| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. |
| 4 | * All Rights Reserved. |
| 5 | */ |
| 6 | #include "xfs.h" |
| 7 | #include "xfs_fs.h" |
| 8 | #include "xfs_shared.h" |
| 9 | #include "xfs_format.h" |
| 10 | #include "xfs_log_format.h" |
| 11 | #include "xfs_trans_resv.h" |
| 12 | #include "xfs_mount.h" |
| 13 | #include "xfs_inode.h" |
| 14 | #include "xfs_trans.h" |
| 15 | #include "xfs_inode_item.h" |
| 16 | #include "xfs_bmap.h" |
| 17 | #include "xfs_bmap_util.h" |
| 18 | #include "xfs_dir2.h" |
| 19 | #include "xfs_dir2_priv.h" |
| 20 | #include "xfs_ioctl.h" |
| 21 | #include "xfs_trace.h" |
| 22 | #include "xfs_log.h" |
| 23 | #include "xfs_icache.h" |
| 24 | #include "xfs_pnfs.h" |
| 25 | #include "xfs_iomap.h" |
| 26 | #include "xfs_reflink.h" |
| 27 | #include "xfs_file.h" |
| 28 | #include "xfs_aops.h" |
| 29 | #include "xfs_zone_alloc.h" |
| 30 | |
| 31 | #include <linux/dax.h> |
| 32 | #include <linux/falloc.h> |
| 33 | #include <linux/backing-dev.h> |
| 34 | #include <linux/mman.h> |
| 35 | #include <linux/fadvise.h> |
| 36 | #include <linux/mount.h> |
| 37 | |
| 38 | static const struct vm_operations_struct xfs_file_vm_ops; |
| 39 | |
| 40 | /* |
| 41 | * Decide if the given file range is aligned to the size of the fundamental |
| 42 | * allocation unit for the file. |
| 43 | */ |
| 44 | bool |
| 45 | xfs_is_falloc_aligned( |
| 46 | struct xfs_inode *ip, |
| 47 | loff_t pos, |
| 48 | long long int len) |
| 49 | { |
| 50 | unsigned int alloc_unit = xfs_inode_alloc_unitsize(ip); |
| 51 | |
| 52 | if (!is_power_of_2(n: alloc_unit)) |
| 53 | return isaligned_64(x: pos, y: alloc_unit) && |
| 54 | isaligned_64(x: len, y: alloc_unit); |
| 55 | |
| 56 | return !((pos | len) & (alloc_unit - 1)); |
| 57 | } |
| 58 | |
| 59 | /* |
| 60 | * Fsync operations on directories are much simpler than on regular files, |
| 61 | * as there is no file data to flush, and thus also no need for explicit |
| 62 | * cache flush operations, and there are no non-transaction metadata updates |
| 63 | * on directories either. |
| 64 | */ |
| 65 | STATIC int |
| 66 | xfs_dir_fsync( |
| 67 | struct file *file, |
| 68 | loff_t start, |
| 69 | loff_t end, |
| 70 | int datasync) |
| 71 | { |
| 72 | struct xfs_inode *ip = XFS_I(inode: file->f_mapping->host); |
| 73 | |
| 74 | trace_xfs_dir_fsync(ip); |
| 75 | return xfs_log_force_inode(ip); |
| 76 | } |
| 77 | |
| 78 | static xfs_csn_t |
| 79 | xfs_fsync_seq( |
| 80 | struct xfs_inode *ip, |
| 81 | bool datasync) |
| 82 | { |
| 83 | if (!xfs_ipincount(ip)) |
| 84 | return 0; |
| 85 | if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP)) |
| 86 | return 0; |
| 87 | return ip->i_itemp->ili_commit_seq; |
| 88 | } |
| 89 | |
| 90 | /* |
| 91 | * All metadata updates are logged, which means that we just have to flush the |
| 92 | * log up to the latest LSN that touched the inode. |
| 93 | * |
| 94 | * If we have concurrent fsync/fdatasync() calls, we need them to all block on |
| 95 | * the log force before we clear the ili_fsync_fields field. This ensures that |
| 96 | * we don't get a racing sync operation that does not wait for the metadata to |
| 97 | * hit the journal before returning. If we race with clearing ili_fsync_fields, |
| 98 | * then all that will happen is the log force will do nothing as the lsn will |
| 99 | * already be on disk. We can't race with setting ili_fsync_fields because that |
| 100 | * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock |
| 101 | * shared until after the ili_fsync_fields is cleared. |
| 102 | */ |
| 103 | static int |
| 104 | xfs_fsync_flush_log( |
| 105 | struct xfs_inode *ip, |
| 106 | bool datasync, |
| 107 | int *log_flushed) |
| 108 | { |
| 109 | int error = 0; |
| 110 | xfs_csn_t seq; |
| 111 | |
| 112 | xfs_ilock(ip, XFS_ILOCK_SHARED); |
| 113 | seq = xfs_fsync_seq(ip, datasync); |
| 114 | if (seq) { |
| 115 | error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, |
| 116 | log_flushed); |
| 117 | |
| 118 | spin_lock(lock: &ip->i_itemp->ili_lock); |
| 119 | ip->i_itemp->ili_fsync_fields = 0; |
| 120 | spin_unlock(lock: &ip->i_itemp->ili_lock); |
| 121 | } |
| 122 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| 123 | return error; |
| 124 | } |
| 125 | |
| 126 | STATIC int |
| 127 | xfs_file_fsync( |
| 128 | struct file *file, |
| 129 | loff_t start, |
| 130 | loff_t end, |
| 131 | int datasync) |
| 132 | { |
| 133 | struct xfs_inode *ip = XFS_I(inode: file->f_mapping->host); |
| 134 | struct xfs_mount *mp = ip->i_mount; |
| 135 | int error, err2; |
| 136 | int log_flushed = 0; |
| 137 | |
| 138 | trace_xfs_file_fsync(ip); |
| 139 | |
| 140 | error = file_write_and_wait_range(file, start, end); |
| 141 | if (error) |
| 142 | return error; |
| 143 | |
| 144 | if (xfs_is_shutdown(mp)) |
| 145 | return -EIO; |
| 146 | |
| 147 | xfs_iflags_clear(ip, XFS_ITRUNCATED); |
| 148 | |
| 149 | /* |
| 150 | * If we have an RT and/or log subvolume we need to make sure to flush |
| 151 | * the write cache the device used for file data first. This is to |
| 152 | * ensure newly written file data make it to disk before logging the new |
| 153 | * inode size in case of an extending write. |
| 154 | */ |
| 155 | if (XFS_IS_REALTIME_INODE(ip) && mp->m_rtdev_targp != mp->m_ddev_targp) |
| 156 | error = blkdev_issue_flush(bdev: mp->m_rtdev_targp->bt_bdev); |
| 157 | else if (mp->m_logdev_targp != mp->m_ddev_targp) |
| 158 | error = blkdev_issue_flush(bdev: mp->m_ddev_targp->bt_bdev); |
| 159 | |
| 160 | /* |
| 161 | * Any inode that has dirty modifications in the log is pinned. The |
| 162 | * racy check here for a pinned inode will not catch modifications |
| 163 | * that happen concurrently to the fsync call, but fsync semantics |
| 164 | * only require to sync previously completed I/O. |
| 165 | */ |
| 166 | if (xfs_ipincount(ip)) { |
| 167 | err2 = xfs_fsync_flush_log(ip, datasync, log_flushed: &log_flushed); |
| 168 | if (err2 && !error) |
| 169 | error = err2; |
| 170 | } |
| 171 | |
| 172 | /* |
| 173 | * If we only have a single device, and the log force about was |
| 174 | * a no-op we might have to flush the data device cache here. |
| 175 | * This can only happen for fdatasync/O_DSYNC if we were overwriting |
| 176 | * an already allocated file and thus do not have any metadata to |
| 177 | * commit. |
| 178 | */ |
| 179 | if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) && |
| 180 | mp->m_logdev_targp == mp->m_ddev_targp) { |
| 181 | err2 = blkdev_issue_flush(bdev: mp->m_ddev_targp->bt_bdev); |
| 182 | if (err2 && !error) |
| 183 | error = err2; |
| 184 | } |
| 185 | |
| 186 | return error; |
| 187 | } |
| 188 | |
| 189 | static int |
| 190 | xfs_ilock_iocb( |
| 191 | struct kiocb *iocb, |
| 192 | unsigned int lock_mode) |
| 193 | { |
| 194 | struct xfs_inode *ip = XFS_I(inode: file_inode(f: iocb->ki_filp)); |
| 195 | |
| 196 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 197 | if (!xfs_ilock_nowait(ip, lock_mode)) |
| 198 | return -EAGAIN; |
| 199 | } else { |
| 200 | xfs_ilock(ip, lock_mode); |
| 201 | } |
| 202 | |
| 203 | return 0; |
| 204 | } |
| 205 | |
| 206 | static int |
| 207 | xfs_ilock_iocb_for_write( |
| 208 | struct kiocb *iocb, |
| 209 | unsigned int *lock_mode) |
| 210 | { |
| 211 | ssize_t ret; |
| 212 | struct xfs_inode *ip = XFS_I(inode: file_inode(f: iocb->ki_filp)); |
| 213 | |
| 214 | ret = xfs_ilock_iocb(iocb, lock_mode: *lock_mode); |
| 215 | if (ret) |
| 216 | return ret; |
| 217 | |
| 218 | /* |
| 219 | * If a reflink remap is in progress we always need to take the iolock |
| 220 | * exclusively to wait for it to finish. |
| 221 | */ |
| 222 | if (*lock_mode == XFS_IOLOCK_SHARED && |
| 223 | xfs_iflags_test(ip, XFS_IREMAPPING)) { |
| 224 | xfs_iunlock(ip, *lock_mode); |
| 225 | *lock_mode = XFS_IOLOCK_EXCL; |
| 226 | return xfs_ilock_iocb(iocb, lock_mode: *lock_mode); |
| 227 | } |
| 228 | |
| 229 | return 0; |
| 230 | } |
| 231 | |
| 232 | STATIC ssize_t |
| 233 | xfs_file_dio_read( |
| 234 | struct kiocb *iocb, |
| 235 | struct iov_iter *to) |
| 236 | { |
| 237 | struct xfs_inode *ip = XFS_I(inode: file_inode(f: iocb->ki_filp)); |
| 238 | ssize_t ret; |
| 239 | |
| 240 | trace_xfs_file_direct_read(iocb, iter: to); |
| 241 | |
| 242 | if (!iov_iter_count(i: to)) |
| 243 | return 0; /* skip atime */ |
| 244 | |
| 245 | file_accessed(file: iocb->ki_filp); |
| 246 | |
| 247 | ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); |
| 248 | if (ret) |
| 249 | return ret; |
| 250 | ret = iomap_dio_rw(iocb, iter: to, ops: &xfs_read_iomap_ops, NULL, dio_flags: 0, NULL, done_before: 0); |
| 251 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| 252 | |
| 253 | return ret; |
| 254 | } |
| 255 | |
| 256 | static noinline ssize_t |
| 257 | xfs_file_dax_read( |
| 258 | struct kiocb *iocb, |
| 259 | struct iov_iter *to) |
| 260 | { |
| 261 | struct xfs_inode *ip = XFS_I(inode: iocb->ki_filp->f_mapping->host); |
| 262 | ssize_t ret = 0; |
| 263 | |
| 264 | trace_xfs_file_dax_read(iocb, iter: to); |
| 265 | |
| 266 | if (!iov_iter_count(i: to)) |
| 267 | return 0; /* skip atime */ |
| 268 | |
| 269 | ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); |
| 270 | if (ret) |
| 271 | return ret; |
| 272 | ret = dax_iomap_rw(iocb, iter: to, ops: &xfs_read_iomap_ops); |
| 273 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| 274 | |
| 275 | file_accessed(file: iocb->ki_filp); |
| 276 | return ret; |
| 277 | } |
| 278 | |
| 279 | STATIC ssize_t |
| 280 | xfs_file_buffered_read( |
| 281 | struct kiocb *iocb, |
| 282 | struct iov_iter *to) |
| 283 | { |
| 284 | struct xfs_inode *ip = XFS_I(inode: file_inode(f: iocb->ki_filp)); |
| 285 | ssize_t ret; |
| 286 | |
| 287 | trace_xfs_file_buffered_read(iocb, iter: to); |
| 288 | |
| 289 | ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED); |
| 290 | if (ret) |
| 291 | return ret; |
| 292 | ret = generic_file_read_iter(iocb, to); |
| 293 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| 294 | |
| 295 | return ret; |
| 296 | } |
| 297 | |
| 298 | STATIC ssize_t |
| 299 | xfs_file_read_iter( |
| 300 | struct kiocb *iocb, |
| 301 | struct iov_iter *to) |
| 302 | { |
| 303 | struct inode *inode = file_inode(f: iocb->ki_filp); |
| 304 | struct xfs_mount *mp = XFS_I(inode)->i_mount; |
| 305 | ssize_t ret = 0; |
| 306 | |
| 307 | XFS_STATS_INC(mp, xs_read_calls); |
| 308 | |
| 309 | if (xfs_is_shutdown(mp)) |
| 310 | return -EIO; |
| 311 | |
| 312 | if (IS_DAX(inode)) |
| 313 | ret = xfs_file_dax_read(iocb, to); |
| 314 | else if (iocb->ki_flags & IOCB_DIRECT) |
| 315 | ret = xfs_file_dio_read(iocb, to); |
| 316 | else |
| 317 | ret = xfs_file_buffered_read(iocb, to); |
| 318 | |
| 319 | if (ret > 0) |
| 320 | XFS_STATS_ADD(mp, xs_read_bytes, ret); |
| 321 | return ret; |
| 322 | } |
| 323 | |
| 324 | STATIC ssize_t |
| 325 | xfs_file_splice_read( |
| 326 | struct file *in, |
| 327 | loff_t *ppos, |
| 328 | struct pipe_inode_info *pipe, |
| 329 | size_t len, |
| 330 | unsigned int flags) |
| 331 | { |
| 332 | struct inode *inode = file_inode(f: in); |
| 333 | struct xfs_inode *ip = XFS_I(inode); |
| 334 | struct xfs_mount *mp = ip->i_mount; |
| 335 | ssize_t ret = 0; |
| 336 | |
| 337 | XFS_STATS_INC(mp, xs_read_calls); |
| 338 | |
| 339 | if (xfs_is_shutdown(mp)) |
| 340 | return -EIO; |
| 341 | |
| 342 | trace_xfs_file_splice_read(ip, offset: *ppos, count: len); |
| 343 | |
| 344 | xfs_ilock(ip, XFS_IOLOCK_SHARED); |
| 345 | ret = filemap_splice_read(in, ppos, pipe, len, flags); |
| 346 | xfs_iunlock(ip, XFS_IOLOCK_SHARED); |
| 347 | if (ret > 0) |
| 348 | XFS_STATS_ADD(mp, xs_read_bytes, ret); |
| 349 | return ret; |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | * Take care of zeroing post-EOF blocks when they might exist. |
| 354 | * |
| 355 | * Returns 0 if successfully, a negative error for a failure, or 1 if this |
| 356 | * function dropped the iolock and reacquired it exclusively and the caller |
| 357 | * needs to restart the write sanity checks. |
| 358 | */ |
| 359 | static ssize_t |
| 360 | xfs_file_write_zero_eof( |
| 361 | struct kiocb *iocb, |
| 362 | struct iov_iter *from, |
| 363 | unsigned int *iolock, |
| 364 | size_t count, |
| 365 | bool *drained_dio, |
| 366 | struct xfs_zone_alloc_ctx *ac) |
| 367 | { |
| 368 | struct xfs_inode *ip = XFS_I(inode: iocb->ki_filp->f_mapping->host); |
| 369 | loff_t isize; |
| 370 | int error; |
| 371 | |
| 372 | /* |
| 373 | * We need to serialise against EOF updates that occur in IO completions |
| 374 | * here. We want to make sure that nobody is changing the size while |
| 375 | * we do this check until we have placed an IO barrier (i.e. hold |
| 376 | * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The |
| 377 | * spinlock effectively forms a memory barrier once we have |
| 378 | * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and |
| 379 | * hence be able to correctly determine if we need to run zeroing. |
| 380 | */ |
| 381 | spin_lock(lock: &ip->i_flags_lock); |
| 382 | isize = i_size_read(inode: VFS_I(ip)); |
| 383 | if (iocb->ki_pos <= isize) { |
| 384 | spin_unlock(lock: &ip->i_flags_lock); |
| 385 | return 0; |
| 386 | } |
| 387 | spin_unlock(lock: &ip->i_flags_lock); |
| 388 | |
| 389 | if (iocb->ki_flags & IOCB_NOWAIT) |
| 390 | return -EAGAIN; |
| 391 | |
| 392 | if (!*drained_dio) { |
| 393 | /* |
| 394 | * If zeroing is needed and we are currently holding the iolock |
| 395 | * shared, we need to update it to exclusive which implies |
| 396 | * having to redo all checks before. |
| 397 | */ |
| 398 | if (*iolock == XFS_IOLOCK_SHARED) { |
| 399 | xfs_iunlock(ip, *iolock); |
| 400 | *iolock = XFS_IOLOCK_EXCL; |
| 401 | xfs_ilock(ip, *iolock); |
| 402 | iov_iter_reexpand(i: from, count); |
| 403 | } |
| 404 | |
| 405 | /* |
| 406 | * We now have an IO submission barrier in place, but AIO can do |
| 407 | * EOF updates during IO completion and hence we now need to |
| 408 | * wait for all of them to drain. Non-AIO DIO will have drained |
| 409 | * before we are given the XFS_IOLOCK_EXCL, and so for most |
| 410 | * cases this wait is a no-op. |
| 411 | */ |
| 412 | inode_dio_wait(inode: VFS_I(ip)); |
| 413 | *drained_dio = true; |
| 414 | return 1; |
| 415 | } |
| 416 | |
| 417 | trace_xfs_zero_eof(ip, offset: isize, count: iocb->ki_pos - isize); |
| 418 | |
| 419 | xfs_ilock(ip, XFS_MMAPLOCK_EXCL); |
| 420 | error = xfs_zero_range(ip, pos: isize, len: iocb->ki_pos - isize, ac, NULL); |
| 421 | xfs_iunlock(ip, XFS_MMAPLOCK_EXCL); |
| 422 | |
| 423 | return error; |
| 424 | } |
| 425 | |
| 426 | /* |
| 427 | * Common pre-write limit and setup checks. |
| 428 | * |
| 429 | * Called with the iolock held either shared and exclusive according to |
| 430 | * @iolock, and returns with it held. Might upgrade the iolock to exclusive |
| 431 | * if called for a direct write beyond i_size. |
| 432 | */ |
| 433 | STATIC ssize_t |
| 434 | xfs_file_write_checks( |
| 435 | struct kiocb *iocb, |
| 436 | struct iov_iter *from, |
| 437 | unsigned int *iolock, |
| 438 | struct xfs_zone_alloc_ctx *ac) |
| 439 | { |
| 440 | struct inode *inode = iocb->ki_filp->f_mapping->host; |
| 441 | size_t count = iov_iter_count(i: from); |
| 442 | bool drained_dio = false; |
| 443 | ssize_t error; |
| 444 | |
| 445 | restart: |
| 446 | error = generic_write_checks(iocb, from); |
| 447 | if (error <= 0) |
| 448 | return error; |
| 449 | |
| 450 | if (iocb->ki_flags & IOCB_NOWAIT) { |
| 451 | error = break_layout(inode, wait: false); |
| 452 | if (error == -EWOULDBLOCK) |
| 453 | error = -EAGAIN; |
| 454 | } else { |
| 455 | error = xfs_break_layouts(inode, iolock, reason: BREAK_WRITE); |
| 456 | } |
| 457 | |
| 458 | if (error) |
| 459 | return error; |
| 460 | |
| 461 | /* |
| 462 | * For changing security info in file_remove_privs() we need i_rwsem |
| 463 | * exclusively. |
| 464 | */ |
| 465 | if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) { |
| 466 | xfs_iunlock(XFS_I(inode), *iolock); |
| 467 | *iolock = XFS_IOLOCK_EXCL; |
| 468 | error = xfs_ilock_iocb(iocb, lock_mode: *iolock); |
| 469 | if (error) { |
| 470 | *iolock = 0; |
| 471 | return error; |
| 472 | } |
| 473 | goto restart; |
| 474 | } |
| 475 | |
| 476 | /* |
| 477 | * If the offset is beyond the size of the file, we need to zero all |
| 478 | * blocks that fall between the existing EOF and the start of this |
| 479 | * write. |
| 480 | * |
| 481 | * We can do an unlocked check for i_size here safely as I/O completion |
| 482 | * can only extend EOF. Truncate is locked out at this point, so the |
| 483 | * EOF can not move backwards, only forwards. Hence we only need to take |
| 484 | * the slow path when we are at or beyond the current EOF. |
| 485 | */ |
| 486 | if (iocb->ki_pos > i_size_read(inode)) { |
| 487 | error = xfs_file_write_zero_eof(iocb, from, iolock, count, |
| 488 | drained_dio: &drained_dio, ac); |
| 489 | if (error == 1) |
| 490 | goto restart; |
| 491 | if (error) |
| 492 | return error; |
| 493 | } |
| 494 | |
| 495 | return kiocb_modified(iocb); |
| 496 | } |
| 497 | |
| 498 | static ssize_t |
| 499 | xfs_zoned_write_space_reserve( |
| 500 | struct xfs_inode *ip, |
| 501 | struct kiocb *iocb, |
| 502 | struct iov_iter *from, |
| 503 | unsigned int flags, |
| 504 | struct xfs_zone_alloc_ctx *ac) |
| 505 | { |
| 506 | loff_t count = iov_iter_count(i: from); |
| 507 | int error; |
| 508 | |
| 509 | if (iocb->ki_flags & IOCB_NOWAIT) |
| 510 | flags |= XFS_ZR_NOWAIT; |
| 511 | |
| 512 | /* |
| 513 | * Check the rlimit and LFS boundary first so that we don't over-reserve |
| 514 | * by possibly a lot. |
| 515 | * |
| 516 | * The generic write path will redo this check later, and it might have |
| 517 | * changed by then. If it got expanded we'll stick to our earlier |
| 518 | * smaller limit, and if it is decreased the new smaller limit will be |
| 519 | * used and our extra space reservation will be returned after finishing |
| 520 | * the write. |
| 521 | */ |
| 522 | error = generic_write_check_limits(file: iocb->ki_filp, pos: iocb->ki_pos, count: &count); |
| 523 | if (error) |
| 524 | return error; |
| 525 | |
| 526 | /* |
| 527 | * Sloppily round up count to file system blocks. |
| 528 | * |
| 529 | * This will often reserve an extra block, but that avoids having to look |
| 530 | * at the start offset, which isn't stable for O_APPEND until taking the |
| 531 | * iolock. Also we need to reserve a block each for zeroing the old |
| 532 | * EOF block and the new start block if they are unaligned. |
| 533 | * |
| 534 | * Any remaining block will be returned after the write. |
| 535 | */ |
| 536 | return xfs_zoned_space_reserve(ip, |
| 537 | XFS_B_TO_FSB(ip->i_mount, count) + 1 + 2, flags, ac); |
| 538 | } |
| 539 | |
| 540 | static int |
| 541 | xfs_dio_write_end_io( |
| 542 | struct kiocb *iocb, |
| 543 | ssize_t size, |
| 544 | int error, |
| 545 | unsigned flags) |
| 546 | { |
| 547 | struct inode *inode = file_inode(f: iocb->ki_filp); |
| 548 | struct xfs_inode *ip = XFS_I(inode); |
| 549 | loff_t offset = iocb->ki_pos; |
| 550 | unsigned int nofs_flag; |
| 551 | |
| 552 | ASSERT(!xfs_is_zoned_inode(ip) || |
| 553 | !(flags & (IOMAP_DIO_UNWRITTEN | IOMAP_DIO_COW))); |
| 554 | |
| 555 | trace_xfs_end_io_direct_write(ip, offset, count: size); |
| 556 | |
| 557 | if (xfs_is_shutdown(mp: ip->i_mount)) |
| 558 | return -EIO; |
| 559 | |
| 560 | if (error) |
| 561 | return error; |
| 562 | if (!size) |
| 563 | return 0; |
| 564 | |
| 565 | /* |
| 566 | * Capture amount written on completion as we can't reliably account |
| 567 | * for it on submission. |
| 568 | */ |
| 569 | XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size); |
| 570 | |
| 571 | /* |
| 572 | * We can allocate memory here while doing writeback on behalf of |
| 573 | * memory reclaim. To avoid memory allocation deadlocks set the |
| 574 | * task-wide nofs context for the following operations. |
| 575 | */ |
| 576 | nofs_flag = memalloc_nofs_save(); |
| 577 | |
| 578 | if (flags & IOMAP_DIO_COW) { |
| 579 | if (iocb->ki_flags & IOCB_ATOMIC) |
| 580 | error = xfs_reflink_end_atomic_cow(ip, offset, count: size); |
| 581 | else |
| 582 | error = xfs_reflink_end_cow(ip, offset, count: size); |
| 583 | if (error) |
| 584 | goto out; |
| 585 | } |
| 586 | |
| 587 | /* |
| 588 | * Unwritten conversion updates the in-core isize after extent |
| 589 | * conversion but before updating the on-disk size. Updating isize any |
| 590 | * earlier allows a racing dio read to find unwritten extents before |
| 591 | * they are converted. |
| 592 | */ |
| 593 | if (flags & IOMAP_DIO_UNWRITTEN) { |
| 594 | error = xfs_iomap_write_unwritten(ip, offset, size, true); |
| 595 | goto out; |
| 596 | } |
| 597 | |
| 598 | /* |
| 599 | * We need to update the in-core inode size here so that we don't end up |
| 600 | * with the on-disk inode size being outside the in-core inode size. We |
| 601 | * have no other method of updating EOF for AIO, so always do it here |
| 602 | * if necessary. |
| 603 | * |
| 604 | * We need to lock the test/set EOF update as we can be racing with |
| 605 | * other IO completions here to update the EOF. Failing to serialise |
| 606 | * here can result in EOF moving backwards and Bad Things Happen when |
| 607 | * that occurs. |
| 608 | * |
| 609 | * As IO completion only ever extends EOF, we can do an unlocked check |
| 610 | * here to avoid taking the spinlock. If we land within the current EOF, |
| 611 | * then we do not need to do an extending update at all, and we don't |
| 612 | * need to take the lock to check this. If we race with an update moving |
| 613 | * EOF, then we'll either still be beyond EOF and need to take the lock, |
| 614 | * or we'll be within EOF and we don't need to take it at all. |
| 615 | */ |
| 616 | if (offset + size <= i_size_read(inode)) |
| 617 | goto out; |
| 618 | |
| 619 | spin_lock(lock: &ip->i_flags_lock); |
| 620 | if (offset + size > i_size_read(inode)) { |
| 621 | i_size_write(inode, i_size: offset + size); |
| 622 | spin_unlock(lock: &ip->i_flags_lock); |
| 623 | error = xfs_setfilesize(ip, offset, size); |
| 624 | } else { |
| 625 | spin_unlock(lock: &ip->i_flags_lock); |
| 626 | } |
| 627 | |
| 628 | out: |
| 629 | memalloc_nofs_restore(flags: nofs_flag); |
| 630 | return error; |
| 631 | } |
| 632 | |
| 633 | static const struct iomap_dio_ops xfs_dio_write_ops = { |
| 634 | .end_io = xfs_dio_write_end_io, |
| 635 | }; |
| 636 | |
| 637 | static void |
| 638 | xfs_dio_zoned_submit_io( |
| 639 | const struct iomap_iter *iter, |
| 640 | struct bio *bio, |
| 641 | loff_t file_offset) |
| 642 | { |
| 643 | struct xfs_mount *mp = XFS_I(inode: iter->inode)->i_mount; |
| 644 | struct xfs_zone_alloc_ctx *ac = iter->private; |
| 645 | xfs_filblks_t count_fsb; |
| 646 | struct iomap_ioend *ioend; |
| 647 | |
| 648 | count_fsb = XFS_B_TO_FSB(mp, bio->bi_iter.bi_size); |
| 649 | if (count_fsb > ac->reserved_blocks) { |
| 650 | xfs_err(mp, |
| 651 | "allocation (%lld) larger than reservation (%lld)." , |
| 652 | count_fsb, ac->reserved_blocks); |
| 653 | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| 654 | bio_io_error(bio); |
| 655 | return; |
| 656 | } |
| 657 | ac->reserved_blocks -= count_fsb; |
| 658 | |
| 659 | bio->bi_end_io = xfs_end_bio; |
| 660 | ioend = iomap_init_ioend(inode: iter->inode, bio, file_offset, |
| 661 | IOMAP_IOEND_DIRECT); |
| 662 | xfs_zone_alloc_and_submit(ioend, oz: &ac->open_zone); |
| 663 | } |
| 664 | |
| 665 | static const struct iomap_dio_ops xfs_dio_zoned_write_ops = { |
| 666 | .bio_set = &iomap_ioend_bioset, |
| 667 | .submit_io = xfs_dio_zoned_submit_io, |
| 668 | .end_io = xfs_dio_write_end_io, |
| 669 | }; |
| 670 | |
| 671 | /* |
| 672 | * Handle block aligned direct I/O writes. |
| 673 | */ |
| 674 | static noinline ssize_t |
| 675 | xfs_file_dio_write_aligned( |
| 676 | struct xfs_inode *ip, |
| 677 | struct kiocb *iocb, |
| 678 | struct iov_iter *from, |
| 679 | const struct iomap_ops *ops, |
| 680 | const struct iomap_dio_ops *dops, |
| 681 | struct xfs_zone_alloc_ctx *ac) |
| 682 | { |
| 683 | unsigned int iolock = XFS_IOLOCK_SHARED; |
| 684 | ssize_t ret; |
| 685 | |
| 686 | ret = xfs_ilock_iocb_for_write(iocb, lock_mode: &iolock); |
| 687 | if (ret) |
| 688 | return ret; |
| 689 | ret = xfs_file_write_checks(iocb, from, iolock: &iolock, ac); |
| 690 | if (ret) |
| 691 | goto out_unlock; |
| 692 | |
| 693 | /* |
| 694 | * We don't need to hold the IOLOCK exclusively across the IO, so demote |
| 695 | * the iolock back to shared if we had to take the exclusive lock in |
| 696 | * xfs_file_write_checks() for other reasons. |
| 697 | */ |
| 698 | if (iolock == XFS_IOLOCK_EXCL) { |
| 699 | xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); |
| 700 | iolock = XFS_IOLOCK_SHARED; |
| 701 | } |
| 702 | trace_xfs_file_direct_write(iocb, iter: from); |
| 703 | ret = iomap_dio_rw(iocb, iter: from, ops, dops, dio_flags: 0, private: ac, done_before: 0); |
| 704 | out_unlock: |
| 705 | xfs_iunlock(ip, iolock); |
| 706 | return ret; |
| 707 | } |
| 708 | |
| 709 | /* |
| 710 | * Handle block aligned direct I/O writes to zoned devices. |
| 711 | */ |
| 712 | static noinline ssize_t |
| 713 | xfs_file_dio_write_zoned( |
| 714 | struct xfs_inode *ip, |
| 715 | struct kiocb *iocb, |
| 716 | struct iov_iter *from) |
| 717 | { |
| 718 | struct xfs_zone_alloc_ctx ac = { }; |
| 719 | ssize_t ret; |
| 720 | |
| 721 | ret = xfs_zoned_write_space_reserve(ip, iocb, from, flags: 0, ac: &ac); |
| 722 | if (ret < 0) |
| 723 | return ret; |
| 724 | ret = xfs_file_dio_write_aligned(ip, iocb, from, |
| 725 | ops: &xfs_zoned_direct_write_iomap_ops, |
| 726 | dops: &xfs_dio_zoned_write_ops, ac: &ac); |
| 727 | xfs_zoned_space_unreserve(ip, ac: &ac); |
| 728 | return ret; |
| 729 | } |
| 730 | |
| 731 | /* |
| 732 | * Handle block atomic writes |
| 733 | * |
| 734 | * Two methods of atomic writes are supported: |
| 735 | * - REQ_ATOMIC-based, which would typically use some form of HW offload in the |
| 736 | * disk |
| 737 | * - COW-based, which uses a COW fork as a staging extent for data updates |
| 738 | * before atomically updating extent mappings for the range being written |
| 739 | * |
| 740 | */ |
| 741 | static noinline ssize_t |
| 742 | xfs_file_dio_write_atomic( |
| 743 | struct xfs_inode *ip, |
| 744 | struct kiocb *iocb, |
| 745 | struct iov_iter *from) |
| 746 | { |
| 747 | unsigned int iolock = XFS_IOLOCK_SHARED; |
| 748 | ssize_t ret, ocount = iov_iter_count(i: from); |
| 749 | const struct iomap_ops *dops; |
| 750 | |
| 751 | /* |
| 752 | * HW offload should be faster, so try that first if it is already |
| 753 | * known that the write length is not too large. |
| 754 | */ |
| 755 | if (ocount > xfs_inode_buftarg(ip)->bt_bdev_awu_max) |
| 756 | dops = &xfs_atomic_write_cow_iomap_ops; |
| 757 | else |
| 758 | dops = &xfs_direct_write_iomap_ops; |
| 759 | |
| 760 | retry: |
| 761 | ret = xfs_ilock_iocb_for_write(iocb, lock_mode: &iolock); |
| 762 | if (ret) |
| 763 | return ret; |
| 764 | |
| 765 | ret = xfs_file_write_checks(iocb, from, iolock: &iolock, NULL); |
| 766 | if (ret) |
| 767 | goto out_unlock; |
| 768 | |
| 769 | /* Demote similar to xfs_file_dio_write_aligned() */ |
| 770 | if (iolock == XFS_IOLOCK_EXCL) { |
| 771 | xfs_ilock_demote(ip, XFS_IOLOCK_EXCL); |
| 772 | iolock = XFS_IOLOCK_SHARED; |
| 773 | } |
| 774 | |
| 775 | trace_xfs_file_direct_write(iocb, iter: from); |
| 776 | ret = iomap_dio_rw(iocb, iter: from, ops: dops, dops: &xfs_dio_write_ops, |
| 777 | dio_flags: 0, NULL, done_before: 0); |
| 778 | |
| 779 | /* |
| 780 | * The retry mechanism is based on the ->iomap_begin method returning |
| 781 | * -ENOPROTOOPT, which would be when the REQ_ATOMIC-based write is not |
| 782 | * possible. The REQ_ATOMIC-based method typically not be possible if |
| 783 | * the write spans multiple extents or the disk blocks are misaligned. |
| 784 | */ |
| 785 | if (ret == -ENOPROTOOPT && dops == &xfs_direct_write_iomap_ops) { |
| 786 | xfs_iunlock(ip, iolock); |
| 787 | dops = &xfs_atomic_write_cow_iomap_ops; |
| 788 | goto retry; |
| 789 | } |
| 790 | |
| 791 | out_unlock: |
| 792 | if (iolock) |
| 793 | xfs_iunlock(ip, iolock); |
| 794 | return ret; |
| 795 | } |
| 796 | |
| 797 | /* |
| 798 | * Handle block unaligned direct I/O writes |
| 799 | * |
| 800 | * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing |
| 801 | * them to be done in parallel with reads and other direct I/O writes. However, |
| 802 | * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need |
| 803 | * to do sub-block zeroing and that requires serialisation against other direct |
| 804 | * I/O to the same block. In this case we need to serialise the submission of |
| 805 | * the unaligned I/O so that we don't get racing block zeroing in the dio layer. |
| 806 | * In the case where sub-block zeroing is not required, we can do concurrent |
| 807 | * sub-block dios to the same block successfully. |
| 808 | * |
| 809 | * Optimistically submit the I/O using the shared lock first, but use the |
| 810 | * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN |
| 811 | * if block allocation or partial block zeroing would be required. In that case |
| 812 | * we try again with the exclusive lock. |
| 813 | */ |
| 814 | static noinline ssize_t |
| 815 | xfs_file_dio_write_unaligned( |
| 816 | struct xfs_inode *ip, |
| 817 | struct kiocb *iocb, |
| 818 | struct iov_iter *from) |
| 819 | { |
| 820 | size_t isize = i_size_read(inode: VFS_I(ip)); |
| 821 | size_t count = iov_iter_count(i: from); |
| 822 | unsigned int iolock = XFS_IOLOCK_SHARED; |
| 823 | unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY; |
| 824 | ssize_t ret; |
| 825 | |
| 826 | /* |
| 827 | * Extending writes need exclusivity because of the sub-block zeroing |
| 828 | * that the DIO code always does for partial tail blocks beyond EOF, so |
| 829 | * don't even bother trying the fast path in this case. |
| 830 | */ |
| 831 | if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) { |
| 832 | if (iocb->ki_flags & IOCB_NOWAIT) |
| 833 | return -EAGAIN; |
| 834 | retry_exclusive: |
| 835 | iolock = XFS_IOLOCK_EXCL; |
| 836 | flags = IOMAP_DIO_FORCE_WAIT; |
| 837 | } |
| 838 | |
| 839 | ret = xfs_ilock_iocb_for_write(iocb, lock_mode: &iolock); |
| 840 | if (ret) |
| 841 | return ret; |
| 842 | |
| 843 | /* |
| 844 | * We can't properly handle unaligned direct I/O to reflink files yet, |
| 845 | * as we can't unshare a partial block. |
| 846 | */ |
| 847 | if (xfs_is_cow_inode(ip)) { |
| 848 | trace_xfs_reflink_bounce_dio_write(iocb, iter: from); |
| 849 | ret = -ENOTBLK; |
| 850 | goto out_unlock; |
| 851 | } |
| 852 | |
| 853 | ret = xfs_file_write_checks(iocb, from, iolock: &iolock, NULL); |
| 854 | if (ret) |
| 855 | goto out_unlock; |
| 856 | |
| 857 | /* |
| 858 | * If we are doing exclusive unaligned I/O, this must be the only I/O |
| 859 | * in-flight. Otherwise we risk data corruption due to unwritten extent |
| 860 | * conversions from the AIO end_io handler. Wait for all other I/O to |
| 861 | * drain first. |
| 862 | */ |
| 863 | if (flags & IOMAP_DIO_FORCE_WAIT) |
| 864 | inode_dio_wait(inode: VFS_I(ip)); |
| 865 | |
| 866 | trace_xfs_file_direct_write(iocb, iter: from); |
| 867 | ret = iomap_dio_rw(iocb, iter: from, ops: &xfs_direct_write_iomap_ops, |
| 868 | dops: &xfs_dio_write_ops, dio_flags: flags, NULL, done_before: 0); |
| 869 | |
| 870 | /* |
| 871 | * Retry unaligned I/O with exclusive blocking semantics if the DIO |
| 872 | * layer rejected it for mapping or locking reasons. If we are doing |
| 873 | * nonblocking user I/O, propagate the error. |
| 874 | */ |
| 875 | if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) { |
| 876 | ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY); |
| 877 | xfs_iunlock(ip, iolock); |
| 878 | goto retry_exclusive; |
| 879 | } |
| 880 | |
| 881 | out_unlock: |
| 882 | if (iolock) |
| 883 | xfs_iunlock(ip, iolock); |
| 884 | return ret; |
| 885 | } |
| 886 | |
| 887 | static ssize_t |
| 888 | xfs_file_dio_write( |
| 889 | struct kiocb *iocb, |
| 890 | struct iov_iter *from) |
| 891 | { |
| 892 | struct xfs_inode *ip = XFS_I(inode: file_inode(f: iocb->ki_filp)); |
| 893 | struct xfs_buftarg *target = xfs_inode_buftarg(ip); |
| 894 | size_t count = iov_iter_count(i: from); |
| 895 | |
| 896 | /* direct I/O must be aligned to device logical sector size */ |
| 897 | if ((iocb->ki_pos | count) & target->bt_logical_sectormask) |
| 898 | return -EINVAL; |
| 899 | |
| 900 | /* |
| 901 | * For always COW inodes we also must check the alignment of each |
| 902 | * individual iovec segment, as they could end up with different |
| 903 | * I/Os due to the way bio_iov_iter_get_pages works, and we'd |
| 904 | * then overwrite an already written block. |
| 905 | */ |
| 906 | if (((iocb->ki_pos | count) & ip->i_mount->m_blockmask) || |
| 907 | (xfs_is_always_cow_inode(ip) && |
| 908 | (iov_iter_alignment(i: from) & ip->i_mount->m_blockmask))) |
| 909 | return xfs_file_dio_write_unaligned(ip, iocb, from); |
| 910 | if (xfs_is_zoned_inode(ip)) |
| 911 | return xfs_file_dio_write_zoned(ip, iocb, from); |
| 912 | if (iocb->ki_flags & IOCB_ATOMIC) |
| 913 | return xfs_file_dio_write_atomic(ip, iocb, from); |
| 914 | return xfs_file_dio_write_aligned(ip, iocb, from, |
| 915 | ops: &xfs_direct_write_iomap_ops, dops: &xfs_dio_write_ops, NULL); |
| 916 | } |
| 917 | |
| 918 | static noinline ssize_t |
| 919 | xfs_file_dax_write( |
| 920 | struct kiocb *iocb, |
| 921 | struct iov_iter *from) |
| 922 | { |
| 923 | struct inode *inode = iocb->ki_filp->f_mapping->host; |
| 924 | struct xfs_inode *ip = XFS_I(inode); |
| 925 | unsigned int iolock = XFS_IOLOCK_EXCL; |
| 926 | ssize_t ret, error = 0; |
| 927 | loff_t pos; |
| 928 | |
| 929 | ret = xfs_ilock_iocb(iocb, lock_mode: iolock); |
| 930 | if (ret) |
| 931 | return ret; |
| 932 | ret = xfs_file_write_checks(iocb, from, iolock: &iolock, NULL); |
| 933 | if (ret) |
| 934 | goto out; |
| 935 | |
| 936 | pos = iocb->ki_pos; |
| 937 | |
| 938 | trace_xfs_file_dax_write(iocb, iter: from); |
| 939 | ret = dax_iomap_rw(iocb, iter: from, ops: &xfs_dax_write_iomap_ops); |
| 940 | if (ret > 0 && iocb->ki_pos > i_size_read(inode)) { |
| 941 | i_size_write(inode, i_size: iocb->ki_pos); |
| 942 | error = xfs_setfilesize(ip, offset: pos, size: ret); |
| 943 | } |
| 944 | out: |
| 945 | if (iolock) |
| 946 | xfs_iunlock(ip, iolock); |
| 947 | if (error) |
| 948 | return error; |
| 949 | |
| 950 | if (ret > 0) { |
| 951 | XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); |
| 952 | |
| 953 | /* Handle various SYNC-type writes */ |
| 954 | ret = generic_write_sync(iocb, count: ret); |
| 955 | } |
| 956 | return ret; |
| 957 | } |
| 958 | |
| 959 | STATIC ssize_t |
| 960 | xfs_file_buffered_write( |
| 961 | struct kiocb *iocb, |
| 962 | struct iov_iter *from) |
| 963 | { |
| 964 | struct inode *inode = iocb->ki_filp->f_mapping->host; |
| 965 | struct xfs_inode *ip = XFS_I(inode); |
| 966 | ssize_t ret; |
| 967 | bool cleared_space = false; |
| 968 | unsigned int iolock; |
| 969 | |
| 970 | write_retry: |
| 971 | iolock = XFS_IOLOCK_EXCL; |
| 972 | ret = xfs_ilock_iocb(iocb, lock_mode: iolock); |
| 973 | if (ret) |
| 974 | return ret; |
| 975 | |
| 976 | ret = xfs_file_write_checks(iocb, from, iolock: &iolock, NULL); |
| 977 | if (ret) |
| 978 | goto out; |
| 979 | |
| 980 | trace_xfs_file_buffered_write(iocb, iter: from); |
| 981 | ret = iomap_file_buffered_write(iocb, from, |
| 982 | ops: &xfs_buffered_write_iomap_ops, NULL); |
| 983 | |
| 984 | /* |
| 985 | * If we hit a space limit, try to free up some lingering preallocated |
| 986 | * space before returning an error. In the case of ENOSPC, first try to |
| 987 | * write back all dirty inodes to free up some of the excess reserved |
| 988 | * metadata space. This reduces the chances that the eofblocks scan |
| 989 | * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this |
| 990 | * also behaves as a filter to prevent too many eofblocks scans from |
| 991 | * running at the same time. Use a synchronous scan to increase the |
| 992 | * effectiveness of the scan. |
| 993 | */ |
| 994 | if (ret == -EDQUOT && !cleared_space) { |
| 995 | xfs_iunlock(ip, iolock); |
| 996 | xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC); |
| 997 | cleared_space = true; |
| 998 | goto write_retry; |
| 999 | } else if (ret == -ENOSPC && !cleared_space) { |
| 1000 | struct xfs_icwalk icw = {0}; |
| 1001 | |
| 1002 | cleared_space = true; |
| 1003 | xfs_flush_inodes(mp: ip->i_mount); |
| 1004 | |
| 1005 | xfs_iunlock(ip, iolock); |
| 1006 | icw.icw_flags = XFS_ICWALK_FLAG_SYNC; |
| 1007 | xfs_blockgc_free_space(mp: ip->i_mount, icm: &icw); |
| 1008 | goto write_retry; |
| 1009 | } |
| 1010 | |
| 1011 | out: |
| 1012 | if (iolock) |
| 1013 | xfs_iunlock(ip, iolock); |
| 1014 | |
| 1015 | if (ret > 0) { |
| 1016 | XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret); |
| 1017 | /* Handle various SYNC-type writes */ |
| 1018 | ret = generic_write_sync(iocb, count: ret); |
| 1019 | } |
| 1020 | return ret; |
| 1021 | } |
| 1022 | |
| 1023 | STATIC ssize_t |
| 1024 | xfs_file_buffered_write_zoned( |
| 1025 | struct kiocb *iocb, |
| 1026 | struct iov_iter *from) |
| 1027 | { |
| 1028 | struct xfs_inode *ip = XFS_I(inode: iocb->ki_filp->f_mapping->host); |
| 1029 | struct xfs_mount *mp = ip->i_mount; |
| 1030 | unsigned int iolock = XFS_IOLOCK_EXCL; |
| 1031 | bool cleared_space = false; |
| 1032 | struct xfs_zone_alloc_ctx ac = { }; |
| 1033 | ssize_t ret; |
| 1034 | |
| 1035 | ret = xfs_zoned_write_space_reserve(ip, iocb, from, XFS_ZR_GREEDY, ac: &ac); |
| 1036 | if (ret < 0) |
| 1037 | return ret; |
| 1038 | |
| 1039 | ret = xfs_ilock_iocb(iocb, lock_mode: iolock); |
| 1040 | if (ret) |
| 1041 | goto out_unreserve; |
| 1042 | |
| 1043 | ret = xfs_file_write_checks(iocb, from, iolock: &iolock, ac: &ac); |
| 1044 | if (ret) |
| 1045 | goto out_unlock; |
| 1046 | |
| 1047 | /* |
| 1048 | * Truncate the iter to the length that we were actually able to |
| 1049 | * allocate blocks for. This needs to happen after |
| 1050 | * xfs_file_write_checks, because that assigns ki_pos for O_APPEND |
| 1051 | * writes. |
| 1052 | */ |
| 1053 | iov_iter_truncate(i: from, |
| 1054 | count: XFS_FSB_TO_B(mp, ac.reserved_blocks) - |
| 1055 | (iocb->ki_pos & mp->m_blockmask)); |
| 1056 | if (!iov_iter_count(i: from)) |
| 1057 | goto out_unlock; |
| 1058 | |
| 1059 | retry: |
| 1060 | trace_xfs_file_buffered_write(iocb, iter: from); |
| 1061 | ret = iomap_file_buffered_write(iocb, from, |
| 1062 | ops: &xfs_buffered_write_iomap_ops, private: &ac); |
| 1063 | if (ret == -ENOSPC && !cleared_space) { |
| 1064 | /* |
| 1065 | * Kick off writeback to convert delalloc space and release the |
| 1066 | * usually too pessimistic indirect block reservations. |
| 1067 | */ |
| 1068 | xfs_flush_inodes(mp); |
| 1069 | cleared_space = true; |
| 1070 | goto retry; |
| 1071 | } |
| 1072 | |
| 1073 | out_unlock: |
| 1074 | xfs_iunlock(ip, iolock); |
| 1075 | out_unreserve: |
| 1076 | xfs_zoned_space_unreserve(ip, ac: &ac); |
| 1077 | if (ret > 0) { |
| 1078 | XFS_STATS_ADD(mp, xs_write_bytes, ret); |
| 1079 | ret = generic_write_sync(iocb, count: ret); |
| 1080 | } |
| 1081 | return ret; |
| 1082 | } |
| 1083 | |
| 1084 | STATIC ssize_t |
| 1085 | xfs_file_write_iter( |
| 1086 | struct kiocb *iocb, |
| 1087 | struct iov_iter *from) |
| 1088 | { |
| 1089 | struct inode *inode = iocb->ki_filp->f_mapping->host; |
| 1090 | struct xfs_inode *ip = XFS_I(inode); |
| 1091 | ssize_t ret; |
| 1092 | size_t ocount = iov_iter_count(i: from); |
| 1093 | |
| 1094 | XFS_STATS_INC(ip->i_mount, xs_write_calls); |
| 1095 | |
| 1096 | if (ocount == 0) |
| 1097 | return 0; |
| 1098 | |
| 1099 | if (xfs_is_shutdown(mp: ip->i_mount)) |
| 1100 | return -EIO; |
| 1101 | |
| 1102 | if (IS_DAX(inode)) |
| 1103 | return xfs_file_dax_write(iocb, from); |
| 1104 | |
| 1105 | if (iocb->ki_flags & IOCB_ATOMIC) { |
| 1106 | if (ocount < xfs_get_atomic_write_min(ip)) |
| 1107 | return -EINVAL; |
| 1108 | |
| 1109 | if (ocount > xfs_get_atomic_write_max(ip)) |
| 1110 | return -EINVAL; |
| 1111 | |
| 1112 | ret = generic_atomic_write_valid(iocb, iter: from); |
| 1113 | if (ret) |
| 1114 | return ret; |
| 1115 | } |
| 1116 | |
| 1117 | if (iocb->ki_flags & IOCB_DIRECT) { |
| 1118 | /* |
| 1119 | * Allow a directio write to fall back to a buffered |
| 1120 | * write *only* in the case that we're doing a reflink |
| 1121 | * CoW. In all other directio scenarios we do not |
| 1122 | * allow an operation to fall back to buffered mode. |
| 1123 | */ |
| 1124 | ret = xfs_file_dio_write(iocb, from); |
| 1125 | if (ret != -ENOTBLK) |
| 1126 | return ret; |
| 1127 | } |
| 1128 | |
| 1129 | if (xfs_is_zoned_inode(ip)) |
| 1130 | return xfs_file_buffered_write_zoned(iocb, from); |
| 1131 | return xfs_file_buffered_write(iocb, from); |
| 1132 | } |
| 1133 | |
| 1134 | /* Does this file, inode, or mount want synchronous writes? */ |
| 1135 | static inline bool xfs_file_sync_writes(struct file *filp) |
| 1136 | { |
| 1137 | struct xfs_inode *ip = XFS_I(inode: file_inode(f: filp)); |
| 1138 | |
| 1139 | if (xfs_has_wsync(mp: ip->i_mount)) |
| 1140 | return true; |
| 1141 | if (filp->f_flags & (__O_SYNC | O_DSYNC)) |
| 1142 | return true; |
| 1143 | if (IS_SYNC(file_inode(filp))) |
| 1144 | return true; |
| 1145 | |
| 1146 | return false; |
| 1147 | } |
| 1148 | |
| 1149 | static int |
| 1150 | xfs_falloc_newsize( |
| 1151 | struct file *file, |
| 1152 | int mode, |
| 1153 | loff_t offset, |
| 1154 | loff_t len, |
| 1155 | loff_t *new_size) |
| 1156 | { |
| 1157 | struct inode *inode = file_inode(f: file); |
| 1158 | |
| 1159 | if ((mode & FALLOC_FL_KEEP_SIZE) || offset + len <= i_size_read(inode)) |
| 1160 | return 0; |
| 1161 | *new_size = offset + len; |
| 1162 | return inode_newsize_ok(inode, offset: *new_size); |
| 1163 | } |
| 1164 | |
| 1165 | static int |
| 1166 | xfs_falloc_setsize( |
| 1167 | struct file *file, |
| 1168 | loff_t new_size) |
| 1169 | { |
| 1170 | struct iattr iattr = { |
| 1171 | .ia_valid = ATTR_SIZE, |
| 1172 | .ia_size = new_size, |
| 1173 | }; |
| 1174 | |
| 1175 | if (!new_size) |
| 1176 | return 0; |
| 1177 | return xfs_vn_setattr_size(idmap: file_mnt_idmap(file), dentry: file_dentry(file), |
| 1178 | vap: &iattr); |
| 1179 | } |
| 1180 | |
| 1181 | static int |
| 1182 | xfs_falloc_collapse_range( |
| 1183 | struct file *file, |
| 1184 | loff_t offset, |
| 1185 | loff_t len, |
| 1186 | struct xfs_zone_alloc_ctx *ac) |
| 1187 | { |
| 1188 | struct inode *inode = file_inode(f: file); |
| 1189 | loff_t new_size = i_size_read(inode) - len; |
| 1190 | int error; |
| 1191 | |
| 1192 | if (!xfs_is_falloc_aligned(ip: XFS_I(inode), pos: offset, len)) |
| 1193 | return -EINVAL; |
| 1194 | |
| 1195 | /* |
| 1196 | * There is no need to overlap collapse range with EOF, in which case it |
| 1197 | * is effectively a truncate operation |
| 1198 | */ |
| 1199 | if (offset + len >= i_size_read(inode)) |
| 1200 | return -EINVAL; |
| 1201 | |
| 1202 | error = xfs_collapse_file_space(XFS_I(inode), offset, len, ac); |
| 1203 | if (error) |
| 1204 | return error; |
| 1205 | return xfs_falloc_setsize(file, new_size); |
| 1206 | } |
| 1207 | |
| 1208 | static int |
| 1209 | xfs_falloc_insert_range( |
| 1210 | struct file *file, |
| 1211 | loff_t offset, |
| 1212 | loff_t len) |
| 1213 | { |
| 1214 | struct inode *inode = file_inode(f: file); |
| 1215 | loff_t isize = i_size_read(inode); |
| 1216 | int error; |
| 1217 | |
| 1218 | if (!xfs_is_falloc_aligned(ip: XFS_I(inode), pos: offset, len)) |
| 1219 | return -EINVAL; |
| 1220 | |
| 1221 | /* |
| 1222 | * New inode size must not exceed ->s_maxbytes, accounting for |
| 1223 | * possible signed overflow. |
| 1224 | */ |
| 1225 | if (inode->i_sb->s_maxbytes - isize < len) |
| 1226 | return -EFBIG; |
| 1227 | |
| 1228 | /* Offset should be less than i_size */ |
| 1229 | if (offset >= isize) |
| 1230 | return -EINVAL; |
| 1231 | |
| 1232 | error = xfs_falloc_setsize(file, new_size: isize + len); |
| 1233 | if (error) |
| 1234 | return error; |
| 1235 | |
| 1236 | /* |
| 1237 | * Perform hole insertion now that the file size has been updated so |
| 1238 | * that if we crash during the operation we don't leave shifted extents |
| 1239 | * past EOF and hence losing access to the data that is contained within |
| 1240 | * them. |
| 1241 | */ |
| 1242 | return xfs_insert_file_space(XFS_I(inode), offset, len); |
| 1243 | } |
| 1244 | |
| 1245 | /* |
| 1246 | * Punch a hole and prealloc the range. We use a hole punch rather than |
| 1247 | * unwritten extent conversion for two reasons: |
| 1248 | * |
| 1249 | * 1.) Hole punch handles partial block zeroing for us. |
| 1250 | * 2.) If prealloc returns ENOSPC, the file range is still zero-valued by |
| 1251 | * virtue of the hole punch. |
| 1252 | */ |
| 1253 | static int |
| 1254 | xfs_falloc_zero_range( |
| 1255 | struct file *file, |
| 1256 | int mode, |
| 1257 | loff_t offset, |
| 1258 | loff_t len, |
| 1259 | struct xfs_zone_alloc_ctx *ac) |
| 1260 | { |
| 1261 | struct inode *inode = file_inode(f: file); |
| 1262 | unsigned int blksize = i_blocksize(node: inode); |
| 1263 | loff_t new_size = 0; |
| 1264 | int error; |
| 1265 | |
| 1266 | trace_xfs_zero_file_space(ip: XFS_I(inode)); |
| 1267 | |
| 1268 | error = xfs_falloc_newsize(file, mode, offset, len, new_size: &new_size); |
| 1269 | if (error) |
| 1270 | return error; |
| 1271 | |
| 1272 | error = xfs_free_file_space(ip: XFS_I(inode), offset, len, ac); |
| 1273 | if (error) |
| 1274 | return error; |
| 1275 | |
| 1276 | len = round_up(offset + len, blksize) - round_down(offset, blksize); |
| 1277 | offset = round_down(offset, blksize); |
| 1278 | error = xfs_alloc_file_space(ip: XFS_I(inode), offset, len); |
| 1279 | if (error) |
| 1280 | return error; |
| 1281 | return xfs_falloc_setsize(file, new_size); |
| 1282 | } |
| 1283 | |
| 1284 | static int |
| 1285 | xfs_falloc_unshare_range( |
| 1286 | struct file *file, |
| 1287 | int mode, |
| 1288 | loff_t offset, |
| 1289 | loff_t len) |
| 1290 | { |
| 1291 | struct inode *inode = file_inode(f: file); |
| 1292 | loff_t new_size = 0; |
| 1293 | int error; |
| 1294 | |
| 1295 | error = xfs_falloc_newsize(file, mode, offset, len, new_size: &new_size); |
| 1296 | if (error) |
| 1297 | return error; |
| 1298 | |
| 1299 | error = xfs_reflink_unshare(ip: XFS_I(inode), offset, len); |
| 1300 | if (error) |
| 1301 | return error; |
| 1302 | |
| 1303 | error = xfs_alloc_file_space(ip: XFS_I(inode), offset, len); |
| 1304 | if (error) |
| 1305 | return error; |
| 1306 | return xfs_falloc_setsize(file, new_size); |
| 1307 | } |
| 1308 | |
| 1309 | static int |
| 1310 | xfs_falloc_allocate_range( |
| 1311 | struct file *file, |
| 1312 | int mode, |
| 1313 | loff_t offset, |
| 1314 | loff_t len) |
| 1315 | { |
| 1316 | struct inode *inode = file_inode(f: file); |
| 1317 | loff_t new_size = 0; |
| 1318 | int error; |
| 1319 | |
| 1320 | /* |
| 1321 | * If always_cow mode we can't use preallocations and thus should not |
| 1322 | * create them. |
| 1323 | */ |
| 1324 | if (xfs_is_always_cow_inode(ip: XFS_I(inode))) |
| 1325 | return -EOPNOTSUPP; |
| 1326 | |
| 1327 | error = xfs_falloc_newsize(file, mode, offset, len, new_size: &new_size); |
| 1328 | if (error) |
| 1329 | return error; |
| 1330 | |
| 1331 | error = xfs_alloc_file_space(ip: XFS_I(inode), offset, len); |
| 1332 | if (error) |
| 1333 | return error; |
| 1334 | return xfs_falloc_setsize(file, new_size); |
| 1335 | } |
| 1336 | |
| 1337 | #define XFS_FALLOC_FL_SUPPORTED \ |
| 1338 | (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ |
| 1339 | FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \ |
| 1340 | FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE) |
| 1341 | |
| 1342 | STATIC long |
| 1343 | __xfs_file_fallocate( |
| 1344 | struct file *file, |
| 1345 | int mode, |
| 1346 | loff_t offset, |
| 1347 | loff_t len, |
| 1348 | struct xfs_zone_alloc_ctx *ac) |
| 1349 | { |
| 1350 | struct inode *inode = file_inode(f: file); |
| 1351 | struct xfs_inode *ip = XFS_I(inode); |
| 1352 | long error; |
| 1353 | uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; |
| 1354 | |
| 1355 | xfs_ilock(ip, iolock); |
| 1356 | error = xfs_break_layouts(inode, iolock: &iolock, reason: BREAK_UNMAP); |
| 1357 | if (error) |
| 1358 | goto out_unlock; |
| 1359 | |
| 1360 | /* |
| 1361 | * Must wait for all AIO to complete before we continue as AIO can |
| 1362 | * change the file size on completion without holding any locks we |
| 1363 | * currently hold. We must do this first because AIO can update both |
| 1364 | * the on disk and in memory inode sizes, and the operations that follow |
| 1365 | * require the in-memory size to be fully up-to-date. |
| 1366 | */ |
| 1367 | inode_dio_wait(inode); |
| 1368 | |
| 1369 | error = file_modified(file); |
| 1370 | if (error) |
| 1371 | goto out_unlock; |
| 1372 | |
| 1373 | switch (mode & FALLOC_FL_MODE_MASK) { |
| 1374 | case FALLOC_FL_PUNCH_HOLE: |
| 1375 | error = xfs_free_file_space(ip, offset, len, ac); |
| 1376 | break; |
| 1377 | case FALLOC_FL_COLLAPSE_RANGE: |
| 1378 | error = xfs_falloc_collapse_range(file, offset, len, ac); |
| 1379 | break; |
| 1380 | case FALLOC_FL_INSERT_RANGE: |
| 1381 | error = xfs_falloc_insert_range(file, offset, len); |
| 1382 | break; |
| 1383 | case FALLOC_FL_ZERO_RANGE: |
| 1384 | error = xfs_falloc_zero_range(file, mode, offset, len, ac); |
| 1385 | break; |
| 1386 | case FALLOC_FL_UNSHARE_RANGE: |
| 1387 | error = xfs_falloc_unshare_range(file, mode, offset, len); |
| 1388 | break; |
| 1389 | case FALLOC_FL_ALLOCATE_RANGE: |
| 1390 | error = xfs_falloc_allocate_range(file, mode, offset, len); |
| 1391 | break; |
| 1392 | default: |
| 1393 | error = -EOPNOTSUPP; |
| 1394 | break; |
| 1395 | } |
| 1396 | |
| 1397 | if (!error && xfs_file_sync_writes(filp: file)) |
| 1398 | error = xfs_log_force_inode(ip); |
| 1399 | |
| 1400 | out_unlock: |
| 1401 | xfs_iunlock(ip, iolock); |
| 1402 | return error; |
| 1403 | } |
| 1404 | |
| 1405 | static long |
| 1406 | xfs_file_zoned_fallocate( |
| 1407 | struct file *file, |
| 1408 | int mode, |
| 1409 | loff_t offset, |
| 1410 | loff_t len) |
| 1411 | { |
| 1412 | struct xfs_zone_alloc_ctx ac = { }; |
| 1413 | struct xfs_inode *ip = XFS_I(inode: file_inode(f: file)); |
| 1414 | int error; |
| 1415 | |
| 1416 | error = xfs_zoned_space_reserve(ip, 2, XFS_ZR_RESERVED, &ac); |
| 1417 | if (error) |
| 1418 | return error; |
| 1419 | error = __xfs_file_fallocate(file, mode, offset, len, ac: &ac); |
| 1420 | xfs_zoned_space_unreserve(ip, ac: &ac); |
| 1421 | return error; |
| 1422 | } |
| 1423 | |
| 1424 | static long |
| 1425 | xfs_file_fallocate( |
| 1426 | struct file *file, |
| 1427 | int mode, |
| 1428 | loff_t offset, |
| 1429 | loff_t len) |
| 1430 | { |
| 1431 | struct inode *inode = file_inode(f: file); |
| 1432 | |
| 1433 | if (!S_ISREG(inode->i_mode)) |
| 1434 | return -EINVAL; |
| 1435 | if (mode & ~XFS_FALLOC_FL_SUPPORTED) |
| 1436 | return -EOPNOTSUPP; |
| 1437 | |
| 1438 | /* |
| 1439 | * For zoned file systems, zeroing the first and last block of a hole |
| 1440 | * punch requires allocating a new block to rewrite the remaining data |
| 1441 | * and new zeroes out of place. Get a reservations for those before |
| 1442 | * taking the iolock. Dip into the reserved pool because we are |
| 1443 | * expected to be able to punch a hole even on a completely full |
| 1444 | * file system. |
| 1445 | */ |
| 1446 | if (xfs_is_zoned_inode(ip: XFS_I(inode)) && |
| 1447 | (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE | |
| 1448 | FALLOC_FL_COLLAPSE_RANGE))) |
| 1449 | return xfs_file_zoned_fallocate(file, mode, offset, len); |
| 1450 | return __xfs_file_fallocate(file, mode, offset, len, NULL); |
| 1451 | } |
| 1452 | |
| 1453 | STATIC int |
| 1454 | xfs_file_fadvise( |
| 1455 | struct file *file, |
| 1456 | loff_t start, |
| 1457 | loff_t end, |
| 1458 | int advice) |
| 1459 | { |
| 1460 | struct xfs_inode *ip = XFS_I(inode: file_inode(f: file)); |
| 1461 | int ret; |
| 1462 | int lockflags = 0; |
| 1463 | |
| 1464 | /* |
| 1465 | * Operations creating pages in page cache need protection from hole |
| 1466 | * punching and similar ops |
| 1467 | */ |
| 1468 | if (advice == POSIX_FADV_WILLNEED) { |
| 1469 | lockflags = XFS_IOLOCK_SHARED; |
| 1470 | xfs_ilock(ip, lockflags); |
| 1471 | } |
| 1472 | ret = generic_fadvise(file, offset: start, len: end, advice); |
| 1473 | if (lockflags) |
| 1474 | xfs_iunlock(ip, lockflags); |
| 1475 | return ret; |
| 1476 | } |
| 1477 | |
| 1478 | STATIC loff_t |
| 1479 | xfs_file_remap_range( |
| 1480 | struct file *file_in, |
| 1481 | loff_t pos_in, |
| 1482 | struct file *file_out, |
| 1483 | loff_t pos_out, |
| 1484 | loff_t len, |
| 1485 | unsigned int remap_flags) |
| 1486 | { |
| 1487 | struct inode *inode_in = file_inode(f: file_in); |
| 1488 | struct xfs_inode *src = XFS_I(inode: inode_in); |
| 1489 | struct inode *inode_out = file_inode(f: file_out); |
| 1490 | struct xfs_inode *dest = XFS_I(inode: inode_out); |
| 1491 | struct xfs_mount *mp = src->i_mount; |
| 1492 | loff_t remapped = 0; |
| 1493 | xfs_extlen_t cowextsize; |
| 1494 | int ret; |
| 1495 | |
| 1496 | if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) |
| 1497 | return -EINVAL; |
| 1498 | |
| 1499 | if (!xfs_has_reflink(mp)) |
| 1500 | return -EOPNOTSUPP; |
| 1501 | |
| 1502 | if (xfs_is_shutdown(mp)) |
| 1503 | return -EIO; |
| 1504 | |
| 1505 | /* Prepare and then clone file data. */ |
| 1506 | ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out, |
| 1507 | len: &len, remap_flags); |
| 1508 | if (ret || len == 0) |
| 1509 | return ret; |
| 1510 | |
| 1511 | trace_xfs_reflink_remap_range(src, soffset: pos_in, len, dest, doffset: pos_out); |
| 1512 | |
| 1513 | ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, remap_len: len, |
| 1514 | remapped: &remapped); |
| 1515 | if (ret) |
| 1516 | goto out_unlock; |
| 1517 | |
| 1518 | /* |
| 1519 | * Carry the cowextsize hint from src to dest if we're sharing the |
| 1520 | * entire source file to the entire destination file, the source file |
| 1521 | * has a cowextsize hint, and the destination file does not. |
| 1522 | */ |
| 1523 | cowextsize = 0; |
| 1524 | if (pos_in == 0 && len == i_size_read(inode_in) && |
| 1525 | (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) && |
| 1526 | pos_out == 0 && len >= i_size_read(inode_out) && |
| 1527 | !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)) |
| 1528 | cowextsize = src->i_cowextsize; |
| 1529 | |
| 1530 | ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize, |
| 1531 | remap_flags); |
| 1532 | if (ret) |
| 1533 | goto out_unlock; |
| 1534 | |
| 1535 | if (xfs_file_sync_writes(filp: file_in) || xfs_file_sync_writes(filp: file_out)) |
| 1536 | xfs_log_force_inode(ip: dest); |
| 1537 | out_unlock: |
| 1538 | xfs_iunlock2_remapping(ip1: src, ip2: dest); |
| 1539 | if (ret) |
| 1540 | trace_xfs_reflink_remap_range_error(ip: dest, error: ret, _RET_IP_); |
| 1541 | /* |
| 1542 | * If the caller did not set CAN_SHORTEN, then it is not prepared to |
| 1543 | * handle partial results -- either the whole remap succeeds, or we |
| 1544 | * must say why it did not. In this case, any error should be returned |
| 1545 | * to the caller. |
| 1546 | */ |
| 1547 | if (ret && remapped < len && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) |
| 1548 | return ret; |
| 1549 | return remapped > 0 ? remapped : ret; |
| 1550 | } |
| 1551 | |
| 1552 | STATIC int |
| 1553 | xfs_file_open( |
| 1554 | struct inode *inode, |
| 1555 | struct file *file) |
| 1556 | { |
| 1557 | if (xfs_is_shutdown(XFS_M(inode->i_sb))) |
| 1558 | return -EIO; |
| 1559 | file->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT; |
| 1560 | if (xfs_get_atomic_write_min(ip: XFS_I(inode)) > 0) |
| 1561 | file->f_mode |= FMODE_CAN_ATOMIC_WRITE; |
| 1562 | return generic_file_open(inode, filp: file); |
| 1563 | } |
| 1564 | |
| 1565 | STATIC int |
| 1566 | xfs_dir_open( |
| 1567 | struct inode *inode, |
| 1568 | struct file *file) |
| 1569 | { |
| 1570 | struct xfs_inode *ip = XFS_I(inode); |
| 1571 | unsigned int mode; |
| 1572 | int error; |
| 1573 | |
| 1574 | if (xfs_is_shutdown(mp: ip->i_mount)) |
| 1575 | return -EIO; |
| 1576 | error = generic_file_open(inode, filp: file); |
| 1577 | if (error) |
| 1578 | return error; |
| 1579 | |
| 1580 | /* |
| 1581 | * If there are any blocks, read-ahead block 0 as we're almost |
| 1582 | * certain to have the next operation be a read there. |
| 1583 | */ |
| 1584 | mode = xfs_ilock_data_map_shared(ip); |
| 1585 | if (ip->i_df.if_nextents > 0) |
| 1586 | error = xfs_dir3_data_readahead(ip, 0, 0); |
| 1587 | xfs_iunlock(ip, mode); |
| 1588 | return error; |
| 1589 | } |
| 1590 | |
| 1591 | /* |
| 1592 | * Don't bother propagating errors. We're just doing cleanup, and the caller |
| 1593 | * ignores the return value anyway. |
| 1594 | */ |
| 1595 | STATIC int |
| 1596 | xfs_file_release( |
| 1597 | struct inode *inode, |
| 1598 | struct file *file) |
| 1599 | { |
| 1600 | struct xfs_inode *ip = XFS_I(inode); |
| 1601 | struct xfs_mount *mp = ip->i_mount; |
| 1602 | |
| 1603 | /* |
| 1604 | * If this is a read-only mount or the file system has been shut down, |
| 1605 | * don't generate I/O. |
| 1606 | */ |
| 1607 | if (xfs_is_readonly(mp) || xfs_is_shutdown(mp)) |
| 1608 | return 0; |
| 1609 | |
| 1610 | /* |
| 1611 | * If we previously truncated this file and removed old data in the |
| 1612 | * process, we want to initiate "early" writeout on the last close. |
| 1613 | * This is an attempt to combat the notorious NULL files problem which |
| 1614 | * is particularly noticeable from a truncate down, buffered (re-)write |
| 1615 | * (delalloc), followed by a crash. What we are effectively doing here |
| 1616 | * is significantly reducing the time window where we'd otherwise be |
| 1617 | * exposed to that problem. |
| 1618 | */ |
| 1619 | if (xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED)) { |
| 1620 | xfs_iflags_clear(ip, XFS_EOFBLOCKS_RELEASED); |
| 1621 | if (ip->i_delayed_blks > 0) |
| 1622 | filemap_flush(inode->i_mapping); |
| 1623 | } |
| 1624 | |
| 1625 | /* |
| 1626 | * XFS aggressively preallocates post-EOF space to generate contiguous |
| 1627 | * allocations for writers that append to the end of the file. |
| 1628 | * |
| 1629 | * To support workloads that close and reopen the file frequently, these |
| 1630 | * preallocations usually persist after a close unless it is the first |
| 1631 | * close for the inode. This is a tradeoff to generate tightly packed |
| 1632 | * data layouts for unpacking tarballs or similar archives that write |
| 1633 | * one file after another without going back to it while keeping the |
| 1634 | * preallocation for files that have recurring open/write/close cycles. |
| 1635 | * |
| 1636 | * This heuristic is skipped for inodes with the append-only flag as |
| 1637 | * that flag is rather pointless for inodes written only once. |
| 1638 | * |
| 1639 | * There is no point in freeing blocks here for open but unlinked files |
| 1640 | * as they will be taken care of by the inactivation path soon. |
| 1641 | * |
| 1642 | * When releasing a read-only context, don't flush data or trim post-EOF |
| 1643 | * blocks. This avoids open/read/close workloads from removing EOF |
| 1644 | * blocks that other writers depend upon to reduce fragmentation. |
| 1645 | * |
| 1646 | * Inodes on the zoned RT device never have preallocations, so skip |
| 1647 | * taking the locks below. |
| 1648 | */ |
| 1649 | if (!inode->i_nlink || |
| 1650 | !(file->f_mode & FMODE_WRITE) || |
| 1651 | (ip->i_diflags & XFS_DIFLAG_APPEND) || |
| 1652 | xfs_is_zoned_inode(ip)) |
| 1653 | return 0; |
| 1654 | |
| 1655 | /* |
| 1656 | * If we can't get the iolock just skip truncating the blocks past EOF |
| 1657 | * because we could deadlock with the mmap_lock otherwise. We'll get |
| 1658 | * another chance to drop them once the last reference to the inode is |
| 1659 | * dropped, so we'll never leak blocks permanently. |
| 1660 | */ |
| 1661 | if (!xfs_iflags_test(ip, XFS_EOFBLOCKS_RELEASED) && |
| 1662 | xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { |
| 1663 | if (xfs_can_free_eofblocks(ip) && |
| 1664 | !xfs_iflags_test_and_set(ip, XFS_EOFBLOCKS_RELEASED)) |
| 1665 | xfs_free_eofblocks(ip); |
| 1666 | xfs_iunlock(ip, XFS_IOLOCK_EXCL); |
| 1667 | } |
| 1668 | |
| 1669 | return 0; |
| 1670 | } |
| 1671 | |
| 1672 | STATIC int |
| 1673 | xfs_file_readdir( |
| 1674 | struct file *file, |
| 1675 | struct dir_context *ctx) |
| 1676 | { |
| 1677 | struct inode *inode = file_inode(f: file); |
| 1678 | xfs_inode_t *ip = XFS_I(inode); |
| 1679 | size_t bufsize; |
| 1680 | |
| 1681 | /* |
| 1682 | * The Linux API doesn't pass down the total size of the buffer |
| 1683 | * we read into down to the filesystem. With the filldir concept |
| 1684 | * it's not needed for correct information, but the XFS dir2 leaf |
| 1685 | * code wants an estimate of the buffer size to calculate it's |
| 1686 | * readahead window and size the buffers used for mapping to |
| 1687 | * physical blocks. |
| 1688 | * |
| 1689 | * Try to give it an estimate that's good enough, maybe at some |
| 1690 | * point we can change the ->readdir prototype to include the |
| 1691 | * buffer size. For now we use the current glibc buffer size. |
| 1692 | */ |
| 1693 | bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size); |
| 1694 | |
| 1695 | return xfs_readdir(NULL, ip, ctx, bufsize); |
| 1696 | } |
| 1697 | |
| 1698 | STATIC loff_t |
| 1699 | xfs_file_llseek( |
| 1700 | struct file *file, |
| 1701 | loff_t offset, |
| 1702 | int whence) |
| 1703 | { |
| 1704 | struct inode *inode = file->f_mapping->host; |
| 1705 | |
| 1706 | if (xfs_is_shutdown(mp: XFS_I(inode)->i_mount)) |
| 1707 | return -EIO; |
| 1708 | |
| 1709 | switch (whence) { |
| 1710 | default: |
| 1711 | return generic_file_llseek(file, offset, whence); |
| 1712 | case SEEK_HOLE: |
| 1713 | offset = iomap_seek_hole(inode, offset, ops: &xfs_seek_iomap_ops); |
| 1714 | break; |
| 1715 | case SEEK_DATA: |
| 1716 | offset = iomap_seek_data(inode, offset, ops: &xfs_seek_iomap_ops); |
| 1717 | break; |
| 1718 | } |
| 1719 | |
| 1720 | if (offset < 0) |
| 1721 | return offset; |
| 1722 | return vfs_setpos(file, offset, maxsize: inode->i_sb->s_maxbytes); |
| 1723 | } |
| 1724 | |
| 1725 | static inline vm_fault_t |
| 1726 | xfs_dax_fault_locked( |
| 1727 | struct vm_fault *vmf, |
| 1728 | unsigned int order, |
| 1729 | bool write_fault) |
| 1730 | { |
| 1731 | vm_fault_t ret; |
| 1732 | pfn_t pfn; |
| 1733 | |
| 1734 | if (!IS_ENABLED(CONFIG_FS_DAX)) { |
| 1735 | ASSERT(0); |
| 1736 | return VM_FAULT_SIGBUS; |
| 1737 | } |
| 1738 | ret = dax_iomap_fault(vmf, order, pfnp: &pfn, NULL, |
| 1739 | ops: (write_fault && !vmf->cow_page) ? |
| 1740 | &xfs_dax_write_iomap_ops : |
| 1741 | &xfs_read_iomap_ops); |
| 1742 | if (ret & VM_FAULT_NEEDDSYNC) |
| 1743 | ret = dax_finish_sync_fault(vmf, order, pfn); |
| 1744 | return ret; |
| 1745 | } |
| 1746 | |
| 1747 | static vm_fault_t |
| 1748 | xfs_dax_read_fault( |
| 1749 | struct vm_fault *vmf, |
| 1750 | unsigned int order) |
| 1751 | { |
| 1752 | struct xfs_inode *ip = XFS_I(inode: file_inode(f: vmf->vma->vm_file)); |
| 1753 | vm_fault_t ret; |
| 1754 | |
| 1755 | trace_xfs_read_fault(ip, order); |
| 1756 | |
| 1757 | xfs_ilock(ip, XFS_MMAPLOCK_SHARED); |
| 1758 | ret = xfs_dax_fault_locked(vmf, order, write_fault: false); |
| 1759 | xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); |
| 1760 | |
| 1761 | return ret; |
| 1762 | } |
| 1763 | |
| 1764 | /* |
| 1765 | * Locking for serialisation of IO during page faults. This results in a lock |
| 1766 | * ordering of: |
| 1767 | * |
| 1768 | * mmap_lock (MM) |
| 1769 | * sb_start_pagefault(vfs, freeze) |
| 1770 | * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation) |
| 1771 | * page_lock (MM) |
| 1772 | * i_lock (XFS - extent map serialisation) |
| 1773 | */ |
| 1774 | static vm_fault_t |
| 1775 | __xfs_write_fault( |
| 1776 | struct vm_fault *vmf, |
| 1777 | unsigned int order, |
| 1778 | struct xfs_zone_alloc_ctx *ac) |
| 1779 | { |
| 1780 | struct inode *inode = file_inode(f: vmf->vma->vm_file); |
| 1781 | struct xfs_inode *ip = XFS_I(inode); |
| 1782 | unsigned int lock_mode = XFS_MMAPLOCK_SHARED; |
| 1783 | vm_fault_t ret; |
| 1784 | |
| 1785 | trace_xfs_write_fault(ip, order); |
| 1786 | |
| 1787 | sb_start_pagefault(sb: inode->i_sb); |
| 1788 | file_update_time(file: vmf->vma->vm_file); |
| 1789 | |
| 1790 | /* |
| 1791 | * Normally we only need the shared mmaplock, but if a reflink remap is |
| 1792 | * in progress we take the exclusive lock to wait for the remap to |
| 1793 | * finish before taking a write fault. |
| 1794 | */ |
| 1795 | xfs_ilock(ip, XFS_MMAPLOCK_SHARED); |
| 1796 | if (xfs_iflags_test(ip, XFS_IREMAPPING)) { |
| 1797 | xfs_iunlock(ip, XFS_MMAPLOCK_SHARED); |
| 1798 | xfs_ilock(ip, XFS_MMAPLOCK_EXCL); |
| 1799 | lock_mode = XFS_MMAPLOCK_EXCL; |
| 1800 | } |
| 1801 | |
| 1802 | if (IS_DAX(inode)) |
| 1803 | ret = xfs_dax_fault_locked(vmf, order, write_fault: true); |
| 1804 | else |
| 1805 | ret = iomap_page_mkwrite(vmf, ops: &xfs_buffered_write_iomap_ops, |
| 1806 | private: ac); |
| 1807 | xfs_iunlock(ip, lock_mode); |
| 1808 | |
| 1809 | sb_end_pagefault(sb: inode->i_sb); |
| 1810 | return ret; |
| 1811 | } |
| 1812 | |
| 1813 | static vm_fault_t |
| 1814 | xfs_write_fault_zoned( |
| 1815 | struct vm_fault *vmf, |
| 1816 | unsigned int order) |
| 1817 | { |
| 1818 | struct xfs_inode *ip = XFS_I(inode: file_inode(f: vmf->vma->vm_file)); |
| 1819 | unsigned int len = folio_size(page_folio(vmf->page)); |
| 1820 | struct xfs_zone_alloc_ctx ac = { }; |
| 1821 | int error; |
| 1822 | vm_fault_t ret; |
| 1823 | |
| 1824 | /* |
| 1825 | * This could over-allocate as it doesn't check for truncation. |
| 1826 | * |
| 1827 | * But as the overallocation is limited to less than a folio and will be |
| 1828 | * release instantly that's just fine. |
| 1829 | */ |
| 1830 | error = xfs_zoned_space_reserve(ip, XFS_B_TO_FSB(ip->i_mount, len), 0, |
| 1831 | &ac); |
| 1832 | if (error < 0) |
| 1833 | return vmf_fs_error(err: error); |
| 1834 | ret = __xfs_write_fault(vmf, order, ac: &ac); |
| 1835 | xfs_zoned_space_unreserve(ip, ac: &ac); |
| 1836 | return ret; |
| 1837 | } |
| 1838 | |
| 1839 | static vm_fault_t |
| 1840 | xfs_write_fault( |
| 1841 | struct vm_fault *vmf, |
| 1842 | unsigned int order) |
| 1843 | { |
| 1844 | if (xfs_is_zoned_inode(ip: XFS_I(inode: file_inode(f: vmf->vma->vm_file)))) |
| 1845 | return xfs_write_fault_zoned(vmf, order); |
| 1846 | return __xfs_write_fault(vmf, order, NULL); |
| 1847 | } |
| 1848 | |
| 1849 | static inline bool |
| 1850 | xfs_is_write_fault( |
| 1851 | struct vm_fault *vmf) |
| 1852 | { |
| 1853 | return (vmf->flags & FAULT_FLAG_WRITE) && |
| 1854 | (vmf->vma->vm_flags & VM_SHARED); |
| 1855 | } |
| 1856 | |
| 1857 | static vm_fault_t |
| 1858 | xfs_filemap_fault( |
| 1859 | struct vm_fault *vmf) |
| 1860 | { |
| 1861 | struct inode *inode = file_inode(f: vmf->vma->vm_file); |
| 1862 | |
| 1863 | /* DAX can shortcut the normal fault path on write faults! */ |
| 1864 | if (IS_DAX(inode)) { |
| 1865 | if (xfs_is_write_fault(vmf)) |
| 1866 | return xfs_write_fault(vmf, order: 0); |
| 1867 | return xfs_dax_read_fault(vmf, order: 0); |
| 1868 | } |
| 1869 | |
| 1870 | trace_xfs_read_fault(ip: XFS_I(inode), order: 0); |
| 1871 | return filemap_fault(vmf); |
| 1872 | } |
| 1873 | |
| 1874 | static vm_fault_t |
| 1875 | xfs_filemap_huge_fault( |
| 1876 | struct vm_fault *vmf, |
| 1877 | unsigned int order) |
| 1878 | { |
| 1879 | if (!IS_DAX(file_inode(vmf->vma->vm_file))) |
| 1880 | return VM_FAULT_FALLBACK; |
| 1881 | |
| 1882 | /* DAX can shortcut the normal fault path on write faults! */ |
| 1883 | if (xfs_is_write_fault(vmf)) |
| 1884 | return xfs_write_fault(vmf, order); |
| 1885 | return xfs_dax_read_fault(vmf, order); |
| 1886 | } |
| 1887 | |
| 1888 | static vm_fault_t |
| 1889 | xfs_filemap_page_mkwrite( |
| 1890 | struct vm_fault *vmf) |
| 1891 | { |
| 1892 | return xfs_write_fault(vmf, order: 0); |
| 1893 | } |
| 1894 | |
| 1895 | /* |
| 1896 | * pfn_mkwrite was originally intended to ensure we capture time stamp updates |
| 1897 | * on write faults. In reality, it needs to serialise against truncate and |
| 1898 | * prepare memory for writing so handle is as standard write fault. |
| 1899 | */ |
| 1900 | static vm_fault_t |
| 1901 | xfs_filemap_pfn_mkwrite( |
| 1902 | struct vm_fault *vmf) |
| 1903 | { |
| 1904 | return xfs_write_fault(vmf, order: 0); |
| 1905 | } |
| 1906 | |
| 1907 | static const struct vm_operations_struct xfs_file_vm_ops = { |
| 1908 | .fault = xfs_filemap_fault, |
| 1909 | .huge_fault = xfs_filemap_huge_fault, |
| 1910 | .map_pages = filemap_map_pages, |
| 1911 | .page_mkwrite = xfs_filemap_page_mkwrite, |
| 1912 | .pfn_mkwrite = xfs_filemap_pfn_mkwrite, |
| 1913 | }; |
| 1914 | |
| 1915 | STATIC int |
| 1916 | xfs_file_mmap( |
| 1917 | struct file *file, |
| 1918 | struct vm_area_struct *vma) |
| 1919 | { |
| 1920 | struct inode *inode = file_inode(f: file); |
| 1921 | struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode)); |
| 1922 | |
| 1923 | /* |
| 1924 | * We don't support synchronous mappings for non-DAX files and |
| 1925 | * for DAX files if underneath dax_device is not synchronous. |
| 1926 | */ |
| 1927 | if (!daxdev_mapping_supported(vma, dax_dev: target->bt_daxdev)) |
| 1928 | return -EOPNOTSUPP; |
| 1929 | |
| 1930 | file_accessed(file); |
| 1931 | vma->vm_ops = &xfs_file_vm_ops; |
| 1932 | if (IS_DAX(inode)) |
| 1933 | vm_flags_set(vma, VM_HUGEPAGE); |
| 1934 | return 0; |
| 1935 | } |
| 1936 | |
| 1937 | const struct file_operations xfs_file_operations = { |
| 1938 | .llseek = xfs_file_llseek, |
| 1939 | .read_iter = xfs_file_read_iter, |
| 1940 | .write_iter = xfs_file_write_iter, |
| 1941 | .splice_read = xfs_file_splice_read, |
| 1942 | .splice_write = iter_file_splice_write, |
| 1943 | .iopoll = iocb_bio_iopoll, |
| 1944 | .unlocked_ioctl = xfs_file_ioctl, |
| 1945 | #ifdef CONFIG_COMPAT |
| 1946 | .compat_ioctl = xfs_file_compat_ioctl, |
| 1947 | #endif |
| 1948 | .mmap = xfs_file_mmap, |
| 1949 | .open = xfs_file_open, |
| 1950 | .release = xfs_file_release, |
| 1951 | .fsync = xfs_file_fsync, |
| 1952 | .get_unmapped_area = thp_get_unmapped_area, |
| 1953 | .fallocate = xfs_file_fallocate, |
| 1954 | .fadvise = xfs_file_fadvise, |
| 1955 | .remap_file_range = xfs_file_remap_range, |
| 1956 | .fop_flags = FOP_MMAP_SYNC | FOP_BUFFER_RASYNC | |
| 1957 | FOP_BUFFER_WASYNC | FOP_DIO_PARALLEL_WRITE | |
| 1958 | FOP_DONTCACHE, |
| 1959 | }; |
| 1960 | |
| 1961 | const struct file_operations xfs_dir_file_operations = { |
| 1962 | .open = xfs_dir_open, |
| 1963 | .read = generic_read_dir, |
| 1964 | .iterate_shared = xfs_file_readdir, |
| 1965 | .llseek = generic_file_llseek, |
| 1966 | .unlocked_ioctl = xfs_file_ioctl, |
| 1967 | #ifdef CONFIG_COMPAT |
| 1968 | .compat_ioctl = xfs_file_compat_ioctl, |
| 1969 | #endif |
| 1970 | .fsync = xfs_dir_fsync, |
| 1971 | }; |
| 1972 | |