1 | /* SPDX-License-Identifier: GPL-2.0-or-later */ |
2 | /* |
3 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
4 | * operating system. INET is implemented using the BSD Socket |
5 | * interface as the means of communication with the user level. |
6 | * |
7 | * Definitions for the AF_INET socket handler. |
8 | * |
9 | * Version: @(#)sock.h 1.0.4 05/13/93 |
10 | * |
11 | * Authors: Ross Biro |
12 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
13 | * Corey Minyard <wf-rch!minyard@relay.EU.net> |
14 | * Florian La Roche <flla@stud.uni-sb.de> |
15 | * |
16 | * Fixes: |
17 | * Alan Cox : Volatiles in skbuff pointers. See |
18 | * skbuff comments. May be overdone, |
19 | * better to prove they can be removed |
20 | * than the reverse. |
21 | * Alan Cox : Added a zapped field for tcp to note |
22 | * a socket is reset and must stay shut up |
23 | * Alan Cox : New fields for options |
24 | * Pauline Middelink : identd support |
25 | * Alan Cox : Eliminate low level recv/recvfrom |
26 | * David S. Miller : New socket lookup architecture. |
27 | * Steve Whitehouse: Default routines for sock_ops |
28 | * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made |
29 | * protinfo be just a void pointer, as the |
30 | * protocol specific parts were moved to |
31 | * respective headers and ipv4/v6, etc now |
32 | * use private slabcaches for its socks |
33 | * Pedro Hortas : New flags field for socket options |
34 | */ |
35 | #ifndef _SOCK_H |
36 | #define _SOCK_H |
37 | |
38 | #include <linux/hardirq.h> |
39 | #include <linux/kernel.h> |
40 | #include <linux/list.h> |
41 | #include <linux/list_nulls.h> |
42 | #include <linux/timer.h> |
43 | #include <linux/cache.h> |
44 | #include <linux/bitops.h> |
45 | #include <linux/lockdep.h> |
46 | #include <linux/netdevice.h> |
47 | #include <linux/skbuff.h> /* struct sk_buff */ |
48 | #include <linux/mm.h> |
49 | #include <linux/security.h> |
50 | #include <linux/slab.h> |
51 | #include <linux/uaccess.h> |
52 | #include <linux/page_counter.h> |
53 | #include <linux/memcontrol.h> |
54 | #include <linux/static_key.h> |
55 | #include <linux/sched.h> |
56 | #include <linux/wait.h> |
57 | #include <linux/cgroup-defs.h> |
58 | #include <linux/rbtree.h> |
59 | #include <linux/rculist_nulls.h> |
60 | #include <linux/poll.h> |
61 | #include <linux/sockptr.h> |
62 | #include <linux/indirect_call_wrapper.h> |
63 | #include <linux/atomic.h> |
64 | #include <linux/refcount.h> |
65 | #include <linux/llist.h> |
66 | #include <net/dst.h> |
67 | #include <net/checksum.h> |
68 | #include <net/tcp_states.h> |
69 | #include <linux/net_tstamp.h> |
70 | #include <net/l3mdev.h> |
71 | #include <uapi/linux/socket.h> |
72 | |
73 | /* |
74 | * This structure really needs to be cleaned up. |
75 | * Most of it is for TCP, and not used by any of |
76 | * the other protocols. |
77 | */ |
78 | |
79 | /* This is the per-socket lock. The spinlock provides a synchronization |
80 | * between user contexts and software interrupt processing, whereas the |
81 | * mini-semaphore synchronizes multiple users amongst themselves. |
82 | */ |
83 | typedef struct { |
84 | spinlock_t slock; |
85 | int owned; |
86 | wait_queue_head_t wq; |
87 | /* |
88 | * We express the mutex-alike socket_lock semantics |
89 | * to the lock validator by explicitly managing |
90 | * the slock as a lock variant (in addition to |
91 | * the slock itself): |
92 | */ |
93 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
94 | struct lockdep_map dep_map; |
95 | #endif |
96 | } socket_lock_t; |
97 | |
98 | struct sock; |
99 | struct proto; |
100 | struct net; |
101 | |
102 | typedef __u32 __bitwise __portpair; |
103 | typedef __u64 __bitwise __addrpair; |
104 | |
105 | /** |
106 | * struct sock_common - minimal network layer representation of sockets |
107 | * @skc_daddr: Foreign IPv4 addr |
108 | * @skc_rcv_saddr: Bound local IPv4 addr |
109 | * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr |
110 | * @skc_hash: hash value used with various protocol lookup tables |
111 | * @skc_u16hashes: two u16 hash values used by UDP lookup tables |
112 | * @skc_dport: placeholder for inet_dport/tw_dport |
113 | * @skc_num: placeholder for inet_num/tw_num |
114 | * @skc_portpair: __u32 union of @skc_dport & @skc_num |
115 | * @skc_family: network address family |
116 | * @skc_state: Connection state |
117 | * @skc_reuse: %SO_REUSEADDR setting |
118 | * @skc_reuseport: %SO_REUSEPORT setting |
119 | * @skc_ipv6only: socket is IPV6 only |
120 | * @skc_net_refcnt: socket is using net ref counting |
121 | * @skc_bound_dev_if: bound device index if != 0 |
122 | * @skc_bind_node: bind hash linkage for various protocol lookup tables |
123 | * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol |
124 | * @skc_prot: protocol handlers inside a network family |
125 | * @skc_net: reference to the network namespace of this socket |
126 | * @skc_v6_daddr: IPV6 destination address |
127 | * @skc_v6_rcv_saddr: IPV6 source address |
128 | * @skc_cookie: socket's cookie value |
129 | * @skc_node: main hash linkage for various protocol lookup tables |
130 | * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol |
131 | * @skc_tx_queue_mapping: tx queue number for this connection |
132 | * @skc_rx_queue_mapping: rx queue number for this connection |
133 | * @skc_flags: place holder for sk_flags |
134 | * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, |
135 | * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings |
136 | * @skc_listener: connection request listener socket (aka rsk_listener) |
137 | * [union with @skc_flags] |
138 | * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row |
139 | * [union with @skc_flags] |
140 | * @skc_incoming_cpu: record/match cpu processing incoming packets |
141 | * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled) |
142 | * [union with @skc_incoming_cpu] |
143 | * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number |
144 | * [union with @skc_incoming_cpu] |
145 | * @skc_refcnt: reference count |
146 | * |
147 | * This is the minimal network layer representation of sockets, the header |
148 | * for struct sock and struct inet_timewait_sock. |
149 | */ |
150 | struct sock_common { |
151 | union { |
152 | __addrpair skc_addrpair; |
153 | struct { |
154 | __be32 skc_daddr; |
155 | __be32 skc_rcv_saddr; |
156 | }; |
157 | }; |
158 | union { |
159 | unsigned int skc_hash; |
160 | __u16 skc_u16hashes[2]; |
161 | }; |
162 | /* skc_dport && skc_num must be grouped as well */ |
163 | union { |
164 | __portpair skc_portpair; |
165 | struct { |
166 | __be16 skc_dport; |
167 | __u16 skc_num; |
168 | }; |
169 | }; |
170 | |
171 | unsigned short skc_family; |
172 | volatile unsigned char skc_state; |
173 | unsigned char skc_reuse:4; |
174 | unsigned char skc_reuseport:1; |
175 | unsigned char skc_ipv6only:1; |
176 | unsigned char skc_net_refcnt:1; |
177 | int skc_bound_dev_if; |
178 | union { |
179 | struct hlist_node skc_bind_node; |
180 | struct hlist_node skc_portaddr_node; |
181 | }; |
182 | struct proto *skc_prot; |
183 | possible_net_t skc_net; |
184 | |
185 | #if IS_ENABLED(CONFIG_IPV6) |
186 | struct in6_addr skc_v6_daddr; |
187 | struct in6_addr skc_v6_rcv_saddr; |
188 | #endif |
189 | |
190 | atomic64_t skc_cookie; |
191 | |
192 | /* following fields are padding to force |
193 | * offset(struct sock, sk_refcnt) == 128 on 64bit arches |
194 | * assuming IPV6 is enabled. We use this padding differently |
195 | * for different kind of 'sockets' |
196 | */ |
197 | union { |
198 | unsigned long skc_flags; |
199 | struct sock *skc_listener; /* request_sock */ |
200 | struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */ |
201 | }; |
202 | /* |
203 | * fields between dontcopy_begin/dontcopy_end |
204 | * are not copied in sock_copy() |
205 | */ |
206 | /* private: */ |
207 | int skc_dontcopy_begin[0]; |
208 | /* public: */ |
209 | union { |
210 | struct hlist_node skc_node; |
211 | struct hlist_nulls_node skc_nulls_node; |
212 | }; |
213 | unsigned short skc_tx_queue_mapping; |
214 | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING |
215 | unsigned short skc_rx_queue_mapping; |
216 | #endif |
217 | union { |
218 | int skc_incoming_cpu; |
219 | u32 skc_rcv_wnd; |
220 | u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */ |
221 | }; |
222 | |
223 | refcount_t skc_refcnt; |
224 | /* private: */ |
225 | int skc_dontcopy_end[0]; |
226 | union { |
227 | u32 skc_rxhash; |
228 | u32 skc_window_clamp; |
229 | u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */ |
230 | }; |
231 | /* public: */ |
232 | }; |
233 | |
234 | struct bpf_local_storage; |
235 | struct sk_filter; |
236 | |
237 | /** |
238 | * struct sock - network layer representation of sockets |
239 | * @__sk_common: shared layout with inet_timewait_sock |
240 | * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN |
241 | * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings |
242 | * @sk_lock: synchronizer |
243 | * @sk_kern_sock: True if sock is using kernel lock classes |
244 | * @sk_rcvbuf: size of receive buffer in bytes |
245 | * @sk_wq: sock wait queue and async head |
246 | * @sk_rx_dst: receive input route used by early demux |
247 | * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst |
248 | * @sk_rx_dst_cookie: cookie for @sk_rx_dst |
249 | * @sk_dst_cache: destination cache |
250 | * @sk_dst_pending_confirm: need to confirm neighbour |
251 | * @sk_policy: flow policy |
252 | * @sk_receive_queue: incoming packets |
253 | * @sk_wmem_alloc: transmit queue bytes committed |
254 | * @sk_tsq_flags: TCP Small Queues flags |
255 | * @sk_write_queue: Packet sending queue |
256 | * @sk_omem_alloc: "o" is "option" or "other" |
257 | * @sk_wmem_queued: persistent queue size |
258 | * @sk_forward_alloc: space allocated forward |
259 | * @sk_reserved_mem: space reserved and non-reclaimable for the socket |
260 | * @sk_napi_id: id of the last napi context to receive data for sk |
261 | * @sk_ll_usec: usecs to busypoll when there is no data |
262 | * @sk_allocation: allocation mode |
263 | * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) |
264 | * @sk_pacing_status: Pacing status (requested, handled by sch_fq) |
265 | * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) |
266 | * @sk_sndbuf: size of send buffer in bytes |
267 | * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets |
268 | * @sk_no_check_rx: allow zero checksum in RX packets |
269 | * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) |
270 | * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden. |
271 | * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) |
272 | * @sk_gso_max_size: Maximum GSO segment size to build |
273 | * @sk_gso_max_segs: Maximum number of GSO segments |
274 | * @sk_pacing_shift: scaling factor for TCP Small Queues |
275 | * @sk_lingertime: %SO_LINGER l_linger setting |
276 | * @sk_backlog: always used with the per-socket spinlock held |
277 | * @sk_callback_lock: used with the callbacks in the end of this struct |
278 | * @sk_error_queue: rarely used |
279 | * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, |
280 | * IPV6_ADDRFORM for instance) |
281 | * @sk_err: last error |
282 | * @sk_err_soft: errors that don't cause failure but are the cause of a |
283 | * persistent failure not just 'timed out' |
284 | * @sk_drops: raw/udp drops counter |
285 | * @sk_ack_backlog: current listen backlog |
286 | * @sk_max_ack_backlog: listen backlog set in listen() |
287 | * @sk_uid: user id of owner |
288 | * @sk_prefer_busy_poll: prefer busypolling over softirq processing |
289 | * @sk_busy_poll_budget: napi processing budget when busypolling |
290 | * @sk_priority: %SO_PRIORITY setting |
291 | * @sk_type: socket type (%SOCK_STREAM, etc) |
292 | * @sk_protocol: which protocol this socket belongs in this network family |
293 | * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred |
294 | * @sk_peer_pid: &struct pid for this socket's peer |
295 | * @sk_peer_cred: %SO_PEERCRED setting |
296 | * @sk_rcvlowat: %SO_RCVLOWAT setting |
297 | * @sk_rcvtimeo: %SO_RCVTIMEO setting |
298 | * @sk_sndtimeo: %SO_SNDTIMEO setting |
299 | * @sk_txhash: computed flow hash for use on transmit |
300 | * @sk_txrehash: enable TX hash rethink |
301 | * @sk_filter: socket filtering instructions |
302 | * @sk_timer: sock cleanup timer |
303 | * @sk_stamp: time stamp of last packet received |
304 | * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only |
305 | * @sk_tsflags: SO_TIMESTAMPING flags |
306 | * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag. |
307 | * Sockets that can be used under memory reclaim should |
308 | * set this to false. |
309 | * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock |
310 | * for timestamping |
311 | * @sk_tskey: counter to disambiguate concurrent tstamp requests |
312 | * @sk_zckey: counter to order MSG_ZEROCOPY notifications |
313 | * @sk_socket: Identd and reporting IO signals |
314 | * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock. |
315 | * @sk_frag: cached page frag |
316 | * @sk_peek_off: current peek_offset value |
317 | * @sk_send_head: front of stuff to transmit |
318 | * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head] |
319 | * @sk_security: used by security modules |
320 | * @sk_mark: generic packet mark |
321 | * @sk_cgrp_data: cgroup data for this cgroup |
322 | * @sk_memcg: this socket's memory cgroup association |
323 | * @sk_write_pending: a write to stream socket waits to start |
324 | * @sk_disconnects: number of disconnect operations performed on this sock |
325 | * @sk_state_change: callback to indicate change in the state of the sock |
326 | * @sk_data_ready: callback to indicate there is data to be processed |
327 | * @sk_write_space: callback to indicate there is bf sending space available |
328 | * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) |
329 | * @sk_backlog_rcv: callback to process the backlog |
330 | * @sk_validate_xmit_skb: ptr to an optional validate function |
331 | * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 |
332 | * @sk_reuseport_cb: reuseport group container |
333 | * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage |
334 | * @sk_rcu: used during RCU grace period |
335 | * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME) |
336 | * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME |
337 | * @sk_txtime_report_errors: set report errors mode for SO_TXTIME |
338 | * @sk_txtime_unused: unused txtime flags |
339 | * @ns_tracker: tracker for netns reference |
340 | */ |
341 | struct sock { |
342 | /* |
343 | * Now struct inet_timewait_sock also uses sock_common, so please just |
344 | * don't add nothing before this first member (__sk_common) --acme |
345 | */ |
346 | struct sock_common __sk_common; |
347 | #define sk_node __sk_common.skc_node |
348 | #define sk_nulls_node __sk_common.skc_nulls_node |
349 | #define sk_refcnt __sk_common.skc_refcnt |
350 | #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping |
351 | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING |
352 | #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping |
353 | #endif |
354 | |
355 | #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin |
356 | #define sk_dontcopy_end __sk_common.skc_dontcopy_end |
357 | #define sk_hash __sk_common.skc_hash |
358 | #define sk_portpair __sk_common.skc_portpair |
359 | #define sk_num __sk_common.skc_num |
360 | #define sk_dport __sk_common.skc_dport |
361 | #define sk_addrpair __sk_common.skc_addrpair |
362 | #define sk_daddr __sk_common.skc_daddr |
363 | #define sk_rcv_saddr __sk_common.skc_rcv_saddr |
364 | #define sk_family __sk_common.skc_family |
365 | #define sk_state __sk_common.skc_state |
366 | #define sk_reuse __sk_common.skc_reuse |
367 | #define sk_reuseport __sk_common.skc_reuseport |
368 | #define sk_ipv6only __sk_common.skc_ipv6only |
369 | #define sk_net_refcnt __sk_common.skc_net_refcnt |
370 | #define sk_bound_dev_if __sk_common.skc_bound_dev_if |
371 | #define sk_bind_node __sk_common.skc_bind_node |
372 | #define sk_prot __sk_common.skc_prot |
373 | #define sk_net __sk_common.skc_net |
374 | #define sk_v6_daddr __sk_common.skc_v6_daddr |
375 | #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr |
376 | #define sk_cookie __sk_common.skc_cookie |
377 | #define sk_incoming_cpu __sk_common.skc_incoming_cpu |
378 | #define sk_flags __sk_common.skc_flags |
379 | #define sk_rxhash __sk_common.skc_rxhash |
380 | |
381 | __cacheline_group_begin(sock_write_rx); |
382 | |
383 | atomic_t sk_drops; |
384 | __s32 sk_peek_off; |
385 | struct sk_buff_head sk_error_queue; |
386 | struct sk_buff_head sk_receive_queue; |
387 | /* |
388 | * The backlog queue is special, it is always used with |
389 | * the per-socket spinlock held and requires low latency |
390 | * access. Therefore we special case it's implementation. |
391 | * Note : rmem_alloc is in this structure to fill a hole |
392 | * on 64bit arches, not because its logically part of |
393 | * backlog. |
394 | */ |
395 | struct { |
396 | atomic_t rmem_alloc; |
397 | int len; |
398 | struct sk_buff *head; |
399 | struct sk_buff *tail; |
400 | } sk_backlog; |
401 | #define sk_rmem_alloc sk_backlog.rmem_alloc |
402 | |
403 | __cacheline_group_end(sock_write_rx); |
404 | |
405 | __cacheline_group_begin(sock_read_rx); |
406 | /* early demux fields */ |
407 | struct dst_entry __rcu *sk_rx_dst; |
408 | int sk_rx_dst_ifindex; |
409 | u32 sk_rx_dst_cookie; |
410 | |
411 | #ifdef CONFIG_NET_RX_BUSY_POLL |
412 | unsigned int sk_ll_usec; |
413 | unsigned int sk_napi_id; |
414 | u16 sk_busy_poll_budget; |
415 | u8 sk_prefer_busy_poll; |
416 | #endif |
417 | u8 sk_userlocks; |
418 | int sk_rcvbuf; |
419 | |
420 | struct sk_filter __rcu *sk_filter; |
421 | union { |
422 | struct socket_wq __rcu *sk_wq; |
423 | /* private: */ |
424 | struct socket_wq *sk_wq_raw; |
425 | /* public: */ |
426 | }; |
427 | |
428 | void (*sk_data_ready)(struct sock *sk); |
429 | long sk_rcvtimeo; |
430 | int sk_rcvlowat; |
431 | __cacheline_group_end(sock_read_rx); |
432 | |
433 | __cacheline_group_begin(sock_read_rxtx); |
434 | int sk_err; |
435 | struct socket *sk_socket; |
436 | struct mem_cgroup *sk_memcg; |
437 | #ifdef CONFIG_XFRM |
438 | struct xfrm_policy __rcu *sk_policy[2]; |
439 | #endif |
440 | __cacheline_group_end(sock_read_rxtx); |
441 | |
442 | __cacheline_group_begin(sock_write_rxtx); |
443 | socket_lock_t sk_lock; |
444 | u32 sk_reserved_mem; |
445 | int sk_forward_alloc; |
446 | u32 sk_tsflags; |
447 | __cacheline_group_end(sock_write_rxtx); |
448 | |
449 | __cacheline_group_begin(sock_write_tx); |
450 | int sk_write_pending; |
451 | atomic_t sk_omem_alloc; |
452 | int sk_sndbuf; |
453 | |
454 | int sk_wmem_queued; |
455 | refcount_t sk_wmem_alloc; |
456 | unsigned long sk_tsq_flags; |
457 | union { |
458 | struct sk_buff *sk_send_head; |
459 | struct rb_root tcp_rtx_queue; |
460 | }; |
461 | struct sk_buff_head sk_write_queue; |
462 | u32 sk_dst_pending_confirm; |
463 | u32 sk_pacing_status; /* see enum sk_pacing */ |
464 | struct page_frag sk_frag; |
465 | struct timer_list sk_timer; |
466 | |
467 | unsigned long sk_pacing_rate; /* bytes per second */ |
468 | atomic_t sk_zckey; |
469 | atomic_t sk_tskey; |
470 | __cacheline_group_end(sock_write_tx); |
471 | |
472 | __cacheline_group_begin(sock_read_tx); |
473 | unsigned long sk_max_pacing_rate; |
474 | long sk_sndtimeo; |
475 | u32 sk_priority; |
476 | u32 sk_mark; |
477 | struct dst_entry __rcu *sk_dst_cache; |
478 | netdev_features_t sk_route_caps; |
479 | #ifdef CONFIG_SOCK_VALIDATE_XMIT |
480 | struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk, |
481 | struct net_device *dev, |
482 | struct sk_buff *skb); |
483 | #endif |
484 | u16 sk_gso_type; |
485 | u16 sk_gso_max_segs; |
486 | unsigned int sk_gso_max_size; |
487 | gfp_t sk_allocation; |
488 | u32 sk_txhash; |
489 | u8 sk_pacing_shift; |
490 | bool sk_use_task_frag; |
491 | __cacheline_group_end(sock_read_tx); |
492 | |
493 | /* |
494 | * Because of non atomicity rules, all |
495 | * changes are protected by socket lock. |
496 | */ |
497 | u8 sk_gso_disabled : 1, |
498 | sk_kern_sock : 1, |
499 | sk_no_check_tx : 1, |
500 | sk_no_check_rx : 1; |
501 | u8 sk_shutdown; |
502 | u16 sk_type; |
503 | u16 sk_protocol; |
504 | unsigned long sk_lingertime; |
505 | struct proto *sk_prot_creator; |
506 | rwlock_t sk_callback_lock; |
507 | int sk_err_soft; |
508 | u32 sk_ack_backlog; |
509 | u32 sk_max_ack_backlog; |
510 | kuid_t sk_uid; |
511 | spinlock_t sk_peer_lock; |
512 | int sk_bind_phc; |
513 | struct pid *sk_peer_pid; |
514 | const struct cred *sk_peer_cred; |
515 | |
516 | ktime_t sk_stamp; |
517 | #if BITS_PER_LONG==32 |
518 | seqlock_t sk_stamp_seq; |
519 | #endif |
520 | int sk_disconnects; |
521 | |
522 | u8 sk_txrehash; |
523 | u8 sk_clockid; |
524 | u8 sk_txtime_deadline_mode : 1, |
525 | sk_txtime_report_errors : 1, |
526 | sk_txtime_unused : 6; |
527 | |
528 | void *sk_user_data; |
529 | #ifdef CONFIG_SECURITY |
530 | void *sk_security; |
531 | #endif |
532 | struct sock_cgroup_data sk_cgrp_data; |
533 | void (*sk_state_change)(struct sock *sk); |
534 | void (*sk_write_space)(struct sock *sk); |
535 | void (*sk_error_report)(struct sock *sk); |
536 | int (*sk_backlog_rcv)(struct sock *sk, |
537 | struct sk_buff *skb); |
538 | void (*sk_destruct)(struct sock *sk); |
539 | struct sock_reuseport __rcu *sk_reuseport_cb; |
540 | #ifdef CONFIG_BPF_SYSCALL |
541 | struct bpf_local_storage __rcu *sk_bpf_storage; |
542 | #endif |
543 | struct rcu_head sk_rcu; |
544 | netns_tracker ns_tracker; |
545 | }; |
546 | |
547 | enum sk_pacing { |
548 | SK_PACING_NONE = 0, |
549 | SK_PACING_NEEDED = 1, |
550 | SK_PACING_FQ = 2, |
551 | }; |
552 | |
553 | /* flag bits in sk_user_data |
554 | * |
555 | * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might |
556 | * not be suitable for copying when cloning the socket. For instance, |
557 | * it can point to a reference counted object. sk_user_data bottom |
558 | * bit is set if pointer must not be copied. |
559 | * |
560 | * - SK_USER_DATA_BPF: Mark whether sk_user_data field is |
561 | * managed/owned by a BPF reuseport array. This bit should be set |
562 | * when sk_user_data's sk is added to the bpf's reuseport_array. |
563 | * |
564 | * - SK_USER_DATA_PSOCK: Mark whether pointer stored in |
565 | * sk_user_data points to psock type. This bit should be set |
566 | * when sk_user_data is assigned to a psock object. |
567 | */ |
568 | #define SK_USER_DATA_NOCOPY 1UL |
569 | #define SK_USER_DATA_BPF 2UL |
570 | #define SK_USER_DATA_PSOCK 4UL |
571 | #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\ |
572 | SK_USER_DATA_PSOCK) |
573 | |
574 | /** |
575 | * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied |
576 | * @sk: socket |
577 | */ |
578 | static inline bool sk_user_data_is_nocopy(const struct sock *sk) |
579 | { |
580 | return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY); |
581 | } |
582 | |
583 | #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) |
584 | |
585 | /** |
586 | * __locked_read_sk_user_data_with_flags - return the pointer |
587 | * only if argument flags all has been set in sk_user_data. Otherwise |
588 | * return NULL |
589 | * |
590 | * @sk: socket |
591 | * @flags: flag bits |
592 | * |
593 | * The caller must be holding sk->sk_callback_lock. |
594 | */ |
595 | static inline void * |
596 | __locked_read_sk_user_data_with_flags(const struct sock *sk, |
597 | uintptr_t flags) |
598 | { |
599 | uintptr_t sk_user_data = |
600 | (uintptr_t)rcu_dereference_check(__sk_user_data(sk), |
601 | lockdep_is_held(&sk->sk_callback_lock)); |
602 | |
603 | WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); |
604 | |
605 | if ((sk_user_data & flags) == flags) |
606 | return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); |
607 | return NULL; |
608 | } |
609 | |
610 | /** |
611 | * __rcu_dereference_sk_user_data_with_flags - return the pointer |
612 | * only if argument flags all has been set in sk_user_data. Otherwise |
613 | * return NULL |
614 | * |
615 | * @sk: socket |
616 | * @flags: flag bits |
617 | */ |
618 | static inline void * |
619 | __rcu_dereference_sk_user_data_with_flags(const struct sock *sk, |
620 | uintptr_t flags) |
621 | { |
622 | uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk)); |
623 | |
624 | WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK); |
625 | |
626 | if ((sk_user_data & flags) == flags) |
627 | return (void *)(sk_user_data & SK_USER_DATA_PTRMASK); |
628 | return NULL; |
629 | } |
630 | |
631 | #define rcu_dereference_sk_user_data(sk) \ |
632 | __rcu_dereference_sk_user_data_with_flags(sk, 0) |
633 | #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \ |
634 | ({ \ |
635 | uintptr_t __tmp1 = (uintptr_t)(ptr), \ |
636 | __tmp2 = (uintptr_t)(flags); \ |
637 | WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \ |
638 | WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \ |
639 | rcu_assign_pointer(__sk_user_data((sk)), \ |
640 | __tmp1 | __tmp2); \ |
641 | }) |
642 | #define rcu_assign_sk_user_data(sk, ptr) \ |
643 | __rcu_assign_sk_user_data_with_flags(sk, ptr, 0) |
644 | |
645 | static inline |
646 | struct net *sock_net(const struct sock *sk) |
647 | { |
648 | return read_pnet(pnet: &sk->sk_net); |
649 | } |
650 | |
651 | static inline |
652 | void sock_net_set(struct sock *sk, struct net *net) |
653 | { |
654 | write_pnet(pnet: &sk->sk_net, net); |
655 | } |
656 | |
657 | /* |
658 | * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK |
659 | * or not whether his port will be reused by someone else. SK_FORCE_REUSE |
660 | * on a socket means that the socket will reuse everybody else's port |
661 | * without looking at the other's sk_reuse value. |
662 | */ |
663 | |
664 | #define SK_NO_REUSE 0 |
665 | #define SK_CAN_REUSE 1 |
666 | #define SK_FORCE_REUSE 2 |
667 | |
668 | int sk_set_peek_off(struct sock *sk, int val); |
669 | |
670 | static inline int sk_peek_offset(const struct sock *sk, int flags) |
671 | { |
672 | if (unlikely(flags & MSG_PEEK)) { |
673 | return READ_ONCE(sk->sk_peek_off); |
674 | } |
675 | |
676 | return 0; |
677 | } |
678 | |
679 | static inline void sk_peek_offset_bwd(struct sock *sk, int val) |
680 | { |
681 | s32 off = READ_ONCE(sk->sk_peek_off); |
682 | |
683 | if (unlikely(off >= 0)) { |
684 | off = max_t(s32, off - val, 0); |
685 | WRITE_ONCE(sk->sk_peek_off, off); |
686 | } |
687 | } |
688 | |
689 | static inline void sk_peek_offset_fwd(struct sock *sk, int val) |
690 | { |
691 | sk_peek_offset_bwd(sk, val: -val); |
692 | } |
693 | |
694 | /* |
695 | * Hashed lists helper routines |
696 | */ |
697 | static inline struct sock *sk_entry(const struct hlist_node *node) |
698 | { |
699 | return hlist_entry(node, struct sock, sk_node); |
700 | } |
701 | |
702 | static inline struct sock *__sk_head(const struct hlist_head *head) |
703 | { |
704 | return hlist_entry(head->first, struct sock, sk_node); |
705 | } |
706 | |
707 | static inline struct sock *sk_head(const struct hlist_head *head) |
708 | { |
709 | return hlist_empty(h: head) ? NULL : __sk_head(head); |
710 | } |
711 | |
712 | static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) |
713 | { |
714 | return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); |
715 | } |
716 | |
717 | static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) |
718 | { |
719 | return hlist_nulls_empty(h: head) ? NULL : __sk_nulls_head(head); |
720 | } |
721 | |
722 | static inline struct sock *sk_next(const struct sock *sk) |
723 | { |
724 | return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node); |
725 | } |
726 | |
727 | static inline struct sock *sk_nulls_next(const struct sock *sk) |
728 | { |
729 | return (!is_a_nulls(ptr: sk->sk_nulls_node.next)) ? |
730 | hlist_nulls_entry(sk->sk_nulls_node.next, |
731 | struct sock, sk_nulls_node) : |
732 | NULL; |
733 | } |
734 | |
735 | static inline bool sk_unhashed(const struct sock *sk) |
736 | { |
737 | return hlist_unhashed(h: &sk->sk_node); |
738 | } |
739 | |
740 | static inline bool sk_hashed(const struct sock *sk) |
741 | { |
742 | return !sk_unhashed(sk); |
743 | } |
744 | |
745 | static inline void sk_node_init(struct hlist_node *node) |
746 | { |
747 | node->pprev = NULL; |
748 | } |
749 | |
750 | static inline void __sk_del_node(struct sock *sk) |
751 | { |
752 | __hlist_del(n: &sk->sk_node); |
753 | } |
754 | |
755 | /* NB: equivalent to hlist_del_init_rcu */ |
756 | static inline bool __sk_del_node_init(struct sock *sk) |
757 | { |
758 | if (sk_hashed(sk)) { |
759 | __sk_del_node(sk); |
760 | sk_node_init(node: &sk->sk_node); |
761 | return true; |
762 | } |
763 | return false; |
764 | } |
765 | |
766 | /* Grab socket reference count. This operation is valid only |
767 | when sk is ALREADY grabbed f.e. it is found in hash table |
768 | or a list and the lookup is made under lock preventing hash table |
769 | modifications. |
770 | */ |
771 | |
772 | static __always_inline void sock_hold(struct sock *sk) |
773 | { |
774 | refcount_inc(r: &sk->sk_refcnt); |
775 | } |
776 | |
777 | /* Ungrab socket in the context, which assumes that socket refcnt |
778 | cannot hit zero, f.e. it is true in context of any socketcall. |
779 | */ |
780 | static __always_inline void __sock_put(struct sock *sk) |
781 | { |
782 | refcount_dec(r: &sk->sk_refcnt); |
783 | } |
784 | |
785 | static inline bool sk_del_node_init(struct sock *sk) |
786 | { |
787 | bool rc = __sk_del_node_init(sk); |
788 | |
789 | if (rc) { |
790 | /* paranoid for a while -acme */ |
791 | WARN_ON(refcount_read(&sk->sk_refcnt) == 1); |
792 | __sock_put(sk); |
793 | } |
794 | return rc; |
795 | } |
796 | #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) |
797 | |
798 | static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) |
799 | { |
800 | if (sk_hashed(sk)) { |
801 | hlist_nulls_del_init_rcu(n: &sk->sk_nulls_node); |
802 | return true; |
803 | } |
804 | return false; |
805 | } |
806 | |
807 | static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) |
808 | { |
809 | bool rc = __sk_nulls_del_node_init_rcu(sk); |
810 | |
811 | if (rc) { |
812 | /* paranoid for a while -acme */ |
813 | WARN_ON(refcount_read(&sk->sk_refcnt) == 1); |
814 | __sock_put(sk); |
815 | } |
816 | return rc; |
817 | } |
818 | |
819 | static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) |
820 | { |
821 | hlist_add_head(n: &sk->sk_node, h: list); |
822 | } |
823 | |
824 | static inline void sk_add_node(struct sock *sk, struct hlist_head *list) |
825 | { |
826 | sock_hold(sk); |
827 | __sk_add_node(sk, list); |
828 | } |
829 | |
830 | static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) |
831 | { |
832 | sock_hold(sk); |
833 | if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && |
834 | sk->sk_family == AF_INET6) |
835 | hlist_add_tail_rcu(n: &sk->sk_node, h: list); |
836 | else |
837 | hlist_add_head_rcu(n: &sk->sk_node, h: list); |
838 | } |
839 | |
840 | static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list) |
841 | { |
842 | sock_hold(sk); |
843 | hlist_add_tail_rcu(n: &sk->sk_node, h: list); |
844 | } |
845 | |
846 | static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) |
847 | { |
848 | hlist_nulls_add_head_rcu(n: &sk->sk_nulls_node, h: list); |
849 | } |
850 | |
851 | static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list) |
852 | { |
853 | hlist_nulls_add_tail_rcu(n: &sk->sk_nulls_node, h: list); |
854 | } |
855 | |
856 | static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) |
857 | { |
858 | sock_hold(sk); |
859 | __sk_nulls_add_node_rcu(sk, list); |
860 | } |
861 | |
862 | static inline void __sk_del_bind_node(struct sock *sk) |
863 | { |
864 | __hlist_del(n: &sk->sk_bind_node); |
865 | } |
866 | |
867 | static inline void sk_add_bind_node(struct sock *sk, |
868 | struct hlist_head *list) |
869 | { |
870 | hlist_add_head(n: &sk->sk_bind_node, h: list); |
871 | } |
872 | |
873 | #define sk_for_each(__sk, list) \ |
874 | hlist_for_each_entry(__sk, list, sk_node) |
875 | #define sk_for_each_rcu(__sk, list) \ |
876 | hlist_for_each_entry_rcu(__sk, list, sk_node) |
877 | #define sk_nulls_for_each(__sk, node, list) \ |
878 | hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) |
879 | #define sk_nulls_for_each_rcu(__sk, node, list) \ |
880 | hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) |
881 | #define sk_for_each_from(__sk) \ |
882 | hlist_for_each_entry_from(__sk, sk_node) |
883 | #define sk_nulls_for_each_from(__sk, node) \ |
884 | if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ |
885 | hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) |
886 | #define sk_for_each_safe(__sk, tmp, list) \ |
887 | hlist_for_each_entry_safe(__sk, tmp, list, sk_node) |
888 | #define sk_for_each_bound(__sk, list) \ |
889 | hlist_for_each_entry(__sk, list, sk_bind_node) |
890 | |
891 | /** |
892 | * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset |
893 | * @tpos: the type * to use as a loop cursor. |
894 | * @pos: the &struct hlist_node to use as a loop cursor. |
895 | * @head: the head for your list. |
896 | * @offset: offset of hlist_node within the struct. |
897 | * |
898 | */ |
899 | #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \ |
900 | for (pos = rcu_dereference(hlist_first_rcu(head)); \ |
901 | pos != NULL && \ |
902 | ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ |
903 | pos = rcu_dereference(hlist_next_rcu(pos))) |
904 | |
905 | static inline struct user_namespace *sk_user_ns(const struct sock *sk) |
906 | { |
907 | /* Careful only use this in a context where these parameters |
908 | * can not change and must all be valid, such as recvmsg from |
909 | * userspace. |
910 | */ |
911 | return sk->sk_socket->file->f_cred->user_ns; |
912 | } |
913 | |
914 | /* Sock flags */ |
915 | enum sock_flags { |
916 | SOCK_DEAD, |
917 | SOCK_DONE, |
918 | SOCK_URGINLINE, |
919 | SOCK_KEEPOPEN, |
920 | SOCK_LINGER, |
921 | SOCK_DESTROY, |
922 | SOCK_BROADCAST, |
923 | SOCK_TIMESTAMP, |
924 | SOCK_ZAPPED, |
925 | SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ |
926 | SOCK_DBG, /* %SO_DEBUG setting */ |
927 | SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ |
928 | SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ |
929 | SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ |
930 | SOCK_MEMALLOC, /* VM depends on this socket for swapping */ |
931 | SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ |
932 | SOCK_FASYNC, /* fasync() active */ |
933 | SOCK_RXQ_OVFL, |
934 | SOCK_ZEROCOPY, /* buffers from userspace */ |
935 | SOCK_WIFI_STATUS, /* push wifi status to userspace */ |
936 | SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. |
937 | * Will use last 4 bytes of packet sent from |
938 | * user-space instead. |
939 | */ |
940 | SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ |
941 | SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ |
942 | SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */ |
943 | SOCK_TXTIME, |
944 | SOCK_XDP, /* XDP is attached */ |
945 | SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */ |
946 | SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */ |
947 | }; |
948 | |
949 | #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) |
950 | |
951 | static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk) |
952 | { |
953 | nsk->sk_flags = osk->sk_flags; |
954 | } |
955 | |
956 | static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) |
957 | { |
958 | __set_bit(flag, &sk->sk_flags); |
959 | } |
960 | |
961 | static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) |
962 | { |
963 | __clear_bit(flag, &sk->sk_flags); |
964 | } |
965 | |
966 | static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit, |
967 | int valbool) |
968 | { |
969 | if (valbool) |
970 | sock_set_flag(sk, flag: bit); |
971 | else |
972 | sock_reset_flag(sk, flag: bit); |
973 | } |
974 | |
975 | static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) |
976 | { |
977 | return test_bit(flag, &sk->sk_flags); |
978 | } |
979 | |
980 | #ifdef CONFIG_NET |
981 | DECLARE_STATIC_KEY_FALSE(memalloc_socks_key); |
982 | static inline int sk_memalloc_socks(void) |
983 | { |
984 | return static_branch_unlikely(&memalloc_socks_key); |
985 | } |
986 | |
987 | void __receive_sock(struct file *file); |
988 | #else |
989 | |
990 | static inline int sk_memalloc_socks(void) |
991 | { |
992 | return 0; |
993 | } |
994 | |
995 | static inline void __receive_sock(struct file *file) |
996 | { } |
997 | #endif |
998 | |
999 | static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask) |
1000 | { |
1001 | return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC); |
1002 | } |
1003 | |
1004 | static inline void sk_acceptq_removed(struct sock *sk) |
1005 | { |
1006 | WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1); |
1007 | } |
1008 | |
1009 | static inline void sk_acceptq_added(struct sock *sk) |
1010 | { |
1011 | WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1); |
1012 | } |
1013 | |
1014 | /* Note: If you think the test should be: |
1015 | * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog); |
1016 | * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.") |
1017 | */ |
1018 | static inline bool sk_acceptq_is_full(const struct sock *sk) |
1019 | { |
1020 | return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog); |
1021 | } |
1022 | |
1023 | /* |
1024 | * Compute minimal free write space needed to queue new packets. |
1025 | */ |
1026 | static inline int sk_stream_min_wspace(const struct sock *sk) |
1027 | { |
1028 | return READ_ONCE(sk->sk_wmem_queued) >> 1; |
1029 | } |
1030 | |
1031 | static inline int sk_stream_wspace(const struct sock *sk) |
1032 | { |
1033 | return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued); |
1034 | } |
1035 | |
1036 | static inline void sk_wmem_queued_add(struct sock *sk, int val) |
1037 | { |
1038 | WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val); |
1039 | } |
1040 | |
1041 | static inline void sk_forward_alloc_add(struct sock *sk, int val) |
1042 | { |
1043 | /* Paired with lockless reads of sk->sk_forward_alloc */ |
1044 | WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val); |
1045 | } |
1046 | |
1047 | void sk_stream_write_space(struct sock *sk); |
1048 | |
1049 | /* OOB backlog add */ |
1050 | static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) |
1051 | { |
1052 | /* dont let skb dst not refcounted, we are going to leave rcu lock */ |
1053 | skb_dst_force(skb); |
1054 | |
1055 | if (!sk->sk_backlog.tail) |
1056 | WRITE_ONCE(sk->sk_backlog.head, skb); |
1057 | else |
1058 | sk->sk_backlog.tail->next = skb; |
1059 | |
1060 | WRITE_ONCE(sk->sk_backlog.tail, skb); |
1061 | skb->next = NULL; |
1062 | } |
1063 | |
1064 | /* |
1065 | * Take into account size of receive queue and backlog queue |
1066 | * Do not take into account this skb truesize, |
1067 | * to allow even a single big packet to come. |
1068 | */ |
1069 | static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) |
1070 | { |
1071 | unsigned int qsize = sk->sk_backlog.len + atomic_read(v: &sk->sk_rmem_alloc); |
1072 | |
1073 | return qsize > limit; |
1074 | } |
1075 | |
1076 | /* The per-socket spinlock must be held here. */ |
1077 | static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, |
1078 | unsigned int limit) |
1079 | { |
1080 | if (sk_rcvqueues_full(sk, limit)) |
1081 | return -ENOBUFS; |
1082 | |
1083 | /* |
1084 | * If the skb was allocated from pfmemalloc reserves, only |
1085 | * allow SOCK_MEMALLOC sockets to use it as this socket is |
1086 | * helping free memory |
1087 | */ |
1088 | if (skb_pfmemalloc(skb) && !sock_flag(sk, flag: SOCK_MEMALLOC)) |
1089 | return -ENOMEM; |
1090 | |
1091 | __sk_add_backlog(sk, skb); |
1092 | sk->sk_backlog.len += skb->truesize; |
1093 | return 0; |
1094 | } |
1095 | |
1096 | int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); |
1097 | |
1098 | INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)); |
1099 | INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb)); |
1100 | |
1101 | static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) |
1102 | { |
1103 | if (sk_memalloc_socks() && skb_pfmemalloc(skb)) |
1104 | return __sk_backlog_rcv(sk, skb); |
1105 | |
1106 | return INDIRECT_CALL_INET(sk->sk_backlog_rcv, |
1107 | tcp_v6_do_rcv, |
1108 | tcp_v4_do_rcv, |
1109 | sk, skb); |
1110 | } |
1111 | |
1112 | static inline void sk_incoming_cpu_update(struct sock *sk) |
1113 | { |
1114 | int cpu = raw_smp_processor_id(); |
1115 | |
1116 | if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu)) |
1117 | WRITE_ONCE(sk->sk_incoming_cpu, cpu); |
1118 | } |
1119 | |
1120 | |
1121 | static inline void sock_rps_save_rxhash(struct sock *sk, |
1122 | const struct sk_buff *skb) |
1123 | { |
1124 | #ifdef CONFIG_RPS |
1125 | /* The following WRITE_ONCE() is paired with the READ_ONCE() |
1126 | * here, and another one in sock_rps_record_flow(). |
1127 | */ |
1128 | if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash)) |
1129 | WRITE_ONCE(sk->sk_rxhash, skb->hash); |
1130 | #endif |
1131 | } |
1132 | |
1133 | static inline void sock_rps_reset_rxhash(struct sock *sk) |
1134 | { |
1135 | #ifdef CONFIG_RPS |
1136 | /* Paired with READ_ONCE() in sock_rps_record_flow() */ |
1137 | WRITE_ONCE(sk->sk_rxhash, 0); |
1138 | #endif |
1139 | } |
1140 | |
1141 | #define sk_wait_event(__sk, __timeo, __condition, __wait) \ |
1142 | ({ int __rc, __dis = __sk->sk_disconnects; \ |
1143 | release_sock(__sk); \ |
1144 | __rc = __condition; \ |
1145 | if (!__rc) { \ |
1146 | *(__timeo) = wait_woken(__wait, \ |
1147 | TASK_INTERRUPTIBLE, \ |
1148 | *(__timeo)); \ |
1149 | } \ |
1150 | sched_annotate_sleep(); \ |
1151 | lock_sock(__sk); \ |
1152 | __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \ |
1153 | __rc; \ |
1154 | }) |
1155 | |
1156 | int sk_stream_wait_connect(struct sock *sk, long *timeo_p); |
1157 | int sk_stream_wait_memory(struct sock *sk, long *timeo_p); |
1158 | void sk_stream_wait_close(struct sock *sk, long timeo_p); |
1159 | int sk_stream_error(struct sock *sk, int flags, int err); |
1160 | void sk_stream_kill_queues(struct sock *sk); |
1161 | void sk_set_memalloc(struct sock *sk); |
1162 | void sk_clear_memalloc(struct sock *sk); |
1163 | |
1164 | void __sk_flush_backlog(struct sock *sk); |
1165 | |
1166 | static inline bool sk_flush_backlog(struct sock *sk) |
1167 | { |
1168 | if (unlikely(READ_ONCE(sk->sk_backlog.tail))) { |
1169 | __sk_flush_backlog(sk); |
1170 | return true; |
1171 | } |
1172 | return false; |
1173 | } |
1174 | |
1175 | int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb); |
1176 | |
1177 | struct request_sock_ops; |
1178 | struct timewait_sock_ops; |
1179 | struct inet_hashinfo; |
1180 | struct raw_hashinfo; |
1181 | struct smc_hashinfo; |
1182 | struct module; |
1183 | struct sk_psock; |
1184 | |
1185 | /* |
1186 | * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes |
1187 | * un-modified. Special care is taken when initializing object to zero. |
1188 | */ |
1189 | static inline void sk_prot_clear_nulls(struct sock *sk, int size) |
1190 | { |
1191 | if (offsetof(struct sock, sk_node.next) != 0) |
1192 | memset(sk, 0, offsetof(struct sock, sk_node.next)); |
1193 | memset(&sk->sk_node.pprev, 0, |
1194 | size - offsetof(struct sock, sk_node.pprev)); |
1195 | } |
1196 | |
1197 | /* Networking protocol blocks we attach to sockets. |
1198 | * socket layer -> transport layer interface |
1199 | */ |
1200 | struct proto { |
1201 | void (*close)(struct sock *sk, |
1202 | long timeout); |
1203 | int (*pre_connect)(struct sock *sk, |
1204 | struct sockaddr *uaddr, |
1205 | int addr_len); |
1206 | int (*connect)(struct sock *sk, |
1207 | struct sockaddr *uaddr, |
1208 | int addr_len); |
1209 | int (*disconnect)(struct sock *sk, int flags); |
1210 | |
1211 | struct sock * (*accept)(struct sock *sk, int flags, int *err, |
1212 | bool kern); |
1213 | |
1214 | int (*ioctl)(struct sock *sk, int cmd, |
1215 | int *karg); |
1216 | int (*init)(struct sock *sk); |
1217 | void (*destroy)(struct sock *sk); |
1218 | void (*shutdown)(struct sock *sk, int how); |
1219 | int (*setsockopt)(struct sock *sk, int level, |
1220 | int optname, sockptr_t optval, |
1221 | unsigned int optlen); |
1222 | int (*getsockopt)(struct sock *sk, int level, |
1223 | int optname, char __user *optval, |
1224 | int __user *option); |
1225 | void (*keepalive)(struct sock *sk, int valbool); |
1226 | #ifdef CONFIG_COMPAT |
1227 | int (*compat_ioctl)(struct sock *sk, |
1228 | unsigned int cmd, unsigned long arg); |
1229 | #endif |
1230 | int (*sendmsg)(struct sock *sk, struct msghdr *msg, |
1231 | size_t len); |
1232 | int (*recvmsg)(struct sock *sk, struct msghdr *msg, |
1233 | size_t len, int flags, int *addr_len); |
1234 | void (*splice_eof)(struct socket *sock); |
1235 | int (*bind)(struct sock *sk, |
1236 | struct sockaddr *addr, int addr_len); |
1237 | int (*bind_add)(struct sock *sk, |
1238 | struct sockaddr *addr, int addr_len); |
1239 | |
1240 | int (*backlog_rcv) (struct sock *sk, |
1241 | struct sk_buff *skb); |
1242 | bool (*bpf_bypass_getsockopt)(int level, |
1243 | int optname); |
1244 | |
1245 | void (*release_cb)(struct sock *sk); |
1246 | |
1247 | /* Keeping track of sk's, looking them up, and port selection methods. */ |
1248 | int (*hash)(struct sock *sk); |
1249 | void (*unhash)(struct sock *sk); |
1250 | void (*rehash)(struct sock *sk); |
1251 | int (*get_port)(struct sock *sk, unsigned short snum); |
1252 | void (*put_port)(struct sock *sk); |
1253 | #ifdef CONFIG_BPF_SYSCALL |
1254 | int (*psock_update_sk_prot)(struct sock *sk, |
1255 | struct sk_psock *psock, |
1256 | bool restore); |
1257 | #endif |
1258 | |
1259 | /* Keeping track of sockets in use */ |
1260 | #ifdef CONFIG_PROC_FS |
1261 | unsigned int inuse_idx; |
1262 | #endif |
1263 | |
1264 | #if IS_ENABLED(CONFIG_MPTCP) |
1265 | int (*forward_alloc_get)(const struct sock *sk); |
1266 | #endif |
1267 | |
1268 | bool (*stream_memory_free)(const struct sock *sk, int wake); |
1269 | bool (*sock_is_readable)(struct sock *sk); |
1270 | /* Memory pressure */ |
1271 | void (*enter_memory_pressure)(struct sock *sk); |
1272 | void (*leave_memory_pressure)(struct sock *sk); |
1273 | atomic_long_t *memory_allocated; /* Current allocated memory. */ |
1274 | int __percpu *per_cpu_fw_alloc; |
1275 | struct percpu_counter *sockets_allocated; /* Current number of sockets. */ |
1276 | |
1277 | /* |
1278 | * Pressure flag: try to collapse. |
1279 | * Technical note: it is used by multiple contexts non atomically. |
1280 | * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes. |
1281 | * All the __sk_mem_schedule() is of this nature: accounting |
1282 | * is strict, actions are advisory and have some latency. |
1283 | */ |
1284 | unsigned long *memory_pressure; |
1285 | long *sysctl_mem; |
1286 | |
1287 | int *sysctl_wmem; |
1288 | int *sysctl_rmem; |
1289 | u32 sysctl_wmem_offset; |
1290 | u32 sysctl_rmem_offset; |
1291 | |
1292 | int ; |
1293 | bool no_autobind; |
1294 | |
1295 | struct kmem_cache *slab; |
1296 | unsigned int obj_size; |
1297 | unsigned int ipv6_pinfo_offset; |
1298 | slab_flags_t slab_flags; |
1299 | unsigned int useroffset; /* Usercopy region offset */ |
1300 | unsigned int usersize; /* Usercopy region size */ |
1301 | |
1302 | unsigned int __percpu *orphan_count; |
1303 | |
1304 | struct request_sock_ops *rsk_prot; |
1305 | struct timewait_sock_ops *twsk_prot; |
1306 | |
1307 | union { |
1308 | struct inet_hashinfo *hashinfo; |
1309 | struct udp_table *udp_table; |
1310 | struct raw_hashinfo *raw_hash; |
1311 | struct smc_hashinfo *smc_hash; |
1312 | } h; |
1313 | |
1314 | struct module *owner; |
1315 | |
1316 | char name[32]; |
1317 | |
1318 | struct list_head node; |
1319 | int (*diag_destroy)(struct sock *sk, int err); |
1320 | } __randomize_layout; |
1321 | |
1322 | int proto_register(struct proto *prot, int alloc_slab); |
1323 | void proto_unregister(struct proto *prot); |
1324 | int sock_load_diag_module(int family, int protocol); |
1325 | |
1326 | INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake)); |
1327 | |
1328 | static inline int sk_forward_alloc_get(const struct sock *sk) |
1329 | { |
1330 | #if IS_ENABLED(CONFIG_MPTCP) |
1331 | if (sk->sk_prot->forward_alloc_get) |
1332 | return sk->sk_prot->forward_alloc_get(sk); |
1333 | #endif |
1334 | return READ_ONCE(sk->sk_forward_alloc); |
1335 | } |
1336 | |
1337 | static inline bool __sk_stream_memory_free(const struct sock *sk, int wake) |
1338 | { |
1339 | if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf)) |
1340 | return false; |
1341 | |
1342 | return sk->sk_prot->stream_memory_free ? |
1343 | INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free, |
1344 | tcp_stream_memory_free, sk, wake) : true; |
1345 | } |
1346 | |
1347 | static inline bool sk_stream_memory_free(const struct sock *sk) |
1348 | { |
1349 | return __sk_stream_memory_free(sk, wake: 0); |
1350 | } |
1351 | |
1352 | static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake) |
1353 | { |
1354 | return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && |
1355 | __sk_stream_memory_free(sk, wake); |
1356 | } |
1357 | |
1358 | static inline bool sk_stream_is_writeable(const struct sock *sk) |
1359 | { |
1360 | return __sk_stream_is_writeable(sk, wake: 0); |
1361 | } |
1362 | |
1363 | static inline int sk_under_cgroup_hierarchy(struct sock *sk, |
1364 | struct cgroup *ancestor) |
1365 | { |
1366 | #ifdef CONFIG_SOCK_CGROUP_DATA |
1367 | return cgroup_is_descendant(cgrp: sock_cgroup_ptr(skcd: &sk->sk_cgrp_data), |
1368 | ancestor); |
1369 | #else |
1370 | return -ENOTSUPP; |
1371 | #endif |
1372 | } |
1373 | |
1374 | static inline bool sk_has_memory_pressure(const struct sock *sk) |
1375 | { |
1376 | return sk->sk_prot->memory_pressure != NULL; |
1377 | } |
1378 | |
1379 | static inline bool sk_under_global_memory_pressure(const struct sock *sk) |
1380 | { |
1381 | return sk->sk_prot->memory_pressure && |
1382 | !!READ_ONCE(*sk->sk_prot->memory_pressure); |
1383 | } |
1384 | |
1385 | static inline bool sk_under_memory_pressure(const struct sock *sk) |
1386 | { |
1387 | if (!sk->sk_prot->memory_pressure) |
1388 | return false; |
1389 | |
1390 | if (mem_cgroup_sockets_enabled && sk->sk_memcg && |
1391 | mem_cgroup_under_socket_pressure(memcg: sk->sk_memcg)) |
1392 | return true; |
1393 | |
1394 | return !!READ_ONCE(*sk->sk_prot->memory_pressure); |
1395 | } |
1396 | |
1397 | static inline long |
1398 | proto_memory_allocated(const struct proto *prot) |
1399 | { |
1400 | return max(0L, atomic_long_read(prot->memory_allocated)); |
1401 | } |
1402 | |
1403 | static inline long |
1404 | sk_memory_allocated(const struct sock *sk) |
1405 | { |
1406 | return proto_memory_allocated(prot: sk->sk_prot); |
1407 | } |
1408 | |
1409 | /* 1 MB per cpu, in page units */ |
1410 | #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT)) |
1411 | extern int sysctl_mem_pcpu_rsv; |
1412 | |
1413 | static inline void |
1414 | sk_memory_allocated_add(struct sock *sk, int amt) |
1415 | { |
1416 | int local_reserve; |
1417 | |
1418 | preempt_disable(); |
1419 | local_reserve = __this_cpu_add_return(*sk->sk_prot->per_cpu_fw_alloc, amt); |
1420 | if (local_reserve >= READ_ONCE(sysctl_mem_pcpu_rsv)) { |
1421 | __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve); |
1422 | atomic_long_add(i: local_reserve, v: sk->sk_prot->memory_allocated); |
1423 | } |
1424 | preempt_enable(); |
1425 | } |
1426 | |
1427 | static inline void |
1428 | sk_memory_allocated_sub(struct sock *sk, int amt) |
1429 | { |
1430 | int local_reserve; |
1431 | |
1432 | preempt_disable(); |
1433 | local_reserve = __this_cpu_sub_return(*sk->sk_prot->per_cpu_fw_alloc, amt); |
1434 | if (local_reserve <= -READ_ONCE(sysctl_mem_pcpu_rsv)) { |
1435 | __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve); |
1436 | atomic_long_add(i: local_reserve, v: sk->sk_prot->memory_allocated); |
1437 | } |
1438 | preempt_enable(); |
1439 | } |
1440 | |
1441 | #define SK_ALLOC_PERCPU_COUNTER_BATCH 16 |
1442 | |
1443 | static inline void sk_sockets_allocated_dec(struct sock *sk) |
1444 | { |
1445 | percpu_counter_add_batch(fbc: sk->sk_prot->sockets_allocated, amount: -1, |
1446 | SK_ALLOC_PERCPU_COUNTER_BATCH); |
1447 | } |
1448 | |
1449 | static inline void sk_sockets_allocated_inc(struct sock *sk) |
1450 | { |
1451 | percpu_counter_add_batch(fbc: sk->sk_prot->sockets_allocated, amount: 1, |
1452 | SK_ALLOC_PERCPU_COUNTER_BATCH); |
1453 | } |
1454 | |
1455 | static inline u64 |
1456 | sk_sockets_allocated_read_positive(struct sock *sk) |
1457 | { |
1458 | return percpu_counter_read_positive(fbc: sk->sk_prot->sockets_allocated); |
1459 | } |
1460 | |
1461 | static inline int |
1462 | proto_sockets_allocated_sum_positive(struct proto *prot) |
1463 | { |
1464 | return percpu_counter_sum_positive(fbc: prot->sockets_allocated); |
1465 | } |
1466 | |
1467 | static inline bool |
1468 | proto_memory_pressure(struct proto *prot) |
1469 | { |
1470 | if (!prot->memory_pressure) |
1471 | return false; |
1472 | return !!READ_ONCE(*prot->memory_pressure); |
1473 | } |
1474 | |
1475 | |
1476 | #ifdef CONFIG_PROC_FS |
1477 | #define PROTO_INUSE_NR 64 /* should be enough for the first time */ |
1478 | struct prot_inuse { |
1479 | int all; |
1480 | int val[PROTO_INUSE_NR]; |
1481 | }; |
1482 | |
1483 | static inline void sock_prot_inuse_add(const struct net *net, |
1484 | const struct proto *prot, int val) |
1485 | { |
1486 | this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val); |
1487 | } |
1488 | |
1489 | static inline void sock_inuse_add(const struct net *net, int val) |
1490 | { |
1491 | this_cpu_add(net->core.prot_inuse->all, val); |
1492 | } |
1493 | |
1494 | int sock_prot_inuse_get(struct net *net, struct proto *proto); |
1495 | int sock_inuse_get(struct net *net); |
1496 | #else |
1497 | static inline void sock_prot_inuse_add(const struct net *net, |
1498 | const struct proto *prot, int val) |
1499 | { |
1500 | } |
1501 | |
1502 | static inline void sock_inuse_add(const struct net *net, int val) |
1503 | { |
1504 | } |
1505 | #endif |
1506 | |
1507 | |
1508 | /* With per-bucket locks this operation is not-atomic, so that |
1509 | * this version is not worse. |
1510 | */ |
1511 | static inline int __sk_prot_rehash(struct sock *sk) |
1512 | { |
1513 | sk->sk_prot->unhash(sk); |
1514 | return sk->sk_prot->hash(sk); |
1515 | } |
1516 | |
1517 | /* About 10 seconds */ |
1518 | #define SOCK_DESTROY_TIME (10*HZ) |
1519 | |
1520 | /* Sockets 0-1023 can't be bound to unless you are superuser */ |
1521 | #define PROT_SOCK 1024 |
1522 | |
1523 | #define SHUTDOWN_MASK 3 |
1524 | #define RCV_SHUTDOWN 1 |
1525 | #define SEND_SHUTDOWN 2 |
1526 | |
1527 | #define SOCK_BINDADDR_LOCK 4 |
1528 | #define SOCK_BINDPORT_LOCK 8 |
1529 | |
1530 | struct socket_alloc { |
1531 | struct socket socket; |
1532 | struct inode vfs_inode; |
1533 | }; |
1534 | |
1535 | static inline struct socket *SOCKET_I(struct inode *inode) |
1536 | { |
1537 | return &container_of(inode, struct socket_alloc, vfs_inode)->socket; |
1538 | } |
1539 | |
1540 | static inline struct inode *SOCK_INODE(struct socket *socket) |
1541 | { |
1542 | return &container_of(socket, struct socket_alloc, socket)->vfs_inode; |
1543 | } |
1544 | |
1545 | /* |
1546 | * Functions for memory accounting |
1547 | */ |
1548 | int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind); |
1549 | int __sk_mem_schedule(struct sock *sk, int size, int kind); |
1550 | void __sk_mem_reduce_allocated(struct sock *sk, int amount); |
1551 | void __sk_mem_reclaim(struct sock *sk, int amount); |
1552 | |
1553 | #define SK_MEM_SEND 0 |
1554 | #define SK_MEM_RECV 1 |
1555 | |
1556 | /* sysctl_mem values are in pages */ |
1557 | static inline long sk_prot_mem_limits(const struct sock *sk, int index) |
1558 | { |
1559 | return READ_ONCE(sk->sk_prot->sysctl_mem[index]); |
1560 | } |
1561 | |
1562 | static inline int sk_mem_pages(int amt) |
1563 | { |
1564 | return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT; |
1565 | } |
1566 | |
1567 | static inline bool sk_has_account(struct sock *sk) |
1568 | { |
1569 | /* return true if protocol supports memory accounting */ |
1570 | return !!sk->sk_prot->memory_allocated; |
1571 | } |
1572 | |
1573 | static inline bool sk_wmem_schedule(struct sock *sk, int size) |
1574 | { |
1575 | int delta; |
1576 | |
1577 | if (!sk_has_account(sk)) |
1578 | return true; |
1579 | delta = size - sk->sk_forward_alloc; |
1580 | return delta <= 0 || __sk_mem_schedule(sk, size: delta, SK_MEM_SEND); |
1581 | } |
1582 | |
1583 | static inline bool |
1584 | sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) |
1585 | { |
1586 | int delta; |
1587 | |
1588 | if (!sk_has_account(sk)) |
1589 | return true; |
1590 | delta = size - sk->sk_forward_alloc; |
1591 | return delta <= 0 || __sk_mem_schedule(sk, size: delta, SK_MEM_RECV) || |
1592 | skb_pfmemalloc(skb); |
1593 | } |
1594 | |
1595 | static inline int sk_unused_reserved_mem(const struct sock *sk) |
1596 | { |
1597 | int unused_mem; |
1598 | |
1599 | if (likely(!sk->sk_reserved_mem)) |
1600 | return 0; |
1601 | |
1602 | unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued - |
1603 | atomic_read(v: &sk->sk_rmem_alloc); |
1604 | |
1605 | return unused_mem > 0 ? unused_mem : 0; |
1606 | } |
1607 | |
1608 | static inline void sk_mem_reclaim(struct sock *sk) |
1609 | { |
1610 | int reclaimable; |
1611 | |
1612 | if (!sk_has_account(sk)) |
1613 | return; |
1614 | |
1615 | reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk); |
1616 | |
1617 | if (reclaimable >= (int)PAGE_SIZE) |
1618 | __sk_mem_reclaim(sk, amount: reclaimable); |
1619 | } |
1620 | |
1621 | static inline void sk_mem_reclaim_final(struct sock *sk) |
1622 | { |
1623 | sk->sk_reserved_mem = 0; |
1624 | sk_mem_reclaim(sk); |
1625 | } |
1626 | |
1627 | static inline void sk_mem_charge(struct sock *sk, int size) |
1628 | { |
1629 | if (!sk_has_account(sk)) |
1630 | return; |
1631 | sk_forward_alloc_add(sk, val: -size); |
1632 | } |
1633 | |
1634 | static inline void sk_mem_uncharge(struct sock *sk, int size) |
1635 | { |
1636 | if (!sk_has_account(sk)) |
1637 | return; |
1638 | sk_forward_alloc_add(sk, val: size); |
1639 | sk_mem_reclaim(sk); |
1640 | } |
1641 | |
1642 | /* |
1643 | * Macro so as to not evaluate some arguments when |
1644 | * lockdep is not enabled. |
1645 | * |
1646 | * Mark both the sk_lock and the sk_lock.slock as a |
1647 | * per-address-family lock class. |
1648 | */ |
1649 | #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ |
1650 | do { \ |
1651 | sk->sk_lock.owned = 0; \ |
1652 | init_waitqueue_head(&sk->sk_lock.wq); \ |
1653 | spin_lock_init(&(sk)->sk_lock.slock); \ |
1654 | debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ |
1655 | sizeof((sk)->sk_lock)); \ |
1656 | lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ |
1657 | (skey), (sname)); \ |
1658 | lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ |
1659 | } while (0) |
1660 | |
1661 | static inline bool lockdep_sock_is_held(const struct sock *sk) |
1662 | { |
1663 | return lockdep_is_held(&sk->sk_lock) || |
1664 | lockdep_is_held(&sk->sk_lock.slock); |
1665 | } |
1666 | |
1667 | void lock_sock_nested(struct sock *sk, int subclass); |
1668 | |
1669 | static inline void lock_sock(struct sock *sk) |
1670 | { |
1671 | lock_sock_nested(sk, subclass: 0); |
1672 | } |
1673 | |
1674 | void __lock_sock(struct sock *sk); |
1675 | void __release_sock(struct sock *sk); |
1676 | void release_sock(struct sock *sk); |
1677 | |
1678 | /* BH context may only use the following locking interface. */ |
1679 | #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) |
1680 | #define bh_lock_sock_nested(__sk) \ |
1681 | spin_lock_nested(&((__sk)->sk_lock.slock), \ |
1682 | SINGLE_DEPTH_NESTING) |
1683 | #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) |
1684 | |
1685 | bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock); |
1686 | |
1687 | /** |
1688 | * lock_sock_fast - fast version of lock_sock |
1689 | * @sk: socket |
1690 | * |
1691 | * This version should be used for very small section, where process wont block |
1692 | * return false if fast path is taken: |
1693 | * |
1694 | * sk_lock.slock locked, owned = 0, BH disabled |
1695 | * |
1696 | * return true if slow path is taken: |
1697 | * |
1698 | * sk_lock.slock unlocked, owned = 1, BH enabled |
1699 | */ |
1700 | static inline bool lock_sock_fast(struct sock *sk) |
1701 | { |
1702 | /* The sk_lock has mutex_lock() semantics here. */ |
1703 | mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_); |
1704 | |
1705 | return __lock_sock_fast(sk); |
1706 | } |
1707 | |
1708 | /* fast socket lock variant for caller already holding a [different] socket lock */ |
1709 | static inline bool lock_sock_fast_nested(struct sock *sk) |
1710 | { |
1711 | mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_); |
1712 | |
1713 | return __lock_sock_fast(sk); |
1714 | } |
1715 | |
1716 | /** |
1717 | * unlock_sock_fast - complement of lock_sock_fast |
1718 | * @sk: socket |
1719 | * @slow: slow mode |
1720 | * |
1721 | * fast unlock socket for user context. |
1722 | * If slow mode is on, we call regular release_sock() |
1723 | */ |
1724 | static inline void unlock_sock_fast(struct sock *sk, bool slow) |
1725 | __releases(&sk->sk_lock.slock) |
1726 | { |
1727 | if (slow) { |
1728 | release_sock(sk); |
1729 | __release(&sk->sk_lock.slock); |
1730 | } else { |
1731 | mutex_release(&sk->sk_lock.dep_map, _RET_IP_); |
1732 | spin_unlock_bh(lock: &sk->sk_lock.slock); |
1733 | } |
1734 | } |
1735 | |
1736 | void sockopt_lock_sock(struct sock *sk); |
1737 | void sockopt_release_sock(struct sock *sk); |
1738 | bool sockopt_ns_capable(struct user_namespace *ns, int cap); |
1739 | bool sockopt_capable(int cap); |
1740 | |
1741 | /* Used by processes to "lock" a socket state, so that |
1742 | * interrupts and bottom half handlers won't change it |
1743 | * from under us. It essentially blocks any incoming |
1744 | * packets, so that we won't get any new data or any |
1745 | * packets that change the state of the socket. |
1746 | * |
1747 | * While locked, BH processing will add new packets to |
1748 | * the backlog queue. This queue is processed by the |
1749 | * owner of the socket lock right before it is released. |
1750 | * |
1751 | * Since ~2.3.5 it is also exclusive sleep lock serializing |
1752 | * accesses from user process context. |
1753 | */ |
1754 | |
1755 | static inline void sock_owned_by_me(const struct sock *sk) |
1756 | { |
1757 | #ifdef CONFIG_LOCKDEP |
1758 | WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks); |
1759 | #endif |
1760 | } |
1761 | |
1762 | static inline void sock_not_owned_by_me(const struct sock *sk) |
1763 | { |
1764 | #ifdef CONFIG_LOCKDEP |
1765 | WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks); |
1766 | #endif |
1767 | } |
1768 | |
1769 | static inline bool sock_owned_by_user(const struct sock *sk) |
1770 | { |
1771 | sock_owned_by_me(sk); |
1772 | return sk->sk_lock.owned; |
1773 | } |
1774 | |
1775 | static inline bool sock_owned_by_user_nocheck(const struct sock *sk) |
1776 | { |
1777 | return sk->sk_lock.owned; |
1778 | } |
1779 | |
1780 | static inline void sock_release_ownership(struct sock *sk) |
1781 | { |
1782 | DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk)); |
1783 | sk->sk_lock.owned = 0; |
1784 | |
1785 | /* The sk_lock has mutex_unlock() semantics: */ |
1786 | mutex_release(&sk->sk_lock.dep_map, _RET_IP_); |
1787 | } |
1788 | |
1789 | /* no reclassification while locks are held */ |
1790 | static inline bool sock_allow_reclassification(const struct sock *csk) |
1791 | { |
1792 | struct sock *sk = (struct sock *)csk; |
1793 | |
1794 | return !sock_owned_by_user_nocheck(sk) && |
1795 | !spin_is_locked(lock: &sk->sk_lock.slock); |
1796 | } |
1797 | |
1798 | struct sock *sk_alloc(struct net *net, int family, gfp_t priority, |
1799 | struct proto *prot, int kern); |
1800 | void sk_free(struct sock *sk); |
1801 | void sk_destruct(struct sock *sk); |
1802 | struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); |
1803 | void sk_free_unlock_clone(struct sock *sk); |
1804 | |
1805 | struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, |
1806 | gfp_t priority); |
1807 | void __sock_wfree(struct sk_buff *skb); |
1808 | void sock_wfree(struct sk_buff *skb); |
1809 | struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size, |
1810 | gfp_t priority); |
1811 | void skb_orphan_partial(struct sk_buff *skb); |
1812 | void sock_rfree(struct sk_buff *skb); |
1813 | void sock_efree(struct sk_buff *skb); |
1814 | #ifdef CONFIG_INET |
1815 | void sock_edemux(struct sk_buff *skb); |
1816 | void sock_pfree(struct sk_buff *skb); |
1817 | #else |
1818 | #define sock_edemux sock_efree |
1819 | #endif |
1820 | |
1821 | int sk_setsockopt(struct sock *sk, int level, int optname, |
1822 | sockptr_t optval, unsigned int optlen); |
1823 | int sock_setsockopt(struct socket *sock, int level, int op, |
1824 | sockptr_t optval, unsigned int optlen); |
1825 | int do_sock_setsockopt(struct socket *sock, bool compat, int level, |
1826 | int optname, sockptr_t optval, int optlen); |
1827 | int do_sock_getsockopt(struct socket *sock, bool compat, int level, |
1828 | int optname, sockptr_t optval, sockptr_t optlen); |
1829 | |
1830 | int sk_getsockopt(struct sock *sk, int level, int optname, |
1831 | sockptr_t optval, sockptr_t optlen); |
1832 | int sock_gettstamp(struct socket *sock, void __user *userstamp, |
1833 | bool timeval, bool time32); |
1834 | struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long , |
1835 | unsigned long data_len, int noblock, |
1836 | int *errcode, int max_page_order); |
1837 | |
1838 | static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk, |
1839 | unsigned long size, |
1840 | int noblock, int *errcode) |
1841 | { |
1842 | return sock_alloc_send_pskb(sk, header_len: size, data_len: 0, noblock, errcode, max_page_order: 0); |
1843 | } |
1844 | |
1845 | void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); |
1846 | void sock_kfree_s(struct sock *sk, void *mem, int size); |
1847 | void sock_kzfree_s(struct sock *sk, void *mem, int size); |
1848 | void sk_send_sigurg(struct sock *sk); |
1849 | |
1850 | static inline void sock_replace_proto(struct sock *sk, struct proto *proto) |
1851 | { |
1852 | if (sk->sk_socket) |
1853 | clear_bit(SOCK_SUPPORT_ZC, addr: &sk->sk_socket->flags); |
1854 | WRITE_ONCE(sk->sk_prot, proto); |
1855 | } |
1856 | |
1857 | struct sockcm_cookie { |
1858 | u64 transmit_time; |
1859 | u32 mark; |
1860 | u32 tsflags; |
1861 | }; |
1862 | |
1863 | static inline void sockcm_init(struct sockcm_cookie *sockc, |
1864 | const struct sock *sk) |
1865 | { |
1866 | *sockc = (struct sockcm_cookie) { |
1867 | .tsflags = READ_ONCE(sk->sk_tsflags) |
1868 | }; |
1869 | } |
1870 | |
1871 | int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg, |
1872 | struct sockcm_cookie *sockc); |
1873 | int sock_cmsg_send(struct sock *sk, struct msghdr *msg, |
1874 | struct sockcm_cookie *sockc); |
1875 | |
1876 | /* |
1877 | * Functions to fill in entries in struct proto_ops when a protocol |
1878 | * does not implement a particular function. |
1879 | */ |
1880 | int sock_no_bind(struct socket *, struct sockaddr *, int); |
1881 | int sock_no_connect(struct socket *, struct sockaddr *, int, int); |
1882 | int sock_no_socketpair(struct socket *, struct socket *); |
1883 | int sock_no_accept(struct socket *, struct socket *, int, bool); |
1884 | int sock_no_getname(struct socket *, struct sockaddr *, int); |
1885 | int sock_no_ioctl(struct socket *, unsigned int, unsigned long); |
1886 | int sock_no_listen(struct socket *, int); |
1887 | int sock_no_shutdown(struct socket *, int); |
1888 | int sock_no_sendmsg(struct socket *, struct msghdr *, size_t); |
1889 | int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len); |
1890 | int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int); |
1891 | int sock_no_mmap(struct file *file, struct socket *sock, |
1892 | struct vm_area_struct *vma); |
1893 | |
1894 | /* |
1895 | * Functions to fill in entries in struct proto_ops when a protocol |
1896 | * uses the inet style. |
1897 | */ |
1898 | int sock_common_getsockopt(struct socket *sock, int level, int optname, |
1899 | char __user *optval, int __user *optlen); |
1900 | int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, |
1901 | int flags); |
1902 | int sock_common_setsockopt(struct socket *sock, int level, int optname, |
1903 | sockptr_t optval, unsigned int optlen); |
1904 | |
1905 | void sk_common_release(struct sock *sk); |
1906 | |
1907 | /* |
1908 | * Default socket callbacks and setup code |
1909 | */ |
1910 | |
1911 | /* Initialise core socket variables using an explicit uid. */ |
1912 | void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid); |
1913 | |
1914 | /* Initialise core socket variables. |
1915 | * Assumes struct socket *sock is embedded in a struct socket_alloc. |
1916 | */ |
1917 | void sock_init_data(struct socket *sock, struct sock *sk); |
1918 | |
1919 | /* |
1920 | * Socket reference counting postulates. |
1921 | * |
1922 | * * Each user of socket SHOULD hold a reference count. |
1923 | * * Each access point to socket (an hash table bucket, reference from a list, |
1924 | * running timer, skb in flight MUST hold a reference count. |
1925 | * * When reference count hits 0, it means it will never increase back. |
1926 | * * When reference count hits 0, it means that no references from |
1927 | * outside exist to this socket and current process on current CPU |
1928 | * is last user and may/should destroy this socket. |
1929 | * * sk_free is called from any context: process, BH, IRQ. When |
1930 | * it is called, socket has no references from outside -> sk_free |
1931 | * may release descendant resources allocated by the socket, but |
1932 | * to the time when it is called, socket is NOT referenced by any |
1933 | * hash tables, lists etc. |
1934 | * * Packets, delivered from outside (from network or from another process) |
1935 | * and enqueued on receive/error queues SHOULD NOT grab reference count, |
1936 | * when they sit in queue. Otherwise, packets will leak to hole, when |
1937 | * socket is looked up by one cpu and unhasing is made by another CPU. |
1938 | * It is true for udp/raw, netlink (leak to receive and error queues), tcp |
1939 | * (leak to backlog). Packet socket does all the processing inside |
1940 | * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets |
1941 | * use separate SMP lock, so that they are prone too. |
1942 | */ |
1943 | |
1944 | /* Ungrab socket and destroy it, if it was the last reference. */ |
1945 | static inline void sock_put(struct sock *sk) |
1946 | { |
1947 | if (refcount_dec_and_test(r: &sk->sk_refcnt)) |
1948 | sk_free(sk); |
1949 | } |
1950 | /* Generic version of sock_put(), dealing with all sockets |
1951 | * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...) |
1952 | */ |
1953 | void sock_gen_put(struct sock *sk); |
1954 | |
1955 | int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested, |
1956 | unsigned int trim_cap, bool refcounted); |
1957 | static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb, |
1958 | const int nested) |
1959 | { |
1960 | return __sk_receive_skb(sk, skb, nested, trim_cap: 1, refcounted: true); |
1961 | } |
1962 | |
1963 | static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) |
1964 | { |
1965 | /* sk_tx_queue_mapping accept only upto a 16-bit value */ |
1966 | if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX)) |
1967 | return; |
1968 | /* Paired with READ_ONCE() in sk_tx_queue_get() and |
1969 | * other WRITE_ONCE() because socket lock might be not held. |
1970 | */ |
1971 | WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue); |
1972 | } |
1973 | |
1974 | #define NO_QUEUE_MAPPING USHRT_MAX |
1975 | |
1976 | static inline void sk_tx_queue_clear(struct sock *sk) |
1977 | { |
1978 | /* Paired with READ_ONCE() in sk_tx_queue_get() and |
1979 | * other WRITE_ONCE() because socket lock might be not held. |
1980 | */ |
1981 | WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING); |
1982 | } |
1983 | |
1984 | static inline int sk_tx_queue_get(const struct sock *sk) |
1985 | { |
1986 | if (sk) { |
1987 | /* Paired with WRITE_ONCE() in sk_tx_queue_clear() |
1988 | * and sk_tx_queue_set(). |
1989 | */ |
1990 | int val = READ_ONCE(sk->sk_tx_queue_mapping); |
1991 | |
1992 | if (val != NO_QUEUE_MAPPING) |
1993 | return val; |
1994 | } |
1995 | return -1; |
1996 | } |
1997 | |
1998 | static inline void __sk_rx_queue_set(struct sock *sk, |
1999 | const struct sk_buff *skb, |
2000 | bool force_set) |
2001 | { |
2002 | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING |
2003 | if (skb_rx_queue_recorded(skb)) { |
2004 | u16 rx_queue = skb_get_rx_queue(skb); |
2005 | |
2006 | if (force_set || |
2007 | unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue)) |
2008 | WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue); |
2009 | } |
2010 | #endif |
2011 | } |
2012 | |
2013 | static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb) |
2014 | { |
2015 | __sk_rx_queue_set(sk, skb, force_set: true); |
2016 | } |
2017 | |
2018 | static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb) |
2019 | { |
2020 | __sk_rx_queue_set(sk, skb, force_set: false); |
2021 | } |
2022 | |
2023 | static inline void sk_rx_queue_clear(struct sock *sk) |
2024 | { |
2025 | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING |
2026 | WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING); |
2027 | #endif |
2028 | } |
2029 | |
2030 | static inline int sk_rx_queue_get(const struct sock *sk) |
2031 | { |
2032 | #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING |
2033 | if (sk) { |
2034 | int res = READ_ONCE(sk->sk_rx_queue_mapping); |
2035 | |
2036 | if (res != NO_QUEUE_MAPPING) |
2037 | return res; |
2038 | } |
2039 | #endif |
2040 | |
2041 | return -1; |
2042 | } |
2043 | |
2044 | static inline void sk_set_socket(struct sock *sk, struct socket *sock) |
2045 | { |
2046 | sk->sk_socket = sock; |
2047 | } |
2048 | |
2049 | static inline wait_queue_head_t *sk_sleep(struct sock *sk) |
2050 | { |
2051 | BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); |
2052 | return &rcu_dereference_raw(sk->sk_wq)->wait; |
2053 | } |
2054 | /* Detach socket from process context. |
2055 | * Announce socket dead, detach it from wait queue and inode. |
2056 | * Note that parent inode held reference count on this struct sock, |
2057 | * we do not release it in this function, because protocol |
2058 | * probably wants some additional cleanups or even continuing |
2059 | * to work with this socket (TCP). |
2060 | */ |
2061 | static inline void sock_orphan(struct sock *sk) |
2062 | { |
2063 | write_lock_bh(&sk->sk_callback_lock); |
2064 | sock_set_flag(sk, flag: SOCK_DEAD); |
2065 | sk_set_socket(sk, NULL); |
2066 | sk->sk_wq = NULL; |
2067 | write_unlock_bh(&sk->sk_callback_lock); |
2068 | } |
2069 | |
2070 | static inline void sock_graft(struct sock *sk, struct socket *parent) |
2071 | { |
2072 | WARN_ON(parent->sk); |
2073 | write_lock_bh(&sk->sk_callback_lock); |
2074 | rcu_assign_pointer(sk->sk_wq, &parent->wq); |
2075 | parent->sk = sk; |
2076 | sk_set_socket(sk, sock: parent); |
2077 | sk->sk_uid = SOCK_INODE(socket: parent)->i_uid; |
2078 | security_sock_graft(sk, parent); |
2079 | write_unlock_bh(&sk->sk_callback_lock); |
2080 | } |
2081 | |
2082 | kuid_t sock_i_uid(struct sock *sk); |
2083 | unsigned long __sock_i_ino(struct sock *sk); |
2084 | unsigned long sock_i_ino(struct sock *sk); |
2085 | |
2086 | static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk) |
2087 | { |
2088 | return sk ? sk->sk_uid : make_kuid(from: net->user_ns, uid: 0); |
2089 | } |
2090 | |
2091 | static inline u32 net_tx_rndhash(void) |
2092 | { |
2093 | u32 v = get_random_u32(); |
2094 | |
2095 | return v ?: 1; |
2096 | } |
2097 | |
2098 | static inline void sk_set_txhash(struct sock *sk) |
2099 | { |
2100 | /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */ |
2101 | WRITE_ONCE(sk->sk_txhash, net_tx_rndhash()); |
2102 | } |
2103 | |
2104 | static inline bool sk_rethink_txhash(struct sock *sk) |
2105 | { |
2106 | if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) { |
2107 | sk_set_txhash(sk); |
2108 | return true; |
2109 | } |
2110 | return false; |
2111 | } |
2112 | |
2113 | static inline struct dst_entry * |
2114 | __sk_dst_get(const struct sock *sk) |
2115 | { |
2116 | return rcu_dereference_check(sk->sk_dst_cache, |
2117 | lockdep_sock_is_held(sk)); |
2118 | } |
2119 | |
2120 | static inline struct dst_entry * |
2121 | sk_dst_get(const struct sock *sk) |
2122 | { |
2123 | struct dst_entry *dst; |
2124 | |
2125 | rcu_read_lock(); |
2126 | dst = rcu_dereference(sk->sk_dst_cache); |
2127 | if (dst && !rcuref_get(ref: &dst->__rcuref)) |
2128 | dst = NULL; |
2129 | rcu_read_unlock(); |
2130 | return dst; |
2131 | } |
2132 | |
2133 | static inline void __dst_negative_advice(struct sock *sk) |
2134 | { |
2135 | struct dst_entry *ndst, *dst = __sk_dst_get(sk); |
2136 | |
2137 | if (dst && dst->ops->negative_advice) { |
2138 | ndst = dst->ops->negative_advice(dst); |
2139 | |
2140 | if (ndst != dst) { |
2141 | rcu_assign_pointer(sk->sk_dst_cache, ndst); |
2142 | sk_tx_queue_clear(sk); |
2143 | WRITE_ONCE(sk->sk_dst_pending_confirm, 0); |
2144 | } |
2145 | } |
2146 | } |
2147 | |
2148 | static inline void dst_negative_advice(struct sock *sk) |
2149 | { |
2150 | sk_rethink_txhash(sk); |
2151 | __dst_negative_advice(sk); |
2152 | } |
2153 | |
2154 | static inline void |
2155 | __sk_dst_set(struct sock *sk, struct dst_entry *dst) |
2156 | { |
2157 | struct dst_entry *old_dst; |
2158 | |
2159 | sk_tx_queue_clear(sk); |
2160 | WRITE_ONCE(sk->sk_dst_pending_confirm, 0); |
2161 | old_dst = rcu_dereference_protected(sk->sk_dst_cache, |
2162 | lockdep_sock_is_held(sk)); |
2163 | rcu_assign_pointer(sk->sk_dst_cache, dst); |
2164 | dst_release(dst: old_dst); |
2165 | } |
2166 | |
2167 | static inline void |
2168 | sk_dst_set(struct sock *sk, struct dst_entry *dst) |
2169 | { |
2170 | struct dst_entry *old_dst; |
2171 | |
2172 | sk_tx_queue_clear(sk); |
2173 | WRITE_ONCE(sk->sk_dst_pending_confirm, 0); |
2174 | old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); |
2175 | dst_release(dst: old_dst); |
2176 | } |
2177 | |
2178 | static inline void |
2179 | __sk_dst_reset(struct sock *sk) |
2180 | { |
2181 | __sk_dst_set(sk, NULL); |
2182 | } |
2183 | |
2184 | static inline void |
2185 | sk_dst_reset(struct sock *sk) |
2186 | { |
2187 | sk_dst_set(sk, NULL); |
2188 | } |
2189 | |
2190 | struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); |
2191 | |
2192 | struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); |
2193 | |
2194 | static inline void sk_dst_confirm(struct sock *sk) |
2195 | { |
2196 | if (!READ_ONCE(sk->sk_dst_pending_confirm)) |
2197 | WRITE_ONCE(sk->sk_dst_pending_confirm, 1); |
2198 | } |
2199 | |
2200 | static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n) |
2201 | { |
2202 | if (skb_get_dst_pending_confirm(skb)) { |
2203 | struct sock *sk = skb->sk; |
2204 | |
2205 | if (sk && READ_ONCE(sk->sk_dst_pending_confirm)) |
2206 | WRITE_ONCE(sk->sk_dst_pending_confirm, 0); |
2207 | neigh_confirm(n); |
2208 | } |
2209 | } |
2210 | |
2211 | bool sk_mc_loop(const struct sock *sk); |
2212 | |
2213 | static inline bool sk_can_gso(const struct sock *sk) |
2214 | { |
2215 | return net_gso_ok(features: sk->sk_route_caps, gso_type: sk->sk_gso_type); |
2216 | } |
2217 | |
2218 | void sk_setup_caps(struct sock *sk, struct dst_entry *dst); |
2219 | |
2220 | static inline void sk_gso_disable(struct sock *sk) |
2221 | { |
2222 | sk->sk_gso_disabled = 1; |
2223 | sk->sk_route_caps &= ~NETIF_F_GSO_MASK; |
2224 | } |
2225 | |
2226 | static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, |
2227 | struct iov_iter *from, char *to, |
2228 | int copy, int offset) |
2229 | { |
2230 | if (skb->ip_summed == CHECKSUM_NONE) { |
2231 | __wsum csum = 0; |
2232 | if (!csum_and_copy_from_iter_full(addr: to, bytes: copy, csum: &csum, i: from)) |
2233 | return -EFAULT; |
2234 | skb->csum = csum_block_add(csum: skb->csum, csum2: csum, offset); |
2235 | } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { |
2236 | if (!copy_from_iter_full_nocache(addr: to, bytes: copy, i: from)) |
2237 | return -EFAULT; |
2238 | } else if (!copy_from_iter_full(addr: to, bytes: copy, i: from)) |
2239 | return -EFAULT; |
2240 | |
2241 | return 0; |
2242 | } |
2243 | |
2244 | static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, |
2245 | struct iov_iter *from, int copy) |
2246 | { |
2247 | int err, offset = skb->len; |
2248 | |
2249 | err = skb_do_copy_data_nocache(sk, skb, from, to: skb_put(skb, len: copy), |
2250 | copy, offset); |
2251 | if (err) |
2252 | __skb_trim(skb, len: offset); |
2253 | |
2254 | return err; |
2255 | } |
2256 | |
2257 | static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from, |
2258 | struct sk_buff *skb, |
2259 | struct page *page, |
2260 | int off, int copy) |
2261 | { |
2262 | int err; |
2263 | |
2264 | err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, |
2265 | copy, offset: skb->len); |
2266 | if (err) |
2267 | return err; |
2268 | |
2269 | skb_len_add(skb, delta: copy); |
2270 | sk_wmem_queued_add(sk, val: copy); |
2271 | sk_mem_charge(sk, size: copy); |
2272 | return 0; |
2273 | } |
2274 | |
2275 | /** |
2276 | * sk_wmem_alloc_get - returns write allocations |
2277 | * @sk: socket |
2278 | * |
2279 | * Return: sk_wmem_alloc minus initial offset of one |
2280 | */ |
2281 | static inline int sk_wmem_alloc_get(const struct sock *sk) |
2282 | { |
2283 | return refcount_read(r: &sk->sk_wmem_alloc) - 1; |
2284 | } |
2285 | |
2286 | /** |
2287 | * sk_rmem_alloc_get - returns read allocations |
2288 | * @sk: socket |
2289 | * |
2290 | * Return: sk_rmem_alloc |
2291 | */ |
2292 | static inline int sk_rmem_alloc_get(const struct sock *sk) |
2293 | { |
2294 | return atomic_read(v: &sk->sk_rmem_alloc); |
2295 | } |
2296 | |
2297 | /** |
2298 | * sk_has_allocations - check if allocations are outstanding |
2299 | * @sk: socket |
2300 | * |
2301 | * Return: true if socket has write or read allocations |
2302 | */ |
2303 | static inline bool sk_has_allocations(const struct sock *sk) |
2304 | { |
2305 | return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); |
2306 | } |
2307 | |
2308 | /** |
2309 | * skwq_has_sleeper - check if there are any waiting processes |
2310 | * @wq: struct socket_wq |
2311 | * |
2312 | * Return: true if socket_wq has waiting processes |
2313 | * |
2314 | * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory |
2315 | * barrier call. They were added due to the race found within the tcp code. |
2316 | * |
2317 | * Consider following tcp code paths:: |
2318 | * |
2319 | * CPU1 CPU2 |
2320 | * sys_select receive packet |
2321 | * ... ... |
2322 | * __add_wait_queue update tp->rcv_nxt |
2323 | * ... ... |
2324 | * tp->rcv_nxt check sock_def_readable |
2325 | * ... { |
2326 | * schedule rcu_read_lock(); |
2327 | * wq = rcu_dereference(sk->sk_wq); |
2328 | * if (wq && waitqueue_active(&wq->wait)) |
2329 | * wake_up_interruptible(&wq->wait) |
2330 | * ... |
2331 | * } |
2332 | * |
2333 | * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay |
2334 | * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 |
2335 | * could then endup calling schedule and sleep forever if there are no more |
2336 | * data on the socket. |
2337 | * |
2338 | */ |
2339 | static inline bool skwq_has_sleeper(struct socket_wq *wq) |
2340 | { |
2341 | return wq && wq_has_sleeper(wq_head: &wq->wait); |
2342 | } |
2343 | |
2344 | /** |
2345 | * sock_poll_wait - place memory barrier behind the poll_wait call. |
2346 | * @filp: file |
2347 | * @sock: socket to wait on |
2348 | * @p: poll_table |
2349 | * |
2350 | * See the comments in the wq_has_sleeper function. |
2351 | */ |
2352 | static inline void sock_poll_wait(struct file *filp, struct socket *sock, |
2353 | poll_table *p) |
2354 | { |
2355 | if (!poll_does_not_wait(p)) { |
2356 | poll_wait(filp, wait_address: &sock->wq.wait, p); |
2357 | /* We need to be sure we are in sync with the |
2358 | * socket flags modification. |
2359 | * |
2360 | * This memory barrier is paired in the wq_has_sleeper. |
2361 | */ |
2362 | smp_mb(); |
2363 | } |
2364 | } |
2365 | |
2366 | static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) |
2367 | { |
2368 | /* This pairs with WRITE_ONCE() in sk_set_txhash() */ |
2369 | u32 txhash = READ_ONCE(sk->sk_txhash); |
2370 | |
2371 | if (txhash) { |
2372 | skb->l4_hash = 1; |
2373 | skb->hash = txhash; |
2374 | } |
2375 | } |
2376 | |
2377 | void skb_set_owner_w(struct sk_buff *skb, struct sock *sk); |
2378 | |
2379 | /* |
2380 | * Queue a received datagram if it will fit. Stream and sequenced |
2381 | * protocols can't normally use this as they need to fit buffers in |
2382 | * and play with them. |
2383 | * |
2384 | * Inlined as it's very short and called for pretty much every |
2385 | * packet ever received. |
2386 | */ |
2387 | static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) |
2388 | { |
2389 | skb_orphan(skb); |
2390 | skb->sk = sk; |
2391 | skb->destructor = sock_rfree; |
2392 | atomic_add(i: skb->truesize, v: &sk->sk_rmem_alloc); |
2393 | sk_mem_charge(sk, size: skb->truesize); |
2394 | } |
2395 | |
2396 | static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk) |
2397 | { |
2398 | if (sk && refcount_inc_not_zero(r: &sk->sk_refcnt)) { |
2399 | skb_orphan(skb); |
2400 | skb->destructor = sock_efree; |
2401 | skb->sk = sk; |
2402 | return true; |
2403 | } |
2404 | return false; |
2405 | } |
2406 | |
2407 | static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk) |
2408 | { |
2409 | skb = skb_clone(skb, priority: sk_gfp_mask(sk, GFP_ATOMIC)); |
2410 | if (skb) { |
2411 | if (sk_rmem_schedule(sk, skb, size: skb->truesize)) { |
2412 | skb_set_owner_r(skb, sk); |
2413 | return skb; |
2414 | } |
2415 | __kfree_skb(skb); |
2416 | } |
2417 | return NULL; |
2418 | } |
2419 | |
2420 | static inline void skb_prepare_for_gro(struct sk_buff *skb) |
2421 | { |
2422 | if (skb->destructor != sock_wfree) { |
2423 | skb_orphan(skb); |
2424 | return; |
2425 | } |
2426 | skb->slow_gro = 1; |
2427 | } |
2428 | |
2429 | void sk_reset_timer(struct sock *sk, struct timer_list *timer, |
2430 | unsigned long expires); |
2431 | |
2432 | void sk_stop_timer(struct sock *sk, struct timer_list *timer); |
2433 | |
2434 | void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer); |
2435 | |
2436 | int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue, |
2437 | struct sk_buff *skb, unsigned int flags, |
2438 | void (*destructor)(struct sock *sk, |
2439 | struct sk_buff *skb)); |
2440 | int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); |
2441 | |
2442 | int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb, |
2443 | enum skb_drop_reason *reason); |
2444 | |
2445 | static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) |
2446 | { |
2447 | return sock_queue_rcv_skb_reason(sk, skb, NULL); |
2448 | } |
2449 | |
2450 | int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); |
2451 | struct sk_buff *sock_dequeue_err_skb(struct sock *sk); |
2452 | |
2453 | /* |
2454 | * Recover an error report and clear atomically |
2455 | */ |
2456 | |
2457 | static inline int sock_error(struct sock *sk) |
2458 | { |
2459 | int err; |
2460 | |
2461 | /* Avoid an atomic operation for the common case. |
2462 | * This is racy since another cpu/thread can change sk_err under us. |
2463 | */ |
2464 | if (likely(data_race(!sk->sk_err))) |
2465 | return 0; |
2466 | |
2467 | err = xchg(&sk->sk_err, 0); |
2468 | return -err; |
2469 | } |
2470 | |
2471 | void sk_error_report(struct sock *sk); |
2472 | |
2473 | static inline unsigned long sock_wspace(struct sock *sk) |
2474 | { |
2475 | int amt = 0; |
2476 | |
2477 | if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { |
2478 | amt = sk->sk_sndbuf - refcount_read(r: &sk->sk_wmem_alloc); |
2479 | if (amt < 0) |
2480 | amt = 0; |
2481 | } |
2482 | return amt; |
2483 | } |
2484 | |
2485 | /* Note: |
2486 | * We use sk->sk_wq_raw, from contexts knowing this |
2487 | * pointer is not NULL and cannot disappear/change. |
2488 | */ |
2489 | static inline void sk_set_bit(int nr, struct sock *sk) |
2490 | { |
2491 | if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && |
2492 | !sock_flag(sk, flag: SOCK_FASYNC)) |
2493 | return; |
2494 | |
2495 | set_bit(nr, addr: &sk->sk_wq_raw->flags); |
2496 | } |
2497 | |
2498 | static inline void sk_clear_bit(int nr, struct sock *sk) |
2499 | { |
2500 | if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) && |
2501 | !sock_flag(sk, flag: SOCK_FASYNC)) |
2502 | return; |
2503 | |
2504 | clear_bit(nr, addr: &sk->sk_wq_raw->flags); |
2505 | } |
2506 | |
2507 | static inline void sk_wake_async(const struct sock *sk, int how, int band) |
2508 | { |
2509 | if (sock_flag(sk, flag: SOCK_FASYNC)) { |
2510 | rcu_read_lock(); |
2511 | sock_wake_async(rcu_dereference(sk->sk_wq), how, band); |
2512 | rcu_read_unlock(); |
2513 | } |
2514 | } |
2515 | |
2516 | /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might |
2517 | * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. |
2518 | * Note: for send buffers, TCP works better if we can build two skbs at |
2519 | * minimum. |
2520 | */ |
2521 | #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) |
2522 | |
2523 | #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) |
2524 | #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE |
2525 | |
2526 | static inline void sk_stream_moderate_sndbuf(struct sock *sk) |
2527 | { |
2528 | u32 val; |
2529 | |
2530 | if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) |
2531 | return; |
2532 | |
2533 | val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); |
2534 | val = max_t(u32, val, sk_unused_reserved_mem(sk)); |
2535 | |
2536 | WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF)); |
2537 | } |
2538 | |
2539 | /** |
2540 | * sk_page_frag - return an appropriate page_frag |
2541 | * @sk: socket |
2542 | * |
2543 | * Use the per task page_frag instead of the per socket one for |
2544 | * optimization when we know that we're in process context and own |
2545 | * everything that's associated with %current. |
2546 | * |
2547 | * Both direct reclaim and page faults can nest inside other |
2548 | * socket operations and end up recursing into sk_page_frag() |
2549 | * while it's already in use: explicitly avoid task page_frag |
2550 | * when users disable sk_use_task_frag. |
2551 | * |
2552 | * Return: a per task page_frag if context allows that, |
2553 | * otherwise a per socket one. |
2554 | */ |
2555 | static inline struct page_frag *sk_page_frag(struct sock *sk) |
2556 | { |
2557 | if (sk->sk_use_task_frag) |
2558 | return ¤t->task_frag; |
2559 | |
2560 | return &sk->sk_frag; |
2561 | } |
2562 | |
2563 | bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); |
2564 | |
2565 | /* |
2566 | * Default write policy as shown to user space via poll/select/SIGIO |
2567 | */ |
2568 | static inline bool sock_writeable(const struct sock *sk) |
2569 | { |
2570 | return refcount_read(r: &sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1); |
2571 | } |
2572 | |
2573 | static inline gfp_t gfp_any(void) |
2574 | { |
2575 | return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; |
2576 | } |
2577 | |
2578 | static inline gfp_t gfp_memcg_charge(void) |
2579 | { |
2580 | return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; |
2581 | } |
2582 | |
2583 | static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) |
2584 | { |
2585 | return noblock ? 0 : sk->sk_rcvtimeo; |
2586 | } |
2587 | |
2588 | static inline long sock_sndtimeo(const struct sock *sk, bool noblock) |
2589 | { |
2590 | return noblock ? 0 : sk->sk_sndtimeo; |
2591 | } |
2592 | |
2593 | static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) |
2594 | { |
2595 | int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len); |
2596 | |
2597 | return v ?: 1; |
2598 | } |
2599 | |
2600 | /* Alas, with timeout socket operations are not restartable. |
2601 | * Compare this to poll(). |
2602 | */ |
2603 | static inline int sock_intr_errno(long timeo) |
2604 | { |
2605 | return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; |
2606 | } |
2607 | |
2608 | struct sock_skb_cb { |
2609 | u32 dropcount; |
2610 | }; |
2611 | |
2612 | /* Store sock_skb_cb at the end of skb->cb[] so protocol families |
2613 | * using skb->cb[] would keep using it directly and utilize its |
2614 | * alignement guarantee. |
2615 | */ |
2616 | #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \ |
2617 | sizeof(struct sock_skb_cb))) |
2618 | |
2619 | #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \ |
2620 | SOCK_SKB_CB_OFFSET)) |
2621 | |
2622 | #define sock_skb_cb_check_size(size) \ |
2623 | BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET) |
2624 | |
2625 | static inline void |
2626 | sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb) |
2627 | { |
2628 | SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, flag: SOCK_RXQ_OVFL) ? |
2629 | atomic_read(v: &sk->sk_drops) : 0; |
2630 | } |
2631 | |
2632 | static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb) |
2633 | { |
2634 | int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs); |
2635 | |
2636 | atomic_add(i: segs, v: &sk->sk_drops); |
2637 | } |
2638 | |
2639 | static inline ktime_t sock_read_timestamp(struct sock *sk) |
2640 | { |
2641 | #if BITS_PER_LONG==32 |
2642 | unsigned int seq; |
2643 | ktime_t kt; |
2644 | |
2645 | do { |
2646 | seq = read_seqbegin(&sk->sk_stamp_seq); |
2647 | kt = sk->sk_stamp; |
2648 | } while (read_seqretry(&sk->sk_stamp_seq, seq)); |
2649 | |
2650 | return kt; |
2651 | #else |
2652 | return READ_ONCE(sk->sk_stamp); |
2653 | #endif |
2654 | } |
2655 | |
2656 | static inline void sock_write_timestamp(struct sock *sk, ktime_t kt) |
2657 | { |
2658 | #if BITS_PER_LONG==32 |
2659 | write_seqlock(&sk->sk_stamp_seq); |
2660 | sk->sk_stamp = kt; |
2661 | write_sequnlock(&sk->sk_stamp_seq); |
2662 | #else |
2663 | WRITE_ONCE(sk->sk_stamp, kt); |
2664 | #endif |
2665 | } |
2666 | |
2667 | void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, |
2668 | struct sk_buff *skb); |
2669 | void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, |
2670 | struct sk_buff *skb); |
2671 | |
2672 | static inline void |
2673 | sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) |
2674 | { |
2675 | struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); |
2676 | u32 tsflags = READ_ONCE(sk->sk_tsflags); |
2677 | ktime_t kt = skb->tstamp; |
2678 | /* |
2679 | * generate control messages if |
2680 | * - receive time stamping in software requested |
2681 | * - software time stamp available and wanted |
2682 | * - hardware time stamps available and wanted |
2683 | */ |
2684 | if (sock_flag(sk, flag: SOCK_RCVTSTAMP) || |
2685 | (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || |
2686 | (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) || |
2687 | (hwtstamps->hwtstamp && |
2688 | (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) |
2689 | __sock_recv_timestamp(msg, sk, skb); |
2690 | else |
2691 | sock_write_timestamp(sk, kt); |
2692 | |
2693 | if (sock_flag(sk, flag: SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb)) |
2694 | __sock_recv_wifi_status(msg, sk, skb); |
2695 | } |
2696 | |
2697 | void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, |
2698 | struct sk_buff *skb); |
2699 | |
2700 | #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC) |
2701 | static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, |
2702 | struct sk_buff *skb) |
2703 | { |
2704 | #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \ |
2705 | (1UL << SOCK_RCVTSTAMP) | \ |
2706 | (1UL << SOCK_RCVMARK)) |
2707 | #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ |
2708 | SOF_TIMESTAMPING_RAW_HARDWARE) |
2709 | |
2710 | if (sk->sk_flags & FLAGS_RECV_CMSGS || |
2711 | READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY) |
2712 | __sock_recv_cmsgs(msg, sk, skb); |
2713 | else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP))) |
2714 | sock_write_timestamp(sk, kt: skb->tstamp); |
2715 | else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP)) |
2716 | sock_write_timestamp(sk, kt: 0); |
2717 | } |
2718 | |
2719 | void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags); |
2720 | |
2721 | /** |
2722 | * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped |
2723 | * @sk: socket sending this packet |
2724 | * @tsflags: timestamping flags to use |
2725 | * @tx_flags: completed with instructions for time stamping |
2726 | * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno) |
2727 | * |
2728 | * Note: callers should take care of initial ``*tx_flags`` value (usually 0) |
2729 | */ |
2730 | static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags, |
2731 | __u8 *tx_flags, __u32 *tskey) |
2732 | { |
2733 | if (unlikely(tsflags)) { |
2734 | __sock_tx_timestamp(tsflags, tx_flags); |
2735 | if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey && |
2736 | tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) |
2737 | *tskey = atomic_inc_return(v: &sk->sk_tskey) - 1; |
2738 | } |
2739 | if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) |
2740 | *tx_flags |= SKBTX_WIFI_STATUS; |
2741 | } |
2742 | |
2743 | static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags, |
2744 | __u8 *tx_flags) |
2745 | { |
2746 | _sock_tx_timestamp(sk, tsflags, tx_flags, NULL); |
2747 | } |
2748 | |
2749 | static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags) |
2750 | { |
2751 | _sock_tx_timestamp(sk: skb->sk, tsflags, tx_flags: &skb_shinfo(skb)->tx_flags, |
2752 | tskey: &skb_shinfo(skb)->tskey); |
2753 | } |
2754 | |
2755 | static inline bool sk_is_inet(const struct sock *sk) |
2756 | { |
2757 | int family = READ_ONCE(sk->sk_family); |
2758 | |
2759 | return family == AF_INET || family == AF_INET6; |
2760 | } |
2761 | |
2762 | static inline bool sk_is_tcp(const struct sock *sk) |
2763 | { |
2764 | return sk_is_inet(sk) && |
2765 | sk->sk_type == SOCK_STREAM && |
2766 | sk->sk_protocol == IPPROTO_TCP; |
2767 | } |
2768 | |
2769 | static inline bool sk_is_udp(const struct sock *sk) |
2770 | { |
2771 | return sk_is_inet(sk) && |
2772 | sk->sk_type == SOCK_DGRAM && |
2773 | sk->sk_protocol == IPPROTO_UDP; |
2774 | } |
2775 | |
2776 | static inline bool sk_is_stream_unix(const struct sock *sk) |
2777 | { |
2778 | return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM; |
2779 | } |
2780 | |
2781 | /** |
2782 | * sk_eat_skb - Release a skb if it is no longer needed |
2783 | * @sk: socket to eat this skb from |
2784 | * @skb: socket buffer to eat |
2785 | * |
2786 | * This routine must be called with interrupts disabled or with the socket |
2787 | * locked so that the sk_buff queue operation is ok. |
2788 | */ |
2789 | static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) |
2790 | { |
2791 | __skb_unlink(skb, list: &sk->sk_receive_queue); |
2792 | __kfree_skb(skb); |
2793 | } |
2794 | |
2795 | static inline bool |
2796 | skb_sk_is_prefetched(struct sk_buff *skb) |
2797 | { |
2798 | #ifdef CONFIG_INET |
2799 | return skb->destructor == sock_pfree; |
2800 | #else |
2801 | return false; |
2802 | #endif /* CONFIG_INET */ |
2803 | } |
2804 | |
2805 | /* This helper checks if a socket is a full socket, |
2806 | * ie _not_ a timewait or request socket. |
2807 | */ |
2808 | static inline bool sk_fullsock(const struct sock *sk) |
2809 | { |
2810 | return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); |
2811 | } |
2812 | |
2813 | static inline bool |
2814 | sk_is_refcounted(struct sock *sk) |
2815 | { |
2816 | /* Only full sockets have sk->sk_flags. */ |
2817 | return !sk_fullsock(sk) || !sock_flag(sk, flag: SOCK_RCU_FREE); |
2818 | } |
2819 | |
2820 | /* Checks if this SKB belongs to an HW offloaded socket |
2821 | * and whether any SW fallbacks are required based on dev. |
2822 | * Check decrypted mark in case skb_orphan() cleared socket. |
2823 | */ |
2824 | static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, |
2825 | struct net_device *dev) |
2826 | { |
2827 | #ifdef CONFIG_SOCK_VALIDATE_XMIT |
2828 | struct sock *sk = skb->sk; |
2829 | |
2830 | if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) { |
2831 | skb = sk->sk_validate_xmit_skb(sk, dev, skb); |
2832 | #ifdef CONFIG_TLS_DEVICE |
2833 | } else if (unlikely(skb->decrypted)) { |
2834 | pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n" ); |
2835 | kfree_skb(skb); |
2836 | skb = NULL; |
2837 | #endif |
2838 | } |
2839 | #endif |
2840 | |
2841 | return skb; |
2842 | } |
2843 | |
2844 | /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV |
2845 | * SYNACK messages can be attached to either ones (depending on SYNCOOKIE) |
2846 | */ |
2847 | static inline bool sk_listener(const struct sock *sk) |
2848 | { |
2849 | return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV); |
2850 | } |
2851 | |
2852 | void sock_enable_timestamp(struct sock *sk, enum sock_flags flag); |
2853 | int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, |
2854 | int type); |
2855 | |
2856 | bool sk_ns_capable(const struct sock *sk, |
2857 | struct user_namespace *user_ns, int cap); |
2858 | bool sk_capable(const struct sock *sk, int cap); |
2859 | bool sk_net_capable(const struct sock *sk, int cap); |
2860 | |
2861 | void sk_get_meminfo(const struct sock *sk, u32 *meminfo); |
2862 | |
2863 | /* Take into consideration the size of the struct sk_buff overhead in the |
2864 | * determination of these values, since that is non-constant across |
2865 | * platforms. This makes socket queueing behavior and performance |
2866 | * not depend upon such differences. |
2867 | */ |
2868 | #define _SK_MEM_PACKETS 256 |
2869 | #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256) |
2870 | #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) |
2871 | #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS) |
2872 | |
2873 | extern __u32 sysctl_wmem_max; |
2874 | extern __u32 sysctl_rmem_max; |
2875 | |
2876 | extern int sysctl_tstamp_allow_data; |
2877 | |
2878 | extern __u32 sysctl_wmem_default; |
2879 | extern __u32 sysctl_rmem_default; |
2880 | |
2881 | #define SKB_FRAG_PAGE_ORDER get_order(32768) |
2882 | DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key); |
2883 | |
2884 | static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto) |
2885 | { |
2886 | /* Does this proto have per netns sysctl_wmem ? */ |
2887 | if (proto->sysctl_wmem_offset) |
2888 | return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset)); |
2889 | |
2890 | return READ_ONCE(*proto->sysctl_wmem); |
2891 | } |
2892 | |
2893 | static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto) |
2894 | { |
2895 | /* Does this proto have per netns sysctl_rmem ? */ |
2896 | if (proto->sysctl_rmem_offset) |
2897 | return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset)); |
2898 | |
2899 | return READ_ONCE(*proto->sysctl_rmem); |
2900 | } |
2901 | |
2902 | /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10) |
2903 | * Some wifi drivers need to tweak it to get more chunks. |
2904 | * They can use this helper from their ndo_start_xmit() |
2905 | */ |
2906 | static inline void sk_pacing_shift_update(struct sock *sk, int val) |
2907 | { |
2908 | if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val) |
2909 | return; |
2910 | WRITE_ONCE(sk->sk_pacing_shift, val); |
2911 | } |
2912 | |
2913 | /* if a socket is bound to a device, check that the given device |
2914 | * index is either the same or that the socket is bound to an L3 |
2915 | * master device and the given device index is also enslaved to |
2916 | * that L3 master |
2917 | */ |
2918 | static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif) |
2919 | { |
2920 | int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); |
2921 | int mdif; |
2922 | |
2923 | if (!bound_dev_if || bound_dev_if == dif) |
2924 | return true; |
2925 | |
2926 | mdif = l3mdev_master_ifindex_by_index(net: sock_net(sk), ifindex: dif); |
2927 | if (mdif && mdif == bound_dev_if) |
2928 | return true; |
2929 | |
2930 | return false; |
2931 | } |
2932 | |
2933 | void sock_def_readable(struct sock *sk); |
2934 | |
2935 | int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk); |
2936 | void sock_set_timestamp(struct sock *sk, int optname, bool valbool); |
2937 | int sock_set_timestamping(struct sock *sk, int optname, |
2938 | struct so_timestamping timestamping); |
2939 | |
2940 | void sock_enable_timestamps(struct sock *sk); |
2941 | void sock_no_linger(struct sock *sk); |
2942 | void sock_set_keepalive(struct sock *sk); |
2943 | void sock_set_priority(struct sock *sk, u32 priority); |
2944 | void sock_set_rcvbuf(struct sock *sk, int val); |
2945 | void sock_set_mark(struct sock *sk, u32 val); |
2946 | void sock_set_reuseaddr(struct sock *sk); |
2947 | void sock_set_reuseport(struct sock *sk); |
2948 | void sock_set_sndtimeo(struct sock *sk, s64 secs); |
2949 | |
2950 | int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len); |
2951 | |
2952 | int sock_get_timeout(long timeo, void *optval, bool old_timeval); |
2953 | int sock_copy_user_timeval(struct __kernel_sock_timeval *tv, |
2954 | sockptr_t optval, int optlen, bool old_timeval); |
2955 | |
2956 | int sock_ioctl_inout(struct sock *sk, unsigned int cmd, |
2957 | void __user *arg, void *karg, size_t size); |
2958 | int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg); |
2959 | static inline bool sk_is_readable(struct sock *sk) |
2960 | { |
2961 | if (sk->sk_prot->sock_is_readable) |
2962 | return sk->sk_prot->sock_is_readable(sk); |
2963 | return false; |
2964 | } |
2965 | #endif /* _SOCK_H */ |
2966 | |