1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/checkpoint.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/bio.h>
10#include <linux/mpage.h>
11#include <linux/writeback.h>
12#include <linux/blkdev.h>
13#include <linux/f2fs_fs.h>
14#include <linux/pagevec.h>
15#include <linux/swap.h>
16#include <linux/kthread.h>
17
18#include "f2fs.h"
19#include "node.h"
20#include "segment.h"
21#include "iostat.h"
22#include <trace/events/f2fs.h>
23
24#define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25
26static struct kmem_cache *ino_entry_slab;
27struct kmem_cache *f2fs_inode_entry_slab;
28
29void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
30 unsigned char reason)
31{
32 f2fs_build_fault_attr(sbi, rate: 0, type: 0);
33 if (!end_io)
34 f2fs_flush_merged_writes(sbi);
35 f2fs_handle_critical_error(sbi, reason, irq_context: end_io);
36}
37
38/*
39 * We guarantee no failure on the returned page.
40 */
41struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
42{
43 struct address_space *mapping = META_MAPPING(sbi);
44 struct page *page;
45repeat:
46 page = f2fs_grab_cache_page(mapping, index, for_write: false);
47 if (!page) {
48 cond_resched();
49 goto repeat;
50 }
51 f2fs_wait_on_page_writeback(page, type: META, ordered: true, locked: true);
52 if (!PageUptodate(page))
53 SetPageUptodate(page);
54 return page;
55}
56
57static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
58 bool is_meta)
59{
60 struct address_space *mapping = META_MAPPING(sbi);
61 struct page *page;
62 struct f2fs_io_info fio = {
63 .sbi = sbi,
64 .type = META,
65 .op = REQ_OP_READ,
66 .op_flags = REQ_META | REQ_PRIO,
67 .old_blkaddr = index,
68 .new_blkaddr = index,
69 .encrypted_page = NULL,
70 .is_por = !is_meta ? 1 : 0,
71 };
72 int err;
73
74 if (unlikely(!is_meta))
75 fio.op_flags &= ~REQ_META;
76repeat:
77 page = f2fs_grab_cache_page(mapping, index, for_write: false);
78 if (!page) {
79 cond_resched();
80 goto repeat;
81 }
82 if (PageUptodate(page))
83 goto out;
84
85 fio.page = page;
86
87 err = f2fs_submit_page_bio(fio: &fio);
88 if (err) {
89 f2fs_put_page(page, unlock: 1);
90 return ERR_PTR(error: err);
91 }
92
93 f2fs_update_iostat(sbi, NULL, type: FS_META_READ_IO, F2FS_BLKSIZE);
94
95 lock_page(page);
96 if (unlikely(page->mapping != mapping)) {
97 f2fs_put_page(page, unlock: 1);
98 goto repeat;
99 }
100
101 if (unlikely(!PageUptodate(page))) {
102 f2fs_handle_page_eio(sbi, ofs: page->index, type: META);
103 f2fs_put_page(page, unlock: 1);
104 return ERR_PTR(error: -EIO);
105 }
106out:
107 return page;
108}
109
110struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
111{
112 return __get_meta_page(sbi, index, is_meta: true);
113}
114
115struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
116{
117 struct page *page;
118 int count = 0;
119
120retry:
121 page = __get_meta_page(sbi, index, is_meta: true);
122 if (IS_ERR(ptr: page)) {
123 if (PTR_ERR(ptr: page) == -EIO &&
124 ++count <= DEFAULT_RETRY_IO_COUNT)
125 goto retry;
126 f2fs_stop_checkpoint(sbi, end_io: false, reason: STOP_CP_REASON_META_PAGE);
127 }
128 return page;
129}
130
131/* for POR only */
132struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
133{
134 return __get_meta_page(sbi, index, is_meta: false);
135}
136
137static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
138 int type)
139{
140 struct seg_entry *se;
141 unsigned int segno, offset;
142 bool exist;
143
144 if (type == DATA_GENERIC)
145 return true;
146
147 segno = GET_SEGNO(sbi, blkaddr);
148 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
149 se = get_seg_entry(sbi, segno);
150
151 exist = f2fs_test_bit(nr: offset, addr: se->cur_valid_map);
152
153 /* skip data, if we already have an error in checkpoint. */
154 if (unlikely(f2fs_cp_error(sbi)))
155 return exist;
156
157 if ((exist && type == DATA_GENERIC_ENHANCE_UPDATE) ||
158 (!exist && type == DATA_GENERIC_ENHANCE))
159 goto out_err;
160 if (!exist && type != DATA_GENERIC_ENHANCE_UPDATE)
161 goto out_handle;
162 return exist;
163
164out_err:
165 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
166 blkaddr, exist);
167 set_sbi_flag(sbi, type: SBI_NEED_FSCK);
168 dump_stack();
169out_handle:
170 f2fs_handle_error(sbi, error: ERROR_INVALID_BLKADDR);
171 return exist;
172}
173
174static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
175 block_t blkaddr, int type)
176{
177 switch (type) {
178 case META_NAT:
179 break;
180 case META_SIT:
181 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
182 goto err;
183 break;
184 case META_SSA:
185 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
186 blkaddr < SM_I(sbi)->ssa_blkaddr))
187 goto err;
188 break;
189 case META_CP:
190 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
191 blkaddr < __start_cp_addr(sbi)))
192 goto err;
193 break;
194 case META_POR:
195 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
196 blkaddr < MAIN_BLKADDR(sbi)))
197 goto err;
198 break;
199 case DATA_GENERIC:
200 case DATA_GENERIC_ENHANCE:
201 case DATA_GENERIC_ENHANCE_READ:
202 case DATA_GENERIC_ENHANCE_UPDATE:
203 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
204 blkaddr < MAIN_BLKADDR(sbi))) {
205
206 /* Skip to emit an error message. */
207 if (unlikely(f2fs_cp_error(sbi)))
208 return false;
209
210 f2fs_warn(sbi, "access invalid blkaddr:%u",
211 blkaddr);
212 set_sbi_flag(sbi, type: SBI_NEED_FSCK);
213 dump_stack();
214 goto err;
215 } else {
216 return __is_bitmap_valid(sbi, blkaddr, type);
217 }
218 break;
219 case META_GENERIC:
220 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
221 blkaddr >= MAIN_BLKADDR(sbi)))
222 goto err;
223 break;
224 default:
225 BUG();
226 }
227
228 return true;
229err:
230 f2fs_handle_error(sbi, error: ERROR_INVALID_BLKADDR);
231 return false;
232}
233
234bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
235 block_t blkaddr, int type)
236{
237 if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY))
238 return false;
239 return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
240}
241
242bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
243 block_t blkaddr, int type)
244{
245 return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
246}
247
248/*
249 * Readahead CP/NAT/SIT/SSA/POR pages
250 */
251int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
252 int type, bool sync)
253{
254 struct page *page;
255 block_t blkno = start;
256 struct f2fs_io_info fio = {
257 .sbi = sbi,
258 .type = META,
259 .op = REQ_OP_READ,
260 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
261 .encrypted_page = NULL,
262 .in_list = 0,
263 .is_por = (type == META_POR) ? 1 : 0,
264 };
265 struct blk_plug plug;
266 int err;
267
268 if (unlikely(type == META_POR))
269 fio.op_flags &= ~REQ_META;
270
271 blk_start_plug(&plug);
272 for (; nrpages-- > 0; blkno++) {
273
274 if (!f2fs_is_valid_blkaddr(sbi, blkaddr: blkno, type))
275 goto out;
276
277 switch (type) {
278 case META_NAT:
279 if (unlikely(blkno >=
280 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
281 blkno = 0;
282 /* get nat block addr */
283 fio.new_blkaddr = current_nat_addr(sbi,
284 start: blkno * NAT_ENTRY_PER_BLOCK);
285 break;
286 case META_SIT:
287 if (unlikely(blkno >= TOTAL_SEGS(sbi)))
288 goto out;
289 /* get sit block addr */
290 fio.new_blkaddr = current_sit_addr(sbi,
291 start: blkno * SIT_ENTRY_PER_BLOCK);
292 break;
293 case META_SSA:
294 case META_CP:
295 case META_POR:
296 fio.new_blkaddr = blkno;
297 break;
298 default:
299 BUG();
300 }
301
302 page = f2fs_grab_cache_page(mapping: META_MAPPING(sbi),
303 index: fio.new_blkaddr, for_write: false);
304 if (!page)
305 continue;
306 if (PageUptodate(page)) {
307 f2fs_put_page(page, unlock: 1);
308 continue;
309 }
310
311 fio.page = page;
312 err = f2fs_submit_page_bio(fio: &fio);
313 f2fs_put_page(page, unlock: err ? 1 : 0);
314
315 if (!err)
316 f2fs_update_iostat(sbi, NULL, type: FS_META_READ_IO,
317 F2FS_BLKSIZE);
318 }
319out:
320 blk_finish_plug(&plug);
321 return blkno - start;
322}
323
324void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
325 unsigned int ra_blocks)
326{
327 struct page *page;
328 bool readahead = false;
329
330 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
331 return;
332
333 page = find_get_page(mapping: META_MAPPING(sbi), offset: index);
334 if (!page || !PageUptodate(page))
335 readahead = true;
336 f2fs_put_page(page, unlock: 0);
337
338 if (readahead)
339 f2fs_ra_meta_pages(sbi, start: index, nrpages: ra_blocks, type: META_POR, sync: true);
340}
341
342static int __f2fs_write_meta_page(struct page *page,
343 struct writeback_control *wbc,
344 enum iostat_type io_type)
345{
346 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
347
348 trace_f2fs_writepage(page, type: META);
349
350 if (unlikely(f2fs_cp_error(sbi))) {
351 if (is_sbi_flag_set(sbi, type: SBI_IS_CLOSE)) {
352 ClearPageUptodate(page);
353 dec_page_count(sbi, count_type: F2FS_DIRTY_META);
354 unlock_page(page);
355 return 0;
356 }
357 goto redirty_out;
358 }
359 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
360 goto redirty_out;
361 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
362 goto redirty_out;
363
364 f2fs_do_write_meta_page(sbi, page, io_type);
365 dec_page_count(sbi, count_type: F2FS_DIRTY_META);
366
367 if (wbc->for_reclaim)
368 f2fs_submit_merged_write_cond(sbi, NULL, page, ino: 0, type: META);
369
370 unlock_page(page);
371
372 if (unlikely(f2fs_cp_error(sbi)))
373 f2fs_submit_merged_write(sbi, type: META);
374
375 return 0;
376
377redirty_out:
378 redirty_page_for_writepage(wbc, page);
379 return AOP_WRITEPAGE_ACTIVATE;
380}
381
382static int f2fs_write_meta_page(struct page *page,
383 struct writeback_control *wbc)
384{
385 return __f2fs_write_meta_page(page, wbc, io_type: FS_META_IO);
386}
387
388static int f2fs_write_meta_pages(struct address_space *mapping,
389 struct writeback_control *wbc)
390{
391 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
392 long diff, written;
393
394 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
395 goto skip_write;
396
397 /* collect a number of dirty meta pages and write together */
398 if (wbc->sync_mode != WB_SYNC_ALL &&
399 get_pages(sbi, count_type: F2FS_DIRTY_META) <
400 nr_pages_to_skip(sbi, type: META))
401 goto skip_write;
402
403 /* if locked failed, cp will flush dirty pages instead */
404 if (!f2fs_down_write_trylock(sem: &sbi->cp_global_sem))
405 goto skip_write;
406
407 trace_f2fs_writepages(inode: mapping->host, wbc, type: META);
408 diff = nr_pages_to_write(sbi, type: META, wbc);
409 written = f2fs_sync_meta_pages(sbi, type: META, nr_to_write: wbc->nr_to_write, io_type: FS_META_IO);
410 f2fs_up_write(sem: &sbi->cp_global_sem);
411 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
412 return 0;
413
414skip_write:
415 wbc->pages_skipped += get_pages(sbi, count_type: F2FS_DIRTY_META);
416 trace_f2fs_writepages(inode: mapping->host, wbc, type: META);
417 return 0;
418}
419
420long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
421 long nr_to_write, enum iostat_type io_type)
422{
423 struct address_space *mapping = META_MAPPING(sbi);
424 pgoff_t index = 0, prev = ULONG_MAX;
425 struct folio_batch fbatch;
426 long nwritten = 0;
427 int nr_folios;
428 struct writeback_control wbc = {
429 .for_reclaim = 0,
430 };
431 struct blk_plug plug;
432
433 folio_batch_init(fbatch: &fbatch);
434
435 blk_start_plug(&plug);
436
437 while ((nr_folios = filemap_get_folios_tag(mapping, start: &index,
438 end: (pgoff_t)-1,
439 PAGECACHE_TAG_DIRTY, fbatch: &fbatch))) {
440 int i;
441
442 for (i = 0; i < nr_folios; i++) {
443 struct folio *folio = fbatch.folios[i];
444
445 if (nr_to_write != LONG_MAX && i != 0 &&
446 folio->index != prev +
447 folio_nr_pages(folio: fbatch.folios[i-1])) {
448 folio_batch_release(fbatch: &fbatch);
449 goto stop;
450 }
451
452 folio_lock(folio);
453
454 if (unlikely(folio->mapping != mapping)) {
455continue_unlock:
456 folio_unlock(folio);
457 continue;
458 }
459 if (!folio_test_dirty(folio)) {
460 /* someone wrote it for us */
461 goto continue_unlock;
462 }
463
464 f2fs_wait_on_page_writeback(page: &folio->page, type: META,
465 ordered: true, locked: true);
466
467 if (!folio_clear_dirty_for_io(folio))
468 goto continue_unlock;
469
470 if (__f2fs_write_meta_page(page: &folio->page, wbc: &wbc,
471 io_type)) {
472 folio_unlock(folio);
473 break;
474 }
475 nwritten += folio_nr_pages(folio);
476 prev = folio->index;
477 if (unlikely(nwritten >= nr_to_write))
478 break;
479 }
480 folio_batch_release(fbatch: &fbatch);
481 cond_resched();
482 }
483stop:
484 if (nwritten)
485 f2fs_submit_merged_write(sbi, type);
486
487 blk_finish_plug(&plug);
488
489 return nwritten;
490}
491
492static bool f2fs_dirty_meta_folio(struct address_space *mapping,
493 struct folio *folio)
494{
495 trace_f2fs_set_page_dirty(page: &folio->page, type: META);
496
497 if (!folio_test_uptodate(folio))
498 folio_mark_uptodate(folio);
499 if (filemap_dirty_folio(mapping, folio)) {
500 inc_page_count(sbi: F2FS_M_SB(mapping), count_type: F2FS_DIRTY_META);
501 set_page_private_reference(&folio->page);
502 return true;
503 }
504 return false;
505}
506
507const struct address_space_operations f2fs_meta_aops = {
508 .writepage = f2fs_write_meta_page,
509 .writepages = f2fs_write_meta_pages,
510 .dirty_folio = f2fs_dirty_meta_folio,
511 .invalidate_folio = f2fs_invalidate_folio,
512 .release_folio = f2fs_release_folio,
513 .migrate_folio = filemap_migrate_folio,
514};
515
516static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
517 unsigned int devidx, int type)
518{
519 struct inode_management *im = &sbi->im[type];
520 struct ino_entry *e = NULL, *new = NULL;
521
522 if (type == FLUSH_INO) {
523 rcu_read_lock();
524 e = radix_tree_lookup(&im->ino_root, ino);
525 rcu_read_unlock();
526 }
527
528retry:
529 if (!e)
530 new = f2fs_kmem_cache_alloc(cachep: ino_entry_slab,
531 GFP_NOFS, nofail: true, NULL);
532
533 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
534
535 spin_lock(lock: &im->ino_lock);
536 e = radix_tree_lookup(&im->ino_root, ino);
537 if (!e) {
538 if (!new) {
539 spin_unlock(lock: &im->ino_lock);
540 radix_tree_preload_end();
541 goto retry;
542 }
543 e = new;
544 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
545 f2fs_bug_on(sbi, 1);
546
547 memset(e, 0, sizeof(struct ino_entry));
548 e->ino = ino;
549
550 list_add_tail(new: &e->list, head: &im->ino_list);
551 if (type != ORPHAN_INO)
552 im->ino_num++;
553 }
554
555 if (type == FLUSH_INO)
556 f2fs_set_bit(nr: devidx, addr: (char *)&e->dirty_device);
557
558 spin_unlock(lock: &im->ino_lock);
559 radix_tree_preload_end();
560
561 if (new && e != new)
562 kmem_cache_free(s: ino_entry_slab, objp: new);
563}
564
565static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
566{
567 struct inode_management *im = &sbi->im[type];
568 struct ino_entry *e;
569
570 spin_lock(lock: &im->ino_lock);
571 e = radix_tree_lookup(&im->ino_root, ino);
572 if (e) {
573 list_del(entry: &e->list);
574 radix_tree_delete(&im->ino_root, ino);
575 im->ino_num--;
576 spin_unlock(lock: &im->ino_lock);
577 kmem_cache_free(s: ino_entry_slab, objp: e);
578 return;
579 }
580 spin_unlock(lock: &im->ino_lock);
581}
582
583void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
584{
585 /* add new dirty ino entry into list */
586 __add_ino_entry(sbi, ino, devidx: 0, type);
587}
588
589void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
590{
591 /* remove dirty ino entry from list */
592 __remove_ino_entry(sbi, ino, type);
593}
594
595/* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
596bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
597{
598 struct inode_management *im = &sbi->im[mode];
599 struct ino_entry *e;
600
601 spin_lock(lock: &im->ino_lock);
602 e = radix_tree_lookup(&im->ino_root, ino);
603 spin_unlock(lock: &im->ino_lock);
604 return e ? true : false;
605}
606
607void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
608{
609 struct ino_entry *e, *tmp;
610 int i;
611
612 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
613 struct inode_management *im = &sbi->im[i];
614
615 spin_lock(lock: &im->ino_lock);
616 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
617 list_del(entry: &e->list);
618 radix_tree_delete(&im->ino_root, e->ino);
619 kmem_cache_free(s: ino_entry_slab, objp: e);
620 im->ino_num--;
621 }
622 spin_unlock(lock: &im->ino_lock);
623 }
624}
625
626void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
627 unsigned int devidx, int type)
628{
629 __add_ino_entry(sbi, ino, devidx, type);
630}
631
632bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
633 unsigned int devidx, int type)
634{
635 struct inode_management *im = &sbi->im[type];
636 struct ino_entry *e;
637 bool is_dirty = false;
638
639 spin_lock(lock: &im->ino_lock);
640 e = radix_tree_lookup(&im->ino_root, ino);
641 if (e && f2fs_test_bit(nr: devidx, addr: (char *)&e->dirty_device))
642 is_dirty = true;
643 spin_unlock(lock: &im->ino_lock);
644 return is_dirty;
645}
646
647int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
648{
649 struct inode_management *im = &sbi->im[ORPHAN_INO];
650 int err = 0;
651
652 spin_lock(lock: &im->ino_lock);
653
654 if (time_to_inject(sbi, FAULT_ORPHAN)) {
655 spin_unlock(lock: &im->ino_lock);
656 return -ENOSPC;
657 }
658
659 if (unlikely(im->ino_num >= sbi->max_orphans))
660 err = -ENOSPC;
661 else
662 im->ino_num++;
663 spin_unlock(lock: &im->ino_lock);
664
665 return err;
666}
667
668void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
669{
670 struct inode_management *im = &sbi->im[ORPHAN_INO];
671
672 spin_lock(lock: &im->ino_lock);
673 f2fs_bug_on(sbi, im->ino_num == 0);
674 im->ino_num--;
675 spin_unlock(lock: &im->ino_lock);
676}
677
678void f2fs_add_orphan_inode(struct inode *inode)
679{
680 /* add new orphan ino entry into list */
681 __add_ino_entry(sbi: F2FS_I_SB(inode), ino: inode->i_ino, devidx: 0, type: ORPHAN_INO);
682 f2fs_update_inode_page(inode);
683}
684
685void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
686{
687 /* remove orphan entry from orphan list */
688 __remove_ino_entry(sbi, ino, type: ORPHAN_INO);
689}
690
691static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
692{
693 struct inode *inode;
694 struct node_info ni;
695 int err;
696
697 inode = f2fs_iget_retry(sb: sbi->sb, ino);
698 if (IS_ERR(ptr: inode)) {
699 /*
700 * there should be a bug that we can't find the entry
701 * to orphan inode.
702 */
703 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
704 return PTR_ERR(ptr: inode);
705 }
706
707 err = f2fs_dquot_initialize(inode);
708 if (err) {
709 iput(inode);
710 goto err_out;
711 }
712
713 clear_nlink(inode);
714
715 /* truncate all the data during iput */
716 iput(inode);
717
718 err = f2fs_get_node_info(sbi, nid: ino, ni: &ni, checkpoint_context: false);
719 if (err)
720 goto err_out;
721
722 /* ENOMEM was fully retried in f2fs_evict_inode. */
723 if (ni.blk_addr != NULL_ADDR) {
724 err = -EIO;
725 goto err_out;
726 }
727 return 0;
728
729err_out:
730 set_sbi_flag(sbi, type: SBI_NEED_FSCK);
731 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
732 __func__, ino);
733 return err;
734}
735
736int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
737{
738 block_t start_blk, orphan_blocks, i, j;
739 int err = 0;
740
741 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
742 return 0;
743
744 if (f2fs_hw_is_readonly(sbi)) {
745 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
746 return 0;
747 }
748
749 if (is_sbi_flag_set(sbi, type: SBI_IS_WRITABLE))
750 f2fs_info(sbi, "orphan cleanup on readonly fs");
751
752 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
753 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
754
755 f2fs_ra_meta_pages(sbi, start: start_blk, nrpages: orphan_blocks, type: META_CP, sync: true);
756
757 for (i = 0; i < orphan_blocks; i++) {
758 struct page *page;
759 struct f2fs_orphan_block *orphan_blk;
760
761 page = f2fs_get_meta_page(sbi, index: start_blk + i);
762 if (IS_ERR(ptr: page)) {
763 err = PTR_ERR(ptr: page);
764 goto out;
765 }
766
767 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
768 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
769 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
770
771 err = recover_orphan_inode(sbi, ino);
772 if (err) {
773 f2fs_put_page(page, unlock: 1);
774 goto out;
775 }
776 }
777 f2fs_put_page(page, unlock: 1);
778 }
779 /* clear Orphan Flag */
780 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
781out:
782 set_sbi_flag(sbi, type: SBI_IS_RECOVERED);
783
784 return err;
785}
786
787static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
788{
789 struct list_head *head;
790 struct f2fs_orphan_block *orphan_blk = NULL;
791 unsigned int nentries = 0;
792 unsigned short index = 1;
793 unsigned short orphan_blocks;
794 struct page *page = NULL;
795 struct ino_entry *orphan = NULL;
796 struct inode_management *im = &sbi->im[ORPHAN_INO];
797
798 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
799
800 /*
801 * we don't need to do spin_lock(&im->ino_lock) here, since all the
802 * orphan inode operations are covered under f2fs_lock_op().
803 * And, spin_lock should be avoided due to page operations below.
804 */
805 head = &im->ino_list;
806
807 /* loop for each orphan inode entry and write them in journal block */
808 list_for_each_entry(orphan, head, list) {
809 if (!page) {
810 page = f2fs_grab_meta_page(sbi, index: start_blk++);
811 orphan_blk =
812 (struct f2fs_orphan_block *)page_address(page);
813 memset(orphan_blk, 0, sizeof(*orphan_blk));
814 }
815
816 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
817
818 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
819 /*
820 * an orphan block is full of 1020 entries,
821 * then we need to flush current orphan blocks
822 * and bring another one in memory
823 */
824 orphan_blk->blk_addr = cpu_to_le16(index);
825 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
826 orphan_blk->entry_count = cpu_to_le32(nentries);
827 set_page_dirty(page);
828 f2fs_put_page(page, unlock: 1);
829 index++;
830 nentries = 0;
831 page = NULL;
832 }
833 }
834
835 if (page) {
836 orphan_blk->blk_addr = cpu_to_le16(index);
837 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
838 orphan_blk->entry_count = cpu_to_le32(nentries);
839 set_page_dirty(page);
840 f2fs_put_page(page, unlock: 1);
841 }
842}
843
844static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
845 struct f2fs_checkpoint *ckpt)
846{
847 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
848 __u32 chksum;
849
850 chksum = f2fs_crc32(sbi, address: ckpt, length: chksum_ofs);
851 if (chksum_ofs < CP_CHKSUM_OFFSET) {
852 chksum_ofs += sizeof(chksum);
853 chksum = f2fs_chksum(sbi, crc: chksum, address: (__u8 *)ckpt + chksum_ofs,
854 F2FS_BLKSIZE - chksum_ofs);
855 }
856 return chksum;
857}
858
859static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
860 struct f2fs_checkpoint **cp_block, struct page **cp_page,
861 unsigned long long *version)
862{
863 size_t crc_offset = 0;
864 __u32 crc;
865
866 *cp_page = f2fs_get_meta_page(sbi, index: cp_addr);
867 if (IS_ERR(ptr: *cp_page))
868 return PTR_ERR(ptr: *cp_page);
869
870 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
871
872 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
873 if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
874 crc_offset > CP_CHKSUM_OFFSET) {
875 f2fs_put_page(page: *cp_page, unlock: 1);
876 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
877 return -EINVAL;
878 }
879
880 crc = f2fs_checkpoint_chksum(sbi, ckpt: *cp_block);
881 if (crc != cur_cp_crc(cp: *cp_block)) {
882 f2fs_put_page(page: *cp_page, unlock: 1);
883 f2fs_warn(sbi, "invalid crc value");
884 return -EINVAL;
885 }
886
887 *version = cur_cp_version(cp: *cp_block);
888 return 0;
889}
890
891static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
892 block_t cp_addr, unsigned long long *version)
893{
894 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
895 struct f2fs_checkpoint *cp_block = NULL;
896 unsigned long long cur_version = 0, pre_version = 0;
897 unsigned int cp_blocks;
898 int err;
899
900 err = get_checkpoint_version(sbi, cp_addr, cp_block: &cp_block,
901 cp_page: &cp_page_1, version);
902 if (err)
903 return NULL;
904
905 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
906
907 if (cp_blocks > BLKS_PER_SEG(sbi) || cp_blocks <= F2FS_CP_PACKS) {
908 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
909 le32_to_cpu(cp_block->cp_pack_total_block_count));
910 goto invalid_cp;
911 }
912 pre_version = *version;
913
914 cp_addr += cp_blocks - 1;
915 err = get_checkpoint_version(sbi, cp_addr, cp_block: &cp_block,
916 cp_page: &cp_page_2, version);
917 if (err)
918 goto invalid_cp;
919 cur_version = *version;
920
921 if (cur_version == pre_version) {
922 *version = cur_version;
923 f2fs_put_page(page: cp_page_2, unlock: 1);
924 return cp_page_1;
925 }
926 f2fs_put_page(page: cp_page_2, unlock: 1);
927invalid_cp:
928 f2fs_put_page(page: cp_page_1, unlock: 1);
929 return NULL;
930}
931
932int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
933{
934 struct f2fs_checkpoint *cp_block;
935 struct f2fs_super_block *fsb = sbi->raw_super;
936 struct page *cp1, *cp2, *cur_page;
937 unsigned long blk_size = sbi->blocksize;
938 unsigned long long cp1_version = 0, cp2_version = 0;
939 unsigned long long cp_start_blk_no;
940 unsigned int cp_blks = 1 + __cp_payload(sbi);
941 block_t cp_blk_no;
942 int i;
943 int err;
944
945 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
946 GFP_KERNEL);
947 if (!sbi->ckpt)
948 return -ENOMEM;
949 /*
950 * Finding out valid cp block involves read both
951 * sets( cp pack 1 and cp pack 2)
952 */
953 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
954 cp1 = validate_checkpoint(sbi, cp_addr: cp_start_blk_no, version: &cp1_version);
955
956 /* The second checkpoint pack should start at the next segment */
957 cp_start_blk_no += ((unsigned long long)1) <<
958 le32_to_cpu(fsb->log_blocks_per_seg);
959 cp2 = validate_checkpoint(sbi, cp_addr: cp_start_blk_no, version: &cp2_version);
960
961 if (cp1 && cp2) {
962 if (ver_after(cp2_version, cp1_version))
963 cur_page = cp2;
964 else
965 cur_page = cp1;
966 } else if (cp1) {
967 cur_page = cp1;
968 } else if (cp2) {
969 cur_page = cp2;
970 } else {
971 err = -EFSCORRUPTED;
972 goto fail_no_cp;
973 }
974
975 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
976 memcpy(sbi->ckpt, cp_block, blk_size);
977
978 if (cur_page == cp1)
979 sbi->cur_cp_pack = 1;
980 else
981 sbi->cur_cp_pack = 2;
982
983 /* Sanity checking of checkpoint */
984 if (f2fs_sanity_check_ckpt(sbi)) {
985 err = -EFSCORRUPTED;
986 goto free_fail_no_cp;
987 }
988
989 if (cp_blks <= 1)
990 goto done;
991
992 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
993 if (cur_page == cp2)
994 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg));
995
996 for (i = 1; i < cp_blks; i++) {
997 void *sit_bitmap_ptr;
998 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
999
1000 cur_page = f2fs_get_meta_page(sbi, index: cp_blk_no + i);
1001 if (IS_ERR(ptr: cur_page)) {
1002 err = PTR_ERR(ptr: cur_page);
1003 goto free_fail_no_cp;
1004 }
1005 sit_bitmap_ptr = page_address(cur_page);
1006 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
1007 f2fs_put_page(page: cur_page, unlock: 1);
1008 }
1009done:
1010 f2fs_put_page(page: cp1, unlock: 1);
1011 f2fs_put_page(page: cp2, unlock: 1);
1012 return 0;
1013
1014free_fail_no_cp:
1015 f2fs_put_page(page: cp1, unlock: 1);
1016 f2fs_put_page(page: cp2, unlock: 1);
1017fail_no_cp:
1018 kvfree(addr: sbi->ckpt);
1019 return err;
1020}
1021
1022static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1023{
1024 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1025 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1026
1027 if (is_inode_flag_set(inode, flag))
1028 return;
1029
1030 set_inode_flag(inode, flag);
1031 list_add_tail(new: &F2FS_I(inode)->dirty_list, head: &sbi->inode_list[type]);
1032 stat_inc_dirty_inode(sbi, type);
1033}
1034
1035static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1036{
1037 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1038
1039 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1040 return;
1041
1042 list_del_init(entry: &F2FS_I(inode)->dirty_list);
1043 clear_inode_flag(inode, flag);
1044 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1045}
1046
1047void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1048{
1049 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1050 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1051
1052 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1053 !S_ISLNK(inode->i_mode))
1054 return;
1055
1056 spin_lock(lock: &sbi->inode_lock[type]);
1057 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1058 __add_dirty_inode(inode, type);
1059 inode_inc_dirty_pages(inode);
1060 spin_unlock(lock: &sbi->inode_lock[type]);
1061
1062 set_page_private_reference(&folio->page);
1063}
1064
1065void f2fs_remove_dirty_inode(struct inode *inode)
1066{
1067 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1068 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1069
1070 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1071 !S_ISLNK(inode->i_mode))
1072 return;
1073
1074 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1075 return;
1076
1077 spin_lock(lock: &sbi->inode_lock[type]);
1078 __remove_dirty_inode(inode, type);
1079 spin_unlock(lock: &sbi->inode_lock[type]);
1080}
1081
1082int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1083 bool from_cp)
1084{
1085 struct list_head *head;
1086 struct inode *inode;
1087 struct f2fs_inode_info *fi;
1088 bool is_dir = (type == DIR_INODE);
1089 unsigned long ino = 0;
1090
1091 trace_f2fs_sync_dirty_inodes_enter(sb: sbi->sb, type: is_dir,
1092 count: get_pages(sbi, count_type: is_dir ?
1093 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1094retry:
1095 if (unlikely(f2fs_cp_error(sbi))) {
1096 trace_f2fs_sync_dirty_inodes_exit(sb: sbi->sb, type: is_dir,
1097 count: get_pages(sbi, count_type: is_dir ?
1098 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1099 return -EIO;
1100 }
1101
1102 spin_lock(lock: &sbi->inode_lock[type]);
1103
1104 head = &sbi->inode_list[type];
1105 if (list_empty(head)) {
1106 spin_unlock(lock: &sbi->inode_lock[type]);
1107 trace_f2fs_sync_dirty_inodes_exit(sb: sbi->sb, type: is_dir,
1108 count: get_pages(sbi, count_type: is_dir ?
1109 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1110 return 0;
1111 }
1112 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1113 inode = igrab(&fi->vfs_inode);
1114 spin_unlock(lock: &sbi->inode_lock[type]);
1115 if (inode) {
1116 unsigned long cur_ino = inode->i_ino;
1117
1118 if (from_cp)
1119 F2FS_I(inode)->cp_task = current;
1120 F2FS_I(inode)->wb_task = current;
1121
1122 filemap_fdatawrite(inode->i_mapping);
1123
1124 F2FS_I(inode)->wb_task = NULL;
1125 if (from_cp)
1126 F2FS_I(inode)->cp_task = NULL;
1127
1128 iput(inode);
1129 /* We need to give cpu to another writers. */
1130 if (ino == cur_ino)
1131 cond_resched();
1132 else
1133 ino = cur_ino;
1134 } else {
1135 /*
1136 * We should submit bio, since it exists several
1137 * writebacking dentry pages in the freeing inode.
1138 */
1139 f2fs_submit_merged_write(sbi, type: DATA);
1140 cond_resched();
1141 }
1142 goto retry;
1143}
1144
1145static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1146{
1147 struct list_head *head = &sbi->inode_list[DIRTY_META];
1148 struct inode *inode;
1149 struct f2fs_inode_info *fi;
1150 s64 total = get_pages(sbi, count_type: F2FS_DIRTY_IMETA);
1151
1152 while (total--) {
1153 if (unlikely(f2fs_cp_error(sbi)))
1154 return -EIO;
1155
1156 spin_lock(lock: &sbi->inode_lock[DIRTY_META]);
1157 if (list_empty(head)) {
1158 spin_unlock(lock: &sbi->inode_lock[DIRTY_META]);
1159 return 0;
1160 }
1161 fi = list_first_entry(head, struct f2fs_inode_info,
1162 gdirty_list);
1163 inode = igrab(&fi->vfs_inode);
1164 spin_unlock(lock: &sbi->inode_lock[DIRTY_META]);
1165 if (inode) {
1166 sync_inode_metadata(inode, wait: 0);
1167
1168 /* it's on eviction */
1169 if (is_inode_flag_set(inode, flag: FI_DIRTY_INODE))
1170 f2fs_update_inode_page(inode);
1171 iput(inode);
1172 }
1173 }
1174 return 0;
1175}
1176
1177static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1178{
1179 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1180 struct f2fs_nm_info *nm_i = NM_I(sbi);
1181 nid_t last_nid = nm_i->next_scan_nid;
1182
1183 next_free_nid(sbi, nid: &last_nid);
1184 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1185 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1186 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1187 ckpt->next_free_nid = cpu_to_le32(last_nid);
1188}
1189
1190static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1191{
1192 bool ret = false;
1193
1194 if (!is_journalled_quota(sbi))
1195 return false;
1196
1197 if (!f2fs_down_write_trylock(sem: &sbi->quota_sem))
1198 return true;
1199 if (is_sbi_flag_set(sbi, type: SBI_QUOTA_SKIP_FLUSH)) {
1200 ret = false;
1201 } else if (is_sbi_flag_set(sbi, type: SBI_QUOTA_NEED_REPAIR)) {
1202 ret = false;
1203 } else if (is_sbi_flag_set(sbi, type: SBI_QUOTA_NEED_FLUSH)) {
1204 clear_sbi_flag(sbi, type: SBI_QUOTA_NEED_FLUSH);
1205 ret = true;
1206 } else if (get_pages(sbi, count_type: F2FS_DIRTY_QDATA)) {
1207 ret = true;
1208 }
1209 f2fs_up_write(sem: &sbi->quota_sem);
1210 return ret;
1211}
1212
1213/*
1214 * Freeze all the FS-operations for checkpoint.
1215 */
1216static int block_operations(struct f2fs_sb_info *sbi)
1217{
1218 struct writeback_control wbc = {
1219 .sync_mode = WB_SYNC_ALL,
1220 .nr_to_write = LONG_MAX,
1221 .for_reclaim = 0,
1222 };
1223 int err = 0, cnt = 0;
1224
1225 /*
1226 * Let's flush inline_data in dirty node pages.
1227 */
1228 f2fs_flush_inline_data(sbi);
1229
1230retry_flush_quotas:
1231 f2fs_lock_all(sbi);
1232 if (__need_flush_quota(sbi)) {
1233 int locked;
1234
1235 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1236 set_sbi_flag(sbi, type: SBI_QUOTA_SKIP_FLUSH);
1237 set_sbi_flag(sbi, type: SBI_QUOTA_NEED_FLUSH);
1238 goto retry_flush_dents;
1239 }
1240 f2fs_unlock_all(sbi);
1241
1242 /* only failed during mount/umount/freeze/quotactl */
1243 locked = down_read_trylock(sem: &sbi->sb->s_umount);
1244 f2fs_quota_sync(sb: sbi->sb, type: -1);
1245 if (locked)
1246 up_read(sem: &sbi->sb->s_umount);
1247 cond_resched();
1248 goto retry_flush_quotas;
1249 }
1250
1251retry_flush_dents:
1252 /* write all the dirty dentry pages */
1253 if (get_pages(sbi, count_type: F2FS_DIRTY_DENTS)) {
1254 f2fs_unlock_all(sbi);
1255 err = f2fs_sync_dirty_inodes(sbi, type: DIR_INODE, from_cp: true);
1256 if (err)
1257 return err;
1258 cond_resched();
1259 goto retry_flush_quotas;
1260 }
1261
1262 /*
1263 * POR: we should ensure that there are no dirty node pages
1264 * until finishing nat/sit flush. inode->i_blocks can be updated.
1265 */
1266 f2fs_down_write(sem: &sbi->node_change);
1267
1268 if (get_pages(sbi, count_type: F2FS_DIRTY_IMETA)) {
1269 f2fs_up_write(sem: &sbi->node_change);
1270 f2fs_unlock_all(sbi);
1271 err = f2fs_sync_inode_meta(sbi);
1272 if (err)
1273 return err;
1274 cond_resched();
1275 goto retry_flush_quotas;
1276 }
1277
1278retry_flush_nodes:
1279 f2fs_down_write(sem: &sbi->node_write);
1280
1281 if (get_pages(sbi, count_type: F2FS_DIRTY_NODES)) {
1282 f2fs_up_write(sem: &sbi->node_write);
1283 atomic_inc(v: &sbi->wb_sync_req[NODE]);
1284 err = f2fs_sync_node_pages(sbi, wbc: &wbc, do_balance: false, io_type: FS_CP_NODE_IO);
1285 atomic_dec(v: &sbi->wb_sync_req[NODE]);
1286 if (err) {
1287 f2fs_up_write(sem: &sbi->node_change);
1288 f2fs_unlock_all(sbi);
1289 return err;
1290 }
1291 cond_resched();
1292 goto retry_flush_nodes;
1293 }
1294
1295 /*
1296 * sbi->node_change is used only for AIO write_begin path which produces
1297 * dirty node blocks and some checkpoint values by block allocation.
1298 */
1299 __prepare_cp_block(sbi);
1300 f2fs_up_write(sem: &sbi->node_change);
1301 return err;
1302}
1303
1304static void unblock_operations(struct f2fs_sb_info *sbi)
1305{
1306 f2fs_up_write(sem: &sbi->node_write);
1307 f2fs_unlock_all(sbi);
1308}
1309
1310void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1311{
1312 DEFINE_WAIT(wait);
1313
1314 for (;;) {
1315 if (!get_pages(sbi, count_type: type))
1316 break;
1317
1318 if (unlikely(f2fs_cp_error(sbi) &&
1319 !is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
1320 break;
1321
1322 if (type == F2FS_DIRTY_META)
1323 f2fs_sync_meta_pages(sbi, type: META, LONG_MAX,
1324 io_type: FS_CP_META_IO);
1325 else if (type == F2FS_WB_CP_DATA)
1326 f2fs_submit_merged_write(sbi, type: DATA);
1327
1328 prepare_to_wait(wq_head: &sbi->cp_wait, wq_entry: &wait, TASK_UNINTERRUPTIBLE);
1329 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1330 }
1331 finish_wait(wq_head: &sbi->cp_wait, wq_entry: &wait);
1332}
1333
1334static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1335{
1336 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1337 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1338 unsigned long flags;
1339
1340 if (cpc->reason & CP_UMOUNT) {
1341 if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1342 NM_I(sbi)->nat_bits_blocks > BLKS_PER_SEG(sbi)) {
1343 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1344 f2fs_notice(sbi, "Disable nat_bits due to no space");
1345 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1346 f2fs_nat_bitmap_enabled(sbi)) {
1347 f2fs_enable_nat_bits(sbi);
1348 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1349 f2fs_notice(sbi, "Rebuild and enable nat_bits");
1350 }
1351 }
1352
1353 spin_lock_irqsave(&sbi->cp_lock, flags);
1354
1355 if (cpc->reason & CP_TRIMMED)
1356 __set_ckpt_flags(cp: ckpt, CP_TRIMMED_FLAG);
1357 else
1358 __clear_ckpt_flags(cp: ckpt, CP_TRIMMED_FLAG);
1359
1360 if (cpc->reason & CP_UMOUNT)
1361 __set_ckpt_flags(cp: ckpt, CP_UMOUNT_FLAG);
1362 else
1363 __clear_ckpt_flags(cp: ckpt, CP_UMOUNT_FLAG);
1364
1365 if (cpc->reason & CP_FASTBOOT)
1366 __set_ckpt_flags(cp: ckpt, CP_FASTBOOT_FLAG);
1367 else
1368 __clear_ckpt_flags(cp: ckpt, CP_FASTBOOT_FLAG);
1369
1370 if (orphan_num)
1371 __set_ckpt_flags(cp: ckpt, CP_ORPHAN_PRESENT_FLAG);
1372 else
1373 __clear_ckpt_flags(cp: ckpt, CP_ORPHAN_PRESENT_FLAG);
1374
1375 if (is_sbi_flag_set(sbi, type: SBI_NEED_FSCK))
1376 __set_ckpt_flags(cp: ckpt, CP_FSCK_FLAG);
1377
1378 if (is_sbi_flag_set(sbi, type: SBI_IS_RESIZEFS))
1379 __set_ckpt_flags(cp: ckpt, CP_RESIZEFS_FLAG);
1380 else
1381 __clear_ckpt_flags(cp: ckpt, CP_RESIZEFS_FLAG);
1382
1383 if (is_sbi_flag_set(sbi, type: SBI_CP_DISABLED))
1384 __set_ckpt_flags(cp: ckpt, CP_DISABLED_FLAG);
1385 else
1386 __clear_ckpt_flags(cp: ckpt, CP_DISABLED_FLAG);
1387
1388 if (is_sbi_flag_set(sbi, type: SBI_CP_DISABLED_QUICK))
1389 __set_ckpt_flags(cp: ckpt, CP_DISABLED_QUICK_FLAG);
1390 else
1391 __clear_ckpt_flags(cp: ckpt, CP_DISABLED_QUICK_FLAG);
1392
1393 if (is_sbi_flag_set(sbi, type: SBI_QUOTA_SKIP_FLUSH))
1394 __set_ckpt_flags(cp: ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1395 else
1396 __clear_ckpt_flags(cp: ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1397
1398 if (is_sbi_flag_set(sbi, type: SBI_QUOTA_NEED_REPAIR))
1399 __set_ckpt_flags(cp: ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1400
1401 /* set this flag to activate crc|cp_ver for recovery */
1402 __set_ckpt_flags(cp: ckpt, CP_CRC_RECOVERY_FLAG);
1403 __clear_ckpt_flags(cp: ckpt, CP_NOCRC_RECOVERY_FLAG);
1404
1405 spin_unlock_irqrestore(lock: &sbi->cp_lock, flags);
1406}
1407
1408static void commit_checkpoint(struct f2fs_sb_info *sbi,
1409 void *src, block_t blk_addr)
1410{
1411 struct writeback_control wbc = {
1412 .for_reclaim = 0,
1413 };
1414
1415 /*
1416 * filemap_get_folios_tag and lock_page again will take
1417 * some extra time. Therefore, f2fs_update_meta_pages and
1418 * f2fs_sync_meta_pages are combined in this function.
1419 */
1420 struct page *page = f2fs_grab_meta_page(sbi, index: blk_addr);
1421 int err;
1422
1423 f2fs_wait_on_page_writeback(page, type: META, ordered: true, locked: true);
1424
1425 memcpy(page_address(page), src, PAGE_SIZE);
1426
1427 set_page_dirty(page);
1428 if (unlikely(!clear_page_dirty_for_io(page)))
1429 f2fs_bug_on(sbi, 1);
1430
1431 /* writeout cp pack 2 page */
1432 err = __f2fs_write_meta_page(page, wbc: &wbc, io_type: FS_CP_META_IO);
1433 if (unlikely(err && f2fs_cp_error(sbi))) {
1434 f2fs_put_page(page, unlock: 1);
1435 return;
1436 }
1437
1438 f2fs_bug_on(sbi, err);
1439 f2fs_put_page(page, unlock: 0);
1440
1441 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1442 f2fs_submit_merged_write(sbi, type: META_FLUSH);
1443}
1444
1445static inline u64 get_sectors_written(struct block_device *bdev)
1446{
1447 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1448}
1449
1450u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1451{
1452 if (f2fs_is_multi_device(sbi)) {
1453 u64 sectors = 0;
1454 int i;
1455
1456 for (i = 0; i < sbi->s_ndevs; i++)
1457 sectors += get_sectors_written(FDEV(i).bdev);
1458
1459 return sectors;
1460 }
1461
1462 return get_sectors_written(bdev: sbi->sb->s_bdev);
1463}
1464
1465static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1466{
1467 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1468 struct f2fs_nm_info *nm_i = NM_I(sbi);
1469 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1470 block_t start_blk;
1471 unsigned int data_sum_blocks, orphan_blocks;
1472 __u32 crc32 = 0;
1473 int i;
1474 int cp_payload_blks = __cp_payload(sbi);
1475 struct curseg_info *seg_i = CURSEG_I(sbi, type: CURSEG_HOT_NODE);
1476 u64 kbytes_written;
1477 int err;
1478
1479 /* Flush all the NAT/SIT pages */
1480 f2fs_sync_meta_pages(sbi, type: META, LONG_MAX, io_type: FS_CP_META_IO);
1481
1482 /* start to update checkpoint, cp ver is already updated previously */
1483 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1484 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1485 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1486 struct curseg_info *curseg = CURSEG_I(sbi, type: i + CURSEG_HOT_NODE);
1487
1488 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno);
1489 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1490 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type;
1491 }
1492 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1493 struct curseg_info *curseg = CURSEG_I(sbi, type: i + CURSEG_HOT_DATA);
1494
1495 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno);
1496 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1497 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type;
1498 }
1499
1500 /* 2 cp + n data seg summary + orphan inode blocks */
1501 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, for_ra: false);
1502 spin_lock_irqsave(&sbi->cp_lock, flags);
1503 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1504 __set_ckpt_flags(cp: ckpt, CP_COMPACT_SUM_FLAG);
1505 else
1506 __clear_ckpt_flags(cp: ckpt, CP_COMPACT_SUM_FLAG);
1507 spin_unlock_irqrestore(lock: &sbi->cp_lock, flags);
1508
1509 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1510 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1511 orphan_blocks);
1512
1513 if (__remain_node_summaries(reason: cpc->reason))
1514 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1515 cp_payload_blks + data_sum_blocks +
1516 orphan_blocks + NR_CURSEG_NODE_TYPE);
1517 else
1518 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1519 cp_payload_blks + data_sum_blocks +
1520 orphan_blocks);
1521
1522 /* update ckpt flag for checkpoint */
1523 update_ckpt_flags(sbi, cpc);
1524
1525 /* update SIT/NAT bitmap */
1526 get_sit_bitmap(sbi, dst_addr: __bitmap_ptr(sbi, flag: SIT_BITMAP));
1527 get_nat_bitmap(sbi, addr: __bitmap_ptr(sbi, flag: NAT_BITMAP));
1528
1529 crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1530 *((__le32 *)((unsigned char *)ckpt +
1531 le32_to_cpu(ckpt->checksum_offset)))
1532 = cpu_to_le32(crc32);
1533
1534 start_blk = __start_cp_next_addr(sbi);
1535
1536 /* write nat bits */
1537 if ((cpc->reason & CP_UMOUNT) &&
1538 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1539 __u64 cp_ver = cur_cp_version(cp: ckpt);
1540 block_t blk;
1541
1542 cp_ver |= ((__u64)crc32 << 32);
1543 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1544
1545 blk = start_blk + BLKS_PER_SEG(sbi) - nm_i->nat_bits_blocks;
1546 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1547 f2fs_update_meta_page(sbi, src: nm_i->nat_bits +
1548 (i << F2FS_BLKSIZE_BITS), blk_addr: blk + i);
1549 }
1550
1551 /* write out checkpoint buffer at block 0 */
1552 f2fs_update_meta_page(sbi, src: ckpt, blk_addr: start_blk++);
1553
1554 for (i = 1; i < 1 + cp_payload_blks; i++)
1555 f2fs_update_meta_page(sbi, src: (char *)ckpt + i * F2FS_BLKSIZE,
1556 blk_addr: start_blk++);
1557
1558 if (orphan_num) {
1559 write_orphan_inodes(sbi, start_blk);
1560 start_blk += orphan_blocks;
1561 }
1562
1563 f2fs_write_data_summaries(sbi, start_blk);
1564 start_blk += data_sum_blocks;
1565
1566 /* Record write statistics in the hot node summary */
1567 kbytes_written = sbi->kbytes_written;
1568 kbytes_written += (f2fs_get_sectors_written(sbi) -
1569 sbi->sectors_written_start) >> 1;
1570 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1571
1572 if (__remain_node_summaries(reason: cpc->reason)) {
1573 f2fs_write_node_summaries(sbi, start_blk);
1574 start_blk += NR_CURSEG_NODE_TYPE;
1575 }
1576
1577 /* update user_block_counts */
1578 sbi->last_valid_block_count = sbi->total_valid_block_count;
1579 percpu_counter_set(fbc: &sbi->alloc_valid_block_count, amount: 0);
1580 percpu_counter_set(fbc: &sbi->rf_node_block_count, amount: 0);
1581
1582 /* Here, we have one bio having CP pack except cp pack 2 page */
1583 f2fs_sync_meta_pages(sbi, type: META, LONG_MAX, io_type: FS_CP_META_IO);
1584 /* Wait for all dirty meta pages to be submitted for IO */
1585 f2fs_wait_on_all_pages(sbi, type: F2FS_DIRTY_META);
1586
1587 /* wait for previous submitted meta pages writeback */
1588 f2fs_wait_on_all_pages(sbi, type: F2FS_WB_CP_DATA);
1589
1590 /* flush all device cache */
1591 err = f2fs_flush_device_cache(sbi);
1592 if (err)
1593 return err;
1594
1595 /* barrier and flush checkpoint cp pack 2 page if it can */
1596 commit_checkpoint(sbi, src: ckpt, blk_addr: start_blk);
1597 f2fs_wait_on_all_pages(sbi, type: F2FS_WB_CP_DATA);
1598
1599 /*
1600 * invalidate intermediate page cache borrowed from meta inode which are
1601 * used for migration of encrypted, verity or compressed inode's blocks.
1602 */
1603 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1604 f2fs_sb_has_compression(sbi))
1605 f2fs_bug_on(sbi,
1606 invalidate_inode_pages2_range(META_MAPPING(sbi),
1607 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1));
1608
1609 f2fs_release_ino_entry(sbi, all: false);
1610
1611 f2fs_reset_fsync_node_info(sbi);
1612
1613 clear_sbi_flag(sbi, type: SBI_IS_DIRTY);
1614 clear_sbi_flag(sbi, type: SBI_NEED_CP);
1615 clear_sbi_flag(sbi, type: SBI_QUOTA_SKIP_FLUSH);
1616
1617 spin_lock(lock: &sbi->stat_lock);
1618 sbi->unusable_block_count = 0;
1619 spin_unlock(lock: &sbi->stat_lock);
1620
1621 __set_cp_next_pack(sbi);
1622
1623 /*
1624 * redirty superblock if metadata like node page or inode cache is
1625 * updated during writing checkpoint.
1626 */
1627 if (get_pages(sbi, count_type: F2FS_DIRTY_NODES) ||
1628 get_pages(sbi, count_type: F2FS_DIRTY_IMETA))
1629 set_sbi_flag(sbi, type: SBI_IS_DIRTY);
1630
1631 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1632
1633 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1634}
1635
1636int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1637{
1638 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1639 unsigned long long ckpt_ver;
1640 int err = 0;
1641
1642 if (f2fs_readonly(sb: sbi->sb) || f2fs_hw_is_readonly(sbi))
1643 return -EROFS;
1644
1645 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1646 if (cpc->reason != CP_PAUSE)
1647 return 0;
1648 f2fs_warn(sbi, "Start checkpoint disabled!");
1649 }
1650 if (cpc->reason != CP_RESIZE)
1651 f2fs_down_write(sem: &sbi->cp_global_sem);
1652
1653 if (!is_sbi_flag_set(sbi, type: SBI_IS_DIRTY) &&
1654 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1655 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1656 goto out;
1657 if (unlikely(f2fs_cp_error(sbi))) {
1658 err = -EIO;
1659 goto out;
1660 }
1661
1662 trace_f2fs_write_checkpoint(sb: sbi->sb, reason: cpc->reason, msg: "start block_ops");
1663
1664 err = block_operations(sbi);
1665 if (err)
1666 goto out;
1667
1668 trace_f2fs_write_checkpoint(sb: sbi->sb, reason: cpc->reason, msg: "finish block_ops");
1669
1670 f2fs_flush_merged_writes(sbi);
1671
1672 /* this is the case of multiple fstrims without any changes */
1673 if (cpc->reason & CP_DISCARD) {
1674 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1675 unblock_operations(sbi);
1676 goto out;
1677 }
1678
1679 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1680 SIT_I(sbi)->dirty_sentries == 0 &&
1681 prefree_segments(sbi) == 0) {
1682 f2fs_flush_sit_entries(sbi, cpc);
1683 f2fs_clear_prefree_segments(sbi, cpc);
1684 unblock_operations(sbi);
1685 goto out;
1686 }
1687 }
1688
1689 /*
1690 * update checkpoint pack index
1691 * Increase the version number so that
1692 * SIT entries and seg summaries are written at correct place
1693 */
1694 ckpt_ver = cur_cp_version(cp: ckpt);
1695 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1696
1697 /* write cached NAT/SIT entries to NAT/SIT area */
1698 err = f2fs_flush_nat_entries(sbi, cpc);
1699 if (err) {
1700 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1701 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1702 goto stop;
1703 }
1704
1705 f2fs_flush_sit_entries(sbi, cpc);
1706
1707 /* save inmem log status */
1708 f2fs_save_inmem_curseg(sbi);
1709
1710 err = do_checkpoint(sbi, cpc);
1711 if (err) {
1712 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1713 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1714 f2fs_release_discard_addrs(sbi);
1715 } else {
1716 f2fs_clear_prefree_segments(sbi, cpc);
1717 }
1718
1719 f2fs_restore_inmem_curseg(sbi);
1720 stat_inc_cp_count(sbi);
1721stop:
1722 unblock_operations(sbi);
1723
1724 if (cpc->reason & CP_RECOVERY)
1725 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1726
1727 /* update CP_TIME to trigger checkpoint periodically */
1728 f2fs_update_time(sbi, type: CP_TIME);
1729 trace_f2fs_write_checkpoint(sb: sbi->sb, reason: cpc->reason, msg: "finish checkpoint");
1730out:
1731 if (cpc->reason != CP_RESIZE)
1732 f2fs_up_write(sem: &sbi->cp_global_sem);
1733 return err;
1734}
1735
1736void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1737{
1738 int i;
1739
1740 for (i = 0; i < MAX_INO_ENTRY; i++) {
1741 struct inode_management *im = &sbi->im[i];
1742
1743 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1744 spin_lock_init(&im->ino_lock);
1745 INIT_LIST_HEAD(list: &im->ino_list);
1746 im->ino_num = 0;
1747 }
1748
1749 sbi->max_orphans = (BLKS_PER_SEG(sbi) - F2FS_CP_PACKS -
1750 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1751 F2FS_ORPHANS_PER_BLOCK;
1752}
1753
1754int __init f2fs_create_checkpoint_caches(void)
1755{
1756 ino_entry_slab = f2fs_kmem_cache_create(name: "f2fs_ino_entry",
1757 size: sizeof(struct ino_entry));
1758 if (!ino_entry_slab)
1759 return -ENOMEM;
1760 f2fs_inode_entry_slab = f2fs_kmem_cache_create(name: "f2fs_inode_entry",
1761 size: sizeof(struct inode_entry));
1762 if (!f2fs_inode_entry_slab) {
1763 kmem_cache_destroy(s: ino_entry_slab);
1764 return -ENOMEM;
1765 }
1766 return 0;
1767}
1768
1769void f2fs_destroy_checkpoint_caches(void)
1770{
1771 kmem_cache_destroy(s: ino_entry_slab);
1772 kmem_cache_destroy(s: f2fs_inode_entry_slab);
1773}
1774
1775static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1776{
1777 struct cp_control cpc = { .reason = CP_SYNC, };
1778 int err;
1779
1780 f2fs_down_write(sem: &sbi->gc_lock);
1781 err = f2fs_write_checkpoint(sbi, cpc: &cpc);
1782 f2fs_up_write(sem: &sbi->gc_lock);
1783
1784 return err;
1785}
1786
1787static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1788{
1789 struct ckpt_req_control *cprc = &sbi->cprc_info;
1790 struct ckpt_req *req, *next;
1791 struct llist_node *dispatch_list;
1792 u64 sum_diff = 0, diff, count = 0;
1793 int ret;
1794
1795 dispatch_list = llist_del_all(head: &cprc->issue_list);
1796 if (!dispatch_list)
1797 return;
1798 dispatch_list = llist_reverse_order(head: dispatch_list);
1799
1800 ret = __write_checkpoint_sync(sbi);
1801 atomic_inc(v: &cprc->issued_ckpt);
1802
1803 llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1804 diff = (u64)ktime_ms_delta(later: ktime_get(), earlier: req->queue_time);
1805 req->ret = ret;
1806 complete(&req->wait);
1807
1808 sum_diff += diff;
1809 count++;
1810 }
1811 atomic_sub(i: count, v: &cprc->queued_ckpt);
1812 atomic_add(i: count, v: &cprc->total_ckpt);
1813
1814 spin_lock(lock: &cprc->stat_lock);
1815 cprc->cur_time = (unsigned int)div64_u64(dividend: sum_diff, divisor: count);
1816 if (cprc->peak_time < cprc->cur_time)
1817 cprc->peak_time = cprc->cur_time;
1818 spin_unlock(lock: &cprc->stat_lock);
1819}
1820
1821static int issue_checkpoint_thread(void *data)
1822{
1823 struct f2fs_sb_info *sbi = data;
1824 struct ckpt_req_control *cprc = &sbi->cprc_info;
1825 wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1826repeat:
1827 if (kthread_should_stop())
1828 return 0;
1829
1830 if (!llist_empty(head: &cprc->issue_list))
1831 __checkpoint_and_complete_reqs(sbi);
1832
1833 wait_event_interruptible(*q,
1834 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1835 goto repeat;
1836}
1837
1838static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1839 struct ckpt_req *wait_req)
1840{
1841 struct ckpt_req_control *cprc = &sbi->cprc_info;
1842
1843 if (!llist_empty(head: &cprc->issue_list)) {
1844 __checkpoint_and_complete_reqs(sbi);
1845 } else {
1846 /* already dispatched by issue_checkpoint_thread */
1847 if (wait_req)
1848 wait_for_completion(&wait_req->wait);
1849 }
1850}
1851
1852static void init_ckpt_req(struct ckpt_req *req)
1853{
1854 memset(req, 0, sizeof(struct ckpt_req));
1855
1856 init_completion(x: &req->wait);
1857 req->queue_time = ktime_get();
1858}
1859
1860int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1861{
1862 struct ckpt_req_control *cprc = &sbi->cprc_info;
1863 struct ckpt_req req;
1864 struct cp_control cpc;
1865
1866 cpc.reason = __get_cp_reason(sbi);
1867 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1868 int ret;
1869
1870 f2fs_down_write(sem: &sbi->gc_lock);
1871 ret = f2fs_write_checkpoint(sbi, cpc: &cpc);
1872 f2fs_up_write(sem: &sbi->gc_lock);
1873
1874 return ret;
1875 }
1876
1877 if (!cprc->f2fs_issue_ckpt)
1878 return __write_checkpoint_sync(sbi);
1879
1880 init_ckpt_req(req: &req);
1881
1882 llist_add(new: &req.llnode, head: &cprc->issue_list);
1883 atomic_inc(v: &cprc->queued_ckpt);
1884
1885 /*
1886 * update issue_list before we wake up issue_checkpoint thread,
1887 * this smp_mb() pairs with another barrier in ___wait_event(),
1888 * see more details in comments of waitqueue_active().
1889 */
1890 smp_mb();
1891
1892 if (waitqueue_active(wq_head: &cprc->ckpt_wait_queue))
1893 wake_up(&cprc->ckpt_wait_queue);
1894
1895 if (cprc->f2fs_issue_ckpt)
1896 wait_for_completion(&req.wait);
1897 else
1898 flush_remained_ckpt_reqs(sbi, wait_req: &req);
1899
1900 return req.ret;
1901}
1902
1903int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1904{
1905 dev_t dev = sbi->sb->s_bdev->bd_dev;
1906 struct ckpt_req_control *cprc = &sbi->cprc_info;
1907
1908 if (cprc->f2fs_issue_ckpt)
1909 return 0;
1910
1911 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1912 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1913 if (IS_ERR(ptr: cprc->f2fs_issue_ckpt)) {
1914 int err = PTR_ERR(ptr: cprc->f2fs_issue_ckpt);
1915
1916 cprc->f2fs_issue_ckpt = NULL;
1917 return err;
1918 }
1919
1920 set_task_ioprio(task: cprc->f2fs_issue_ckpt, ioprio: cprc->ckpt_thread_ioprio);
1921
1922 return 0;
1923}
1924
1925void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1926{
1927 struct ckpt_req_control *cprc = &sbi->cprc_info;
1928 struct task_struct *ckpt_task;
1929
1930 if (!cprc->f2fs_issue_ckpt)
1931 return;
1932
1933 ckpt_task = cprc->f2fs_issue_ckpt;
1934 cprc->f2fs_issue_ckpt = NULL;
1935 kthread_stop(k: ckpt_task);
1936
1937 f2fs_flush_ckpt_thread(sbi);
1938}
1939
1940void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1941{
1942 struct ckpt_req_control *cprc = &sbi->cprc_info;
1943
1944 flush_remained_ckpt_reqs(sbi, NULL);
1945
1946 /* Let's wait for the previous dispatched checkpoint. */
1947 while (atomic_read(v: &cprc->queued_ckpt))
1948 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1949}
1950
1951void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1952{
1953 struct ckpt_req_control *cprc = &sbi->cprc_info;
1954
1955 atomic_set(v: &cprc->issued_ckpt, i: 0);
1956 atomic_set(v: &cprc->total_ckpt, i: 0);
1957 atomic_set(v: &cprc->queued_ckpt, i: 0);
1958 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1959 init_waitqueue_head(&cprc->ckpt_wait_queue);
1960 init_llist_head(list: &cprc->issue_list);
1961 spin_lock_init(&cprc->stat_lock);
1962}
1963

source code of linux/fs/f2fs/checkpoint.c