1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> |
4 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
5 | * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
6 | * |
7 | * High-resolution kernel timers |
8 | * |
9 | * In contrast to the low-resolution timeout API, aka timer wheel, |
10 | * hrtimers provide finer resolution and accuracy depending on system |
11 | * configuration and capabilities. |
12 | * |
13 | * Started by: Thomas Gleixner and Ingo Molnar |
14 | * |
15 | * Credits: |
16 | * Based on the original timer wheel code |
17 | * |
18 | * Help, testing, suggestions, bugfixes, improvements were |
19 | * provided by: |
20 | * |
21 | * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel |
22 | * et. al. |
23 | */ |
24 | |
25 | #include <linux/cpu.h> |
26 | #include <linux/export.h> |
27 | #include <linux/percpu.h> |
28 | #include <linux/hrtimer.h> |
29 | #include <linux/notifier.h> |
30 | #include <linux/syscalls.h> |
31 | #include <linux/interrupt.h> |
32 | #include <linux/tick.h> |
33 | #include <linux/err.h> |
34 | #include <linux/debugobjects.h> |
35 | #include <linux/sched/signal.h> |
36 | #include <linux/sched/sysctl.h> |
37 | #include <linux/sched/rt.h> |
38 | #include <linux/sched/deadline.h> |
39 | #include <linux/sched/nohz.h> |
40 | #include <linux/sched/debug.h> |
41 | #include <linux/sched/isolation.h> |
42 | #include <linux/timer.h> |
43 | #include <linux/freezer.h> |
44 | #include <linux/compat.h> |
45 | |
46 | #include <linux/uaccess.h> |
47 | |
48 | #include <trace/events/timer.h> |
49 | |
50 | #include "tick-internal.h" |
51 | |
52 | /* |
53 | * Masks for selecting the soft and hard context timers from |
54 | * cpu_base->active |
55 | */ |
56 | #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) |
57 | #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) |
58 | #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) |
59 | #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) |
60 | |
61 | /* |
62 | * The timer bases: |
63 | * |
64 | * There are more clockids than hrtimer bases. Thus, we index |
65 | * into the timer bases by the hrtimer_base_type enum. When trying |
66 | * to reach a base using a clockid, hrtimer_clockid_to_base() |
67 | * is used to convert from clockid to the proper hrtimer_base_type. |
68 | */ |
69 | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = |
70 | { |
71 | .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), |
72 | .clock_base = |
73 | { |
74 | { |
75 | .index = HRTIMER_BASE_MONOTONIC, |
76 | .clockid = CLOCK_MONOTONIC, |
77 | .get_time = &ktime_get, |
78 | }, |
79 | { |
80 | .index = HRTIMER_BASE_REALTIME, |
81 | .clockid = CLOCK_REALTIME, |
82 | .get_time = &ktime_get_real, |
83 | }, |
84 | { |
85 | .index = HRTIMER_BASE_BOOTTIME, |
86 | .clockid = CLOCK_BOOTTIME, |
87 | .get_time = &ktime_get_boottime, |
88 | }, |
89 | { |
90 | .index = HRTIMER_BASE_TAI, |
91 | .clockid = CLOCK_TAI, |
92 | .get_time = &ktime_get_clocktai, |
93 | }, |
94 | { |
95 | .index = HRTIMER_BASE_MONOTONIC_SOFT, |
96 | .clockid = CLOCK_MONOTONIC, |
97 | .get_time = &ktime_get, |
98 | }, |
99 | { |
100 | .index = HRTIMER_BASE_REALTIME_SOFT, |
101 | .clockid = CLOCK_REALTIME, |
102 | .get_time = &ktime_get_real, |
103 | }, |
104 | { |
105 | .index = HRTIMER_BASE_BOOTTIME_SOFT, |
106 | .clockid = CLOCK_BOOTTIME, |
107 | .get_time = &ktime_get_boottime, |
108 | }, |
109 | { |
110 | .index = HRTIMER_BASE_TAI_SOFT, |
111 | .clockid = CLOCK_TAI, |
112 | .get_time = &ktime_get_clocktai, |
113 | }, |
114 | } |
115 | }; |
116 | |
117 | static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { |
118 | /* Make sure we catch unsupported clockids */ |
119 | [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, |
120 | |
121 | [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, |
122 | [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, |
123 | [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, |
124 | [CLOCK_TAI] = HRTIMER_BASE_TAI, |
125 | }; |
126 | |
127 | /* |
128 | * Functions and macros which are different for UP/SMP systems are kept in a |
129 | * single place |
130 | */ |
131 | #ifdef CONFIG_SMP |
132 | |
133 | /* |
134 | * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() |
135 | * such that hrtimer_callback_running() can unconditionally dereference |
136 | * timer->base->cpu_base |
137 | */ |
138 | static struct hrtimer_cpu_base migration_cpu_base = { |
139 | .clock_base = { { |
140 | .cpu_base = &migration_cpu_base, |
141 | .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, |
142 | &migration_cpu_base.lock), |
143 | }, }, |
144 | }; |
145 | |
146 | #define migration_base migration_cpu_base.clock_base[0] |
147 | |
148 | static inline bool is_migration_base(struct hrtimer_clock_base *base) |
149 | { |
150 | return base == &migration_base; |
151 | } |
152 | |
153 | /* |
154 | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock |
155 | * means that all timers which are tied to this base via timer->base are |
156 | * locked, and the base itself is locked too. |
157 | * |
158 | * So __run_timers/migrate_timers can safely modify all timers which could |
159 | * be found on the lists/queues. |
160 | * |
161 | * When the timer's base is locked, and the timer removed from list, it is |
162 | * possible to set timer->base = &migration_base and drop the lock: the timer |
163 | * remains locked. |
164 | */ |
165 | static |
166 | struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, |
167 | unsigned long *flags) |
168 | __acquires(&timer->base->lock) |
169 | { |
170 | struct hrtimer_clock_base *base; |
171 | |
172 | for (;;) { |
173 | base = READ_ONCE(timer->base); |
174 | if (likely(base != &migration_base)) { |
175 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
176 | if (likely(base == timer->base)) |
177 | return base; |
178 | /* The timer has migrated to another CPU: */ |
179 | raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); |
180 | } |
181 | cpu_relax(); |
182 | } |
183 | } |
184 | |
185 | /* |
186 | * We do not migrate the timer when it is expiring before the next |
187 | * event on the target cpu. When high resolution is enabled, we cannot |
188 | * reprogram the target cpu hardware and we would cause it to fire |
189 | * late. To keep it simple, we handle the high resolution enabled and |
190 | * disabled case similar. |
191 | * |
192 | * Called with cpu_base->lock of target cpu held. |
193 | */ |
194 | static int |
195 | hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) |
196 | { |
197 | ktime_t expires; |
198 | |
199 | expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); |
200 | return expires < new_base->cpu_base->expires_next; |
201 | } |
202 | |
203 | static inline |
204 | struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, |
205 | int pinned) |
206 | { |
207 | #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) |
208 | if (static_branch_likely(&timers_migration_enabled) && !pinned) |
209 | return &per_cpu(hrtimer_bases, get_nohz_timer_target()); |
210 | #endif |
211 | return base; |
212 | } |
213 | |
214 | /* |
215 | * We switch the timer base to a power-optimized selected CPU target, |
216 | * if: |
217 | * - NO_HZ_COMMON is enabled |
218 | * - timer migration is enabled |
219 | * - the timer callback is not running |
220 | * - the timer is not the first expiring timer on the new target |
221 | * |
222 | * If one of the above requirements is not fulfilled we move the timer |
223 | * to the current CPU or leave it on the previously assigned CPU if |
224 | * the timer callback is currently running. |
225 | */ |
226 | static inline struct hrtimer_clock_base * |
227 | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, |
228 | int pinned) |
229 | { |
230 | struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; |
231 | struct hrtimer_clock_base *new_base; |
232 | int basenum = base->index; |
233 | |
234 | this_cpu_base = this_cpu_ptr(&hrtimer_bases); |
235 | new_cpu_base = get_target_base(base: this_cpu_base, pinned); |
236 | again: |
237 | new_base = &new_cpu_base->clock_base[basenum]; |
238 | |
239 | if (base != new_base) { |
240 | /* |
241 | * We are trying to move timer to new_base. |
242 | * However we can't change timer's base while it is running, |
243 | * so we keep it on the same CPU. No hassle vs. reprogramming |
244 | * the event source in the high resolution case. The softirq |
245 | * code will take care of this when the timer function has |
246 | * completed. There is no conflict as we hold the lock until |
247 | * the timer is enqueued. |
248 | */ |
249 | if (unlikely(hrtimer_callback_running(timer))) |
250 | return base; |
251 | |
252 | /* See the comment in lock_hrtimer_base() */ |
253 | WRITE_ONCE(timer->base, &migration_base); |
254 | raw_spin_unlock(&base->cpu_base->lock); |
255 | raw_spin_lock(&new_base->cpu_base->lock); |
256 | |
257 | if (new_cpu_base != this_cpu_base && |
258 | hrtimer_check_target(timer, new_base)) { |
259 | raw_spin_unlock(&new_base->cpu_base->lock); |
260 | raw_spin_lock(&base->cpu_base->lock); |
261 | new_cpu_base = this_cpu_base; |
262 | WRITE_ONCE(timer->base, base); |
263 | goto again; |
264 | } |
265 | WRITE_ONCE(timer->base, new_base); |
266 | } else { |
267 | if (new_cpu_base != this_cpu_base && |
268 | hrtimer_check_target(timer, new_base)) { |
269 | new_cpu_base = this_cpu_base; |
270 | goto again; |
271 | } |
272 | } |
273 | return new_base; |
274 | } |
275 | |
276 | #else /* CONFIG_SMP */ |
277 | |
278 | static inline bool is_migration_base(struct hrtimer_clock_base *base) |
279 | { |
280 | return false; |
281 | } |
282 | |
283 | static inline struct hrtimer_clock_base * |
284 | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
285 | __acquires(&timer->base->cpu_base->lock) |
286 | { |
287 | struct hrtimer_clock_base *base = timer->base; |
288 | |
289 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
290 | |
291 | return base; |
292 | } |
293 | |
294 | # define switch_hrtimer_base(t, b, p) (b) |
295 | |
296 | #endif /* !CONFIG_SMP */ |
297 | |
298 | /* |
299 | * Functions for the union type storage format of ktime_t which are |
300 | * too large for inlining: |
301 | */ |
302 | #if BITS_PER_LONG < 64 |
303 | /* |
304 | * Divide a ktime value by a nanosecond value |
305 | */ |
306 | s64 __ktime_divns(const ktime_t kt, s64 div) |
307 | { |
308 | int sft = 0; |
309 | s64 dclc; |
310 | u64 tmp; |
311 | |
312 | dclc = ktime_to_ns(kt); |
313 | tmp = dclc < 0 ? -dclc : dclc; |
314 | |
315 | /* Make sure the divisor is less than 2^32: */ |
316 | while (div >> 32) { |
317 | sft++; |
318 | div >>= 1; |
319 | } |
320 | tmp >>= sft; |
321 | do_div(tmp, (u32) div); |
322 | return dclc < 0 ? -tmp : tmp; |
323 | } |
324 | EXPORT_SYMBOL_GPL(__ktime_divns); |
325 | #endif /* BITS_PER_LONG >= 64 */ |
326 | |
327 | /* |
328 | * Add two ktime values and do a safety check for overflow: |
329 | */ |
330 | ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) |
331 | { |
332 | ktime_t res = ktime_add_unsafe(lhs, rhs); |
333 | |
334 | /* |
335 | * We use KTIME_SEC_MAX here, the maximum timeout which we can |
336 | * return to user space in a timespec: |
337 | */ |
338 | if (res < 0 || res < lhs || res < rhs) |
339 | res = ktime_set(KTIME_SEC_MAX, nsecs: 0); |
340 | |
341 | return res; |
342 | } |
343 | |
344 | EXPORT_SYMBOL_GPL(ktime_add_safe); |
345 | |
346 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
347 | |
348 | static const struct debug_obj_descr hrtimer_debug_descr; |
349 | |
350 | static void *hrtimer_debug_hint(void *addr) |
351 | { |
352 | return ((struct hrtimer *) addr)->function; |
353 | } |
354 | |
355 | /* |
356 | * fixup_init is called when: |
357 | * - an active object is initialized |
358 | */ |
359 | static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) |
360 | { |
361 | struct hrtimer *timer = addr; |
362 | |
363 | switch (state) { |
364 | case ODEBUG_STATE_ACTIVE: |
365 | hrtimer_cancel(timer); |
366 | debug_object_init(addr: timer, descr: &hrtimer_debug_descr); |
367 | return true; |
368 | default: |
369 | return false; |
370 | } |
371 | } |
372 | |
373 | /* |
374 | * fixup_activate is called when: |
375 | * - an active object is activated |
376 | * - an unknown non-static object is activated |
377 | */ |
378 | static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) |
379 | { |
380 | switch (state) { |
381 | case ODEBUG_STATE_ACTIVE: |
382 | WARN_ON(1); |
383 | fallthrough; |
384 | default: |
385 | return false; |
386 | } |
387 | } |
388 | |
389 | /* |
390 | * fixup_free is called when: |
391 | * - an active object is freed |
392 | */ |
393 | static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) |
394 | { |
395 | struct hrtimer *timer = addr; |
396 | |
397 | switch (state) { |
398 | case ODEBUG_STATE_ACTIVE: |
399 | hrtimer_cancel(timer); |
400 | debug_object_free(addr: timer, descr: &hrtimer_debug_descr); |
401 | return true; |
402 | default: |
403 | return false; |
404 | } |
405 | } |
406 | |
407 | static const struct debug_obj_descr hrtimer_debug_descr = { |
408 | .name = "hrtimer", |
409 | .debug_hint = hrtimer_debug_hint, |
410 | .fixup_init = hrtimer_fixup_init, |
411 | .fixup_activate = hrtimer_fixup_activate, |
412 | .fixup_free = hrtimer_fixup_free, |
413 | }; |
414 | |
415 | static inline void debug_hrtimer_init(struct hrtimer *timer) |
416 | { |
417 | debug_object_init(addr: timer, descr: &hrtimer_debug_descr); |
418 | } |
419 | |
420 | static inline void debug_hrtimer_activate(struct hrtimer *timer, |
421 | enum hrtimer_mode mode) |
422 | { |
423 | debug_object_activate(addr: timer, descr: &hrtimer_debug_descr); |
424 | } |
425 | |
426 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) |
427 | { |
428 | debug_object_deactivate(addr: timer, descr: &hrtimer_debug_descr); |
429 | } |
430 | |
431 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
432 | enum hrtimer_mode mode); |
433 | |
434 | void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, |
435 | enum hrtimer_mode mode) |
436 | { |
437 | debug_object_init_on_stack(addr: timer, descr: &hrtimer_debug_descr); |
438 | __hrtimer_init(timer, clock_id, mode); |
439 | } |
440 | EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); |
441 | |
442 | static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, |
443 | clockid_t clock_id, enum hrtimer_mode mode); |
444 | |
445 | void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, |
446 | clockid_t clock_id, enum hrtimer_mode mode) |
447 | { |
448 | debug_object_init_on_stack(addr: &sl->timer, descr: &hrtimer_debug_descr); |
449 | __hrtimer_init_sleeper(sl, clock_id, mode); |
450 | } |
451 | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack); |
452 | |
453 | void destroy_hrtimer_on_stack(struct hrtimer *timer) |
454 | { |
455 | debug_object_free(addr: timer, descr: &hrtimer_debug_descr); |
456 | } |
457 | EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); |
458 | |
459 | #else |
460 | |
461 | static inline void debug_hrtimer_init(struct hrtimer *timer) { } |
462 | static inline void debug_hrtimer_activate(struct hrtimer *timer, |
463 | enum hrtimer_mode mode) { } |
464 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } |
465 | #endif |
466 | |
467 | static inline void |
468 | debug_init(struct hrtimer *timer, clockid_t clockid, |
469 | enum hrtimer_mode mode) |
470 | { |
471 | debug_hrtimer_init(timer); |
472 | trace_hrtimer_init(hrtimer: timer, clockid, mode); |
473 | } |
474 | |
475 | static inline void debug_activate(struct hrtimer *timer, |
476 | enum hrtimer_mode mode) |
477 | { |
478 | debug_hrtimer_activate(timer, mode); |
479 | trace_hrtimer_start(hrtimer: timer, mode); |
480 | } |
481 | |
482 | static inline void debug_deactivate(struct hrtimer *timer) |
483 | { |
484 | debug_hrtimer_deactivate(timer); |
485 | trace_hrtimer_cancel(hrtimer: timer); |
486 | } |
487 | |
488 | static struct hrtimer_clock_base * |
489 | __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) |
490 | { |
491 | unsigned int idx; |
492 | |
493 | if (!*active) |
494 | return NULL; |
495 | |
496 | idx = __ffs(*active); |
497 | *active &= ~(1U << idx); |
498 | |
499 | return &cpu_base->clock_base[idx]; |
500 | } |
501 | |
502 | #define for_each_active_base(base, cpu_base, active) \ |
503 | while ((base = __next_base((cpu_base), &(active)))) |
504 | |
505 | static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, |
506 | const struct hrtimer *exclude, |
507 | unsigned int active, |
508 | ktime_t expires_next) |
509 | { |
510 | struct hrtimer_clock_base *base; |
511 | ktime_t expires; |
512 | |
513 | for_each_active_base(base, cpu_base, active) { |
514 | struct timerqueue_node *next; |
515 | struct hrtimer *timer; |
516 | |
517 | next = timerqueue_getnext(head: &base->active); |
518 | timer = container_of(next, struct hrtimer, node); |
519 | if (timer == exclude) { |
520 | /* Get to the next timer in the queue. */ |
521 | next = timerqueue_iterate_next(node: next); |
522 | if (!next) |
523 | continue; |
524 | |
525 | timer = container_of(next, struct hrtimer, node); |
526 | } |
527 | expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
528 | if (expires < expires_next) { |
529 | expires_next = expires; |
530 | |
531 | /* Skip cpu_base update if a timer is being excluded. */ |
532 | if (exclude) |
533 | continue; |
534 | |
535 | if (timer->is_soft) |
536 | cpu_base->softirq_next_timer = timer; |
537 | else |
538 | cpu_base->next_timer = timer; |
539 | } |
540 | } |
541 | /* |
542 | * clock_was_set() might have changed base->offset of any of |
543 | * the clock bases so the result might be negative. Fix it up |
544 | * to prevent a false positive in clockevents_program_event(). |
545 | */ |
546 | if (expires_next < 0) |
547 | expires_next = 0; |
548 | return expires_next; |
549 | } |
550 | |
551 | /* |
552 | * Recomputes cpu_base::*next_timer and returns the earliest expires_next |
553 | * but does not set cpu_base::*expires_next, that is done by |
554 | * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating |
555 | * cpu_base::*expires_next right away, reprogramming logic would no longer |
556 | * work. |
557 | * |
558 | * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, |
559 | * those timers will get run whenever the softirq gets handled, at the end of |
560 | * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. |
561 | * |
562 | * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. |
563 | * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual |
564 | * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. |
565 | * |
566 | * @active_mask must be one of: |
567 | * - HRTIMER_ACTIVE_ALL, |
568 | * - HRTIMER_ACTIVE_SOFT, or |
569 | * - HRTIMER_ACTIVE_HARD. |
570 | */ |
571 | static ktime_t |
572 | __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) |
573 | { |
574 | unsigned int active; |
575 | struct hrtimer *next_timer = NULL; |
576 | ktime_t expires_next = KTIME_MAX; |
577 | |
578 | if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { |
579 | active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; |
580 | cpu_base->softirq_next_timer = NULL; |
581 | expires_next = __hrtimer_next_event_base(cpu_base, NULL, |
582 | active, KTIME_MAX); |
583 | |
584 | next_timer = cpu_base->softirq_next_timer; |
585 | } |
586 | |
587 | if (active_mask & HRTIMER_ACTIVE_HARD) { |
588 | active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; |
589 | cpu_base->next_timer = next_timer; |
590 | expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, |
591 | expires_next); |
592 | } |
593 | |
594 | return expires_next; |
595 | } |
596 | |
597 | static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base) |
598 | { |
599 | ktime_t expires_next, soft = KTIME_MAX; |
600 | |
601 | /* |
602 | * If the soft interrupt has already been activated, ignore the |
603 | * soft bases. They will be handled in the already raised soft |
604 | * interrupt. |
605 | */ |
606 | if (!cpu_base->softirq_activated) { |
607 | soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); |
608 | /* |
609 | * Update the soft expiry time. clock_settime() might have |
610 | * affected it. |
611 | */ |
612 | cpu_base->softirq_expires_next = soft; |
613 | } |
614 | |
615 | expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD); |
616 | /* |
617 | * If a softirq timer is expiring first, update cpu_base->next_timer |
618 | * and program the hardware with the soft expiry time. |
619 | */ |
620 | if (expires_next > soft) { |
621 | cpu_base->next_timer = cpu_base->softirq_next_timer; |
622 | expires_next = soft; |
623 | } |
624 | |
625 | return expires_next; |
626 | } |
627 | |
628 | static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) |
629 | { |
630 | ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; |
631 | ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; |
632 | ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; |
633 | |
634 | ktime_t now = ktime_get_update_offsets_now(cwsseq: &base->clock_was_set_seq, |
635 | offs_real, offs_boot, offs_tai); |
636 | |
637 | base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; |
638 | base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; |
639 | base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; |
640 | |
641 | return now; |
642 | } |
643 | |
644 | /* |
645 | * Is the high resolution mode active ? |
646 | */ |
647 | static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) |
648 | { |
649 | return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? |
650 | cpu_base->hres_active : 0; |
651 | } |
652 | |
653 | static inline int hrtimer_hres_active(void) |
654 | { |
655 | return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); |
656 | } |
657 | |
658 | static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base, |
659 | struct hrtimer *next_timer, |
660 | ktime_t expires_next) |
661 | { |
662 | cpu_base->expires_next = expires_next; |
663 | |
664 | /* |
665 | * If hres is not active, hardware does not have to be |
666 | * reprogrammed yet. |
667 | * |
668 | * If a hang was detected in the last timer interrupt then we |
669 | * leave the hang delay active in the hardware. We want the |
670 | * system to make progress. That also prevents the following |
671 | * scenario: |
672 | * T1 expires 50ms from now |
673 | * T2 expires 5s from now |
674 | * |
675 | * T1 is removed, so this code is called and would reprogram |
676 | * the hardware to 5s from now. Any hrtimer_start after that |
677 | * will not reprogram the hardware due to hang_detected being |
678 | * set. So we'd effectively block all timers until the T2 event |
679 | * fires. |
680 | */ |
681 | if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) |
682 | return; |
683 | |
684 | tick_program_event(expires: expires_next, force: 1); |
685 | } |
686 | |
687 | /* |
688 | * Reprogram the event source with checking both queues for the |
689 | * next event |
690 | * Called with interrupts disabled and base->lock held |
691 | */ |
692 | static void |
693 | hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) |
694 | { |
695 | ktime_t expires_next; |
696 | |
697 | expires_next = hrtimer_update_next_event(cpu_base); |
698 | |
699 | if (skip_equal && expires_next == cpu_base->expires_next) |
700 | return; |
701 | |
702 | __hrtimer_reprogram(cpu_base, next_timer: cpu_base->next_timer, expires_next); |
703 | } |
704 | |
705 | /* High resolution timer related functions */ |
706 | #ifdef CONFIG_HIGH_RES_TIMERS |
707 | |
708 | /* |
709 | * High resolution timer enabled ? |
710 | */ |
711 | static bool hrtimer_hres_enabled __read_mostly = true; |
712 | unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; |
713 | EXPORT_SYMBOL_GPL(hrtimer_resolution); |
714 | |
715 | /* |
716 | * Enable / Disable high resolution mode |
717 | */ |
718 | static int __init setup_hrtimer_hres(char *str) |
719 | { |
720 | return (kstrtobool(s: str, res: &hrtimer_hres_enabled) == 0); |
721 | } |
722 | |
723 | __setup("highres=", setup_hrtimer_hres); |
724 | |
725 | /* |
726 | * hrtimer_high_res_enabled - query, if the highres mode is enabled |
727 | */ |
728 | static inline int hrtimer_is_hres_enabled(void) |
729 | { |
730 | return hrtimer_hres_enabled; |
731 | } |
732 | |
733 | static void retrigger_next_event(void *arg); |
734 | |
735 | /* |
736 | * Switch to high resolution mode |
737 | */ |
738 | static void hrtimer_switch_to_hres(void) |
739 | { |
740 | struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); |
741 | |
742 | if (tick_init_highres()) { |
743 | pr_warn("Could not switch to high resolution mode on CPU %u\n", |
744 | base->cpu); |
745 | return; |
746 | } |
747 | base->hres_active = 1; |
748 | hrtimer_resolution = HIGH_RES_NSEC; |
749 | |
750 | tick_setup_sched_timer(hrtimer: true); |
751 | /* "Retrigger" the interrupt to get things going */ |
752 | retrigger_next_event(NULL); |
753 | } |
754 | |
755 | #else |
756 | |
757 | static inline int hrtimer_is_hres_enabled(void) { return 0; } |
758 | static inline void hrtimer_switch_to_hres(void) { } |
759 | |
760 | #endif /* CONFIG_HIGH_RES_TIMERS */ |
761 | /* |
762 | * Retrigger next event is called after clock was set with interrupts |
763 | * disabled through an SMP function call or directly from low level |
764 | * resume code. |
765 | * |
766 | * This is only invoked when: |
767 | * - CONFIG_HIGH_RES_TIMERS is enabled. |
768 | * - CONFIG_NOHZ_COMMON is enabled |
769 | * |
770 | * For the other cases this function is empty and because the call sites |
771 | * are optimized out it vanishes as well, i.e. no need for lots of |
772 | * #ifdeffery. |
773 | */ |
774 | static void retrigger_next_event(void *arg) |
775 | { |
776 | struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); |
777 | |
778 | /* |
779 | * When high resolution mode or nohz is active, then the offsets of |
780 | * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the |
781 | * next tick will take care of that. |
782 | * |
783 | * If high resolution mode is active then the next expiring timer |
784 | * must be reevaluated and the clock event device reprogrammed if |
785 | * necessary. |
786 | * |
787 | * In the NOHZ case the update of the offset and the reevaluation |
788 | * of the next expiring timer is enough. The return from the SMP |
789 | * function call will take care of the reprogramming in case the |
790 | * CPU was in a NOHZ idle sleep. |
791 | */ |
792 | if (!__hrtimer_hres_active(cpu_base: base) && !tick_nohz_active) |
793 | return; |
794 | |
795 | raw_spin_lock(&base->lock); |
796 | hrtimer_update_base(base); |
797 | if (__hrtimer_hres_active(cpu_base: base)) |
798 | hrtimer_force_reprogram(cpu_base: base, skip_equal: 0); |
799 | else |
800 | hrtimer_update_next_event(cpu_base: base); |
801 | raw_spin_unlock(&base->lock); |
802 | } |
803 | |
804 | /* |
805 | * When a timer is enqueued and expires earlier than the already enqueued |
806 | * timers, we have to check, whether it expires earlier than the timer for |
807 | * which the clock event device was armed. |
808 | * |
809 | * Called with interrupts disabled and base->cpu_base.lock held |
810 | */ |
811 | static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) |
812 | { |
813 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
814 | struct hrtimer_clock_base *base = timer->base; |
815 | ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
816 | |
817 | WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); |
818 | |
819 | /* |
820 | * CLOCK_REALTIME timer might be requested with an absolute |
821 | * expiry time which is less than base->offset. Set it to 0. |
822 | */ |
823 | if (expires < 0) |
824 | expires = 0; |
825 | |
826 | if (timer->is_soft) { |
827 | /* |
828 | * soft hrtimer could be started on a remote CPU. In this |
829 | * case softirq_expires_next needs to be updated on the |
830 | * remote CPU. The soft hrtimer will not expire before the |
831 | * first hard hrtimer on the remote CPU - |
832 | * hrtimer_check_target() prevents this case. |
833 | */ |
834 | struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; |
835 | |
836 | if (timer_cpu_base->softirq_activated) |
837 | return; |
838 | |
839 | if (!ktime_before(cmp1: expires, cmp2: timer_cpu_base->softirq_expires_next)) |
840 | return; |
841 | |
842 | timer_cpu_base->softirq_next_timer = timer; |
843 | timer_cpu_base->softirq_expires_next = expires; |
844 | |
845 | if (!ktime_before(cmp1: expires, cmp2: timer_cpu_base->expires_next) || |
846 | !reprogram) |
847 | return; |
848 | } |
849 | |
850 | /* |
851 | * If the timer is not on the current cpu, we cannot reprogram |
852 | * the other cpus clock event device. |
853 | */ |
854 | if (base->cpu_base != cpu_base) |
855 | return; |
856 | |
857 | if (expires >= cpu_base->expires_next) |
858 | return; |
859 | |
860 | /* |
861 | * If the hrtimer interrupt is running, then it will reevaluate the |
862 | * clock bases and reprogram the clock event device. |
863 | */ |
864 | if (cpu_base->in_hrtirq) |
865 | return; |
866 | |
867 | cpu_base->next_timer = timer; |
868 | |
869 | __hrtimer_reprogram(cpu_base, next_timer: timer, expires_next: expires); |
870 | } |
871 | |
872 | static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base, |
873 | unsigned int active) |
874 | { |
875 | struct hrtimer_clock_base *base; |
876 | unsigned int seq; |
877 | ktime_t expires; |
878 | |
879 | /* |
880 | * Update the base offsets unconditionally so the following |
881 | * checks whether the SMP function call is required works. |
882 | * |
883 | * The update is safe even when the remote CPU is in the hrtimer |
884 | * interrupt or the hrtimer soft interrupt and expiring affected |
885 | * bases. Either it will see the update before handling a base or |
886 | * it will see it when it finishes the processing and reevaluates |
887 | * the next expiring timer. |
888 | */ |
889 | seq = cpu_base->clock_was_set_seq; |
890 | hrtimer_update_base(base: cpu_base); |
891 | |
892 | /* |
893 | * If the sequence did not change over the update then the |
894 | * remote CPU already handled it. |
895 | */ |
896 | if (seq == cpu_base->clock_was_set_seq) |
897 | return false; |
898 | |
899 | /* |
900 | * If the remote CPU is currently handling an hrtimer interrupt, it |
901 | * will reevaluate the first expiring timer of all clock bases |
902 | * before reprogramming. Nothing to do here. |
903 | */ |
904 | if (cpu_base->in_hrtirq) |
905 | return false; |
906 | |
907 | /* |
908 | * Walk the affected clock bases and check whether the first expiring |
909 | * timer in a clock base is moving ahead of the first expiring timer of |
910 | * @cpu_base. If so, the IPI must be invoked because per CPU clock |
911 | * event devices cannot be remotely reprogrammed. |
912 | */ |
913 | active &= cpu_base->active_bases; |
914 | |
915 | for_each_active_base(base, cpu_base, active) { |
916 | struct timerqueue_node *next; |
917 | |
918 | next = timerqueue_getnext(head: &base->active); |
919 | expires = ktime_sub(next->expires, base->offset); |
920 | if (expires < cpu_base->expires_next) |
921 | return true; |
922 | |
923 | /* Extra check for softirq clock bases */ |
924 | if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT) |
925 | continue; |
926 | if (cpu_base->softirq_activated) |
927 | continue; |
928 | if (expires < cpu_base->softirq_expires_next) |
929 | return true; |
930 | } |
931 | return false; |
932 | } |
933 | |
934 | /* |
935 | * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and |
936 | * CLOCK_BOOTTIME (for late sleep time injection). |
937 | * |
938 | * This requires to update the offsets for these clocks |
939 | * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this |
940 | * also requires to eventually reprogram the per CPU clock event devices |
941 | * when the change moves an affected timer ahead of the first expiring |
942 | * timer on that CPU. Obviously remote per CPU clock event devices cannot |
943 | * be reprogrammed. The other reason why an IPI has to be sent is when the |
944 | * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets |
945 | * in the tick, which obviously might be stopped, so this has to bring out |
946 | * the remote CPU which might sleep in idle to get this sorted. |
947 | */ |
948 | void clock_was_set(unsigned int bases) |
949 | { |
950 | struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases); |
951 | cpumask_var_t mask; |
952 | int cpu; |
953 | |
954 | if (!__hrtimer_hres_active(cpu_base) && !tick_nohz_active) |
955 | goto out_timerfd; |
956 | |
957 | if (!zalloc_cpumask_var(mask: &mask, GFP_KERNEL)) { |
958 | on_each_cpu(func: retrigger_next_event, NULL, wait: 1); |
959 | goto out_timerfd; |
960 | } |
961 | |
962 | /* Avoid interrupting CPUs if possible */ |
963 | cpus_read_lock(); |
964 | for_each_online_cpu(cpu) { |
965 | unsigned long flags; |
966 | |
967 | cpu_base = &per_cpu(hrtimer_bases, cpu); |
968 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
969 | |
970 | if (update_needs_ipi(cpu_base, active: bases)) |
971 | cpumask_set_cpu(cpu, dstp: mask); |
972 | |
973 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
974 | } |
975 | |
976 | preempt_disable(); |
977 | smp_call_function_many(mask, func: retrigger_next_event, NULL, wait: 1); |
978 | preempt_enable(); |
979 | cpus_read_unlock(); |
980 | free_cpumask_var(mask); |
981 | |
982 | out_timerfd: |
983 | timerfd_clock_was_set(); |
984 | } |
985 | |
986 | static void clock_was_set_work(struct work_struct *work) |
987 | { |
988 | clock_was_set(CLOCK_SET_WALL); |
989 | } |
990 | |
991 | static DECLARE_WORK(hrtimer_work, clock_was_set_work); |
992 | |
993 | /* |
994 | * Called from timekeeping code to reprogram the hrtimer interrupt device |
995 | * on all cpus and to notify timerfd. |
996 | */ |
997 | void clock_was_set_delayed(void) |
998 | { |
999 | schedule_work(work: &hrtimer_work); |
1000 | } |
1001 | |
1002 | /* |
1003 | * Called during resume either directly from via timekeeping_resume() |
1004 | * or in the case of s2idle from tick_unfreeze() to ensure that the |
1005 | * hrtimers are up to date. |
1006 | */ |
1007 | void hrtimers_resume_local(void) |
1008 | { |
1009 | lockdep_assert_irqs_disabled(); |
1010 | /* Retrigger on the local CPU */ |
1011 | retrigger_next_event(NULL); |
1012 | } |
1013 | |
1014 | /* |
1015 | * Counterpart to lock_hrtimer_base above: |
1016 | */ |
1017 | static inline |
1018 | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
1019 | __releases(&timer->base->cpu_base->lock) |
1020 | { |
1021 | raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); |
1022 | } |
1023 | |
1024 | /** |
1025 | * hrtimer_forward() - forward the timer expiry |
1026 | * @timer: hrtimer to forward |
1027 | * @now: forward past this time |
1028 | * @interval: the interval to forward |
1029 | * |
1030 | * Forward the timer expiry so it will expire in the future. |
1031 | * |
1032 | * .. note:: |
1033 | * This only updates the timer expiry value and does not requeue the timer. |
1034 | * |
1035 | * There is also a variant of the function hrtimer_forward_now(). |
1036 | * |
1037 | * Context: Can be safely called from the callback function of @timer. If called |
1038 | * from other contexts @timer must neither be enqueued nor running the |
1039 | * callback and the caller needs to take care of serialization. |
1040 | * |
1041 | * Return: The number of overruns are returned. |
1042 | */ |
1043 | u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) |
1044 | { |
1045 | u64 orun = 1; |
1046 | ktime_t delta; |
1047 | |
1048 | delta = ktime_sub(now, hrtimer_get_expires(timer)); |
1049 | |
1050 | if (delta < 0) |
1051 | return 0; |
1052 | |
1053 | if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) |
1054 | return 0; |
1055 | |
1056 | if (interval < hrtimer_resolution) |
1057 | interval = hrtimer_resolution; |
1058 | |
1059 | if (unlikely(delta >= interval)) { |
1060 | s64 incr = ktime_to_ns(kt: interval); |
1061 | |
1062 | orun = ktime_divns(kt: delta, div: incr); |
1063 | hrtimer_add_expires_ns(timer, ns: incr * orun); |
1064 | if (hrtimer_get_expires_tv64(timer) > now) |
1065 | return orun; |
1066 | /* |
1067 | * This (and the ktime_add() below) is the |
1068 | * correction for exact: |
1069 | */ |
1070 | orun++; |
1071 | } |
1072 | hrtimer_add_expires(timer, time: interval); |
1073 | |
1074 | return orun; |
1075 | } |
1076 | EXPORT_SYMBOL_GPL(hrtimer_forward); |
1077 | |
1078 | /* |
1079 | * enqueue_hrtimer - internal function to (re)start a timer |
1080 | * |
1081 | * The timer is inserted in expiry order. Insertion into the |
1082 | * red black tree is O(log(n)). Must hold the base lock. |
1083 | * |
1084 | * Returns 1 when the new timer is the leftmost timer in the tree. |
1085 | */ |
1086 | static int enqueue_hrtimer(struct hrtimer *timer, |
1087 | struct hrtimer_clock_base *base, |
1088 | enum hrtimer_mode mode) |
1089 | { |
1090 | debug_activate(timer, mode); |
1091 | WARN_ON_ONCE(!base->cpu_base->online); |
1092 | |
1093 | base->cpu_base->active_bases |= 1 << base->index; |
1094 | |
1095 | /* Pairs with the lockless read in hrtimer_is_queued() */ |
1096 | WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); |
1097 | |
1098 | return timerqueue_add(head: &base->active, node: &timer->node); |
1099 | } |
1100 | |
1101 | /* |
1102 | * __remove_hrtimer - internal function to remove a timer |
1103 | * |
1104 | * Caller must hold the base lock. |
1105 | * |
1106 | * High resolution timer mode reprograms the clock event device when the |
1107 | * timer is the one which expires next. The caller can disable this by setting |
1108 | * reprogram to zero. This is useful, when the context does a reprogramming |
1109 | * anyway (e.g. timer interrupt) |
1110 | */ |
1111 | static void __remove_hrtimer(struct hrtimer *timer, |
1112 | struct hrtimer_clock_base *base, |
1113 | u8 newstate, int reprogram) |
1114 | { |
1115 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; |
1116 | u8 state = timer->state; |
1117 | |
1118 | /* Pairs with the lockless read in hrtimer_is_queued() */ |
1119 | WRITE_ONCE(timer->state, newstate); |
1120 | if (!(state & HRTIMER_STATE_ENQUEUED)) |
1121 | return; |
1122 | |
1123 | if (!timerqueue_del(head: &base->active, node: &timer->node)) |
1124 | cpu_base->active_bases &= ~(1 << base->index); |
1125 | |
1126 | /* |
1127 | * Note: If reprogram is false we do not update |
1128 | * cpu_base->next_timer. This happens when we remove the first |
1129 | * timer on a remote cpu. No harm as we never dereference |
1130 | * cpu_base->next_timer. So the worst thing what can happen is |
1131 | * an superfluous call to hrtimer_force_reprogram() on the |
1132 | * remote cpu later on if the same timer gets enqueued again. |
1133 | */ |
1134 | if (reprogram && timer == cpu_base->next_timer) |
1135 | hrtimer_force_reprogram(cpu_base, skip_equal: 1); |
1136 | } |
1137 | |
1138 | /* |
1139 | * remove hrtimer, called with base lock held |
1140 | */ |
1141 | static inline int |
1142 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, |
1143 | bool restart, bool keep_local) |
1144 | { |
1145 | u8 state = timer->state; |
1146 | |
1147 | if (state & HRTIMER_STATE_ENQUEUED) { |
1148 | bool reprogram; |
1149 | |
1150 | /* |
1151 | * Remove the timer and force reprogramming when high |
1152 | * resolution mode is active and the timer is on the current |
1153 | * CPU. If we remove a timer on another CPU, reprogramming is |
1154 | * skipped. The interrupt event on this CPU is fired and |
1155 | * reprogramming happens in the interrupt handler. This is a |
1156 | * rare case and less expensive than a smp call. |
1157 | */ |
1158 | debug_deactivate(timer); |
1159 | reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); |
1160 | |
1161 | /* |
1162 | * If the timer is not restarted then reprogramming is |
1163 | * required if the timer is local. If it is local and about |
1164 | * to be restarted, avoid programming it twice (on removal |
1165 | * and a moment later when it's requeued). |
1166 | */ |
1167 | if (!restart) |
1168 | state = HRTIMER_STATE_INACTIVE; |
1169 | else |
1170 | reprogram &= !keep_local; |
1171 | |
1172 | __remove_hrtimer(timer, base, newstate: state, reprogram); |
1173 | return 1; |
1174 | } |
1175 | return 0; |
1176 | } |
1177 | |
1178 | static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, |
1179 | const enum hrtimer_mode mode) |
1180 | { |
1181 | #ifdef CONFIG_TIME_LOW_RES |
1182 | /* |
1183 | * CONFIG_TIME_LOW_RES indicates that the system has no way to return |
1184 | * granular time values. For relative timers we add hrtimer_resolution |
1185 | * (i.e. one jiffie) to prevent short timeouts. |
1186 | */ |
1187 | timer->is_rel = mode & HRTIMER_MODE_REL; |
1188 | if (timer->is_rel) |
1189 | tim = ktime_add_safe(tim, hrtimer_resolution); |
1190 | #endif |
1191 | return tim; |
1192 | } |
1193 | |
1194 | static void |
1195 | hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) |
1196 | { |
1197 | ktime_t expires; |
1198 | |
1199 | /* |
1200 | * Find the next SOFT expiration. |
1201 | */ |
1202 | expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); |
1203 | |
1204 | /* |
1205 | * reprogramming needs to be triggered, even if the next soft |
1206 | * hrtimer expires at the same time than the next hard |
1207 | * hrtimer. cpu_base->softirq_expires_next needs to be updated! |
1208 | */ |
1209 | if (expires == KTIME_MAX) |
1210 | return; |
1211 | |
1212 | /* |
1213 | * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() |
1214 | * cpu_base->*expires_next is only set by hrtimer_reprogram() |
1215 | */ |
1216 | hrtimer_reprogram(timer: cpu_base->softirq_next_timer, reprogram); |
1217 | } |
1218 | |
1219 | static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, |
1220 | u64 delta_ns, const enum hrtimer_mode mode, |
1221 | struct hrtimer_clock_base *base) |
1222 | { |
1223 | struct hrtimer_clock_base *new_base; |
1224 | bool force_local, first; |
1225 | |
1226 | /* |
1227 | * If the timer is on the local cpu base and is the first expiring |
1228 | * timer then this might end up reprogramming the hardware twice |
1229 | * (on removal and on enqueue). To avoid that by prevent the |
1230 | * reprogram on removal, keep the timer local to the current CPU |
1231 | * and enforce reprogramming after it is queued no matter whether |
1232 | * it is the new first expiring timer again or not. |
1233 | */ |
1234 | force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases); |
1235 | force_local &= base->cpu_base->next_timer == timer; |
1236 | |
1237 | /* |
1238 | * Remove an active timer from the queue. In case it is not queued |
1239 | * on the current CPU, make sure that remove_hrtimer() updates the |
1240 | * remote data correctly. |
1241 | * |
1242 | * If it's on the current CPU and the first expiring timer, then |
1243 | * skip reprogramming, keep the timer local and enforce |
1244 | * reprogramming later if it was the first expiring timer. This |
1245 | * avoids programming the underlying clock event twice (once at |
1246 | * removal and once after enqueue). |
1247 | */ |
1248 | remove_hrtimer(timer, base, restart: true, keep_local: force_local); |
1249 | |
1250 | if (mode & HRTIMER_MODE_REL) |
1251 | tim = ktime_add_safe(tim, base->get_time()); |
1252 | |
1253 | tim = hrtimer_update_lowres(timer, tim, mode); |
1254 | |
1255 | hrtimer_set_expires_range_ns(timer, time: tim, delta: delta_ns); |
1256 | |
1257 | /* Switch the timer base, if necessary: */ |
1258 | if (!force_local) { |
1259 | new_base = switch_hrtimer_base(timer, base, |
1260 | pinned: mode & HRTIMER_MODE_PINNED); |
1261 | } else { |
1262 | new_base = base; |
1263 | } |
1264 | |
1265 | first = enqueue_hrtimer(timer, base: new_base, mode); |
1266 | if (!force_local) |
1267 | return first; |
1268 | |
1269 | /* |
1270 | * Timer was forced to stay on the current CPU to avoid |
1271 | * reprogramming on removal and enqueue. Force reprogram the |
1272 | * hardware by evaluating the new first expiring timer. |
1273 | */ |
1274 | hrtimer_force_reprogram(cpu_base: new_base->cpu_base, skip_equal: 1); |
1275 | return 0; |
1276 | } |
1277 | |
1278 | /** |
1279 | * hrtimer_start_range_ns - (re)start an hrtimer |
1280 | * @timer: the timer to be added |
1281 | * @tim: expiry time |
1282 | * @delta_ns: "slack" range for the timer |
1283 | * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or |
1284 | * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); |
1285 | * softirq based mode is considered for debug purpose only! |
1286 | */ |
1287 | void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, |
1288 | u64 delta_ns, const enum hrtimer_mode mode) |
1289 | { |
1290 | struct hrtimer_clock_base *base; |
1291 | unsigned long flags; |
1292 | |
1293 | /* |
1294 | * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft |
1295 | * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard |
1296 | * expiry mode because unmarked timers are moved to softirq expiry. |
1297 | */ |
1298 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
1299 | WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); |
1300 | else |
1301 | WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); |
1302 | |
1303 | base = lock_hrtimer_base(timer, flags: &flags); |
1304 | |
1305 | if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) |
1306 | hrtimer_reprogram(timer, reprogram: true); |
1307 | |
1308 | unlock_hrtimer_base(timer, flags: &flags); |
1309 | } |
1310 | EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); |
1311 | |
1312 | /** |
1313 | * hrtimer_try_to_cancel - try to deactivate a timer |
1314 | * @timer: hrtimer to stop |
1315 | * |
1316 | * Returns: |
1317 | * |
1318 | * * 0 when the timer was not active |
1319 | * * 1 when the timer was active |
1320 | * * -1 when the timer is currently executing the callback function and |
1321 | * cannot be stopped |
1322 | */ |
1323 | int hrtimer_try_to_cancel(struct hrtimer *timer) |
1324 | { |
1325 | struct hrtimer_clock_base *base; |
1326 | unsigned long flags; |
1327 | int ret = -1; |
1328 | |
1329 | /* |
1330 | * Check lockless first. If the timer is not active (neither |
1331 | * enqueued nor running the callback, nothing to do here. The |
1332 | * base lock does not serialize against a concurrent enqueue, |
1333 | * so we can avoid taking it. |
1334 | */ |
1335 | if (!hrtimer_active(timer)) |
1336 | return 0; |
1337 | |
1338 | base = lock_hrtimer_base(timer, flags: &flags); |
1339 | |
1340 | if (!hrtimer_callback_running(timer)) |
1341 | ret = remove_hrtimer(timer, base, restart: false, keep_local: false); |
1342 | |
1343 | unlock_hrtimer_base(timer, flags: &flags); |
1344 | |
1345 | return ret; |
1346 | |
1347 | } |
1348 | EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); |
1349 | |
1350 | #ifdef CONFIG_PREEMPT_RT |
1351 | static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) |
1352 | { |
1353 | spin_lock_init(&base->softirq_expiry_lock); |
1354 | } |
1355 | |
1356 | static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) |
1357 | { |
1358 | spin_lock(&base->softirq_expiry_lock); |
1359 | } |
1360 | |
1361 | static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) |
1362 | { |
1363 | spin_unlock(&base->softirq_expiry_lock); |
1364 | } |
1365 | |
1366 | /* |
1367 | * The counterpart to hrtimer_cancel_wait_running(). |
1368 | * |
1369 | * If there is a waiter for cpu_base->expiry_lock, then it was waiting for |
1370 | * the timer callback to finish. Drop expiry_lock and reacquire it. That |
1371 | * allows the waiter to acquire the lock and make progress. |
1372 | */ |
1373 | static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, |
1374 | unsigned long flags) |
1375 | { |
1376 | if (atomic_read(&cpu_base->timer_waiters)) { |
1377 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1378 | spin_unlock(&cpu_base->softirq_expiry_lock); |
1379 | spin_lock(&cpu_base->softirq_expiry_lock); |
1380 | raw_spin_lock_irq(&cpu_base->lock); |
1381 | } |
1382 | } |
1383 | |
1384 | /* |
1385 | * This function is called on PREEMPT_RT kernels when the fast path |
1386 | * deletion of a timer failed because the timer callback function was |
1387 | * running. |
1388 | * |
1389 | * This prevents priority inversion: if the soft irq thread is preempted |
1390 | * in the middle of a timer callback, then calling del_timer_sync() can |
1391 | * lead to two issues: |
1392 | * |
1393 | * - If the caller is on a remote CPU then it has to spin wait for the timer |
1394 | * handler to complete. This can result in unbound priority inversion. |
1395 | * |
1396 | * - If the caller originates from the task which preempted the timer |
1397 | * handler on the same CPU, then spin waiting for the timer handler to |
1398 | * complete is never going to end. |
1399 | */ |
1400 | void hrtimer_cancel_wait_running(const struct hrtimer *timer) |
1401 | { |
1402 | /* Lockless read. Prevent the compiler from reloading it below */ |
1403 | struct hrtimer_clock_base *base = READ_ONCE(timer->base); |
1404 | |
1405 | /* |
1406 | * Just relax if the timer expires in hard interrupt context or if |
1407 | * it is currently on the migration base. |
1408 | */ |
1409 | if (!timer->is_soft || is_migration_base(base)) { |
1410 | cpu_relax(); |
1411 | return; |
1412 | } |
1413 | |
1414 | /* |
1415 | * Mark the base as contended and grab the expiry lock, which is |
1416 | * held by the softirq across the timer callback. Drop the lock |
1417 | * immediately so the softirq can expire the next timer. In theory |
1418 | * the timer could already be running again, but that's more than |
1419 | * unlikely and just causes another wait loop. |
1420 | */ |
1421 | atomic_inc(&base->cpu_base->timer_waiters); |
1422 | spin_lock_bh(&base->cpu_base->softirq_expiry_lock); |
1423 | atomic_dec(&base->cpu_base->timer_waiters); |
1424 | spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); |
1425 | } |
1426 | #else |
1427 | static inline void |
1428 | hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } |
1429 | static inline void |
1430 | hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } |
1431 | static inline void |
1432 | hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } |
1433 | static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, |
1434 | unsigned long flags) { } |
1435 | #endif |
1436 | |
1437 | /** |
1438 | * hrtimer_cancel - cancel a timer and wait for the handler to finish. |
1439 | * @timer: the timer to be cancelled |
1440 | * |
1441 | * Returns: |
1442 | * 0 when the timer was not active |
1443 | * 1 when the timer was active |
1444 | */ |
1445 | int hrtimer_cancel(struct hrtimer *timer) |
1446 | { |
1447 | int ret; |
1448 | |
1449 | do { |
1450 | ret = hrtimer_try_to_cancel(timer); |
1451 | |
1452 | if (ret < 0) |
1453 | hrtimer_cancel_wait_running(timer); |
1454 | } while (ret < 0); |
1455 | return ret; |
1456 | } |
1457 | EXPORT_SYMBOL_GPL(hrtimer_cancel); |
1458 | |
1459 | /** |
1460 | * __hrtimer_get_remaining - get remaining time for the timer |
1461 | * @timer: the timer to read |
1462 | * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y |
1463 | */ |
1464 | ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) |
1465 | { |
1466 | unsigned long flags; |
1467 | ktime_t rem; |
1468 | |
1469 | lock_hrtimer_base(timer, flags: &flags); |
1470 | if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) |
1471 | rem = hrtimer_expires_remaining_adjusted(timer); |
1472 | else |
1473 | rem = hrtimer_expires_remaining(timer); |
1474 | unlock_hrtimer_base(timer, flags: &flags); |
1475 | |
1476 | return rem; |
1477 | } |
1478 | EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); |
1479 | |
1480 | #ifdef CONFIG_NO_HZ_COMMON |
1481 | /** |
1482 | * hrtimer_get_next_event - get the time until next expiry event |
1483 | * |
1484 | * Returns the next expiry time or KTIME_MAX if no timer is pending. |
1485 | */ |
1486 | u64 hrtimer_get_next_event(void) |
1487 | { |
1488 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
1489 | u64 expires = KTIME_MAX; |
1490 | unsigned long flags; |
1491 | |
1492 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
1493 | |
1494 | if (!__hrtimer_hres_active(cpu_base)) |
1495 | expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); |
1496 | |
1497 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1498 | |
1499 | return expires; |
1500 | } |
1501 | |
1502 | /** |
1503 | * hrtimer_next_event_without - time until next expiry event w/o one timer |
1504 | * @exclude: timer to exclude |
1505 | * |
1506 | * Returns the next expiry time over all timers except for the @exclude one or |
1507 | * KTIME_MAX if none of them is pending. |
1508 | */ |
1509 | u64 hrtimer_next_event_without(const struct hrtimer *exclude) |
1510 | { |
1511 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
1512 | u64 expires = KTIME_MAX; |
1513 | unsigned long flags; |
1514 | |
1515 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
1516 | |
1517 | if (__hrtimer_hres_active(cpu_base)) { |
1518 | unsigned int active; |
1519 | |
1520 | if (!cpu_base->softirq_activated) { |
1521 | active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; |
1522 | expires = __hrtimer_next_event_base(cpu_base, exclude, |
1523 | active, KTIME_MAX); |
1524 | } |
1525 | active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; |
1526 | expires = __hrtimer_next_event_base(cpu_base, exclude, active, |
1527 | expires_next: expires); |
1528 | } |
1529 | |
1530 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1531 | |
1532 | return expires; |
1533 | } |
1534 | #endif |
1535 | |
1536 | static inline int hrtimer_clockid_to_base(clockid_t clock_id) |
1537 | { |
1538 | if (likely(clock_id < MAX_CLOCKS)) { |
1539 | int base = hrtimer_clock_to_base_table[clock_id]; |
1540 | |
1541 | if (likely(base != HRTIMER_MAX_CLOCK_BASES)) |
1542 | return base; |
1543 | } |
1544 | WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); |
1545 | return HRTIMER_BASE_MONOTONIC; |
1546 | } |
1547 | |
1548 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
1549 | enum hrtimer_mode mode) |
1550 | { |
1551 | bool softtimer = !!(mode & HRTIMER_MODE_SOFT); |
1552 | struct hrtimer_cpu_base *cpu_base; |
1553 | int base; |
1554 | |
1555 | /* |
1556 | * On PREEMPT_RT enabled kernels hrtimers which are not explicitly |
1557 | * marked for hard interrupt expiry mode are moved into soft |
1558 | * interrupt context for latency reasons and because the callbacks |
1559 | * can invoke functions which might sleep on RT, e.g. spin_lock(). |
1560 | */ |
1561 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) |
1562 | softtimer = true; |
1563 | |
1564 | memset(timer, 0, sizeof(struct hrtimer)); |
1565 | |
1566 | cpu_base = raw_cpu_ptr(&hrtimer_bases); |
1567 | |
1568 | /* |
1569 | * POSIX magic: Relative CLOCK_REALTIME timers are not affected by |
1570 | * clock modifications, so they needs to become CLOCK_MONOTONIC to |
1571 | * ensure POSIX compliance. |
1572 | */ |
1573 | if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) |
1574 | clock_id = CLOCK_MONOTONIC; |
1575 | |
1576 | base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; |
1577 | base += hrtimer_clockid_to_base(clock_id); |
1578 | timer->is_soft = softtimer; |
1579 | timer->is_hard = !!(mode & HRTIMER_MODE_HARD); |
1580 | timer->base = &cpu_base->clock_base[base]; |
1581 | timerqueue_init(node: &timer->node); |
1582 | } |
1583 | |
1584 | /** |
1585 | * hrtimer_init - initialize a timer to the given clock |
1586 | * @timer: the timer to be initialized |
1587 | * @clock_id: the clock to be used |
1588 | * @mode: The modes which are relevant for initialization: |
1589 | * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, |
1590 | * HRTIMER_MODE_REL_SOFT |
1591 | * |
1592 | * The PINNED variants of the above can be handed in, |
1593 | * but the PINNED bit is ignored as pinning happens |
1594 | * when the hrtimer is started |
1595 | */ |
1596 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
1597 | enum hrtimer_mode mode) |
1598 | { |
1599 | debug_init(timer, clockid: clock_id, mode); |
1600 | __hrtimer_init(timer, clock_id, mode); |
1601 | } |
1602 | EXPORT_SYMBOL_GPL(hrtimer_init); |
1603 | |
1604 | /* |
1605 | * A timer is active, when it is enqueued into the rbtree or the |
1606 | * callback function is running or it's in the state of being migrated |
1607 | * to another cpu. |
1608 | * |
1609 | * It is important for this function to not return a false negative. |
1610 | */ |
1611 | bool hrtimer_active(const struct hrtimer *timer) |
1612 | { |
1613 | struct hrtimer_clock_base *base; |
1614 | unsigned int seq; |
1615 | |
1616 | do { |
1617 | base = READ_ONCE(timer->base); |
1618 | seq = raw_read_seqcount_begin(&base->seq); |
1619 | |
1620 | if (timer->state != HRTIMER_STATE_INACTIVE || |
1621 | base->running == timer) |
1622 | return true; |
1623 | |
1624 | } while (read_seqcount_retry(&base->seq, seq) || |
1625 | base != READ_ONCE(timer->base)); |
1626 | |
1627 | return false; |
1628 | } |
1629 | EXPORT_SYMBOL_GPL(hrtimer_active); |
1630 | |
1631 | /* |
1632 | * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 |
1633 | * distinct sections: |
1634 | * |
1635 | * - queued: the timer is queued |
1636 | * - callback: the timer is being ran |
1637 | * - post: the timer is inactive or (re)queued |
1638 | * |
1639 | * On the read side we ensure we observe timer->state and cpu_base->running |
1640 | * from the same section, if anything changed while we looked at it, we retry. |
1641 | * This includes timer->base changing because sequence numbers alone are |
1642 | * insufficient for that. |
1643 | * |
1644 | * The sequence numbers are required because otherwise we could still observe |
1645 | * a false negative if the read side got smeared over multiple consecutive |
1646 | * __run_hrtimer() invocations. |
1647 | */ |
1648 | |
1649 | static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, |
1650 | struct hrtimer_clock_base *base, |
1651 | struct hrtimer *timer, ktime_t *now, |
1652 | unsigned long flags) __must_hold(&cpu_base->lock) |
1653 | { |
1654 | enum hrtimer_restart (*fn)(struct hrtimer *); |
1655 | bool expires_in_hardirq; |
1656 | int restart; |
1657 | |
1658 | lockdep_assert_held(&cpu_base->lock); |
1659 | |
1660 | debug_deactivate(timer); |
1661 | base->running = timer; |
1662 | |
1663 | /* |
1664 | * Separate the ->running assignment from the ->state assignment. |
1665 | * |
1666 | * As with a regular write barrier, this ensures the read side in |
1667 | * hrtimer_active() cannot observe base->running == NULL && |
1668 | * timer->state == INACTIVE. |
1669 | */ |
1670 | raw_write_seqcount_barrier(&base->seq); |
1671 | |
1672 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, reprogram: 0); |
1673 | fn = timer->function; |
1674 | |
1675 | /* |
1676 | * Clear the 'is relative' flag for the TIME_LOW_RES case. If the |
1677 | * timer is restarted with a period then it becomes an absolute |
1678 | * timer. If its not restarted it does not matter. |
1679 | */ |
1680 | if (IS_ENABLED(CONFIG_TIME_LOW_RES)) |
1681 | timer->is_rel = false; |
1682 | |
1683 | /* |
1684 | * The timer is marked as running in the CPU base, so it is |
1685 | * protected against migration to a different CPU even if the lock |
1686 | * is dropped. |
1687 | */ |
1688 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1689 | trace_hrtimer_expire_entry(hrtimer: timer, now); |
1690 | expires_in_hardirq = lockdep_hrtimer_enter(timer); |
1691 | |
1692 | restart = fn(timer); |
1693 | |
1694 | lockdep_hrtimer_exit(expires_in_hardirq); |
1695 | trace_hrtimer_expire_exit(hrtimer: timer); |
1696 | raw_spin_lock_irq(&cpu_base->lock); |
1697 | |
1698 | /* |
1699 | * Note: We clear the running state after enqueue_hrtimer and |
1700 | * we do not reprogram the event hardware. Happens either in |
1701 | * hrtimer_start_range_ns() or in hrtimer_interrupt() |
1702 | * |
1703 | * Note: Because we dropped the cpu_base->lock above, |
1704 | * hrtimer_start_range_ns() can have popped in and enqueued the timer |
1705 | * for us already. |
1706 | */ |
1707 | if (restart != HRTIMER_NORESTART && |
1708 | !(timer->state & HRTIMER_STATE_ENQUEUED)) |
1709 | enqueue_hrtimer(timer, base, mode: HRTIMER_MODE_ABS); |
1710 | |
1711 | /* |
1712 | * Separate the ->running assignment from the ->state assignment. |
1713 | * |
1714 | * As with a regular write barrier, this ensures the read side in |
1715 | * hrtimer_active() cannot observe base->running.timer == NULL && |
1716 | * timer->state == INACTIVE. |
1717 | */ |
1718 | raw_write_seqcount_barrier(&base->seq); |
1719 | |
1720 | WARN_ON_ONCE(base->running != timer); |
1721 | base->running = NULL; |
1722 | } |
1723 | |
1724 | static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, |
1725 | unsigned long flags, unsigned int active_mask) |
1726 | { |
1727 | struct hrtimer_clock_base *base; |
1728 | unsigned int active = cpu_base->active_bases & active_mask; |
1729 | |
1730 | for_each_active_base(base, cpu_base, active) { |
1731 | struct timerqueue_node *node; |
1732 | ktime_t basenow; |
1733 | |
1734 | basenow = ktime_add(now, base->offset); |
1735 | |
1736 | while ((node = timerqueue_getnext(head: &base->active))) { |
1737 | struct hrtimer *timer; |
1738 | |
1739 | timer = container_of(node, struct hrtimer, node); |
1740 | |
1741 | /* |
1742 | * The immediate goal for using the softexpires is |
1743 | * minimizing wakeups, not running timers at the |
1744 | * earliest interrupt after their soft expiration. |
1745 | * This allows us to avoid using a Priority Search |
1746 | * Tree, which can answer a stabbing query for |
1747 | * overlapping intervals and instead use the simple |
1748 | * BST we already have. |
1749 | * We don't add extra wakeups by delaying timers that |
1750 | * are right-of a not yet expired timer, because that |
1751 | * timer will have to trigger a wakeup anyway. |
1752 | */ |
1753 | if (basenow < hrtimer_get_softexpires_tv64(timer)) |
1754 | break; |
1755 | |
1756 | __run_hrtimer(cpu_base, base, timer, now: &basenow, flags); |
1757 | if (active_mask == HRTIMER_ACTIVE_SOFT) |
1758 | hrtimer_sync_wait_running(base: cpu_base, flags); |
1759 | } |
1760 | } |
1761 | } |
1762 | |
1763 | static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) |
1764 | { |
1765 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
1766 | unsigned long flags; |
1767 | ktime_t now; |
1768 | |
1769 | hrtimer_cpu_base_lock_expiry(base: cpu_base); |
1770 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
1771 | |
1772 | now = hrtimer_update_base(base: cpu_base); |
1773 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); |
1774 | |
1775 | cpu_base->softirq_activated = 0; |
1776 | hrtimer_update_softirq_timer(cpu_base, reprogram: true); |
1777 | |
1778 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1779 | hrtimer_cpu_base_unlock_expiry(base: cpu_base); |
1780 | } |
1781 | |
1782 | #ifdef CONFIG_HIGH_RES_TIMERS |
1783 | |
1784 | /* |
1785 | * High resolution timer interrupt |
1786 | * Called with interrupts disabled |
1787 | */ |
1788 | void hrtimer_interrupt(struct clock_event_device *dev) |
1789 | { |
1790 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
1791 | ktime_t expires_next, now, entry_time, delta; |
1792 | unsigned long flags; |
1793 | int retries = 0; |
1794 | |
1795 | BUG_ON(!cpu_base->hres_active); |
1796 | cpu_base->nr_events++; |
1797 | dev->next_event = KTIME_MAX; |
1798 | |
1799 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
1800 | entry_time = now = hrtimer_update_base(base: cpu_base); |
1801 | retry: |
1802 | cpu_base->in_hrtirq = 1; |
1803 | /* |
1804 | * We set expires_next to KTIME_MAX here with cpu_base->lock |
1805 | * held to prevent that a timer is enqueued in our queue via |
1806 | * the migration code. This does not affect enqueueing of |
1807 | * timers which run their callback and need to be requeued on |
1808 | * this CPU. |
1809 | */ |
1810 | cpu_base->expires_next = KTIME_MAX; |
1811 | |
1812 | if (!ktime_before(cmp1: now, cmp2: cpu_base->softirq_expires_next)) { |
1813 | cpu_base->softirq_expires_next = KTIME_MAX; |
1814 | cpu_base->softirq_activated = 1; |
1815 | raise_softirq_irqoff(nr: HRTIMER_SOFTIRQ); |
1816 | } |
1817 | |
1818 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); |
1819 | |
1820 | /* Reevaluate the clock bases for the [soft] next expiry */ |
1821 | expires_next = hrtimer_update_next_event(cpu_base); |
1822 | /* |
1823 | * Store the new expiry value so the migration code can verify |
1824 | * against it. |
1825 | */ |
1826 | cpu_base->expires_next = expires_next; |
1827 | cpu_base->in_hrtirq = 0; |
1828 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1829 | |
1830 | /* Reprogramming necessary ? */ |
1831 | if (!tick_program_event(expires: expires_next, force: 0)) { |
1832 | cpu_base->hang_detected = 0; |
1833 | return; |
1834 | } |
1835 | |
1836 | /* |
1837 | * The next timer was already expired due to: |
1838 | * - tracing |
1839 | * - long lasting callbacks |
1840 | * - being scheduled away when running in a VM |
1841 | * |
1842 | * We need to prevent that we loop forever in the hrtimer |
1843 | * interrupt routine. We give it 3 attempts to avoid |
1844 | * overreacting on some spurious event. |
1845 | * |
1846 | * Acquire base lock for updating the offsets and retrieving |
1847 | * the current time. |
1848 | */ |
1849 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
1850 | now = hrtimer_update_base(base: cpu_base); |
1851 | cpu_base->nr_retries++; |
1852 | if (++retries < 3) |
1853 | goto retry; |
1854 | /* |
1855 | * Give the system a chance to do something else than looping |
1856 | * here. We stored the entry time, so we know exactly how long |
1857 | * we spent here. We schedule the next event this amount of |
1858 | * time away. |
1859 | */ |
1860 | cpu_base->nr_hangs++; |
1861 | cpu_base->hang_detected = 1; |
1862 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1863 | |
1864 | delta = ktime_sub(now, entry_time); |
1865 | if ((unsigned int)delta > cpu_base->max_hang_time) |
1866 | cpu_base->max_hang_time = (unsigned int) delta; |
1867 | /* |
1868 | * Limit it to a sensible value as we enforce a longer |
1869 | * delay. Give the CPU at least 100ms to catch up. |
1870 | */ |
1871 | if (delta > 100 * NSEC_PER_MSEC) |
1872 | expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); |
1873 | else |
1874 | expires_next = ktime_add(now, delta); |
1875 | tick_program_event(expires: expires_next, force: 1); |
1876 | pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); |
1877 | } |
1878 | |
1879 | /* called with interrupts disabled */ |
1880 | static inline void __hrtimer_peek_ahead_timers(void) |
1881 | { |
1882 | struct tick_device *td; |
1883 | |
1884 | if (!hrtimer_hres_active()) |
1885 | return; |
1886 | |
1887 | td = this_cpu_ptr(&tick_cpu_device); |
1888 | if (td && td->evtdev) |
1889 | hrtimer_interrupt(dev: td->evtdev); |
1890 | } |
1891 | |
1892 | #else /* CONFIG_HIGH_RES_TIMERS */ |
1893 | |
1894 | static inline void __hrtimer_peek_ahead_timers(void) { } |
1895 | |
1896 | #endif /* !CONFIG_HIGH_RES_TIMERS */ |
1897 | |
1898 | /* |
1899 | * Called from run_local_timers in hardirq context every jiffy |
1900 | */ |
1901 | void hrtimer_run_queues(void) |
1902 | { |
1903 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
1904 | unsigned long flags; |
1905 | ktime_t now; |
1906 | |
1907 | if (__hrtimer_hres_active(cpu_base)) |
1908 | return; |
1909 | |
1910 | /* |
1911 | * This _is_ ugly: We have to check periodically, whether we |
1912 | * can switch to highres and / or nohz mode. The clocksource |
1913 | * switch happens with xtime_lock held. Notification from |
1914 | * there only sets the check bit in the tick_oneshot code, |
1915 | * otherwise we might deadlock vs. xtime_lock. |
1916 | */ |
1917 | if (tick_check_oneshot_change(allow_nohz: !hrtimer_is_hres_enabled())) { |
1918 | hrtimer_switch_to_hres(); |
1919 | return; |
1920 | } |
1921 | |
1922 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
1923 | now = hrtimer_update_base(base: cpu_base); |
1924 | |
1925 | if (!ktime_before(cmp1: now, cmp2: cpu_base->softirq_expires_next)) { |
1926 | cpu_base->softirq_expires_next = KTIME_MAX; |
1927 | cpu_base->softirq_activated = 1; |
1928 | raise_softirq_irqoff(nr: HRTIMER_SOFTIRQ); |
1929 | } |
1930 | |
1931 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); |
1932 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1933 | } |
1934 | |
1935 | /* |
1936 | * Sleep related functions: |
1937 | */ |
1938 | static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) |
1939 | { |
1940 | struct hrtimer_sleeper *t = |
1941 | container_of(timer, struct hrtimer_sleeper, timer); |
1942 | struct task_struct *task = t->task; |
1943 | |
1944 | t->task = NULL; |
1945 | if (task) |
1946 | wake_up_process(tsk: task); |
1947 | |
1948 | return HRTIMER_NORESTART; |
1949 | } |
1950 | |
1951 | /** |
1952 | * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer |
1953 | * @sl: sleeper to be started |
1954 | * @mode: timer mode abs/rel |
1955 | * |
1956 | * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers |
1957 | * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) |
1958 | */ |
1959 | void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, |
1960 | enum hrtimer_mode mode) |
1961 | { |
1962 | /* |
1963 | * Make the enqueue delivery mode check work on RT. If the sleeper |
1964 | * was initialized for hard interrupt delivery, force the mode bit. |
1965 | * This is a special case for hrtimer_sleepers because |
1966 | * hrtimer_init_sleeper() determines the delivery mode on RT so the |
1967 | * fiddling with this decision is avoided at the call sites. |
1968 | */ |
1969 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) |
1970 | mode |= HRTIMER_MODE_HARD; |
1971 | |
1972 | hrtimer_start_expires(timer: &sl->timer, mode); |
1973 | } |
1974 | EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); |
1975 | |
1976 | static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, |
1977 | clockid_t clock_id, enum hrtimer_mode mode) |
1978 | { |
1979 | /* |
1980 | * On PREEMPT_RT enabled kernels hrtimers which are not explicitly |
1981 | * marked for hard interrupt expiry mode are moved into soft |
1982 | * interrupt context either for latency reasons or because the |
1983 | * hrtimer callback takes regular spinlocks or invokes other |
1984 | * functions which are not suitable for hard interrupt context on |
1985 | * PREEMPT_RT. |
1986 | * |
1987 | * The hrtimer_sleeper callback is RT compatible in hard interrupt |
1988 | * context, but there is a latency concern: Untrusted userspace can |
1989 | * spawn many threads which arm timers for the same expiry time on |
1990 | * the same CPU. That causes a latency spike due to the wakeup of |
1991 | * a gazillion threads. |
1992 | * |
1993 | * OTOH, privileged real-time user space applications rely on the |
1994 | * low latency of hard interrupt wakeups. If the current task is in |
1995 | * a real-time scheduling class, mark the mode for hard interrupt |
1996 | * expiry. |
1997 | */ |
1998 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) { |
1999 | if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT)) |
2000 | mode |= HRTIMER_MODE_HARD; |
2001 | } |
2002 | |
2003 | __hrtimer_init(timer: &sl->timer, clock_id, mode); |
2004 | sl->timer.function = hrtimer_wakeup; |
2005 | sl->task = current; |
2006 | } |
2007 | |
2008 | /** |
2009 | * hrtimer_init_sleeper - initialize sleeper to the given clock |
2010 | * @sl: sleeper to be initialized |
2011 | * @clock_id: the clock to be used |
2012 | * @mode: timer mode abs/rel |
2013 | */ |
2014 | void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, |
2015 | enum hrtimer_mode mode) |
2016 | { |
2017 | debug_init(timer: &sl->timer, clockid: clock_id, mode); |
2018 | __hrtimer_init_sleeper(sl, clock_id, mode); |
2019 | |
2020 | } |
2021 | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); |
2022 | |
2023 | int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) |
2024 | { |
2025 | switch(restart->nanosleep.type) { |
2026 | #ifdef CONFIG_COMPAT_32BIT_TIME |
2027 | case TT_COMPAT: |
2028 | if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) |
2029 | return -EFAULT; |
2030 | break; |
2031 | #endif |
2032 | case TT_NATIVE: |
2033 | if (put_timespec64(ts, uts: restart->nanosleep.rmtp)) |
2034 | return -EFAULT; |
2035 | break; |
2036 | default: |
2037 | BUG(); |
2038 | } |
2039 | return -ERESTART_RESTARTBLOCK; |
2040 | } |
2041 | |
2042 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
2043 | { |
2044 | struct restart_block *restart; |
2045 | |
2046 | do { |
2047 | set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); |
2048 | hrtimer_sleeper_start_expires(t, mode); |
2049 | |
2050 | if (likely(t->task)) |
2051 | schedule(); |
2052 | |
2053 | hrtimer_cancel(&t->timer); |
2054 | mode = HRTIMER_MODE_ABS; |
2055 | |
2056 | } while (t->task && !signal_pending(current)); |
2057 | |
2058 | __set_current_state(TASK_RUNNING); |
2059 | |
2060 | if (!t->task) |
2061 | return 0; |
2062 | |
2063 | restart = ¤t->restart_block; |
2064 | if (restart->nanosleep.type != TT_NONE) { |
2065 | ktime_t rem = hrtimer_expires_remaining(timer: &t->timer); |
2066 | struct timespec64 rmt; |
2067 | |
2068 | if (rem <= 0) |
2069 | return 0; |
2070 | rmt = ktime_to_timespec64(rem); |
2071 | |
2072 | return nanosleep_copyout(restart, ts: &rmt); |
2073 | } |
2074 | return -ERESTART_RESTARTBLOCK; |
2075 | } |
2076 | |
2077 | static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) |
2078 | { |
2079 | struct hrtimer_sleeper t; |
2080 | int ret; |
2081 | |
2082 | hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid, |
2083 | HRTIMER_MODE_ABS); |
2084 | hrtimer_set_expires_tv64(timer: &t.timer, tv64: restart->nanosleep.expires); |
2085 | ret = do_nanosleep(t: &t, mode: HRTIMER_MODE_ABS); |
2086 | destroy_hrtimer_on_stack(&t.timer); |
2087 | return ret; |
2088 | } |
2089 | |
2090 | long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, |
2091 | const clockid_t clockid) |
2092 | { |
2093 | struct restart_block *restart; |
2094 | struct hrtimer_sleeper t; |
2095 | int ret = 0; |
2096 | u64 slack; |
2097 | |
2098 | slack = current->timer_slack_ns; |
2099 | if (rt_task(current)) |
2100 | slack = 0; |
2101 | |
2102 | hrtimer_init_sleeper_on_stack(&t, clockid, mode); |
2103 | hrtimer_set_expires_range_ns(timer: &t.timer, time: rqtp, delta: slack); |
2104 | ret = do_nanosleep(t: &t, mode); |
2105 | if (ret != -ERESTART_RESTARTBLOCK) |
2106 | goto out; |
2107 | |
2108 | /* Absolute timers do not update the rmtp value and restart: */ |
2109 | if (mode == HRTIMER_MODE_ABS) { |
2110 | ret = -ERESTARTNOHAND; |
2111 | goto out; |
2112 | } |
2113 | |
2114 | restart = ¤t->restart_block; |
2115 | restart->nanosleep.clockid = t.timer.base->clockid; |
2116 | restart->nanosleep.expires = hrtimer_get_expires_tv64(timer: &t.timer); |
2117 | set_restart_fn(restart, fn: hrtimer_nanosleep_restart); |
2118 | out: |
2119 | destroy_hrtimer_on_stack(&t.timer); |
2120 | return ret; |
2121 | } |
2122 | |
2123 | #ifdef CONFIG_64BIT |
2124 | |
2125 | SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, |
2126 | struct __kernel_timespec __user *, rmtp) |
2127 | { |
2128 | struct timespec64 tu; |
2129 | |
2130 | if (get_timespec64(ts: &tu, uts: rqtp)) |
2131 | return -EFAULT; |
2132 | |
2133 | if (!timespec64_valid(ts: &tu)) |
2134 | return -EINVAL; |
2135 | |
2136 | current->restart_block.fn = do_no_restart_syscall; |
2137 | current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; |
2138 | current->restart_block.nanosleep.rmtp = rmtp; |
2139 | return hrtimer_nanosleep(rqtp: timespec64_to_ktime(ts: tu), mode: HRTIMER_MODE_REL, |
2140 | CLOCK_MONOTONIC); |
2141 | } |
2142 | |
2143 | #endif |
2144 | |
2145 | #ifdef CONFIG_COMPAT_32BIT_TIME |
2146 | |
2147 | SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, |
2148 | struct old_timespec32 __user *, rmtp) |
2149 | { |
2150 | struct timespec64 tu; |
2151 | |
2152 | if (get_old_timespec32(&tu, rqtp)) |
2153 | return -EFAULT; |
2154 | |
2155 | if (!timespec64_valid(ts: &tu)) |
2156 | return -EINVAL; |
2157 | |
2158 | current->restart_block.fn = do_no_restart_syscall; |
2159 | current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; |
2160 | current->restart_block.nanosleep.compat_rmtp = rmtp; |
2161 | return hrtimer_nanosleep(rqtp: timespec64_to_ktime(ts: tu), mode: HRTIMER_MODE_REL, |
2162 | CLOCK_MONOTONIC); |
2163 | } |
2164 | #endif |
2165 | |
2166 | /* |
2167 | * Functions related to boot-time initialization: |
2168 | */ |
2169 | int hrtimers_prepare_cpu(unsigned int cpu) |
2170 | { |
2171 | struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); |
2172 | int i; |
2173 | |
2174 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
2175 | struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; |
2176 | |
2177 | clock_b->cpu_base = cpu_base; |
2178 | seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); |
2179 | timerqueue_init_head(head: &clock_b->active); |
2180 | } |
2181 | |
2182 | cpu_base->cpu = cpu; |
2183 | cpu_base->active_bases = 0; |
2184 | cpu_base->hres_active = 0; |
2185 | cpu_base->hang_detected = 0; |
2186 | cpu_base->next_timer = NULL; |
2187 | cpu_base->softirq_next_timer = NULL; |
2188 | cpu_base->expires_next = KTIME_MAX; |
2189 | cpu_base->softirq_expires_next = KTIME_MAX; |
2190 | cpu_base->online = 1; |
2191 | hrtimer_cpu_base_init_expiry_lock(base: cpu_base); |
2192 | return 0; |
2193 | } |
2194 | |
2195 | #ifdef CONFIG_HOTPLUG_CPU |
2196 | |
2197 | static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, |
2198 | struct hrtimer_clock_base *new_base) |
2199 | { |
2200 | struct hrtimer *timer; |
2201 | struct timerqueue_node *node; |
2202 | |
2203 | while ((node = timerqueue_getnext(head: &old_base->active))) { |
2204 | timer = container_of(node, struct hrtimer, node); |
2205 | BUG_ON(hrtimer_callback_running(timer)); |
2206 | debug_deactivate(timer); |
2207 | |
2208 | /* |
2209 | * Mark it as ENQUEUED not INACTIVE otherwise the |
2210 | * timer could be seen as !active and just vanish away |
2211 | * under us on another CPU |
2212 | */ |
2213 | __remove_hrtimer(timer, base: old_base, HRTIMER_STATE_ENQUEUED, reprogram: 0); |
2214 | timer->base = new_base; |
2215 | /* |
2216 | * Enqueue the timers on the new cpu. This does not |
2217 | * reprogram the event device in case the timer |
2218 | * expires before the earliest on this CPU, but we run |
2219 | * hrtimer_interrupt after we migrated everything to |
2220 | * sort out already expired timers and reprogram the |
2221 | * event device. |
2222 | */ |
2223 | enqueue_hrtimer(timer, base: new_base, mode: HRTIMER_MODE_ABS); |
2224 | } |
2225 | } |
2226 | |
2227 | int hrtimers_cpu_dying(unsigned int dying_cpu) |
2228 | { |
2229 | int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER)); |
2230 | struct hrtimer_cpu_base *old_base, *new_base; |
2231 | |
2232 | old_base = this_cpu_ptr(&hrtimer_bases); |
2233 | new_base = &per_cpu(hrtimer_bases, ncpu); |
2234 | |
2235 | /* |
2236 | * The caller is globally serialized and nobody else |
2237 | * takes two locks at once, deadlock is not possible. |
2238 | */ |
2239 | raw_spin_lock(&old_base->lock); |
2240 | raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING); |
2241 | |
2242 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
2243 | migrate_hrtimer_list(old_base: &old_base->clock_base[i], |
2244 | new_base: &new_base->clock_base[i]); |
2245 | } |
2246 | |
2247 | /* |
2248 | * The migration might have changed the first expiring softirq |
2249 | * timer on this CPU. Update it. |
2250 | */ |
2251 | __hrtimer_get_next_event(cpu_base: new_base, HRTIMER_ACTIVE_SOFT); |
2252 | /* Tell the other CPU to retrigger the next event */ |
2253 | smp_call_function_single(cpuid: ncpu, func: retrigger_next_event, NULL, wait: 0); |
2254 | |
2255 | raw_spin_unlock(&new_base->lock); |
2256 | old_base->online = 0; |
2257 | raw_spin_unlock(&old_base->lock); |
2258 | |
2259 | return 0; |
2260 | } |
2261 | |
2262 | #endif /* CONFIG_HOTPLUG_CPU */ |
2263 | |
2264 | void __init hrtimers_init(void) |
2265 | { |
2266 | hrtimers_prepare_cpu(smp_processor_id()); |
2267 | open_softirq(nr: HRTIMER_SOFTIRQ, action: hrtimer_run_softirq); |
2268 | } |
2269 | |
2270 | /** |
2271 | * schedule_hrtimeout_range_clock - sleep until timeout |
2272 | * @expires: timeout value (ktime_t) |
2273 | * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks |
2274 | * @mode: timer mode |
2275 | * @clock_id: timer clock to be used |
2276 | */ |
2277 | int __sched |
2278 | schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, |
2279 | const enum hrtimer_mode mode, clockid_t clock_id) |
2280 | { |
2281 | struct hrtimer_sleeper t; |
2282 | |
2283 | /* |
2284 | * Optimize when a zero timeout value is given. It does not |
2285 | * matter whether this is an absolute or a relative time. |
2286 | */ |
2287 | if (expires && *expires == 0) { |
2288 | __set_current_state(TASK_RUNNING); |
2289 | return 0; |
2290 | } |
2291 | |
2292 | /* |
2293 | * A NULL parameter means "infinite" |
2294 | */ |
2295 | if (!expires) { |
2296 | schedule(); |
2297 | return -EINTR; |
2298 | } |
2299 | |
2300 | /* |
2301 | * Override any slack passed by the user if under |
2302 | * rt contraints. |
2303 | */ |
2304 | if (rt_task(current)) |
2305 | delta = 0; |
2306 | |
2307 | hrtimer_init_sleeper_on_stack(&t, clock_id, mode); |
2308 | hrtimer_set_expires_range_ns(timer: &t.timer, time: *expires, delta); |
2309 | hrtimer_sleeper_start_expires(&t, mode); |
2310 | |
2311 | if (likely(t.task)) |
2312 | schedule(); |
2313 | |
2314 | hrtimer_cancel(&t.timer); |
2315 | destroy_hrtimer_on_stack(&t.timer); |
2316 | |
2317 | __set_current_state(TASK_RUNNING); |
2318 | |
2319 | return !t.task ? 0 : -EINTR; |
2320 | } |
2321 | EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock); |
2322 | |
2323 | /** |
2324 | * schedule_hrtimeout_range - sleep until timeout |
2325 | * @expires: timeout value (ktime_t) |
2326 | * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks |
2327 | * @mode: timer mode |
2328 | * |
2329 | * Make the current task sleep until the given expiry time has |
2330 | * elapsed. The routine will return immediately unless |
2331 | * the current task state has been set (see set_current_state()). |
2332 | * |
2333 | * The @delta argument gives the kernel the freedom to schedule the |
2334 | * actual wakeup to a time that is both power and performance friendly |
2335 | * for regular (non RT/DL) tasks. |
2336 | * The kernel give the normal best effort behavior for "@expires+@delta", |
2337 | * but may decide to fire the timer earlier, but no earlier than @expires. |
2338 | * |
2339 | * You can set the task state as follows - |
2340 | * |
2341 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to |
2342 | * pass before the routine returns unless the current task is explicitly |
2343 | * woken up, (e.g. by wake_up_process()). |
2344 | * |
2345 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is |
2346 | * delivered to the current task or the current task is explicitly woken |
2347 | * up. |
2348 | * |
2349 | * The current task state is guaranteed to be TASK_RUNNING when this |
2350 | * routine returns. |
2351 | * |
2352 | * Returns 0 when the timer has expired. If the task was woken before the |
2353 | * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or |
2354 | * by an explicit wakeup, it returns -EINTR. |
2355 | */ |
2356 | int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, |
2357 | const enum hrtimer_mode mode) |
2358 | { |
2359 | return schedule_hrtimeout_range_clock(expires, delta, mode, |
2360 | CLOCK_MONOTONIC); |
2361 | } |
2362 | EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); |
2363 | |
2364 | /** |
2365 | * schedule_hrtimeout - sleep until timeout |
2366 | * @expires: timeout value (ktime_t) |
2367 | * @mode: timer mode |
2368 | * |
2369 | * Make the current task sleep until the given expiry time has |
2370 | * elapsed. The routine will return immediately unless |
2371 | * the current task state has been set (see set_current_state()). |
2372 | * |
2373 | * You can set the task state as follows - |
2374 | * |
2375 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to |
2376 | * pass before the routine returns unless the current task is explicitly |
2377 | * woken up, (e.g. by wake_up_process()). |
2378 | * |
2379 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is |
2380 | * delivered to the current task or the current task is explicitly woken |
2381 | * up. |
2382 | * |
2383 | * The current task state is guaranteed to be TASK_RUNNING when this |
2384 | * routine returns. |
2385 | * |
2386 | * Returns 0 when the timer has expired. If the task was woken before the |
2387 | * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or |
2388 | * by an explicit wakeup, it returns -EINTR. |
2389 | */ |
2390 | int __sched schedule_hrtimeout(ktime_t *expires, |
2391 | const enum hrtimer_mode mode) |
2392 | { |
2393 | return schedule_hrtimeout_range(expires, 0, mode); |
2394 | } |
2395 | EXPORT_SYMBOL_GPL(schedule_hrtimeout); |
2396 |
Definitions
- hrtimer_bases
- hrtimer_clock_to_base_table
- migration_cpu_base
- is_migration_base
- lock_hrtimer_base
- hrtimer_check_target
- get_target_base
- switch_hrtimer_base
- ktime_add_safe
- hrtimer_debug_descr
- hrtimer_debug_hint
- hrtimer_fixup_init
- hrtimer_fixup_activate
- hrtimer_fixup_free
- hrtimer_debug_descr
- debug_hrtimer_init
- debug_hrtimer_activate
- debug_hrtimer_deactivate
- hrtimer_init_on_stack
- hrtimer_init_sleeper_on_stack
- destroy_hrtimer_on_stack
- debug_init
- debug_activate
- debug_deactivate
- __next_base
- __hrtimer_next_event_base
- __hrtimer_get_next_event
- hrtimer_update_next_event
- hrtimer_update_base
- __hrtimer_hres_active
- hrtimer_hres_active
- __hrtimer_reprogram
- hrtimer_force_reprogram
- hrtimer_hres_enabled
- hrtimer_resolution
- setup_hrtimer_hres
- hrtimer_is_hres_enabled
- hrtimer_switch_to_hres
- retrigger_next_event
- hrtimer_reprogram
- update_needs_ipi
- clock_was_set
- clock_was_set_work
- hrtimer_work
- clock_was_set_delayed
- hrtimers_resume_local
- unlock_hrtimer_base
- hrtimer_forward
- enqueue_hrtimer
- __remove_hrtimer
- remove_hrtimer
- hrtimer_update_lowres
- hrtimer_update_softirq_timer
- __hrtimer_start_range_ns
- hrtimer_start_range_ns
- hrtimer_try_to_cancel
- hrtimer_cpu_base_init_expiry_lock
- hrtimer_cpu_base_lock_expiry
- hrtimer_cpu_base_unlock_expiry
- hrtimer_sync_wait_running
- hrtimer_cancel
- __hrtimer_get_remaining
- hrtimer_get_next_event
- hrtimer_next_event_without
- hrtimer_clockid_to_base
- __hrtimer_init
- hrtimer_init
- hrtimer_active
- __run_hrtimer
- __hrtimer_run_queues
- hrtimer_run_softirq
- hrtimer_interrupt
- __hrtimer_peek_ahead_timers
- hrtimer_run_queues
- hrtimer_wakeup
- hrtimer_sleeper_start_expires
- __hrtimer_init_sleeper
- hrtimer_init_sleeper
- nanosleep_copyout
- do_nanosleep
- hrtimer_nanosleep_restart
- hrtimer_nanosleep
- hrtimers_prepare_cpu
- migrate_hrtimer_list
- hrtimers_cpu_dying
- hrtimers_init
- schedule_hrtimeout_range_clock
- schedule_hrtimeout_range
Improve your Profiling and Debugging skills
Find out more