero_range,
3605 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3606 * racing writeback can come later and flush the stale pagecache to disk.
3607 */
3608static int __ext4_block_zero_page_range(handle_t *handle,
3609 struct address_space *mapping, loff_t from, loff_t length)
3610{
3611 ext4_fsblk_t index = from >> PAGE_SHIFT;
3612 unsigned offset = from & (PAGE_SIZE-1);
3613 unsigned blocksize, pos;
3614 ext4_lblk_t iblock;
3615 struct inode *inode = mapping->host;
3616 struct buffer_head *bh;
3617 struct folio *folio;
3618 int err = 0;
3619
3620 folio = __filemap_get_folio(mapping, index: from >> PAGE_SHIFT,
3621 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3622 gfp: mapping_gfp_constraint(mapping, gfp_mask: ~__GFP_FS));
3623 if (IS_ERR(ptr: folio))
3624 return PTR_ERR(ptr: folio);
3625
3626 blocksize = inode->i_sb->s_blocksize;
3627
3628 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3629
3630 bh = folio_buffers(folio);
3631 if (!bh)
3632 bh = create_empty_buffers(folio, blocksize, b_state: 0);
3633
3634 /* Find the buffer that contains "offset" */
3635 pos = blocksize;
3636 while (offset >= pos) {
3637 bh = bh->b_this_page;
3638 iblock++;
3639 pos += blocksize;
3640 }
3641 if (buffer_freed(bh)) {
3642 BUFFER_TRACE(bh, "freed: skip");
3643 goto unlock;
3644 }
3645 if (!buffer_mapped(bh)) {
3646 BUFFER_TRACE(bh, "unmapped");
3647 ext4_get_block(inode, iblock, bh, create: 0);
3648 /* unmapped? It's a hole - nothing to do */
3649 if (!buffer_mapped(bh)) {
3650 BUFFER_TRACE(bh, "still unmapped");
3651 goto unlock;
3652 }
3653 }
3654
3655 /* Ok, it's mapped. Make sure it's up-to-date */
3656 if (folio_test_uptodate(folio))
3657 set_buffer_uptodate(bh);
3658
3659 if (!buffer_uptodate(bh)) {
3660 err = ext4_read_bh_lock(bh, op_flags: 0, wait: true);
3661 if (err)
3662 goto unlock;
3663 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3664 /* We expect the key to be set. */
3665 BUG_ON(!fscrypt_has_encryption_key(inode));
3666 err = fscrypt_decrypt_pagecache_blocks(folio,
3667 len: blocksize,
3668 offs: bh_offset(bh));
3669 if (err) {
3670 clear_buffer_uptodate(bh);
3671 goto unlock;
3672 }
3673 }
3674 }
3675 if (ext4_should_journal_data(inode)) {
3676 BUFFER_TRACE(bh, "get write access");
3677 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3678 EXT4_JTR_NONE);
3679 if (err)
3680 goto unlock;
3681 }
3682 folio_zero_range(folio, start: offset, length);
3683 BUFFER_TRACE(bh, "zeroed end of block");
3684
3685 if (ext4_should_journal_data(inode)) {
3686 err = ext4_dirty_journalled_data(handle, bh);
3687 } else {
3688 err = 0;
3689 mark_buffer_dirty(bh);
3690 if (ext4_should_order_data(inode))
3691 err = ext4_jbd2_inode_add_write(handle, inode, start_byte: from,
3692 length);
3693 }
3694
3695unlock:
3696 folio_unlock(folio);
3697 folio_put(folio);
3698 return err;
3699}
3700
3701/*
3702 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3703 * starting from file offset 'from'. The range to be zero'd must
3704 * be contained with in one block. If the specified range exceeds
3705 * the end of the block it will be shortened to end of the block
3706 * that corresponds to 'from'
3707 */
3708static int ext4_block_zero_page_range(handle_t *handle,
3709 struct address_space *mapping, loff_t from, loff_t length)
3710{
3711 struct inode *inode = mapping->host;
3712 unsigned offset = from & (PAGE_SIZE-1);
3713 unsigned blocksize = inode->i_sb->s_blocksize;
3714 unsigned max = blocksize - (offset & (blocksize - 1));
3715
3716 /*
3717 * correct length if it does not fall between
3718 * 'from' and the end of the block
3719 */
3720 if (length > max || length < 0)
3721 length = max;
3722
3723 if (IS_DAX(inode)) {
3724 return dax_zero_range(inode, pos: from, len: length, NULL,
3725 ops: &ext4_iomap_ops);
3726 }
3727 return __ext4_block_zero_page_range(handle, mapping, from, length);
3728}
3729
3730/*
3731 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3732 * up to the end of the block which corresponds to `from'.
3733 * This required during truncate. We need to physically zero the tail end
3734 * of that block so it doesn't yield old data if the file is later grown.
3735 */
3736static int ext4_block_truncate_page(handle_t *handle,
3737 struct address_space *mapping, loff_t from)
3738{
3739 unsigned offset = from & (PAGE_SIZE-1);
3740 unsigned length;
3741 unsigned blocksize;
3742 struct inode *inode = mapping->host;
3743
3744 /* If we are processing an encrypted inode during orphan list handling */
3745 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3746 return 0;
3747
3748 blocksize = inode->i_sb->s_blocksize;
3749 length = blocksize - (offset & (blocksize - 1));
3750
3751 return ext4_block_zero_page_range(handle, mapping, from, length);
3752}
3753
3754int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3755 loff_t lstart, loff_t length)
3756{
3757 struct super_block *sb = inode->i_sb;
3758 struct address_space *mapping = inode->i_mapping;
3759 unsigned partial_start, partial_end;
3760 ext4_fsblk_t start, end;
3761 loff_t byte_end = (lstart + length - 1);
3762 int err = 0;
3763
3764 partial_start = lstart & (sb->s_blocksize - 1);
3765 partial_end = byte_end & (sb->s_blocksize - 1);
3766
3767 start = lstart >> sb->s_blocksize_bits;
3768 end = byte_end >> sb->s_blocksize_bits;
3769
3770 /* Handle partial zero within the single block */
3771 if (start == end &&
3772 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3773 err = ext4_block_zero_page_range(handle, mapping,
3774 from: lstart, length);
3775 return err;
3776 }
3777 /* Handle partial zero out on the start of the range */
3778 if (partial_start) {
3779 err = ext4_block_zero_page_range(handle, mapping,
3780 from: lstart, length: sb->s_blocksize);
3781 if (err)
3782 return err;
3783 }
3784 /* Handle partial zero out on the end of the range */
3785 if (partial_end != sb->s_blocksize - 1)
3786 err = ext4_block_zero_page_range(handle, mapping,
3787 from: byte_end - partial_end,
3788 length: partial_end + 1);
3789 return err;
3790}
3791
3792int ext4_can_truncate(struct inode *inode)
3793{
3794 if (S_ISREG(inode->i_mode))
3795 return 1;
3796 if (S_ISDIR(inode->i_mode))
3797 return 1;
3798 if (S_ISLNK(inode->i_mode))
3799 return !ext4_inode_is_fast_symlink(inode);
3800 return 0;
3801}
3802
3803/*
3804 * We have to make sure i_disksize gets properly updated before we truncate
3805 * page cache due to hole punching or zero range. Otherwise i_disksize update
3806 * can get lost as it may have been postponed to submission of writeback but
3807 * that will never happen after we truncate page cache.
3808 */
3809int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3810 loff_t len)
3811{
3812 handle_t *handle;
3813 int ret;
3814
3815 loff_t size = i_size_read(inode);
3816
3817 WARN_ON(!inode_is_locked(inode));
3818 if (offset > size || offset + len < size)
3819 return 0;
3820
3821 if (EXT4_I(inode)->i_disksize >= size)
3822 return 0;
3823
3824 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3825 if (IS_ERR(ptr: handle))
3826 return PTR_ERR(ptr: handle);
3827 ext4_update_i_disksize(inode, newsize: size);
3828 ret = ext4_mark_inode_dirty(handle, inode);
3829 ext4_journal_stop(handle);
3830
3831 return ret;
3832}
3833
3834static void ext4_wait_dax_page(struct inode *inode)
3835{
3836 filemap_invalidate_unlock(mapping: inode->i_mapping);
3837 schedule();
3838 filemap_invalidate_lock(mapping: inode->i_mapping);
3839}
3840
3841int ext4_break_layouts(struct inode *inode)
3842{
3843 struct page *page;
3844 int error;
3845
3846 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3847 return -EINVAL;
3848
3849 do {
3850 page = dax_layout_busy_page(mapping: inode->i_mapping);
3851 if (!page)
3852 return 0;
3853
3854 error = ___wait_var_event(&page->_refcount,
3855 atomic_read(&page->_refcount) == 1,
3856 TASK_INTERRUPTIBLE, 0, 0,
3857 ext4_wait_dax_page(inode));
3858 } while (error == 0);
3859
3860 return error;
3861}
3862
3863/*
3864 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3865 * associated with the given offset and length
3866 *
3867 * @inode: File inode
3868 * @offset: The offset where the hole will begin
3869 * @len: The length of the hole
3870 *
3871 * Returns: 0 on success or negative on failure
3872 */
3873
3874int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3875{
3876 struct inode *inode = file_inode(f: file);
3877 struct super_block *sb = inode->i_sb;
3878 ext4_lblk_t first_block, stop_block;
3879 struct address_space *mapping = inode->i_mapping;
3880 loff_t first_block_offset, last_block_offset, max_length;
3881 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
3882 handle_t *handle;
3883 unsigned int credits;
3884 int ret = 0, ret2 = 0;
3885
3886 trace_ext4_punch_hole(inode, offset, len: length, mode: 0);
3887
3888 /*
3889 * Write out all dirty pages to avoid race conditions
3890 * Then release them.
3891 */
3892 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3893 ret = filemap_write_and_wait_range(mapping, lstart: offset,
3894 lend: offset + length - 1);
3895 if (ret)
3896 return ret;
3897 }
3898
3899 inode_lock(inode);
3900
3901 /* No need to punch hole beyond i_size */
3902 if (offset >= inode->i_size)
3903 goto out_mutex;
3904
3905 /*
3906 * If the hole extends beyond i_size, set the hole
3907 * to end after the page that contains i_size
3908 */
3909 if (offset + length > inode->i_size) {
3910 length = inode->i_size +
3911 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3912 offset;
3913 }
3914
3915 /*
3916 * For punch hole the length + offset needs to be within one block
3917 * before last range. Adjust the length if it goes beyond that limit.
3918 */
3919 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3920 if (offset + length > max_length)
3921 length = max_length - offset;
3922
3923 if (offset & (sb->s_blocksize - 1) ||
3924 (offset + length) & (sb->s_blocksize - 1)) {
3925 /*
3926 * Attach jinode to inode for jbd2 if we do any zeroing of
3927 * partial block
3928 */
3929 ret = ext4_inode_attach_jinode(inode);
3930 if (ret < 0)
3931 goto out_mutex;
3932
3933 }
3934
3935 /* Wait all existing dio workers, newcomers will block on i_rwsem */
3936 inode_dio_wait(inode);
3937
3938 ret = file_modified(file);
3939 if (ret)
3940 goto out_mutex;
3941
3942 /*
3943 * Prevent page faults from reinstantiating pages we have released from
3944 * page cache.
3945 */
3946 filemap_invalidate_lock(mapping);
3947
3948 ret = ext4_break_layouts(inode);
3949 if (ret)
3950 goto out_dio;
3951
3952 first_block_offset = round_up(offset, sb->s_blocksize);
3953 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3954
3955 /* Now release the pages and zero block aligned part of pages*/
3956 if (last_block_offset > first_block_offset) {
3957 ret = ext4_update_disksize_before_punch(inode, offset, len: length);
3958 if (ret)
3959 goto out_dio;
3960 truncate_pagecache_range(inode, offset: first_block_offset,
3961 end: last_block_offset);
3962 }
3963
3964 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))
3965 credits = ext4_writepage_trans_blocks(inode);
3966 else
3967 credits = ext4_blocks_for_truncate(inode);
3968 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3969 if (IS_ERR(ptr: handle)) {
3970 ret = PTR_ERR(ptr: handle);
3971 ext4_std_error(sb, ret);
3972 goto out_dio;
3973 }
3974
3975 ret = ext4_zero_partial_blocks(handle, inode, lstart: offset,
3976 length);
3977 if (ret)
3978 goto out_stop;
3979
3980 first_block = (offset + sb->s_blocksize - 1) >>
3981 EXT4_BLOCK_SIZE_BITS(sb);
3982 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3983
3984 /* If there are blocks to remove, do it */
3985 if (stop_block > first_block) {
3986 ext4_lblk_t hole_len = stop_block - first_block;
3987
3988 down_write(sem: &EXT4_I(inode)->i_data_sem);
3989 ext4_discard_preallocations(inode);
3990
3991 ext4_es_remove_extent(inode, lblk: first_block, len: hole_len);
3992
3993 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))
3994 ret = ext4_ext_remove_space(inode, start: first_block,
3995 end: stop_block - 1);
3996 else
3997 ret = ext4_ind_remove_space(handle, inode, start: first_block,
3998 end: stop_block);
3999
4000 ext4_es_insert_extent(inode, lblk: first_block, len: hole_len, pblk: ~0,
4001 EXTENT_STATUS_HOLE);
4002 up_write(sem: &EXT4_I(inode)->i_data_sem);
4003 }
4004 ext4_fc_track_range(handle, inode, start: first_block, end: stop_block);
4005 if (IS_SYNC(inode))
4006 ext4_handle_sync(handle);
4007
4008 inode_set_mtime_to_ts(inode, ts: inode_set_ctime_current(inode));
4009 ret2 = ext4_mark_inode_dirty(handle, inode);
4010 if (unlikely(ret2))
4011 ret = ret2;
4012 if (ret >= 0)
4013 ext4_update_inode_fsync_trans(handle, inode, datasync: 1);
4014out_stop:
4015 ext4_journal_stop(handle);
4016out_dio:
4017 filemap_invalidate_unlock(mapping);
4018out_mutex:
4019 inode_unlock(inode);
4020 return ret;
4021}
4022
4023int ext4_inode_attach_jinode(struct inode *inode)
4024{
4025 struct ext4_inode_info *ei = EXT4_I(inode);
4026 struct jbd2_inode *jinode;
4027
4028 if (ei->jinode || !EXT4_SB(sb: inode->i_sb)->s_journal)
4029 return 0;
4030
4031 jinode = jbd2_alloc_inode(GFP_KERNEL);
4032 spin_lock(lock: &inode->i_lock);
4033 if (!ei->jinode) {
4034 if (!jinode) {
4035 spin_unlock(lock: &inode->i_lock);
4036 return -ENOMEM;
4037 }
4038 ei->jinode = jinode;
4039 jbd2_journal_init_jbd_inode(jinode: ei->jinode, inode);
4040 jinode = NULL;
4041 }
4042 spin_unlock(lock: &inode->i_lock);
4043 if (unlikely(jinode != NULL))
4044 jbd2_free_inode(jinode);
4045 return 0;
4046}
4047
4048/*
4049 * ext4_truncate()
4050 *
4051 * We block out ext4_get_block() block instantiations across the entire
4052 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4053 * simultaneously on behalf of the same inode.
4054 *
4055 * As we work through the truncate and commit bits of it to the journal there
4056 * is one core, guiding principle: the file's tree must always be consistent on
4057 * disk. We must be able to restart the truncate after a crash.
4058 *
4059 * The file's tree may be transiently inconsistent in memory (although it
4060 * probably isn't), but whenever we close off and commit a journal transaction,
4061 * the contents of (the filesystem + the journal) must be consistent and
4062 * restartable. It's pretty simple, really: bottom up, right to left (although
4063 * left-to-right works OK too).
4064 *
4065 * Note that at recovery time, journal replay occurs *before* the restart of
4066 * truncate against the orphan inode list.
4067 *
4068 * The committed inode has the new, desired i_size (which is the same as
4069 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4070 * that this inode's truncate did not complete and it will again call
4071 * ext4_truncate() to have another go. So there will be instantiated blocks
4072 * to the right of the truncation point in a crashed ext4 filesystem. But
4073 * that's fine - as long as they are linked from the inode, the post-crash
4074 * ext4_truncate() run will find them and release them.
4075 */
4076int ext4_truncate(struct inode *inode)
4077{
4078 struct ext4_inode_info *ei = EXT4_I(inode);
4079 unsigned int credits;
4080 int err = 0, err2;
4081 handle_t *handle;
4082 struct address_space *mapping = inode->i_mapping;
4083
4084 /*
4085 * There is a possibility that we're either freeing the inode
4086 * or it's a completely new inode. In those cases we might not
4087 * have i_rwsem locked because it's not necessary.
4088 */
4089 if (!(inode->i_state & (I_NEW|I_FREEING)))
4090 WARN_ON(!inode_is_locked(inode));
4091 trace_ext4_truncate_enter(inode);
4092
4093 if (!ext4_can_truncate(inode))
4094 goto out_trace;
4095
4096 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4097 ext4_set_inode_state(inode, bit: EXT4_STATE_DA_ALLOC_CLOSE);
4098
4099 if (ext4_has_inline_data(inode)) {
4100 int has_inline = 1;
4101
4102 err = ext4_inline_data_truncate(inode, has_inline: &has_inline);
4103 if (err || has_inline)
4104 goto out_trace;
4105 }
4106
4107 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4108 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4109 err = ext4_inode_attach_jinode(inode);
4110 if (err)
4111 goto out_trace;
4112 }
4113
4114 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))
4115 credits = ext4_writepage_trans_blocks(inode);
4116 else
4117 credits = ext4_blocks_for_truncate(inode);
4118
4119 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4120 if (IS_ERR(ptr: handle)) {
4121 err = PTR_ERR(ptr: handle);
4122 goto out_trace;
4123 }
4124
4125 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4126 ext4_block_truncate_page(handle, mapping, from: inode->i_size);
4127
4128 /*
4129 * We add the inode to the orphan list, so that if this
4130 * truncate spans multiple transactions, and we crash, we will
4131 * resume the truncate when the filesystem recovers. It also
4132 * marks the inode dirty, to catch the new size.
4133 *
4134 * Implication: the file must always be in a sane, consistent
4135 * truncatable state while each transaction commits.
4136 */
4137 err = ext4_orphan_add(handle, inode);
4138 if (err)
4139 goto out_stop;
4140
4141 down_write(sem: &EXT4_I(inode)->i_data_sem);
4142
4143 ext4_discard_preallocations(inode);
4144
4145 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))
4146 err = ext4_ext_truncate(handle, inode);
4147 else
4148 ext4_ind_truncate(handle, inode);
4149
4150 up_write(sem: &ei->i_data_sem);
4151 if (err)
4152 goto out_stop;
4153
4154 if (IS_SYNC(inode))
4155 ext4_handle_sync(handle);
4156
4157out_stop:
4158 /*
4159 * If this was a simple ftruncate() and the file will remain alive,
4160 * then we need to clear up the orphan record which we created above.
4161 * However, if this was a real unlink then we were called by
4162 * ext4_evict_inode(), and we allow that function to clean up the
4163 * orphan info for us.
4164 */
4165 if (inode->i_nlink)
4166 ext4_orphan_del(handle, inode);
4167
4168 inode_set_mtime_to_ts(inode, ts: inode_set_ctime_current(inode));
4169 err2 = ext4_mark_inode_dirty(handle, inode);
4170 if (unlikely(err2 && !err))
4171 err = err2;
4172 ext4_journal_stop(handle);
4173
4174out_trace:
4175 trace_ext4_truncate_exit(inode);
4176 return err;
4177}
4178
4179static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4180{
4181 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4182 return inode_peek_iversion_raw(inode);
4183 else
4184 return inode_peek_iversion(inode);
4185}
4186
4187static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4188 struct ext4_inode_info *ei)
4189{
4190 struct inode *inode = &(ei->vfs_inode);
4191 u64 i_blocks = READ_ONCE(inode->i_blocks);
4192 struct super_block *sb = inode->i_sb;
4193
4194 if (i_blocks <= ~0U) {
4195 /*
4196 * i_blocks can be represented in a 32 bit variable
4197 * as multiple of 512 bytes
4198 */
4199 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4200 raw_inode->i_blocks_high = 0;
4201 ext4_clear_inode_flag(inode, bit: EXT4_INODE_HUGE_FILE);
4202 return 0;
4203 }
4204
4205 /*
4206 * This should never happen since sb->s_maxbytes should not have
4207 * allowed this, sb->s_maxbytes was set according to the huge_file
4208 * feature in ext4_fill_super().
4209 */
4210 if (!ext4_has_feature_huge_file(sb))
4211 return -EFSCORRUPTED;
4212
4213 if (i_blocks <= 0xffffffffffffULL) {
4214 /*
4215 * i_blocks can be represented in a 48 bit variable
4216 * as multiple of 512 bytes
4217 */
4218 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4219 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4220 ext4_clear_inode_flag(inode, bit: EXT4_INODE_HUGE_FILE);
4221 } else {
4222 ext4_set_inode_flag(inode, bit: EXT4_INODE_HUGE_FILE);
4223 /* i_block is stored in file system block size */
4224 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4225 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4226 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4227 }
4228 return 0;
4229}
4230
4231static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4232{
4233 struct ext4_inode_info *ei = EXT4_I(inode);
4234 uid_t i_uid;
4235 gid_t i_gid;
4236 projid_t i_projid;
4237 int block;
4238 int err;
4239
4240 err = ext4_inode_blocks_set(raw_inode, ei);
4241
4242 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4243 i_uid = i_uid_read(inode);
4244 i_gid = i_gid_read(inode);
4245 i_projid = from_kprojid(to: &init_user_ns, projid: ei->i_projid);
4246 if (!(test_opt(inode->i_sb, NO_UID32))) {
4247 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4248 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4249 /*
4250 * Fix up interoperability with old kernels. Otherwise,
4251 * old inodes get re-used with the upper 16 bits of the
4252 * uid/gid intact.
4253 */
4254 if (ei->i_dtime && list_empty(head: &ei->i_orphan)) {
4255 raw_inode->i_uid_high = 0;
4256 raw_inode->i_gid_high = 0;
4257 } else {
4258 raw_inode->i_uid_high =
4259 cpu_to_le16(high_16_bits(i_uid));
4260 raw_inode->i_gid_high =
4261 cpu_to_le16(high_16_bits(i_gid));
4262 }
4263 } else {
4264 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4265 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4266 raw_inode->i_uid_high = 0;
4267 raw_inode->i_gid_high = 0;
4268 }
4269 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4270
4271 EXT4_INODE_SET_CTIME(inode, raw_inode);
4272 EXT4_INODE_SET_MTIME(inode, raw_inode);
4273 EXT4_INODE_SET_ATIME(inode, raw_inode);
4274 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4275
4276 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4277 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4278 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4279 raw_inode->i_file_acl_high =
4280 cpu_to_le16(ei->i_file_acl >> 32);
4281 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4282 ext4_isize_set(raw_inode, i_size: ei->i_disksize);
4283
4284 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4285 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4286 if (old_valid_dev(dev: inode->i_rdev)) {
4287 raw_inode->i_block[0] =
4288 cpu_to_le32(old_encode_dev(inode->i_rdev));
4289 raw_inode->i_block[1] = 0;
4290 } else {
4291 raw_inode->i_block[0] = 0;
4292 raw_inode->i_block[1] =
4293 cpu_to_le32(new_encode_dev(inode->i_rdev));
4294 raw_inode->i_block[2] = 0;
4295 }
4296 } else if (!ext4_has_inline_data(inode)) {
4297 for (block = 0; block < EXT4_N_BLOCKS; block++)
4298 raw_inode->i_block[block] = ei->i_data[block];
4299 }
4300
4301 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4302 u64 ivers = ext4_inode_peek_iversion(inode);
4303
4304 raw_inode->i_disk_version = cpu_to_le32(ivers);
4305 if (ei->i_extra_isize) {
4306 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4307 raw_inode->i_version_hi =
4308 cpu_to_le32(ivers >> 32);
4309 raw_inode->i_extra_isize =
4310 cpu_to_le16(ei->i_extra_isize);
4311 }
4312 }
4313
4314 if (i_projid != EXT4_DEF_PROJID &&
4315 !ext4_has_feature_project(sb: inode->i_sb))
4316 err = err ?: -EFSCORRUPTED;
4317
4318 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4319 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4320 raw_inode->i_projid = cpu_to_le32(i_projid);
4321
4322 ext4_inode_csum_set(inode, raw: raw_inode, ei);
4323 return err;
4324}
4325
4326/*
4327 * ext4_get_inode_loc returns with an extra refcount against the inode's
4328 * underlying buffer_head on success. If we pass 'inode' and it does not
4329 * have in-inode xattr, we have all inode data in memory that is needed
4330 * to recreate the on-disk version of this inode.
4331 */
4332static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4333 struct inode *inode, struct ext4_iloc *iloc,
4334 ext4_fsblk_t *ret_block)
4335{
4336 struct ext4_group_desc *gdp;
4337 struct buffer_head *bh;
4338 ext4_fsblk_t block;
4339 struct blk_plug plug;
4340 int inodes_per_block, inode_offset;
4341
4342 iloc->bh = NULL;
4343 if (ino < EXT4_ROOT_INO ||
4344 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4345 return -EFSCORRUPTED;
4346
4347 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4348 gdp = ext4_get_group_desc(sb, block_group: iloc->block_group, NULL);
4349 if (!gdp)
4350 return -EIO;
4351
4352 /*
4353 * Figure out the offset within the block group inode table
4354 */
4355 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4356 inode_offset = ((ino - 1) %
4357 EXT4_INODES_PER_GROUP(sb));
4358 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4359
4360 block = ext4_inode_table(sb, bg: gdp);
4361 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4362 (block >= ext4_blocks_count(es: EXT4_SB(sb)->s_es))) {
4363 ext4_error(sb, "Invalid inode table block %llu in "
4364 "block_group %u", block, iloc->block_group);
4365 return -EFSCORRUPTED;
4366 }
4367 block += (inode_offset / inodes_per_block);
4368
4369 bh = sb_getblk(sb, block);
4370 if (unlikely(!bh))
4371 return -ENOMEM;
4372 if (ext4_buffer_uptodate(bh))
4373 goto has_buffer;
4374
4375 lock_buffer(bh);
4376 if (ext4_buffer_uptodate(bh)) {
4377 /* Someone brought it uptodate while we waited */
4378 unlock_buffer(bh);
4379 goto has_buffer;
4380 }
4381
4382 /*
4383 * If we have all information of the inode in memory and this
4384 * is the only valid inode in the block, we need not read the
4385 * block.
4386 */
4387 if (inode && !ext4_test_inode_state(inode, bit: EXT4_STATE_XATTR)) {
4388 struct buffer_head *bitmap_bh;
4389 int i, start;
4390
4391 start = inode_offset & ~(inodes_per_block - 1);
4392
4393 /* Is the inode bitmap in cache? */
4394 bitmap_bh = sb_getblk(sb, block: ext4_inode_bitmap(sb, bg: gdp));
4395 if (unlikely(!bitmap_bh))
4396 goto make_io;
4397
4398 /*
4399 * If the inode bitmap isn't in cache then the
4400 * optimisation may end up performing two reads instead
4401 * of one, so skip it.
4402 */
4403 if (!buffer_uptodate(bh: bitmap_bh)) {
4404 brelse(bh: bitmap_bh);
4405 goto make_io;
4406 }
4407 for (i = start; i < start + inodes_per_block; i++) {
4408 if (i == inode_offset)
4409 continue;
4410 if (ext4_test_bit(nr: i, addr: bitmap_bh->b_data))
4411 break;
4412 }
4413 brelse(bh: bitmap_bh);
4414 if (i == start + inodes_per_block) {
4415 struct ext4_inode *raw_inode =
4416 (struct ext4_inode *) (bh->b_data + iloc->offset);
4417
4418 /* all other inodes are free, so skip I/O */
4419 memset(bh->b_data, 0, bh->b_size);
4420 if (!ext4_test_inode_state(inode, bit: EXT4_STATE_NEW))
4421 ext4_fill_raw_inode(inode, raw_inode);
4422 set_buffer_uptodate(bh);
4423 unlock_buffer(bh);
4424 goto has_buffer;
4425 }
4426 }
4427
4428make_io:
4429 /*
4430 * If we need to do any I/O, try to pre-readahead extra
4431 * blocks from the inode table.
4432 */
4433 blk_start_plug(&plug);
4434 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4435 ext4_fsblk_t b, end, table;
4436 unsigned num;
4437 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4438
4439 table = ext4_inode_table(sb, bg: gdp);
4440 /* s_inode_readahead_blks is always a power of 2 */
4441 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4442 if (table > b)
4443 b = table;
4444 end = b + ra_blks;
4445 num = EXT4_INODES_PER_GROUP(sb);
4446 if (ext4_has_group_desc_csum(sb))
4447 num -= ext4_itable_unused_count(sb, bg: gdp);
4448 table += num / inodes_per_block;
4449 if (end > table)
4450 end = table;
4451 while (b <= end)
4452 ext4_sb_breadahead_unmovable(sb, block: b++);
4453 }
4454
4455 /*
4456 * There are other valid inodes in the buffer, this inode
4457 * has in-inode xattrs, or we don't have this inode in memory.
4458 * Read the block from disk.
4459 */
4460 trace_ext4_load_inode(sb, ino);
4461 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4462 blk_finish_plug(&plug);
4463 wait_on_buffer(bh);
4464 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4465 if (!buffer_uptodate(bh)) {
4466 if (ret_block)
4467 *ret_block = block;
4468 brelse(bh);
4469 return -EIO;
4470 }
4471has_buffer:
4472 iloc->bh = bh;
4473 return 0;
4474}
4475
4476static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4477 struct ext4_iloc *iloc)
4478{
4479 ext4_fsblk_t err_blk = 0;
4480 int ret;
4481
4482 ret = __ext4_get_inode_loc(sb: inode->i_sb, ino: inode->i_ino, NULL, iloc,
4483 ret_block: &err_blk);
4484
4485 if (ret == -EIO)
4486 ext4_error_inode_block(inode, err_blk, EIO,
4487 "unable to read itable block");
4488
4489 return ret;
4490}
4491
4492int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4493{
4494 ext4_fsblk_t err_blk = 0;
4495 int ret;
4496
4497 ret = __ext4_get_inode_loc(sb: inode->i_sb, ino: inode->i_ino, inode, iloc,
4498 ret_block: &err_blk);
4499
4500 if (ret == -EIO)
4501 ext4_error_inode_block(inode, err_blk, EIO,
4502 "unable to read itable block");
4503
4504 return ret;
4505}
4506
4507
4508int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4509 struct ext4_iloc *iloc)
4510{
4511 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4512}
4513
4514static bool ext4_should_enable_dax(struct inode *inode)
4515{
4516 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
4517
4518 if (test_opt2(inode->i_sb, DAX_NEVER))
4519 return false;
4520 if (!S_ISREG(inode->i_mode))
4521 return false;
4522 if (ext4_should_journal_data(inode))
4523 return false;
4524 if (ext4_has_inline_data(inode))
4525 return false;
4526 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_ENCRYPT))
4527 return false;
4528 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_VERITY))
4529 return false;
4530 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4531 return false;
4532 if (test_opt(inode->i_sb, DAX_ALWAYS))
4533 return true;
4534
4535 return ext4_test_inode_flag(inode, bit: EXT4_INODE_DAX);
4536}
4537
4538void ext4_set_inode_flags(struct inode *inode, bool init)
4539{
4540 unsigned int flags = EXT4_I(inode)->i_flags;
4541 unsigned int new_fl = 0;
4542
4543 WARN_ON_ONCE(IS_DAX(inode) && init);
4544
4545 if (flags & EXT4_SYNC_FL)
4546 new_fl |= S_SYNC;
4547 if (flags & EXT4_APPEND_FL)
4548 new_fl |= S_APPEND;
4549 if (flags & EXT4_IMMUTABLE_FL)
4550 new_fl |= S_IMMUTABLE;
4551 if (flags & EXT4_NOATIME_FL)
4552 new_fl |= S_NOATIME;
4553 if (flags & EXT4_DIRSYNC_FL)
4554 new_fl |= S_DIRSYNC;
4555
4556 /* Because of the way inode_set_flags() works we must preserve S_DAX
4557 * here if already set. */
4558 new_fl |= (inode->i_flags & S_DAX);
4559 if (init && ext4_should_enable_dax(inode))
4560 new_fl |= S_DAX;
4561
4562 if (flags & EXT4_ENCRYPT_FL)
4563 new_fl |= S_ENCRYPTED;
4564 if (flags & EXT4_CASEFOLD_FL)
4565 new_fl |= S_CASEFOLD;
4566 if (flags & EXT4_VERITY_FL)
4567 new_fl |= S_VERITY;
4568 inode_set_flags(inode, flags: new_fl,
4569 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4570 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4571}
4572
4573static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4574 struct ext4_inode_info *ei)
4575{
4576 blkcnt_t i_blocks ;
4577 struct inode *inode = &(ei->vfs_inode);
4578 struct super_block *sb = inode->i_sb;
4579
4580 if (ext4_has_feature_huge_file(sb)) {
4581 /* we are using combined 48 bit field */
4582 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4583 le32_to_cpu(raw_inode->i_blocks_lo);
4584 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_HUGE_FILE)) {
4585 /* i_blocks represent file system block size */
4586 return i_blocks << (inode->i_blkbits - 9);
4587 } else {
4588 return i_blocks;
4589 }
4590 } else {
4591 return le32_to_cpu(raw_inode->i_blocks_lo);
4592 }
4593}
4594
4595static inline int ext4_iget_extra_inode(struct inode *inode,
4596 struct ext4_inode *raw_inode,
4597 struct ext4_inode_info *ei)
4598{
4599 __le32 *magic = (void *)raw_inode +
4600 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4601
4602 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
4603 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4604 int err;
4605
4606 ext4_set_inode_state(inode, bit: EXT4_STATE_XATTR);
4607 err = ext4_find_inline_data_nolock(inode);
4608 if (!err && ext4_has_inline_data(inode))
4609 ext4_set_inode_state(inode, bit: EXT4_STATE_MAY_INLINE_DATA);
4610 return err;
4611 } else
4612 EXT4_I(inode)->i_inline_off = 0;
4613 return 0;
4614}
4615
4616int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4617{
4618 if (!ext4_has_feature_project(sb: inode->i_sb))
4619 return -EOPNOTSUPP;
4620 *projid = EXT4_I(inode)->i_projid;
4621 return 0;
4622}
4623
4624/*
4625 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4626 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4627 * set.
4628 */
4629static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4630{
4631 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4632 inode_set_iversion_raw(inode, val);
4633 else
4634 inode_set_iversion_queried(inode, val);
4635}
4636
4637static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4638
4639{
4640 if (flags & EXT4_IGET_EA_INODE) {
4641 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4642 return "missing EA_INODE flag";
4643 if (ext4_test_inode_state(inode, bit: EXT4_STATE_XATTR) ||
4644 EXT4_I(inode)->i_file_acl)
4645 return "ea_inode with extended attributes";
4646 } else {
4647 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4648 return "unexpected EA_INODE flag";
4649 }
4650 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4651 return "unexpected bad inode w/o EXT4_IGET_BAD";
4652 return NULL;
4653}
4654
4655struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4656 ext4_iget_flags flags, const char *function,
4657 unsigned int line)
4658{
4659 struct ext4_iloc iloc;
4660 struct ext4_inode *raw_inode;
4661 struct ext4_inode_info *ei;
4662 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4663 struct inode *inode;
4664 const char *err_str;
4665 journal_t *journal = EXT4_SB(sb)->s_journal;
4666 long ret;
4667 loff_t size;
4668 int block;
4669 uid_t i_uid;
4670 gid_t i_gid;
4671 projid_t i_projid;
4672
4673 if ((!(flags & EXT4_IGET_SPECIAL) &&
4674 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4675 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4676 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4677 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4678 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4679 (ino < EXT4_ROOT_INO) ||
4680 (ino > le32_to_cpu(es->s_inodes_count))) {
4681 if (flags & EXT4_IGET_HANDLE)
4682 return ERR_PTR(error: -ESTALE);
4683 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4684 "inode #%lu: comm %s: iget: illegal inode #",
4685 ino, current->comm);
4686 return ERR_PTR(error: -EFSCORRUPTED);
4687 }
4688
4689 inode = iget_locked(sb, ino);
4690 if (!inode)
4691 return ERR_PTR(error: -ENOMEM);
4692 if (!(inode->i_state & I_NEW)) {
4693 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4694 ext4_error_inode(inode, function, line, 0, err_str);
4695 iput(inode);
4696 return ERR_PTR(error: -EFSCORRUPTED);
4697 }
4698 return inode;
4699 }
4700
4701 ei = EXT4_I(inode);
4702 iloc.bh = NULL;
4703
4704 ret = __ext4_get_inode_loc_noinmem(inode, iloc: &iloc);
4705 if (ret < 0)
4706 goto bad_inode;
4707 raw_inode = ext4_raw_inode(iloc: &iloc);
4708
4709 if ((flags & EXT4_IGET_HANDLE) &&
4710 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4711 ret = -ESTALE;
4712 goto bad_inode;
4713 }
4714
4715 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4716 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4717 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4718 EXT4_INODE_SIZE(inode->i_sb) ||
4719 (ei->i_extra_isize & 3)) {
4720 ext4_error_inode(inode, function, line, 0,
4721 "iget: bad extra_isize %u "
4722 "(inode size %u)",
4723 ei->i_extra_isize,
4724 EXT4_INODE_SIZE(inode->i_sb));
4725 ret = -EFSCORRUPTED;
4726 goto bad_inode;
4727 }
4728 } else
4729 ei->i_extra_isize = 0;
4730
4731 /* Precompute checksum seed for inode metadata */
4732 if (ext4_has_metadata_csum(sb)) {
4733 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
4734 __u32 csum;
4735 __le32 inum = cpu_to_le32(inode->i_ino);
4736 __le32 gen = raw_inode->i_generation;
4737 csum = ext4_chksum(sbi, crc: sbi->s_csum_seed, address: (__u8 *)&inum,
4738 length: sizeof(inum));
4739 ei->i_csum_seed = ext4_chksum(sbi, crc: csum, address: (__u8 *)&gen,
4740 length: sizeof(gen));
4741 }
4742
4743 if ((!ext4_inode_csum_verify(inode, raw: raw_inode, ei) ||
4744 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4745 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4746 ext4_error_inode_err(inode, function, line, 0,
4747 EFSBADCRC, "iget: checksum invalid");
4748 ret = -EFSBADCRC;
4749 goto bad_inode;
4750 }
4751
4752 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4753 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4754 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4755 if (ext4_has_feature_project(sb) &&
4756 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4757 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4758 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4759 else
4760 i_projid = EXT4_DEF_PROJID;
4761
4762 if (!(test_opt(inode->i_sb, NO_UID32))) {
4763 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4764 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4765 }
4766 i_uid_write(inode, uid: i_uid);
4767 i_gid_write(inode, gid: i_gid);
4768 ei->i_projid = make_kprojid(from: &init_user_ns, projid: i_projid);
4769 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4770
4771 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4772 ei->i_inline_off = 0;
4773 ei->i_dir_start_lookup = 0;
4774 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4775 /* We now have enough fields to check if the inode was active or not.
4776 * This is needed because nfsd might try to access dead inodes
4777 * the test is that same one that e2fsck uses
4778 * NeilBrown 1999oct15
4779 */
4780 if (inode->i_nlink == 0) {
4781 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4782 !(EXT4_SB(sb: inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4783 ino != EXT4_BOOT_LOADER_INO) {
4784 /* this inode is deleted or unallocated */
4785 if (flags & EXT4_IGET_SPECIAL) {
4786 ext4_error_inode(inode, function, line, 0,
4787 "iget: special inode unallocated");
4788 ret = -EFSCORRUPTED;
4789 } else
4790 ret = -ESTALE;
4791 goto bad_inode;
4792 }
4793 /* The only unlinked inodes we let through here have
4794 * valid i_mode and are being read by the orphan
4795 * recovery code: that's fine, we're about to complete
4796 * the process of deleting those.
4797 * OR it is the EXT4_BOOT_LOADER_INO which is
4798 * not initialized on a new filesystem. */
4799 }
4800 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4801 ext4_set_inode_flags(inode, init: true);
4802 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4803 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4804 if (ext4_has_feature_64bit(sb))
4805 ei->i_file_acl |=
4806 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4807 inode->i_size = ext4_isize(sb, raw_inode);
4808 if ((size = i_size_read(inode)) < 0) {
4809 ext4_error_inode(inode, function, line, 0,
4810 "iget: bad i_size value: %lld", size);
4811 ret = -EFSCORRUPTED;
4812 goto bad_inode;
4813 }
4814 /*
4815 * If dir_index is not enabled but there's dir with INDEX flag set,
4816 * we'd normally treat htree data as empty space. But with metadata
4817 * checksumming that corrupts checksums so forbid that.
4818 */
4819 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4820 ext4_test_inode_flag(inode, bit: EXT4_INODE_INDEX)) {
4821 ext4_error_inode(inode, function, line, 0,
4822 "iget: Dir with htree data on filesystem without dir_index feature.");
4823 ret = -EFSCORRUPTED;
4824 goto bad_inode;
4825 }
4826 ei->i_disksize = inode->i_size;
4827#ifdef CONFIG_QUOTA
4828 ei->i_reserved_quota = 0;
4829#endif
4830 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4831 ei->i_block_group = iloc.block_group;
4832 ei->i_last_alloc_group = ~0;
4833 /*
4834 * NOTE! The in-memory inode i_data array is in little-endian order
4835 * even on big-endian machines: we do NOT byteswap the block numbers!
4836 */
4837 for (block = 0; block < EXT4_N_BLOCKS; block++)
4838 ei->i_data[block] = raw_inode->i_block[block];
4839 INIT_LIST_HEAD(list: &ei->i_orphan);
4840 ext4_fc_init_inode(inode: &ei->vfs_inode);
4841
4842 /*
4843 * Set transaction id's of transactions that have to be committed
4844 * to finish f[data]sync. We set them to currently running transaction
4845 * as we cannot be sure that the inode or some of its metadata isn't
4846 * part of the transaction - the inode could have been reclaimed and
4847 * now it is reread from disk.
4848 */
4849 if (journal) {
4850 transaction_t *transaction;
4851 tid_t tid;
4852
4853 read_lock(&journal->j_state_lock);
4854 if (journal->j_running_transaction)
4855 transaction = journal->j_running_transaction;
4856 else
4857 transaction = journal->j_committing_transaction;
4858 if (transaction)
4859 tid = transaction->t_tid;
4860 else
4861 tid = journal->j_commit_sequence;
4862 read_unlock(&journal->j_state_lock);
4863 ei->i_sync_tid = tid;
4864 ei->i_datasync_tid = tid;
4865 }
4866
4867 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4868 if (ei->i_extra_isize == 0) {
4869 /* The extra space is currently unused. Use it. */
4870 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4871 ei->i_extra_isize = sizeof(struct ext4_inode) -
4872 EXT4_GOOD_OLD_INODE_SIZE;
4873 } else {
4874 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4875 if (ret)
4876 goto bad_inode;
4877 }
4878 }
4879
4880 EXT4_INODE_GET_CTIME(inode, raw_inode);
4881 EXT4_INODE_GET_ATIME(inode, raw_inode);
4882 EXT4_INODE_GET_MTIME(inode, raw_inode);
4883 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4884
4885 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4886 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4887
4888 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4889 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4890 ivers |=
4891 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4892 }
4893 ext4_inode_set_iversion_queried(inode, val: ivers);
4894 }
4895
4896 ret = 0;
4897 if (ei->i_file_acl &&
4898 !ext4_inode_block_valid(inode, start_blk: ei->i_file_acl, count: 1)) {
4899 ext4_error_inode(inode, function, line, 0,
4900 "iget: bad extended attribute block %llu",
4901 ei->i_file_acl);
4902 ret = -EFSCORRUPTED;
4903 goto bad_inode;
4904 } else if (!ext4_has_inline_data(inode)) {
4905 /* validate the block references in the inode */
4906 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4907 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4908 (S_ISLNK(inode->i_mode) &&
4909 !ext4_inode_is_fast_symlink(inode)))) {
4910 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))
4911 ret = ext4_ext_check_inode(inode);
4912 else
4913 ret = ext4_ind_check_inode(inode);
4914 }
4915 }
4916 if (ret)
4917 goto bad_inode;
4918
4919 if (S_ISREG(inode->i_mode)) {
4920 inode->i_op = &ext4_file_inode_operations;
4921 inode->i_fop = &ext4_file_operations;
4922 ext4_set_aops(inode);
4923 } else if (S_ISDIR(inode->i_mode)) {
4924 inode->i_op = &ext4_dir_inode_operations;
4925 inode->i_fop = &ext4_dir_operations;
4926 } else if (S_ISLNK(inode->i_mode)) {
4927 /* VFS does not allow setting these so must be corruption */
4928 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4929 ext4_error_inode(inode, function, line, 0,
4930 "iget: immutable or append flags "
4931 "not allowed on symlinks");
4932 ret = -EFSCORRUPTED;
4933 goto bad_inode;
4934 }
4935 if (IS_ENCRYPTED(inode)) {
4936 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4937 } else if (ext4_inode_is_fast_symlink(inode)) {
4938 inode->i_link = (char *)ei->i_data;
4939 inode->i_op = &ext4_fast_symlink_inode_operations;
4940 nd_terminate_link(name: ei->i_data, len: inode->i_size,
4941 maxlen: sizeof(ei->i_data) - 1);
4942 } else {
4943 inode->i_op = &ext4_symlink_inode_operations;
4944 }
4945 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4946 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4947 inode->i_op = &ext4_special_inode_operations;
4948 if (raw_inode->i_block[0])
4949 init_special_inode(inode, inode->i_mode,
4950 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4951 else
4952 init_special_inode(inode, inode->i_mode,
4953 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4954 } else if (ino == EXT4_BOOT_LOADER_INO) {
4955 make_bad_inode(inode);
4956 } else {
4957 ret = -EFSCORRUPTED;
4958 ext4_error_inode(inode, function, line, 0,
4959 "iget: bogus i_mode (%o)", inode->i_mode);
4960 goto bad_inode;
4961 }
4962 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(sb: inode->i_sb)) {
4963 ext4_error_inode(inode, function, line, 0,
4964 "casefold flag without casefold feature");
4965 ret = -EFSCORRUPTED;
4966 goto bad_inode;
4967 }
4968 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4969 ext4_error_inode(inode, function, line, 0, err_str);
4970 ret = -EFSCORRUPTED;
4971 goto bad_inode;
4972 }
4973
4974 brelse(bh: iloc.bh);
4975 unlock_new_inode(inode);
4976 return inode;
4977
4978bad_inode:
4979 brelse(bh: iloc.bh);
4980 iget_failed(inode);
4981 return ERR_PTR(error: ret);
4982}
4983
4984static void __ext4_update_other_inode_time(struct super_block *sb,
4985 unsigned long orig_ino,
4986 unsigned long ino,
4987 struct ext4_inode *raw_inode)
4988{
4989 struct inode *inode;
4990
4991 inode = find_inode_by_ino_rcu(sb, ino);
4992 if (!inode)
4993 return;
4994
4995 if (!inode_is_dirtytime_only(inode))
4996 return;
4997
4998 spin_lock(lock: &inode->i_lock);
4999 if (inode_is_dirtytime_only(inode)) {
5000 struct ext4_inode_info *ei = EXT4_I(inode);
5001
5002 inode->i_state &= ~I_DIRTY_TIME;
5003 spin_unlock(lock: &inode->i_lock);
5004
5005 spin_lock(lock: &ei->i_raw_lock);
5006 EXT4_INODE_SET_CTIME(inode, raw_inode);
5007 EXT4_INODE_SET_MTIME(inode, raw_inode);
5008 EXT4_INODE_SET_ATIME(inode, raw_inode);
5009 ext4_inode_csum_set(inode, raw: raw_inode, ei);
5010 spin_unlock(lock: &ei->i_raw_lock);
5011 trace_ext4_other_inode_update_time(inode, orig_ino);
5012 return;
5013 }
5014 spin_unlock(lock: &inode->i_lock);
5015}
5016
5017/*
5018 * Opportunistically update the other time fields for other inodes in
5019 * the same inode table block.
5020 */
5021static void ext4_update_other_inodes_time(struct super_block *sb,
5022 unsigned long orig_ino, char *buf)
5023{
5024 unsigned long ino;
5025 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5026 int inode_size = EXT4_INODE_SIZE(sb);
5027
5028 /*
5029 * Calculate the first inode in the inode table block. Inode
5030 * numbers are one-based. That is, the first inode in a block
5031 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5032 */
5033 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5034 rcu_read_lock();
5035 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5036 if (ino == orig_ino)
5037 continue;
5038 __ext4_update_other_inode_time(sb, orig_ino, ino,
5039 raw_inode: (struct ext4_inode *)buf);
5040 }
5041 rcu_read_unlock();
5042}
5043
5044/*
5045 * Post the struct inode info into an on-disk inode location in the
5046 * buffer-cache. This gobbles the caller's reference to the
5047 * buffer_head in the inode location struct.
5048 *
5049 * The caller must have write access to iloc->bh.
5050 */
5051static int ext4_do_update_inode(handle_t *handle,
5052 struct inode *inode,
5053 struct ext4_iloc *iloc)
5054{
5055 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5056 struct ext4_inode_info *ei = EXT4_I(inode);
5057 struct buffer_head *bh = iloc->bh;
5058 struct super_block *sb = inode->i_sb;
5059 int err;
5060 int need_datasync = 0, set_large_file = 0;
5061
5062 spin_lock(lock: &ei->i_raw_lock);
5063
5064 /*
5065 * For fields not tracked in the in-memory inode, initialise them
5066 * to zero for new inodes.
5067 */
5068 if (ext4_test_inode_state(inode, bit: EXT4_STATE_NEW))
5069 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5070
5071 if (READ_ONCE(ei->i_disksize) != ext4_isize(sb: inode->i_sb, raw_inode))
5072 need_datasync = 1;
5073 if (ei->i_disksize > 0x7fffffffULL) {
5074 if (!ext4_has_feature_large_file(sb) ||
5075 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5076 set_large_file = 1;
5077 }
5078
5079 err = ext4_fill_raw_inode(inode, raw_inode);
5080 spin_unlock(lock: &ei->i_raw_lock);
5081 if (err) {
5082 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5083 goto out_brelse;
5084 }
5085
5086 if (inode->i_sb->s_flags & SB_LAZYTIME)
5087 ext4_update_other_inodes_time(sb: inode->i_sb, orig_ino: inode->i_ino,
5088 buf: bh->b_data);
5089
5090 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5091 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5092 if (err)
5093 goto out_error;
5094 ext4_clear_inode_state(inode, bit: EXT4_STATE_NEW);
5095 if (set_large_file) {
5096 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5097 err = ext4_journal_get_write_access(handle, sb,
5098 EXT4_SB(sb)->s_sbh,
5099 EXT4_JTR_NONE);
5100 if (err)
5101 goto out_error;
5102 lock_buffer(bh: EXT4_SB(sb)->s_sbh);
5103 ext4_set_feature_large_file(sb);
5104 ext4_superblock_csum_set(sb);
5105 unlock_buffer(bh: EXT4_SB(sb)->s_sbh);
5106 ext4_handle_sync(handle);
5107 err = ext4_handle_dirty_metadata(handle, NULL,
5108 EXT4_SB(sb)->s_sbh);
5109 }
5110 ext4_update_inode_fsync_trans(handle, inode, datasync: need_datasync);
5111out_error:
5112 ext4_std_error(inode->i_sb, err);
5113out_brelse:
5114 brelse(bh);
5115 return err;
5116}
5117
5118/*
5119 * ext4_write_inode()
5120 *
5121 * We are called from a few places:
5122 *
5123 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5124 * Here, there will be no transaction running. We wait for any running
5125 * transaction to commit.
5126 *
5127 * - Within flush work (sys_sync(), kupdate and such).
5128 * We wait on commit, if told to.
5129 *
5130 * - Within iput_final() -> write_inode_now()
5131 * We wait on commit, if told to.
5132 *
5133 * In all cases it is actually safe for us to return without doing anything,
5134 * because the inode has been copied into a raw inode buffer in
5135 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5136 * writeback.
5137 *
5138 * Note that we are absolutely dependent upon all inode dirtiers doing the
5139 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5140 * which we are interested.
5141 *
5142 * It would be a bug for them to not do this. The code:
5143 *
5144 * mark_inode_dirty(inode)
5145 * stuff();
5146 * inode->i_size = expr;
5147 *
5148 * is in error because write_inode() could occur while `stuff()' is running,
5149 * and the new i_size will be lost. Plus the inode will no longer be on the
5150 * superblock's dirty inode list.
5151 */
5152int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5153{
5154 int err;
5155
5156 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5157 return 0;
5158
5159 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5160 return -EIO;
5161
5162 if (EXT4_SB(sb: inode->i_sb)->s_journal) {
5163 if (ext4_journal_current_handle()) {
5164 ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5165 dump_stack();
5166 return -EIO;
5167 }
5168
5169 /*
5170 * No need to force transaction in WB_SYNC_NONE mode. Also
5171 * ext4_sync_fs() will force the commit after everything is
5172 * written.
5173 */
5174 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5175 return 0;
5176
5177 err = ext4_fc_commit(journal: EXT4_SB(sb: inode->i_sb)->s_journal,
5178 EXT4_I(inode)->i_sync_tid);
5179 } else {
5180 struct ext4_iloc iloc;
5181
5182 err = __ext4_get_inode_loc_noinmem(inode, iloc: &iloc);
5183 if (err)
5184 return err;
5185 /*
5186 * sync(2) will flush the whole buffer cache. No need to do
5187 * it here separately for each inode.
5188 */
5189 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5190 sync_dirty_buffer(bh: iloc.bh);
5191 if (buffer_req(bh: iloc.bh) && !buffer_uptodate(bh: iloc.bh)) {
5192 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5193 "IO error syncing inode");
5194 err = -EIO;
5195 }
5196 brelse(bh: iloc.bh);
5197 }
5198 return err;
5199}
5200
5201/*
5202 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5203 * buffers that are attached to a folio straddling i_size and are undergoing
5204 * commit. In that case we have to wait for commit to finish and try again.
5205 */
5206static void ext4_wait_for_tail_page_commit(struct inode *inode)
5207{
5208 unsigned offset;
5209 journal_t *journal = EXT4_SB(sb: inode->i_sb)->s_journal;
5210 tid_t commit_tid = 0;
5211 int ret;
5212
5213 offset = inode->i_size & (PAGE_SIZE - 1);
5214 /*
5215 * If the folio is fully truncated, we don't need to wait for any commit
5216 * (and we even should not as __ext4_journalled_invalidate_folio() may
5217 * strip all buffers from the folio but keep the folio dirty which can then
5218 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5219 * buffers). Also we don't need to wait for any commit if all buffers in
5220 * the folio remain valid. This is most beneficial for the common case of
5221 * blocksize == PAGESIZE.
5222 */
5223 if (!offset || offset > (PAGE_SIZE - i_blocksize(node: inode)))
5224 return;
5225 while (1) {
5226 struct folio *folio = filemap_lock_folio(mapping: inode->i_mapping,
5227 index: inode->i_size >> PAGE_SHIFT);
5228 if (IS_ERR(ptr: folio))
5229 return;
5230 ret = __ext4_journalled_invalidate_folio(folio, offset,
5231 length: folio_size(folio) - offset);
5232 folio_unlock(folio);
5233 folio_put(folio);
5234 if (ret != -EBUSY)
5235 return;
5236 commit_tid = 0;
5237 read_lock(&journal->j_state_lock);
5238 if (journal->j_committing_transaction)
5239 commit_tid = journal->j_committing_transaction->t_tid;
5240 read_unlock(&journal->j_state_lock);
5241 if (commit_tid)
5242 jbd2_log_wait_commit(journal, tid: commit_tid);
5243 }
5244}
5245
5246/*
5247 * ext4_setattr()
5248 *
5249 * Called from notify_change.
5250 *
5251 * We want to trap VFS attempts to truncate the file as soon as
5252 * possible. In particular, we want to make sure that when the VFS
5253 * shrinks i_size, we put the inode on the orphan list and modify
5254 * i_disksize immediately, so that during the subsequent flushing of
5255 * dirty pages and freeing of disk blocks, we can guarantee that any
5256 * commit will leave the blocks being flushed in an unused state on
5257 * disk. (On recovery, the inode will get truncated and the blocks will
5258 * be freed, so we have a strong guarantee that no future commit will
5259 * leave these blocks visible to the user.)
5260 *
5261 * Another thing we have to assure is that if we are in ordered mode
5262 * and inode is still attached to the committing transaction, we must
5263 * we start writeout of all the dirty pages which are being truncated.
5264 * This way we are sure that all the data written in the previous
5265 * transaction are already on disk (truncate waits for pages under
5266 * writeback).
5267 *
5268 * Called with inode->i_rwsem down.
5269 */
5270int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5271 struct iattr *attr)
5272{
5273 struct inode *inode = d_inode(dentry);
5274 int error, rc = 0;
5275 int orphan = 0;
5276 const unsigned int ia_valid = attr->ia_valid;
5277 bool inc_ivers = true;
5278
5279 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5280 return -EIO;
5281
5282 if (unlikely(IS_IMMUTABLE(inode)))
5283 return -EPERM;
5284
5285 if (unlikely(IS_APPEND(inode) &&
5286 (ia_valid & (ATTR_MODE | ATTR_UID |
5287 ATTR_GID | ATTR_TIMES_SET))))
5288 return -EPERM;
5289
5290 error = setattr_prepare(idmap, dentry, attr);
5291 if (error)
5292 return error;
5293
5294 error = fscrypt_prepare_setattr(dentry, attr);
5295 if (error)
5296 return error;
5297
5298 error = fsverity_prepare_setattr(dentry, attr);
5299 if (error)
5300 return error;
5301
5302 if (is_quota_modification(idmap, inode, ia: attr)) {
5303 error = dquot_initialize(inode);
5304 if (error)
5305 return error;
5306 }
5307
5308 if (i_uid_needs_update(idmap, attr, inode) ||
5309 i_gid_needs_update(idmap, attr, inode)) {
5310 handle_t *handle;
5311
5312 /* (user+group)*(old+new) structure, inode write (sb,
5313 * inode block, ? - but truncate inode update has it) */
5314 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5315 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5316 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5317 if (IS_ERR(ptr: handle)) {
5318 error = PTR_ERR(ptr: handle);
5319 goto err_out;
5320 }
5321
5322 /* dquot_transfer() calls back ext4_get_inode_usage() which
5323 * counts xattr inode references.
5324 */
5325 down_read(sem: &EXT4_I(inode)->xattr_sem);
5326 error = dquot_transfer(idmap, inode, iattr: attr);
5327 up_read(sem: &EXT4_I(inode)->xattr_sem);
5328
5329 if (error) {
5330 ext4_journal_stop(handle);
5331 return error;
5332 }
5333 /* Update corresponding info in inode so that everything is in
5334 * one transaction */
5335 i_uid_update(idmap, attr, inode);
5336 i_gid_update(idmap, attr, inode);
5337 error = ext4_mark_inode_dirty(handle, inode);
5338 ext4_journal_stop(handle);
5339 if (unlikely(error)) {
5340 return error;
5341 }
5342 }
5343
5344 if (attr->ia_valid & ATTR_SIZE) {
5345 handle_t *handle;
5346 loff_t oldsize = inode->i_size;
5347 loff_t old_disksize;
5348 int shrink = (attr->ia_size < inode->i_size);
5349
5350 if (!(ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS))) {
5351 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
5352
5353 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5354 return -EFBIG;
5355 }
5356 }
5357 if (!S_ISREG(inode->i_mode)) {
5358 return -EINVAL;
5359 }
5360
5361 if (attr->ia_size == inode->i_size)
5362 inc_ivers = false;
5363
5364 if (shrink) {
5365 if (ext4_should_order_data(inode)) {
5366 error = ext4_begin_ordered_truncate(inode,
5367 new_size: attr->ia_size);
5368 if (error)
5369 goto err_out;
5370 }
5371 /*
5372 * Blocks are going to be removed from the inode. Wait
5373 * for dio in flight.
5374 */
5375 inode_dio_wait(inode);
5376 }
5377
5378 filemap_invalidate_lock(mapping: inode->i_mapping);
5379
5380 rc = ext4_break_layouts(inode);
5381 if (rc) {
5382 filemap_invalidate_unlock(mapping: inode->i_mapping);
5383 goto err_out;
5384 }
5385
5386 if (attr->ia_size != inode->i_size) {
5387 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5388 if (IS_ERR(ptr: handle)) {
5389 error = PTR_ERR(ptr: handle);
5390 goto out_mmap_sem;
5391 }
5392 if (ext4_handle_valid(handle) && shrink) {
5393 error = ext4_orphan_add(handle, inode);
5394 orphan = 1;
5395 }
5396 /*
5397 * Update c/mtime on truncate up, ext4_truncate() will
5398 * update c/mtime in shrink case below
5399 */
5400 if (!shrink)
5401 inode_set_mtime_to_ts(inode,
5402 ts: inode_set_ctime_current(inode));
5403
5404 if (shrink)
5405 ext4_fc_track_range(handle, inode,
5406 start: (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5407 inode->i_sb->s_blocksize_bits,
5408 EXT_MAX_BLOCKS - 1);
5409 else
5410 ext4_fc_track_range(
5411 handle, inode,
5412 start: (oldsize > 0 ? oldsize - 1 : oldsize) >>
5413 inode->i_sb->s_blocksize_bits,
5414 end: (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5415 inode->i_sb->s_blocksize_bits);
5416
5417 down_write(sem: &EXT4_I(inode)->i_data_sem);
5418 old_disksize = EXT4_I(inode)->i_disksize;
5419 EXT4_I(inode)->i_disksize = attr->ia_size;
5420 rc = ext4_mark_inode_dirty(handle, inode);
5421 if (!error)
5422 error = rc;
5423 /*
5424 * We have to update i_size under i_data_sem together
5425 * with i_disksize to avoid races with writeback code
5426 * running ext4_wb_update_i_disksize().
5427 */
5428 if (!error)
5429 i_size_write(inode, i_size: attr->ia_size);
5430 else
5431 EXT4_I(inode)->i_disksize = old_disksize;
5432 up_write(sem: &EXT4_I(inode)->i_data_sem);
5433 ext4_journal_stop(handle);
5434 if (error)
5435 goto out_mmap_sem;
5436 if (!shrink) {
5437 pagecache_isize_extended(inode, from: oldsize,
5438 to: inode->i_size);
5439 } else if (ext4_should_journal_data(inode)) {
5440 ext4_wait_for_tail_page_commit(inode);
5441 }
5442 }
5443
5444 /*
5445 * Truncate pagecache after we've waited for commit
5446 * in data=journal mode to make pages freeable.
5447 */
5448 truncate_pagecache(inode, new: inode->i_size);
5449 /*
5450 * Call ext4_truncate() even if i_size didn't change to
5451 * truncate possible preallocated blocks.
5452 */
5453 if (attr->ia_size <= oldsize) {
5454 rc = ext4_truncate(inode);
5455 if (rc)
5456 error = rc;
5457 }
5458out_mmap_sem:
5459 filemap_invalidate_unlock(mapping: inode->i_mapping);
5460 }
5461
5462 if (!error) {
5463 if (inc_ivers)
5464 inode_inc_iversion(inode);
5465 setattr_copy(idmap, inode, attr);
5466 mark_inode_dirty(inode);
5467 }
5468
5469 /*
5470 * If the call to ext4_truncate failed to get a transaction handle at
5471 * all, we need to clean up the in-core orphan list manually.
5472 */
5473 if (orphan && inode->i_nlink)
5474 ext4_orphan_del(NULL, inode);
5475
5476 if (!error && (ia_valid & ATTR_MODE))
5477 rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5478
5479err_out:
5480 if (error)
5481 ext4_std_error(inode->i_sb, error);
5482 if (!error)
5483 error = rc;
5484 return error;
5485}
5486
5487u32 ext4_dio_alignment(struct inode *inode)
5488{
5489 if (fsverity_active(inode))
5490 return 0;
5491 if (ext4_should_journal_data(inode))
5492 return 0;
5493 if (ext4_has_inline_data(inode))
5494 return 0;
5495 if (IS_ENCRYPTED(inode)) {
5496 if (!fscrypt_dio_supported(inode))
5497 return 0;
5498 return i_blocksize(node: inode);
5499 }
5500 return 1; /* use the iomap defaults */
5501}
5502
5503int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5504 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5505{
5506 struct inode *inode = d_inode(dentry: path->dentry);
5507 struct ext4_inode *raw_inode;
5508 struct ext4_inode_info *ei = EXT4_I(inode);
5509 unsigned int flags;
5510
5511 if ((request_mask & STATX_BTIME) &&
5512 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5513 stat->result_mask |= STATX_BTIME;
5514 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5515 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5516 }
5517
5518 /*
5519 * Return the DIO alignment restrictions if requested. We only return
5520 * this information when requested, since on encrypted files it might
5521 * take a fair bit of work to get if the file wasn't opened recently.
5522 */
5523 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5524 u32 dio_align = ext4_dio_alignment(inode);
5525
5526 stat->result_mask |= STATX_DIOALIGN;
5527 if (dio_align == 1) {
5528 struct block_device *bdev = inode->i_sb->s_bdev;
5529
5530 /* iomap defaults */
5531 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5532 stat->dio_offset_align = bdev_logical_block_size(bdev);
5533 } else {
5534 stat->dio_mem_align = dio_align;
5535 stat->dio_offset_align = dio_align;
5536 }
5537 }
5538
5539 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5540 if (flags & EXT4_APPEND_FL)
5541 stat->attributes |= STATX_ATTR_APPEND;
5542 if (flags & EXT4_COMPR_FL)
5543 stat->attributes |= STATX_ATTR_COMPRESSED;
5544 if (flags & EXT4_ENCRYPT_FL)
5545 stat->attributes |= STATX_ATTR_ENCRYPTED;
5546 if (flags & EXT4_IMMUTABLE_FL)
5547 stat->attributes |= STATX_ATTR_IMMUTABLE;
5548 if (flags & EXT4_NODUMP_FL)
5549 stat->attributes |= STATX_ATTR_NODUMP;
5550 if (flags & EXT4_VERITY_FL)
5551 stat->attributes |= STATX_ATTR_VERITY;
5552
5553 stat->attributes_mask |= (STATX_ATTR_APPEND |
5554 STATX_ATTR_COMPRESSED |
5555 STATX_ATTR_ENCRYPTED |
5556 STATX_ATTR_IMMUTABLE |
5557 STATX_ATTR_NODUMP |
5558 STATX_ATTR_VERITY);
5559
5560 generic_fillattr(idmap, request_mask, inode, stat);
5561 return 0;
5562}
5563
5564int ext4_file_getattr(struct mnt_idmap *idmap,
5565 const struct path *path, struct kstat *stat,
5566 u32 request_mask, unsigned int query_flags)
5567{
5568 struct inode *inode = d_inode(dentry: path->dentry);
5569 u64 delalloc_blocks;
5570
5571 ext4_getattr(idmap, path, stat, request_mask, query_flags);
5572
5573 /*
5574 * If there is inline data in the inode, the inode will normally not
5575 * have data blocks allocated (it may have an external xattr block).
5576 * Report at least one sector for such files, so tools like tar, rsync,
5577 * others don't incorrectly think the file is completely sparse.
5578 */
5579 if (unlikely(ext4_has_inline_data(inode)))
5580 stat->blocks += (stat->size + 511) >> 9;
5581
5582 /*
5583 * We can't update i_blocks if the block allocation is delayed
5584 * otherwise in the case of system crash before the real block
5585 * allocation is done, we will have i_blocks inconsistent with
5586 * on-disk file blocks.
5587 * We always keep i_blocks updated together with real
5588 * allocation. But to not confuse with user, stat
5589 * will return the blocks that include the delayed allocation
5590 * blocks for this file.
5591 */
5592 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5593 EXT4_I(inode)->i_reserved_data_blocks);
5594 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5595 return 0;
5596}
5597
5598static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5599 int pextents)
5600{
5601 if (!(ext4_test_inode_flag(inode, bit: EXT4_INODE_EXTENTS)))
5602 return ext4_ind_trans_blocks(inode, nrblocks: lblocks);
5603 return ext4_ext_index_trans_blocks(inode, extents: pextents);
5604}
5605
5606/*
5607 * Account for index blocks, block groups bitmaps and block group
5608 * descriptor blocks if modify datablocks and index blocks
5609 * worse case, the indexs blocks spread over different block groups
5610 *
5611 * If datablocks are discontiguous, they are possible to spread over
5612 * different block groups too. If they are contiguous, with flexbg,
5613 * they could still across block group boundary.
5614 *
5615 * Also account for superblock, inode, quota and xattr blocks
5616 */
5617static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5618 int pextents)
5619{
5620 ext4_group_t groups, ngroups = ext4_get_groups_count(sb: inode->i_sb);
5621 int gdpblocks;
5622 int idxblocks;
5623 int ret;
5624
5625 /*
5626 * How many index blocks need to touch to map @lblocks logical blocks
5627 * to @pextents physical extents?
5628 */
5629 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5630
5631 ret = idxblocks;
5632
5633 /*
5634 * Now let's see how many group bitmaps and group descriptors need
5635 * to account
5636 */
5637 groups = idxblocks + pextents;
5638 gdpblocks = groups;
5639 if (groups > ngroups)
5640 groups = ngroups;
5641 if (groups > EXT4_SB(sb: inode->i_sb)->s_gdb_count)
5642 gdpblocks = EXT4_SB(sb: inode->i_sb)->s_gdb_count;
5643
5644 /* bitmaps and block group descriptor blocks */
5645 ret += groups + gdpblocks;
5646
5647 /* Blocks for super block, inode, quota and xattr blocks */
5648 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5649
5650 return ret;
5651}
5652
5653/*
5654 * Calculate the total number of credits to reserve to fit
5655 * the modification of a single pages into a single transaction,
5656 * which may include multiple chunks of block allocations.
5657 *
5658 * This could be called via ext4_write_begin()
5659 *
5660 * We need to consider the worse case, when
5661 * one new block per extent.
5662 */
5663int ext4_writepage_trans_blocks(struct inode *inode)
5664{
5665 int bpp = ext4_journal_blocks_per_page(inode);
5666 int ret;
5667
5668 ret = ext4_meta_trans_blocks(inode, lblocks: bpp, pextents: bpp);
5669
5670 /* Account for data blocks for journalled mode */
5671 if (ext4_should_journal_data(inode))
5672 ret += bpp;
5673 return ret;
5674}
5675
5676/*
5677 * Calculate the journal credits for a chunk of data modification.
5678 *
5679 * This is called from DIO, fallocate or whoever calling
5680 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5681 *
5682 * journal buffers for data blocks are not included here, as DIO
5683 * and fallocate do no need to journal data buffers.
5684 */
5685int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5686{
5687 return ext4_meta_trans_blocks(inode, lblocks: nrblocks, pextents: 1);
5688}
5689
5690/*
5691 * The caller must have previously called ext4_reserve_inode_write().
5692 * Give this, we know that the caller already has write access to iloc->bh.
5693 */
5694int ext4_mark_iloc_dirty(handle_t *handle,
5695 struct inode *inode, struct ext4_iloc *iloc)
5696{
5697 int err = 0;
5698
5699 if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5700 put_bh(bh: iloc->bh);
5701 return -EIO;
5702 }
5703 ext4_fc_track_inode(handle, inode);
5704
5705 /* the do_update_inode consumes one bh->b_count */
5706 get_bh(bh: iloc->bh);
5707
5708 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5709 err = ext4_do_update_inode(handle, inode, iloc);
5710 put_bh(bh: iloc->bh);
5711 return err;
5712}
5713
5714/*
5715 * On success, We end up with an outstanding reference count against
5716 * iloc->bh. This _must_ be cleaned up later.
5717 */
5718
5719int
5720ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5721 struct ext4_iloc *iloc)
5722{
5723 int err;
5724
5725 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5726 return -EIO;
5727
5728 err = ext4_get_inode_loc(inode, iloc);
5729 if (!err) {
5730 BUFFER_TRACE(iloc->bh, "get_write_access");
5731 err = ext4_journal_get_write_access(handle, inode->i_sb,
5732 iloc->bh, EXT4_JTR_NONE);
5733 if (err) {
5734 brelse(bh: iloc->bh);
5735 iloc->bh = NULL;
5736 }
5737 }
5738 ext4_std_error(inode->i_sb, err);
5739 return err;
5740}
5741
5742static int __ext4_expand_extra_isize(struct inode *inode,
5743 unsigned int new_extra_isize,
5744 struct ext4_iloc *iloc,
5745 handle_t *handle, int *no_expand)
5746{
5747 struct ext4_inode *raw_inode;
5748 struct ext4_xattr_ibody_header *header;
5749 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5750 struct ext4_inode_info *ei = EXT4_I(inode);
5751 int error;
5752
5753 /* this was checked at iget time, but double check for good measure */
5754 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5755 (ei->i_extra_isize & 3)) {
5756 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5757 ei->i_extra_isize,
5758 EXT4_INODE_SIZE(inode->i_sb));
5759 return -EFSCORRUPTED;
5760 }
5761 if ((new_extra_isize < ei->i_extra_isize) ||
5762 (new_extra_isize < 4) ||
5763 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5764 return -EINVAL; /* Should never happen */
5765
5766 raw_inode = ext4_raw_inode(iloc);
5767
5768 header = IHDR(inode, raw_inode);
5769
5770 /* No extended attributes present */
5771 if (!ext4_test_inode_state(inode, bit: EXT4_STATE_XATTR) ||
5772 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5773 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5774 EXT4_I(inode)->i_extra_isize, 0,
5775 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5776 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5777 return 0;
5778 }
5779
5780 /*
5781 * We may need to allocate external xattr block so we need quotas
5782 * initialized. Here we can be called with various locks held so we
5783 * cannot affort to initialize quotas ourselves. So just bail.
5784 */
5785 if (dquot_initialize_needed(inode))
5786 return -EAGAIN;
5787
5788 /* try to expand with EAs present */
5789 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5790 raw_inode, handle);
5791 if (error) {
5792 /*
5793 * Inode size expansion failed; don't try again
5794 */
5795 *no_expand = 1;
5796 }
5797
5798 return error;
5799}
5800
5801/*
5802 * Expand an inode by new_extra_isize bytes.
5803 * Returns 0 on success or negative error number on failure.
5804 */
5805static int ext4_try_to_expand_extra_isize(struct inode *inode,
5806 unsigned int new_extra_isize,
5807 struct ext4_iloc iloc,
5808 handle_t *handle)
5809{
5810 int no_expand;
5811 int error;
5812
5813 if (ext4_test_inode_state(inode, bit: EXT4_STATE_NO_EXPAND))
5814 return -EOVERFLOW;
5815
5816 /*
5817 * In nojournal mode, we can immediately attempt to expand
5818 * the inode. When journaled, we first need to obtain extra
5819 * buffer credits since we may write into the EA block
5820 * with this same handle. If journal_extend fails, then it will
5821 * only result in a minor loss of functionality for that inode.
5822 * If this is felt to be critical, then e2fsck should be run to
5823 * force a large enough s_min_extra_isize.
5824 */
5825 if (ext4_journal_extend(handle,
5826 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), revoke: 0) != 0)
5827 return -ENOSPC;
5828
5829 if (ext4_write_trylock_xattr(inode, save: &no_expand) == 0)
5830 return -EBUSY;
5831
5832 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc: &iloc,
5833 handle, no_expand: &no_expand);
5834 ext4_write_unlock_xattr(inode, save: &no_expand);
5835
5836 return error;
5837}
5838
5839int ext4_expand_extra_isize(struct inode *inode,
5840 unsigned int new_extra_isize,
5841 struct ext4_iloc *iloc)
5842{
5843 handle_t *handle;
5844 int no_expand;
5845 int error, rc;
5846
5847 if (ext4_test_inode_state(inode, bit: EXT4_STATE_NO_EXPAND)) {
5848 brelse(bh: iloc->bh);
5849 return -EOVERFLOW;
5850 }
5851
5852 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5853 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5854 if (IS_ERR(ptr: handle)) {
5855 error = PTR_ERR(ptr: handle);
5856 brelse(bh: iloc->bh);
5857 return error;
5858 }
5859
5860 ext4_write_lock_xattr(inode, save: &no_expand);
5861
5862 BUFFER_TRACE(iloc->bh, "get_write_access");
5863 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5864 EXT4_JTR_NONE);
5865 if (error) {
5866 brelse(bh: iloc->bh);
5867 goto out_unlock;
5868 }
5869
5870 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5871 handle, no_expand: &no_expand);
5872
5873 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5874 if (!error)
5875 error = rc;
5876
5877out_unlock:
5878 ext4_write_unlock_xattr(inode, save: &no_expand);
5879 ext4_journal_stop(handle);
5880 return error;
5881}
5882
5883/*
5884 * What we do here is to mark the in-core inode as clean with respect to inode
5885 * dirtiness (it may still be data-dirty).
5886 * This means that the in-core inode may be reaped by prune_icache
5887 * without having to perform any I/O. This is a very good thing,
5888 * because *any* task may call prune_icache - even ones which
5889 * have a transaction open against a different journal.
5890 *
5891 * Is this cheating? Not really. Sure, we haven't written the
5892 * inode out, but prune_icache isn't a user-visible syncing function.
5893 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5894 * we start and wait on commits.
5895 */
5896int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5897 const char *func, unsigned int line)
5898{
5899 struct ext4_iloc iloc;
5900 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
5901 int err;
5902
5903 might_sleep();
5904 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5905 err = ext4_reserve_inode_write(handle, inode, iloc: &iloc);
5906 if (err)
5907 goto out;
5908
5909 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5910 ext4_try_to_expand_extra_isize(inode, new_extra_isize: sbi->s_want_extra_isize,
5911 iloc, handle);
5912
5913 err = ext4_mark_iloc_dirty(handle, inode, iloc: &iloc);
5914out:
5915 if (unlikely(err))
5916 ext4_error_inode_err(inode, func, line, 0, err,
5917 "mark_inode_dirty error");
5918 return err;
5919}
5920
5921/*
5922 * ext4_dirty_inode() is called from __mark_inode_dirty()
5923 *
5924 * We're really interested in the case where a file is being extended.
5925 * i_size has been changed by generic_commit_write() and we thus need
5926 * to include the updated inode in the current transaction.
5927 *
5928 * Also, dquot_alloc_block() will always dirty the inode when blocks
5929 * are allocated to the file.
5930 *
5931 * If the inode is marked synchronous, we don't honour that here - doing
5932 * so would cause a commit on atime updates, which we don't bother doing.
5933 * We handle synchronous inodes at the highest possible level.
5934 */
5935void ext4_dirty_inode(struct inode *inode, int flags)
5936{
5937 handle_t *handle;
5938
5939 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5940 if (IS_ERR(ptr: handle))
5941 return;
5942 ext4_mark_inode_dirty(handle, inode);
5943 ext4_journal_stop(handle);
5944}
5945
5946int ext4_change_inode_journal_flag(struct inode *inode, int val)
5947{
5948 journal_t *journal;
5949 handle_t *handle;
5950 int err;
5951 int alloc_ctx;
5952
5953 /*
5954 * We have to be very careful here: changing a data block's
5955 * journaling status dynamically is dangerous. If we write a
5956 * data block to the journal, change the status and then delete
5957 * that block, we risk forgetting to revoke the old log record
5958 * from the journal and so a subsequent replay can corrupt data.
5959 * So, first we make sure that the journal is empty and that
5960 * nobody is changing anything.
5961 */
5962
5963 journal = EXT4_JOURNAL(inode);
5964 if (!journal)
5965 return 0;
5966 if (is_journal_aborted(journal))
5967 return -EROFS;
5968
5969 /* Wait for all existing dio workers */
5970 inode_dio_wait(inode);
5971
5972 /*
5973 * Before flushing the journal and switching inode's aops, we have
5974 * to flush all dirty data the inode has. There can be outstanding
5975 * delayed allocations, there can be unwritten extents created by
5976 * fallocate or buffered writes in dioread_nolock mode covered by
5977 * dirty data which can be converted only after flushing the dirty
5978 * data (and journalled aops don't know how to handle these cases).
5979 */
5980 if (val) {
5981 filemap_invalidate_lock(mapping: inode->i_mapping);
5982 err = filemap_write_and_wait(mapping: inode->i_mapping);
5983 if (err < 0) {
5984 filemap_invalidate_unlock(mapping: inode->i_mapping);
5985 return err;
5986 }
5987 }
5988
5989 alloc_ctx = ext4_writepages_down_write(sb: inode->i_sb);
5990 jbd2_journal_lock_updates(journal);
5991
5992 /*
5993 * OK, there are no updates running now, and all cached data is
5994 * synced to disk. We are now in a completely consistent state
5995 * which doesn't have anything in the journal, and we know that
5996 * no filesystem updates are running, so it is safe to modify
5997 * the inode's in-core data-journaling state flag now.
5998 */
5999
6000 if (val)
6001 ext4_set_inode_flag(inode, bit: EXT4_INODE_JOURNAL_DATA);
6002 else {
6003 err = jbd2_journal_flush(journal, flags: 0);
6004 if (err < 0) {
6005 jbd2_journal_unlock_updates(journal);
6006 ext4_writepages_up_write(sb: inode->i_sb, ctx: alloc_ctx);
6007 return err;
6008 }
6009 ext4_clear_inode_flag(inode, bit: EXT4_INODE_JOURNAL_DATA);
6010 }
6011 ext4_set_aops(inode);
6012
6013 jbd2_journal_unlock_updates(journal);
6014 ext4_writepages_up_write(sb: inode->i_sb, ctx: alloc_ctx);
6015
6016 if (val)
6017 filemap_invalidate_unlock(mapping: inode->i_mapping);
6018
6019 /* Finally we can mark the inode as dirty. */
6020
6021 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6022 if (IS_ERR(ptr: handle))
6023 return PTR_ERR(ptr: handle);
6024
6025 ext4_fc_mark_ineligible(sb: inode->i_sb,
6026 reason: EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6027 err = ext4_mark_inode_dirty(handle, inode);
6028 ext4_handle_sync(handle);
6029 ext4_journal_stop(handle);
6030 ext4_std_error(inode->i_sb, err);
6031
6032 return err;
6033}
6034
6035static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6036 struct buffer_head *bh)
6037{
6038 return !buffer_mapped(bh);
6039}
6040
6041vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6042{
6043 struct vm_area_struct *vma = vmf->vma;
6044 struct folio *folio = page_folio(vmf->page);
6045 loff_t size;
6046 unsigned long len;
6047 int err;
6048 vm_fault_t ret;
6049 struct file *file = vma->vm_file;
6050 struct inode *inode = file_inode(f: file);
6051 struct address_space *mapping = inode->i_mapping;
6052 handle_t *handle;
6053 get_block_t *get_block;
6054 int retries = 0;
6055
6056 if (unlikely(IS_IMMUTABLE(inode)))
6057 return VM_FAULT_SIGBUS;
6058
6059 sb_start_pagefault(sb: inode->i_sb);
6060 file_update_time(file: vma->vm_file);
6061
6062 filemap_invalidate_lock_shared(mapping);
6063
6064 err = ext4_convert_inline_data(inode);
6065 if (err)
6066 goto out_ret;
6067
6068 /*
6069 * On data journalling we skip straight to the transaction handle:
6070 * there's no delalloc; page truncated will be checked later; the
6071 * early return w/ all buffers mapped (calculates size/len) can't
6072 * be used; and there's no dioread_nolock, so only ext4_get_block.
6073 */
6074 if (ext4_should_journal_data(inode))
6075 goto retry_alloc;
6076
6077 /* Delalloc case is easy... */
6078 if (test_opt(inode->i_sb, DELALLOC) &&
6079 !ext4_nonda_switch(sb: inode->i_sb)) {
6080 do {
6081 err = block_page_mkwrite(vma, vmf,
6082 get_block: ext4_da_get_block_prep);
6083 } while (err == -ENOSPC &&
6084 ext4_should_retry_alloc(sb: inode->i_sb, retries: &retries));
6085 goto out_ret;
6086 }
6087
6088 folio_lock(folio);
6089 size = i_size_read(inode);
6090 /* Page got truncated from under us? */
6091 if (folio->mapping != mapping || folio_pos(folio) > size) {
6092 folio_unlock(folio);
6093 ret = VM_FAULT_NOPAGE;
6094 goto out;
6095 }
6096
6097 len = folio_size(folio);
6098 if (folio_pos(folio) + len > size)
6099 len = size - folio_pos(folio);
6100 /*
6101 * Return if we have all the buffers mapped. This avoids the need to do
6102 * journal_start/journal_stop which can block and take a long time
6103 *
6104 * This cannot be done for data journalling, as we have to add the
6105 * inode to the transaction's list to writeprotect pages on commit.
6106 */
6107 if (folio_buffers(folio)) {
6108 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6109 from: 0, to: len, NULL,
6110 fn: ext4_bh_unmapped)) {
6111 /* Wait so that we don't change page under IO */
6112 folio_wait_stable(folio);
6113 ret = VM_FAULT_LOCKED;
6114 goto out;
6115 }
6116 }
6117 folio_unlock(folio);
6118 /* OK, we need to fill the hole... */
6119 if (ext4_should_dioread_nolock(inode))
6120 get_block = ext4_get_block_unwritten;
6121 else
6122 get_block = ext4_get_block;
6123retry_alloc:
6124 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6125 ext4_writepage_trans_blocks(inode));
6126 if (IS_ERR(ptr: handle)) {
6127 ret = VM_FAULT_SIGBUS;
6128 goto out;
6129 }
6130 /*
6131 * Data journalling can't use block_page_mkwrite() because it
6132 * will set_buffer_dirty() before do_journal_get_write_access()
6133 * thus might hit warning messages for dirty metadata buffers.
6134 */
6135 if (!ext4_should_journal_data(inode)) {
6136 err = block_page_mkwrite(vma, vmf, get_block);
6137 } else {
6138 folio_lock(folio);
6139 size = i_size_read(inode);
6140 /* Page got truncated from under us? */
6141 if (folio->mapping != mapping || folio_pos(folio) > size) {
6142 ret = VM_FAULT_NOPAGE;
6143 goto out_error;
6144 }
6145
6146 len = folio_size(folio);
6147 if (folio_pos(folio) + len > size)
6148 len = size - folio_pos(folio);
6149
6150 err = __block_write_begin(page: &folio->page, pos: 0, len, get_block: ext4_get_block);
6151 if (!err) {
6152 ret = VM_FAULT_SIGBUS;
6153 if (ext4_journal_folio_buffers(handle, folio, len))
6154 goto out_error;
6155 } else {
6156 folio_unlock(folio);
6157 }
6158 }
6159 ext4_journal_stop(handle);
6160 if (err == -ENOSPC && ext4_should_retry_alloc(sb: inode->i_sb, retries: &retries))
6161 goto retry_alloc;
6162out_ret:
6163 ret = vmf_fs_error(err);
6164out:
6165 filemap_invalidate_unlock_shared(mapping);
6166 sb_end_pagefault(sb: inode->i_sb);
6167 return ret;
6168out_error:
6169 folio_unlock(folio);
6170 ext4_journal_stop(handle);
6171 goto out;
6172}
6173

source code of linux/fs/ext4/inode.c