1 | /* SPDX-License-Identifier: GPL-2.0 */ |
2 | /* |
3 | * fs/f2fs/segment.h |
4 | * |
5 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
6 | * http://www.samsung.com/ |
7 | */ |
8 | #include <linux/blkdev.h> |
9 | #include <linux/backing-dev.h> |
10 | |
11 | /* constant macro */ |
12 | #define NULL_SEGNO ((unsigned int)(~0)) |
13 | #define NULL_SECNO ((unsigned int)(~0)) |
14 | |
15 | #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ |
16 | #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ |
17 | |
18 | #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ |
19 | #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */ |
20 | |
21 | #define INVALID_MTIME ULLONG_MAX /* no valid blocks in a segment/section */ |
22 | |
23 | /* L: Logical segment # in volume, R: Relative segment # in main area */ |
24 | #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) |
25 | #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) |
26 | |
27 | #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) |
28 | #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE) |
29 | #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA)) |
30 | |
31 | static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi, |
32 | unsigned short seg_type) |
33 | { |
34 | f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG); |
35 | } |
36 | |
37 | #define IS_CURSEG(sbi, seg) \ |
38 | (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ |
39 | ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ |
40 | ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ |
41 | ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ |
42 | ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ |
43 | ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \ |
44 | ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \ |
45 | ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno)) |
46 | |
47 | #define IS_CURSEC(sbi, secno) \ |
48 | (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ |
49 | SEGS_PER_SEC(sbi)) || \ |
50 | ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ |
51 | SEGS_PER_SEC(sbi)) || \ |
52 | ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ |
53 | SEGS_PER_SEC(sbi)) || \ |
54 | ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ |
55 | SEGS_PER_SEC(sbi)) || \ |
56 | ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ |
57 | SEGS_PER_SEC(sbi)) || \ |
58 | ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ |
59 | SEGS_PER_SEC(sbi)) || \ |
60 | ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \ |
61 | SEGS_PER_SEC(sbi)) || \ |
62 | ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \ |
63 | SEGS_PER_SEC(sbi))) |
64 | |
65 | #define MAIN_BLKADDR(sbi) \ |
66 | (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ |
67 | le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) |
68 | #define SEG0_BLKADDR(sbi) \ |
69 | (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ |
70 | le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) |
71 | |
72 | #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) |
73 | #define MAIN_SECS(sbi) ((sbi)->total_sections) |
74 | |
75 | #define TOTAL_SEGS(sbi) \ |
76 | (SM_I(sbi) ? SM_I(sbi)->segment_count : \ |
77 | le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count)) |
78 | #define TOTAL_BLKS(sbi) (SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi))) |
79 | |
80 | #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) |
81 | #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ |
82 | (sbi)->log_blocks_per_seg)) |
83 | |
84 | #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ |
85 | (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno)))) |
86 | |
87 | #define NEXT_FREE_BLKADDR(sbi, curseg) \ |
88 | (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) |
89 | |
90 | #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) |
91 | #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ |
92 | (BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr))) |
93 | #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ |
94 | (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1)) |
95 | |
96 | #define GET_SEGNO(sbi, blk_addr) \ |
97 | ((!__is_valid_data_blkaddr(blk_addr)) ? \ |
98 | NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ |
99 | GET_SEGNO_FROM_SEG0(sbi, blk_addr))) |
100 | #define CAP_BLKS_PER_SEC(sbi) \ |
101 | (BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec) |
102 | #define CAP_SEGS_PER_SEC(sbi) \ |
103 | (SEGS_PER_SEC(sbi) - \ |
104 | BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec)) |
105 | #define GET_START_SEG_FROM_SEC(sbi, segno) \ |
106 | (rounddown(segno, SEGS_PER_SEC(sbi))) |
107 | #define GET_SEC_FROM_SEG(sbi, segno) \ |
108 | (((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi)) |
109 | #define GET_SEG_FROM_SEC(sbi, secno) \ |
110 | ((secno) * SEGS_PER_SEC(sbi)) |
111 | #define GET_ZONE_FROM_SEC(sbi, secno) \ |
112 | (((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone) |
113 | #define GET_ZONE_FROM_SEG(sbi, segno) \ |
114 | GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) |
115 | |
116 | #define GET_SUM_BLOCK(sbi, segno) \ |
117 | ((sbi)->sm_info->ssa_blkaddr + (segno)) |
118 | |
119 | #define GET_SUM_TYPE(footer) ((footer)->entry_type) |
120 | #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) |
121 | |
122 | #define SIT_ENTRY_OFFSET(sit_i, segno) \ |
123 | ((segno) % (sit_i)->sents_per_block) |
124 | #define SIT_BLOCK_OFFSET(segno) \ |
125 | ((segno) / SIT_ENTRY_PER_BLOCK) |
126 | #define START_SEGNO(segno) \ |
127 | (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) |
128 | #define SIT_BLK_CNT(sbi) \ |
129 | DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK) |
130 | #define f2fs_bitmap_size(nr) \ |
131 | (BITS_TO_LONGS(nr) * sizeof(unsigned long)) |
132 | |
133 | #define SECTOR_FROM_BLOCK(blk_addr) \ |
134 | (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) |
135 | #define SECTOR_TO_BLOCK(sectors) \ |
136 | ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) |
137 | |
138 | /* |
139 | * In the victim_sel_policy->alloc_mode, there are three block allocation modes. |
140 | * LFS writes data sequentially with cleaning operations. |
141 | * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. |
142 | * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into |
143 | * fragmented segment which has similar aging degree. |
144 | */ |
145 | enum { |
146 | LFS = 0, |
147 | SSR, |
148 | AT_SSR, |
149 | }; |
150 | |
151 | /* |
152 | * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes. |
153 | * GC_CB is based on cost-benefit algorithm. |
154 | * GC_GREEDY is based on greedy algorithm. |
155 | * GC_AT is based on age-threshold algorithm. |
156 | */ |
157 | enum { |
158 | GC_CB = 0, |
159 | GC_GREEDY, |
160 | GC_AT, |
161 | ALLOC_NEXT, |
162 | FLUSH_DEVICE, |
163 | MAX_GC_POLICY, |
164 | }; |
165 | |
166 | /* |
167 | * BG_GC means the background cleaning job. |
168 | * FG_GC means the on-demand cleaning job. |
169 | */ |
170 | enum { |
171 | BG_GC = 0, |
172 | FG_GC, |
173 | }; |
174 | |
175 | /* for a function parameter to select a victim segment */ |
176 | struct victim_sel_policy { |
177 | int alloc_mode; /* LFS or SSR */ |
178 | int gc_mode; /* GC_CB or GC_GREEDY */ |
179 | unsigned long *dirty_bitmap; /* dirty segment/section bitmap */ |
180 | unsigned int max_search; /* |
181 | * maximum # of segments/sections |
182 | * to search |
183 | */ |
184 | unsigned int offset; /* last scanned bitmap offset */ |
185 | unsigned int ofs_unit; /* bitmap search unit */ |
186 | unsigned int min_cost; /* minimum cost */ |
187 | unsigned long long oldest_age; /* oldest age of segments having the same min cost */ |
188 | unsigned int min_segno; /* segment # having min. cost */ |
189 | unsigned long long age; /* mtime of GCed section*/ |
190 | unsigned long long age_threshold;/* age threshold */ |
191 | bool one_time_gc; /* one time GC */ |
192 | }; |
193 | |
194 | struct seg_entry { |
195 | unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ |
196 | unsigned int valid_blocks:10; /* # of valid blocks */ |
197 | unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ |
198 | unsigned int padding:6; /* padding */ |
199 | unsigned char *cur_valid_map; /* validity bitmap of blocks */ |
200 | #ifdef CONFIG_F2FS_CHECK_FS |
201 | unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ |
202 | #endif |
203 | /* |
204 | * # of valid blocks and the validity bitmap stored in the last |
205 | * checkpoint pack. This information is used by the SSR mode. |
206 | */ |
207 | unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ |
208 | unsigned char *discard_map; |
209 | unsigned long long mtime; /* modification time of the segment */ |
210 | }; |
211 | |
212 | struct sec_entry { |
213 | unsigned int valid_blocks; /* # of valid blocks in a section */ |
214 | unsigned int ckpt_valid_blocks; /* # of valid blocks last cp in a section */ |
215 | }; |
216 | |
217 | #define MAX_SKIP_GC_COUNT 16 |
218 | |
219 | struct revoke_entry { |
220 | struct list_head list; |
221 | block_t old_addr; /* for revoking when fail to commit */ |
222 | pgoff_t index; |
223 | }; |
224 | |
225 | struct sit_info { |
226 | block_t sit_base_addr; /* start block address of SIT area */ |
227 | block_t sit_blocks; /* # of blocks used by SIT area */ |
228 | block_t written_valid_blocks; /* # of valid blocks in main area */ |
229 | char *bitmap; /* all bitmaps pointer */ |
230 | char *sit_bitmap; /* SIT bitmap pointer */ |
231 | #ifdef CONFIG_F2FS_CHECK_FS |
232 | char *sit_bitmap_mir; /* SIT bitmap mirror */ |
233 | |
234 | /* bitmap of segments to be ignored by GC in case of errors */ |
235 | unsigned long *invalid_segmap; |
236 | #endif |
237 | unsigned int bitmap_size; /* SIT bitmap size */ |
238 | |
239 | unsigned long *tmp_map; /* bitmap for temporal use */ |
240 | unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ |
241 | unsigned int dirty_sentries; /* # of dirty sentries */ |
242 | unsigned int sents_per_block; /* # of SIT entries per block */ |
243 | struct rw_semaphore sentry_lock; /* to protect SIT cache */ |
244 | struct seg_entry *sentries; /* SIT segment-level cache */ |
245 | struct sec_entry *sec_entries; /* SIT section-level cache */ |
246 | |
247 | /* for cost-benefit algorithm in cleaning procedure */ |
248 | unsigned long long elapsed_time; /* elapsed time after mount */ |
249 | unsigned long long mounted_time; /* mount time */ |
250 | unsigned long long min_mtime; /* min. modification time */ |
251 | unsigned long long max_mtime; /* max. modification time */ |
252 | unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */ |
253 | unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */ |
254 | |
255 | unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ |
256 | }; |
257 | |
258 | struct free_segmap_info { |
259 | unsigned int start_segno; /* start segment number logically */ |
260 | unsigned int free_segments; /* # of free segments */ |
261 | unsigned int free_sections; /* # of free sections */ |
262 | spinlock_t segmap_lock; /* free segmap lock */ |
263 | unsigned long *free_segmap; /* free segment bitmap */ |
264 | unsigned long *free_secmap; /* free section bitmap */ |
265 | }; |
266 | |
267 | /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ |
268 | enum dirty_type { |
269 | DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ |
270 | DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ |
271 | DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ |
272 | DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ |
273 | DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ |
274 | DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ |
275 | DIRTY, /* to count # of dirty segments */ |
276 | PRE, /* to count # of entirely obsolete segments */ |
277 | NR_DIRTY_TYPE |
278 | }; |
279 | |
280 | struct dirty_seglist_info { |
281 | unsigned long *dirty_segmap[NR_DIRTY_TYPE]; |
282 | unsigned long *dirty_secmap; |
283 | struct mutex seglist_lock; /* lock for segment bitmaps */ |
284 | int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ |
285 | unsigned long *victim_secmap; /* background GC victims */ |
286 | unsigned long *pinned_secmap; /* pinned victims from foreground GC */ |
287 | unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */ |
288 | bool enable_pin_section; /* enable pinning section */ |
289 | }; |
290 | |
291 | /* for active log information */ |
292 | struct curseg_info { |
293 | struct mutex curseg_mutex; /* lock for consistency */ |
294 | struct f2fs_summary_block *sum_blk; /* cached summary block */ |
295 | struct rw_semaphore journal_rwsem; /* protect journal area */ |
296 | struct f2fs_journal *journal; /* cached journal info */ |
297 | unsigned char alloc_type; /* current allocation type */ |
298 | unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */ |
299 | unsigned int segno; /* current segment number */ |
300 | unsigned short next_blkoff; /* next block offset to write */ |
301 | unsigned int zone; /* current zone number */ |
302 | unsigned int next_segno; /* preallocated segment */ |
303 | int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */ |
304 | bool inited; /* indicate inmem log is inited */ |
305 | }; |
306 | |
307 | struct sit_entry_set { |
308 | struct list_head set_list; /* link with all sit sets */ |
309 | unsigned int start_segno; /* start segno of sits in set */ |
310 | unsigned int entry_cnt; /* the # of sit entries in set */ |
311 | }; |
312 | |
313 | /* |
314 | * inline functions |
315 | */ |
316 | static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) |
317 | { |
318 | return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); |
319 | } |
320 | |
321 | static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, |
322 | unsigned int segno) |
323 | { |
324 | struct sit_info *sit_i = SIT_I(sbi); |
325 | return &sit_i->sentries[segno]; |
326 | } |
327 | |
328 | static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, |
329 | unsigned int segno) |
330 | { |
331 | struct sit_info *sit_i = SIT_I(sbi); |
332 | return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; |
333 | } |
334 | |
335 | static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, |
336 | unsigned int segno, bool use_section) |
337 | { |
338 | /* |
339 | * In order to get # of valid blocks in a section instantly from many |
340 | * segments, f2fs manages two counting structures separately. |
341 | */ |
342 | if (use_section && __is_large_section(sbi)) |
343 | return get_sec_entry(sbi, segno)->valid_blocks; |
344 | else |
345 | return get_seg_entry(sbi, segno)->valid_blocks; |
346 | } |
347 | |
348 | static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi, |
349 | unsigned int segno, bool use_section) |
350 | { |
351 | if (use_section && __is_large_section(sbi)) |
352 | return get_sec_entry(sbi, segno)->ckpt_valid_blocks; |
353 | else |
354 | return get_seg_entry(sbi, segno)->ckpt_valid_blocks; |
355 | } |
356 | |
357 | static inline void set_ckpt_valid_blocks(struct f2fs_sb_info *sbi, |
358 | unsigned int segno) |
359 | { |
360 | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
361 | unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); |
362 | unsigned int blocks = 0; |
363 | int i; |
364 | |
365 | for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) { |
366 | struct seg_entry *se = get_seg_entry(sbi, segno: start_segno); |
367 | |
368 | blocks += se->ckpt_valid_blocks; |
369 | } |
370 | get_sec_entry(sbi, segno)->ckpt_valid_blocks = blocks; |
371 | } |
372 | |
373 | #ifdef CONFIG_F2FS_CHECK_FS |
374 | static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi, |
375 | unsigned int segno) |
376 | { |
377 | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
378 | unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); |
379 | unsigned int blocks = 0; |
380 | int i; |
381 | |
382 | for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) { |
383 | struct seg_entry *se = get_seg_entry(sbi, segno: start_segno); |
384 | |
385 | blocks += se->ckpt_valid_blocks; |
386 | } |
387 | |
388 | if (blocks != get_sec_entry(sbi, segno)->ckpt_valid_blocks) { |
389 | f2fs_err(sbi, |
390 | "Inconsistent ckpt valid blocks: " |
391 | "seg entry(%d) vs sec entry(%d) at secno %d" , |
392 | blocks, get_sec_entry(sbi, segno)->ckpt_valid_blocks, secno); |
393 | f2fs_bug_on(sbi, 1); |
394 | } |
395 | } |
396 | #else |
397 | static inline void sanity_check_valid_blocks(struct f2fs_sb_info *sbi, |
398 | unsigned int segno) |
399 | { |
400 | } |
401 | #endif |
402 | static inline void seg_info_from_raw_sit(struct seg_entry *se, |
403 | struct f2fs_sit_entry *rs) |
404 | { |
405 | se->valid_blocks = GET_SIT_VBLOCKS(rs); |
406 | se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); |
407 | memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); |
408 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); |
409 | #ifdef CONFIG_F2FS_CHECK_FS |
410 | memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); |
411 | #endif |
412 | se->type = GET_SIT_TYPE(rs); |
413 | se->mtime = le64_to_cpu(rs->mtime); |
414 | } |
415 | |
416 | static inline void __seg_info_to_raw_sit(struct seg_entry *se, |
417 | struct f2fs_sit_entry *rs) |
418 | { |
419 | unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | |
420 | se->valid_blocks; |
421 | rs->vblocks = cpu_to_le16(raw_vblocks); |
422 | memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); |
423 | rs->mtime = cpu_to_le64(se->mtime); |
424 | } |
425 | |
426 | static inline void seg_info_to_sit_folio(struct f2fs_sb_info *sbi, |
427 | struct folio *folio, unsigned int start) |
428 | { |
429 | struct f2fs_sit_block *raw_sit; |
430 | struct seg_entry *se; |
431 | struct f2fs_sit_entry *rs; |
432 | unsigned int end = min(start + SIT_ENTRY_PER_BLOCK, |
433 | (unsigned long)MAIN_SEGS(sbi)); |
434 | int i; |
435 | |
436 | raw_sit = folio_address(folio); |
437 | memset(raw_sit, 0, PAGE_SIZE); |
438 | for (i = 0; i < end - start; i++) { |
439 | rs = &raw_sit->entries[i]; |
440 | se = get_seg_entry(sbi, segno: start + i); |
441 | __seg_info_to_raw_sit(se, rs); |
442 | } |
443 | } |
444 | |
445 | static inline void seg_info_to_raw_sit(struct seg_entry *se, |
446 | struct f2fs_sit_entry *rs) |
447 | { |
448 | __seg_info_to_raw_sit(se, rs); |
449 | |
450 | memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); |
451 | se->ckpt_valid_blocks = se->valid_blocks; |
452 | } |
453 | |
454 | static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, |
455 | unsigned int max, unsigned int segno) |
456 | { |
457 | unsigned int ret; |
458 | spin_lock(lock: &free_i->segmap_lock); |
459 | ret = find_next_bit(addr: free_i->free_segmap, size: max, offset: segno); |
460 | spin_unlock(lock: &free_i->segmap_lock); |
461 | return ret; |
462 | } |
463 | |
464 | static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) |
465 | { |
466 | struct free_segmap_info *free_i = FREE_I(sbi); |
467 | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
468 | unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); |
469 | unsigned int next; |
470 | |
471 | spin_lock(lock: &free_i->segmap_lock); |
472 | clear_bit(nr: segno, addr: free_i->free_segmap); |
473 | free_i->free_segments++; |
474 | |
475 | next = find_next_bit(addr: free_i->free_segmap, |
476 | size: start_segno + SEGS_PER_SEC(sbi), offset: start_segno); |
477 | if (next >= start_segno + f2fs_usable_segs_in_sec(sbi)) { |
478 | clear_bit(nr: secno, addr: free_i->free_secmap); |
479 | free_i->free_sections++; |
480 | } |
481 | spin_unlock(lock: &free_i->segmap_lock); |
482 | } |
483 | |
484 | static inline void __set_inuse(struct f2fs_sb_info *sbi, |
485 | unsigned int segno) |
486 | { |
487 | struct free_segmap_info *free_i = FREE_I(sbi); |
488 | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
489 | |
490 | set_bit(nr: segno, addr: free_i->free_segmap); |
491 | free_i->free_segments--; |
492 | if (!test_and_set_bit(nr: secno, addr: free_i->free_secmap)) |
493 | free_i->free_sections--; |
494 | } |
495 | |
496 | static inline void __set_test_and_free(struct f2fs_sb_info *sbi, |
497 | unsigned int segno, bool inmem) |
498 | { |
499 | struct free_segmap_info *free_i = FREE_I(sbi); |
500 | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
501 | unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); |
502 | unsigned int next; |
503 | bool ret; |
504 | |
505 | spin_lock(lock: &free_i->segmap_lock); |
506 | ret = test_and_clear_bit(nr: segno, addr: free_i->free_segmap); |
507 | if (!ret) |
508 | goto unlock_out; |
509 | |
510 | free_i->free_segments++; |
511 | |
512 | if (!inmem && IS_CURSEC(sbi, secno)) |
513 | goto unlock_out; |
514 | |
515 | /* check large section */ |
516 | next = find_next_bit(addr: free_i->free_segmap, |
517 | size: start_segno + SEGS_PER_SEC(sbi), offset: start_segno); |
518 | if (next < start_segno + f2fs_usable_segs_in_sec(sbi)) |
519 | goto unlock_out; |
520 | |
521 | ret = test_and_clear_bit(nr: secno, addr: free_i->free_secmap); |
522 | if (!ret) |
523 | goto unlock_out; |
524 | |
525 | free_i->free_sections++; |
526 | |
527 | if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[BG_GC]) == secno) |
528 | sbi->next_victim_seg[BG_GC] = NULL_SEGNO; |
529 | if (GET_SEC_FROM_SEG(sbi, sbi->next_victim_seg[FG_GC]) == secno) |
530 | sbi->next_victim_seg[FG_GC] = NULL_SEGNO; |
531 | |
532 | unlock_out: |
533 | spin_unlock(lock: &free_i->segmap_lock); |
534 | } |
535 | |
536 | static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, |
537 | unsigned int segno) |
538 | { |
539 | struct free_segmap_info *free_i = FREE_I(sbi); |
540 | unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); |
541 | |
542 | spin_lock(lock: &free_i->segmap_lock); |
543 | if (!test_and_set_bit(nr: segno, addr: free_i->free_segmap)) { |
544 | free_i->free_segments--; |
545 | if (!test_and_set_bit(nr: secno, addr: free_i->free_secmap)) |
546 | free_i->free_sections--; |
547 | } |
548 | spin_unlock(lock: &free_i->segmap_lock); |
549 | } |
550 | |
551 | static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, |
552 | void *dst_addr) |
553 | { |
554 | struct sit_info *sit_i = SIT_I(sbi); |
555 | |
556 | #ifdef CONFIG_F2FS_CHECK_FS |
557 | if (memcmp(p: sit_i->sit_bitmap, q: sit_i->sit_bitmap_mir, |
558 | size: sit_i->bitmap_size)) |
559 | f2fs_bug_on(sbi, 1); |
560 | #endif |
561 | memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); |
562 | } |
563 | |
564 | static inline block_t written_block_count(struct f2fs_sb_info *sbi) |
565 | { |
566 | return SIT_I(sbi)->written_valid_blocks; |
567 | } |
568 | |
569 | static inline unsigned int free_segments(struct f2fs_sb_info *sbi) |
570 | { |
571 | return FREE_I(sbi)->free_segments; |
572 | } |
573 | |
574 | static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi) |
575 | { |
576 | return SM_I(sbi)->reserved_segments; |
577 | } |
578 | |
579 | static inline unsigned int free_sections(struct f2fs_sb_info *sbi) |
580 | { |
581 | return FREE_I(sbi)->free_sections; |
582 | } |
583 | |
584 | static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) |
585 | { |
586 | return DIRTY_I(sbi)->nr_dirty[PRE]; |
587 | } |
588 | |
589 | static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) |
590 | { |
591 | return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + |
592 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + |
593 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + |
594 | DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + |
595 | DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + |
596 | DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; |
597 | } |
598 | |
599 | static inline int overprovision_segments(struct f2fs_sb_info *sbi) |
600 | { |
601 | return SM_I(sbi)->ovp_segments; |
602 | } |
603 | |
604 | static inline int reserved_sections(struct f2fs_sb_info *sbi) |
605 | { |
606 | return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi)); |
607 | } |
608 | |
609 | static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi, |
610 | unsigned int node_blocks, unsigned int data_blocks, |
611 | unsigned int dent_blocks) |
612 | { |
613 | unsigned int segno, left_blocks, blocks; |
614 | int i; |
615 | |
616 | /* check current data/node sections in the worst case. */ |
617 | for (i = CURSEG_HOT_DATA; i < NR_PERSISTENT_LOG; i++) { |
618 | segno = CURSEG_I(sbi, type: i)->segno; |
619 | |
620 | if (unlikely(segno == NULL_SEGNO)) |
621 | return false; |
622 | |
623 | if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) { |
624 | left_blocks = CAP_BLKS_PER_SEC(sbi) - |
625 | SEGS_TO_BLKS(sbi, (segno - GET_START_SEG_FROM_SEC(sbi, segno))) - |
626 | CURSEG_I(sbi, type: i)->next_blkoff; |
627 | } else { |
628 | left_blocks = CAP_BLKS_PER_SEC(sbi) - |
629 | get_ckpt_valid_blocks(sbi, segno, use_section: true); |
630 | } |
631 | |
632 | blocks = i <= CURSEG_COLD_DATA ? data_blocks : node_blocks; |
633 | if (blocks > left_blocks) |
634 | return false; |
635 | } |
636 | |
637 | /* check current data section for dentry blocks. */ |
638 | segno = CURSEG_I(sbi, type: CURSEG_HOT_DATA)->segno; |
639 | |
640 | if (unlikely(segno == NULL_SEGNO)) |
641 | return false; |
642 | |
643 | if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) { |
644 | left_blocks = CAP_BLKS_PER_SEC(sbi) - |
645 | SEGS_TO_BLKS(sbi, (segno - GET_START_SEG_FROM_SEC(sbi, segno))) - |
646 | CURSEG_I(sbi, type: CURSEG_HOT_DATA)->next_blkoff; |
647 | } else { |
648 | left_blocks = CAP_BLKS_PER_SEC(sbi) - |
649 | get_ckpt_valid_blocks(sbi, segno, use_section: true); |
650 | } |
651 | |
652 | if (dent_blocks > left_blocks) |
653 | return false; |
654 | return true; |
655 | } |
656 | |
657 | /* |
658 | * calculate needed sections for dirty node/dentry and call |
659 | * has_curseg_enough_space, please note that, it needs to account |
660 | * dirty data as well in lfs mode when checkpoint is disabled. |
661 | */ |
662 | static inline void __get_secs_required(struct f2fs_sb_info *sbi, |
663 | unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p) |
664 | { |
665 | unsigned int total_node_blocks = get_pages(sbi, count_type: F2FS_DIRTY_NODES) + |
666 | get_pages(sbi, count_type: F2FS_DIRTY_DENTS) + |
667 | get_pages(sbi, count_type: F2FS_DIRTY_IMETA); |
668 | unsigned int total_dent_blocks = get_pages(sbi, count_type: F2FS_DIRTY_DENTS); |
669 | unsigned int total_data_blocks = 0; |
670 | unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi); |
671 | unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi); |
672 | unsigned int data_secs = 0; |
673 | unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi); |
674 | unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi); |
675 | unsigned int data_blocks = 0; |
676 | |
677 | if (f2fs_lfs_mode(sbi) && |
678 | unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { |
679 | total_data_blocks = get_pages(sbi, count_type: F2FS_DIRTY_DATA); |
680 | data_secs = total_data_blocks / CAP_BLKS_PER_SEC(sbi); |
681 | data_blocks = total_data_blocks % CAP_BLKS_PER_SEC(sbi); |
682 | } |
683 | |
684 | if (lower_p) |
685 | *lower_p = node_secs + dent_secs + data_secs; |
686 | if (upper_p) |
687 | *upper_p = node_secs + dent_secs + |
688 | (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0) + |
689 | (data_blocks ? 1 : 0); |
690 | if (curseg_p) |
691 | *curseg_p = has_curseg_enough_space(sbi, |
692 | node_blocks, data_blocks, dent_blocks); |
693 | } |
694 | |
695 | static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, |
696 | int freed, int needed) |
697 | { |
698 | unsigned int free_secs, lower_secs, upper_secs; |
699 | bool curseg_space; |
700 | |
701 | if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
702 | return false; |
703 | |
704 | __get_secs_required(sbi, lower_p: &lower_secs, upper_p: &upper_secs, curseg_p: &curseg_space); |
705 | |
706 | free_secs = free_sections(sbi) + freed; |
707 | lower_secs += needed + reserved_sections(sbi); |
708 | upper_secs += needed + reserved_sections(sbi); |
709 | |
710 | if (free_secs > upper_secs) |
711 | return false; |
712 | if (free_secs <= lower_secs) |
713 | return true; |
714 | return !curseg_space; |
715 | } |
716 | |
717 | static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi, |
718 | int freed, int needed) |
719 | { |
720 | return !has_not_enough_free_secs(sbi, freed, needed); |
721 | } |
722 | |
723 | static inline bool has_enough_free_blks(struct f2fs_sb_info *sbi) |
724 | { |
725 | unsigned int total_free_blocks = 0; |
726 | unsigned int avail_user_block_count; |
727 | |
728 | spin_lock(lock: &sbi->stat_lock); |
729 | |
730 | avail_user_block_count = get_available_block_count(sbi, NULL, cap: true); |
731 | total_free_blocks = avail_user_block_count - (unsigned int)valid_user_blocks(sbi); |
732 | |
733 | spin_unlock(lock: &sbi->stat_lock); |
734 | |
735 | return total_free_blocks > 0; |
736 | } |
737 | |
738 | static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi) |
739 | { |
740 | if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) |
741 | return true; |
742 | if (likely(has_enough_free_secs(sbi, 0, 0))) |
743 | return true; |
744 | if (!f2fs_lfs_mode(sbi) && |
745 | likely(has_enough_free_blks(sbi))) |
746 | return true; |
747 | return false; |
748 | } |
749 | |
750 | static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) |
751 | { |
752 | return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; |
753 | } |
754 | |
755 | static inline int utilization(struct f2fs_sb_info *sbi) |
756 | { |
757 | return div_u64(dividend: (u64)valid_user_blocks(sbi) * 100, |
758 | divisor: sbi->user_block_count); |
759 | } |
760 | |
761 | /* |
762 | * Sometimes f2fs may be better to drop out-of-place update policy. |
763 | * And, users can control the policy through sysfs entries. |
764 | * There are five policies with triggering conditions as follows. |
765 | * F2FS_IPU_FORCE - all the time, |
766 | * F2FS_IPU_SSR - if SSR mode is activated, |
767 | * F2FS_IPU_UTIL - if FS utilization is over threashold, |
768 | * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over |
769 | * threashold, |
770 | * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash |
771 | * storages. IPU will be triggered only if the # of dirty |
772 | * pages over min_fsync_blocks. (=default option) |
773 | * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests. |
774 | * F2FS_IPU_NOCACHE - disable IPU bio cache. |
775 | * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has |
776 | * FI_OPU_WRITE flag. |
777 | * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode) |
778 | */ |
779 | #define DEF_MIN_IPU_UTIL 70 |
780 | #define DEF_MIN_FSYNC_BLOCKS 8 |
781 | #define DEF_MIN_HOT_BLOCKS 16 |
782 | |
783 | #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */ |
784 | |
785 | #define F2FS_IPU_DISABLE 0 |
786 | |
787 | /* Modification on enum should be synchronized with ipu_mode_names array */ |
788 | enum { |
789 | F2FS_IPU_FORCE, |
790 | F2FS_IPU_SSR, |
791 | F2FS_IPU_UTIL, |
792 | F2FS_IPU_SSR_UTIL, |
793 | F2FS_IPU_FSYNC, |
794 | F2FS_IPU_ASYNC, |
795 | F2FS_IPU_NOCACHE, |
796 | F2FS_IPU_HONOR_OPU_WRITE, |
797 | F2FS_IPU_MAX, |
798 | }; |
799 | |
800 | static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi) |
801 | { |
802 | return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE; |
803 | } |
804 | |
805 | #define F2FS_IPU_POLICY(name) \ |
806 | static inline bool IS_##name(struct f2fs_sb_info *sbi) \ |
807 | { \ |
808 | return SM_I(sbi)->ipu_policy & BIT(name); \ |
809 | } |
810 | |
811 | F2FS_IPU_POLICY(F2FS_IPU_FORCE); |
812 | F2FS_IPU_POLICY(F2FS_IPU_SSR); |
813 | F2FS_IPU_POLICY(F2FS_IPU_UTIL); |
814 | F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL); |
815 | F2FS_IPU_POLICY(F2FS_IPU_FSYNC); |
816 | F2FS_IPU_POLICY(F2FS_IPU_ASYNC); |
817 | F2FS_IPU_POLICY(F2FS_IPU_NOCACHE); |
818 | F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE); |
819 | |
820 | static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, |
821 | int type) |
822 | { |
823 | struct curseg_info *curseg = CURSEG_I(sbi, type); |
824 | return curseg->segno; |
825 | } |
826 | |
827 | static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, |
828 | int type) |
829 | { |
830 | struct curseg_info *curseg = CURSEG_I(sbi, type); |
831 | return curseg->alloc_type; |
832 | } |
833 | |
834 | static inline bool valid_main_segno(struct f2fs_sb_info *sbi, |
835 | unsigned int segno) |
836 | { |
837 | return segno <= (MAIN_SEGS(sbi) - 1); |
838 | } |
839 | |
840 | static inline void verify_fio_blkaddr(struct f2fs_io_info *fio) |
841 | { |
842 | struct f2fs_sb_info *sbi = fio->sbi; |
843 | |
844 | if (__is_valid_data_blkaddr(blkaddr: fio->old_blkaddr)) |
845 | verify_blkaddr(sbi, blkaddr: fio->old_blkaddr, __is_meta_io(fio) ? |
846 | META_GENERIC : DATA_GENERIC); |
847 | verify_blkaddr(sbi, blkaddr: fio->new_blkaddr, __is_meta_io(fio) ? |
848 | META_GENERIC : DATA_GENERIC_ENHANCE); |
849 | } |
850 | |
851 | /* |
852 | * Summary block is always treated as an invalid block |
853 | */ |
854 | static inline int check_block_count(struct f2fs_sb_info *sbi, |
855 | int segno, struct f2fs_sit_entry *raw_sit) |
856 | { |
857 | bool is_valid = test_bit_le(nr: 0, addr: raw_sit->valid_map) ? true : false; |
858 | int valid_blocks = 0; |
859 | int cur_pos = 0, next_pos; |
860 | unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno); |
861 | |
862 | /* check bitmap with valid block count */ |
863 | do { |
864 | if (is_valid) { |
865 | next_pos = find_next_zero_bit_le(addr: &raw_sit->valid_map, |
866 | size: usable_blks_per_seg, |
867 | offset: cur_pos); |
868 | valid_blocks += next_pos - cur_pos; |
869 | } else |
870 | next_pos = find_next_bit_le(addr: &raw_sit->valid_map, |
871 | size: usable_blks_per_seg, |
872 | offset: cur_pos); |
873 | cur_pos = next_pos; |
874 | is_valid = !is_valid; |
875 | } while (cur_pos < usable_blks_per_seg); |
876 | |
877 | if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { |
878 | f2fs_err(sbi, "Mismatch valid blocks %d vs. %d" , |
879 | GET_SIT_VBLOCKS(raw_sit), valid_blocks); |
880 | set_sbi_flag(sbi, type: SBI_NEED_FSCK); |
881 | f2fs_handle_error(sbi, error: ERROR_INCONSISTENT_SIT); |
882 | return -EFSCORRUPTED; |
883 | } |
884 | |
885 | if (usable_blks_per_seg < BLKS_PER_SEG(sbi)) |
886 | f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map, |
887 | BLKS_PER_SEG(sbi), |
888 | usable_blks_per_seg) != BLKS_PER_SEG(sbi)); |
889 | |
890 | /* check segment usage, and check boundary of a given segment number */ |
891 | if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg |
892 | || !valid_main_segno(sbi, segno))) { |
893 | f2fs_err(sbi, "Wrong valid blocks %d or segno %u" , |
894 | GET_SIT_VBLOCKS(raw_sit), segno); |
895 | set_sbi_flag(sbi, type: SBI_NEED_FSCK); |
896 | f2fs_handle_error(sbi, error: ERROR_INCONSISTENT_SIT); |
897 | return -EFSCORRUPTED; |
898 | } |
899 | return 0; |
900 | } |
901 | |
902 | static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, |
903 | unsigned int start) |
904 | { |
905 | struct sit_info *sit_i = SIT_I(sbi); |
906 | unsigned int offset = SIT_BLOCK_OFFSET(start); |
907 | block_t blk_addr = sit_i->sit_base_addr + offset; |
908 | |
909 | f2fs_bug_on(sbi, !valid_main_segno(sbi, start)); |
910 | |
911 | #ifdef CONFIG_F2FS_CHECK_FS |
912 | if (f2fs_test_bit(nr: offset, addr: sit_i->sit_bitmap) != |
913 | f2fs_test_bit(nr: offset, addr: sit_i->sit_bitmap_mir)) |
914 | f2fs_bug_on(sbi, 1); |
915 | #endif |
916 | |
917 | /* calculate sit block address */ |
918 | if (f2fs_test_bit(nr: offset, addr: sit_i->sit_bitmap)) |
919 | blk_addr += sit_i->sit_blocks; |
920 | |
921 | return blk_addr; |
922 | } |
923 | |
924 | static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, |
925 | pgoff_t block_addr) |
926 | { |
927 | struct sit_info *sit_i = SIT_I(sbi); |
928 | block_addr -= sit_i->sit_base_addr; |
929 | if (block_addr < sit_i->sit_blocks) |
930 | block_addr += sit_i->sit_blocks; |
931 | else |
932 | block_addr -= sit_i->sit_blocks; |
933 | |
934 | return block_addr + sit_i->sit_base_addr; |
935 | } |
936 | |
937 | static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) |
938 | { |
939 | unsigned int block_off = SIT_BLOCK_OFFSET(start); |
940 | |
941 | f2fs_change_bit(nr: block_off, addr: sit_i->sit_bitmap); |
942 | #ifdef CONFIG_F2FS_CHECK_FS |
943 | f2fs_change_bit(nr: block_off, addr: sit_i->sit_bitmap_mir); |
944 | #endif |
945 | } |
946 | |
947 | static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi, |
948 | bool base_time) |
949 | { |
950 | struct sit_info *sit_i = SIT_I(sbi); |
951 | time64_t diff, now = ktime_get_boottime_seconds(); |
952 | |
953 | if (now >= sit_i->mounted_time) |
954 | return sit_i->elapsed_time + now - sit_i->mounted_time; |
955 | |
956 | /* system time is set to the past */ |
957 | if (!base_time) { |
958 | diff = sit_i->mounted_time - now; |
959 | if (sit_i->elapsed_time >= diff) |
960 | return sit_i->elapsed_time - diff; |
961 | return 0; |
962 | } |
963 | return sit_i->elapsed_time; |
964 | } |
965 | |
966 | static inline void set_summary(struct f2fs_summary *sum, nid_t nid, |
967 | unsigned int ofs_in_node, unsigned char version) |
968 | { |
969 | sum->nid = cpu_to_le32(nid); |
970 | sum->ofs_in_node = cpu_to_le16(ofs_in_node); |
971 | sum->version = version; |
972 | } |
973 | |
974 | static inline block_t start_sum_block(struct f2fs_sb_info *sbi) |
975 | { |
976 | return __start_cp_addr(sbi) + |
977 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); |
978 | } |
979 | |
980 | static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) |
981 | { |
982 | return __start_cp_addr(sbi) + |
983 | le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) |
984 | - (base + 1) + type; |
985 | } |
986 | |
987 | static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) |
988 | { |
989 | if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) |
990 | return true; |
991 | return false; |
992 | } |
993 | |
994 | /* |
995 | * It is very important to gather dirty pages and write at once, so that we can |
996 | * submit a big bio without interfering other data writes. |
997 | * By default, 512 pages for directory data, |
998 | * 512 pages (2MB) * 8 for nodes, and |
999 | * 256 pages * 8 for meta are set. |
1000 | */ |
1001 | static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) |
1002 | { |
1003 | if (sbi->sb->s_bdi->wb.dirty_exceeded) |
1004 | return 0; |
1005 | |
1006 | if (type == DATA) |
1007 | return BLKS_PER_SEG(sbi); |
1008 | else if (type == NODE) |
1009 | return SEGS_TO_BLKS(sbi, 8); |
1010 | else if (type == META) |
1011 | return 8 * BIO_MAX_VECS; |
1012 | else |
1013 | return 0; |
1014 | } |
1015 | |
1016 | /* |
1017 | * When writing pages, it'd better align nr_to_write for segment size. |
1018 | */ |
1019 | static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, |
1020 | struct writeback_control *wbc) |
1021 | { |
1022 | long nr_to_write, desired; |
1023 | |
1024 | if (wbc->sync_mode != WB_SYNC_NONE) |
1025 | return 0; |
1026 | |
1027 | nr_to_write = wbc->nr_to_write; |
1028 | desired = BIO_MAX_VECS; |
1029 | if (type == NODE) |
1030 | desired <<= 1; |
1031 | |
1032 | wbc->nr_to_write = desired; |
1033 | return desired - nr_to_write; |
1034 | } |
1035 | |
1036 | static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) |
1037 | { |
1038 | struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
1039 | bool wakeup = false; |
1040 | int i; |
1041 | |
1042 | if (force) |
1043 | goto wake_up; |
1044 | |
1045 | mutex_lock(&dcc->cmd_lock); |
1046 | for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { |
1047 | if (i + 1 < dcc->discard_granularity) |
1048 | break; |
1049 | if (!list_empty(head: &dcc->pend_list[i])) { |
1050 | wakeup = true; |
1051 | break; |
1052 | } |
1053 | } |
1054 | mutex_unlock(lock: &dcc->cmd_lock); |
1055 | if (!wakeup || !is_idle(sbi, type: DISCARD_TIME)) |
1056 | return; |
1057 | wake_up: |
1058 | dcc->discard_wake = true; |
1059 | wake_up_interruptible_all(&dcc->discard_wait_queue); |
1060 | } |
1061 | |