1 | /* SPDX-License-Identifier: GPL-2.0-or-later */ |
---|---|
2 | /* |
3 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
4 | * operating system. INET is implemented using the BSD Socket |
5 | * interface as the means of communication with the user level. |
6 | * |
7 | * Definitions for the UDP module. |
8 | * |
9 | * Version: @(#)udp.h 1.0.2 05/07/93 |
10 | * |
11 | * Authors: Ross Biro |
12 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
13 | * |
14 | * Fixes: |
15 | * Alan Cox : Turned on udp checksums. I don't want to |
16 | * chase 'memory corruption' bugs that aren't! |
17 | */ |
18 | #ifndef _UDP_H |
19 | #define _UDP_H |
20 | |
21 | #include <linux/list.h> |
22 | #include <linux/bug.h> |
23 | #include <net/inet_sock.h> |
24 | #include <net/gso.h> |
25 | #include <net/sock.h> |
26 | #include <net/snmp.h> |
27 | #include <net/ip.h> |
28 | #include <linux/ipv6.h> |
29 | #include <linux/seq_file.h> |
30 | #include <linux/poll.h> |
31 | #include <linux/indirect_call_wrapper.h> |
32 | |
33 | /** |
34 | * struct udp_skb_cb - UDP(-Lite) private variables |
35 | * |
36 | * @header: private variables used by IPv4/IPv6 |
37 | * @cscov: checksum coverage length (UDP-Lite only) |
38 | * @partial_cov: if set indicates partial csum coverage |
39 | */ |
40 | struct udp_skb_cb { |
41 | union { |
42 | struct inet_skb_parm h4; |
43 | #if IS_ENABLED(CONFIG_IPV6) |
44 | struct inet6_skb_parm h6; |
45 | #endif |
46 | } header; |
47 | __u16 cscov; |
48 | __u8 partial_cov; |
49 | }; |
50 | #define UDP_SKB_CB(__skb) ((struct udp_skb_cb *)((__skb)->cb)) |
51 | |
52 | /** |
53 | * struct udp_hslot - UDP hash slot used by udp_table.hash/hash4 |
54 | * |
55 | * @head: head of list of sockets |
56 | * @nulls_head: head of list of sockets, only used by hash4 |
57 | * @count: number of sockets in 'head' list |
58 | * @lock: spinlock protecting changes to head/count |
59 | */ |
60 | struct udp_hslot { |
61 | union { |
62 | struct hlist_head head; |
63 | /* hash4 uses hlist_nulls to avoid moving wrongly onto another |
64 | * hlist, because rehash() can happen with lookup(). |
65 | */ |
66 | struct hlist_nulls_head nulls_head; |
67 | }; |
68 | int count; |
69 | spinlock_t lock; |
70 | } __aligned(2 * sizeof(long)); |
71 | |
72 | /** |
73 | * struct udp_hslot_main - UDP hash slot used by udp_table.hash2 |
74 | * |
75 | * @hslot: basic hash slot |
76 | * @hash4_cnt: number of sockets in hslot4 of the same |
77 | * (local port, local address) |
78 | */ |
79 | struct udp_hslot_main { |
80 | struct udp_hslot hslot; /* must be the first member */ |
81 | #if !IS_ENABLED(CONFIG_BASE_SMALL) |
82 | u32 hash4_cnt; |
83 | #endif |
84 | } __aligned(2 * sizeof(long)); |
85 | #define UDP_HSLOT_MAIN(__hslot) ((struct udp_hslot_main *)(__hslot)) |
86 | |
87 | /** |
88 | * struct udp_table - UDP table |
89 | * |
90 | * @hash: hash table, sockets are hashed on (local port) |
91 | * @hash2: hash table, sockets are hashed on (local port, local address) |
92 | * @hash4: hash table, connected sockets are hashed on |
93 | * (local port, local address, remote port, remote address) |
94 | * @mask: number of slots in hash tables, minus 1 |
95 | * @log: log2(number of slots in hash table) |
96 | */ |
97 | struct udp_table { |
98 | struct udp_hslot *hash; |
99 | struct udp_hslot_main *hash2; |
100 | #if !IS_ENABLED(CONFIG_BASE_SMALL) |
101 | struct udp_hslot *hash4; |
102 | #endif |
103 | unsigned int mask; |
104 | unsigned int log; |
105 | }; |
106 | extern struct udp_table udp_table; |
107 | void udp_table_init(struct udp_table *, const char *); |
108 | static inline struct udp_hslot *udp_hashslot(struct udp_table *table, |
109 | const struct net *net, |
110 | unsigned int num) |
111 | { |
112 | return &table->hash[udp_hashfn(net, num, mask: table->mask)]; |
113 | } |
114 | |
115 | /* |
116 | * For secondary hash, net_hash_mix() is performed before calling |
117 | * udp_hashslot2(), this explains difference with udp_hashslot() |
118 | */ |
119 | static inline struct udp_hslot *udp_hashslot2(struct udp_table *table, |
120 | unsigned int hash) |
121 | { |
122 | return &table->hash2[hash & table->mask].hslot; |
123 | } |
124 | |
125 | #if IS_ENABLED(CONFIG_BASE_SMALL) |
126 | static inline void udp_table_hash4_init(struct udp_table *table) |
127 | { |
128 | } |
129 | |
130 | static inline struct udp_hslot *udp_hashslot4(struct udp_table *table, |
131 | unsigned int hash) |
132 | { |
133 | BUILD_BUG(); |
134 | return NULL; |
135 | } |
136 | |
137 | static inline bool udp_hashed4(const struct sock *sk) |
138 | { |
139 | return false; |
140 | } |
141 | |
142 | static inline unsigned int udp_hash4_slot_size(void) |
143 | { |
144 | return 0; |
145 | } |
146 | |
147 | static inline bool udp_has_hash4(const struct udp_hslot *hslot2) |
148 | { |
149 | return false; |
150 | } |
151 | |
152 | static inline void udp_hash4_inc(struct udp_hslot *hslot2) |
153 | { |
154 | } |
155 | |
156 | static inline void udp_hash4_dec(struct udp_hslot *hslot2) |
157 | { |
158 | } |
159 | #else /* !CONFIG_BASE_SMALL */ |
160 | |
161 | /* Must be called with table->hash2 initialized */ |
162 | static inline void udp_table_hash4_init(struct udp_table *table) |
163 | { |
164 | table->hash4 = (void *)(table->hash2 + (table->mask + 1)); |
165 | for (int i = 0; i <= table->mask; i++) { |
166 | table->hash2[i].hash4_cnt = 0; |
167 | |
168 | INIT_HLIST_NULLS_HEAD(&table->hash4[i].nulls_head, i); |
169 | table->hash4[i].count = 0; |
170 | spin_lock_init(&table->hash4[i].lock); |
171 | } |
172 | } |
173 | |
174 | static inline struct udp_hslot *udp_hashslot4(struct udp_table *table, |
175 | unsigned int hash) |
176 | { |
177 | return &table->hash4[hash & table->mask]; |
178 | } |
179 | |
180 | static inline bool udp_hashed4(const struct sock *sk) |
181 | { |
182 | return !hlist_nulls_unhashed(&udp_sk(sk)->udp_lrpa_node); |
183 | } |
184 | |
185 | static inline unsigned int udp_hash4_slot_size(void) |
186 | { |
187 | return sizeof(struct udp_hslot); |
188 | } |
189 | |
190 | static inline bool udp_has_hash4(const struct udp_hslot *hslot2) |
191 | { |
192 | return UDP_HSLOT_MAIN(hslot2)->hash4_cnt; |
193 | } |
194 | |
195 | static inline void udp_hash4_inc(struct udp_hslot *hslot2) |
196 | { |
197 | UDP_HSLOT_MAIN(hslot2)->hash4_cnt++; |
198 | } |
199 | |
200 | static inline void udp_hash4_dec(struct udp_hslot *hslot2) |
201 | { |
202 | UDP_HSLOT_MAIN(hslot2)->hash4_cnt--; |
203 | } |
204 | #endif /* CONFIG_BASE_SMALL */ |
205 | |
206 | extern struct proto udp_prot; |
207 | |
208 | extern atomic_long_t udp_memory_allocated; |
209 | DECLARE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); |
210 | |
211 | /* sysctl variables for udp */ |
212 | extern long sysctl_udp_mem[3]; |
213 | extern int sysctl_udp_rmem_min; |
214 | extern int sysctl_udp_wmem_min; |
215 | |
216 | struct sk_buff; |
217 | |
218 | /* |
219 | * Generic checksumming routines for UDP(-Lite) v4 and v6 |
220 | */ |
221 | static inline __sum16 __udp_lib_checksum_complete(struct sk_buff *skb) |
222 | { |
223 | return (UDP_SKB_CB(skb)->cscov == skb->len ? |
224 | __skb_checksum_complete(skb) : |
225 | __skb_checksum_complete_head(skb, UDP_SKB_CB(skb)->cscov)); |
226 | } |
227 | |
228 | static inline int udp_lib_checksum_complete(struct sk_buff *skb) |
229 | { |
230 | return !skb_csum_unnecessary(skb) && |
231 | __udp_lib_checksum_complete(skb); |
232 | } |
233 | |
234 | /** |
235 | * udp_csum_outgoing - compute UDPv4/v6 checksum over fragments |
236 | * @sk: socket we are writing to |
237 | * @skb: sk_buff containing the filled-in UDP header |
238 | * (checksum field must be zeroed out) |
239 | */ |
240 | static inline __wsum udp_csum_outgoing(struct sock *sk, struct sk_buff *skb) |
241 | { |
242 | __wsum csum = csum_partial(buff: skb_transport_header(skb), |
243 | len: sizeof(struct udphdr), sum: 0); |
244 | skb_queue_walk(&sk->sk_write_queue, skb) { |
245 | csum = csum_add(csum, addend: skb->csum); |
246 | } |
247 | return csum; |
248 | } |
249 | |
250 | static inline __wsum udp_csum(struct sk_buff *skb) |
251 | { |
252 | __wsum csum = csum_partial(buff: skb_transport_header(skb), |
253 | len: sizeof(struct udphdr), sum: skb->csum); |
254 | |
255 | for (skb = skb_shinfo(skb)->frag_list; skb; skb = skb->next) { |
256 | csum = csum_add(csum, addend: skb->csum); |
257 | } |
258 | return csum; |
259 | } |
260 | |
261 | static inline __sum16 udp_v4_check(int len, __be32 saddr, |
262 | __be32 daddr, __wsum base) |
263 | { |
264 | return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_UDP, sum: base); |
265 | } |
266 | |
267 | void udp_set_csum(bool nocheck, struct sk_buff *skb, |
268 | __be32 saddr, __be32 daddr, int len); |
269 | |
270 | static inline void udp_csum_pull_header(struct sk_buff *skb) |
271 | { |
272 | if (!skb->csum_valid && skb->ip_summed == CHECKSUM_NONE) |
273 | skb->csum = csum_partial(buff: skb->data, len: sizeof(struct udphdr), |
274 | sum: skb->csum); |
275 | skb_pull_rcsum(skb, len: sizeof(struct udphdr)); |
276 | UDP_SKB_CB(skb)->cscov -= sizeof(struct udphdr); |
277 | } |
278 | |
279 | typedef struct sock *(*udp_lookup_t)(const struct sk_buff *skb, __be16 sport, |
280 | __be16 dport); |
281 | |
282 | void udp_v6_early_demux(struct sk_buff *skb); |
283 | INDIRECT_CALLABLE_DECLARE(int udpv6_rcv(struct sk_buff *)); |
284 | |
285 | struct sk_buff *__udp_gso_segment(struct sk_buff *gso_skb, |
286 | netdev_features_t features, bool is_ipv6); |
287 | |
288 | static inline void udp_lib_init_sock(struct sock *sk) |
289 | { |
290 | struct udp_sock *up = udp_sk(sk); |
291 | |
292 | skb_queue_head_init(list: &up->reader_queue); |
293 | INIT_HLIST_NODE(h: &up->tunnel_list); |
294 | up->forward_threshold = sk->sk_rcvbuf >> 2; |
295 | set_bit(nr: SOCK_CUSTOM_SOCKOPT, addr: &sk->sk_socket->flags); |
296 | } |
297 | |
298 | /* hash routines shared between UDPv4/6 and UDP-Litev4/6 */ |
299 | static inline int udp_lib_hash(struct sock *sk) |
300 | { |
301 | BUG(); |
302 | return 0; |
303 | } |
304 | |
305 | void udp_lib_unhash(struct sock *sk); |
306 | void udp_lib_rehash(struct sock *sk, u16 new_hash, u16 new_hash4); |
307 | u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, |
308 | const __be32 faddr, const __be16 fport); |
309 | |
310 | static inline void udp_lib_close(struct sock *sk, long timeout) |
311 | { |
312 | sk_common_release(sk); |
313 | } |
314 | |
315 | /* hash4 routines shared between UDPv4/6 */ |
316 | #if IS_ENABLED(CONFIG_BASE_SMALL) |
317 | static inline void udp_lib_hash4(struct sock *sk, u16 hash) |
318 | { |
319 | } |
320 | |
321 | static inline void udp4_hash4(struct sock *sk) |
322 | { |
323 | } |
324 | #else /* !CONFIG_BASE_SMALL */ |
325 | void udp_lib_hash4(struct sock *sk, u16 hash); |
326 | void udp4_hash4(struct sock *sk); |
327 | #endif /* CONFIG_BASE_SMALL */ |
328 | |
329 | int udp_lib_get_port(struct sock *sk, unsigned short snum, |
330 | unsigned int hash2_nulladdr); |
331 | |
332 | u32 udp_flow_hashrnd(void); |
333 | |
334 | static inline __be16 udp_flow_src_port(struct net *net, struct sk_buff *skb, |
335 | int min, int max, bool use_eth) |
336 | { |
337 | u32 hash; |
338 | |
339 | if (min >= max) { |
340 | /* Use default range */ |
341 | inet_get_local_port_range(net, low: &min, high: &max); |
342 | } |
343 | |
344 | hash = skb_get_hash(skb); |
345 | if (unlikely(!hash)) { |
346 | if (use_eth) { |
347 | /* Can't find a normal hash, caller has indicated an |
348 | * Ethernet packet so use that to compute a hash. |
349 | */ |
350 | hash = jhash(key: skb->data, length: 2 * ETH_ALEN, |
351 | initval: (__force u32) skb->protocol); |
352 | } else { |
353 | /* Can't derive any sort of hash for the packet, set |
354 | * to some consistent random value. |
355 | */ |
356 | hash = udp_flow_hashrnd(); |
357 | } |
358 | } |
359 | |
360 | /* Since this is being sent on the wire obfuscate hash a bit |
361 | * to minimize possibility that any useful information to an |
362 | * attacker is leaked. Only upper 16 bits are relevant in the |
363 | * computation for 16 bit port value. |
364 | */ |
365 | hash ^= hash << 16; |
366 | |
367 | return htons((((u64) hash * (max - min)) >> 32) + min); |
368 | } |
369 | |
370 | static inline int udp_rqueue_get(struct sock *sk) |
371 | { |
372 | return sk_rmem_alloc_get(sk) - READ_ONCE(udp_sk(sk)->forward_deficit); |
373 | } |
374 | |
375 | static inline bool udp_sk_bound_dev_eq(const struct net *net, int bound_dev_if, |
376 | int dif, int sdif) |
377 | { |
378 | #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) |
379 | return inet_bound_dev_eq(l3mdev_accept: !!READ_ONCE(net->ipv4.sysctl_udp_l3mdev_accept), |
380 | bound_dev_if, dif, sdif); |
381 | #else |
382 | return inet_bound_dev_eq(true, bound_dev_if, dif, sdif); |
383 | #endif |
384 | } |
385 | |
386 | /* net/ipv4/udp.c */ |
387 | void udp_destruct_common(struct sock *sk); |
388 | void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len); |
389 | int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb); |
390 | void udp_skb_destructor(struct sock *sk, struct sk_buff *skb); |
391 | struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, int *off, |
392 | int *err); |
393 | static inline struct sk_buff *skb_recv_udp(struct sock *sk, unsigned int flags, |
394 | int *err) |
395 | { |
396 | int off = 0; |
397 | |
398 | return __skb_recv_udp(sk, flags, off: &off, err); |
399 | } |
400 | |
401 | int udp_v4_early_demux(struct sk_buff *skb); |
402 | bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst); |
403 | int udp_err(struct sk_buff *, u32); |
404 | int udp_abort(struct sock *sk, int err); |
405 | int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len); |
406 | void udp_splice_eof(struct socket *sock); |
407 | int udp_push_pending_frames(struct sock *sk); |
408 | void udp_flush_pending_frames(struct sock *sk); |
409 | int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size); |
410 | void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst); |
411 | int udp_rcv(struct sk_buff *skb); |
412 | int udp_ioctl(struct sock *sk, int cmd, int *karg); |
413 | int udp_init_sock(struct sock *sk); |
414 | int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); |
415 | int __udp_disconnect(struct sock *sk, int flags); |
416 | int udp_disconnect(struct sock *sk, int flags); |
417 | __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait); |
418 | struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb, |
419 | netdev_features_t features, |
420 | bool is_ipv6); |
421 | int udp_lib_getsockopt(struct sock *sk, int level, int optname, |
422 | char __user *optval, int __user *optlen); |
423 | int udp_lib_setsockopt(struct sock *sk, int level, int optname, |
424 | sockptr_t optval, unsigned int optlen, |
425 | int (*push_pending_frames)(struct sock *)); |
426 | struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport, |
427 | __be32 daddr, __be16 dport, int dif); |
428 | struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr, |
429 | __be16 sport, |
430 | __be32 daddr, __be16 dport, int dif, int sdif, |
431 | struct udp_table *tbl, struct sk_buff *skb); |
432 | struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, |
433 | __be16 sport, __be16 dport); |
434 | struct sock *udp6_lib_lookup(const struct net *net, |
435 | const struct in6_addr *saddr, __be16 sport, |
436 | const struct in6_addr *daddr, __be16 dport, |
437 | int dif); |
438 | struct sock *__udp6_lib_lookup(const struct net *net, |
439 | const struct in6_addr *saddr, __be16 sport, |
440 | const struct in6_addr *daddr, __be16 dport, |
441 | int dif, int sdif, struct udp_table *tbl, |
442 | struct sk_buff *skb); |
443 | struct sock *udp6_lib_lookup_skb(const struct sk_buff *skb, |
444 | __be16 sport, __be16 dport); |
445 | int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); |
446 | |
447 | /* UDP uses skb->dev_scratch to cache as much information as possible and avoid |
448 | * possibly multiple cache miss on dequeue() |
449 | */ |
450 | struct udp_dev_scratch { |
451 | /* skb->truesize and the stateless bit are embedded in a single field; |
452 | * do not use a bitfield since the compiler emits better/smaller code |
453 | * this way |
454 | */ |
455 | u32 _tsize_state; |
456 | |
457 | #if BITS_PER_LONG == 64 |
458 | /* len and the bit needed to compute skb_csum_unnecessary |
459 | * will be on cold cache lines at recvmsg time. |
460 | * skb->len can be stored on 16 bits since the udp header has been |
461 | * already validated and pulled. |
462 | */ |
463 | u16 len; |
464 | bool is_linear; |
465 | bool csum_unnecessary; |
466 | #endif |
467 | }; |
468 | |
469 | static inline struct udp_dev_scratch *udp_skb_scratch(struct sk_buff *skb) |
470 | { |
471 | return (struct udp_dev_scratch *)&skb->dev_scratch; |
472 | } |
473 | |
474 | #if BITS_PER_LONG == 64 |
475 | static inline unsigned int udp_skb_len(struct sk_buff *skb) |
476 | { |
477 | return udp_skb_scratch(skb)->len; |
478 | } |
479 | |
480 | static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb) |
481 | { |
482 | return udp_skb_scratch(skb)->csum_unnecessary; |
483 | } |
484 | |
485 | static inline bool udp_skb_is_linear(struct sk_buff *skb) |
486 | { |
487 | return udp_skb_scratch(skb)->is_linear; |
488 | } |
489 | |
490 | #else |
491 | static inline unsigned int udp_skb_len(struct sk_buff *skb) |
492 | { |
493 | return skb->len; |
494 | } |
495 | |
496 | static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb) |
497 | { |
498 | return skb_csum_unnecessary(skb); |
499 | } |
500 | |
501 | static inline bool udp_skb_is_linear(struct sk_buff *skb) |
502 | { |
503 | return !skb_is_nonlinear(skb); |
504 | } |
505 | #endif |
506 | |
507 | static inline int copy_linear_skb(struct sk_buff *skb, int len, int off, |
508 | struct iov_iter *to) |
509 | { |
510 | return copy_to_iter_full(addr: skb->data + off, bytes: len, i: to) ? 0 : -EFAULT; |
511 | } |
512 | |
513 | /* |
514 | * SNMP statistics for UDP and UDP-Lite |
515 | */ |
516 | #define UDP_INC_STATS(net, field, is_udplite) do { \ |
517 | if (is_udplite) SNMP_INC_STATS((net)->mib.udplite_statistics, field); \ |
518 | else SNMP_INC_STATS((net)->mib.udp_statistics, field); } while(0) |
519 | #define __UDP_INC_STATS(net, field, is_udplite) do { \ |
520 | if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_statistics, field); \ |
521 | else __SNMP_INC_STATS((net)->mib.udp_statistics, field); } while(0) |
522 | |
523 | #define __UDP6_INC_STATS(net, field, is_udplite) do { \ |
524 | if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);\ |
525 | else __SNMP_INC_STATS((net)->mib.udp_stats_in6, field); \ |
526 | } while(0) |
527 | #define UDP6_INC_STATS(net, field, __lite) do { \ |
528 | if (__lite) SNMP_INC_STATS((net)->mib.udplite_stats_in6, field); \ |
529 | else SNMP_INC_STATS((net)->mib.udp_stats_in6, field); \ |
530 | } while(0) |
531 | |
532 | #if IS_ENABLED(CONFIG_IPV6) |
533 | #define __UDPX_MIB(sk, ipv4) \ |
534 | ({ \ |
535 | ipv4 ? (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics : \ |
536 | sock_net(sk)->mib.udp_statistics) : \ |
537 | (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_stats_in6 : \ |
538 | sock_net(sk)->mib.udp_stats_in6); \ |
539 | }) |
540 | #else |
541 | #define __UDPX_MIB(sk, ipv4) \ |
542 | ({ \ |
543 | IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics : \ |
544 | sock_net(sk)->mib.udp_statistics; \ |
545 | }) |
546 | #endif |
547 | |
548 | #define __UDPX_INC_STATS(sk, field) \ |
549 | __SNMP_INC_STATS(__UDPX_MIB(sk, (sk)->sk_family == AF_INET), field) |
550 | |
551 | #ifdef CONFIG_PROC_FS |
552 | struct udp_seq_afinfo { |
553 | sa_family_t family; |
554 | struct udp_table *udp_table; |
555 | }; |
556 | |
557 | struct udp_iter_state { |
558 | struct seq_net_private p; |
559 | int bucket; |
560 | }; |
561 | |
562 | void *udp_seq_start(struct seq_file *seq, loff_t *pos); |
563 | void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos); |
564 | void udp_seq_stop(struct seq_file *seq, void *v); |
565 | |
566 | extern const struct seq_operations udp_seq_ops; |
567 | extern const struct seq_operations udp6_seq_ops; |
568 | |
569 | int udp4_proc_init(void); |
570 | void udp4_proc_exit(void); |
571 | #endif /* CONFIG_PROC_FS */ |
572 | |
573 | int udpv4_offload_init(void); |
574 | |
575 | void udp_init(void); |
576 | |
577 | DECLARE_STATIC_KEY_FALSE(udp_encap_needed_key); |
578 | void udp_encap_enable(void); |
579 | void udp_encap_disable(void); |
580 | #if IS_ENABLED(CONFIG_IPV6) |
581 | DECLARE_STATIC_KEY_FALSE(udpv6_encap_needed_key); |
582 | void udpv6_encap_enable(void); |
583 | #endif |
584 | |
585 | static inline struct sk_buff *udp_rcv_segment(struct sock *sk, |
586 | struct sk_buff *skb, bool ipv4) |
587 | { |
588 | netdev_features_t features = NETIF_F_SG; |
589 | struct sk_buff *segs; |
590 | |
591 | /* Avoid csum recalculation by skb_segment unless userspace explicitly |
592 | * asks for the final checksum values |
593 | */ |
594 | if (!inet_get_convert_csum(sk)) |
595 | features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; |
596 | |
597 | /* UDP segmentation expects packets of type CHECKSUM_PARTIAL or |
598 | * CHECKSUM_NONE in __udp_gso_segment. UDP GRO indeed builds partial |
599 | * packets in udp_gro_complete_segment. As does UDP GSO, verified by |
600 | * udp_send_skb. But when those packets are looped in dev_loopback_xmit |
601 | * their ip_summed CHECKSUM_NONE is changed to CHECKSUM_UNNECESSARY. |
602 | * Reset in this specific case, where PARTIAL is both correct and |
603 | * required. |
604 | */ |
605 | if (skb->pkt_type == PACKET_LOOPBACK) |
606 | skb->ip_summed = CHECKSUM_PARTIAL; |
607 | |
608 | /* the GSO CB lays after the UDP one, no need to save and restore any |
609 | * CB fragment |
610 | */ |
611 | segs = __skb_gso_segment(skb, features, tx_path: false); |
612 | if (IS_ERR_OR_NULL(ptr: segs)) { |
613 | int segs_nr = skb_shinfo(skb)->gso_segs; |
614 | |
615 | atomic_add(i: segs_nr, v: &sk->sk_drops); |
616 | SNMP_ADD_STATS(__UDPX_MIB(sk, ipv4), UDP_MIB_INERRORS, segs_nr); |
617 | kfree_skb(skb); |
618 | return NULL; |
619 | } |
620 | |
621 | consume_skb(skb); |
622 | return segs; |
623 | } |
624 | |
625 | static inline void udp_post_segment_fix_csum(struct sk_buff *skb) |
626 | { |
627 | /* UDP-lite can't land here - no GRO */ |
628 | WARN_ON_ONCE(UDP_SKB_CB(skb)->partial_cov); |
629 | |
630 | /* UDP packets generated with UDP_SEGMENT and traversing: |
631 | * |
632 | * UDP tunnel(xmit) -> veth (segmentation) -> veth (gro) -> UDP tunnel (rx) |
633 | * |
634 | * can reach an UDP socket with CHECKSUM_NONE, because |
635 | * __iptunnel_pull_header() converts CHECKSUM_PARTIAL into NONE. |
636 | * SKB_GSO_UDP_L4 or SKB_GSO_FRAGLIST packets with no UDP tunnel will |
637 | * have a valid checksum, as the GRO engine validates the UDP csum |
638 | * before the aggregation and nobody strips such info in between. |
639 | * Instead of adding another check in the tunnel fastpath, we can force |
640 | * a valid csum after the segmentation. |
641 | * Additionally fixup the UDP CB. |
642 | */ |
643 | UDP_SKB_CB(skb)->cscov = skb->len; |
644 | if (skb->ip_summed == CHECKSUM_NONE && !skb->csum_valid) |
645 | skb->csum_valid = 1; |
646 | } |
647 | |
648 | #ifdef CONFIG_BPF_SYSCALL |
649 | struct sk_psock; |
650 | int udp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); |
651 | #endif |
652 | |
653 | #endif /* _UDP_H */ |
654 |
Definitions
- udp_skb_cb
- udp_hslot
- udp_hslot_main
- udp_table
- udp_hashslot
- udp_hashslot2
- udp_table_hash4_init
- udp_hashslot4
- udp_hashed4
- udp_hash4_slot_size
- udp_has_hash4
- udp_hash4_inc
- udp_hash4_dec
- __udp_lib_checksum_complete
- udp_lib_checksum_complete
- udp_csum_outgoing
- udp_csum
- udp_v4_check
- udp_csum_pull_header
- udp_lib_init_sock
- udp_lib_hash
- udp_lib_close
- udp_lib_hash4
- udp4_hash4
- udp_flow_src_port
- udp_rqueue_get
- udp_sk_bound_dev_eq
- skb_recv_udp
- udp_dev_scratch
- udp_skb_scratch
- udp_skb_len
- udp_skb_csum_unnecessary
- udp_skb_is_linear
- copy_linear_skb
- udp_seq_afinfo
- udp_iter_state
- udp_rcv_segment
Improve your Profiling and Debugging skills
Find out more