1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_inode_item.h"
16#include "xfs_bmap.h"
17#include "xfs_bmap_util.h"
18#include "xfs_dir2.h"
19#include "xfs_dir2_priv.h"
20#include "xfs_ioctl.h"
21#include "xfs_trace.h"
22#include "xfs_log.h"
23#include "xfs_icache.h"
24#include "xfs_pnfs.h"
25#include "xfs_iomap.h"
26#include "xfs_reflink.h"
27#include "xfs_file.h"
28#include "xfs_aops.h"
29#include "xfs_zone_alloc.h"
30
31#include <linux/dax.h>
32#include <linux/falloc.h>
33#include <linux/backing-dev.h>
34#include <linux/mman.h>
35#include <linux/fadvise.h>
36#include <linux/mount.h>
37
38static const struct vm_operations_struct xfs_file_vm_ops;
39
40/*
41 * Decide if the given file range is aligned to the size of the fundamental
42 * allocation unit for the file.
43 */
44bool
45xfs_is_falloc_aligned(
46 struct xfs_inode *ip,
47 loff_t pos,
48 long long int len)
49{
50 unsigned int alloc_unit = xfs_inode_alloc_unitsize(ip);
51
52 if (!is_power_of_2(n: alloc_unit))
53 return isaligned_64(x: pos, y: alloc_unit) &&
54 isaligned_64(x: len, y: alloc_unit);
55
56 return !((pos | len) & (alloc_unit - 1));
57}
58
59/*
60 * Fsync operations on directories are much simpler than on regular files,
61 * as there is no file data to flush, and thus also no need for explicit
62 * cache flush operations, and there are no non-transaction metadata updates
63 * on directories either.
64 */
65STATIC int
66xfs_dir_fsync(
67 struct file *file,
68 loff_t start,
69 loff_t end,
70 int datasync)
71{
72 struct xfs_inode *ip = XFS_I(inode: file->f_mapping->host);
73
74 trace_xfs_dir_fsync(ip);
75 return xfs_log_force_inode(ip);
76}
77
78static xfs_csn_t
79xfs_fsync_seq(
80 struct xfs_inode *ip,
81 bool datasync)
82{
83 if (!xfs_ipincount(ip))
84 return 0;
85 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
86 return 0;
87 return ip->i_itemp->ili_commit_seq;
88}
89
90/*
91 * All metadata updates are logged, which means that we just have to flush the
92 * log up to the latest LSN that touched the inode.
93 *
94 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
95 * the log force before we clear the ili_fsync_fields field. This ensures that
96 * we don't get a racing sync operation that does not wait for the metadata to
97 * hit the journal before returning. If we race with clearing ili_fsync_fields,
98 * then all that will happen is the log force will do nothing as the lsn will
99 * already be on disk. We can't race with setting ili_fsync_fields because that
100 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
101 * shared until after the ili_fsync_fields is cleared.
102 */
103static int
104xfs_fsync_flush_log(
105 struct xfs_inode *ip,
106 bool datasync,
107 int *log_flushed)
108{
109 int error = 0;
110 xfs_csn_t seq;
111
112 xfs_ilock(ip, XFS_ILOCK_SHARED);
113 seq = xfs_fsync_seq(ip, datasync);
114 if (seq) {
115 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
116 log_flushed);
117
118 spin_lock(lock: &ip->i_itemp->ili_lock);
119 ip->i_itemp->ili_fsync_fields = 0;
120 spin_unlock(lock: &ip->i_itemp->ili_lock);
121 }
122 xfs_iunlock(ip, XFS_ILOCK_SHARED);
123 return error;
124}
125
126STATIC int
127xfs_file_fsync(
128 struct file *file,
129 loff_t start,
130 loff_t end,
131 int datasync)
132{
133 struct xfs_inode *ip = XFS_I(inode: file->f_mapping->host);
134 struct xfs_mount *mp = ip->i_mount;
135 int error, err2;
136 int log_flushed = 0;
137
138 trace_xfs_file_fsync(ip);
139
140 error = file_write_and_wait_range(file, start, end);
141 if (error)
142 return error;
143
144 if (xfs_is_shutdown(mp))
145 return -EIO;
146
147 xfs_iflags_clear(ip, XFS_ITRUNCATED);
148
149 /*
150 * If we have an RT and/or log subvolume we need to make sure to flush
151 * the write cache the device used for file data first. This is to
152 * ensure newly written file data make it to disk before logging the new
153 * inode size in case of an extending write.
154 */
155 if (XFS_IS_REALTIME_INODE(ip) && mp->m_rtdev_targp != mp->m_ddev_targp)
156 error = blkdev_issue_flush(bdev: mp->m_rtdev_targp->bt_bdev);
157 else if (mp->m_logdev_targp != mp->m_ddev_targp)
158 error = blkdev_issue_flush(bdev: mp->m_ddev_targp->bt_bdev);
159
160 /*
161 * Any inode that has dirty modifications in the log is pinned. The
162 * racy check here for a pinned inode will not catch modifications
163 * that happen concurrently to the fsync call, but fsync semantics
164 * only require to sync previously completed I/O.
165 */
166 if (xfs_ipincount(ip)) {
167 err2 = xfs_fsync_flush_log(ip, datasync, log_flushed: &log_flushed);
168 if (err2 && !error)
169 error = err2;
170 }
171
172 /*
173 * If we only have a single device, and the log force about was
174 * a no-op we might have to flush the data device cache here.
175 * This can only happen for fdatasync/O_DSYNC if we were overwriting
176 * an already allocated file and thus do not have any metadata to
177 * commit.
178 */
179 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
180 mp->m_logdev_targp == mp->m_ddev_targp) {
181 err2 = blkdev_issue_flush(bdev: mp->m_ddev_targp->bt_bdev);
182 if (err2 && !error)
183 error = err2;
184 }
185
186 return error;
187}
188
189static int
190xfs_ilock_iocb(
191 struct kiocb *iocb,
192 unsigned int lock_mode)
193{
194 struct xfs_inode *ip = XFS_I(inode: file_inode(f: iocb->ki_filp));
195
196 if (iocb->ki_flags & IOCB_NOWAIT) {
197 if (!xfs_ilock_nowait(ip, lock_mode))
198 return -EAGAIN;
199 } else {
200 xfs_ilock(ip, lock_mode);
201 }
202
203 return 0;
204}
205
206static int
207xfs_ilock_iocb_for_write(
208 struct kiocb *iocb,
209 unsigned int *lock_mode)
210{
211 ssize_t ret;
212 struct xfs_inode *ip = XFS_I(inode: file_inode(f: iocb->ki_filp));
213
214 ret = xfs_ilock_iocb(iocb, lock_mode: *lock_mode);
215 if (ret)
216 return ret;
217
218 /*
219 * If a reflink remap is in progress we always need to take the iolock
220 * exclusively to wait for it to finish.
221 */
222 if (*lock_mode == XFS_IOLOCK_SHARED &&
223 xfs_iflags_test(ip, XFS_IREMAPPING)) {
224 xfs_iunlock(ip, *lock_mode);
225 *lock_mode = XFS_IOLOCK_EXCL;
226 return xfs_ilock_iocb(iocb, lock_mode: *lock_mode);
227 }
228
229 return 0;
230}
231
232STATIC ssize_t
233xfs_file_dio_read(
234 struct kiocb *iocb,
235 struct iov_iter *to)
236{
237 struct xfs_inode *ip = XFS_I(inode: file_inode(f: iocb->ki_filp));
238 ssize_t ret;
239
240 trace_xfs_file_direct_read(iocb, iter: to);
241
242 if (!iov_iter_count(i: to))
243 return 0; /* skip atime */
244
245 file_accessed(file: iocb->ki_filp);
246
247 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
248 if (ret)
249 return ret;
250 ret = iomap_dio_rw(iocb, iter: to, ops: &xfs_read_iomap_ops, NULL, dio_flags: 0, NULL, done_before: 0);
251 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
252
253 return ret;
254}
255
256static noinline ssize_t
257xfs_file_dax_read(
258 struct kiocb *iocb,
259 struct iov_iter *to)
260{
261 struct xfs_inode *ip = XFS_I(inode: iocb->ki_filp->f_mapping->host);
262 ssize_t ret = 0;
263
264 trace_xfs_file_dax_read(iocb, iter: to);
265
266 if (!iov_iter_count(i: to))
267 return 0; /* skip atime */
268
269 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
270 if (ret)
271 return ret;
272 ret = dax_iomap_rw(iocb, iter: to, ops: &xfs_read_iomap_ops);
273 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
274
275 file_accessed(file: iocb->ki_filp);
276 return ret;
277}
278
279STATIC ssize_t
280xfs_file_buffered_read(
281 struct kiocb *iocb,
282 struct iov_iter *to)
283{
284 struct xfs_inode *ip = XFS_I(inode: file_inode(f: iocb->ki_filp));
285 ssize_t ret;
286
287 trace_xfs_file_buffered_read(iocb, iter: to);
288
289 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
290 if (ret)
291 return ret;
292 ret = generic_file_read_iter(iocb, to);
293 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
294
295 return ret;
296}
297
298STATIC ssize_t
299xfs_file_read_iter(
300 struct kiocb *iocb,
301 struct iov_iter *to)
302{
303 struct inode *inode = file_inode(f: iocb->ki_filp);
304 struct xfs_mount *mp = XFS_I(inode)->i_mount;
305 ssize_t ret = 0;
306
307 XFS_STATS_INC(mp, xs_read_calls);
308
309 if (xfs_is_shutdown(mp))
310 return -EIO;
311
312 if (IS_DAX(inode))
313 ret = xfs_file_dax_read(iocb, to);
314 else if (iocb->ki_flags & IOCB_DIRECT)
315 ret = xfs_file_dio_read(iocb, to);
316 else
317 ret = xfs_file_buffered_read(iocb, to);
318
319 if (ret > 0)
320 XFS_STATS_ADD(mp, xs_read_bytes, ret);
321 return ret;
322}
323
324STATIC ssize_t
325xfs_file_splice_read(
326 struct file *in,
327 loff_t *ppos,
328 struct pipe_inode_info *pipe,
329 size_t len,
330 unsigned int flags)
331{
332 struct inode *inode = file_inode(f: in);
333 struct xfs_inode *ip = XFS_I(inode);
334 struct xfs_mount *mp = ip->i_mount;
335 ssize_t ret = 0;
336
337 XFS_STATS_INC(mp, xs_read_calls);
338
339 if (xfs_is_shutdown(mp))
340 return -EIO;
341
342 trace_xfs_file_splice_read(ip, offset: *ppos, count: len);
343
344 xfs_ilock(ip, XFS_IOLOCK_SHARED);
345 ret = filemap_splice_read(in, ppos, pipe, len, flags);
346 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
347 if (ret > 0)
348 XFS_STATS_ADD(mp, xs_read_bytes, ret);
349 return ret;
350}
351
352/*
353 * Take care of zeroing post-EOF blocks when they might exist.
354 *
355 * Returns 0 if successfully, a negative error for a failure, or 1 if this
356 * function dropped the iolock and reacquired it exclusively and the caller
357 * needs to restart the write sanity checks.
358 */
359static ssize_t
360xfs_file_write_zero_eof(
361 struct kiocb *iocb,
362 struct iov_iter *from,
363 unsigned int *iolock,
364 size_t count,
365 bool *drained_dio,
366 struct xfs_zone_alloc_ctx *ac)
367{
368 struct xfs_inode *ip = XFS_I(inode: iocb->ki_filp->f_mapping->host);
369 loff_t isize;
370 int error;
371
372 /*
373 * We need to serialise against EOF updates that occur in IO completions
374 * here. We want to make sure that nobody is changing the size while
375 * we do this check until we have placed an IO barrier (i.e. hold
376 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The
377 * spinlock effectively forms a memory barrier once we have
378 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
379 * hence be able to correctly determine if we need to run zeroing.
380 */
381 spin_lock(lock: &ip->i_flags_lock);
382 isize = i_size_read(inode: VFS_I(ip));
383 if (iocb->ki_pos <= isize) {
384 spin_unlock(lock: &ip->i_flags_lock);
385 return 0;
386 }
387 spin_unlock(lock: &ip->i_flags_lock);
388
389 if (iocb->ki_flags & IOCB_NOWAIT)
390 return -EAGAIN;
391
392 if (!*drained_dio) {
393 /*
394 * If zeroing is needed and we are currently holding the iolock
395 * shared, we need to update it to exclusive which implies
396 * having to redo all checks before.
397 */
398 if (*iolock == XFS_IOLOCK_SHARED) {
399 xfs_iunlock(ip, *iolock);
400 *iolock = XFS_IOLOCK_EXCL;
401 xfs_ilock(ip, *iolock);
402 iov_iter_reexpand(i: from, count);
403 }
404
405 /*
406 * We now have an IO submission barrier in place, but AIO can do
407 * EOF updates during IO completion and hence we now need to
408 * wait for all of them to drain. Non-AIO DIO will have drained
409 * before we are given the XFS_IOLOCK_EXCL, and so for most
410 * cases this wait is a no-op.
411 */
412 inode_dio_wait(inode: VFS_I(ip));
413 *drained_dio = true;
414 return 1;
415 }
416
417 trace_xfs_zero_eof(ip, offset: isize, count: iocb->ki_pos - isize);
418
419 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
420 error = xfs_zero_range(ip, pos: isize, len: iocb->ki_pos - isize, ac, NULL);
421 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
422
423 return error;
424}
425
426/*
427 * Common pre-write limit and setup checks.
428 *
429 * Called with the iolock held either shared and exclusive according to
430 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
431 * if called for a direct write beyond i_size.
432 */
433STATIC ssize_t
434xfs_file_write_checks(
435 struct kiocb *iocb,
436 struct iov_iter *from,
437 unsigned int *iolock,
438 struct xfs_zone_alloc_ctx *ac)
439{
440 struct inode *inode = iocb->ki_filp->f_mapping->host;
441 size_t count = iov_iter_count(i: from);
442 bool drained_dio = false;
443 ssize_t error;
444
445restart:
446 error = generic_write_checks(iocb, from);
447 if (error <= 0)
448 return error;
449
450 if (iocb->ki_flags & IOCB_NOWAIT) {
451 error = break_layout(inode, wait: false);
452 if (error == -EWOULDBLOCK)
453 error = -EAGAIN;
454 } else {
455 error = xfs_break_layouts(inode, iolock, reason: BREAK_WRITE);
456 }
457
458 if (error)
459 return error;
460
461 /*
462 * For changing security info in file_remove_privs() we need i_rwsem
463 * exclusively.
464 */
465 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
466 xfs_iunlock(XFS_I(inode), *iolock);
467 *iolock = XFS_IOLOCK_EXCL;
468 error = xfs_ilock_iocb(iocb, lock_mode: *iolock);
469 if (error) {
470 *iolock = 0;
471 return error;
472 }
473 goto restart;
474 }
475
476 /*
477 * If the offset is beyond the size of the file, we need to zero all
478 * blocks that fall between the existing EOF and the start of this
479 * write.
480 *
481 * We can do an unlocked check for i_size here safely as I/O completion
482 * can only extend EOF. Truncate is locked out at this point, so the
483 * EOF can not move backwards, only forwards. Hence we only need to take
484 * the slow path when we are at or beyond the current EOF.
485 */
486 if (iocb->ki_pos > i_size_read(inode)) {
487 error = xfs_file_write_zero_eof(iocb, from, iolock, count,
488 drained_dio: &drained_dio, ac);
489 if (error == 1)
490 goto restart;
491 if (error)
492 return error;
493 }
494
495 return kiocb_modified(iocb);
496}
497
498static ssize_t
499xfs_zoned_write_space_reserve(
500 struct xfs_inode *ip,
501 struct kiocb *iocb,
502 struct iov_iter *from,
503 unsigned int flags,
504 struct xfs_zone_alloc_ctx *ac)
505{
506 loff_t count = iov_iter_count(i: from);
507 int error;
508
509 if (iocb->ki_flags & IOCB_NOWAIT)
510 flags |= XFS_ZR_NOWAIT;
511
512 /*
513 * Check the rlimit and LFS boundary first so that we don't over-reserve
514 * by possibly a lot.
515 *
516 * The generic write path will redo this check later, and it might have
517 * changed by then. If it got expanded we'll stick to our earlier
518 * smaller limit, and if it is decreased the new smaller limit will be
519 * used and our extra space reservation will be returned after finishing
520 * the write.
521 */
522 error = generic_write_check_limits(file: iocb->ki_filp, pos: iocb->ki_pos, count: &count);
523 if (error)
524 return error;
525
526 /*
527 * Sloppily round up count to file system blocks.
528 *
529 * This will often reserve an extra block, but that avoids having to look
530 * at the start offset, which isn't stable for O_APPEND until taking the
531 * iolock. Also we need to reserve a block each for zeroing the old
532 * EOF block and the new start block if they are unaligned.
533 *
534 * Any remaining block will be returned after the write.
535 */
536 return xfs_zoned_space_reserve(ip,
537 XFS_B_TO_FSB(ip->i_mount, count) + 1 + 2, flags, ac);
538}
539
540static int
541xfs_dio_write_end_io(
542 struct kiocb *iocb,
543 ssize_t size,
544 int error,
545 unsigned flags)
546{
547 struct inode *inode = file_inode(f: iocb->ki_filp);
548 struct xfs_inode *ip = XFS_I(inode);
549 loff_t offset = iocb->ki_pos;
550 unsigned int nofs_flag;
551
552 ASSERT(!xfs_is_zoned_inode(ip) ||
553 !(flags & (IOMAP_DIO_UNWRITTEN | IOMAP_DIO_COW)));
554
555 trace_xfs_end_io_direct_write(ip, offset, count: size);
556
557 if (xfs_is_shutdown(mp: ip->i_mount))
558 return -EIO;
559
560 if (error)
561 return error;
562 if (!size)
563 return 0;
564
565 /*
566 * Capture amount written on completion as we can't reliably account
567 * for it on submission.
568 */
569 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
570
571 /*
572 * We can allocate memory here while doing writeback on behalf of
573 * memory reclaim. To avoid memory allocation deadlocks set the
574 * task-wide nofs context for the following operations.
575 */
576 nofs_flag = memalloc_nofs_save();
577
578 if (flags & IOMAP_DIO_COW) {
579 if (iocb->ki_flags & IOCB_ATOMIC)
580 error = xfs_reflink_end_atomic_cow(ip, offset, count: size);
581 else
582 error = xfs_reflink_end_cow(ip, offset, count: size);
583 if (error)
584 goto out;
585 }
586
587 /*
588 * Unwritten conversion updates the in-core isize after extent
589 * conversion but before updating the on-disk size. Updating isize any
590 * earlier allows a racing dio read to find unwritten extents before
591 * they are converted.
592 */
593 if (flags & IOMAP_DIO_UNWRITTEN) {
594 error = xfs_iomap_write_unwritten(ip, offset, size, true);
595 goto out;
596 }
597
598 /*
599 * We need to update the in-core inode size here so that we don't end up
600 * with the on-disk inode size being outside the in-core inode size. We
601 * have no other method of updating EOF for AIO, so always do it here
602 * if necessary.
603 *
604 * We need to lock the test/set EOF update as we can be racing with
605 * other IO completions here to update the EOF. Failing to serialise
606 * here can result in EOF moving backwards and Bad Things Happen when
607 * that occurs.
608 *
609 * As IO completion only ever extends EOF, we can do an unlocked check
610 * here to avoid taking the spinlock. If we land within the current EOF,
611 * then we do not need to do an extending update at all, and we don't
612 * need to take the lock to check this. If we race with an update moving
613 * EOF, then we'll either still be beyond EOF and need to take the lock,
614 * or we'll be within EOF and we don't need to take it at all.
615 */
616 if (offset + size <= i_size_read(inode))
617 goto out;
618
619 spin_lock(lock: &ip->i_flags_lock);
620 if (offset + size > i_size_read(inode)) {
621 i_size_write(inode, i_size: offset + size);
622 spin_unlock(lock: &ip->i_flags_lock);
623 error = xfs_setfilesize(ip, offset, size);
624 } else {
625 spin_unlock(lock: &ip->i_flags_lock);
626 }
627
628out:
629 memalloc_nofs_restore(flags: nofs_flag);
630 return error;
631}
632
633static const struct iomap_dio_ops xfs_dio_write_ops = {
634 .end_io = xfs_dio_write_end_io,
635};
636
637static void
638xfs_dio_zoned_submit_io(
639 const struct iomap_iter *iter,
640 struct bio *bio,
641 loff_t file_offset)
642{
643 struct xfs_mount *mp = XFS_I(inode: iter->inode)->i_mount;
644 struct xfs_zone_alloc_ctx *ac = iter->private;
645 xfs_filblks_t count_fsb;
646 struct iomap_ioend *ioend;
647
648 count_fsb = XFS_B_TO_FSB(mp, bio->bi_iter.bi_size);
649 if (count_fsb > ac->reserved_blocks) {
650 xfs_err(mp,
651"allocation (%lld) larger than reservation (%lld).",
652 count_fsb, ac->reserved_blocks);
653 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
654 bio_io_error(bio);
655 return;
656 }
657 ac->reserved_blocks -= count_fsb;
658
659 bio->bi_end_io = xfs_end_bio;
660 ioend = iomap_init_ioend(inode: iter->inode, bio, file_offset,
661 IOMAP_IOEND_DIRECT);
662 xfs_zone_alloc_and_submit(ioend, oz: &ac->open_zone);
663}
664
665static const struct iomap_dio_ops xfs_dio_zoned_write_ops = {
666 .bio_set = &iomap_ioend_bioset,
667 .submit_io = xfs_dio_zoned_submit_io,
668 .end_io = xfs_dio_write_end_io,
669};
670
671/*
672 * Handle block aligned direct I/O writes.
673 */
674static noinline ssize_t
675xfs_file_dio_write_aligned(
676 struct xfs_inode *ip,
677 struct kiocb *iocb,
678 struct iov_iter *from,
679 const struct iomap_ops *ops,
680 const struct iomap_dio_ops *dops,
681 struct xfs_zone_alloc_ctx *ac)
682{
683 unsigned int iolock = XFS_IOLOCK_SHARED;
684 ssize_t ret;
685
686 ret = xfs_ilock_iocb_for_write(iocb, lock_mode: &iolock);
687 if (ret)
688 return ret;
689 ret = xfs_file_write_checks(iocb, from, iolock: &iolock, ac);
690 if (ret)
691 goto out_unlock;
692
693 /*
694 * We don't need to hold the IOLOCK exclusively across the IO, so demote
695 * the iolock back to shared if we had to take the exclusive lock in
696 * xfs_file_write_checks() for other reasons.
697 */
698 if (iolock == XFS_IOLOCK_EXCL) {
699 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
700 iolock = XFS_IOLOCK_SHARED;
701 }
702 trace_xfs_file_direct_write(iocb, iter: from);
703 ret = iomap_dio_rw(iocb, iter: from, ops, dops, dio_flags: 0, private: ac, done_before: 0);
704out_unlock:
705 xfs_iunlock(ip, iolock);
706 return ret;
707}
708
709/*
710 * Handle block aligned direct I/O writes to zoned devices.
711 */
712static noinline ssize_t
713xfs_file_dio_write_zoned(
714 struct xfs_inode *ip,
715 struct kiocb *iocb,
716 struct iov_iter *from)
717{
718 struct xfs_zone_alloc_ctx ac = { };
719 ssize_t ret;
720
721 ret = xfs_zoned_write_space_reserve(ip, iocb, from, flags: 0, ac: &ac);
722 if (ret < 0)
723 return ret;
724 ret = xfs_file_dio_write_aligned(ip, iocb, from,
725 ops: &xfs_zoned_direct_write_iomap_ops,
726 dops: &xfs_dio_zoned_write_ops, ac: &ac);
727 xfs_zoned_space_unreserve(ip, ac: &ac);
728 return ret;
729}
730
731/*
732 * Handle block atomic writes
733 *
734 * Two methods of atomic writes are supported:
735 * - REQ_ATOMIC-based, which would typically use some form of HW offload in the
736 * disk
737 * - COW-based, which uses a COW fork as a staging extent for data updates
738 * before atomically updating extent mappings for the range being written
739 *
740 */
741static noinline ssize_t
742xfs_file_dio_write_atomic(
743 struct xfs_inode *ip,
744 struct kiocb *iocb,
745 struct iov_iter *from)
746{
747 unsigned int iolock = XFS_IOLOCK_SHARED;
748 ssize_t ret, ocount = iov_iter_count(i: from);
749 const struct iomap_ops *dops;
750
751 /*
752 * HW offload should be faster, so try that first if it is already
753 * known that the write length is not too large.
754 */
755 if (ocount > xfs_inode_buftarg(ip)->bt_bdev_awu_max)
756 dops = &xfs_atomic_write_cow_iomap_ops;
757 else
758 dops = &xfs_direct_write_iomap_ops;
759
760retry:
761 ret = xfs_ilock_iocb_for_write(iocb, lock_mode: &iolock);
762 if (ret)
763 return ret;
764
765 ret = xfs_file_write_checks(iocb, from, iolock: &iolock, NULL);
766 if (ret)
767 goto out_unlock;
768
769 /* Demote similar to xfs_file_dio_write_aligned() */
770 if (iolock == XFS_IOLOCK_EXCL) {
771 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
772 iolock = XFS_IOLOCK_SHARED;
773 }
774
775 trace_xfs_file_direct_write(iocb, iter: from);
776 ret = iomap_dio_rw(iocb, iter: from, ops: dops, dops: &xfs_dio_write_ops,
777 dio_flags: 0, NULL, done_before: 0);
778
779 /*
780 * The retry mechanism is based on the ->iomap_begin method returning
781 * -ENOPROTOOPT, which would be when the REQ_ATOMIC-based write is not
782 * possible. The REQ_ATOMIC-based method typically not be possible if
783 * the write spans multiple extents or the disk blocks are misaligned.
784 */
785 if (ret == -ENOPROTOOPT && dops == &xfs_direct_write_iomap_ops) {
786 xfs_iunlock(ip, iolock);
787 dops = &xfs_atomic_write_cow_iomap_ops;
788 goto retry;
789 }
790
791out_unlock:
792 if (iolock)
793 xfs_iunlock(ip, iolock);
794 return ret;
795}
796
797/*
798 * Handle block unaligned direct I/O writes
799 *
800 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
801 * them to be done in parallel with reads and other direct I/O writes. However,
802 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
803 * to do sub-block zeroing and that requires serialisation against other direct
804 * I/O to the same block. In this case we need to serialise the submission of
805 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
806 * In the case where sub-block zeroing is not required, we can do concurrent
807 * sub-block dios to the same block successfully.
808 *
809 * Optimistically submit the I/O using the shared lock first, but use the
810 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
811 * if block allocation or partial block zeroing would be required. In that case
812 * we try again with the exclusive lock.
813 */
814static noinline ssize_t
815xfs_file_dio_write_unaligned(
816 struct xfs_inode *ip,
817 struct kiocb *iocb,
818 struct iov_iter *from)
819{
820 size_t isize = i_size_read(inode: VFS_I(ip));
821 size_t count = iov_iter_count(i: from);
822 unsigned int iolock = XFS_IOLOCK_SHARED;
823 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY;
824 ssize_t ret;
825
826 /*
827 * Extending writes need exclusivity because of the sub-block zeroing
828 * that the DIO code always does for partial tail blocks beyond EOF, so
829 * don't even bother trying the fast path in this case.
830 */
831 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
832 if (iocb->ki_flags & IOCB_NOWAIT)
833 return -EAGAIN;
834retry_exclusive:
835 iolock = XFS_IOLOCK_EXCL;
836 flags = IOMAP_DIO_FORCE_WAIT;
837 }
838
839 ret = xfs_ilock_iocb_for_write(iocb, lock_mode: &iolock);
840 if (ret)
841 return ret;
842
843 /*
844 * We can't properly handle unaligned direct I/O to reflink files yet,
845 * as we can't unshare a partial block.
846 */
847 if (xfs_is_cow_inode(ip)) {
848 trace_xfs_reflink_bounce_dio_write(iocb, iter: from);
849 ret = -ENOTBLK;
850 goto out_unlock;
851 }
852
853 ret = xfs_file_write_checks(iocb, from, iolock: &iolock, NULL);
854 if (ret)
855 goto out_unlock;
856
857 /*
858 * If we are doing exclusive unaligned I/O, this must be the only I/O
859 * in-flight. Otherwise we risk data corruption due to unwritten extent
860 * conversions from the AIO end_io handler. Wait for all other I/O to
861 * drain first.
862 */
863 if (flags & IOMAP_DIO_FORCE_WAIT)
864 inode_dio_wait(inode: VFS_I(ip));
865
866 trace_xfs_file_direct_write(iocb, iter: from);
867 ret = iomap_dio_rw(iocb, iter: from, ops: &xfs_direct_write_iomap_ops,
868 dops: &xfs_dio_write_ops, dio_flags: flags, NULL, done_before: 0);
869
870 /*
871 * Retry unaligned I/O with exclusive blocking semantics if the DIO
872 * layer rejected it for mapping or locking reasons. If we are doing
873 * nonblocking user I/O, propagate the error.
874 */
875 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
876 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
877 xfs_iunlock(ip, iolock);
878 goto retry_exclusive;
879 }
880
881out_unlock:
882 if (iolock)
883 xfs_iunlock(ip, iolock);
884 return ret;
885}
886
887static ssize_t
888xfs_file_dio_write(
889 struct kiocb *iocb,
890 struct iov_iter *from)
891{
892 struct xfs_inode *ip = XFS_I(inode: file_inode(f: iocb->ki_filp));
893 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
894 size_t count = iov_iter_count(i: from);
895
896 /* direct I/O must be aligned to device logical sector size */
897 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
898 return -EINVAL;
899
900 /*
901 * For always COW inodes we also must check the alignment of each
902 * individual iovec segment, as they could end up with different
903 * I/Os due to the way bio_iov_iter_get_pages works, and we'd
904 * then overwrite an already written block.
905 */
906 if (((iocb->ki_pos | count) & ip->i_mount->m_blockmask) ||
907 (xfs_is_always_cow_inode(ip) &&
908 (iov_iter_alignment(i: from) & ip->i_mount->m_blockmask)))
909 return xfs_file_dio_write_unaligned(ip, iocb, from);
910 if (xfs_is_zoned_inode(ip))
911 return xfs_file_dio_write_zoned(ip, iocb, from);
912 if (iocb->ki_flags & IOCB_ATOMIC)
913 return xfs_file_dio_write_atomic(ip, iocb, from);
914 return xfs_file_dio_write_aligned(ip, iocb, from,
915 ops: &xfs_direct_write_iomap_ops, dops: &xfs_dio_write_ops, NULL);
916}
917
918static noinline ssize_t
919xfs_file_dax_write(
920 struct kiocb *iocb,
921 struct iov_iter *from)
922{
923 struct inode *inode = iocb->ki_filp->f_mapping->host;
924 struct xfs_inode *ip = XFS_I(inode);
925 unsigned int iolock = XFS_IOLOCK_EXCL;
926 ssize_t ret, error = 0;
927 loff_t pos;
928
929 ret = xfs_ilock_iocb(iocb, lock_mode: iolock);
930 if (ret)
931 return ret;
932 ret = xfs_file_write_checks(iocb, from, iolock: &iolock, NULL);
933 if (ret)
934 goto out;
935
936 pos = iocb->ki_pos;
937
938 trace_xfs_file_dax_write(iocb, iter: from);
939 ret = dax_iomap_rw(iocb, iter: from, ops: &xfs_dax_write_iomap_ops);
940 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
941 i_size_write(inode, i_size: iocb->ki_pos);
942 error = xfs_setfilesize(ip, offset: pos, size: ret);
943 }
944out:
945 if (iolock)
946 xfs_iunlock(ip, iolock);
947 if (error)
948 return error;
949
950 if (ret > 0) {
951 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
952
953 /* Handle various SYNC-type writes */
954 ret = generic_write_sync(iocb, count: ret);
955 }
956 return ret;
957}
958
959STATIC ssize_t
960xfs_file_buffered_write(
961 struct kiocb *iocb,
962 struct iov_iter *from)
963{
964 struct inode *inode = iocb->ki_filp->f_mapping->host;
965 struct xfs_inode *ip = XFS_I(inode);
966 ssize_t ret;
967 bool cleared_space = false;
968 unsigned int iolock;
969
970write_retry:
971 iolock = XFS_IOLOCK_EXCL;
972 ret = xfs_ilock_iocb(iocb, lock_mode: iolock);
973 if (ret)
974 return ret;
975
976 ret = xfs_file_write_checks(iocb, from, iolock: &iolock, NULL);
977 if (ret)
978 goto out;
979
980 trace_xfs_file_buffered_write(iocb, iter: from);
981 ret = iomap_file_buffered_write(iocb, from,
982 ops: &xfs_buffered_write_iomap_ops, NULL);
983
984 /*
985 * If we hit a space limit, try to free up some lingering preallocated
986 * space before returning an error. In the case of ENOSPC, first try to
987 * write back all dirty inodes to free up some of the excess reserved
988 * metadata space. This reduces the chances that the eofblocks scan
989 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
990 * also behaves as a filter to prevent too many eofblocks scans from
991 * running at the same time. Use a synchronous scan to increase the
992 * effectiveness of the scan.
993 */
994 if (ret == -EDQUOT && !cleared_space) {
995 xfs_iunlock(ip, iolock);
996 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
997 cleared_space = true;
998 goto write_retry;
999 } else if (ret == -ENOSPC && !cleared_space) {
1000 struct xfs_icwalk icw = {0};
1001
1002 cleared_space = true;
1003 xfs_flush_inodes(mp: ip->i_mount);
1004
1005 xfs_iunlock(ip, iolock);
1006 icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
1007 xfs_blockgc_free_space(mp: ip->i_mount, icm: &icw);
1008 goto write_retry;
1009 }
1010
1011out:
1012 if (iolock)
1013 xfs_iunlock(ip, iolock);
1014
1015 if (ret > 0) {
1016 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
1017 /* Handle various SYNC-type writes */
1018 ret = generic_write_sync(iocb, count: ret);
1019 }
1020 return ret;
1021}
1022
1023STATIC ssize_t
1024xfs_file_buffered_write_zoned(
1025 struct kiocb *iocb,
1026 struct iov_iter *from)
1027{
1028 struct xfs_inode *ip = XFS_I(inode: iocb->ki_filp->f_mapping->host);
1029 struct xfs_mount *mp = ip->i_mount;
1030 unsigned int iolock = XFS_IOLOCK_EXCL;
1031 bool cleared_space = false;
1032 struct xfs_zone_alloc_ctx ac = { };
1033 ssize_t ret;
1034
1035 ret = xfs_zoned_write_space_reserve(ip, iocb, from, XFS_ZR_GREEDY, ac: &ac);
1036 if (ret < 0)
1037 return ret;
1038
1039 ret = xfs_ilock_iocb(iocb, lock_mode: iolock);
1040 if (ret)
1041 goto out_unreserve;
1042
1043 ret = xfs_file_write_checks(iocb, from, iolock: &iolock, ac: &ac);
1044 if (ret)
1045 goto out_unlock;
1046
1047 /*
1048 * Truncate the iter to the length that we were actually able to
1049 * allocate blocks for. This needs to happen after
1050 * xfs_file_write_checks, because that assigns ki_pos for O_APPEND
1051 * writes.
1052 */
1053 iov_iter_truncate(i: from,
1054 count: XFS_FSB_TO_B(mp, ac.reserved_blocks) -
1055 (iocb->ki_pos & mp->m_blockmask));
1056 if (!iov_iter_count(i: from))
1057 goto out_unlock;
1058
1059retry:
1060 trace_xfs_file_buffered_write(iocb, iter: from);
1061 ret = iomap_file_buffered_write(iocb, from,
1062 ops: &xfs_buffered_write_iomap_ops, private: &ac);
1063 if (ret == -ENOSPC && !cleared_space) {
1064 /*
1065 * Kick off writeback to convert delalloc space and release the
1066 * usually too pessimistic indirect block reservations.
1067 */
1068 xfs_flush_inodes(mp);
1069 cleared_space = true;
1070 goto retry;
1071 }
1072
1073out_unlock:
1074 xfs_iunlock(ip, iolock);
1075out_unreserve:
1076 xfs_zoned_space_unreserve(ip, ac: &ac);
1077 if (ret > 0) {
1078 XFS_STATS_ADD(mp, xs_write_bytes, ret);
1079 ret = generic_write_sync(iocb, count: ret);
1080 }
1081 return ret;
1082}
1083
1084STATIC ssize_t
1085xfs_file_write_iter(
1086 struct kiocb *iocb,
1087 struct iov_iter *from)
1088{
1089 struct inode *inode = iocb->ki_filp->f_mapping->host;
1090 struct xfs_inode *ip = XFS_I(inode);
1091 ssize_t ret;
1092 size_t ocount = iov_iter_count(i: from);
1093
1094 XFS_STATS_INC(ip->i_mount, xs_write_calls);
1095
1096 if (ocount == 0)
1097 return 0;
1098
1099 if (xfs_is_shutdown(mp: ip->i_mount))
1100 return -EIO;
1101
1102 if (IS_DAX(inode))
1103 return xfs_file_dax_write(iocb, from);
1104
1105 if (iocb->ki_flags & IOCB_ATOMIC) {
1106 if (ocount < xfs_get_atomic_write_min(ip))
1107 return -EINVAL;
1108
1109 if (ocount > xfs_get_atomic_write_max(ip))
1110 return -EINVAL;
1111
1112 ret = generic_atomic_write_valid(iocb, iter: from);
1113 if (ret)
1114 return ret;
1115 }
1116
1117 if (iocb->ki_flags & IOCB_DIRECT) {
1118 /*
1119 * Allow a directio write to fall back to a buffered
1120 * write *only* in the case that we're doing a reflink
1121 * CoW. In all other directio scenarios we do not
1122 * allow an operation to fall back to buffered mode.
1123 */
1124 ret = xfs_file_dio_write(iocb, from);
1125 if (ret != -ENOTBLK)
1126 return ret;
1127 }
1128
1129 if (xfs_is_zoned_inode(ip))
1130 return xfs_file_buffered_write_zoned(iocb, from);
1131 return xfs_file_buffered_write(iocb, from);
1132}
1133
1134/* Does this file, inode, or mount want synchronous writes? */
1135static inline bool xfs_file_sync_writes(struct file *filp)
1136{
1137 struct xfs_inode *ip = XFS_I(inode: file_inode(f: filp));
1138
1139 if (xfs_has_wsync(mp: ip->i_mount))
1140 return true;
1141 if (filp->f_flags & (__O_SYNC | O_DSYNC))
1142 return true;
1143 if (IS_SYNC(file_inode(filp)))
1144 return true;
1145
1146 return false;
1147}
1148
1149static int
1150xfs_falloc_newsize(
1151 struct file *file,
1152 int mode,
1153 loff_t offset,
1154 loff_t len,
1155 loff_t *new_size)
1156{
1157 struct inode *inode = file_inode(f: file);
1158
1159 if ((mode & FALLOC_FL_KEEP_SIZE) || offset + len <= i_size_read(inode))
1160 return 0;
1161 *new_size = offset + len;
1162 return inode_newsize_ok(inode, offset: *new_size);
1163}
1164
1165static int
1166xfs_falloc_setsize(
1167 struct file *file,
1168 loff_t new_size)
1169{
1170 struct iattr iattr = {
1171 .ia_valid = ATTR_SIZE,
1172 .ia_size = new_size,
1173 };
1174
1175 if (!new_size)
1176 return 0;
1177 return xfs_vn_setattr_size(idmap: file_mnt_idmap(file), dentry: file_dentry(file),
1178 vap: &iattr);
1179}
1180
1181static int
1182xfs_falloc_collapse_range(
1183 struct file *file,
1184 loff_t offset,
1185 loff_t len,
1186 struct xfs_zone_alloc_ctx *ac)
1187{
1188 struct inode *inode = file_inode(f: file);
1189 loff_t new_size = i_size_read(inode) - len;
1190 int error;
1191
1192 if (!xfs_is_falloc_aligned(ip: XFS_I(inode), pos: offset, len))
1193 return -EINVAL;
1194
1195 /*
1196 * There is no need to overlap collapse range with EOF, in which case it
1197 * is effectively a truncate operation
1198 */
1199 if (offset + len >= i_size_read(inode))
1200 return -EINVAL;
1201
1202 error = xfs_collapse_file_space(XFS_I(inode), offset, len, ac);
1203 if (error)
1204 return error;
1205 return xfs_falloc_setsize(file, new_size);
1206}
1207
1208static int
1209xfs_falloc_insert_range(
1210 struct file *file,
1211 loff_t offset,
1212 loff_t len)
1213{
1214 struct inode *inode = file_inode(f: file);
1215 loff_t isize = i_size_read(inode);
1216 int error;
1217
1218 if (!xfs_is_falloc_aligned(ip: XFS_I(inode), pos: offset, len))
1219 return -EINVAL;
1220
1221 /*
1222 * New inode size must not exceed ->s_maxbytes, accounting for
1223 * possible signed overflow.
1224 */
1225 if (inode->i_sb->s_maxbytes - isize < len)
1226 return -EFBIG;
1227
1228 /* Offset should be less than i_size */
1229 if (offset >= isize)
1230 return -EINVAL;
1231
1232 error = xfs_falloc_setsize(file, new_size: isize + len);
1233 if (error)
1234 return error;
1235
1236 /*
1237 * Perform hole insertion now that the file size has been updated so
1238 * that if we crash during the operation we don't leave shifted extents
1239 * past EOF and hence losing access to the data that is contained within
1240 * them.
1241 */
1242 return xfs_insert_file_space(XFS_I(inode), offset, len);
1243}
1244
1245/*
1246 * Punch a hole and prealloc the range. We use a hole punch rather than
1247 * unwritten extent conversion for two reasons:
1248 *
1249 * 1.) Hole punch handles partial block zeroing for us.
1250 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued by
1251 * virtue of the hole punch.
1252 */
1253static int
1254xfs_falloc_zero_range(
1255 struct file *file,
1256 int mode,
1257 loff_t offset,
1258 loff_t len,
1259 struct xfs_zone_alloc_ctx *ac)
1260{
1261 struct inode *inode = file_inode(f: file);
1262 unsigned int blksize = i_blocksize(node: inode);
1263 loff_t new_size = 0;
1264 int error;
1265
1266 trace_xfs_zero_file_space(ip: XFS_I(inode));
1267
1268 error = xfs_falloc_newsize(file, mode, offset, len, new_size: &new_size);
1269 if (error)
1270 return error;
1271
1272 error = xfs_free_file_space(ip: XFS_I(inode), offset, len, ac);
1273 if (error)
1274 return error;
1275
1276 len = round_up(offset + len, blksize) - round_down(offset, blksize);
1277 offset = round_down(offset, blksize);
1278 error = xfs_alloc_file_space(ip: XFS_I(inode), offset, len);
1279 if (error)
1280 return error;
1281 return xfs_falloc_setsize(file, new_size);
1282}
1283
1284static int
1285xfs_falloc_unshare_range(
1286 struct file *file,
1287 int mode,
1288 loff_t offset,
1289 loff_t len)
1290{
1291 struct inode *inode = file_inode(f: file);
1292 loff_t new_size = 0;
1293 int error;
1294
1295 error = xfs_falloc_newsize(file, mode, offset, len, new_size: &new_size);
1296 if (error)
1297 return error;
1298
1299 error = xfs_reflink_unshare(ip: XFS_I(inode), offset, len);
1300 if (error)
1301 return error;
1302
1303 error = xfs_alloc_file_space(ip: XFS_I(inode), offset, len);
1304 if (error)
1305 return error;
1306 return xfs_falloc_setsize(file, new_size);
1307}
1308
1309static int
1310xfs_falloc_allocate_range(
1311 struct file *file,
1312 int mode,
1313 loff_t offset,
1314 loff_t len)
1315{
1316 struct inode *inode = file_inode(f: file);
1317 loff_t new_size = 0;
1318 int error;
1319
1320 /*
1321 * If always_cow mode we can't use preallocations and thus should not
1322 * create them.
1323 */
1324 if (xfs_is_always_cow_inode(ip: XFS_I(inode)))
1325 return -EOPNOTSUPP;
1326
1327 error = xfs_falloc_newsize(file, mode, offset, len, new_size: &new_size);
1328 if (error)
1329 return error;
1330
1331 error = xfs_alloc_file_space(ip: XFS_I(inode), offset, len);
1332 if (error)
1333 return error;
1334 return xfs_falloc_setsize(file, new_size);
1335}
1336
1337#define XFS_FALLOC_FL_SUPPORTED \
1338 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1339 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
1340 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
1341
1342STATIC long
1343__xfs_file_fallocate(
1344 struct file *file,
1345 int mode,
1346 loff_t offset,
1347 loff_t len,
1348 struct xfs_zone_alloc_ctx *ac)
1349{
1350 struct inode *inode = file_inode(f: file);
1351 struct xfs_inode *ip = XFS_I(inode);
1352 long error;
1353 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1354
1355 xfs_ilock(ip, iolock);
1356 error = xfs_break_layouts(inode, iolock: &iolock, reason: BREAK_UNMAP);
1357 if (error)
1358 goto out_unlock;
1359
1360 /*
1361 * Must wait for all AIO to complete before we continue as AIO can
1362 * change the file size on completion without holding any locks we
1363 * currently hold. We must do this first because AIO can update both
1364 * the on disk and in memory inode sizes, and the operations that follow
1365 * require the in-memory size to be fully up-to-date.
1366 */
1367 inode_dio_wait(inode);
1368
1369 error = file_modified(file);
1370 if (error)
1371 goto out_unlock;
1372
1373 switch (mode & FALLOC_FL_MODE_MASK) {
1374 case FALLOC_FL_PUNCH_HOLE:
1375 error = xfs_free_file_space(ip, offset, len, ac);
1376 break;
1377 case FALLOC_FL_COLLAPSE_RANGE:
1378 error = xfs_falloc_collapse_range(file, offset, len, ac);
1379 break;
1380 case FALLOC_FL_INSERT_RANGE:
1381 error = xfs_falloc_insert_range(file, offset, len);
1382 break;
1383 case FALLOC_FL_ZERO_RANGE:
1384 error = xfs_falloc_zero_range(file, mode, offset, len, ac);
1385 break;
1386 case FALLOC_FL_UNSHARE_RANGE:
1387 error = xfs_falloc_unshare_range(file, mode, offset, len);
1388 break;
1389 case FALLOC_FL_ALLOCATE_RANGE:
1390 error = xfs_falloc_allocate_range(file, mode, offset, len);
1391 break;
1392 default:
1393 error = -EOPNOTSUPP;
1394 break;
1395 }
1396
1397 if (!error && xfs_file_sync_writes(filp: file))
1398 error = xfs_log_force_inode(ip);
1399
1400out_unlock:
1401 xfs_iunlock(ip, iolock);
1402 return error;
1403}
1404
1405static long
1406xfs_file_zoned_fallocate(
1407 struct file *file,
1408 int mode,
1409 loff_t offset,
1410 loff_t len)
1411{
1412 struct xfs_zone_alloc_ctx ac = { };
1413 struct xfs_inode *ip = XFS_I(inode: file_inode(f: file));
1414 int error;
1415
1416 error = xfs_zoned_space_reserve(ip, 2, XFS_ZR_RESERVED, &ac);
1417 if (error)
1418 return error;
1419 error = __xfs_file_fallocate(file, mode, offset, len, ac: &ac);
1420 xfs_zoned_space_unreserve(ip, ac: &ac);
1421 return error;
1422}
1423
1424static long
1425xfs_file_fallocate(
1426 struct file *file,
1427 int mode,
1428 loff_t offset,
1429 loff_t len)
1430{
1431 struct inode *inode = file_inode(f: file);
1432
1433 if (!S_ISREG(inode->i_mode))
1434 return -EINVAL;
1435 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
1436 return -EOPNOTSUPP;
1437
1438 /*
1439 * For zoned file systems, zeroing the first and last block of a hole
1440 * punch requires allocating a new block to rewrite the remaining data
1441 * and new zeroes out of place. Get a reservations for those before
1442 * taking the iolock. Dip into the reserved pool because we are
1443 * expected to be able to punch a hole even on a completely full
1444 * file system.
1445 */
1446 if (xfs_is_zoned_inode(ip: XFS_I(inode)) &&
1447 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
1448 FALLOC_FL_COLLAPSE_RANGE)))
1449 return xfs_file_zoned_fallocate(file, mode, offset, len);
1450 return __xfs_file_fallocate(file, mode, offset, len, NULL);
1451}
1452
1453STATIC int
1454xfs_file_fadvise(
1455 struct file *file,
1456 loff_t start,
1457 loff_t end,
1458 int advice)
1459{
1460 struct xfs_inode *ip = XFS_I(inode: file_inode(f: file));
1461 int ret;
1462 int lockflags = 0;
1463
1464 /*
1465 * Operations creating pages in page cache need protection from hole
1466 * punching and similar ops
1467 */
1468 if (advice == POSIX_FADV_WILLNEED) {
1469 lockflags = XFS_IOLOCK_SHARED;
1470 xfs_ilock(ip, lockflags);
1471 }
1472 ret = generic_fadvise(file, offset: start, len: end, advice);
1473 if (lockflags)
1474 xfs_iunlock(ip, lockflags);
1475 return ret;
1476}
1477
1478STATIC loff_t
1479xfs_file_remap_range(
1480 struct file *file_in,
1481 loff_t pos_in,
1482 struct file *file_out,
1483 loff_t pos_out,
1484 loff_t len,
1485 unsigned int remap_flags)
1486{
1487 struct inode *inode_in = file_inode(f: file_in);
1488 struct xfs_inode *src = XFS_I(inode: inode_in);
1489 struct inode *inode_out = file_inode(f: file_out);
1490 struct xfs_inode *dest = XFS_I(inode: inode_out);
1491 struct xfs_mount *mp = src->i_mount;
1492 loff_t remapped = 0;
1493 xfs_extlen_t cowextsize;
1494 int ret;
1495
1496 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1497 return -EINVAL;
1498
1499 if (!xfs_has_reflink(mp))
1500 return -EOPNOTSUPP;
1501
1502 if (xfs_is_shutdown(mp))
1503 return -EIO;
1504
1505 /* Prepare and then clone file data. */
1506 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1507 len: &len, remap_flags);
1508 if (ret || len == 0)
1509 return ret;
1510
1511 trace_xfs_reflink_remap_range(src, soffset: pos_in, len, dest, doffset: pos_out);
1512
1513 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, remap_len: len,
1514 remapped: &remapped);
1515 if (ret)
1516 goto out_unlock;
1517
1518 /*
1519 * Carry the cowextsize hint from src to dest if we're sharing the
1520 * entire source file to the entire destination file, the source file
1521 * has a cowextsize hint, and the destination file does not.
1522 */
1523 cowextsize = 0;
1524 if (pos_in == 0 && len == i_size_read(inode_in) &&
1525 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1526 pos_out == 0 && len >= i_size_read(inode_out) &&
1527 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1528 cowextsize = src->i_cowextsize;
1529
1530 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1531 remap_flags);
1532 if (ret)
1533 goto out_unlock;
1534
1535 if (xfs_file_sync_writes(filp: file_in) || xfs_file_sync_writes(filp: file_out))
1536 xfs_log_force_inode(ip: dest);
1537out_unlock:
1538 xfs_iunlock2_remapping(ip1: src, ip2: dest);
1539 if (ret)
1540 trace_xfs_reflink_remap_range_error(ip: dest, error: ret, _RET_IP_);
1541 /*
1542 * If the caller did not set CAN_SHORTEN, then it is not prepared to
1543 * handle partial results -- either the whole remap succeeds, or we
1544 * must say why it did not. In this case, any error should be returned
1545 * to the caller.
1546 */
1547 if (ret && remapped < len && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
1548 return ret;
1549 return remapped > 0 ? remapped : ret;
1550}
1551
1552STATIC int
1553xfs_file_open(
1554 struct inode *inode,
1555 struct file *file)
1556{
1557 if (xfs_is_shutdown(XFS_M(inode->i_sb)))
1558 return -EIO;
1559 file->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
1560 if (xfs_get_atomic_write_min(ip: XFS_I(inode)) > 0)
1561 file->f_mode |= FMODE_CAN_ATOMIC_WRITE;
1562 return generic_file_open(inode, filp: file);
1563}
1564
1565STATIC int
1566xfs_dir_open(
1567 struct inode *inode,
1568 struct file *file)
1569{
1570 struct xfs_inode *ip = XFS_I(inode);
1571 unsigned int mode;
1572 int error;
1573
1574 if (xfs_is_shutdown(mp: ip->i_mount))
1575 return -EIO;
1576 error = generic_file_open(inode, filp: file);
1577 if (error)
1578 return error;
1579
1580 /*
1581 * If there are any blocks, read-ahead block 0 as we're almost
1582 * certain to have the next operation be a read there.
1583 */
1584 mode = xfs_ilock_data_map_shared(ip);
1585 if (ip->i_df.if_nextents > 0)
1586 error = xfs_dir3_data_readahead(ip, 0, 0);
1587 xfs_iunlock(ip, mode);
1588 return error;
1589}
1590
1591/*
1592 * Don't bother propagating errors. We're just doing cleanup, and the caller
1593 * ignores the return value anyway.
1594 */
1595STATIC int
1596xfs_file_release(
1597 struct inode *inode,
1598 struct file *file)
1599{
1600 struct xfs_inode *ip = XFS_I(inode);
1601 struct xfs_mount *mp = ip->i_mount;
1602
1603 /*
1604 * If this is a read-only mount or the file system has been shut down,
1605 * don't generate I/O.
1606 */
1607 if (xfs_is_readonly(mp) || xfs_is_shutdown(mp))
1608 return 0;
1609
1610 /*
1611 * If we previously truncated this file and removed old data in the
1612 * process, we want to initiate "early" writeout on the last close.
1613 * This is an attempt to combat the notorious NULL files problem which
1614 * is particularly noticeable from a truncate down, buffered (re-)write
1615 * (delalloc), followed by a crash. What we are effectively doing here
1616 * is significantly reducing the time window where we'd otherwise be
1617 * exposed to that problem.
1618 */
1619 if (xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED)) {
1620 xfs_iflags_clear(ip, XFS_EOFBLOCKS_RELEASED);
1621 if (ip->i_delayed_blks > 0)
1622 filemap_flush(inode->i_mapping);
1623 }
1624
1625 /*
1626 * XFS aggressively preallocates post-EOF space to generate contiguous
1627 * allocations for writers that append to the end of the file.
1628 *
1629 * To support workloads that close and reopen the file frequently, these
1630 * preallocations usually persist after a close unless it is the first
1631 * close for the inode. This is a tradeoff to generate tightly packed
1632 * data layouts for unpacking tarballs or similar archives that write
1633 * one file after another without going back to it while keeping the
1634 * preallocation for files that have recurring open/write/close cycles.
1635 *
1636 * This heuristic is skipped for inodes with the append-only flag as
1637 * that flag is rather pointless for inodes written only once.
1638 *
1639 * There is no point in freeing blocks here for open but unlinked files
1640 * as they will be taken care of by the inactivation path soon.
1641 *
1642 * When releasing a read-only context, don't flush data or trim post-EOF
1643 * blocks. This avoids open/read/close workloads from removing EOF
1644 * blocks that other writers depend upon to reduce fragmentation.
1645 *
1646 * Inodes on the zoned RT device never have preallocations, so skip
1647 * taking the locks below.
1648 */
1649 if (!inode->i_nlink ||
1650 !(file->f_mode & FMODE_WRITE) ||
1651 (ip->i_diflags & XFS_DIFLAG_APPEND) ||
1652 xfs_is_zoned_inode(ip))
1653 return 0;
1654
1655 /*
1656 * If we can't get the iolock just skip truncating the blocks past EOF
1657 * because we could deadlock with the mmap_lock otherwise. We'll get
1658 * another chance to drop them once the last reference to the inode is
1659 * dropped, so we'll never leak blocks permanently.
1660 */
1661 if (!xfs_iflags_test(ip, XFS_EOFBLOCKS_RELEASED) &&
1662 xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1663 if (xfs_can_free_eofblocks(ip) &&
1664 !xfs_iflags_test_and_set(ip, XFS_EOFBLOCKS_RELEASED))
1665 xfs_free_eofblocks(ip);
1666 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1667 }
1668
1669 return 0;
1670}
1671
1672STATIC int
1673xfs_file_readdir(
1674 struct file *file,
1675 struct dir_context *ctx)
1676{
1677 struct inode *inode = file_inode(f: file);
1678 xfs_inode_t *ip = XFS_I(inode);
1679 size_t bufsize;
1680
1681 /*
1682 * The Linux API doesn't pass down the total size of the buffer
1683 * we read into down to the filesystem. With the filldir concept
1684 * it's not needed for correct information, but the XFS dir2 leaf
1685 * code wants an estimate of the buffer size to calculate it's
1686 * readahead window and size the buffers used for mapping to
1687 * physical blocks.
1688 *
1689 * Try to give it an estimate that's good enough, maybe at some
1690 * point we can change the ->readdir prototype to include the
1691 * buffer size. For now we use the current glibc buffer size.
1692 */
1693 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1694
1695 return xfs_readdir(NULL, ip, ctx, bufsize);
1696}
1697
1698STATIC loff_t
1699xfs_file_llseek(
1700 struct file *file,
1701 loff_t offset,
1702 int whence)
1703{
1704 struct inode *inode = file->f_mapping->host;
1705
1706 if (xfs_is_shutdown(mp: XFS_I(inode)->i_mount))
1707 return -EIO;
1708
1709 switch (whence) {
1710 default:
1711 return generic_file_llseek(file, offset, whence);
1712 case SEEK_HOLE:
1713 offset = iomap_seek_hole(inode, offset, ops: &xfs_seek_iomap_ops);
1714 break;
1715 case SEEK_DATA:
1716 offset = iomap_seek_data(inode, offset, ops: &xfs_seek_iomap_ops);
1717 break;
1718 }
1719
1720 if (offset < 0)
1721 return offset;
1722 return vfs_setpos(file, offset, maxsize: inode->i_sb->s_maxbytes);
1723}
1724
1725static inline vm_fault_t
1726xfs_dax_fault_locked(
1727 struct vm_fault *vmf,
1728 unsigned int order,
1729 bool write_fault)
1730{
1731 vm_fault_t ret;
1732 pfn_t pfn;
1733
1734 if (!IS_ENABLED(CONFIG_FS_DAX)) {
1735 ASSERT(0);
1736 return VM_FAULT_SIGBUS;
1737 }
1738 ret = dax_iomap_fault(vmf, order, pfnp: &pfn, NULL,
1739 ops: (write_fault && !vmf->cow_page) ?
1740 &xfs_dax_write_iomap_ops :
1741 &xfs_read_iomap_ops);
1742 if (ret & VM_FAULT_NEEDDSYNC)
1743 ret = dax_finish_sync_fault(vmf, order, pfn);
1744 return ret;
1745}
1746
1747static vm_fault_t
1748xfs_dax_read_fault(
1749 struct vm_fault *vmf,
1750 unsigned int order)
1751{
1752 struct xfs_inode *ip = XFS_I(inode: file_inode(f: vmf->vma->vm_file));
1753 vm_fault_t ret;
1754
1755 trace_xfs_read_fault(ip, order);
1756
1757 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1758 ret = xfs_dax_fault_locked(vmf, order, write_fault: false);
1759 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1760
1761 return ret;
1762}
1763
1764/*
1765 * Locking for serialisation of IO during page faults. This results in a lock
1766 * ordering of:
1767 *
1768 * mmap_lock (MM)
1769 * sb_start_pagefault(vfs, freeze)
1770 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1771 * page_lock (MM)
1772 * i_lock (XFS - extent map serialisation)
1773 */
1774static vm_fault_t
1775__xfs_write_fault(
1776 struct vm_fault *vmf,
1777 unsigned int order,
1778 struct xfs_zone_alloc_ctx *ac)
1779{
1780 struct inode *inode = file_inode(f: vmf->vma->vm_file);
1781 struct xfs_inode *ip = XFS_I(inode);
1782 unsigned int lock_mode = XFS_MMAPLOCK_SHARED;
1783 vm_fault_t ret;
1784
1785 trace_xfs_write_fault(ip, order);
1786
1787 sb_start_pagefault(sb: inode->i_sb);
1788 file_update_time(file: vmf->vma->vm_file);
1789
1790 /*
1791 * Normally we only need the shared mmaplock, but if a reflink remap is
1792 * in progress we take the exclusive lock to wait for the remap to
1793 * finish before taking a write fault.
1794 */
1795 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1796 if (xfs_iflags_test(ip, XFS_IREMAPPING)) {
1797 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1798 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1799 lock_mode = XFS_MMAPLOCK_EXCL;
1800 }
1801
1802 if (IS_DAX(inode))
1803 ret = xfs_dax_fault_locked(vmf, order, write_fault: true);
1804 else
1805 ret = iomap_page_mkwrite(vmf, ops: &xfs_buffered_write_iomap_ops,
1806 private: ac);
1807 xfs_iunlock(ip, lock_mode);
1808
1809 sb_end_pagefault(sb: inode->i_sb);
1810 return ret;
1811}
1812
1813static vm_fault_t
1814xfs_write_fault_zoned(
1815 struct vm_fault *vmf,
1816 unsigned int order)
1817{
1818 struct xfs_inode *ip = XFS_I(inode: file_inode(f: vmf->vma->vm_file));
1819 unsigned int len = folio_size(page_folio(vmf->page));
1820 struct xfs_zone_alloc_ctx ac = { };
1821 int error;
1822 vm_fault_t ret;
1823
1824 /*
1825 * This could over-allocate as it doesn't check for truncation.
1826 *
1827 * But as the overallocation is limited to less than a folio and will be
1828 * release instantly that's just fine.
1829 */
1830 error = xfs_zoned_space_reserve(ip, XFS_B_TO_FSB(ip->i_mount, len), 0,
1831 &ac);
1832 if (error < 0)
1833 return vmf_fs_error(err: error);
1834 ret = __xfs_write_fault(vmf, order, ac: &ac);
1835 xfs_zoned_space_unreserve(ip, ac: &ac);
1836 return ret;
1837}
1838
1839static vm_fault_t
1840xfs_write_fault(
1841 struct vm_fault *vmf,
1842 unsigned int order)
1843{
1844 if (xfs_is_zoned_inode(ip: XFS_I(inode: file_inode(f: vmf->vma->vm_file))))
1845 return xfs_write_fault_zoned(vmf, order);
1846 return __xfs_write_fault(vmf, order, NULL);
1847}
1848
1849static inline bool
1850xfs_is_write_fault(
1851 struct vm_fault *vmf)
1852{
1853 return (vmf->flags & FAULT_FLAG_WRITE) &&
1854 (vmf->vma->vm_flags & VM_SHARED);
1855}
1856
1857static vm_fault_t
1858xfs_filemap_fault(
1859 struct vm_fault *vmf)
1860{
1861 struct inode *inode = file_inode(f: vmf->vma->vm_file);
1862
1863 /* DAX can shortcut the normal fault path on write faults! */
1864 if (IS_DAX(inode)) {
1865 if (xfs_is_write_fault(vmf))
1866 return xfs_write_fault(vmf, order: 0);
1867 return xfs_dax_read_fault(vmf, order: 0);
1868 }
1869
1870 trace_xfs_read_fault(ip: XFS_I(inode), order: 0);
1871 return filemap_fault(vmf);
1872}
1873
1874static vm_fault_t
1875xfs_filemap_huge_fault(
1876 struct vm_fault *vmf,
1877 unsigned int order)
1878{
1879 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1880 return VM_FAULT_FALLBACK;
1881
1882 /* DAX can shortcut the normal fault path on write faults! */
1883 if (xfs_is_write_fault(vmf))
1884 return xfs_write_fault(vmf, order);
1885 return xfs_dax_read_fault(vmf, order);
1886}
1887
1888static vm_fault_t
1889xfs_filemap_page_mkwrite(
1890 struct vm_fault *vmf)
1891{
1892 return xfs_write_fault(vmf, order: 0);
1893}
1894
1895/*
1896 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1897 * on write faults. In reality, it needs to serialise against truncate and
1898 * prepare memory for writing so handle is as standard write fault.
1899 */
1900static vm_fault_t
1901xfs_filemap_pfn_mkwrite(
1902 struct vm_fault *vmf)
1903{
1904 return xfs_write_fault(vmf, order: 0);
1905}
1906
1907static const struct vm_operations_struct xfs_file_vm_ops = {
1908 .fault = xfs_filemap_fault,
1909 .huge_fault = xfs_filemap_huge_fault,
1910 .map_pages = filemap_map_pages,
1911 .page_mkwrite = xfs_filemap_page_mkwrite,
1912 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1913};
1914
1915STATIC int
1916xfs_file_mmap(
1917 struct file *file,
1918 struct vm_area_struct *vma)
1919{
1920 struct inode *inode = file_inode(f: file);
1921 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
1922
1923 /*
1924 * We don't support synchronous mappings for non-DAX files and
1925 * for DAX files if underneath dax_device is not synchronous.
1926 */
1927 if (!daxdev_mapping_supported(vma, dax_dev: target->bt_daxdev))
1928 return -EOPNOTSUPP;
1929
1930 file_accessed(file);
1931 vma->vm_ops = &xfs_file_vm_ops;
1932 if (IS_DAX(inode))
1933 vm_flags_set(vma, VM_HUGEPAGE);
1934 return 0;
1935}
1936
1937const struct file_operations xfs_file_operations = {
1938 .llseek = xfs_file_llseek,
1939 .read_iter = xfs_file_read_iter,
1940 .write_iter = xfs_file_write_iter,
1941 .splice_read = xfs_file_splice_read,
1942 .splice_write = iter_file_splice_write,
1943 .iopoll = iocb_bio_iopoll,
1944 .unlocked_ioctl = xfs_file_ioctl,
1945#ifdef CONFIG_COMPAT
1946 .compat_ioctl = xfs_file_compat_ioctl,
1947#endif
1948 .mmap = xfs_file_mmap,
1949 .open = xfs_file_open,
1950 .release = xfs_file_release,
1951 .fsync = xfs_file_fsync,
1952 .get_unmapped_area = thp_get_unmapped_area,
1953 .fallocate = xfs_file_fallocate,
1954 .fadvise = xfs_file_fadvise,
1955 .remap_file_range = xfs_file_remap_range,
1956 .fop_flags = FOP_MMAP_SYNC | FOP_BUFFER_RASYNC |
1957 FOP_BUFFER_WASYNC | FOP_DIO_PARALLEL_WRITE |
1958 FOP_DONTCACHE,
1959};
1960
1961const struct file_operations xfs_dir_file_operations = {
1962 .open = xfs_dir_open,
1963 .read = generic_read_dir,
1964 .iterate_shared = xfs_file_readdir,
1965 .llseek = generic_file_llseek,
1966 .unlocked_ioctl = xfs_file_ioctl,
1967#ifdef CONFIG_COMPAT
1968 .compat_ioctl = xfs_file_compat_ioctl,
1969#endif
1970 .fsync = xfs_dir_fsync,
1971};
1972

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/fs/xfs/xfs_file.c