1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * linux/fs/super.c |
4 | * |
5 | * Copyright (C) 1991, 1992 Linus Torvalds |
6 | * |
7 | * super.c contains code to handle: - mount structures |
8 | * - super-block tables |
9 | * - filesystem drivers list |
10 | * - mount system call |
11 | * - umount system call |
12 | * - ustat system call |
13 | * |
14 | * GK 2/5/95 - Changed to support mounting the root fs via NFS |
15 | * |
16 | * Added kerneld support: Jacques Gelinas and Bjorn Ekwall |
17 | * Added change_root: Werner Almesberger & Hans Lermen, Feb '96 |
18 | * Added options to /proc/mounts: |
19 | * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996. |
20 | * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998 |
21 | * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000 |
22 | */ |
23 | |
24 | #include <linux/export.h> |
25 | #include <linux/slab.h> |
26 | #include <linux/blkdev.h> |
27 | #include <linux/mount.h> |
28 | #include <linux/security.h> |
29 | #include <linux/writeback.h> /* for the emergency remount stuff */ |
30 | #include <linux/idr.h> |
31 | #include <linux/mutex.h> |
32 | #include <linux/backing-dev.h> |
33 | #include <linux/rculist_bl.h> |
34 | #include <linux/fscrypt.h> |
35 | #include <linux/fsnotify.h> |
36 | #include <linux/lockdep.h> |
37 | #include <linux/user_namespace.h> |
38 | #include <linux/fs_context.h> |
39 | #include <uapi/linux/mount.h> |
40 | #include "internal.h" |
41 | |
42 | static int thaw_super_locked(struct super_block *sb, enum freeze_holder who); |
43 | |
44 | static LIST_HEAD(super_blocks); |
45 | static DEFINE_SPINLOCK(sb_lock); |
46 | |
47 | static char *sb_writers_name[SB_FREEZE_LEVELS] = { |
48 | "sb_writers", |
49 | "sb_pagefaults", |
50 | "sb_internal", |
51 | }; |
52 | |
53 | static inline void __super_lock(struct super_block *sb, bool excl) |
54 | { |
55 | if (excl) |
56 | down_write(sem: &sb->s_umount); |
57 | else |
58 | down_read(sem: &sb->s_umount); |
59 | } |
60 | |
61 | static inline void super_unlock(struct super_block *sb, bool excl) |
62 | { |
63 | if (excl) |
64 | up_write(sem: &sb->s_umount); |
65 | else |
66 | up_read(sem: &sb->s_umount); |
67 | } |
68 | |
69 | static inline void __super_lock_excl(struct super_block *sb) |
70 | { |
71 | __super_lock(sb, excl: true); |
72 | } |
73 | |
74 | static inline void super_unlock_excl(struct super_block *sb) |
75 | { |
76 | super_unlock(sb, excl: true); |
77 | } |
78 | |
79 | static inline void super_unlock_shared(struct super_block *sb) |
80 | { |
81 | super_unlock(sb, excl: false); |
82 | } |
83 | |
84 | static bool super_flags(const struct super_block *sb, unsigned int flags) |
85 | { |
86 | /* |
87 | * Pairs with smp_store_release() in super_wake() and ensures |
88 | * that we see @flags after we're woken. |
89 | */ |
90 | return smp_load_acquire(&sb->s_flags) & flags; |
91 | } |
92 | |
93 | /** |
94 | * super_lock - wait for superblock to become ready and lock it |
95 | * @sb: superblock to wait for |
96 | * @excl: whether exclusive access is required |
97 | * |
98 | * If the superblock has neither passed through vfs_get_tree() or |
99 | * generic_shutdown_super() yet wait for it to happen. Either superblock |
100 | * creation will succeed and SB_BORN is set by vfs_get_tree() or we're |
101 | * woken and we'll see SB_DYING. |
102 | * |
103 | * The caller must have acquired a temporary reference on @sb->s_count. |
104 | * |
105 | * Return: The function returns true if SB_BORN was set and with |
106 | * s_umount held. The function returns false if SB_DYING was |
107 | * set and without s_umount held. |
108 | */ |
109 | static __must_check bool super_lock(struct super_block *sb, bool excl) |
110 | { |
111 | lockdep_assert_not_held(&sb->s_umount); |
112 | |
113 | /* wait until the superblock is ready or dying */ |
114 | wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING)); |
115 | |
116 | /* Don't pointlessly acquire s_umount. */ |
117 | if (super_flags(sb, SB_DYING)) |
118 | return false; |
119 | |
120 | __super_lock(sb, excl); |
121 | |
122 | /* |
123 | * Has gone through generic_shutdown_super() in the meantime. |
124 | * @sb->s_root is NULL and @sb->s_active is 0. No one needs to |
125 | * grab a reference to this. Tell them so. |
126 | */ |
127 | if (sb->s_flags & SB_DYING) { |
128 | super_unlock(sb, excl); |
129 | return false; |
130 | } |
131 | |
132 | WARN_ON_ONCE(!(sb->s_flags & SB_BORN)); |
133 | return true; |
134 | } |
135 | |
136 | /* wait and try to acquire read-side of @sb->s_umount */ |
137 | static inline bool super_lock_shared(struct super_block *sb) |
138 | { |
139 | return super_lock(sb, excl: false); |
140 | } |
141 | |
142 | /* wait and try to acquire write-side of @sb->s_umount */ |
143 | static inline bool super_lock_excl(struct super_block *sb) |
144 | { |
145 | return super_lock(sb, excl: true); |
146 | } |
147 | |
148 | /* wake waiters */ |
149 | #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD) |
150 | static void super_wake(struct super_block *sb, unsigned int flag) |
151 | { |
152 | WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS)); |
153 | WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1); |
154 | |
155 | /* |
156 | * Pairs with smp_load_acquire() in super_lock() to make sure |
157 | * all initializations in the superblock are seen by the user |
158 | * seeing SB_BORN sent. |
159 | */ |
160 | smp_store_release(&sb->s_flags, sb->s_flags | flag); |
161 | /* |
162 | * Pairs with the barrier in prepare_to_wait_event() to make sure |
163 | * ___wait_var_event() either sees SB_BORN set or |
164 | * waitqueue_active() check in wake_up_var() sees the waiter. |
165 | */ |
166 | smp_mb(); |
167 | wake_up_var(var: &sb->s_flags); |
168 | } |
169 | |
170 | /* |
171 | * One thing we have to be careful of with a per-sb shrinker is that we don't |
172 | * drop the last active reference to the superblock from within the shrinker. |
173 | * If that happens we could trigger unregistering the shrinker from within the |
174 | * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we |
175 | * take a passive reference to the superblock to avoid this from occurring. |
176 | */ |
177 | static unsigned long super_cache_scan(struct shrinker *shrink, |
178 | struct shrink_control *sc) |
179 | { |
180 | struct super_block *sb; |
181 | long fs_objects = 0; |
182 | long total_objects; |
183 | long freed = 0; |
184 | long dentries; |
185 | long inodes; |
186 | |
187 | sb = shrink->private_data; |
188 | |
189 | /* |
190 | * Deadlock avoidance. We may hold various FS locks, and we don't want |
191 | * to recurse into the FS that called us in clear_inode() and friends.. |
192 | */ |
193 | if (!(sc->gfp_mask & __GFP_FS)) |
194 | return SHRINK_STOP; |
195 | |
196 | if (!super_trylock_shared(sb)) |
197 | return SHRINK_STOP; |
198 | |
199 | if (sb->s_op->nr_cached_objects) |
200 | fs_objects = sb->s_op->nr_cached_objects(sb, sc); |
201 | |
202 | inodes = list_lru_shrink_count(lru: &sb->s_inode_lru, sc); |
203 | dentries = list_lru_shrink_count(lru: &sb->s_dentry_lru, sc); |
204 | total_objects = dentries + inodes + fs_objects + 1; |
205 | if (!total_objects) |
206 | total_objects = 1; |
207 | |
208 | /* proportion the scan between the caches */ |
209 | dentries = mult_frac(sc->nr_to_scan, dentries, total_objects); |
210 | inodes = mult_frac(sc->nr_to_scan, inodes, total_objects); |
211 | fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects); |
212 | |
213 | /* |
214 | * prune the dcache first as the icache is pinned by it, then |
215 | * prune the icache, followed by the filesystem specific caches |
216 | * |
217 | * Ensure that we always scan at least one object - memcg kmem |
218 | * accounting uses this to fully empty the caches. |
219 | */ |
220 | sc->nr_to_scan = dentries + 1; |
221 | freed = prune_dcache_sb(sb, sc); |
222 | sc->nr_to_scan = inodes + 1; |
223 | freed += prune_icache_sb(sb, sc); |
224 | |
225 | if (fs_objects) { |
226 | sc->nr_to_scan = fs_objects + 1; |
227 | freed += sb->s_op->free_cached_objects(sb, sc); |
228 | } |
229 | |
230 | super_unlock_shared(sb); |
231 | return freed; |
232 | } |
233 | |
234 | static unsigned long super_cache_count(struct shrinker *shrink, |
235 | struct shrink_control *sc) |
236 | { |
237 | struct super_block *sb; |
238 | long total_objects = 0; |
239 | |
240 | sb = shrink->private_data; |
241 | |
242 | /* |
243 | * We don't call super_trylock_shared() here as it is a scalability |
244 | * bottleneck, so we're exposed to partial setup state. The shrinker |
245 | * rwsem does not protect filesystem operations backing |
246 | * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can |
247 | * change between super_cache_count and super_cache_scan, so we really |
248 | * don't need locks here. |
249 | * |
250 | * However, if we are currently mounting the superblock, the underlying |
251 | * filesystem might be in a state of partial construction and hence it |
252 | * is dangerous to access it. super_trylock_shared() uses a SB_BORN check |
253 | * to avoid this situation, so do the same here. The memory barrier is |
254 | * matched with the one in mount_fs() as we don't hold locks here. |
255 | */ |
256 | if (!(sb->s_flags & SB_BORN)) |
257 | return 0; |
258 | smp_rmb(); |
259 | |
260 | if (sb->s_op && sb->s_op->nr_cached_objects) |
261 | total_objects = sb->s_op->nr_cached_objects(sb, sc); |
262 | |
263 | total_objects += list_lru_shrink_count(lru: &sb->s_dentry_lru, sc); |
264 | total_objects += list_lru_shrink_count(lru: &sb->s_inode_lru, sc); |
265 | |
266 | if (!total_objects) |
267 | return SHRINK_EMPTY; |
268 | |
269 | total_objects = vfs_pressure_ratio(val: total_objects); |
270 | return total_objects; |
271 | } |
272 | |
273 | static void destroy_super_work(struct work_struct *work) |
274 | { |
275 | struct super_block *s = container_of(work, struct super_block, |
276 | destroy_work); |
277 | security_sb_free(sb: s); |
278 | put_user_ns(ns: s->s_user_ns); |
279 | kfree(objp: s->s_subtype); |
280 | for (int i = 0; i < SB_FREEZE_LEVELS; i++) |
281 | percpu_free_rwsem(&s->s_writers.rw_sem[i]); |
282 | kfree(objp: s); |
283 | } |
284 | |
285 | static void destroy_super_rcu(struct rcu_head *head) |
286 | { |
287 | struct super_block *s = container_of(head, struct super_block, rcu); |
288 | INIT_WORK(&s->destroy_work, destroy_super_work); |
289 | schedule_work(work: &s->destroy_work); |
290 | } |
291 | |
292 | /* Free a superblock that has never been seen by anyone */ |
293 | static void destroy_unused_super(struct super_block *s) |
294 | { |
295 | if (!s) |
296 | return; |
297 | super_unlock_excl(sb: s); |
298 | list_lru_destroy(lru: &s->s_dentry_lru); |
299 | list_lru_destroy(lru: &s->s_inode_lru); |
300 | shrinker_free(shrinker: s->s_shrink); |
301 | /* no delays needed */ |
302 | destroy_super_work(work: &s->destroy_work); |
303 | } |
304 | |
305 | /** |
306 | * alloc_super - create new superblock |
307 | * @type: filesystem type superblock should belong to |
308 | * @flags: the mount flags |
309 | * @user_ns: User namespace for the super_block |
310 | * |
311 | * Allocates and initializes a new &struct super_block. alloc_super() |
312 | * returns a pointer new superblock or %NULL if allocation had failed. |
313 | */ |
314 | static struct super_block *alloc_super(struct file_system_type *type, int flags, |
315 | struct user_namespace *user_ns) |
316 | { |
317 | struct super_block *s = kzalloc(size: sizeof(struct super_block), GFP_KERNEL); |
318 | static const struct super_operations default_op; |
319 | int i; |
320 | |
321 | if (!s) |
322 | return NULL; |
323 | |
324 | INIT_LIST_HEAD(list: &s->s_mounts); |
325 | s->s_user_ns = get_user_ns(ns: user_ns); |
326 | init_rwsem(&s->s_umount); |
327 | lockdep_set_class(&s->s_umount, &type->s_umount_key); |
328 | /* |
329 | * sget() can have s_umount recursion. |
330 | * |
331 | * When it cannot find a suitable sb, it allocates a new |
332 | * one (this one), and tries again to find a suitable old |
333 | * one. |
334 | * |
335 | * In case that succeeds, it will acquire the s_umount |
336 | * lock of the old one. Since these are clearly distrinct |
337 | * locks, and this object isn't exposed yet, there's no |
338 | * risk of deadlocks. |
339 | * |
340 | * Annotate this by putting this lock in a different |
341 | * subclass. |
342 | */ |
343 | down_write_nested(sem: &s->s_umount, SINGLE_DEPTH_NESTING); |
344 | |
345 | if (security_sb_alloc(sb: s)) |
346 | goto fail; |
347 | |
348 | for (i = 0; i < SB_FREEZE_LEVELS; i++) { |
349 | if (__percpu_init_rwsem(&s->s_writers.rw_sem[i], |
350 | sb_writers_name[i], |
351 | &type->s_writers_key[i])) |
352 | goto fail; |
353 | } |
354 | s->s_bdi = &noop_backing_dev_info; |
355 | s->s_flags = flags; |
356 | if (s->s_user_ns != &init_user_ns) |
357 | s->s_iflags |= SB_I_NODEV; |
358 | INIT_HLIST_NODE(h: &s->s_instances); |
359 | INIT_HLIST_BL_HEAD(&s->s_roots); |
360 | mutex_init(&s->s_sync_lock); |
361 | INIT_LIST_HEAD(list: &s->s_inodes); |
362 | spin_lock_init(&s->s_inode_list_lock); |
363 | INIT_LIST_HEAD(list: &s->s_inodes_wb); |
364 | spin_lock_init(&s->s_inode_wblist_lock); |
365 | |
366 | s->s_count = 1; |
367 | atomic_set(v: &s->s_active, i: 1); |
368 | mutex_init(&s->s_vfs_rename_mutex); |
369 | lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key); |
370 | init_rwsem(&s->s_dquot.dqio_sem); |
371 | s->s_maxbytes = MAX_NON_LFS; |
372 | s->s_op = &default_op; |
373 | s->s_time_gran = 1000000000; |
374 | s->s_time_min = TIME64_MIN; |
375 | s->s_time_max = TIME64_MAX; |
376 | |
377 | s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, |
378 | fmt: "sb-%s", type->name); |
379 | if (!s->s_shrink) |
380 | goto fail; |
381 | |
382 | s->s_shrink->scan_objects = super_cache_scan; |
383 | s->s_shrink->count_objects = super_cache_count; |
384 | s->s_shrink->batch = 1024; |
385 | s->s_shrink->private_data = s; |
386 | |
387 | if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink)) |
388 | goto fail; |
389 | if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink)) |
390 | goto fail; |
391 | return s; |
392 | |
393 | fail: |
394 | destroy_unused_super(s); |
395 | return NULL; |
396 | } |
397 | |
398 | /* Superblock refcounting */ |
399 | |
400 | /* |
401 | * Drop a superblock's refcount. The caller must hold sb_lock. |
402 | */ |
403 | static void __put_super(struct super_block *s) |
404 | { |
405 | if (!--s->s_count) { |
406 | list_del_init(entry: &s->s_list); |
407 | WARN_ON(s->s_dentry_lru.node); |
408 | WARN_ON(s->s_inode_lru.node); |
409 | WARN_ON(!list_empty(&s->s_mounts)); |
410 | call_rcu(head: &s->rcu, func: destroy_super_rcu); |
411 | } |
412 | } |
413 | |
414 | /** |
415 | * put_super - drop a temporary reference to superblock |
416 | * @sb: superblock in question |
417 | * |
418 | * Drops a temporary reference, frees superblock if there's no |
419 | * references left. |
420 | */ |
421 | void put_super(struct super_block *sb) |
422 | { |
423 | spin_lock(lock: &sb_lock); |
424 | __put_super(s: sb); |
425 | spin_unlock(lock: &sb_lock); |
426 | } |
427 | |
428 | static void kill_super_notify(struct super_block *sb) |
429 | { |
430 | lockdep_assert_not_held(&sb->s_umount); |
431 | |
432 | /* already notified earlier */ |
433 | if (sb->s_flags & SB_DEAD) |
434 | return; |
435 | |
436 | /* |
437 | * Remove it from @fs_supers so it isn't found by new |
438 | * sget{_fc}() walkers anymore. Any concurrent mounter still |
439 | * managing to grab a temporary reference is guaranteed to |
440 | * already see SB_DYING and will wait until we notify them about |
441 | * SB_DEAD. |
442 | */ |
443 | spin_lock(lock: &sb_lock); |
444 | hlist_del_init(n: &sb->s_instances); |
445 | spin_unlock(lock: &sb_lock); |
446 | |
447 | /* |
448 | * Let concurrent mounts know that this thing is really dead. |
449 | * We don't need @sb->s_umount here as every concurrent caller |
450 | * will see SB_DYING and either discard the superblock or wait |
451 | * for SB_DEAD. |
452 | */ |
453 | super_wake(sb, SB_DEAD); |
454 | } |
455 | |
456 | /** |
457 | * deactivate_locked_super - drop an active reference to superblock |
458 | * @s: superblock to deactivate |
459 | * |
460 | * Drops an active reference to superblock, converting it into a temporary |
461 | * one if there is no other active references left. In that case we |
462 | * tell fs driver to shut it down and drop the temporary reference we |
463 | * had just acquired. |
464 | * |
465 | * Caller holds exclusive lock on superblock; that lock is released. |
466 | */ |
467 | void deactivate_locked_super(struct super_block *s) |
468 | { |
469 | struct file_system_type *fs = s->s_type; |
470 | if (atomic_dec_and_test(v: &s->s_active)) { |
471 | shrinker_free(shrinker: s->s_shrink); |
472 | fs->kill_sb(s); |
473 | |
474 | kill_super_notify(sb: s); |
475 | |
476 | /* |
477 | * Since list_lru_destroy() may sleep, we cannot call it from |
478 | * put_super(), where we hold the sb_lock. Therefore we destroy |
479 | * the lru lists right now. |
480 | */ |
481 | list_lru_destroy(lru: &s->s_dentry_lru); |
482 | list_lru_destroy(lru: &s->s_inode_lru); |
483 | |
484 | put_filesystem(fs); |
485 | put_super(sb: s); |
486 | } else { |
487 | super_unlock_excl(sb: s); |
488 | } |
489 | } |
490 | |
491 | EXPORT_SYMBOL(deactivate_locked_super); |
492 | |
493 | /** |
494 | * deactivate_super - drop an active reference to superblock |
495 | * @s: superblock to deactivate |
496 | * |
497 | * Variant of deactivate_locked_super(), except that superblock is *not* |
498 | * locked by caller. If we are going to drop the final active reference, |
499 | * lock will be acquired prior to that. |
500 | */ |
501 | void deactivate_super(struct super_block *s) |
502 | { |
503 | if (!atomic_add_unless(v: &s->s_active, a: -1, u: 1)) { |
504 | __super_lock_excl(sb: s); |
505 | deactivate_locked_super(s); |
506 | } |
507 | } |
508 | |
509 | EXPORT_SYMBOL(deactivate_super); |
510 | |
511 | /** |
512 | * grab_super - acquire an active reference to a superblock |
513 | * @sb: superblock to acquire |
514 | * |
515 | * Acquire a temporary reference on a superblock and try to trade it for |
516 | * an active reference. This is used in sget{_fc}() to wait for a |
517 | * superblock to either become SB_BORN or for it to pass through |
518 | * sb->kill() and be marked as SB_DEAD. |
519 | * |
520 | * Return: This returns true if an active reference could be acquired, |
521 | * false if not. |
522 | */ |
523 | static bool grab_super(struct super_block *sb) |
524 | { |
525 | bool locked; |
526 | |
527 | sb->s_count++; |
528 | spin_unlock(lock: &sb_lock); |
529 | locked = super_lock_excl(sb); |
530 | if (locked) { |
531 | if (atomic_inc_not_zero(v: &sb->s_active)) { |
532 | put_super(sb); |
533 | return true; |
534 | } |
535 | super_unlock_excl(sb); |
536 | } |
537 | wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD)); |
538 | put_super(sb); |
539 | return false; |
540 | } |
541 | |
542 | /* |
543 | * super_trylock_shared - try to grab ->s_umount shared |
544 | * @sb: reference we are trying to grab |
545 | * |
546 | * Try to prevent fs shutdown. This is used in places where we |
547 | * cannot take an active reference but we need to ensure that the |
548 | * filesystem is not shut down while we are working on it. It returns |
549 | * false if we cannot acquire s_umount or if we lose the race and |
550 | * filesystem already got into shutdown, and returns true with the s_umount |
551 | * lock held in read mode in case of success. On successful return, |
552 | * the caller must drop the s_umount lock when done. |
553 | * |
554 | * Note that unlike get_super() et.al. this one does *not* bump ->s_count. |
555 | * The reason why it's safe is that we are OK with doing trylock instead |
556 | * of down_read(). There's a couple of places that are OK with that, but |
557 | * it's very much not a general-purpose interface. |
558 | */ |
559 | bool super_trylock_shared(struct super_block *sb) |
560 | { |
561 | if (down_read_trylock(sem: &sb->s_umount)) { |
562 | if (!(sb->s_flags & SB_DYING) && sb->s_root && |
563 | (sb->s_flags & SB_BORN)) |
564 | return true; |
565 | super_unlock_shared(sb); |
566 | } |
567 | |
568 | return false; |
569 | } |
570 | |
571 | /** |
572 | * retire_super - prevents superblock from being reused |
573 | * @sb: superblock to retire |
574 | * |
575 | * The function marks superblock to be ignored in superblock test, which |
576 | * prevents it from being reused for any new mounts. If the superblock has |
577 | * a private bdi, it also unregisters it, but doesn't reduce the refcount |
578 | * of the superblock to prevent potential races. The refcount is reduced |
579 | * by generic_shutdown_super(). The function can not be called |
580 | * concurrently with generic_shutdown_super(). It is safe to call the |
581 | * function multiple times, subsequent calls have no effect. |
582 | * |
583 | * The marker will affect the re-use only for block-device-based |
584 | * superblocks. Other superblocks will still get marked if this function |
585 | * is used, but that will not affect their reusability. |
586 | */ |
587 | void retire_super(struct super_block *sb) |
588 | { |
589 | WARN_ON(!sb->s_bdev); |
590 | __super_lock_excl(sb); |
591 | if (sb->s_iflags & SB_I_PERSB_BDI) { |
592 | bdi_unregister(bdi: sb->s_bdi); |
593 | sb->s_iflags &= ~SB_I_PERSB_BDI; |
594 | } |
595 | sb->s_iflags |= SB_I_RETIRED; |
596 | super_unlock_excl(sb); |
597 | } |
598 | EXPORT_SYMBOL(retire_super); |
599 | |
600 | /** |
601 | * generic_shutdown_super - common helper for ->kill_sb() |
602 | * @sb: superblock to kill |
603 | * |
604 | * generic_shutdown_super() does all fs-independent work on superblock |
605 | * shutdown. Typical ->kill_sb() should pick all fs-specific objects |
606 | * that need destruction out of superblock, call generic_shutdown_super() |
607 | * and release aforementioned objects. Note: dentries and inodes _are_ |
608 | * taken care of and do not need specific handling. |
609 | * |
610 | * Upon calling this function, the filesystem may no longer alter or |
611 | * rearrange the set of dentries belonging to this super_block, nor may it |
612 | * change the attachments of dentries to inodes. |
613 | */ |
614 | void generic_shutdown_super(struct super_block *sb) |
615 | { |
616 | const struct super_operations *sop = sb->s_op; |
617 | |
618 | if (sb->s_root) { |
619 | shrink_dcache_for_umount(sb); |
620 | sync_filesystem(sb); |
621 | sb->s_flags &= ~SB_ACTIVE; |
622 | |
623 | cgroup_writeback_umount(); |
624 | |
625 | /* Evict all inodes with zero refcount. */ |
626 | evict_inodes(sb); |
627 | |
628 | /* |
629 | * Clean up and evict any inodes that still have references due |
630 | * to fsnotify or the security policy. |
631 | */ |
632 | fsnotify_sb_delete(sb); |
633 | security_sb_delete(sb); |
634 | |
635 | if (sb->s_dio_done_wq) { |
636 | destroy_workqueue(wq: sb->s_dio_done_wq); |
637 | sb->s_dio_done_wq = NULL; |
638 | } |
639 | |
640 | if (sop->put_super) |
641 | sop->put_super(sb); |
642 | |
643 | /* |
644 | * Now that all potentially-encrypted inodes have been evicted, |
645 | * the fscrypt keyring can be destroyed. |
646 | */ |
647 | fscrypt_destroy_keyring(sb); |
648 | |
649 | if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes), |
650 | "VFS: Busy inodes after unmount of %s (%s)", |
651 | sb->s_id, sb->s_type->name)) { |
652 | /* |
653 | * Adding a proper bailout path here would be hard, but |
654 | * we can at least make it more likely that a later |
655 | * iput_final() or such crashes cleanly. |
656 | */ |
657 | struct inode *inode; |
658 | |
659 | spin_lock(lock: &sb->s_inode_list_lock); |
660 | list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { |
661 | inode->i_op = VFS_PTR_POISON; |
662 | inode->i_sb = VFS_PTR_POISON; |
663 | inode->i_mapping = VFS_PTR_POISON; |
664 | } |
665 | spin_unlock(lock: &sb->s_inode_list_lock); |
666 | } |
667 | } |
668 | /* |
669 | * Broadcast to everyone that grabbed a temporary reference to this |
670 | * superblock before we removed it from @fs_supers that the superblock |
671 | * is dying. Every walker of @fs_supers outside of sget{_fc}() will now |
672 | * discard this superblock and treat it as dead. |
673 | * |
674 | * We leave the superblock on @fs_supers so it can be found by |
675 | * sget{_fc}() until we passed sb->kill_sb(). |
676 | */ |
677 | super_wake(sb, SB_DYING); |
678 | super_unlock_excl(sb); |
679 | if (sb->s_bdi != &noop_backing_dev_info) { |
680 | if (sb->s_iflags & SB_I_PERSB_BDI) |
681 | bdi_unregister(bdi: sb->s_bdi); |
682 | bdi_put(bdi: sb->s_bdi); |
683 | sb->s_bdi = &noop_backing_dev_info; |
684 | } |
685 | } |
686 | |
687 | EXPORT_SYMBOL(generic_shutdown_super); |
688 | |
689 | bool mount_capable(struct fs_context *fc) |
690 | { |
691 | if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) |
692 | return capable(CAP_SYS_ADMIN); |
693 | else |
694 | return ns_capable(ns: fc->user_ns, CAP_SYS_ADMIN); |
695 | } |
696 | |
697 | /** |
698 | * sget_fc - Find or create a superblock |
699 | * @fc: Filesystem context. |
700 | * @test: Comparison callback |
701 | * @set: Setup callback |
702 | * |
703 | * Create a new superblock or find an existing one. |
704 | * |
705 | * The @test callback is used to find a matching existing superblock. |
706 | * Whether or not the requested parameters in @fc are taken into account |
707 | * is specific to the @test callback that is used. They may even be |
708 | * completely ignored. |
709 | * |
710 | * If an extant superblock is matched, it will be returned unless: |
711 | * |
712 | * (1) the namespace the filesystem context @fc and the extant |
713 | * superblock's namespace differ |
714 | * |
715 | * (2) the filesystem context @fc has requested that reusing an extant |
716 | * superblock is not allowed |
717 | * |
718 | * In both cases EBUSY will be returned. |
719 | * |
720 | * If no match is made, a new superblock will be allocated and basic |
721 | * initialisation will be performed (s_type, s_fs_info and s_id will be |
722 | * set and the @set callback will be invoked), the superblock will be |
723 | * published and it will be returned in a partially constructed state |
724 | * with SB_BORN and SB_ACTIVE as yet unset. |
725 | * |
726 | * Return: On success, an extant or newly created superblock is |
727 | * returned. On failure an error pointer is returned. |
728 | */ |
729 | struct super_block *sget_fc(struct fs_context *fc, |
730 | int (*test)(struct super_block *, struct fs_context *), |
731 | int (*set)(struct super_block *, struct fs_context *)) |
732 | { |
733 | struct super_block *s = NULL; |
734 | struct super_block *old; |
735 | struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns; |
736 | int err; |
737 | |
738 | retry: |
739 | spin_lock(lock: &sb_lock); |
740 | if (test) { |
741 | hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) { |
742 | if (test(old, fc)) |
743 | goto share_extant_sb; |
744 | } |
745 | } |
746 | if (!s) { |
747 | spin_unlock(lock: &sb_lock); |
748 | s = alloc_super(type: fc->fs_type, flags: fc->sb_flags, user_ns); |
749 | if (!s) |
750 | return ERR_PTR(error: -ENOMEM); |
751 | goto retry; |
752 | } |
753 | |
754 | s->s_fs_info = fc->s_fs_info; |
755 | err = set(s, fc); |
756 | if (err) { |
757 | s->s_fs_info = NULL; |
758 | spin_unlock(lock: &sb_lock); |
759 | destroy_unused_super(s); |
760 | return ERR_PTR(error: err); |
761 | } |
762 | fc->s_fs_info = NULL; |
763 | s->s_type = fc->fs_type; |
764 | s->s_iflags |= fc->s_iflags; |
765 | strscpy(s->s_id, s->s_type->name, sizeof(s->s_id)); |
766 | /* |
767 | * Make the superblock visible on @super_blocks and @fs_supers. |
768 | * It's in a nascent state and users should wait on SB_BORN or |
769 | * SB_DYING to be set. |
770 | */ |
771 | list_add_tail(new: &s->s_list, head: &super_blocks); |
772 | hlist_add_head(n: &s->s_instances, h: &s->s_type->fs_supers); |
773 | spin_unlock(lock: &sb_lock); |
774 | get_filesystem(fs: s->s_type); |
775 | shrinker_register(shrinker: s->s_shrink); |
776 | return s; |
777 | |
778 | share_extant_sb: |
779 | if (user_ns != old->s_user_ns || fc->exclusive) { |
780 | spin_unlock(lock: &sb_lock); |
781 | destroy_unused_super(s); |
782 | if (fc->exclusive) |
783 | warnfc(fc, "reusing existing filesystem not allowed"); |
784 | else |
785 | warnfc(fc, "reusing existing filesystem in another namespace not allowed"); |
786 | return ERR_PTR(error: -EBUSY); |
787 | } |
788 | if (!grab_super(sb: old)) |
789 | goto retry; |
790 | destroy_unused_super(s); |
791 | return old; |
792 | } |
793 | EXPORT_SYMBOL(sget_fc); |
794 | |
795 | /** |
796 | * sget - find or create a superblock |
797 | * @type: filesystem type superblock should belong to |
798 | * @test: comparison callback |
799 | * @set: setup callback |
800 | * @flags: mount flags |
801 | * @data: argument to each of them |
802 | */ |
803 | struct super_block *sget(struct file_system_type *type, |
804 | int (*test)(struct super_block *,void *), |
805 | int (*set)(struct super_block *,void *), |
806 | int flags, |
807 | void *data) |
808 | { |
809 | struct user_namespace *user_ns = current_user_ns(); |
810 | struct super_block *s = NULL; |
811 | struct super_block *old; |
812 | int err; |
813 | |
814 | /* We don't yet pass the user namespace of the parent |
815 | * mount through to here so always use &init_user_ns |
816 | * until that changes. |
817 | */ |
818 | if (flags & SB_SUBMOUNT) |
819 | user_ns = &init_user_ns; |
820 | |
821 | retry: |
822 | spin_lock(lock: &sb_lock); |
823 | if (test) { |
824 | hlist_for_each_entry(old, &type->fs_supers, s_instances) { |
825 | if (!test(old, data)) |
826 | continue; |
827 | if (user_ns != old->s_user_ns) { |
828 | spin_unlock(lock: &sb_lock); |
829 | destroy_unused_super(s); |
830 | return ERR_PTR(error: -EBUSY); |
831 | } |
832 | if (!grab_super(sb: old)) |
833 | goto retry; |
834 | destroy_unused_super(s); |
835 | return old; |
836 | } |
837 | } |
838 | if (!s) { |
839 | spin_unlock(lock: &sb_lock); |
840 | s = alloc_super(type, flags: (flags & ~SB_SUBMOUNT), user_ns); |
841 | if (!s) |
842 | return ERR_PTR(error: -ENOMEM); |
843 | goto retry; |
844 | } |
845 | |
846 | err = set(s, data); |
847 | if (err) { |
848 | spin_unlock(lock: &sb_lock); |
849 | destroy_unused_super(s); |
850 | return ERR_PTR(error: err); |
851 | } |
852 | s->s_type = type; |
853 | strscpy(s->s_id, type->name, sizeof(s->s_id)); |
854 | list_add_tail(new: &s->s_list, head: &super_blocks); |
855 | hlist_add_head(n: &s->s_instances, h: &type->fs_supers); |
856 | spin_unlock(lock: &sb_lock); |
857 | get_filesystem(fs: type); |
858 | shrinker_register(shrinker: s->s_shrink); |
859 | return s; |
860 | } |
861 | EXPORT_SYMBOL(sget); |
862 | |
863 | void drop_super(struct super_block *sb) |
864 | { |
865 | super_unlock_shared(sb); |
866 | put_super(sb); |
867 | } |
868 | |
869 | EXPORT_SYMBOL(drop_super); |
870 | |
871 | void drop_super_exclusive(struct super_block *sb) |
872 | { |
873 | super_unlock_excl(sb); |
874 | put_super(sb); |
875 | } |
876 | EXPORT_SYMBOL(drop_super_exclusive); |
877 | |
878 | static void __iterate_supers(void (*f)(struct super_block *)) |
879 | { |
880 | struct super_block *sb, *p = NULL; |
881 | |
882 | spin_lock(lock: &sb_lock); |
883 | list_for_each_entry(sb, &super_blocks, s_list) { |
884 | if (super_flags(sb, SB_DYING)) |
885 | continue; |
886 | sb->s_count++; |
887 | spin_unlock(lock: &sb_lock); |
888 | |
889 | f(sb); |
890 | |
891 | spin_lock(lock: &sb_lock); |
892 | if (p) |
893 | __put_super(s: p); |
894 | p = sb; |
895 | } |
896 | if (p) |
897 | __put_super(s: p); |
898 | spin_unlock(lock: &sb_lock); |
899 | } |
900 | /** |
901 | * iterate_supers - call function for all active superblocks |
902 | * @f: function to call |
903 | * @arg: argument to pass to it |
904 | * |
905 | * Scans the superblock list and calls given function, passing it |
906 | * locked superblock and given argument. |
907 | */ |
908 | void iterate_supers(void (*f)(struct super_block *, void *), void *arg) |
909 | { |
910 | struct super_block *sb, *p = NULL; |
911 | |
912 | spin_lock(lock: &sb_lock); |
913 | list_for_each_entry(sb, &super_blocks, s_list) { |
914 | bool locked; |
915 | |
916 | sb->s_count++; |
917 | spin_unlock(lock: &sb_lock); |
918 | |
919 | locked = super_lock_shared(sb); |
920 | if (locked) { |
921 | if (sb->s_root) |
922 | f(sb, arg); |
923 | super_unlock_shared(sb); |
924 | } |
925 | |
926 | spin_lock(lock: &sb_lock); |
927 | if (p) |
928 | __put_super(s: p); |
929 | p = sb; |
930 | } |
931 | if (p) |
932 | __put_super(s: p); |
933 | spin_unlock(lock: &sb_lock); |
934 | } |
935 | |
936 | /** |
937 | * iterate_supers_type - call function for superblocks of given type |
938 | * @type: fs type |
939 | * @f: function to call |
940 | * @arg: argument to pass to it |
941 | * |
942 | * Scans the superblock list and calls given function, passing it |
943 | * locked superblock and given argument. |
944 | */ |
945 | void iterate_supers_type(struct file_system_type *type, |
946 | void (*f)(struct super_block *, void *), void *arg) |
947 | { |
948 | struct super_block *sb, *p = NULL; |
949 | |
950 | spin_lock(lock: &sb_lock); |
951 | hlist_for_each_entry(sb, &type->fs_supers, s_instances) { |
952 | bool locked; |
953 | |
954 | sb->s_count++; |
955 | spin_unlock(lock: &sb_lock); |
956 | |
957 | locked = super_lock_shared(sb); |
958 | if (locked) { |
959 | if (sb->s_root) |
960 | f(sb, arg); |
961 | super_unlock_shared(sb); |
962 | } |
963 | |
964 | spin_lock(lock: &sb_lock); |
965 | if (p) |
966 | __put_super(s: p); |
967 | p = sb; |
968 | } |
969 | if (p) |
970 | __put_super(s: p); |
971 | spin_unlock(lock: &sb_lock); |
972 | } |
973 | |
974 | EXPORT_SYMBOL(iterate_supers_type); |
975 | |
976 | struct super_block *user_get_super(dev_t dev, bool excl) |
977 | { |
978 | struct super_block *sb; |
979 | |
980 | spin_lock(lock: &sb_lock); |
981 | list_for_each_entry(sb, &super_blocks, s_list) { |
982 | if (sb->s_dev == dev) { |
983 | bool locked; |
984 | |
985 | sb->s_count++; |
986 | spin_unlock(lock: &sb_lock); |
987 | /* still alive? */ |
988 | locked = super_lock(sb, excl); |
989 | if (locked) { |
990 | if (sb->s_root) |
991 | return sb; |
992 | super_unlock(sb, excl); |
993 | } |
994 | /* nope, got unmounted */ |
995 | spin_lock(lock: &sb_lock); |
996 | __put_super(s: sb); |
997 | break; |
998 | } |
999 | } |
1000 | spin_unlock(lock: &sb_lock); |
1001 | return NULL; |
1002 | } |
1003 | |
1004 | /** |
1005 | * reconfigure_super - asks filesystem to change superblock parameters |
1006 | * @fc: The superblock and configuration |
1007 | * |
1008 | * Alters the configuration parameters of a live superblock. |
1009 | */ |
1010 | int reconfigure_super(struct fs_context *fc) |
1011 | { |
1012 | struct super_block *sb = fc->root->d_sb; |
1013 | int retval; |
1014 | bool remount_ro = false; |
1015 | bool remount_rw = false; |
1016 | bool force = fc->sb_flags & SB_FORCE; |
1017 | |
1018 | if (fc->sb_flags_mask & ~MS_RMT_MASK) |
1019 | return -EINVAL; |
1020 | if (sb->s_writers.frozen != SB_UNFROZEN) |
1021 | return -EBUSY; |
1022 | |
1023 | retval = security_sb_remount(sb, mnt_opts: fc->security); |
1024 | if (retval) |
1025 | return retval; |
1026 | |
1027 | if (fc->sb_flags_mask & SB_RDONLY) { |
1028 | #ifdef CONFIG_BLOCK |
1029 | if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev && |
1030 | bdev_read_only(bdev: sb->s_bdev)) |
1031 | return -EACCES; |
1032 | #endif |
1033 | remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb); |
1034 | remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb); |
1035 | } |
1036 | |
1037 | if (remount_ro) { |
1038 | if (!hlist_empty(h: &sb->s_pins)) { |
1039 | super_unlock_excl(sb); |
1040 | group_pin_kill(p: &sb->s_pins); |
1041 | __super_lock_excl(sb); |
1042 | if (!sb->s_root) |
1043 | return 0; |
1044 | if (sb->s_writers.frozen != SB_UNFROZEN) |
1045 | return -EBUSY; |
1046 | remount_ro = !sb_rdonly(sb); |
1047 | } |
1048 | } |
1049 | shrink_dcache_sb(sb); |
1050 | |
1051 | /* If we are reconfiguring to RDONLY and current sb is read/write, |
1052 | * make sure there are no files open for writing. |
1053 | */ |
1054 | if (remount_ro) { |
1055 | if (force) { |
1056 | sb_start_ro_state_change(sb); |
1057 | } else { |
1058 | retval = sb_prepare_remount_readonly(sb); |
1059 | if (retval) |
1060 | return retval; |
1061 | } |
1062 | } else if (remount_rw) { |
1063 | /* |
1064 | * Protect filesystem's reconfigure code from writes from |
1065 | * userspace until reconfigure finishes. |
1066 | */ |
1067 | sb_start_ro_state_change(sb); |
1068 | } |
1069 | |
1070 | if (fc->ops->reconfigure) { |
1071 | retval = fc->ops->reconfigure(fc); |
1072 | if (retval) { |
1073 | if (!force) |
1074 | goto cancel_readonly; |
1075 | /* If forced remount, go ahead despite any errors */ |
1076 | WARN(1, "forced remount of a %s fs returned %i\n", |
1077 | sb->s_type->name, retval); |
1078 | } |
1079 | } |
1080 | |
1081 | WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) | |
1082 | (fc->sb_flags & fc->sb_flags_mask))); |
1083 | sb_end_ro_state_change(sb); |
1084 | |
1085 | /* |
1086 | * Some filesystems modify their metadata via some other path than the |
1087 | * bdev buffer cache (eg. use a private mapping, or directories in |
1088 | * pagecache, etc). Also file data modifications go via their own |
1089 | * mappings. So If we try to mount readonly then copy the filesystem |
1090 | * from bdev, we could get stale data, so invalidate it to give a best |
1091 | * effort at coherency. |
1092 | */ |
1093 | if (remount_ro && sb->s_bdev) |
1094 | invalidate_bdev(bdev: sb->s_bdev); |
1095 | return 0; |
1096 | |
1097 | cancel_readonly: |
1098 | sb_end_ro_state_change(sb); |
1099 | return retval; |
1100 | } |
1101 | |
1102 | static void do_emergency_remount_callback(struct super_block *sb) |
1103 | { |
1104 | bool locked = super_lock_excl(sb); |
1105 | |
1106 | if (locked && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) { |
1107 | struct fs_context *fc; |
1108 | |
1109 | fc = fs_context_for_reconfigure(dentry: sb->s_root, |
1110 | SB_RDONLY | SB_FORCE, SB_RDONLY); |
1111 | if (!IS_ERR(ptr: fc)) { |
1112 | if (parse_monolithic_mount_data(fc, NULL) == 0) |
1113 | (void)reconfigure_super(fc); |
1114 | put_fs_context(fc); |
1115 | } |
1116 | } |
1117 | if (locked) |
1118 | super_unlock_excl(sb); |
1119 | } |
1120 | |
1121 | static void do_emergency_remount(struct work_struct *work) |
1122 | { |
1123 | __iterate_supers(f: do_emergency_remount_callback); |
1124 | kfree(objp: work); |
1125 | printk("Emergency Remount complete\n"); |
1126 | } |
1127 | |
1128 | void emergency_remount(void) |
1129 | { |
1130 | struct work_struct *work; |
1131 | |
1132 | work = kmalloc(size: sizeof(*work), GFP_ATOMIC); |
1133 | if (work) { |
1134 | INIT_WORK(work, do_emergency_remount); |
1135 | schedule_work(work); |
1136 | } |
1137 | } |
1138 | |
1139 | static void do_thaw_all_callback(struct super_block *sb) |
1140 | { |
1141 | bool locked = super_lock_excl(sb); |
1142 | |
1143 | if (locked && sb->s_root) { |
1144 | if (IS_ENABLED(CONFIG_BLOCK)) |
1145 | while (sb->s_bdev && !bdev_thaw(bdev: sb->s_bdev)) |
1146 | pr_warn("Emergency Thaw on %pg\n", sb->s_bdev); |
1147 | thaw_super_locked(sb, who: FREEZE_HOLDER_USERSPACE); |
1148 | return; |
1149 | } |
1150 | if (locked) |
1151 | super_unlock_excl(sb); |
1152 | } |
1153 | |
1154 | static void do_thaw_all(struct work_struct *work) |
1155 | { |
1156 | __iterate_supers(f: do_thaw_all_callback); |
1157 | kfree(objp: work); |
1158 | printk(KERN_WARNING "Emergency Thaw complete\n"); |
1159 | } |
1160 | |
1161 | /** |
1162 | * emergency_thaw_all -- forcibly thaw every frozen filesystem |
1163 | * |
1164 | * Used for emergency unfreeze of all filesystems via SysRq |
1165 | */ |
1166 | void emergency_thaw_all(void) |
1167 | { |
1168 | struct work_struct *work; |
1169 | |
1170 | work = kmalloc(size: sizeof(*work), GFP_ATOMIC); |
1171 | if (work) { |
1172 | INIT_WORK(work, do_thaw_all); |
1173 | schedule_work(work); |
1174 | } |
1175 | } |
1176 | |
1177 | static DEFINE_IDA(unnamed_dev_ida); |
1178 | |
1179 | /** |
1180 | * get_anon_bdev - Allocate a block device for filesystems which don't have one. |
1181 | * @p: Pointer to a dev_t. |
1182 | * |
1183 | * Filesystems which don't use real block devices can call this function |
1184 | * to allocate a virtual block device. |
1185 | * |
1186 | * Context: Any context. Frequently called while holding sb_lock. |
1187 | * Return: 0 on success, -EMFILE if there are no anonymous bdevs left |
1188 | * or -ENOMEM if memory allocation failed. |
1189 | */ |
1190 | int get_anon_bdev(dev_t *p) |
1191 | { |
1192 | int dev; |
1193 | |
1194 | /* |
1195 | * Many userspace utilities consider an FSID of 0 invalid. |
1196 | * Always return at least 1 from get_anon_bdev. |
1197 | */ |
1198 | dev = ida_alloc_range(&unnamed_dev_ida, min: 1, max: (1 << MINORBITS) - 1, |
1199 | GFP_ATOMIC); |
1200 | if (dev == -ENOSPC) |
1201 | dev = -EMFILE; |
1202 | if (dev < 0) |
1203 | return dev; |
1204 | |
1205 | *p = MKDEV(0, dev); |
1206 | return 0; |
1207 | } |
1208 | EXPORT_SYMBOL(get_anon_bdev); |
1209 | |
1210 | void free_anon_bdev(dev_t dev) |
1211 | { |
1212 | ida_free(&unnamed_dev_ida, MINOR(dev)); |
1213 | } |
1214 | EXPORT_SYMBOL(free_anon_bdev); |
1215 | |
1216 | int set_anon_super(struct super_block *s, void *data) |
1217 | { |
1218 | return get_anon_bdev(&s->s_dev); |
1219 | } |
1220 | EXPORT_SYMBOL(set_anon_super); |
1221 | |
1222 | void kill_anon_super(struct super_block *sb) |
1223 | { |
1224 | dev_t dev = sb->s_dev; |
1225 | generic_shutdown_super(sb); |
1226 | kill_super_notify(sb); |
1227 | free_anon_bdev(dev); |
1228 | } |
1229 | EXPORT_SYMBOL(kill_anon_super); |
1230 | |
1231 | void kill_litter_super(struct super_block *sb) |
1232 | { |
1233 | if (sb->s_root) |
1234 | d_genocide(sb->s_root); |
1235 | kill_anon_super(sb); |
1236 | } |
1237 | EXPORT_SYMBOL(kill_litter_super); |
1238 | |
1239 | int set_anon_super_fc(struct super_block *sb, struct fs_context *fc) |
1240 | { |
1241 | return set_anon_super(sb, NULL); |
1242 | } |
1243 | EXPORT_SYMBOL(set_anon_super_fc); |
1244 | |
1245 | static int test_keyed_super(struct super_block *sb, struct fs_context *fc) |
1246 | { |
1247 | return sb->s_fs_info == fc->s_fs_info; |
1248 | } |
1249 | |
1250 | static int test_single_super(struct super_block *s, struct fs_context *fc) |
1251 | { |
1252 | return 1; |
1253 | } |
1254 | |
1255 | static int vfs_get_super(struct fs_context *fc, |
1256 | int (*test)(struct super_block *, struct fs_context *), |
1257 | int (*fill_super)(struct super_block *sb, |
1258 | struct fs_context *fc)) |
1259 | { |
1260 | struct super_block *sb; |
1261 | int err; |
1262 | |
1263 | sb = sget_fc(fc, test, set_anon_super_fc); |
1264 | if (IS_ERR(ptr: sb)) |
1265 | return PTR_ERR(ptr: sb); |
1266 | |
1267 | if (!sb->s_root) { |
1268 | err = fill_super(sb, fc); |
1269 | if (err) |
1270 | goto error; |
1271 | |
1272 | sb->s_flags |= SB_ACTIVE; |
1273 | } |
1274 | |
1275 | fc->root = dget(dentry: sb->s_root); |
1276 | return 0; |
1277 | |
1278 | error: |
1279 | deactivate_locked_super(sb); |
1280 | return err; |
1281 | } |
1282 | |
1283 | int get_tree_nodev(struct fs_context *fc, |
1284 | int (*fill_super)(struct super_block *sb, |
1285 | struct fs_context *fc)) |
1286 | { |
1287 | return vfs_get_super(fc, NULL, fill_super); |
1288 | } |
1289 | EXPORT_SYMBOL(get_tree_nodev); |
1290 | |
1291 | int get_tree_single(struct fs_context *fc, |
1292 | int (*fill_super)(struct super_block *sb, |
1293 | struct fs_context *fc)) |
1294 | { |
1295 | return vfs_get_super(fc, test: test_single_super, fill_super); |
1296 | } |
1297 | EXPORT_SYMBOL(get_tree_single); |
1298 | |
1299 | int get_tree_keyed(struct fs_context *fc, |
1300 | int (*fill_super)(struct super_block *sb, |
1301 | struct fs_context *fc), |
1302 | void *key) |
1303 | { |
1304 | fc->s_fs_info = key; |
1305 | return vfs_get_super(fc, test: test_keyed_super, fill_super); |
1306 | } |
1307 | EXPORT_SYMBOL(get_tree_keyed); |
1308 | |
1309 | static int set_bdev_super(struct super_block *s, void *data) |
1310 | { |
1311 | s->s_dev = *(dev_t *)data; |
1312 | return 0; |
1313 | } |
1314 | |
1315 | static int super_s_dev_set(struct super_block *s, struct fs_context *fc) |
1316 | { |
1317 | return set_bdev_super(s, data: fc->sget_key); |
1318 | } |
1319 | |
1320 | static int super_s_dev_test(struct super_block *s, struct fs_context *fc) |
1321 | { |
1322 | return !(s->s_iflags & SB_I_RETIRED) && |
1323 | s->s_dev == *(dev_t *)fc->sget_key; |
1324 | } |
1325 | |
1326 | /** |
1327 | * sget_dev - Find or create a superblock by device number |
1328 | * @fc: Filesystem context. |
1329 | * @dev: device number |
1330 | * |
1331 | * Find or create a superblock using the provided device number that |
1332 | * will be stored in fc->sget_key. |
1333 | * |
1334 | * If an extant superblock is matched, then that will be returned with |
1335 | * an elevated reference count that the caller must transfer or discard. |
1336 | * |
1337 | * If no match is made, a new superblock will be allocated and basic |
1338 | * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will |
1339 | * be set). The superblock will be published and it will be returned in |
1340 | * a partially constructed state with SB_BORN and SB_ACTIVE as yet |
1341 | * unset. |
1342 | * |
1343 | * Return: an existing or newly created superblock on success, an error |
1344 | * pointer on failure. |
1345 | */ |
1346 | struct super_block *sget_dev(struct fs_context *fc, dev_t dev) |
1347 | { |
1348 | fc->sget_key = &dev; |
1349 | return sget_fc(fc, super_s_dev_test, super_s_dev_set); |
1350 | } |
1351 | EXPORT_SYMBOL(sget_dev); |
1352 | |
1353 | #ifdef CONFIG_BLOCK |
1354 | /* |
1355 | * Lock the superblock that is holder of the bdev. Returns the superblock |
1356 | * pointer if we successfully locked the superblock and it is alive. Otherwise |
1357 | * we return NULL and just unlock bdev->bd_holder_lock. |
1358 | * |
1359 | * The function must be called with bdev->bd_holder_lock and releases it. |
1360 | */ |
1361 | static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl) |
1362 | __releases(&bdev->bd_holder_lock) |
1363 | { |
1364 | struct super_block *sb = bdev->bd_holder; |
1365 | bool locked; |
1366 | |
1367 | lockdep_assert_held(&bdev->bd_holder_lock); |
1368 | lockdep_assert_not_held(&sb->s_umount); |
1369 | lockdep_assert_not_held(&bdev->bd_disk->open_mutex); |
1370 | |
1371 | /* Make sure sb doesn't go away from under us */ |
1372 | spin_lock(lock: &sb_lock); |
1373 | sb->s_count++; |
1374 | spin_unlock(lock: &sb_lock); |
1375 | |
1376 | mutex_unlock(lock: &bdev->bd_holder_lock); |
1377 | |
1378 | locked = super_lock(sb, excl); |
1379 | |
1380 | /* |
1381 | * If the superblock wasn't already SB_DYING then we hold |
1382 | * s_umount and can safely drop our temporary reference. |
1383 | */ |
1384 | put_super(sb); |
1385 | |
1386 | if (!locked) |
1387 | return NULL; |
1388 | |
1389 | if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) { |
1390 | super_unlock(sb, excl); |
1391 | return NULL; |
1392 | } |
1393 | |
1394 | return sb; |
1395 | } |
1396 | |
1397 | static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise) |
1398 | { |
1399 | struct super_block *sb; |
1400 | |
1401 | sb = bdev_super_lock(bdev, excl: false); |
1402 | if (!sb) |
1403 | return; |
1404 | |
1405 | if (!surprise) |
1406 | sync_filesystem(sb); |
1407 | shrink_dcache_sb(sb); |
1408 | invalidate_inodes(sb); |
1409 | if (sb->s_op->shutdown) |
1410 | sb->s_op->shutdown(sb); |
1411 | |
1412 | super_unlock_shared(sb); |
1413 | } |
1414 | |
1415 | static void fs_bdev_sync(struct block_device *bdev) |
1416 | { |
1417 | struct super_block *sb; |
1418 | |
1419 | sb = bdev_super_lock(bdev, excl: false); |
1420 | if (!sb) |
1421 | return; |
1422 | |
1423 | sync_filesystem(sb); |
1424 | super_unlock_shared(sb); |
1425 | } |
1426 | |
1427 | static struct super_block *get_bdev_super(struct block_device *bdev) |
1428 | { |
1429 | bool active = false; |
1430 | struct super_block *sb; |
1431 | |
1432 | sb = bdev_super_lock(bdev, excl: true); |
1433 | if (sb) { |
1434 | active = atomic_inc_not_zero(v: &sb->s_active); |
1435 | super_unlock_excl(sb); |
1436 | } |
1437 | if (!active) |
1438 | return NULL; |
1439 | return sb; |
1440 | } |
1441 | |
1442 | /** |
1443 | * fs_bdev_freeze - freeze owning filesystem of block device |
1444 | * @bdev: block device |
1445 | * |
1446 | * Freeze the filesystem that owns this block device if it is still |
1447 | * active. |
1448 | * |
1449 | * A filesystem that owns multiple block devices may be frozen from each |
1450 | * block device and won't be unfrozen until all block devices are |
1451 | * unfrozen. Each block device can only freeze the filesystem once as we |
1452 | * nest freezes for block devices in the block layer. |
1453 | * |
1454 | * Return: If the freeze was successful zero is returned. If the freeze |
1455 | * failed a negative error code is returned. |
1456 | */ |
1457 | static int fs_bdev_freeze(struct block_device *bdev) |
1458 | { |
1459 | struct super_block *sb; |
1460 | int error = 0; |
1461 | |
1462 | lockdep_assert_held(&bdev->bd_fsfreeze_mutex); |
1463 | |
1464 | sb = get_bdev_super(bdev); |
1465 | if (!sb) |
1466 | return -EINVAL; |
1467 | |
1468 | if (sb->s_op->freeze_super) |
1469 | error = sb->s_op->freeze_super(sb, |
1470 | FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); |
1471 | else |
1472 | error = freeze_super(super: sb, |
1473 | who: FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); |
1474 | if (!error) |
1475 | error = sync_blockdev(bdev); |
1476 | deactivate_super(sb); |
1477 | return error; |
1478 | } |
1479 | |
1480 | /** |
1481 | * fs_bdev_thaw - thaw owning filesystem of block device |
1482 | * @bdev: block device |
1483 | * |
1484 | * Thaw the filesystem that owns this block device. |
1485 | * |
1486 | * A filesystem that owns multiple block devices may be frozen from each |
1487 | * block device and won't be unfrozen until all block devices are |
1488 | * unfrozen. Each block device can only freeze the filesystem once as we |
1489 | * nest freezes for block devices in the block layer. |
1490 | * |
1491 | * Return: If the thaw was successful zero is returned. If the thaw |
1492 | * failed a negative error code is returned. If this function |
1493 | * returns zero it doesn't mean that the filesystem is unfrozen |
1494 | * as it may have been frozen multiple times (kernel may hold a |
1495 | * freeze or might be frozen from other block devices). |
1496 | */ |
1497 | static int fs_bdev_thaw(struct block_device *bdev) |
1498 | { |
1499 | struct super_block *sb; |
1500 | int error; |
1501 | |
1502 | lockdep_assert_held(&bdev->bd_fsfreeze_mutex); |
1503 | |
1504 | sb = get_bdev_super(bdev); |
1505 | if (WARN_ON_ONCE(!sb)) |
1506 | return -EINVAL; |
1507 | |
1508 | if (sb->s_op->thaw_super) |
1509 | error = sb->s_op->thaw_super(sb, |
1510 | FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); |
1511 | else |
1512 | error = thaw_super(super: sb, |
1513 | who: FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE); |
1514 | deactivate_super(sb); |
1515 | return error; |
1516 | } |
1517 | |
1518 | const struct blk_holder_ops fs_holder_ops = { |
1519 | .mark_dead = fs_bdev_mark_dead, |
1520 | .sync = fs_bdev_sync, |
1521 | .freeze = fs_bdev_freeze, |
1522 | .thaw = fs_bdev_thaw, |
1523 | }; |
1524 | EXPORT_SYMBOL_GPL(fs_holder_ops); |
1525 | |
1526 | int setup_bdev_super(struct super_block *sb, int sb_flags, |
1527 | struct fs_context *fc) |
1528 | { |
1529 | blk_mode_t mode = sb_open_mode(sb_flags); |
1530 | struct file *bdev_file; |
1531 | struct block_device *bdev; |
1532 | |
1533 | bdev_file = bdev_file_open_by_dev(dev: sb->s_dev, mode, holder: sb, hops: &fs_holder_ops); |
1534 | if (IS_ERR(ptr: bdev_file)) { |
1535 | if (fc) |
1536 | errorf(fc, "%s: Can't open blockdev", fc->source); |
1537 | return PTR_ERR(ptr: bdev_file); |
1538 | } |
1539 | bdev = file_bdev(bdev_file); |
1540 | |
1541 | /* |
1542 | * This really should be in blkdev_get_by_dev, but right now can't due |
1543 | * to legacy issues that require us to allow opening a block device node |
1544 | * writable from userspace even for a read-only block device. |
1545 | */ |
1546 | if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) { |
1547 | bdev_fput(bdev_file); |
1548 | return -EACCES; |
1549 | } |
1550 | |
1551 | /* |
1552 | * It is enough to check bdev was not frozen before we set |
1553 | * s_bdev as freezing will wait until SB_BORN is set. |
1554 | */ |
1555 | if (atomic_read(v: &bdev->bd_fsfreeze_count) > 0) { |
1556 | if (fc) |
1557 | warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev); |
1558 | bdev_fput(bdev_file); |
1559 | return -EBUSY; |
1560 | } |
1561 | spin_lock(lock: &sb_lock); |
1562 | sb->s_bdev_file = bdev_file; |
1563 | sb->s_bdev = bdev; |
1564 | sb->s_bdi = bdi_get(bdi: bdev->bd_disk->bdi); |
1565 | if (bdev_stable_writes(bdev)) |
1566 | sb->s_iflags |= SB_I_STABLE_WRITES; |
1567 | spin_unlock(lock: &sb_lock); |
1568 | |
1569 | snprintf(buf: sb->s_id, size: sizeof(sb->s_id), fmt: "%pg", bdev); |
1570 | shrinker_debugfs_rename(shrinker: sb->s_shrink, fmt: "sb-%s:%s", sb->s_type->name, |
1571 | sb->s_id); |
1572 | sb_set_blocksize(sb, block_size(bdev)); |
1573 | return 0; |
1574 | } |
1575 | EXPORT_SYMBOL_GPL(setup_bdev_super); |
1576 | |
1577 | /** |
1578 | * get_tree_bdev - Get a superblock based on a single block device |
1579 | * @fc: The filesystem context holding the parameters |
1580 | * @fill_super: Helper to initialise a new superblock |
1581 | */ |
1582 | int get_tree_bdev(struct fs_context *fc, |
1583 | int (*fill_super)(struct super_block *, |
1584 | struct fs_context *)) |
1585 | { |
1586 | struct super_block *s; |
1587 | int error = 0; |
1588 | dev_t dev; |
1589 | |
1590 | if (!fc->source) |
1591 | return invalf(fc, "No source specified"); |
1592 | |
1593 | error = lookup_bdev(pathname: fc->source, dev: &dev); |
1594 | if (error) { |
1595 | errorf(fc, "%s: Can't lookup blockdev", fc->source); |
1596 | return error; |
1597 | } |
1598 | |
1599 | fc->sb_flags |= SB_NOSEC; |
1600 | s = sget_dev(fc, dev); |
1601 | if (IS_ERR(ptr: s)) |
1602 | return PTR_ERR(ptr: s); |
1603 | |
1604 | if (s->s_root) { |
1605 | /* Don't summarily change the RO/RW state. */ |
1606 | if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) { |
1607 | warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev); |
1608 | deactivate_locked_super(s); |
1609 | return -EBUSY; |
1610 | } |
1611 | } else { |
1612 | error = setup_bdev_super(s, fc->sb_flags, fc); |
1613 | if (!error) |
1614 | error = fill_super(s, fc); |
1615 | if (error) { |
1616 | deactivate_locked_super(s); |
1617 | return error; |
1618 | } |
1619 | s->s_flags |= SB_ACTIVE; |
1620 | } |
1621 | |
1622 | BUG_ON(fc->root); |
1623 | fc->root = dget(dentry: s->s_root); |
1624 | return 0; |
1625 | } |
1626 | EXPORT_SYMBOL(get_tree_bdev); |
1627 | |
1628 | static int test_bdev_super(struct super_block *s, void *data) |
1629 | { |
1630 | return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data; |
1631 | } |
1632 | |
1633 | struct dentry *mount_bdev(struct file_system_type *fs_type, |
1634 | int flags, const char *dev_name, void *data, |
1635 | int (*fill_super)(struct super_block *, void *, int)) |
1636 | { |
1637 | struct super_block *s; |
1638 | int error; |
1639 | dev_t dev; |
1640 | |
1641 | error = lookup_bdev(pathname: dev_name, dev: &dev); |
1642 | if (error) |
1643 | return ERR_PTR(error); |
1644 | |
1645 | flags |= SB_NOSEC; |
1646 | s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev); |
1647 | if (IS_ERR(ptr: s)) |
1648 | return ERR_CAST(ptr: s); |
1649 | |
1650 | if (s->s_root) { |
1651 | if ((flags ^ s->s_flags) & SB_RDONLY) { |
1652 | deactivate_locked_super(s); |
1653 | return ERR_PTR(error: -EBUSY); |
1654 | } |
1655 | } else { |
1656 | error = setup_bdev_super(s, flags, NULL); |
1657 | if (!error) |
1658 | error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); |
1659 | if (error) { |
1660 | deactivate_locked_super(s); |
1661 | return ERR_PTR(error); |
1662 | } |
1663 | |
1664 | s->s_flags |= SB_ACTIVE; |
1665 | } |
1666 | |
1667 | return dget(dentry: s->s_root); |
1668 | } |
1669 | EXPORT_SYMBOL(mount_bdev); |
1670 | |
1671 | void kill_block_super(struct super_block *sb) |
1672 | { |
1673 | struct block_device *bdev = sb->s_bdev; |
1674 | |
1675 | generic_shutdown_super(sb); |
1676 | if (bdev) { |
1677 | sync_blockdev(bdev); |
1678 | bdev_fput(bdev_file: sb->s_bdev_file); |
1679 | } |
1680 | } |
1681 | |
1682 | EXPORT_SYMBOL(kill_block_super); |
1683 | #endif |
1684 | |
1685 | struct dentry *mount_nodev(struct file_system_type *fs_type, |
1686 | int flags, void *data, |
1687 | int (*fill_super)(struct super_block *, void *, int)) |
1688 | { |
1689 | int error; |
1690 | struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL); |
1691 | |
1692 | if (IS_ERR(ptr: s)) |
1693 | return ERR_CAST(ptr: s); |
1694 | |
1695 | error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); |
1696 | if (error) { |
1697 | deactivate_locked_super(s); |
1698 | return ERR_PTR(error); |
1699 | } |
1700 | s->s_flags |= SB_ACTIVE; |
1701 | return dget(dentry: s->s_root); |
1702 | } |
1703 | EXPORT_SYMBOL(mount_nodev); |
1704 | |
1705 | int reconfigure_single(struct super_block *s, |
1706 | int flags, void *data) |
1707 | { |
1708 | struct fs_context *fc; |
1709 | int ret; |
1710 | |
1711 | /* The caller really need to be passing fc down into mount_single(), |
1712 | * then a chunk of this can be removed. [Bollocks -- AV] |
1713 | * Better yet, reconfiguration shouldn't happen, but rather the second |
1714 | * mount should be rejected if the parameters are not compatible. |
1715 | */ |
1716 | fc = fs_context_for_reconfigure(dentry: s->s_root, sb_flags: flags, MS_RMT_MASK); |
1717 | if (IS_ERR(ptr: fc)) |
1718 | return PTR_ERR(ptr: fc); |
1719 | |
1720 | ret = parse_monolithic_mount_data(fc, data); |
1721 | if (ret < 0) |
1722 | goto out; |
1723 | |
1724 | ret = reconfigure_super(fc); |
1725 | out: |
1726 | put_fs_context(fc); |
1727 | return ret; |
1728 | } |
1729 | |
1730 | static int compare_single(struct super_block *s, void *p) |
1731 | { |
1732 | return 1; |
1733 | } |
1734 | |
1735 | struct dentry *mount_single(struct file_system_type *fs_type, |
1736 | int flags, void *data, |
1737 | int (*fill_super)(struct super_block *, void *, int)) |
1738 | { |
1739 | struct super_block *s; |
1740 | int error; |
1741 | |
1742 | s = sget(fs_type, compare_single, set_anon_super, flags, NULL); |
1743 | if (IS_ERR(ptr: s)) |
1744 | return ERR_CAST(ptr: s); |
1745 | if (!s->s_root) { |
1746 | error = fill_super(s, data, flags & SB_SILENT ? 1 : 0); |
1747 | if (!error) |
1748 | s->s_flags |= SB_ACTIVE; |
1749 | } else { |
1750 | error = reconfigure_single(s, flags, data); |
1751 | } |
1752 | if (unlikely(error)) { |
1753 | deactivate_locked_super(s); |
1754 | return ERR_PTR(error); |
1755 | } |
1756 | return dget(dentry: s->s_root); |
1757 | } |
1758 | EXPORT_SYMBOL(mount_single); |
1759 | |
1760 | /** |
1761 | * vfs_get_tree - Get the mountable root |
1762 | * @fc: The superblock configuration context. |
1763 | * |
1764 | * The filesystem is invoked to get or create a superblock which can then later |
1765 | * be used for mounting. The filesystem places a pointer to the root to be |
1766 | * used for mounting in @fc->root. |
1767 | */ |
1768 | int vfs_get_tree(struct fs_context *fc) |
1769 | { |
1770 | struct super_block *sb; |
1771 | int error; |
1772 | |
1773 | if (fc->root) |
1774 | return -EBUSY; |
1775 | |
1776 | /* Get the mountable root in fc->root, with a ref on the root and a ref |
1777 | * on the superblock. |
1778 | */ |
1779 | error = fc->ops->get_tree(fc); |
1780 | if (error < 0) |
1781 | return error; |
1782 | |
1783 | if (!fc->root) { |
1784 | pr_err("Filesystem %s get_tree() didn't set fc->root\n", |
1785 | fc->fs_type->name); |
1786 | /* We don't know what the locking state of the superblock is - |
1787 | * if there is a superblock. |
1788 | */ |
1789 | BUG(); |
1790 | } |
1791 | |
1792 | sb = fc->root->d_sb; |
1793 | WARN_ON(!sb->s_bdi); |
1794 | |
1795 | /* |
1796 | * super_wake() contains a memory barrier which also care of |
1797 | * ordering for super_cache_count(). We place it before setting |
1798 | * SB_BORN as the data dependency between the two functions is |
1799 | * the superblock structure contents that we just set up, not |
1800 | * the SB_BORN flag. |
1801 | */ |
1802 | super_wake(sb, SB_BORN); |
1803 | |
1804 | error = security_sb_set_mnt_opts(sb, mnt_opts: fc->security, kern_flags: 0, NULL); |
1805 | if (unlikely(error)) { |
1806 | fc_drop_locked(fc); |
1807 | return error; |
1808 | } |
1809 | |
1810 | /* |
1811 | * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE |
1812 | * but s_maxbytes was an unsigned long long for many releases. Throw |
1813 | * this warning for a little while to try and catch filesystems that |
1814 | * violate this rule. |
1815 | */ |
1816 | WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to " |
1817 | "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes); |
1818 | |
1819 | return 0; |
1820 | } |
1821 | EXPORT_SYMBOL(vfs_get_tree); |
1822 | |
1823 | /* |
1824 | * Setup private BDI for given superblock. It gets automatically cleaned up |
1825 | * in generic_shutdown_super(). |
1826 | */ |
1827 | int super_setup_bdi_name(struct super_block *sb, char *fmt, ...) |
1828 | { |
1829 | struct backing_dev_info *bdi; |
1830 | int err; |
1831 | va_list args; |
1832 | |
1833 | bdi = bdi_alloc(NUMA_NO_NODE); |
1834 | if (!bdi) |
1835 | return -ENOMEM; |
1836 | |
1837 | va_start(args, fmt); |
1838 | err = bdi_register_va(bdi, fmt, args); |
1839 | va_end(args); |
1840 | if (err) { |
1841 | bdi_put(bdi); |
1842 | return err; |
1843 | } |
1844 | WARN_ON(sb->s_bdi != &noop_backing_dev_info); |
1845 | sb->s_bdi = bdi; |
1846 | sb->s_iflags |= SB_I_PERSB_BDI; |
1847 | |
1848 | return 0; |
1849 | } |
1850 | EXPORT_SYMBOL(super_setup_bdi_name); |
1851 | |
1852 | /* |
1853 | * Setup private BDI for given superblock. I gets automatically cleaned up |
1854 | * in generic_shutdown_super(). |
1855 | */ |
1856 | int super_setup_bdi(struct super_block *sb) |
1857 | { |
1858 | static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); |
1859 | |
1860 | return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name, |
1861 | atomic_long_inc_return(v: &bdi_seq)); |
1862 | } |
1863 | EXPORT_SYMBOL(super_setup_bdi); |
1864 | |
1865 | /** |
1866 | * sb_wait_write - wait until all writers to given file system finish |
1867 | * @sb: the super for which we wait |
1868 | * @level: type of writers we wait for (normal vs page fault) |
1869 | * |
1870 | * This function waits until there are no writers of given type to given file |
1871 | * system. |
1872 | */ |
1873 | static void sb_wait_write(struct super_block *sb, int level) |
1874 | { |
1875 | percpu_down_write(sb->s_writers.rw_sem + level-1); |
1876 | } |
1877 | |
1878 | /* |
1879 | * We are going to return to userspace and forget about these locks, the |
1880 | * ownership goes to the caller of thaw_super() which does unlock(). |
1881 | */ |
1882 | static void lockdep_sb_freeze_release(struct super_block *sb) |
1883 | { |
1884 | int level; |
1885 | |
1886 | for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--) |
1887 | percpu_rwsem_release(sem: sb->s_writers.rw_sem + level, read: 0, _THIS_IP_); |
1888 | } |
1889 | |
1890 | /* |
1891 | * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb). |
1892 | */ |
1893 | static void lockdep_sb_freeze_acquire(struct super_block *sb) |
1894 | { |
1895 | int level; |
1896 | |
1897 | for (level = 0; level < SB_FREEZE_LEVELS; ++level) |
1898 | percpu_rwsem_acquire(sem: sb->s_writers.rw_sem + level, read: 0, _THIS_IP_); |
1899 | } |
1900 | |
1901 | static void sb_freeze_unlock(struct super_block *sb, int level) |
1902 | { |
1903 | for (level--; level >= 0; level--) |
1904 | percpu_up_write(sb->s_writers.rw_sem + level); |
1905 | } |
1906 | |
1907 | static int wait_for_partially_frozen(struct super_block *sb) |
1908 | { |
1909 | int ret = 0; |
1910 | |
1911 | do { |
1912 | unsigned short old = sb->s_writers.frozen; |
1913 | |
1914 | up_write(sem: &sb->s_umount); |
1915 | ret = wait_var_event_killable(&sb->s_writers.frozen, |
1916 | sb->s_writers.frozen != old); |
1917 | down_write(sem: &sb->s_umount); |
1918 | } while (ret == 0 && |
1919 | sb->s_writers.frozen != SB_UNFROZEN && |
1920 | sb->s_writers.frozen != SB_FREEZE_COMPLETE); |
1921 | |
1922 | return ret; |
1923 | } |
1924 | |
1925 | #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE) |
1926 | #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST) |
1927 | |
1928 | static inline int freeze_inc(struct super_block *sb, enum freeze_holder who) |
1929 | { |
1930 | WARN_ON_ONCE((who & ~FREEZE_FLAGS)); |
1931 | WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); |
1932 | |
1933 | if (who & FREEZE_HOLDER_KERNEL) |
1934 | ++sb->s_writers.freeze_kcount; |
1935 | if (who & FREEZE_HOLDER_USERSPACE) |
1936 | ++sb->s_writers.freeze_ucount; |
1937 | return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; |
1938 | } |
1939 | |
1940 | static inline int freeze_dec(struct super_block *sb, enum freeze_holder who) |
1941 | { |
1942 | WARN_ON_ONCE((who & ~FREEZE_FLAGS)); |
1943 | WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); |
1944 | |
1945 | if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount) |
1946 | --sb->s_writers.freeze_kcount; |
1947 | if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount) |
1948 | --sb->s_writers.freeze_ucount; |
1949 | return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount; |
1950 | } |
1951 | |
1952 | static inline bool may_freeze(struct super_block *sb, enum freeze_holder who) |
1953 | { |
1954 | WARN_ON_ONCE((who & ~FREEZE_FLAGS)); |
1955 | WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1); |
1956 | |
1957 | if (who & FREEZE_HOLDER_KERNEL) |
1958 | return (who & FREEZE_MAY_NEST) || |
1959 | sb->s_writers.freeze_kcount == 0; |
1960 | if (who & FREEZE_HOLDER_USERSPACE) |
1961 | return (who & FREEZE_MAY_NEST) || |
1962 | sb->s_writers.freeze_ucount == 0; |
1963 | return false; |
1964 | } |
1965 | |
1966 | /** |
1967 | * freeze_super - lock the filesystem and force it into a consistent state |
1968 | * @sb: the super to lock |
1969 | * @who: context that wants to freeze |
1970 | * |
1971 | * Syncs the super to make sure the filesystem is consistent and calls the fs's |
1972 | * freeze_fs. Subsequent calls to this without first thawing the fs may return |
1973 | * -EBUSY. |
1974 | * |
1975 | * @who should be: |
1976 | * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs; |
1977 | * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs. |
1978 | * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed. |
1979 | * |
1980 | * The @who argument distinguishes between the kernel and userspace trying to |
1981 | * freeze the filesystem. Although there cannot be multiple kernel freezes or |
1982 | * multiple userspace freezes in effect at any given time, the kernel and |
1983 | * userspace can both hold a filesystem frozen. The filesystem remains frozen |
1984 | * until there are no kernel or userspace freezes in effect. |
1985 | * |
1986 | * A filesystem may hold multiple devices and thus a filesystems may be |
1987 | * frozen through the block layer via multiple block devices. In this |
1988 | * case the request is marked as being allowed to nest by passing |
1989 | * FREEZE_MAY_NEST. The filesystem remains frozen until all block |
1990 | * devices are unfrozen. If multiple freezes are attempted without |
1991 | * FREEZE_MAY_NEST -EBUSY will be returned. |
1992 | * |
1993 | * During this function, sb->s_writers.frozen goes through these values: |
1994 | * |
1995 | * SB_UNFROZEN: File system is normal, all writes progress as usual. |
1996 | * |
1997 | * SB_FREEZE_WRITE: The file system is in the process of being frozen. New |
1998 | * writes should be blocked, though page faults are still allowed. We wait for |
1999 | * all writes to complete and then proceed to the next stage. |
2000 | * |
2001 | * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked |
2002 | * but internal fs threads can still modify the filesystem (although they |
2003 | * should not dirty new pages or inodes), writeback can run etc. After waiting |
2004 | * for all running page faults we sync the filesystem which will clean all |
2005 | * dirty pages and inodes (no new dirty pages or inodes can be created when |
2006 | * sync is running). |
2007 | * |
2008 | * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs |
2009 | * modification are blocked (e.g. XFS preallocation truncation on inode |
2010 | * reclaim). This is usually implemented by blocking new transactions for |
2011 | * filesystems that have them and need this additional guard. After all |
2012 | * internal writers are finished we call ->freeze_fs() to finish filesystem |
2013 | * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is |
2014 | * mostly auxiliary for filesystems to verify they do not modify frozen fs. |
2015 | * |
2016 | * sb->s_writers.frozen is protected by sb->s_umount. |
2017 | * |
2018 | * Return: If the freeze was successful zero is returned. If the freeze |
2019 | * failed a negative error code is returned. |
2020 | */ |
2021 | int freeze_super(struct super_block *sb, enum freeze_holder who) |
2022 | { |
2023 | int ret; |
2024 | |
2025 | if (!super_lock_excl(sb)) { |
2026 | WARN_ON_ONCE("Dying superblock while freezing!"); |
2027 | return -EINVAL; |
2028 | } |
2029 | atomic_inc(v: &sb->s_active); |
2030 | |
2031 | retry: |
2032 | if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) { |
2033 | if (may_freeze(sb, who)) |
2034 | ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1); |
2035 | else |
2036 | ret = -EBUSY; |
2037 | /* All freezers share a single active reference. */ |
2038 | deactivate_locked_super(sb); |
2039 | return ret; |
2040 | } |
2041 | |
2042 | if (sb->s_writers.frozen != SB_UNFROZEN) { |
2043 | ret = wait_for_partially_frozen(sb); |
2044 | if (ret) { |
2045 | deactivate_locked_super(sb); |
2046 | return ret; |
2047 | } |
2048 | |
2049 | goto retry; |
2050 | } |
2051 | |
2052 | if (sb_rdonly(sb)) { |
2053 | /* Nothing to do really... */ |
2054 | WARN_ON_ONCE(freeze_inc(sb, who) > 1); |
2055 | sb->s_writers.frozen = SB_FREEZE_COMPLETE; |
2056 | wake_up_var(var: &sb->s_writers.frozen); |
2057 | super_unlock_excl(sb); |
2058 | return 0; |
2059 | } |
2060 | |
2061 | sb->s_writers.frozen = SB_FREEZE_WRITE; |
2062 | /* Release s_umount to preserve sb_start_write -> s_umount ordering */ |
2063 | super_unlock_excl(sb); |
2064 | sb_wait_write(sb, level: SB_FREEZE_WRITE); |
2065 | __super_lock_excl(sb); |
2066 | |
2067 | /* Now we go and block page faults... */ |
2068 | sb->s_writers.frozen = SB_FREEZE_PAGEFAULT; |
2069 | sb_wait_write(sb, level: SB_FREEZE_PAGEFAULT); |
2070 | |
2071 | /* All writers are done so after syncing there won't be dirty data */ |
2072 | ret = sync_filesystem(sb); |
2073 | if (ret) { |
2074 | sb->s_writers.frozen = SB_UNFROZEN; |
2075 | sb_freeze_unlock(sb, level: SB_FREEZE_PAGEFAULT); |
2076 | wake_up_var(var: &sb->s_writers.frozen); |
2077 | deactivate_locked_super(sb); |
2078 | return ret; |
2079 | } |
2080 | |
2081 | /* Now wait for internal filesystem counter */ |
2082 | sb->s_writers.frozen = SB_FREEZE_FS; |
2083 | sb_wait_write(sb, level: SB_FREEZE_FS); |
2084 | |
2085 | if (sb->s_op->freeze_fs) { |
2086 | ret = sb->s_op->freeze_fs(sb); |
2087 | if (ret) { |
2088 | printk(KERN_ERR |
2089 | "VFS:Filesystem freeze failed\n"); |
2090 | sb->s_writers.frozen = SB_UNFROZEN; |
2091 | sb_freeze_unlock(sb, level: SB_FREEZE_FS); |
2092 | wake_up_var(var: &sb->s_writers.frozen); |
2093 | deactivate_locked_super(sb); |
2094 | return ret; |
2095 | } |
2096 | } |
2097 | /* |
2098 | * For debugging purposes so that fs can warn if it sees write activity |
2099 | * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super(). |
2100 | */ |
2101 | WARN_ON_ONCE(freeze_inc(sb, who) > 1); |
2102 | sb->s_writers.frozen = SB_FREEZE_COMPLETE; |
2103 | wake_up_var(var: &sb->s_writers.frozen); |
2104 | lockdep_sb_freeze_release(sb); |
2105 | super_unlock_excl(sb); |
2106 | return 0; |
2107 | } |
2108 | EXPORT_SYMBOL(freeze_super); |
2109 | |
2110 | /* |
2111 | * Undoes the effect of a freeze_super_locked call. If the filesystem is |
2112 | * frozen both by userspace and the kernel, a thaw call from either source |
2113 | * removes that state without releasing the other state or unlocking the |
2114 | * filesystem. |
2115 | */ |
2116 | static int thaw_super_locked(struct super_block *sb, enum freeze_holder who) |
2117 | { |
2118 | int error = -EINVAL; |
2119 | |
2120 | if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) |
2121 | goto out_unlock; |
2122 | |
2123 | /* |
2124 | * All freezers share a single active reference. |
2125 | * So just unlock in case there are any left. |
2126 | */ |
2127 | if (freeze_dec(sb, who)) |
2128 | goto out_unlock; |
2129 | |
2130 | if (sb_rdonly(sb)) { |
2131 | sb->s_writers.frozen = SB_UNFROZEN; |
2132 | wake_up_var(var: &sb->s_writers.frozen); |
2133 | goto out_deactivate; |
2134 | } |
2135 | |
2136 | lockdep_sb_freeze_acquire(sb); |
2137 | |
2138 | if (sb->s_op->unfreeze_fs) { |
2139 | error = sb->s_op->unfreeze_fs(sb); |
2140 | if (error) { |
2141 | pr_err("VFS: Filesystem thaw failed\n"); |
2142 | freeze_inc(sb, who); |
2143 | lockdep_sb_freeze_release(sb); |
2144 | goto out_unlock; |
2145 | } |
2146 | } |
2147 | |
2148 | sb->s_writers.frozen = SB_UNFROZEN; |
2149 | wake_up_var(var: &sb->s_writers.frozen); |
2150 | sb_freeze_unlock(sb, level: SB_FREEZE_FS); |
2151 | out_deactivate: |
2152 | deactivate_locked_super(sb); |
2153 | return 0; |
2154 | |
2155 | out_unlock: |
2156 | super_unlock_excl(sb); |
2157 | return error; |
2158 | } |
2159 | |
2160 | /** |
2161 | * thaw_super -- unlock filesystem |
2162 | * @sb: the super to thaw |
2163 | * @who: context that wants to freeze |
2164 | * |
2165 | * Unlocks the filesystem and marks it writeable again after freeze_super() |
2166 | * if there are no remaining freezes on the filesystem. |
2167 | * |
2168 | * @who should be: |
2169 | * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs; |
2170 | * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs. |
2171 | * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed |
2172 | * |
2173 | * A filesystem may hold multiple devices and thus a filesystems may |
2174 | * have been frozen through the block layer via multiple block devices. |
2175 | * The filesystem remains frozen until all block devices are unfrozen. |
2176 | */ |
2177 | int thaw_super(struct super_block *sb, enum freeze_holder who) |
2178 | { |
2179 | if (!super_lock_excl(sb)) { |
2180 | WARN_ON_ONCE("Dying superblock while thawing!"); |
2181 | return -EINVAL; |
2182 | } |
2183 | return thaw_super_locked(sb, who); |
2184 | } |
2185 | EXPORT_SYMBOL(thaw_super); |
2186 | |
2187 | /* |
2188 | * Create workqueue for deferred direct IO completions. We allocate the |
2189 | * workqueue when it's first needed. This avoids creating workqueue for |
2190 | * filesystems that don't need it and also allows us to create the workqueue |
2191 | * late enough so the we can include s_id in the name of the workqueue. |
2192 | */ |
2193 | int sb_init_dio_done_wq(struct super_block *sb) |
2194 | { |
2195 | struct workqueue_struct *old; |
2196 | struct workqueue_struct *wq = alloc_workqueue(fmt: "dio/%s", |
2197 | flags: WQ_MEM_RECLAIM, max_active: 0, |
2198 | sb->s_id); |
2199 | if (!wq) |
2200 | return -ENOMEM; |
2201 | /* |
2202 | * This has to be atomic as more DIOs can race to create the workqueue |
2203 | */ |
2204 | old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); |
2205 | /* Someone created workqueue before us? Free ours... */ |
2206 | if (old) |
2207 | destroy_workqueue(wq); |
2208 | return 0; |
2209 | } |
2210 | EXPORT_SYMBOL_GPL(sb_init_dio_done_wq); |
2211 |
Definitions
- super_blocks
- sb_lock
- sb_writers_name
- __super_lock
- super_unlock
- __super_lock_excl
- super_unlock_excl
- super_unlock_shared
- super_flags
- super_lock
- super_lock_shared
- super_lock_excl
- super_wake
- super_cache_scan
- super_cache_count
- destroy_super_work
- destroy_super_rcu
- destroy_unused_super
- alloc_super
- __put_super
- put_super
- kill_super_notify
- deactivate_locked_super
- deactivate_super
- grab_super
- super_trylock_shared
- retire_super
- generic_shutdown_super
- mount_capable
- sget_fc
- sget
- drop_super
- drop_super_exclusive
- __iterate_supers
- iterate_supers
- iterate_supers_type
- user_get_super
- reconfigure_super
- do_emergency_remount_callback
- do_emergency_remount
- emergency_remount
- do_thaw_all_callback
- do_thaw_all
- emergency_thaw_all
- unnamed_dev_ida
- get_anon_bdev
- free_anon_bdev
- set_anon_super
- kill_anon_super
- kill_litter_super
- set_anon_super_fc
- test_keyed_super
- test_single_super
- vfs_get_super
- get_tree_nodev
- get_tree_single
- get_tree_keyed
- set_bdev_super
- super_s_dev_set
- super_s_dev_test
- sget_dev
- bdev_super_lock
- fs_bdev_mark_dead
- fs_bdev_sync
- get_bdev_super
- fs_bdev_freeze
- fs_bdev_thaw
- fs_holder_ops
- setup_bdev_super
- get_tree_bdev
- test_bdev_super
- mount_bdev
- kill_block_super
- mount_nodev
- reconfigure_single
- compare_single
- mount_single
- vfs_get_tree
- super_setup_bdi_name
- super_setup_bdi
- sb_wait_write
- lockdep_sb_freeze_release
- lockdep_sb_freeze_acquire
- sb_freeze_unlock
- wait_for_partially_frozen
- freeze_inc
- freeze_dec
- may_freeze
- freeze_super
- thaw_super_locked
- thaw_super
Improve your Profiling and Debugging skills
Find out more