1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> |
4 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
5 | * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
6 | * |
7 | * High-resolution kernel timers |
8 | * |
9 | * In contrast to the low-resolution timeout API, aka timer wheel, |
10 | * hrtimers provide finer resolution and accuracy depending on system |
11 | * configuration and capabilities. |
12 | * |
13 | * Started by: Thomas Gleixner and Ingo Molnar |
14 | * |
15 | * Credits: |
16 | * Based on the original timer wheel code |
17 | * |
18 | * Help, testing, suggestions, bugfixes, improvements were |
19 | * provided by: |
20 | * |
21 | * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel |
22 | * et. al. |
23 | */ |
24 | |
25 | #include <linux/cpu.h> |
26 | #include <linux/export.h> |
27 | #include <linux/percpu.h> |
28 | #include <linux/hrtimer.h> |
29 | #include <linux/notifier.h> |
30 | #include <linux/syscalls.h> |
31 | #include <linux/interrupt.h> |
32 | #include <linux/tick.h> |
33 | #include <linux/err.h> |
34 | #include <linux/debugobjects.h> |
35 | #include <linux/sched/signal.h> |
36 | #include <linux/sched/sysctl.h> |
37 | #include <linux/sched/rt.h> |
38 | #include <linux/sched/deadline.h> |
39 | #include <linux/sched/nohz.h> |
40 | #include <linux/sched/debug.h> |
41 | #include <linux/sched/isolation.h> |
42 | #include <linux/timer.h> |
43 | #include <linux/freezer.h> |
44 | #include <linux/compat.h> |
45 | |
46 | #include <linux/uaccess.h> |
47 | |
48 | #include <trace/events/timer.h> |
49 | |
50 | #include "tick-internal.h" |
51 | |
52 | /* |
53 | * Masks for selecting the soft and hard context timers from |
54 | * cpu_base->active |
55 | */ |
56 | #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) |
57 | #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) |
58 | #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) |
59 | #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) |
60 | |
61 | static void retrigger_next_event(void *arg); |
62 | |
63 | /* |
64 | * The timer bases: |
65 | * |
66 | * There are more clockids than hrtimer bases. Thus, we index |
67 | * into the timer bases by the hrtimer_base_type enum. When trying |
68 | * to reach a base using a clockid, hrtimer_clockid_to_base() |
69 | * is used to convert from clockid to the proper hrtimer_base_type. |
70 | */ |
71 | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = |
72 | { |
73 | .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), |
74 | .clock_base = |
75 | { |
76 | { |
77 | .index = HRTIMER_BASE_MONOTONIC, |
78 | .clockid = CLOCK_MONOTONIC, |
79 | .get_time = &ktime_get, |
80 | }, |
81 | { |
82 | .index = HRTIMER_BASE_REALTIME, |
83 | .clockid = CLOCK_REALTIME, |
84 | .get_time = &ktime_get_real, |
85 | }, |
86 | { |
87 | .index = HRTIMER_BASE_BOOTTIME, |
88 | .clockid = CLOCK_BOOTTIME, |
89 | .get_time = &ktime_get_boottime, |
90 | }, |
91 | { |
92 | .index = HRTIMER_BASE_TAI, |
93 | .clockid = CLOCK_TAI, |
94 | .get_time = &ktime_get_clocktai, |
95 | }, |
96 | { |
97 | .index = HRTIMER_BASE_MONOTONIC_SOFT, |
98 | .clockid = CLOCK_MONOTONIC, |
99 | .get_time = &ktime_get, |
100 | }, |
101 | { |
102 | .index = HRTIMER_BASE_REALTIME_SOFT, |
103 | .clockid = CLOCK_REALTIME, |
104 | .get_time = &ktime_get_real, |
105 | }, |
106 | { |
107 | .index = HRTIMER_BASE_BOOTTIME_SOFT, |
108 | .clockid = CLOCK_BOOTTIME, |
109 | .get_time = &ktime_get_boottime, |
110 | }, |
111 | { |
112 | .index = HRTIMER_BASE_TAI_SOFT, |
113 | .clockid = CLOCK_TAI, |
114 | .get_time = &ktime_get_clocktai, |
115 | }, |
116 | }, |
117 | .csd = CSD_INIT(retrigger_next_event, NULL) |
118 | }; |
119 | |
120 | static inline bool hrtimer_base_is_online(struct hrtimer_cpu_base *base) |
121 | { |
122 | if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) |
123 | return true; |
124 | else |
125 | return likely(base->online); |
126 | } |
127 | |
128 | /* |
129 | * Functions and macros which are different for UP/SMP systems are kept in a |
130 | * single place |
131 | */ |
132 | #ifdef CONFIG_SMP |
133 | |
134 | /* |
135 | * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() |
136 | * such that hrtimer_callback_running() can unconditionally dereference |
137 | * timer->base->cpu_base |
138 | */ |
139 | static struct hrtimer_cpu_base migration_cpu_base = { |
140 | .clock_base = { { |
141 | .cpu_base = &migration_cpu_base, |
142 | .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, |
143 | &migration_cpu_base.lock), |
144 | }, }, |
145 | }; |
146 | |
147 | #define migration_base migration_cpu_base.clock_base[0] |
148 | |
149 | /* |
150 | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock |
151 | * means that all timers which are tied to this base via timer->base are |
152 | * locked, and the base itself is locked too. |
153 | * |
154 | * So __run_timers/migrate_timers can safely modify all timers which could |
155 | * be found on the lists/queues. |
156 | * |
157 | * When the timer's base is locked, and the timer removed from list, it is |
158 | * possible to set timer->base = &migration_base and drop the lock: the timer |
159 | * remains locked. |
160 | */ |
161 | static |
162 | struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, |
163 | unsigned long *flags) |
164 | __acquires(&timer->base->lock) |
165 | { |
166 | struct hrtimer_clock_base *base; |
167 | |
168 | for (;;) { |
169 | base = READ_ONCE(timer->base); |
170 | if (likely(base != &migration_base)) { |
171 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
172 | if (likely(base == timer->base)) |
173 | return base; |
174 | /* The timer has migrated to another CPU: */ |
175 | raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); |
176 | } |
177 | cpu_relax(); |
178 | } |
179 | } |
180 | |
181 | /* |
182 | * Check if the elected target is suitable considering its next |
183 | * event and the hotplug state of the current CPU. |
184 | * |
185 | * If the elected target is remote and its next event is after the timer |
186 | * to queue, then a remote reprogram is necessary. However there is no |
187 | * guarantee the IPI handling the operation would arrive in time to meet |
188 | * the high resolution deadline. In this case the local CPU becomes a |
189 | * preferred target, unless it is offline. |
190 | * |
191 | * High and low resolution modes are handled the same way for simplicity. |
192 | * |
193 | * Called with cpu_base->lock of target cpu held. |
194 | */ |
195 | static bool hrtimer_suitable_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base, |
196 | struct hrtimer_cpu_base *new_cpu_base, |
197 | struct hrtimer_cpu_base *this_cpu_base) |
198 | { |
199 | ktime_t expires; |
200 | |
201 | /* |
202 | * The local CPU clockevent can be reprogrammed. Also get_target_base() |
203 | * guarantees it is online. |
204 | */ |
205 | if (new_cpu_base == this_cpu_base) |
206 | return true; |
207 | |
208 | /* |
209 | * The offline local CPU can't be the default target if the |
210 | * next remote target event is after this timer. Keep the |
211 | * elected new base. An IPI will we issued to reprogram |
212 | * it as a last resort. |
213 | */ |
214 | if (!hrtimer_base_is_online(base: this_cpu_base)) |
215 | return true; |
216 | |
217 | expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); |
218 | |
219 | return expires >= new_base->cpu_base->expires_next; |
220 | } |
221 | |
222 | static inline struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, int pinned) |
223 | { |
224 | if (!hrtimer_base_is_online(base)) { |
225 | int cpu = cpumask_any_and(cpu_online_mask, housekeeping_cpumask(HK_TYPE_TIMER)); |
226 | |
227 | return &per_cpu(hrtimer_bases, cpu); |
228 | } |
229 | |
230 | #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) |
231 | if (static_branch_likely(&timers_migration_enabled) && !pinned) |
232 | return &per_cpu(hrtimer_bases, get_nohz_timer_target()); |
233 | #endif |
234 | return base; |
235 | } |
236 | |
237 | /* |
238 | * We switch the timer base to a power-optimized selected CPU target, |
239 | * if: |
240 | * - NO_HZ_COMMON is enabled |
241 | * - timer migration is enabled |
242 | * - the timer callback is not running |
243 | * - the timer is not the first expiring timer on the new target |
244 | * |
245 | * If one of the above requirements is not fulfilled we move the timer |
246 | * to the current CPU or leave it on the previously assigned CPU if |
247 | * the timer callback is currently running. |
248 | */ |
249 | static inline struct hrtimer_clock_base * |
250 | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, |
251 | int pinned) |
252 | { |
253 | struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; |
254 | struct hrtimer_clock_base *new_base; |
255 | int basenum = base->index; |
256 | |
257 | this_cpu_base = this_cpu_ptr(&hrtimer_bases); |
258 | new_cpu_base = get_target_base(base: this_cpu_base, pinned); |
259 | again: |
260 | new_base = &new_cpu_base->clock_base[basenum]; |
261 | |
262 | if (base != new_base) { |
263 | /* |
264 | * We are trying to move timer to new_base. |
265 | * However we can't change timer's base while it is running, |
266 | * so we keep it on the same CPU. No hassle vs. reprogramming |
267 | * the event source in the high resolution case. The softirq |
268 | * code will take care of this when the timer function has |
269 | * completed. There is no conflict as we hold the lock until |
270 | * the timer is enqueued. |
271 | */ |
272 | if (unlikely(hrtimer_callback_running(timer))) |
273 | return base; |
274 | |
275 | /* See the comment in lock_hrtimer_base() */ |
276 | WRITE_ONCE(timer->base, &migration_base); |
277 | raw_spin_unlock(&base->cpu_base->lock); |
278 | raw_spin_lock(&new_base->cpu_base->lock); |
279 | |
280 | if (!hrtimer_suitable_target(timer, new_base, new_cpu_base, |
281 | this_cpu_base)) { |
282 | raw_spin_unlock(&new_base->cpu_base->lock); |
283 | raw_spin_lock(&base->cpu_base->lock); |
284 | new_cpu_base = this_cpu_base; |
285 | WRITE_ONCE(timer->base, base); |
286 | goto again; |
287 | } |
288 | WRITE_ONCE(timer->base, new_base); |
289 | } else { |
290 | if (!hrtimer_suitable_target(timer, new_base, new_cpu_base, this_cpu_base)) { |
291 | new_cpu_base = this_cpu_base; |
292 | goto again; |
293 | } |
294 | } |
295 | return new_base; |
296 | } |
297 | |
298 | #else /* CONFIG_SMP */ |
299 | |
300 | static inline struct hrtimer_clock_base * |
301 | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
302 | __acquires(&timer->base->cpu_base->lock) |
303 | { |
304 | struct hrtimer_clock_base *base = timer->base; |
305 | |
306 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
307 | |
308 | return base; |
309 | } |
310 | |
311 | # define switch_hrtimer_base(t, b, p) (b) |
312 | |
313 | #endif /* !CONFIG_SMP */ |
314 | |
315 | /* |
316 | * Functions for the union type storage format of ktime_t which are |
317 | * too large for inlining: |
318 | */ |
319 | #if BITS_PER_LONG < 64 |
320 | /* |
321 | * Divide a ktime value by a nanosecond value |
322 | */ |
323 | s64 __ktime_divns(const ktime_t kt, s64 div) |
324 | { |
325 | int sft = 0; |
326 | s64 dclc; |
327 | u64 tmp; |
328 | |
329 | dclc = ktime_to_ns(kt); |
330 | tmp = dclc < 0 ? -dclc : dclc; |
331 | |
332 | /* Make sure the divisor is less than 2^32: */ |
333 | while (div >> 32) { |
334 | sft++; |
335 | div >>= 1; |
336 | } |
337 | tmp >>= sft; |
338 | do_div(tmp, (u32) div); |
339 | return dclc < 0 ? -tmp : tmp; |
340 | } |
341 | EXPORT_SYMBOL_GPL(__ktime_divns); |
342 | #endif /* BITS_PER_LONG >= 64 */ |
343 | |
344 | /* |
345 | * Add two ktime values and do a safety check for overflow: |
346 | */ |
347 | ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) |
348 | { |
349 | ktime_t res = ktime_add_unsafe(lhs, rhs); |
350 | |
351 | /* |
352 | * We use KTIME_SEC_MAX here, the maximum timeout which we can |
353 | * return to user space in a timespec: |
354 | */ |
355 | if (res < 0 || res < lhs || res < rhs) |
356 | res = ktime_set(KTIME_SEC_MAX, nsecs: 0); |
357 | |
358 | return res; |
359 | } |
360 | |
361 | EXPORT_SYMBOL_GPL(ktime_add_safe); |
362 | |
363 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
364 | |
365 | static const struct debug_obj_descr hrtimer_debug_descr; |
366 | |
367 | static void *hrtimer_debug_hint(void *addr) |
368 | { |
369 | return ACCESS_PRIVATE((struct hrtimer *)addr, function); |
370 | } |
371 | |
372 | /* |
373 | * fixup_init is called when: |
374 | * - an active object is initialized |
375 | */ |
376 | static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) |
377 | { |
378 | struct hrtimer *timer = addr; |
379 | |
380 | switch (state) { |
381 | case ODEBUG_STATE_ACTIVE: |
382 | hrtimer_cancel(timer); |
383 | debug_object_init(addr: timer, descr: &hrtimer_debug_descr); |
384 | return true; |
385 | default: |
386 | return false; |
387 | } |
388 | } |
389 | |
390 | /* |
391 | * fixup_activate is called when: |
392 | * - an active object is activated |
393 | * - an unknown non-static object is activated |
394 | */ |
395 | static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) |
396 | { |
397 | switch (state) { |
398 | case ODEBUG_STATE_ACTIVE: |
399 | WARN_ON(1); |
400 | fallthrough; |
401 | default: |
402 | return false; |
403 | } |
404 | } |
405 | |
406 | /* |
407 | * fixup_free is called when: |
408 | * - an active object is freed |
409 | */ |
410 | static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) |
411 | { |
412 | struct hrtimer *timer = addr; |
413 | |
414 | switch (state) { |
415 | case ODEBUG_STATE_ACTIVE: |
416 | hrtimer_cancel(timer); |
417 | debug_object_free(addr: timer, descr: &hrtimer_debug_descr); |
418 | return true; |
419 | default: |
420 | return false; |
421 | } |
422 | } |
423 | |
424 | static const struct debug_obj_descr hrtimer_debug_descr = { |
425 | .name = "hrtimer", |
426 | .debug_hint = hrtimer_debug_hint, |
427 | .fixup_init = hrtimer_fixup_init, |
428 | .fixup_activate = hrtimer_fixup_activate, |
429 | .fixup_free = hrtimer_fixup_free, |
430 | }; |
431 | |
432 | static inline void debug_hrtimer_init(struct hrtimer *timer) |
433 | { |
434 | debug_object_init(addr: timer, descr: &hrtimer_debug_descr); |
435 | } |
436 | |
437 | static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) |
438 | { |
439 | debug_object_init_on_stack(addr: timer, descr: &hrtimer_debug_descr); |
440 | } |
441 | |
442 | static inline void debug_hrtimer_activate(struct hrtimer *timer, |
443 | enum hrtimer_mode mode) |
444 | { |
445 | debug_object_activate(addr: timer, descr: &hrtimer_debug_descr); |
446 | } |
447 | |
448 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) |
449 | { |
450 | debug_object_deactivate(addr: timer, descr: &hrtimer_debug_descr); |
451 | } |
452 | |
453 | void destroy_hrtimer_on_stack(struct hrtimer *timer) |
454 | { |
455 | debug_object_free(addr: timer, descr: &hrtimer_debug_descr); |
456 | } |
457 | EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); |
458 | |
459 | #else |
460 | |
461 | static inline void debug_hrtimer_init(struct hrtimer *timer) { } |
462 | static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) { } |
463 | static inline void debug_hrtimer_activate(struct hrtimer *timer, |
464 | enum hrtimer_mode mode) { } |
465 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } |
466 | #endif |
467 | |
468 | static inline void debug_setup(struct hrtimer *timer, clockid_t clockid, enum hrtimer_mode mode) |
469 | { |
470 | debug_hrtimer_init(timer); |
471 | trace_hrtimer_setup(hrtimer: timer, clockid, mode); |
472 | } |
473 | |
474 | static inline void debug_setup_on_stack(struct hrtimer *timer, clockid_t clockid, |
475 | enum hrtimer_mode mode) |
476 | { |
477 | debug_hrtimer_init_on_stack(timer); |
478 | trace_hrtimer_setup(hrtimer: timer, clockid, mode); |
479 | } |
480 | |
481 | static inline void debug_activate(struct hrtimer *timer, |
482 | enum hrtimer_mode mode) |
483 | { |
484 | debug_hrtimer_activate(timer, mode); |
485 | trace_hrtimer_start(hrtimer: timer, mode); |
486 | } |
487 | |
488 | static inline void debug_deactivate(struct hrtimer *timer) |
489 | { |
490 | debug_hrtimer_deactivate(timer); |
491 | trace_hrtimer_cancel(hrtimer: timer); |
492 | } |
493 | |
494 | static struct hrtimer_clock_base * |
495 | __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) |
496 | { |
497 | unsigned int idx; |
498 | |
499 | if (!*active) |
500 | return NULL; |
501 | |
502 | idx = __ffs(*active); |
503 | *active &= ~(1U << idx); |
504 | |
505 | return &cpu_base->clock_base[idx]; |
506 | } |
507 | |
508 | #define for_each_active_base(base, cpu_base, active) \ |
509 | while ((base = __next_base((cpu_base), &(active)))) |
510 | |
511 | static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, |
512 | const struct hrtimer *exclude, |
513 | unsigned int active, |
514 | ktime_t expires_next) |
515 | { |
516 | struct hrtimer_clock_base *base; |
517 | ktime_t expires; |
518 | |
519 | for_each_active_base(base, cpu_base, active) { |
520 | struct timerqueue_node *next; |
521 | struct hrtimer *timer; |
522 | |
523 | next = timerqueue_getnext(head: &base->active); |
524 | timer = container_of(next, struct hrtimer, node); |
525 | if (timer == exclude) { |
526 | /* Get to the next timer in the queue. */ |
527 | next = timerqueue_iterate_next(node: next); |
528 | if (!next) |
529 | continue; |
530 | |
531 | timer = container_of(next, struct hrtimer, node); |
532 | } |
533 | expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
534 | if (expires < expires_next) { |
535 | expires_next = expires; |
536 | |
537 | /* Skip cpu_base update if a timer is being excluded. */ |
538 | if (exclude) |
539 | continue; |
540 | |
541 | if (timer->is_soft) |
542 | cpu_base->softirq_next_timer = timer; |
543 | else |
544 | cpu_base->next_timer = timer; |
545 | } |
546 | } |
547 | /* |
548 | * clock_was_set() might have changed base->offset of any of |
549 | * the clock bases so the result might be negative. Fix it up |
550 | * to prevent a false positive in clockevents_program_event(). |
551 | */ |
552 | if (expires_next < 0) |
553 | expires_next = 0; |
554 | return expires_next; |
555 | } |
556 | |
557 | /* |
558 | * Recomputes cpu_base::*next_timer and returns the earliest expires_next |
559 | * but does not set cpu_base::*expires_next, that is done by |
560 | * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating |
561 | * cpu_base::*expires_next right away, reprogramming logic would no longer |
562 | * work. |
563 | * |
564 | * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, |
565 | * those timers will get run whenever the softirq gets handled, at the end of |
566 | * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. |
567 | * |
568 | * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. |
569 | * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual |
570 | * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. |
571 | * |
572 | * @active_mask must be one of: |
573 | * - HRTIMER_ACTIVE_ALL, |
574 | * - HRTIMER_ACTIVE_SOFT, or |
575 | * - HRTIMER_ACTIVE_HARD. |
576 | */ |
577 | static ktime_t |
578 | __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) |
579 | { |
580 | unsigned int active; |
581 | struct hrtimer *next_timer = NULL; |
582 | ktime_t expires_next = KTIME_MAX; |
583 | |
584 | if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { |
585 | active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; |
586 | cpu_base->softirq_next_timer = NULL; |
587 | expires_next = __hrtimer_next_event_base(cpu_base, NULL, |
588 | active, KTIME_MAX); |
589 | |
590 | next_timer = cpu_base->softirq_next_timer; |
591 | } |
592 | |
593 | if (active_mask & HRTIMER_ACTIVE_HARD) { |
594 | active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; |
595 | cpu_base->next_timer = next_timer; |
596 | expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, |
597 | expires_next); |
598 | } |
599 | |
600 | return expires_next; |
601 | } |
602 | |
603 | static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base) |
604 | { |
605 | ktime_t expires_next, soft = KTIME_MAX; |
606 | |
607 | /* |
608 | * If the soft interrupt has already been activated, ignore the |
609 | * soft bases. They will be handled in the already raised soft |
610 | * interrupt. |
611 | */ |
612 | if (!cpu_base->softirq_activated) { |
613 | soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); |
614 | /* |
615 | * Update the soft expiry time. clock_settime() might have |
616 | * affected it. |
617 | */ |
618 | cpu_base->softirq_expires_next = soft; |
619 | } |
620 | |
621 | expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD); |
622 | /* |
623 | * If a softirq timer is expiring first, update cpu_base->next_timer |
624 | * and program the hardware with the soft expiry time. |
625 | */ |
626 | if (expires_next > soft) { |
627 | cpu_base->next_timer = cpu_base->softirq_next_timer; |
628 | expires_next = soft; |
629 | } |
630 | |
631 | return expires_next; |
632 | } |
633 | |
634 | static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) |
635 | { |
636 | ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; |
637 | ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; |
638 | ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; |
639 | |
640 | ktime_t now = ktime_get_update_offsets_now(cwsseq: &base->clock_was_set_seq, |
641 | offs_real, offs_boot, offs_tai); |
642 | |
643 | base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; |
644 | base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; |
645 | base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; |
646 | |
647 | return now; |
648 | } |
649 | |
650 | /* |
651 | * Is the high resolution mode active ? |
652 | */ |
653 | static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) |
654 | { |
655 | return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? |
656 | cpu_base->hres_active : 0; |
657 | } |
658 | |
659 | static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base, |
660 | struct hrtimer *next_timer, |
661 | ktime_t expires_next) |
662 | { |
663 | cpu_base->expires_next = expires_next; |
664 | |
665 | /* |
666 | * If hres is not active, hardware does not have to be |
667 | * reprogrammed yet. |
668 | * |
669 | * If a hang was detected in the last timer interrupt then we |
670 | * leave the hang delay active in the hardware. We want the |
671 | * system to make progress. That also prevents the following |
672 | * scenario: |
673 | * T1 expires 50ms from now |
674 | * T2 expires 5s from now |
675 | * |
676 | * T1 is removed, so this code is called and would reprogram |
677 | * the hardware to 5s from now. Any hrtimer_start after that |
678 | * will not reprogram the hardware due to hang_detected being |
679 | * set. So we'd effectively block all timers until the T2 event |
680 | * fires. |
681 | */ |
682 | if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) |
683 | return; |
684 | |
685 | tick_program_event(expires: expires_next, force: 1); |
686 | } |
687 | |
688 | /* |
689 | * Reprogram the event source with checking both queues for the |
690 | * next event |
691 | * Called with interrupts disabled and base->lock held |
692 | */ |
693 | static void |
694 | hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) |
695 | { |
696 | ktime_t expires_next; |
697 | |
698 | expires_next = hrtimer_update_next_event(cpu_base); |
699 | |
700 | if (skip_equal && expires_next == cpu_base->expires_next) |
701 | return; |
702 | |
703 | __hrtimer_reprogram(cpu_base, next_timer: cpu_base->next_timer, expires_next); |
704 | } |
705 | |
706 | /* High resolution timer related functions */ |
707 | #ifdef CONFIG_HIGH_RES_TIMERS |
708 | |
709 | /* |
710 | * High resolution timer enabled ? |
711 | */ |
712 | static bool hrtimer_hres_enabled __read_mostly = true; |
713 | unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; |
714 | EXPORT_SYMBOL_GPL(hrtimer_resolution); |
715 | |
716 | /* |
717 | * Enable / Disable high resolution mode |
718 | */ |
719 | static int __init setup_hrtimer_hres(char *str) |
720 | { |
721 | return (kstrtobool(s: str, res: &hrtimer_hres_enabled) == 0); |
722 | } |
723 | |
724 | __setup("highres=", setup_hrtimer_hres); |
725 | |
726 | /* |
727 | * hrtimer_high_res_enabled - query, if the highres mode is enabled |
728 | */ |
729 | static inline int hrtimer_is_hres_enabled(void) |
730 | { |
731 | return hrtimer_hres_enabled; |
732 | } |
733 | |
734 | /* |
735 | * Switch to high resolution mode |
736 | */ |
737 | static void hrtimer_switch_to_hres(void) |
738 | { |
739 | struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); |
740 | |
741 | if (tick_init_highres()) { |
742 | pr_warn("Could not switch to high resolution mode on CPU %u\n", |
743 | base->cpu); |
744 | return; |
745 | } |
746 | base->hres_active = 1; |
747 | hrtimer_resolution = HIGH_RES_NSEC; |
748 | |
749 | tick_setup_sched_timer(hrtimer: true); |
750 | /* "Retrigger" the interrupt to get things going */ |
751 | retrigger_next_event(NULL); |
752 | } |
753 | |
754 | #else |
755 | |
756 | static inline int hrtimer_is_hres_enabled(void) { return 0; } |
757 | static inline void hrtimer_switch_to_hres(void) { } |
758 | |
759 | #endif /* CONFIG_HIGH_RES_TIMERS */ |
760 | /* |
761 | * Retrigger next event is called after clock was set with interrupts |
762 | * disabled through an SMP function call or directly from low level |
763 | * resume code. |
764 | * |
765 | * This is only invoked when: |
766 | * - CONFIG_HIGH_RES_TIMERS is enabled. |
767 | * - CONFIG_NOHZ_COMMON is enabled |
768 | * |
769 | * For the other cases this function is empty and because the call sites |
770 | * are optimized out it vanishes as well, i.e. no need for lots of |
771 | * #ifdeffery. |
772 | */ |
773 | static void retrigger_next_event(void *arg) |
774 | { |
775 | struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); |
776 | |
777 | /* |
778 | * When high resolution mode or nohz is active, then the offsets of |
779 | * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the |
780 | * next tick will take care of that. |
781 | * |
782 | * If high resolution mode is active then the next expiring timer |
783 | * must be reevaluated and the clock event device reprogrammed if |
784 | * necessary. |
785 | * |
786 | * In the NOHZ case the update of the offset and the reevaluation |
787 | * of the next expiring timer is enough. The return from the SMP |
788 | * function call will take care of the reprogramming in case the |
789 | * CPU was in a NOHZ idle sleep. |
790 | */ |
791 | if (!hrtimer_hres_active(cpu_base: base) && !tick_nohz_active) |
792 | return; |
793 | |
794 | raw_spin_lock(&base->lock); |
795 | hrtimer_update_base(base); |
796 | if (hrtimer_hres_active(cpu_base: base)) |
797 | hrtimer_force_reprogram(cpu_base: base, skip_equal: 0); |
798 | else |
799 | hrtimer_update_next_event(cpu_base: base); |
800 | raw_spin_unlock(&base->lock); |
801 | } |
802 | |
803 | /* |
804 | * When a timer is enqueued and expires earlier than the already enqueued |
805 | * timers, we have to check, whether it expires earlier than the timer for |
806 | * which the clock event device was armed. |
807 | * |
808 | * Called with interrupts disabled and base->cpu_base.lock held |
809 | */ |
810 | static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) |
811 | { |
812 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
813 | struct hrtimer_clock_base *base = timer->base; |
814 | ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
815 | |
816 | WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); |
817 | |
818 | /* |
819 | * CLOCK_REALTIME timer might be requested with an absolute |
820 | * expiry time which is less than base->offset. Set it to 0. |
821 | */ |
822 | if (expires < 0) |
823 | expires = 0; |
824 | |
825 | if (timer->is_soft) { |
826 | /* |
827 | * soft hrtimer could be started on a remote CPU. In this |
828 | * case softirq_expires_next needs to be updated on the |
829 | * remote CPU. The soft hrtimer will not expire before the |
830 | * first hard hrtimer on the remote CPU - |
831 | * hrtimer_check_target() prevents this case. |
832 | */ |
833 | struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; |
834 | |
835 | if (timer_cpu_base->softirq_activated) |
836 | return; |
837 | |
838 | if (!ktime_before(cmp1: expires, cmp2: timer_cpu_base->softirq_expires_next)) |
839 | return; |
840 | |
841 | timer_cpu_base->softirq_next_timer = timer; |
842 | timer_cpu_base->softirq_expires_next = expires; |
843 | |
844 | if (!ktime_before(cmp1: expires, cmp2: timer_cpu_base->expires_next) || |
845 | !reprogram) |
846 | return; |
847 | } |
848 | |
849 | /* |
850 | * If the timer is not on the current cpu, we cannot reprogram |
851 | * the other cpus clock event device. |
852 | */ |
853 | if (base->cpu_base != cpu_base) |
854 | return; |
855 | |
856 | if (expires >= cpu_base->expires_next) |
857 | return; |
858 | |
859 | /* |
860 | * If the hrtimer interrupt is running, then it will reevaluate the |
861 | * clock bases and reprogram the clock event device. |
862 | */ |
863 | if (cpu_base->in_hrtirq) |
864 | return; |
865 | |
866 | cpu_base->next_timer = timer; |
867 | |
868 | __hrtimer_reprogram(cpu_base, next_timer: timer, expires_next: expires); |
869 | } |
870 | |
871 | static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base, |
872 | unsigned int active) |
873 | { |
874 | struct hrtimer_clock_base *base; |
875 | unsigned int seq; |
876 | ktime_t expires; |
877 | |
878 | /* |
879 | * Update the base offsets unconditionally so the following |
880 | * checks whether the SMP function call is required works. |
881 | * |
882 | * The update is safe even when the remote CPU is in the hrtimer |
883 | * interrupt or the hrtimer soft interrupt and expiring affected |
884 | * bases. Either it will see the update before handling a base or |
885 | * it will see it when it finishes the processing and reevaluates |
886 | * the next expiring timer. |
887 | */ |
888 | seq = cpu_base->clock_was_set_seq; |
889 | hrtimer_update_base(base: cpu_base); |
890 | |
891 | /* |
892 | * If the sequence did not change over the update then the |
893 | * remote CPU already handled it. |
894 | */ |
895 | if (seq == cpu_base->clock_was_set_seq) |
896 | return false; |
897 | |
898 | /* |
899 | * If the remote CPU is currently handling an hrtimer interrupt, it |
900 | * will reevaluate the first expiring timer of all clock bases |
901 | * before reprogramming. Nothing to do here. |
902 | */ |
903 | if (cpu_base->in_hrtirq) |
904 | return false; |
905 | |
906 | /* |
907 | * Walk the affected clock bases and check whether the first expiring |
908 | * timer in a clock base is moving ahead of the first expiring timer of |
909 | * @cpu_base. If so, the IPI must be invoked because per CPU clock |
910 | * event devices cannot be remotely reprogrammed. |
911 | */ |
912 | active &= cpu_base->active_bases; |
913 | |
914 | for_each_active_base(base, cpu_base, active) { |
915 | struct timerqueue_node *next; |
916 | |
917 | next = timerqueue_getnext(head: &base->active); |
918 | expires = ktime_sub(next->expires, base->offset); |
919 | if (expires < cpu_base->expires_next) |
920 | return true; |
921 | |
922 | /* Extra check for softirq clock bases */ |
923 | if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT) |
924 | continue; |
925 | if (cpu_base->softirq_activated) |
926 | continue; |
927 | if (expires < cpu_base->softirq_expires_next) |
928 | return true; |
929 | } |
930 | return false; |
931 | } |
932 | |
933 | /* |
934 | * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and |
935 | * CLOCK_BOOTTIME (for late sleep time injection). |
936 | * |
937 | * This requires to update the offsets for these clocks |
938 | * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this |
939 | * also requires to eventually reprogram the per CPU clock event devices |
940 | * when the change moves an affected timer ahead of the first expiring |
941 | * timer on that CPU. Obviously remote per CPU clock event devices cannot |
942 | * be reprogrammed. The other reason why an IPI has to be sent is when the |
943 | * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets |
944 | * in the tick, which obviously might be stopped, so this has to bring out |
945 | * the remote CPU which might sleep in idle to get this sorted. |
946 | */ |
947 | void clock_was_set(unsigned int bases) |
948 | { |
949 | struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases); |
950 | cpumask_var_t mask; |
951 | int cpu; |
952 | |
953 | if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active) |
954 | goto out_timerfd; |
955 | |
956 | if (!zalloc_cpumask_var(mask: &mask, GFP_KERNEL)) { |
957 | on_each_cpu(func: retrigger_next_event, NULL, wait: 1); |
958 | goto out_timerfd; |
959 | } |
960 | |
961 | /* Avoid interrupting CPUs if possible */ |
962 | cpus_read_lock(); |
963 | for_each_online_cpu(cpu) { |
964 | unsigned long flags; |
965 | |
966 | cpu_base = &per_cpu(hrtimer_bases, cpu); |
967 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
968 | |
969 | if (update_needs_ipi(cpu_base, active: bases)) |
970 | cpumask_set_cpu(cpu, dstp: mask); |
971 | |
972 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
973 | } |
974 | |
975 | preempt_disable(); |
976 | smp_call_function_many(mask, func: retrigger_next_event, NULL, wait: 1); |
977 | preempt_enable(); |
978 | cpus_read_unlock(); |
979 | free_cpumask_var(mask); |
980 | |
981 | out_timerfd: |
982 | timerfd_clock_was_set(); |
983 | } |
984 | |
985 | static void clock_was_set_work(struct work_struct *work) |
986 | { |
987 | clock_was_set(CLOCK_SET_WALL); |
988 | } |
989 | |
990 | static DECLARE_WORK(hrtimer_work, clock_was_set_work); |
991 | |
992 | /* |
993 | * Called from timekeeping code to reprogram the hrtimer interrupt device |
994 | * on all cpus and to notify timerfd. |
995 | */ |
996 | void clock_was_set_delayed(void) |
997 | { |
998 | schedule_work(work: &hrtimer_work); |
999 | } |
1000 | |
1001 | /* |
1002 | * Called during resume either directly from via timekeeping_resume() |
1003 | * or in the case of s2idle from tick_unfreeze() to ensure that the |
1004 | * hrtimers are up to date. |
1005 | */ |
1006 | void hrtimers_resume_local(void) |
1007 | { |
1008 | lockdep_assert_irqs_disabled(); |
1009 | /* Retrigger on the local CPU */ |
1010 | retrigger_next_event(NULL); |
1011 | } |
1012 | |
1013 | /* |
1014 | * Counterpart to lock_hrtimer_base above: |
1015 | */ |
1016 | static inline |
1017 | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
1018 | __releases(&timer->base->cpu_base->lock) |
1019 | { |
1020 | raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); |
1021 | } |
1022 | |
1023 | /** |
1024 | * hrtimer_forward() - forward the timer expiry |
1025 | * @timer: hrtimer to forward |
1026 | * @now: forward past this time |
1027 | * @interval: the interval to forward |
1028 | * |
1029 | * Forward the timer expiry so it will expire in the future. |
1030 | * |
1031 | * .. note:: |
1032 | * This only updates the timer expiry value and does not requeue the timer. |
1033 | * |
1034 | * There is also a variant of the function hrtimer_forward_now(). |
1035 | * |
1036 | * Context: Can be safely called from the callback function of @timer. If called |
1037 | * from other contexts @timer must neither be enqueued nor running the |
1038 | * callback and the caller needs to take care of serialization. |
1039 | * |
1040 | * Return: The number of overruns are returned. |
1041 | */ |
1042 | u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) |
1043 | { |
1044 | u64 orun = 1; |
1045 | ktime_t delta; |
1046 | |
1047 | delta = ktime_sub(now, hrtimer_get_expires(timer)); |
1048 | |
1049 | if (delta < 0) |
1050 | return 0; |
1051 | |
1052 | if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) |
1053 | return 0; |
1054 | |
1055 | if (interval < hrtimer_resolution) |
1056 | interval = hrtimer_resolution; |
1057 | |
1058 | if (unlikely(delta >= interval)) { |
1059 | s64 incr = ktime_to_ns(kt: interval); |
1060 | |
1061 | orun = ktime_divns(kt: delta, div: incr); |
1062 | hrtimer_add_expires_ns(timer, ns: incr * orun); |
1063 | if (hrtimer_get_expires_tv64(timer) > now) |
1064 | return orun; |
1065 | /* |
1066 | * This (and the ktime_add() below) is the |
1067 | * correction for exact: |
1068 | */ |
1069 | orun++; |
1070 | } |
1071 | hrtimer_add_expires(timer, time: interval); |
1072 | |
1073 | return orun; |
1074 | } |
1075 | EXPORT_SYMBOL_GPL(hrtimer_forward); |
1076 | |
1077 | /* |
1078 | * enqueue_hrtimer - internal function to (re)start a timer |
1079 | * |
1080 | * The timer is inserted in expiry order. Insertion into the |
1081 | * red black tree is O(log(n)). Must hold the base lock. |
1082 | * |
1083 | * Returns true when the new timer is the leftmost timer in the tree. |
1084 | */ |
1085 | static bool enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, |
1086 | enum hrtimer_mode mode) |
1087 | { |
1088 | debug_activate(timer, mode); |
1089 | WARN_ON_ONCE(!base->cpu_base->online); |
1090 | |
1091 | base->cpu_base->active_bases |= 1 << base->index; |
1092 | |
1093 | /* Pairs with the lockless read in hrtimer_is_queued() */ |
1094 | WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); |
1095 | |
1096 | return timerqueue_add(head: &base->active, node: &timer->node); |
1097 | } |
1098 | |
1099 | /* |
1100 | * __remove_hrtimer - internal function to remove a timer |
1101 | * |
1102 | * Caller must hold the base lock. |
1103 | * |
1104 | * High resolution timer mode reprograms the clock event device when the |
1105 | * timer is the one which expires next. The caller can disable this by setting |
1106 | * reprogram to zero. This is useful, when the context does a reprogramming |
1107 | * anyway (e.g. timer interrupt) |
1108 | */ |
1109 | static void __remove_hrtimer(struct hrtimer *timer, |
1110 | struct hrtimer_clock_base *base, |
1111 | u8 newstate, int reprogram) |
1112 | { |
1113 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; |
1114 | u8 state = timer->state; |
1115 | |
1116 | /* Pairs with the lockless read in hrtimer_is_queued() */ |
1117 | WRITE_ONCE(timer->state, newstate); |
1118 | if (!(state & HRTIMER_STATE_ENQUEUED)) |
1119 | return; |
1120 | |
1121 | if (!timerqueue_del(head: &base->active, node: &timer->node)) |
1122 | cpu_base->active_bases &= ~(1 << base->index); |
1123 | |
1124 | /* |
1125 | * Note: If reprogram is false we do not update |
1126 | * cpu_base->next_timer. This happens when we remove the first |
1127 | * timer on a remote cpu. No harm as we never dereference |
1128 | * cpu_base->next_timer. So the worst thing what can happen is |
1129 | * an superfluous call to hrtimer_force_reprogram() on the |
1130 | * remote cpu later on if the same timer gets enqueued again. |
1131 | */ |
1132 | if (reprogram && timer == cpu_base->next_timer) |
1133 | hrtimer_force_reprogram(cpu_base, skip_equal: 1); |
1134 | } |
1135 | |
1136 | /* |
1137 | * remove hrtimer, called with base lock held |
1138 | */ |
1139 | static inline int |
1140 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, |
1141 | bool restart, bool keep_local) |
1142 | { |
1143 | u8 state = timer->state; |
1144 | |
1145 | if (state & HRTIMER_STATE_ENQUEUED) { |
1146 | bool reprogram; |
1147 | |
1148 | /* |
1149 | * Remove the timer and force reprogramming when high |
1150 | * resolution mode is active and the timer is on the current |
1151 | * CPU. If we remove a timer on another CPU, reprogramming is |
1152 | * skipped. The interrupt event on this CPU is fired and |
1153 | * reprogramming happens in the interrupt handler. This is a |
1154 | * rare case and less expensive than a smp call. |
1155 | */ |
1156 | debug_deactivate(timer); |
1157 | reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); |
1158 | |
1159 | /* |
1160 | * If the timer is not restarted then reprogramming is |
1161 | * required if the timer is local. If it is local and about |
1162 | * to be restarted, avoid programming it twice (on removal |
1163 | * and a moment later when it's requeued). |
1164 | */ |
1165 | if (!restart) |
1166 | state = HRTIMER_STATE_INACTIVE; |
1167 | else |
1168 | reprogram &= !keep_local; |
1169 | |
1170 | __remove_hrtimer(timer, base, newstate: state, reprogram); |
1171 | return 1; |
1172 | } |
1173 | return 0; |
1174 | } |
1175 | |
1176 | static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, |
1177 | const enum hrtimer_mode mode) |
1178 | { |
1179 | #ifdef CONFIG_TIME_LOW_RES |
1180 | /* |
1181 | * CONFIG_TIME_LOW_RES indicates that the system has no way to return |
1182 | * granular time values. For relative timers we add hrtimer_resolution |
1183 | * (i.e. one jiffy) to prevent short timeouts. |
1184 | */ |
1185 | timer->is_rel = mode & HRTIMER_MODE_REL; |
1186 | if (timer->is_rel) |
1187 | tim = ktime_add_safe(tim, hrtimer_resolution); |
1188 | #endif |
1189 | return tim; |
1190 | } |
1191 | |
1192 | static void |
1193 | hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) |
1194 | { |
1195 | ktime_t expires; |
1196 | |
1197 | /* |
1198 | * Find the next SOFT expiration. |
1199 | */ |
1200 | expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); |
1201 | |
1202 | /* |
1203 | * reprogramming needs to be triggered, even if the next soft |
1204 | * hrtimer expires at the same time than the next hard |
1205 | * hrtimer. cpu_base->softirq_expires_next needs to be updated! |
1206 | */ |
1207 | if (expires == KTIME_MAX) |
1208 | return; |
1209 | |
1210 | /* |
1211 | * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() |
1212 | * cpu_base->*expires_next is only set by hrtimer_reprogram() |
1213 | */ |
1214 | hrtimer_reprogram(timer: cpu_base->softirq_next_timer, reprogram); |
1215 | } |
1216 | |
1217 | static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, |
1218 | u64 delta_ns, const enum hrtimer_mode mode, |
1219 | struct hrtimer_clock_base *base) |
1220 | { |
1221 | struct hrtimer_cpu_base *this_cpu_base = this_cpu_ptr(&hrtimer_bases); |
1222 | struct hrtimer_clock_base *new_base; |
1223 | bool force_local, first; |
1224 | |
1225 | /* |
1226 | * If the timer is on the local cpu base and is the first expiring |
1227 | * timer then this might end up reprogramming the hardware twice |
1228 | * (on removal and on enqueue). To avoid that by prevent the |
1229 | * reprogram on removal, keep the timer local to the current CPU |
1230 | * and enforce reprogramming after it is queued no matter whether |
1231 | * it is the new first expiring timer again or not. |
1232 | */ |
1233 | force_local = base->cpu_base == this_cpu_base; |
1234 | force_local &= base->cpu_base->next_timer == timer; |
1235 | |
1236 | /* |
1237 | * Don't force local queuing if this enqueue happens on a unplugged |
1238 | * CPU after hrtimer_cpu_dying() has been invoked. |
1239 | */ |
1240 | force_local &= this_cpu_base->online; |
1241 | |
1242 | /* |
1243 | * Remove an active timer from the queue. In case it is not queued |
1244 | * on the current CPU, make sure that remove_hrtimer() updates the |
1245 | * remote data correctly. |
1246 | * |
1247 | * If it's on the current CPU and the first expiring timer, then |
1248 | * skip reprogramming, keep the timer local and enforce |
1249 | * reprogramming later if it was the first expiring timer. This |
1250 | * avoids programming the underlying clock event twice (once at |
1251 | * removal and once after enqueue). |
1252 | */ |
1253 | remove_hrtimer(timer, base, restart: true, keep_local: force_local); |
1254 | |
1255 | if (mode & HRTIMER_MODE_REL) |
1256 | tim = ktime_add_safe(tim, base->get_time()); |
1257 | |
1258 | tim = hrtimer_update_lowres(timer, tim, mode); |
1259 | |
1260 | hrtimer_set_expires_range_ns(timer, time: tim, delta: delta_ns); |
1261 | |
1262 | /* Switch the timer base, if necessary: */ |
1263 | if (!force_local) { |
1264 | new_base = switch_hrtimer_base(timer, base, |
1265 | pinned: mode & HRTIMER_MODE_PINNED); |
1266 | } else { |
1267 | new_base = base; |
1268 | } |
1269 | |
1270 | first = enqueue_hrtimer(timer, base: new_base, mode); |
1271 | if (!force_local) { |
1272 | /* |
1273 | * If the current CPU base is online, then the timer is |
1274 | * never queued on a remote CPU if it would be the first |
1275 | * expiring timer there. |
1276 | */ |
1277 | if (hrtimer_base_is_online(base: this_cpu_base)) |
1278 | return first; |
1279 | |
1280 | /* |
1281 | * Timer was enqueued remote because the current base is |
1282 | * already offline. If the timer is the first to expire, |
1283 | * kick the remote CPU to reprogram the clock event. |
1284 | */ |
1285 | if (first) { |
1286 | struct hrtimer_cpu_base *new_cpu_base = new_base->cpu_base; |
1287 | |
1288 | smp_call_function_single_async(cpu: new_cpu_base->cpu, csd: &new_cpu_base->csd); |
1289 | } |
1290 | return 0; |
1291 | } |
1292 | |
1293 | /* |
1294 | * Timer was forced to stay on the current CPU to avoid |
1295 | * reprogramming on removal and enqueue. Force reprogram the |
1296 | * hardware by evaluating the new first expiring timer. |
1297 | */ |
1298 | hrtimer_force_reprogram(cpu_base: new_base->cpu_base, skip_equal: 1); |
1299 | return 0; |
1300 | } |
1301 | |
1302 | /** |
1303 | * hrtimer_start_range_ns - (re)start an hrtimer |
1304 | * @timer: the timer to be added |
1305 | * @tim: expiry time |
1306 | * @delta_ns: "slack" range for the timer |
1307 | * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or |
1308 | * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); |
1309 | * softirq based mode is considered for debug purpose only! |
1310 | */ |
1311 | void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, |
1312 | u64 delta_ns, const enum hrtimer_mode mode) |
1313 | { |
1314 | struct hrtimer_clock_base *base; |
1315 | unsigned long flags; |
1316 | |
1317 | /* |
1318 | * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft |
1319 | * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard |
1320 | * expiry mode because unmarked timers are moved to softirq expiry. |
1321 | */ |
1322 | if (!IS_ENABLED(CONFIG_PREEMPT_RT)) |
1323 | WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); |
1324 | else |
1325 | WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); |
1326 | |
1327 | base = lock_hrtimer_base(timer, flags: &flags); |
1328 | |
1329 | if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) |
1330 | hrtimer_reprogram(timer, reprogram: true); |
1331 | |
1332 | unlock_hrtimer_base(timer, flags: &flags); |
1333 | } |
1334 | EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); |
1335 | |
1336 | /** |
1337 | * hrtimer_try_to_cancel - try to deactivate a timer |
1338 | * @timer: hrtimer to stop |
1339 | * |
1340 | * Returns: |
1341 | * |
1342 | * * 0 when the timer was not active |
1343 | * * 1 when the timer was active |
1344 | * * -1 when the timer is currently executing the callback function and |
1345 | * cannot be stopped |
1346 | */ |
1347 | int hrtimer_try_to_cancel(struct hrtimer *timer) |
1348 | { |
1349 | struct hrtimer_clock_base *base; |
1350 | unsigned long flags; |
1351 | int ret = -1; |
1352 | |
1353 | /* |
1354 | * Check lockless first. If the timer is not active (neither |
1355 | * enqueued nor running the callback, nothing to do here. The |
1356 | * base lock does not serialize against a concurrent enqueue, |
1357 | * so we can avoid taking it. |
1358 | */ |
1359 | if (!hrtimer_active(timer)) |
1360 | return 0; |
1361 | |
1362 | base = lock_hrtimer_base(timer, flags: &flags); |
1363 | |
1364 | if (!hrtimer_callback_running(timer)) |
1365 | ret = remove_hrtimer(timer, base, restart: false, keep_local: false); |
1366 | |
1367 | unlock_hrtimer_base(timer, flags: &flags); |
1368 | |
1369 | return ret; |
1370 | |
1371 | } |
1372 | EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); |
1373 | |
1374 | #ifdef CONFIG_PREEMPT_RT |
1375 | static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) |
1376 | { |
1377 | spin_lock_init(&base->softirq_expiry_lock); |
1378 | } |
1379 | |
1380 | static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) |
1381 | __acquires(&base->softirq_expiry_lock) |
1382 | { |
1383 | spin_lock(&base->softirq_expiry_lock); |
1384 | } |
1385 | |
1386 | static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) |
1387 | __releases(&base->softirq_expiry_lock) |
1388 | { |
1389 | spin_unlock(&base->softirq_expiry_lock); |
1390 | } |
1391 | |
1392 | /* |
1393 | * The counterpart to hrtimer_cancel_wait_running(). |
1394 | * |
1395 | * If there is a waiter for cpu_base->expiry_lock, then it was waiting for |
1396 | * the timer callback to finish. Drop expiry_lock and reacquire it. That |
1397 | * allows the waiter to acquire the lock and make progress. |
1398 | */ |
1399 | static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, |
1400 | unsigned long flags) |
1401 | { |
1402 | if (atomic_read(&cpu_base->timer_waiters)) { |
1403 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1404 | spin_unlock(&cpu_base->softirq_expiry_lock); |
1405 | spin_lock(&cpu_base->softirq_expiry_lock); |
1406 | raw_spin_lock_irq(&cpu_base->lock); |
1407 | } |
1408 | } |
1409 | |
1410 | #ifdef CONFIG_SMP |
1411 | static __always_inline bool is_migration_base(struct hrtimer_clock_base *base) |
1412 | { |
1413 | return base == &migration_base; |
1414 | } |
1415 | #else |
1416 | static __always_inline bool is_migration_base(struct hrtimer_clock_base *base) |
1417 | { |
1418 | return false; |
1419 | } |
1420 | #endif |
1421 | |
1422 | /* |
1423 | * This function is called on PREEMPT_RT kernels when the fast path |
1424 | * deletion of a timer failed because the timer callback function was |
1425 | * running. |
1426 | * |
1427 | * This prevents priority inversion: if the soft irq thread is preempted |
1428 | * in the middle of a timer callback, then calling hrtimer_cancel() can |
1429 | * lead to two issues: |
1430 | * |
1431 | * - If the caller is on a remote CPU then it has to spin wait for the timer |
1432 | * handler to complete. This can result in unbound priority inversion. |
1433 | * |
1434 | * - If the caller originates from the task which preempted the timer |
1435 | * handler on the same CPU, then spin waiting for the timer handler to |
1436 | * complete is never going to end. |
1437 | */ |
1438 | void hrtimer_cancel_wait_running(const struct hrtimer *timer) |
1439 | { |
1440 | /* Lockless read. Prevent the compiler from reloading it below */ |
1441 | struct hrtimer_clock_base *base = READ_ONCE(timer->base); |
1442 | |
1443 | /* |
1444 | * Just relax if the timer expires in hard interrupt context or if |
1445 | * it is currently on the migration base. |
1446 | */ |
1447 | if (!timer->is_soft || is_migration_base(base)) { |
1448 | cpu_relax(); |
1449 | return; |
1450 | } |
1451 | |
1452 | /* |
1453 | * Mark the base as contended and grab the expiry lock, which is |
1454 | * held by the softirq across the timer callback. Drop the lock |
1455 | * immediately so the softirq can expire the next timer. In theory |
1456 | * the timer could already be running again, but that's more than |
1457 | * unlikely and just causes another wait loop. |
1458 | */ |
1459 | atomic_inc(&base->cpu_base->timer_waiters); |
1460 | spin_lock_bh(&base->cpu_base->softirq_expiry_lock); |
1461 | atomic_dec(&base->cpu_base->timer_waiters); |
1462 | spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); |
1463 | } |
1464 | #else |
1465 | static inline void |
1466 | hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } |
1467 | static inline void |
1468 | hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } |
1469 | static inline void |
1470 | hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } |
1471 | static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, |
1472 | unsigned long flags) { } |
1473 | #endif |
1474 | |
1475 | /** |
1476 | * hrtimer_cancel - cancel a timer and wait for the handler to finish. |
1477 | * @timer: the timer to be cancelled |
1478 | * |
1479 | * Returns: |
1480 | * 0 when the timer was not active |
1481 | * 1 when the timer was active |
1482 | */ |
1483 | int hrtimer_cancel(struct hrtimer *timer) |
1484 | { |
1485 | int ret; |
1486 | |
1487 | do { |
1488 | ret = hrtimer_try_to_cancel(timer); |
1489 | |
1490 | if (ret < 0) |
1491 | hrtimer_cancel_wait_running(timer); |
1492 | } while (ret < 0); |
1493 | return ret; |
1494 | } |
1495 | EXPORT_SYMBOL_GPL(hrtimer_cancel); |
1496 | |
1497 | /** |
1498 | * __hrtimer_get_remaining - get remaining time for the timer |
1499 | * @timer: the timer to read |
1500 | * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y |
1501 | */ |
1502 | ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) |
1503 | { |
1504 | unsigned long flags; |
1505 | ktime_t rem; |
1506 | |
1507 | lock_hrtimer_base(timer, flags: &flags); |
1508 | if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) |
1509 | rem = hrtimer_expires_remaining_adjusted(timer); |
1510 | else |
1511 | rem = hrtimer_expires_remaining(timer); |
1512 | unlock_hrtimer_base(timer, flags: &flags); |
1513 | |
1514 | return rem; |
1515 | } |
1516 | EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); |
1517 | |
1518 | #ifdef CONFIG_NO_HZ_COMMON |
1519 | /** |
1520 | * hrtimer_get_next_event - get the time until next expiry event |
1521 | * |
1522 | * Returns the next expiry time or KTIME_MAX if no timer is pending. |
1523 | */ |
1524 | u64 hrtimer_get_next_event(void) |
1525 | { |
1526 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
1527 | u64 expires = KTIME_MAX; |
1528 | unsigned long flags; |
1529 | |
1530 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
1531 | |
1532 | if (!hrtimer_hres_active(cpu_base)) |
1533 | expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); |
1534 | |
1535 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1536 | |
1537 | return expires; |
1538 | } |
1539 | |
1540 | /** |
1541 | * hrtimer_next_event_without - time until next expiry event w/o one timer |
1542 | * @exclude: timer to exclude |
1543 | * |
1544 | * Returns the next expiry time over all timers except for the @exclude one or |
1545 | * KTIME_MAX if none of them is pending. |
1546 | */ |
1547 | u64 hrtimer_next_event_without(const struct hrtimer *exclude) |
1548 | { |
1549 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
1550 | u64 expires = KTIME_MAX; |
1551 | unsigned long flags; |
1552 | |
1553 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
1554 | |
1555 | if (hrtimer_hres_active(cpu_base)) { |
1556 | unsigned int active; |
1557 | |
1558 | if (!cpu_base->softirq_activated) { |
1559 | active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; |
1560 | expires = __hrtimer_next_event_base(cpu_base, exclude, |
1561 | active, KTIME_MAX); |
1562 | } |
1563 | active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; |
1564 | expires = __hrtimer_next_event_base(cpu_base, exclude, active, |
1565 | expires_next: expires); |
1566 | } |
1567 | |
1568 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1569 | |
1570 | return expires; |
1571 | } |
1572 | #endif |
1573 | |
1574 | static inline int hrtimer_clockid_to_base(clockid_t clock_id) |
1575 | { |
1576 | switch (clock_id) { |
1577 | case CLOCK_REALTIME: |
1578 | return HRTIMER_BASE_REALTIME; |
1579 | case CLOCK_MONOTONIC: |
1580 | return HRTIMER_BASE_MONOTONIC; |
1581 | case CLOCK_BOOTTIME: |
1582 | return HRTIMER_BASE_BOOTTIME; |
1583 | case CLOCK_TAI: |
1584 | return HRTIMER_BASE_TAI; |
1585 | default: |
1586 | WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); |
1587 | return HRTIMER_BASE_MONOTONIC; |
1588 | } |
1589 | } |
1590 | |
1591 | static void __hrtimer_setup(struct hrtimer *timer, |
1592 | enum hrtimer_restart (*function)(struct hrtimer *), |
1593 | clockid_t clock_id, enum hrtimer_mode mode) |
1594 | { |
1595 | bool softtimer = !!(mode & HRTIMER_MODE_SOFT); |
1596 | struct hrtimer_cpu_base *cpu_base; |
1597 | int base; |
1598 | |
1599 | /* |
1600 | * On PREEMPT_RT enabled kernels hrtimers which are not explicitly |
1601 | * marked for hard interrupt expiry mode are moved into soft |
1602 | * interrupt context for latency reasons and because the callbacks |
1603 | * can invoke functions which might sleep on RT, e.g. spin_lock(). |
1604 | */ |
1605 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) |
1606 | softtimer = true; |
1607 | |
1608 | memset(timer, 0, sizeof(struct hrtimer)); |
1609 | |
1610 | cpu_base = raw_cpu_ptr(&hrtimer_bases); |
1611 | |
1612 | /* |
1613 | * POSIX magic: Relative CLOCK_REALTIME timers are not affected by |
1614 | * clock modifications, so they needs to become CLOCK_MONOTONIC to |
1615 | * ensure POSIX compliance. |
1616 | */ |
1617 | if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) |
1618 | clock_id = CLOCK_MONOTONIC; |
1619 | |
1620 | base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; |
1621 | base += hrtimer_clockid_to_base(clock_id); |
1622 | timer->is_soft = softtimer; |
1623 | timer->is_hard = !!(mode & HRTIMER_MODE_HARD); |
1624 | timer->base = &cpu_base->clock_base[base]; |
1625 | timerqueue_init(node: &timer->node); |
1626 | |
1627 | if (WARN_ON_ONCE(!function)) |
1628 | ACCESS_PRIVATE(timer, function) = hrtimer_dummy_timeout; |
1629 | else |
1630 | ACCESS_PRIVATE(timer, function) = function; |
1631 | } |
1632 | |
1633 | /** |
1634 | * hrtimer_setup - initialize a timer to the given clock |
1635 | * @timer: the timer to be initialized |
1636 | * @function: the callback function |
1637 | * @clock_id: the clock to be used |
1638 | * @mode: The modes which are relevant for initialization: |
1639 | * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, |
1640 | * HRTIMER_MODE_REL_SOFT |
1641 | * |
1642 | * The PINNED variants of the above can be handed in, |
1643 | * but the PINNED bit is ignored as pinning happens |
1644 | * when the hrtimer is started |
1645 | */ |
1646 | void hrtimer_setup(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *), |
1647 | clockid_t clock_id, enum hrtimer_mode mode) |
1648 | { |
1649 | debug_setup(timer, clockid: clock_id, mode); |
1650 | __hrtimer_setup(timer, function, clock_id, mode); |
1651 | } |
1652 | EXPORT_SYMBOL_GPL(hrtimer_setup); |
1653 | |
1654 | /** |
1655 | * hrtimer_setup_on_stack - initialize a timer on stack memory |
1656 | * @timer: The timer to be initialized |
1657 | * @function: the callback function |
1658 | * @clock_id: The clock to be used |
1659 | * @mode: The timer mode |
1660 | * |
1661 | * Similar to hrtimer_setup(), except that this one must be used if struct hrtimer is in stack |
1662 | * memory. |
1663 | */ |
1664 | void hrtimer_setup_on_stack(struct hrtimer *timer, |
1665 | enum hrtimer_restart (*function)(struct hrtimer *), |
1666 | clockid_t clock_id, enum hrtimer_mode mode) |
1667 | { |
1668 | debug_setup_on_stack(timer, clockid: clock_id, mode); |
1669 | __hrtimer_setup(timer, function, clock_id, mode); |
1670 | } |
1671 | EXPORT_SYMBOL_GPL(hrtimer_setup_on_stack); |
1672 | |
1673 | /* |
1674 | * A timer is active, when it is enqueued into the rbtree or the |
1675 | * callback function is running or it's in the state of being migrated |
1676 | * to another cpu. |
1677 | * |
1678 | * It is important for this function to not return a false negative. |
1679 | */ |
1680 | bool hrtimer_active(const struct hrtimer *timer) |
1681 | { |
1682 | struct hrtimer_clock_base *base; |
1683 | unsigned int seq; |
1684 | |
1685 | do { |
1686 | base = READ_ONCE(timer->base); |
1687 | seq = raw_read_seqcount_begin(&base->seq); |
1688 | |
1689 | if (timer->state != HRTIMER_STATE_INACTIVE || |
1690 | base->running == timer) |
1691 | return true; |
1692 | |
1693 | } while (read_seqcount_retry(&base->seq, seq) || |
1694 | base != READ_ONCE(timer->base)); |
1695 | |
1696 | return false; |
1697 | } |
1698 | EXPORT_SYMBOL_GPL(hrtimer_active); |
1699 | |
1700 | /* |
1701 | * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 |
1702 | * distinct sections: |
1703 | * |
1704 | * - queued: the timer is queued |
1705 | * - callback: the timer is being ran |
1706 | * - post: the timer is inactive or (re)queued |
1707 | * |
1708 | * On the read side we ensure we observe timer->state and cpu_base->running |
1709 | * from the same section, if anything changed while we looked at it, we retry. |
1710 | * This includes timer->base changing because sequence numbers alone are |
1711 | * insufficient for that. |
1712 | * |
1713 | * The sequence numbers are required because otherwise we could still observe |
1714 | * a false negative if the read side got smeared over multiple consecutive |
1715 | * __run_hrtimer() invocations. |
1716 | */ |
1717 | |
1718 | static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, |
1719 | struct hrtimer_clock_base *base, |
1720 | struct hrtimer *timer, ktime_t *now, |
1721 | unsigned long flags) __must_hold(&cpu_base->lock) |
1722 | { |
1723 | enum hrtimer_restart (*fn)(struct hrtimer *); |
1724 | bool expires_in_hardirq; |
1725 | int restart; |
1726 | |
1727 | lockdep_assert_held(&cpu_base->lock); |
1728 | |
1729 | debug_deactivate(timer); |
1730 | base->running = timer; |
1731 | |
1732 | /* |
1733 | * Separate the ->running assignment from the ->state assignment. |
1734 | * |
1735 | * As with a regular write barrier, this ensures the read side in |
1736 | * hrtimer_active() cannot observe base->running == NULL && |
1737 | * timer->state == INACTIVE. |
1738 | */ |
1739 | raw_write_seqcount_barrier(&base->seq); |
1740 | |
1741 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, reprogram: 0); |
1742 | fn = ACCESS_PRIVATE(timer, function); |
1743 | |
1744 | /* |
1745 | * Clear the 'is relative' flag for the TIME_LOW_RES case. If the |
1746 | * timer is restarted with a period then it becomes an absolute |
1747 | * timer. If its not restarted it does not matter. |
1748 | */ |
1749 | if (IS_ENABLED(CONFIG_TIME_LOW_RES)) |
1750 | timer->is_rel = false; |
1751 | |
1752 | /* |
1753 | * The timer is marked as running in the CPU base, so it is |
1754 | * protected against migration to a different CPU even if the lock |
1755 | * is dropped. |
1756 | */ |
1757 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1758 | trace_hrtimer_expire_entry(hrtimer: timer, now); |
1759 | expires_in_hardirq = lockdep_hrtimer_enter(timer); |
1760 | |
1761 | restart = fn(timer); |
1762 | |
1763 | lockdep_hrtimer_exit(expires_in_hardirq); |
1764 | trace_hrtimer_expire_exit(hrtimer: timer); |
1765 | raw_spin_lock_irq(&cpu_base->lock); |
1766 | |
1767 | /* |
1768 | * Note: We clear the running state after enqueue_hrtimer and |
1769 | * we do not reprogram the event hardware. Happens either in |
1770 | * hrtimer_start_range_ns() or in hrtimer_interrupt() |
1771 | * |
1772 | * Note: Because we dropped the cpu_base->lock above, |
1773 | * hrtimer_start_range_ns() can have popped in and enqueued the timer |
1774 | * for us already. |
1775 | */ |
1776 | if (restart != HRTIMER_NORESTART && |
1777 | !(timer->state & HRTIMER_STATE_ENQUEUED)) |
1778 | enqueue_hrtimer(timer, base, mode: HRTIMER_MODE_ABS); |
1779 | |
1780 | /* |
1781 | * Separate the ->running assignment from the ->state assignment. |
1782 | * |
1783 | * As with a regular write barrier, this ensures the read side in |
1784 | * hrtimer_active() cannot observe base->running.timer == NULL && |
1785 | * timer->state == INACTIVE. |
1786 | */ |
1787 | raw_write_seqcount_barrier(&base->seq); |
1788 | |
1789 | WARN_ON_ONCE(base->running != timer); |
1790 | base->running = NULL; |
1791 | } |
1792 | |
1793 | static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, |
1794 | unsigned long flags, unsigned int active_mask) |
1795 | { |
1796 | struct hrtimer_clock_base *base; |
1797 | unsigned int active = cpu_base->active_bases & active_mask; |
1798 | |
1799 | for_each_active_base(base, cpu_base, active) { |
1800 | struct timerqueue_node *node; |
1801 | ktime_t basenow; |
1802 | |
1803 | basenow = ktime_add(now, base->offset); |
1804 | |
1805 | while ((node = timerqueue_getnext(head: &base->active))) { |
1806 | struct hrtimer *timer; |
1807 | |
1808 | timer = container_of(node, struct hrtimer, node); |
1809 | |
1810 | /* |
1811 | * The immediate goal for using the softexpires is |
1812 | * minimizing wakeups, not running timers at the |
1813 | * earliest interrupt after their soft expiration. |
1814 | * This allows us to avoid using a Priority Search |
1815 | * Tree, which can answer a stabbing query for |
1816 | * overlapping intervals and instead use the simple |
1817 | * BST we already have. |
1818 | * We don't add extra wakeups by delaying timers that |
1819 | * are right-of a not yet expired timer, because that |
1820 | * timer will have to trigger a wakeup anyway. |
1821 | */ |
1822 | if (basenow < hrtimer_get_softexpires_tv64(timer)) |
1823 | break; |
1824 | |
1825 | __run_hrtimer(cpu_base, base, timer, now: &basenow, flags); |
1826 | if (active_mask == HRTIMER_ACTIVE_SOFT) |
1827 | hrtimer_sync_wait_running(base: cpu_base, flags); |
1828 | } |
1829 | } |
1830 | } |
1831 | |
1832 | static __latent_entropy void hrtimer_run_softirq(void) |
1833 | { |
1834 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
1835 | unsigned long flags; |
1836 | ktime_t now; |
1837 | |
1838 | hrtimer_cpu_base_lock_expiry(base: cpu_base); |
1839 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
1840 | |
1841 | now = hrtimer_update_base(base: cpu_base); |
1842 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); |
1843 | |
1844 | cpu_base->softirq_activated = 0; |
1845 | hrtimer_update_softirq_timer(cpu_base, reprogram: true); |
1846 | |
1847 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1848 | hrtimer_cpu_base_unlock_expiry(base: cpu_base); |
1849 | } |
1850 | |
1851 | #ifdef CONFIG_HIGH_RES_TIMERS |
1852 | |
1853 | /* |
1854 | * High resolution timer interrupt |
1855 | * Called with interrupts disabled |
1856 | */ |
1857 | void hrtimer_interrupt(struct clock_event_device *dev) |
1858 | { |
1859 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
1860 | ktime_t expires_next, now, entry_time, delta; |
1861 | unsigned long flags; |
1862 | int retries = 0; |
1863 | |
1864 | BUG_ON(!cpu_base->hres_active); |
1865 | cpu_base->nr_events++; |
1866 | dev->next_event = KTIME_MAX; |
1867 | |
1868 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
1869 | entry_time = now = hrtimer_update_base(base: cpu_base); |
1870 | retry: |
1871 | cpu_base->in_hrtirq = 1; |
1872 | /* |
1873 | * We set expires_next to KTIME_MAX here with cpu_base->lock |
1874 | * held to prevent that a timer is enqueued in our queue via |
1875 | * the migration code. This does not affect enqueueing of |
1876 | * timers which run their callback and need to be requeued on |
1877 | * this CPU. |
1878 | */ |
1879 | cpu_base->expires_next = KTIME_MAX; |
1880 | |
1881 | if (!ktime_before(cmp1: now, cmp2: cpu_base->softirq_expires_next)) { |
1882 | cpu_base->softirq_expires_next = KTIME_MAX; |
1883 | cpu_base->softirq_activated = 1; |
1884 | raise_timer_softirq(nr: HRTIMER_SOFTIRQ); |
1885 | } |
1886 | |
1887 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); |
1888 | |
1889 | /* Reevaluate the clock bases for the [soft] next expiry */ |
1890 | expires_next = hrtimer_update_next_event(cpu_base); |
1891 | /* |
1892 | * Store the new expiry value so the migration code can verify |
1893 | * against it. |
1894 | */ |
1895 | cpu_base->expires_next = expires_next; |
1896 | cpu_base->in_hrtirq = 0; |
1897 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1898 | |
1899 | /* Reprogramming necessary ? */ |
1900 | if (!tick_program_event(expires: expires_next, force: 0)) { |
1901 | cpu_base->hang_detected = 0; |
1902 | return; |
1903 | } |
1904 | |
1905 | /* |
1906 | * The next timer was already expired due to: |
1907 | * - tracing |
1908 | * - long lasting callbacks |
1909 | * - being scheduled away when running in a VM |
1910 | * |
1911 | * We need to prevent that we loop forever in the hrtimer |
1912 | * interrupt routine. We give it 3 attempts to avoid |
1913 | * overreacting on some spurious event. |
1914 | * |
1915 | * Acquire base lock for updating the offsets and retrieving |
1916 | * the current time. |
1917 | */ |
1918 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
1919 | now = hrtimer_update_base(base: cpu_base); |
1920 | cpu_base->nr_retries++; |
1921 | if (++retries < 3) |
1922 | goto retry; |
1923 | /* |
1924 | * Give the system a chance to do something else than looping |
1925 | * here. We stored the entry time, so we know exactly how long |
1926 | * we spent here. We schedule the next event this amount of |
1927 | * time away. |
1928 | */ |
1929 | cpu_base->nr_hangs++; |
1930 | cpu_base->hang_detected = 1; |
1931 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1932 | |
1933 | delta = ktime_sub(now, entry_time); |
1934 | if ((unsigned int)delta > cpu_base->max_hang_time) |
1935 | cpu_base->max_hang_time = (unsigned int) delta; |
1936 | /* |
1937 | * Limit it to a sensible value as we enforce a longer |
1938 | * delay. Give the CPU at least 100ms to catch up. |
1939 | */ |
1940 | if (delta > 100 * NSEC_PER_MSEC) |
1941 | expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); |
1942 | else |
1943 | expires_next = ktime_add(now, delta); |
1944 | tick_program_event(expires: expires_next, force: 1); |
1945 | pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); |
1946 | } |
1947 | #endif /* !CONFIG_HIGH_RES_TIMERS */ |
1948 | |
1949 | /* |
1950 | * Called from run_local_timers in hardirq context every jiffy |
1951 | */ |
1952 | void hrtimer_run_queues(void) |
1953 | { |
1954 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
1955 | unsigned long flags; |
1956 | ktime_t now; |
1957 | |
1958 | if (hrtimer_hres_active(cpu_base)) |
1959 | return; |
1960 | |
1961 | /* |
1962 | * This _is_ ugly: We have to check periodically, whether we |
1963 | * can switch to highres and / or nohz mode. The clocksource |
1964 | * switch happens with xtime_lock held. Notification from |
1965 | * there only sets the check bit in the tick_oneshot code, |
1966 | * otherwise we might deadlock vs. xtime_lock. |
1967 | */ |
1968 | if (tick_check_oneshot_change(allow_nohz: !hrtimer_is_hres_enabled())) { |
1969 | hrtimer_switch_to_hres(); |
1970 | return; |
1971 | } |
1972 | |
1973 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
1974 | now = hrtimer_update_base(base: cpu_base); |
1975 | |
1976 | if (!ktime_before(cmp1: now, cmp2: cpu_base->softirq_expires_next)) { |
1977 | cpu_base->softirq_expires_next = KTIME_MAX; |
1978 | cpu_base->softirq_activated = 1; |
1979 | raise_timer_softirq(nr: HRTIMER_SOFTIRQ); |
1980 | } |
1981 | |
1982 | __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); |
1983 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1984 | } |
1985 | |
1986 | /* |
1987 | * Sleep related functions: |
1988 | */ |
1989 | static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) |
1990 | { |
1991 | struct hrtimer_sleeper *t = |
1992 | container_of(timer, struct hrtimer_sleeper, timer); |
1993 | struct task_struct *task = t->task; |
1994 | |
1995 | t->task = NULL; |
1996 | if (task) |
1997 | wake_up_process(tsk: task); |
1998 | |
1999 | return HRTIMER_NORESTART; |
2000 | } |
2001 | |
2002 | /** |
2003 | * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer |
2004 | * @sl: sleeper to be started |
2005 | * @mode: timer mode abs/rel |
2006 | * |
2007 | * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers |
2008 | * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) |
2009 | */ |
2010 | void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, |
2011 | enum hrtimer_mode mode) |
2012 | { |
2013 | /* |
2014 | * Make the enqueue delivery mode check work on RT. If the sleeper |
2015 | * was initialized for hard interrupt delivery, force the mode bit. |
2016 | * This is a special case for hrtimer_sleepers because |
2017 | * __hrtimer_setup_sleeper() determines the delivery mode on RT so the |
2018 | * fiddling with this decision is avoided at the call sites. |
2019 | */ |
2020 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) |
2021 | mode |= HRTIMER_MODE_HARD; |
2022 | |
2023 | hrtimer_start_expires(timer: &sl->timer, mode); |
2024 | } |
2025 | EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); |
2026 | |
2027 | static void __hrtimer_setup_sleeper(struct hrtimer_sleeper *sl, |
2028 | clockid_t clock_id, enum hrtimer_mode mode) |
2029 | { |
2030 | /* |
2031 | * On PREEMPT_RT enabled kernels hrtimers which are not explicitly |
2032 | * marked for hard interrupt expiry mode are moved into soft |
2033 | * interrupt context either for latency reasons or because the |
2034 | * hrtimer callback takes regular spinlocks or invokes other |
2035 | * functions which are not suitable for hard interrupt context on |
2036 | * PREEMPT_RT. |
2037 | * |
2038 | * The hrtimer_sleeper callback is RT compatible in hard interrupt |
2039 | * context, but there is a latency concern: Untrusted userspace can |
2040 | * spawn many threads which arm timers for the same expiry time on |
2041 | * the same CPU. That causes a latency spike due to the wakeup of |
2042 | * a gazillion threads. |
2043 | * |
2044 | * OTOH, privileged real-time user space applications rely on the |
2045 | * low latency of hard interrupt wakeups. If the current task is in |
2046 | * a real-time scheduling class, mark the mode for hard interrupt |
2047 | * expiry. |
2048 | */ |
2049 | if (IS_ENABLED(CONFIG_PREEMPT_RT)) { |
2050 | if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT)) |
2051 | mode |= HRTIMER_MODE_HARD; |
2052 | } |
2053 | |
2054 | __hrtimer_setup(timer: &sl->timer, function: hrtimer_wakeup, clock_id, mode); |
2055 | sl->task = current; |
2056 | } |
2057 | |
2058 | /** |
2059 | * hrtimer_setup_sleeper_on_stack - initialize a sleeper in stack memory |
2060 | * @sl: sleeper to be initialized |
2061 | * @clock_id: the clock to be used |
2062 | * @mode: timer mode abs/rel |
2063 | */ |
2064 | void hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper *sl, |
2065 | clockid_t clock_id, enum hrtimer_mode mode) |
2066 | { |
2067 | debug_setup_on_stack(timer: &sl->timer, clockid: clock_id, mode); |
2068 | __hrtimer_setup_sleeper(sl, clock_id, mode); |
2069 | } |
2070 | EXPORT_SYMBOL_GPL(hrtimer_setup_sleeper_on_stack); |
2071 | |
2072 | int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) |
2073 | { |
2074 | switch(restart->nanosleep.type) { |
2075 | #ifdef CONFIG_COMPAT_32BIT_TIME |
2076 | case TT_COMPAT: |
2077 | if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) |
2078 | return -EFAULT; |
2079 | break; |
2080 | #endif |
2081 | case TT_NATIVE: |
2082 | if (put_timespec64(ts, uts: restart->nanosleep.rmtp)) |
2083 | return -EFAULT; |
2084 | break; |
2085 | default: |
2086 | BUG(); |
2087 | } |
2088 | return -ERESTART_RESTARTBLOCK; |
2089 | } |
2090 | |
2091 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
2092 | { |
2093 | struct restart_block *restart; |
2094 | |
2095 | do { |
2096 | set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); |
2097 | hrtimer_sleeper_start_expires(t, mode); |
2098 | |
2099 | if (likely(t->task)) |
2100 | schedule(); |
2101 | |
2102 | hrtimer_cancel(&t->timer); |
2103 | mode = HRTIMER_MODE_ABS; |
2104 | |
2105 | } while (t->task && !signal_pending(current)); |
2106 | |
2107 | __set_current_state(TASK_RUNNING); |
2108 | |
2109 | if (!t->task) |
2110 | return 0; |
2111 | |
2112 | restart = ¤t->restart_block; |
2113 | if (restart->nanosleep.type != TT_NONE) { |
2114 | ktime_t rem = hrtimer_expires_remaining(timer: &t->timer); |
2115 | struct timespec64 rmt; |
2116 | |
2117 | if (rem <= 0) |
2118 | return 0; |
2119 | rmt = ktime_to_timespec64(rem); |
2120 | |
2121 | return nanosleep_copyout(restart, ts: &rmt); |
2122 | } |
2123 | return -ERESTART_RESTARTBLOCK; |
2124 | } |
2125 | |
2126 | static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) |
2127 | { |
2128 | struct hrtimer_sleeper t; |
2129 | int ret; |
2130 | |
2131 | hrtimer_setup_sleeper_on_stack(&t, restart->nanosleep.clockid, HRTIMER_MODE_ABS); |
2132 | hrtimer_set_expires_tv64(timer: &t.timer, tv64: restart->nanosleep.expires); |
2133 | ret = do_nanosleep(t: &t, mode: HRTIMER_MODE_ABS); |
2134 | destroy_hrtimer_on_stack(&t.timer); |
2135 | return ret; |
2136 | } |
2137 | |
2138 | long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, |
2139 | const clockid_t clockid) |
2140 | { |
2141 | struct restart_block *restart; |
2142 | struct hrtimer_sleeper t; |
2143 | int ret = 0; |
2144 | |
2145 | hrtimer_setup_sleeper_on_stack(&t, clockid, mode); |
2146 | hrtimer_set_expires_range_ns(timer: &t.timer, time: rqtp, current->timer_slack_ns); |
2147 | ret = do_nanosleep(t: &t, mode); |
2148 | if (ret != -ERESTART_RESTARTBLOCK) |
2149 | goto out; |
2150 | |
2151 | /* Absolute timers do not update the rmtp value and restart: */ |
2152 | if (mode == HRTIMER_MODE_ABS) { |
2153 | ret = -ERESTARTNOHAND; |
2154 | goto out; |
2155 | } |
2156 | |
2157 | restart = ¤t->restart_block; |
2158 | restart->nanosleep.clockid = t.timer.base->clockid; |
2159 | restart->nanosleep.expires = hrtimer_get_expires_tv64(timer: &t.timer); |
2160 | set_restart_fn(restart, fn: hrtimer_nanosleep_restart); |
2161 | out: |
2162 | destroy_hrtimer_on_stack(&t.timer); |
2163 | return ret; |
2164 | } |
2165 | |
2166 | #ifdef CONFIG_64BIT |
2167 | |
2168 | SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, |
2169 | struct __kernel_timespec __user *, rmtp) |
2170 | { |
2171 | struct timespec64 tu; |
2172 | |
2173 | if (get_timespec64(ts: &tu, uts: rqtp)) |
2174 | return -EFAULT; |
2175 | |
2176 | if (!timespec64_valid(ts: &tu)) |
2177 | return -EINVAL; |
2178 | |
2179 | current->restart_block.fn = do_no_restart_syscall; |
2180 | current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; |
2181 | current->restart_block.nanosleep.rmtp = rmtp; |
2182 | return hrtimer_nanosleep(rqtp: timespec64_to_ktime(ts: tu), mode: HRTIMER_MODE_REL, |
2183 | CLOCK_MONOTONIC); |
2184 | } |
2185 | |
2186 | #endif |
2187 | |
2188 | #ifdef CONFIG_COMPAT_32BIT_TIME |
2189 | |
2190 | SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, |
2191 | struct old_timespec32 __user *, rmtp) |
2192 | { |
2193 | struct timespec64 tu; |
2194 | |
2195 | if (get_old_timespec32(&tu, rqtp)) |
2196 | return -EFAULT; |
2197 | |
2198 | if (!timespec64_valid(ts: &tu)) |
2199 | return -EINVAL; |
2200 | |
2201 | current->restart_block.fn = do_no_restart_syscall; |
2202 | current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; |
2203 | current->restart_block.nanosleep.compat_rmtp = rmtp; |
2204 | return hrtimer_nanosleep(rqtp: timespec64_to_ktime(ts: tu), mode: HRTIMER_MODE_REL, |
2205 | CLOCK_MONOTONIC); |
2206 | } |
2207 | #endif |
2208 | |
2209 | /* |
2210 | * Functions related to boot-time initialization: |
2211 | */ |
2212 | int hrtimers_prepare_cpu(unsigned int cpu) |
2213 | { |
2214 | struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); |
2215 | int i; |
2216 | |
2217 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
2218 | struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; |
2219 | |
2220 | clock_b->cpu_base = cpu_base; |
2221 | seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); |
2222 | timerqueue_init_head(head: &clock_b->active); |
2223 | } |
2224 | |
2225 | cpu_base->cpu = cpu; |
2226 | hrtimer_cpu_base_init_expiry_lock(base: cpu_base); |
2227 | return 0; |
2228 | } |
2229 | |
2230 | int hrtimers_cpu_starting(unsigned int cpu) |
2231 | { |
2232 | struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); |
2233 | |
2234 | /* Clear out any left over state from a CPU down operation */ |
2235 | cpu_base->active_bases = 0; |
2236 | cpu_base->hres_active = 0; |
2237 | cpu_base->hang_detected = 0; |
2238 | cpu_base->next_timer = NULL; |
2239 | cpu_base->softirq_next_timer = NULL; |
2240 | cpu_base->expires_next = KTIME_MAX; |
2241 | cpu_base->softirq_expires_next = KTIME_MAX; |
2242 | cpu_base->online = 1; |
2243 | return 0; |
2244 | } |
2245 | |
2246 | #ifdef CONFIG_HOTPLUG_CPU |
2247 | |
2248 | static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, |
2249 | struct hrtimer_clock_base *new_base) |
2250 | { |
2251 | struct hrtimer *timer; |
2252 | struct timerqueue_node *node; |
2253 | |
2254 | while ((node = timerqueue_getnext(head: &old_base->active))) { |
2255 | timer = container_of(node, struct hrtimer, node); |
2256 | BUG_ON(hrtimer_callback_running(timer)); |
2257 | debug_deactivate(timer); |
2258 | |
2259 | /* |
2260 | * Mark it as ENQUEUED not INACTIVE otherwise the |
2261 | * timer could be seen as !active and just vanish away |
2262 | * under us on another CPU |
2263 | */ |
2264 | __remove_hrtimer(timer, base: old_base, HRTIMER_STATE_ENQUEUED, reprogram: 0); |
2265 | timer->base = new_base; |
2266 | /* |
2267 | * Enqueue the timers on the new cpu. This does not |
2268 | * reprogram the event device in case the timer |
2269 | * expires before the earliest on this CPU, but we run |
2270 | * hrtimer_interrupt after we migrated everything to |
2271 | * sort out already expired timers and reprogram the |
2272 | * event device. |
2273 | */ |
2274 | enqueue_hrtimer(timer, base: new_base, mode: HRTIMER_MODE_ABS); |
2275 | } |
2276 | } |
2277 | |
2278 | int hrtimers_cpu_dying(unsigned int dying_cpu) |
2279 | { |
2280 | int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER)); |
2281 | struct hrtimer_cpu_base *old_base, *new_base; |
2282 | |
2283 | old_base = this_cpu_ptr(&hrtimer_bases); |
2284 | new_base = &per_cpu(hrtimer_bases, ncpu); |
2285 | |
2286 | /* |
2287 | * The caller is globally serialized and nobody else |
2288 | * takes two locks at once, deadlock is not possible. |
2289 | */ |
2290 | raw_spin_lock(&old_base->lock); |
2291 | raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING); |
2292 | |
2293 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
2294 | migrate_hrtimer_list(old_base: &old_base->clock_base[i], |
2295 | new_base: &new_base->clock_base[i]); |
2296 | } |
2297 | |
2298 | /* |
2299 | * The migration might have changed the first expiring softirq |
2300 | * timer on this CPU. Update it. |
2301 | */ |
2302 | __hrtimer_get_next_event(cpu_base: new_base, HRTIMER_ACTIVE_SOFT); |
2303 | /* Tell the other CPU to retrigger the next event */ |
2304 | smp_call_function_single(cpuid: ncpu, func: retrigger_next_event, NULL, wait: 0); |
2305 | |
2306 | raw_spin_unlock(&new_base->lock); |
2307 | old_base->online = 0; |
2308 | raw_spin_unlock(&old_base->lock); |
2309 | |
2310 | return 0; |
2311 | } |
2312 | |
2313 | #endif /* CONFIG_HOTPLUG_CPU */ |
2314 | |
2315 | void __init hrtimers_init(void) |
2316 | { |
2317 | hrtimers_prepare_cpu(smp_processor_id()); |
2318 | hrtimers_cpu_starting(smp_processor_id()); |
2319 | open_softirq(nr: HRTIMER_SOFTIRQ, action: hrtimer_run_softirq); |
2320 | } |
2321 |
Definitions
- hrtimer_bases
- hrtimer_base_is_online
- migration_cpu_base
- lock_hrtimer_base
- hrtimer_suitable_target
- get_target_base
- switch_hrtimer_base
- ktime_add_safe
- hrtimer_debug_descr
- hrtimer_debug_hint
- hrtimer_fixup_init
- hrtimer_fixup_activate
- hrtimer_fixup_free
- hrtimer_debug_descr
- debug_hrtimer_init
- debug_hrtimer_init_on_stack
- debug_hrtimer_activate
- debug_hrtimer_deactivate
- destroy_hrtimer_on_stack
- debug_setup
- debug_setup_on_stack
- debug_activate
- debug_deactivate
- __next_base
- __hrtimer_next_event_base
- __hrtimer_get_next_event
- hrtimer_update_next_event
- hrtimer_update_base
- hrtimer_hres_active
- __hrtimer_reprogram
- hrtimer_force_reprogram
- hrtimer_hres_enabled
- hrtimer_resolution
- setup_hrtimer_hres
- hrtimer_is_hres_enabled
- hrtimer_switch_to_hres
- retrigger_next_event
- hrtimer_reprogram
- update_needs_ipi
- clock_was_set
- clock_was_set_work
- hrtimer_work
- clock_was_set_delayed
- hrtimers_resume_local
- unlock_hrtimer_base
- hrtimer_forward
- enqueue_hrtimer
- __remove_hrtimer
- remove_hrtimer
- hrtimer_update_lowres
- hrtimer_update_softirq_timer
- __hrtimer_start_range_ns
- hrtimer_start_range_ns
- hrtimer_try_to_cancel
- hrtimer_cpu_base_init_expiry_lock
- hrtimer_cpu_base_lock_expiry
- hrtimer_cpu_base_unlock_expiry
- hrtimer_sync_wait_running
- hrtimer_cancel
- __hrtimer_get_remaining
- hrtimer_get_next_event
- hrtimer_next_event_without
- hrtimer_clockid_to_base
- __hrtimer_setup
- hrtimer_setup
- hrtimer_setup_on_stack
- hrtimer_active
- __run_hrtimer
- __hrtimer_run_queues
- hrtimer_run_softirq
- hrtimer_interrupt
- hrtimer_run_queues
- hrtimer_wakeup
- hrtimer_sleeper_start_expires
- __hrtimer_setup_sleeper
- hrtimer_setup_sleeper_on_stack
- nanosleep_copyout
- do_nanosleep
- hrtimer_nanosleep_restart
- hrtimer_nanosleep
- hrtimers_prepare_cpu
- hrtimers_cpu_starting
- migrate_hrtimer_list
- hrtimers_cpu_dying
Improve your Profiling and Debugging skills
Find out more