1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * Copyright (C) 2018-2020 Christoph Hellwig. |
4 | * |
5 | * DMA operations that map physical memory directly without using an IOMMU. |
6 | */ |
7 | #include <linux/memblock.h> /* for max_pfn */ |
8 | #include <linux/export.h> |
9 | #include <linux/mm.h> |
10 | #include <linux/dma-map-ops.h> |
11 | #include <linux/scatterlist.h> |
12 | #include <linux/pfn.h> |
13 | #include <linux/vmalloc.h> |
14 | #include <linux/set_memory.h> |
15 | #include <linux/slab.h> |
16 | #include "direct.h" |
17 | |
18 | /* |
19 | * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use |
20 | * it for entirely different regions. In that case the arch code needs to |
21 | * override the variable below for dma-direct to work properly. |
22 | */ |
23 | unsigned int zone_dma_bits __ro_after_init = 24; |
24 | |
25 | static inline dma_addr_t phys_to_dma_direct(struct device *dev, |
26 | phys_addr_t phys) |
27 | { |
28 | if (force_dma_unencrypted(dev)) |
29 | return phys_to_dma_unencrypted(dev, paddr: phys); |
30 | return phys_to_dma(dev, paddr: phys); |
31 | } |
32 | |
33 | static inline struct page *dma_direct_to_page(struct device *dev, |
34 | dma_addr_t dma_addr) |
35 | { |
36 | return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); |
37 | } |
38 | |
39 | u64 dma_direct_get_required_mask(struct device *dev) |
40 | { |
41 | phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; |
42 | u64 max_dma = phys_to_dma_direct(dev, phys); |
43 | |
44 | return (1ULL << (fls64(x: max_dma) - 1)) * 2 - 1; |
45 | } |
46 | |
47 | static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit) |
48 | { |
49 | u64 dma_limit = min_not_zero( |
50 | dev->coherent_dma_mask, |
51 | dev->bus_dma_limit); |
52 | |
53 | /* |
54 | * Optimistically try the zone that the physical address mask falls |
55 | * into first. If that returns memory that isn't actually addressable |
56 | * we will fallback to the next lower zone and try again. |
57 | * |
58 | * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding |
59 | * zones. |
60 | */ |
61 | *phys_limit = dma_to_phys(dev, dma_addr: dma_limit); |
62 | if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits)) |
63 | return GFP_DMA; |
64 | if (*phys_limit <= DMA_BIT_MASK(32)) |
65 | return GFP_DMA32; |
66 | return 0; |
67 | } |
68 | |
69 | bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) |
70 | { |
71 | dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); |
72 | |
73 | if (dma_addr == DMA_MAPPING_ERROR) |
74 | return false; |
75 | return dma_addr + size - 1 <= |
76 | min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); |
77 | } |
78 | |
79 | static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size) |
80 | { |
81 | if (!force_dma_unencrypted(dev)) |
82 | return 0; |
83 | return set_memory_decrypted(addr: (unsigned long)vaddr, PFN_UP(size)); |
84 | } |
85 | |
86 | static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size) |
87 | { |
88 | int ret; |
89 | |
90 | if (!force_dma_unencrypted(dev)) |
91 | return 0; |
92 | ret = set_memory_encrypted(addr: (unsigned long)vaddr, PFN_UP(size)); |
93 | if (ret) |
94 | pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n"); |
95 | return ret; |
96 | } |
97 | |
98 | static void __dma_direct_free_pages(struct device *dev, struct page *page, |
99 | size_t size) |
100 | { |
101 | if (swiotlb_free(dev, page, size)) |
102 | return; |
103 | dma_free_contiguous(dev, page, size); |
104 | } |
105 | |
106 | static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size) |
107 | { |
108 | struct page *page = swiotlb_alloc(dev, size); |
109 | |
110 | if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { |
111 | swiotlb_free(dev, page, size); |
112 | return NULL; |
113 | } |
114 | |
115 | return page; |
116 | } |
117 | |
118 | static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, |
119 | gfp_t gfp, bool allow_highmem) |
120 | { |
121 | int node = dev_to_node(dev); |
122 | struct page *page = NULL; |
123 | u64 phys_limit; |
124 | |
125 | WARN_ON_ONCE(!PAGE_ALIGNED(size)); |
126 | |
127 | if (is_swiotlb_for_alloc(dev)) |
128 | return dma_direct_alloc_swiotlb(dev, size); |
129 | |
130 | gfp |= dma_direct_optimal_gfp_mask(dev, phys_limit: &phys_limit); |
131 | page = dma_alloc_contiguous(dev, size, gfp); |
132 | if (page) { |
133 | if (!dma_coherent_ok(dev, page_to_phys(page), size) || |
134 | (!allow_highmem && PageHighMem(page))) { |
135 | dma_free_contiguous(dev, page, size); |
136 | page = NULL; |
137 | } |
138 | } |
139 | again: |
140 | if (!page) |
141 | page = alloc_pages_node(nid: node, gfp_mask: gfp, order: get_order(size)); |
142 | if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { |
143 | dma_free_contiguous(dev, page, size); |
144 | page = NULL; |
145 | |
146 | if (IS_ENABLED(CONFIG_ZONE_DMA32) && |
147 | phys_limit < DMA_BIT_MASK(64) && |
148 | !(gfp & (GFP_DMA32 | GFP_DMA))) { |
149 | gfp |= GFP_DMA32; |
150 | goto again; |
151 | } |
152 | |
153 | if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { |
154 | gfp = (gfp & ~GFP_DMA32) | GFP_DMA; |
155 | goto again; |
156 | } |
157 | } |
158 | |
159 | return page; |
160 | } |
161 | |
162 | /* |
163 | * Check if a potentially blocking operations needs to dip into the atomic |
164 | * pools for the given device/gfp. |
165 | */ |
166 | static bool dma_direct_use_pool(struct device *dev, gfp_t gfp) |
167 | { |
168 | return !gfpflags_allow_blocking(gfp_flags: gfp) && !is_swiotlb_for_alloc(dev); |
169 | } |
170 | |
171 | static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, |
172 | dma_addr_t *dma_handle, gfp_t gfp) |
173 | { |
174 | struct page *page; |
175 | u64 phys_limit; |
176 | void *ret; |
177 | |
178 | if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))) |
179 | return NULL; |
180 | |
181 | gfp |= dma_direct_optimal_gfp_mask(dev, phys_limit: &phys_limit); |
182 | page = dma_alloc_from_pool(dev, size, cpu_addr: &ret, flags: gfp, phys_addr_ok: dma_coherent_ok); |
183 | if (!page) |
184 | return NULL; |
185 | *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); |
186 | return ret; |
187 | } |
188 | |
189 | static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size, |
190 | dma_addr_t *dma_handle, gfp_t gfp) |
191 | { |
192 | struct page *page; |
193 | |
194 | page = __dma_direct_alloc_pages(dev, size, gfp: gfp & ~__GFP_ZERO, allow_highmem: true); |
195 | if (!page) |
196 | return NULL; |
197 | |
198 | /* remove any dirty cache lines on the kernel alias */ |
199 | if (!PageHighMem(page)) |
200 | arch_dma_prep_coherent(page, size); |
201 | |
202 | /* return the page pointer as the opaque cookie */ |
203 | *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); |
204 | return page; |
205 | } |
206 | |
207 | void *dma_direct_alloc(struct device *dev, size_t size, |
208 | dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) |
209 | { |
210 | bool remap = false, set_uncached = false; |
211 | struct page *page; |
212 | void *ret; |
213 | |
214 | size = PAGE_ALIGN(size); |
215 | if (attrs & DMA_ATTR_NO_WARN) |
216 | gfp |= __GFP_NOWARN; |
217 | |
218 | if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && |
219 | !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) |
220 | return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp); |
221 | |
222 | if (!dev_is_dma_coherent(dev)) { |
223 | if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) && |
224 | !is_swiotlb_for_alloc(dev)) |
225 | return arch_dma_alloc(dev, size, dma_handle, gfp, |
226 | attrs); |
227 | |
228 | /* |
229 | * If there is a global pool, always allocate from it for |
230 | * non-coherent devices. |
231 | */ |
232 | if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL)) |
233 | return dma_alloc_from_global_coherent(dev, size, |
234 | dma_handle); |
235 | |
236 | /* |
237 | * Otherwise we require the architecture to either be able to |
238 | * mark arbitrary parts of the kernel direct mapping uncached, |
239 | * or remapped it uncached. |
240 | */ |
241 | set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED); |
242 | remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP); |
243 | if (!set_uncached && !remap) { |
244 | pr_warn_once("coherent DMA allocations not supported on this platform.\n"); |
245 | return NULL; |
246 | } |
247 | } |
248 | |
249 | /* |
250 | * Remapping or decrypting memory may block, allocate the memory from |
251 | * the atomic pools instead if we aren't allowed block. |
252 | */ |
253 | if ((remap || force_dma_unencrypted(dev)) && |
254 | dma_direct_use_pool(dev, gfp)) |
255 | return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); |
256 | |
257 | /* we always manually zero the memory once we are done */ |
258 | page = __dma_direct_alloc_pages(dev, size, gfp: gfp & ~__GFP_ZERO, allow_highmem: true); |
259 | if (!page) |
260 | return NULL; |
261 | |
262 | /* |
263 | * dma_alloc_contiguous can return highmem pages depending on a |
264 | * combination the cma= arguments and per-arch setup. These need to be |
265 | * remapped to return a kernel virtual address. |
266 | */ |
267 | if (PageHighMem(page)) { |
268 | remap = true; |
269 | set_uncached = false; |
270 | } |
271 | |
272 | if (remap) { |
273 | pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); |
274 | |
275 | if (force_dma_unencrypted(dev)) |
276 | prot = pgprot_decrypted(prot); |
277 | |
278 | /* remove any dirty cache lines on the kernel alias */ |
279 | arch_dma_prep_coherent(page, size); |
280 | |
281 | /* create a coherent mapping */ |
282 | ret = dma_common_contiguous_remap(page, size, prot, |
283 | caller: __builtin_return_address(0)); |
284 | if (!ret) |
285 | goto out_free_pages; |
286 | } else { |
287 | ret = page_address(page); |
288 | if (dma_set_decrypted(dev, vaddr: ret, size)) |
289 | goto out_leak_pages; |
290 | } |
291 | |
292 | memset(ret, 0, size); |
293 | |
294 | if (set_uncached) { |
295 | arch_dma_prep_coherent(page, size); |
296 | ret = arch_dma_set_uncached(addr: ret, size); |
297 | if (IS_ERR(ptr: ret)) |
298 | goto out_encrypt_pages; |
299 | } |
300 | |
301 | *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); |
302 | return ret; |
303 | |
304 | out_encrypt_pages: |
305 | if (dma_set_encrypted(dev, page_address(page), size)) |
306 | return NULL; |
307 | out_free_pages: |
308 | __dma_direct_free_pages(dev, page, size); |
309 | return NULL; |
310 | out_leak_pages: |
311 | return NULL; |
312 | } |
313 | |
314 | void dma_direct_free(struct device *dev, size_t size, |
315 | void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) |
316 | { |
317 | unsigned int page_order = get_order(size); |
318 | |
319 | if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && |
320 | !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) { |
321 | /* cpu_addr is a struct page cookie, not a kernel address */ |
322 | dma_free_contiguous(dev, page: cpu_addr, size); |
323 | return; |
324 | } |
325 | |
326 | if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) && |
327 | !dev_is_dma_coherent(dev) && |
328 | !is_swiotlb_for_alloc(dev)) { |
329 | arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); |
330 | return; |
331 | } |
332 | |
333 | if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && |
334 | !dev_is_dma_coherent(dev)) { |
335 | if (!dma_release_from_global_coherent(order: page_order, vaddr: cpu_addr)) |
336 | WARN_ON_ONCE(1); |
337 | return; |
338 | } |
339 | |
340 | /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ |
341 | if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && |
342 | dma_free_from_pool(dev, start: cpu_addr, PAGE_ALIGN(size))) |
343 | return; |
344 | |
345 | if (is_vmalloc_addr(x: cpu_addr)) { |
346 | vunmap(addr: cpu_addr); |
347 | } else { |
348 | if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) |
349 | arch_dma_clear_uncached(addr: cpu_addr, size); |
350 | if (dma_set_encrypted(dev, vaddr: cpu_addr, size)) |
351 | return; |
352 | } |
353 | |
354 | __dma_direct_free_pages(dev, page: dma_direct_to_page(dev, dma_addr), size); |
355 | } |
356 | |
357 | struct page *dma_direct_alloc_pages(struct device *dev, size_t size, |
358 | dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) |
359 | { |
360 | struct page *page; |
361 | void *ret; |
362 | |
363 | if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) |
364 | return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); |
365 | |
366 | page = __dma_direct_alloc_pages(dev, size, gfp, allow_highmem: false); |
367 | if (!page) |
368 | return NULL; |
369 | |
370 | ret = page_address(page); |
371 | if (dma_set_decrypted(dev, vaddr: ret, size)) |
372 | goto out_leak_pages; |
373 | memset(ret, 0, size); |
374 | *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); |
375 | return page; |
376 | out_leak_pages: |
377 | return NULL; |
378 | } |
379 | |
380 | void dma_direct_free_pages(struct device *dev, size_t size, |
381 | struct page *page, dma_addr_t dma_addr, |
382 | enum dma_data_direction dir) |
383 | { |
384 | void *vaddr = page_address(page); |
385 | |
386 | /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ |
387 | if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && |
388 | dma_free_from_pool(dev, start: vaddr, size)) |
389 | return; |
390 | |
391 | if (dma_set_encrypted(dev, vaddr, size)) |
392 | return; |
393 | __dma_direct_free_pages(dev, page, size); |
394 | } |
395 | |
396 | #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ |
397 | defined(CONFIG_SWIOTLB) |
398 | void dma_direct_sync_sg_for_device(struct device *dev, |
399 | struct scatterlist *sgl, int nents, enum dma_data_direction dir) |
400 | { |
401 | struct scatterlist *sg; |
402 | int i; |
403 | |
404 | for_each_sg(sgl, sg, nents, i) { |
405 | phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); |
406 | |
407 | if (unlikely(is_swiotlb_buffer(dev, paddr))) |
408 | swiotlb_sync_single_for_device(dev, tlb_addr: paddr, size: sg->length, |
409 | dir); |
410 | |
411 | if (!dev_is_dma_coherent(dev)) |
412 | arch_sync_dma_for_device(paddr, size: sg->length, |
413 | dir); |
414 | } |
415 | } |
416 | #endif |
417 | |
418 | #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ |
419 | defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ |
420 | defined(CONFIG_SWIOTLB) |
421 | void dma_direct_sync_sg_for_cpu(struct device *dev, |
422 | struct scatterlist *sgl, int nents, enum dma_data_direction dir) |
423 | { |
424 | struct scatterlist *sg; |
425 | int i; |
426 | |
427 | for_each_sg(sgl, sg, nents, i) { |
428 | phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); |
429 | |
430 | if (!dev_is_dma_coherent(dev)) |
431 | arch_sync_dma_for_cpu(paddr, size: sg->length, dir); |
432 | |
433 | if (unlikely(is_swiotlb_buffer(dev, paddr))) |
434 | swiotlb_sync_single_for_cpu(dev, tlb_addr: paddr, size: sg->length, |
435 | dir); |
436 | |
437 | if (dir == DMA_FROM_DEVICE) |
438 | arch_dma_mark_clean(paddr, size: sg->length); |
439 | } |
440 | |
441 | if (!dev_is_dma_coherent(dev)) |
442 | arch_sync_dma_for_cpu_all(); |
443 | } |
444 | |
445 | /* |
446 | * Unmaps segments, except for ones marked as pci_p2pdma which do not |
447 | * require any further action as they contain a bus address. |
448 | */ |
449 | void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, |
450 | int nents, enum dma_data_direction dir, unsigned long attrs) |
451 | { |
452 | struct scatterlist *sg; |
453 | int i; |
454 | |
455 | for_each_sg(sgl, sg, nents, i) { |
456 | if (sg_dma_is_bus_address(sg)) |
457 | sg_dma_unmark_bus_address(sg); |
458 | else |
459 | dma_direct_unmap_page(dev, addr: sg->dma_address, |
460 | sg_dma_len(sg), dir, attrs); |
461 | } |
462 | } |
463 | #endif |
464 | |
465 | int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, |
466 | enum dma_data_direction dir, unsigned long attrs) |
467 | { |
468 | struct pci_p2pdma_map_state p2pdma_state = {}; |
469 | enum pci_p2pdma_map_type map; |
470 | struct scatterlist *sg; |
471 | int i, ret; |
472 | |
473 | for_each_sg(sgl, sg, nents, i) { |
474 | if (is_pci_p2pdma_page(page: sg_page(sg))) { |
475 | map = pci_p2pdma_map_segment(state: &p2pdma_state, dev, sg); |
476 | switch (map) { |
477 | case PCI_P2PDMA_MAP_BUS_ADDR: |
478 | continue; |
479 | case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: |
480 | /* |
481 | * Any P2P mapping that traverses the PCI |
482 | * host bridge must be mapped with CPU physical |
483 | * address and not PCI bus addresses. This is |
484 | * done with dma_direct_map_page() below. |
485 | */ |
486 | break; |
487 | default: |
488 | ret = -EREMOTEIO; |
489 | goto out_unmap; |
490 | } |
491 | } |
492 | |
493 | sg->dma_address = dma_direct_map_page(dev, page: sg_page(sg), |
494 | offset: sg->offset, size: sg->length, dir, attrs); |
495 | if (sg->dma_address == DMA_MAPPING_ERROR) { |
496 | ret = -EIO; |
497 | goto out_unmap; |
498 | } |
499 | sg_dma_len(sg) = sg->length; |
500 | } |
501 | |
502 | return nents; |
503 | |
504 | out_unmap: |
505 | dma_direct_unmap_sg(dev, sgl, nents: i, dir, attrs: attrs | DMA_ATTR_SKIP_CPU_SYNC); |
506 | return ret; |
507 | } |
508 | |
509 | dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, |
510 | size_t size, enum dma_data_direction dir, unsigned long attrs) |
511 | { |
512 | dma_addr_t dma_addr = paddr; |
513 | |
514 | if (unlikely(!dma_capable(dev, dma_addr, size, false))) { |
515 | dev_err_once(dev, |
516 | "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", |
517 | &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); |
518 | WARN_ON_ONCE(1); |
519 | return DMA_MAPPING_ERROR; |
520 | } |
521 | |
522 | return dma_addr; |
523 | } |
524 | |
525 | int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, |
526 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
527 | unsigned long attrs) |
528 | { |
529 | struct page *page = dma_direct_to_page(dev, dma_addr); |
530 | int ret; |
531 | |
532 | ret = sg_alloc_table(sgt, 1, GFP_KERNEL); |
533 | if (!ret) |
534 | sg_set_page(sg: sgt->sgl, page, PAGE_ALIGN(size), offset: 0); |
535 | return ret; |
536 | } |
537 | |
538 | bool dma_direct_can_mmap(struct device *dev) |
539 | { |
540 | return dev_is_dma_coherent(dev) || |
541 | IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); |
542 | } |
543 | |
544 | int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, |
545 | void *cpu_addr, dma_addr_t dma_addr, size_t size, |
546 | unsigned long attrs) |
547 | { |
548 | unsigned long user_count = vma_pages(vma); |
549 | unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
550 | unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); |
551 | int ret = -ENXIO; |
552 | |
553 | vma->vm_page_prot = dma_pgprot(dev, prot: vma->vm_page_prot, attrs); |
554 | if (force_dma_unencrypted(dev)) |
555 | vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot); |
556 | |
557 | if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, ret: &ret)) |
558 | return ret; |
559 | if (dma_mmap_from_global_coherent(vma, cpu_addr, size, ret: &ret)) |
560 | return ret; |
561 | |
562 | if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) |
563 | return -ENXIO; |
564 | return remap_pfn_range(vma, addr: vma->vm_start, pfn: pfn + vma->vm_pgoff, |
565 | size: user_count << PAGE_SHIFT, vma->vm_page_prot); |
566 | } |
567 | |
568 | int dma_direct_supported(struct device *dev, u64 mask) |
569 | { |
570 | u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; |
571 | |
572 | /* |
573 | * Because 32-bit DMA masks are so common we expect every architecture |
574 | * to be able to satisfy them - either by not supporting more physical |
575 | * memory, or by providing a ZONE_DMA32. If neither is the case, the |
576 | * architecture needs to use an IOMMU instead of the direct mapping. |
577 | */ |
578 | if (mask >= DMA_BIT_MASK(32)) |
579 | return 1; |
580 | |
581 | /* |
582 | * This check needs to be against the actual bit mask value, so use |
583 | * phys_to_dma_unencrypted() here so that the SME encryption mask isn't |
584 | * part of the check. |
585 | */ |
586 | if (IS_ENABLED(CONFIG_ZONE_DMA)) |
587 | min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits)); |
588 | return mask >= phys_to_dma_unencrypted(dev, paddr: min_mask); |
589 | } |
590 | |
591 | /* |
592 | * To check whether all ram resource ranges are covered by dma range map |
593 | * Returns 0 when further check is needed |
594 | * Returns 1 if there is some RAM range can't be covered by dma_range_map |
595 | */ |
596 | static int check_ram_in_range_map(unsigned long start_pfn, |
597 | unsigned long nr_pages, void *data) |
598 | { |
599 | unsigned long end_pfn = start_pfn + nr_pages; |
600 | const struct bus_dma_region *bdr = NULL; |
601 | const struct bus_dma_region *m; |
602 | struct device *dev = data; |
603 | |
604 | while (start_pfn < end_pfn) { |
605 | for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) { |
606 | unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start); |
607 | |
608 | if (start_pfn >= cpu_start_pfn && |
609 | start_pfn - cpu_start_pfn < PFN_DOWN(m->size)) { |
610 | bdr = m; |
611 | break; |
612 | } |
613 | } |
614 | if (!bdr) |
615 | return 1; |
616 | |
617 | start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size); |
618 | } |
619 | |
620 | return 0; |
621 | } |
622 | |
623 | bool dma_direct_all_ram_mapped(struct device *dev) |
624 | { |
625 | if (!dev->dma_range_map) |
626 | return true; |
627 | return !walk_system_ram_range(start_pfn: 0, PFN_DOWN(ULONG_MAX) + 1, arg: dev, |
628 | func: check_ram_in_range_map); |
629 | } |
630 | |
631 | size_t dma_direct_max_mapping_size(struct device *dev) |
632 | { |
633 | /* If SWIOTLB is active, use its maximum mapping size */ |
634 | if (is_swiotlb_active(dev) && |
635 | (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev))) |
636 | return swiotlb_max_mapping_size(dev); |
637 | return SIZE_MAX; |
638 | } |
639 | |
640 | bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) |
641 | { |
642 | return !dev_is_dma_coherent(dev) || |
643 | is_swiotlb_buffer(dev, paddr: dma_to_phys(dev, dma_addr)); |
644 | } |
645 | |
646 | /** |
647 | * dma_direct_set_offset - Assign scalar offset for a single DMA range. |
648 | * @dev: device pointer; needed to "own" the alloced memory. |
649 | * @cpu_start: beginning of memory region covered by this offset. |
650 | * @dma_start: beginning of DMA/PCI region covered by this offset. |
651 | * @size: size of the region. |
652 | * |
653 | * This is for the simple case of a uniform offset which cannot |
654 | * be discovered by "dma-ranges". |
655 | * |
656 | * It returns -ENOMEM if out of memory, -EINVAL if a map |
657 | * already exists, 0 otherwise. |
658 | * |
659 | * Note: any call to this from a driver is a bug. The mapping needs |
660 | * to be described by the device tree or other firmware interfaces. |
661 | */ |
662 | int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, |
663 | dma_addr_t dma_start, u64 size) |
664 | { |
665 | struct bus_dma_region *map; |
666 | u64 offset = (u64)cpu_start - (u64)dma_start; |
667 | |
668 | if (dev->dma_range_map) { |
669 | dev_err(dev, "attempt to add DMA range to existing map\n"); |
670 | return -EINVAL; |
671 | } |
672 | |
673 | if (!offset) |
674 | return 0; |
675 | |
676 | map = kcalloc(n: 2, size: sizeof(*map), GFP_KERNEL); |
677 | if (!map) |
678 | return -ENOMEM; |
679 | map[0].cpu_start = cpu_start; |
680 | map[0].dma_start = dma_start; |
681 | map[0].size = size; |
682 | dev->dma_range_map = map; |
683 | return 0; |
684 | } |
685 |
Definitions
- zone_dma_bits
- phys_to_dma_direct
- dma_direct_to_page
- dma_direct_get_required_mask
- dma_direct_optimal_gfp_mask
- dma_coherent_ok
- dma_set_decrypted
- dma_set_encrypted
- __dma_direct_free_pages
- dma_direct_alloc_swiotlb
- __dma_direct_alloc_pages
- dma_direct_use_pool
- dma_direct_alloc_from_pool
- dma_direct_alloc_no_mapping
- dma_direct_alloc
- dma_direct_free
- dma_direct_alloc_pages
- dma_direct_free_pages
- dma_direct_sync_sg_for_device
- dma_direct_sync_sg_for_cpu
- dma_direct_unmap_sg
- dma_direct_map_sg
- dma_direct_map_resource
- dma_direct_get_sgtable
- dma_direct_can_mmap
- dma_direct_mmap
- dma_direct_supported
- check_ram_in_range_map
- dma_direct_all_ram_mapped
- dma_direct_max_mapping_size
- dma_direct_need_sync
Improve your Profiling and Debugging skills
Find out more