1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * DSA topology and switch handling
4 *
5 * Copyright (c) 2008-2009 Marvell Semiconductor
6 * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
7 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
8 */
9
10#include <linux/device.h>
11#include <linux/err.h>
12#include <linux/list.h>
13#include <linux/module.h>
14#include <linux/netdevice.h>
15#include <linux/slab.h>
16#include <linux/rtnetlink.h>
17#include <linux/of.h>
18#include <linux/of_net.h>
19#include <net/dsa_stubs.h>
20#include <net/sch_generic.h>
21
22#include "conduit.h"
23#include "devlink.h"
24#include "dsa.h"
25#include "netlink.h"
26#include "port.h"
27#include "switch.h"
28#include "tag.h"
29#include "user.h"
30
31#define DSA_MAX_NUM_OFFLOADING_BRIDGES BITS_PER_LONG
32
33static DEFINE_MUTEX(dsa2_mutex);
34LIST_HEAD(dsa_tree_list);
35
36static struct workqueue_struct *dsa_owq;
37
38/* Track the bridges with forwarding offload enabled */
39static unsigned long dsa_fwd_offloading_bridges;
40
41bool dsa_schedule_work(struct work_struct *work)
42{
43 return queue_work(wq: dsa_owq, work);
44}
45
46void dsa_flush_workqueue(void)
47{
48 flush_workqueue(dsa_owq);
49}
50EXPORT_SYMBOL_GPL(dsa_flush_workqueue);
51
52/**
53 * dsa_lag_map() - Map LAG structure to a linear LAG array
54 * @dst: Tree in which to record the mapping.
55 * @lag: LAG structure that is to be mapped to the tree's array.
56 *
57 * dsa_lag_id/dsa_lag_by_id can then be used to translate between the
58 * two spaces. The size of the mapping space is determined by the
59 * driver by setting ds->num_lag_ids. It is perfectly legal to leave
60 * it unset if it is not needed, in which case these functions become
61 * no-ops.
62 */
63void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
64{
65 unsigned int id;
66
67 for (id = 1; id <= dst->lags_len; id++) {
68 if (!dsa_lag_by_id(dst, id)) {
69 dst->lags[id - 1] = lag;
70 lag->id = id;
71 return;
72 }
73 }
74
75 /* No IDs left, which is OK. Some drivers do not need it. The
76 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
77 * returns an error for this device when joining the LAG. The
78 * driver can then return -EOPNOTSUPP back to DSA, which will
79 * fall back to a software LAG.
80 */
81}
82
83/**
84 * dsa_lag_unmap() - Remove a LAG ID mapping
85 * @dst: Tree in which the mapping is recorded.
86 * @lag: LAG structure that was mapped.
87 *
88 * As there may be multiple users of the mapping, it is only removed
89 * if there are no other references to it.
90 */
91void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
92{
93 unsigned int id;
94
95 dsa_lags_foreach_id(id, dst) {
96 if (dsa_lag_by_id(dst, id) == lag) {
97 dst->lags[id - 1] = NULL;
98 lag->id = 0;
99 break;
100 }
101 }
102}
103
104struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
105 const struct net_device *lag_dev)
106{
107 struct dsa_port *dp;
108
109 list_for_each_entry(dp, &dst->ports, list)
110 if (dsa_port_lag_dev_get(dp) == lag_dev)
111 return dp->lag;
112
113 return NULL;
114}
115
116struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
117 const struct net_device *br)
118{
119 struct dsa_port *dp;
120
121 list_for_each_entry(dp, &dst->ports, list)
122 if (dsa_port_bridge_dev_get(dp) == br)
123 return dp->bridge;
124
125 return NULL;
126}
127
128static int dsa_bridge_num_find(const struct net_device *bridge_dev)
129{
130 struct dsa_switch_tree *dst;
131
132 list_for_each_entry(dst, &dsa_tree_list, list) {
133 struct dsa_bridge *bridge;
134
135 bridge = dsa_tree_bridge_find(dst, br: bridge_dev);
136 if (bridge)
137 return bridge->num;
138 }
139
140 return 0;
141}
142
143unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
144{
145 unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
146
147 /* Switches without FDB isolation support don't get unique
148 * bridge numbering
149 */
150 if (!max)
151 return 0;
152
153 if (!bridge_num) {
154 /* First port that requests FDB isolation or TX forwarding
155 * offload for this bridge
156 */
157 bridge_num = find_next_zero_bit(addr: &dsa_fwd_offloading_bridges,
158 DSA_MAX_NUM_OFFLOADING_BRIDGES,
159 offset: 1);
160 if (bridge_num >= max)
161 return 0;
162
163 set_bit(nr: bridge_num, addr: &dsa_fwd_offloading_bridges);
164 }
165
166 return bridge_num;
167}
168
169void dsa_bridge_num_put(const struct net_device *bridge_dev,
170 unsigned int bridge_num)
171{
172 /* Since we refcount bridges, we know that when we call this function
173 * it is no longer in use, so we can just go ahead and remove it from
174 * the bit mask.
175 */
176 clear_bit(nr: bridge_num, addr: &dsa_fwd_offloading_bridges);
177}
178
179struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
180{
181 struct dsa_switch_tree *dst;
182 struct dsa_port *dp;
183
184 list_for_each_entry(dst, &dsa_tree_list, list) {
185 if (dst->index != tree_index)
186 continue;
187
188 list_for_each_entry(dp, &dst->ports, list) {
189 if (dp->ds->index != sw_index)
190 continue;
191
192 return dp->ds;
193 }
194 }
195
196 return NULL;
197}
198EXPORT_SYMBOL_GPL(dsa_switch_find);
199
200static struct dsa_switch_tree *dsa_tree_find(int index)
201{
202 struct dsa_switch_tree *dst;
203
204 list_for_each_entry(dst, &dsa_tree_list, list)
205 if (dst->index == index)
206 return dst;
207
208 return NULL;
209}
210
211static struct dsa_switch_tree *dsa_tree_alloc(int index)
212{
213 struct dsa_switch_tree *dst;
214
215 dst = kzalloc(size: sizeof(*dst), GFP_KERNEL);
216 if (!dst)
217 return NULL;
218
219 dst->index = index;
220
221 INIT_LIST_HEAD(list: &dst->rtable);
222
223 INIT_LIST_HEAD(list: &dst->ports);
224
225 INIT_LIST_HEAD(list: &dst->list);
226 list_add_tail(new: &dst->list, head: &dsa_tree_list);
227
228 kref_init(kref: &dst->refcount);
229
230 return dst;
231}
232
233static void dsa_tree_free(struct dsa_switch_tree *dst)
234{
235 if (dst->tag_ops)
236 dsa_tag_driver_put(ops: dst->tag_ops);
237 list_del(entry: &dst->list);
238 kfree(objp: dst);
239}
240
241static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
242{
243 if (dst)
244 kref_get(kref: &dst->refcount);
245
246 return dst;
247}
248
249static struct dsa_switch_tree *dsa_tree_touch(int index)
250{
251 struct dsa_switch_tree *dst;
252
253 dst = dsa_tree_find(index);
254 if (dst)
255 return dsa_tree_get(dst);
256 else
257 return dsa_tree_alloc(index);
258}
259
260static void dsa_tree_release(struct kref *ref)
261{
262 struct dsa_switch_tree *dst;
263
264 dst = container_of(ref, struct dsa_switch_tree, refcount);
265
266 dsa_tree_free(dst);
267}
268
269static void dsa_tree_put(struct dsa_switch_tree *dst)
270{
271 if (dst)
272 kref_put(kref: &dst->refcount, release: dsa_tree_release);
273}
274
275static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
276 struct device_node *dn)
277{
278 struct dsa_port *dp;
279
280 list_for_each_entry(dp, &dst->ports, list)
281 if (dp->dn == dn)
282 return dp;
283
284 return NULL;
285}
286
287static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
288 struct dsa_port *link_dp)
289{
290 struct dsa_switch *ds = dp->ds;
291 struct dsa_switch_tree *dst;
292 struct dsa_link *dl;
293
294 dst = ds->dst;
295
296 list_for_each_entry(dl, &dst->rtable, list)
297 if (dl->dp == dp && dl->link_dp == link_dp)
298 return dl;
299
300 dl = kzalloc(size: sizeof(*dl), GFP_KERNEL);
301 if (!dl)
302 return NULL;
303
304 dl->dp = dp;
305 dl->link_dp = link_dp;
306
307 INIT_LIST_HEAD(list: &dl->list);
308 list_add_tail(new: &dl->list, head: &dst->rtable);
309
310 return dl;
311}
312
313static bool dsa_port_setup_routing_table(struct dsa_port *dp)
314{
315 struct dsa_switch *ds = dp->ds;
316 struct dsa_switch_tree *dst = ds->dst;
317 struct device_node *dn = dp->dn;
318 struct of_phandle_iterator it;
319 struct dsa_port *link_dp;
320 struct dsa_link *dl;
321 int err;
322
323 of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
324 link_dp = dsa_tree_find_port_by_node(dst, dn: it.node);
325 if (!link_dp) {
326 of_node_put(node: it.node);
327 return false;
328 }
329
330 dl = dsa_link_touch(dp, link_dp);
331 if (!dl) {
332 of_node_put(node: it.node);
333 return false;
334 }
335 }
336
337 return true;
338}
339
340static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
341{
342 bool complete = true;
343 struct dsa_port *dp;
344
345 list_for_each_entry(dp, &dst->ports, list) {
346 if (dsa_port_is_dsa(port: dp)) {
347 complete = dsa_port_setup_routing_table(dp);
348 if (!complete)
349 break;
350 }
351 }
352
353 return complete;
354}
355
356static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
357{
358 struct dsa_port *dp;
359
360 list_for_each_entry(dp, &dst->ports, list)
361 if (dsa_port_is_cpu(port: dp))
362 return dp;
363
364 return NULL;
365}
366
367struct net_device *dsa_tree_find_first_conduit(struct dsa_switch_tree *dst)
368{
369 struct device_node *ethernet;
370 struct net_device *conduit;
371 struct dsa_port *cpu_dp;
372
373 cpu_dp = dsa_tree_find_first_cpu(dst);
374 ethernet = of_parse_phandle(np: cpu_dp->dn, phandle_name: "ethernet", index: 0);
375 conduit = of_find_net_device_by_node(np: ethernet);
376 of_node_put(node: ethernet);
377
378 return conduit;
379}
380
381/* Assign the default CPU port (the first one in the tree) to all ports of the
382 * fabric which don't already have one as part of their own switch.
383 */
384static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
385{
386 struct dsa_port *cpu_dp, *dp;
387
388 cpu_dp = dsa_tree_find_first_cpu(dst);
389 if (!cpu_dp) {
390 pr_err("DSA: tree %d has no CPU port\n", dst->index);
391 return -EINVAL;
392 }
393
394 list_for_each_entry(dp, &dst->ports, list) {
395 if (dp->cpu_dp)
396 continue;
397
398 if (dsa_port_is_user(dp) || dsa_port_is_dsa(port: dp))
399 dp->cpu_dp = cpu_dp;
400 }
401
402 return 0;
403}
404
405static struct dsa_port *
406dsa_switch_preferred_default_local_cpu_port(struct dsa_switch *ds)
407{
408 struct dsa_port *cpu_dp;
409
410 if (!ds->ops->preferred_default_local_cpu_port)
411 return NULL;
412
413 cpu_dp = ds->ops->preferred_default_local_cpu_port(ds);
414 if (!cpu_dp)
415 return NULL;
416
417 if (WARN_ON(!dsa_port_is_cpu(cpu_dp) || cpu_dp->ds != ds))
418 return NULL;
419
420 return cpu_dp;
421}
422
423/* Perform initial assignment of CPU ports to user ports and DSA links in the
424 * fabric, giving preference to CPU ports local to each switch. Default to
425 * using the first CPU port in the switch tree if the port does not have a CPU
426 * port local to this switch.
427 */
428static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
429{
430 struct dsa_port *preferred_cpu_dp, *cpu_dp, *dp;
431
432 list_for_each_entry(cpu_dp, &dst->ports, list) {
433 if (!dsa_port_is_cpu(port: cpu_dp))
434 continue;
435
436 preferred_cpu_dp = dsa_switch_preferred_default_local_cpu_port(ds: cpu_dp->ds);
437 if (preferred_cpu_dp && preferred_cpu_dp != cpu_dp)
438 continue;
439
440 /* Prefer a local CPU port */
441 dsa_switch_for_each_port(dp, cpu_dp->ds) {
442 /* Prefer the first local CPU port found */
443 if (dp->cpu_dp)
444 continue;
445
446 if (dsa_port_is_user(dp) || dsa_port_is_dsa(port: dp))
447 dp->cpu_dp = cpu_dp;
448 }
449 }
450
451 return dsa_tree_setup_default_cpu(dst);
452}
453
454static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
455{
456 struct dsa_port *dp;
457
458 list_for_each_entry(dp, &dst->ports, list)
459 if (dsa_port_is_user(dp) || dsa_port_is_dsa(port: dp))
460 dp->cpu_dp = NULL;
461}
462
463static int dsa_port_setup(struct dsa_port *dp)
464{
465 bool dsa_port_link_registered = false;
466 struct dsa_switch *ds = dp->ds;
467 bool dsa_port_enabled = false;
468 int err = 0;
469
470 if (dp->setup)
471 return 0;
472
473 err = dsa_port_devlink_setup(dp);
474 if (err)
475 return err;
476
477 switch (dp->type) {
478 case DSA_PORT_TYPE_UNUSED:
479 dsa_port_disable(dp);
480 break;
481 case DSA_PORT_TYPE_CPU:
482 if (dp->dn) {
483 err = dsa_shared_port_link_register_of(dp);
484 if (err)
485 break;
486 dsa_port_link_registered = true;
487 } else {
488 dev_warn(ds->dev,
489 "skipping link registration for CPU port %d\n",
490 dp->index);
491 }
492
493 err = dsa_port_enable(dp, NULL);
494 if (err)
495 break;
496 dsa_port_enabled = true;
497
498 break;
499 case DSA_PORT_TYPE_DSA:
500 if (dp->dn) {
501 err = dsa_shared_port_link_register_of(dp);
502 if (err)
503 break;
504 dsa_port_link_registered = true;
505 } else {
506 dev_warn(ds->dev,
507 "skipping link registration for DSA port %d\n",
508 dp->index);
509 }
510
511 err = dsa_port_enable(dp, NULL);
512 if (err)
513 break;
514 dsa_port_enabled = true;
515
516 break;
517 case DSA_PORT_TYPE_USER:
518 of_get_mac_address(np: dp->dn, mac: dp->mac);
519 err = dsa_user_create(dp);
520 break;
521 }
522
523 if (err && dsa_port_enabled)
524 dsa_port_disable(dp);
525 if (err && dsa_port_link_registered)
526 dsa_shared_port_link_unregister_of(dp);
527 if (err) {
528 dsa_port_devlink_teardown(dp);
529 return err;
530 }
531
532 dp->setup = true;
533
534 return 0;
535}
536
537static void dsa_port_teardown(struct dsa_port *dp)
538{
539 if (!dp->setup)
540 return;
541
542 switch (dp->type) {
543 case DSA_PORT_TYPE_UNUSED:
544 break;
545 case DSA_PORT_TYPE_CPU:
546 dsa_port_disable(dp);
547 if (dp->dn)
548 dsa_shared_port_link_unregister_of(dp);
549 break;
550 case DSA_PORT_TYPE_DSA:
551 dsa_port_disable(dp);
552 if (dp->dn)
553 dsa_shared_port_link_unregister_of(dp);
554 break;
555 case DSA_PORT_TYPE_USER:
556 if (dp->user) {
557 dsa_user_destroy(user_dev: dp->user);
558 dp->user = NULL;
559 }
560 break;
561 }
562
563 dsa_port_devlink_teardown(dp);
564
565 dp->setup = false;
566}
567
568static int dsa_port_setup_as_unused(struct dsa_port *dp)
569{
570 dp->type = DSA_PORT_TYPE_UNUSED;
571 return dsa_port_setup(dp);
572}
573
574static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
575{
576 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
577 struct dsa_switch_tree *dst = ds->dst;
578 int err;
579
580 if (tag_ops->proto == dst->default_proto)
581 goto connect;
582
583 rtnl_lock();
584 err = ds->ops->change_tag_protocol(ds, tag_ops->proto);
585 rtnl_unlock();
586 if (err) {
587 dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
588 tag_ops->name, ERR_PTR(err));
589 return err;
590 }
591
592connect:
593 if (tag_ops->connect) {
594 err = tag_ops->connect(ds);
595 if (err)
596 return err;
597 }
598
599 if (ds->ops->connect_tag_protocol) {
600 err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
601 if (err) {
602 dev_err(ds->dev,
603 "Unable to connect to tag protocol \"%s\": %pe\n",
604 tag_ops->name, ERR_PTR(err));
605 goto disconnect;
606 }
607 }
608
609 return 0;
610
611disconnect:
612 if (tag_ops->disconnect)
613 tag_ops->disconnect(ds);
614
615 return err;
616}
617
618static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds)
619{
620 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
621
622 if (tag_ops->disconnect)
623 tag_ops->disconnect(ds);
624}
625
626static int dsa_switch_setup(struct dsa_switch *ds)
627{
628 int err;
629
630 if (ds->setup)
631 return 0;
632
633 /* Initialize ds->phys_mii_mask before registering the user MDIO bus
634 * driver and before ops->setup() has run, since the switch drivers and
635 * the user MDIO bus driver rely on these values for probing PHY
636 * devices or not
637 */
638 ds->phys_mii_mask |= dsa_user_ports(ds);
639
640 err = dsa_switch_devlink_alloc(ds);
641 if (err)
642 return err;
643
644 err = dsa_switch_register_notifier(ds);
645 if (err)
646 goto devlink_free;
647
648 ds->configure_vlan_while_not_filtering = true;
649
650 err = ds->ops->setup(ds);
651 if (err < 0)
652 goto unregister_notifier;
653
654 err = dsa_switch_setup_tag_protocol(ds);
655 if (err)
656 goto teardown;
657
658 if (!ds->user_mii_bus && ds->ops->phy_read) {
659 ds->user_mii_bus = mdiobus_alloc();
660 if (!ds->user_mii_bus) {
661 err = -ENOMEM;
662 goto teardown;
663 }
664
665 dsa_user_mii_bus_init(ds);
666
667 err = mdiobus_register(ds->user_mii_bus);
668 if (err < 0)
669 goto free_user_mii_bus;
670 }
671
672 dsa_switch_devlink_register(ds);
673
674 ds->setup = true;
675 return 0;
676
677free_user_mii_bus:
678 if (ds->user_mii_bus && ds->ops->phy_read)
679 mdiobus_free(bus: ds->user_mii_bus);
680teardown:
681 if (ds->ops->teardown)
682 ds->ops->teardown(ds);
683unregister_notifier:
684 dsa_switch_unregister_notifier(ds);
685devlink_free:
686 dsa_switch_devlink_free(ds);
687 return err;
688}
689
690static void dsa_switch_teardown(struct dsa_switch *ds)
691{
692 if (!ds->setup)
693 return;
694
695 dsa_switch_devlink_unregister(ds);
696
697 if (ds->user_mii_bus && ds->ops->phy_read) {
698 mdiobus_unregister(bus: ds->user_mii_bus);
699 mdiobus_free(bus: ds->user_mii_bus);
700 ds->user_mii_bus = NULL;
701 }
702
703 dsa_switch_teardown_tag_protocol(ds);
704
705 if (ds->ops->teardown)
706 ds->ops->teardown(ds);
707
708 dsa_switch_unregister_notifier(ds);
709
710 dsa_switch_devlink_free(ds);
711
712 ds->setup = false;
713}
714
715/* First tear down the non-shared, then the shared ports. This ensures that
716 * all work items scheduled by our switchdev handlers for user ports have
717 * completed before we destroy the refcounting kept on the shared ports.
718 */
719static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
720{
721 struct dsa_port *dp;
722
723 list_for_each_entry(dp, &dst->ports, list)
724 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
725 dsa_port_teardown(dp);
726
727 dsa_flush_workqueue();
728
729 list_for_each_entry(dp, &dst->ports, list)
730 if (dsa_port_is_dsa(port: dp) || dsa_port_is_cpu(port: dp))
731 dsa_port_teardown(dp);
732}
733
734static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
735{
736 struct dsa_port *dp;
737
738 list_for_each_entry(dp, &dst->ports, list)
739 dsa_switch_teardown(ds: dp->ds);
740}
741
742/* Bring shared ports up first, then non-shared ports */
743static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
744{
745 struct dsa_port *dp;
746 int err = 0;
747
748 list_for_each_entry(dp, &dst->ports, list) {
749 if (dsa_port_is_dsa(port: dp) || dsa_port_is_cpu(port: dp)) {
750 err = dsa_port_setup(dp);
751 if (err)
752 goto teardown;
753 }
754 }
755
756 list_for_each_entry(dp, &dst->ports, list) {
757 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
758 err = dsa_port_setup(dp);
759 if (err) {
760 err = dsa_port_setup_as_unused(dp);
761 if (err)
762 goto teardown;
763 }
764 }
765 }
766
767 return 0;
768
769teardown:
770 dsa_tree_teardown_ports(dst);
771
772 return err;
773}
774
775static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
776{
777 struct dsa_port *dp;
778 int err = 0;
779
780 list_for_each_entry(dp, &dst->ports, list) {
781 err = dsa_switch_setup(ds: dp->ds);
782 if (err) {
783 dsa_tree_teardown_switches(dst);
784 break;
785 }
786 }
787
788 return err;
789}
790
791static int dsa_tree_setup_conduit(struct dsa_switch_tree *dst)
792{
793 struct dsa_port *cpu_dp;
794 int err = 0;
795
796 rtnl_lock();
797
798 dsa_tree_for_each_cpu_port(cpu_dp, dst) {
799 struct net_device *conduit = cpu_dp->conduit;
800 bool admin_up = (conduit->flags & IFF_UP) &&
801 !qdisc_tx_is_noop(dev: conduit);
802
803 err = dsa_conduit_setup(dev: conduit, cpu_dp);
804 if (err)
805 break;
806
807 /* Replay conduit state event */
808 dsa_tree_conduit_admin_state_change(dst, conduit, up: admin_up);
809 dsa_tree_conduit_oper_state_change(dst, conduit,
810 up: netif_oper_up(dev: conduit));
811 }
812
813 rtnl_unlock();
814
815 return err;
816}
817
818static void dsa_tree_teardown_conduit(struct dsa_switch_tree *dst)
819{
820 struct dsa_port *cpu_dp;
821
822 rtnl_lock();
823
824 dsa_tree_for_each_cpu_port(cpu_dp, dst) {
825 struct net_device *conduit = cpu_dp->conduit;
826
827 /* Synthesizing an "admin down" state is sufficient for
828 * the switches to get a notification if the conduit is
829 * currently up and running.
830 */
831 dsa_tree_conduit_admin_state_change(dst, conduit, up: false);
832
833 dsa_conduit_teardown(dev: conduit);
834 }
835
836 rtnl_unlock();
837}
838
839static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
840{
841 unsigned int len = 0;
842 struct dsa_port *dp;
843
844 list_for_each_entry(dp, &dst->ports, list) {
845 if (dp->ds->num_lag_ids > len)
846 len = dp->ds->num_lag_ids;
847 }
848
849 if (!len)
850 return 0;
851
852 dst->lags = kcalloc(n: len, size: sizeof(*dst->lags), GFP_KERNEL);
853 if (!dst->lags)
854 return -ENOMEM;
855
856 dst->lags_len = len;
857 return 0;
858}
859
860static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
861{
862 kfree(objp: dst->lags);
863}
864
865static int dsa_tree_setup(struct dsa_switch_tree *dst)
866{
867 bool complete;
868 int err;
869
870 if (dst->setup) {
871 pr_err("DSA: tree %d already setup! Disjoint trees?\n",
872 dst->index);
873 return -EEXIST;
874 }
875
876 complete = dsa_tree_setup_routing_table(dst);
877 if (!complete)
878 return 0;
879
880 err = dsa_tree_setup_cpu_ports(dst);
881 if (err)
882 return err;
883
884 err = dsa_tree_setup_switches(dst);
885 if (err)
886 goto teardown_cpu_ports;
887
888 err = dsa_tree_setup_ports(dst);
889 if (err)
890 goto teardown_switches;
891
892 err = dsa_tree_setup_conduit(dst);
893 if (err)
894 goto teardown_ports;
895
896 err = dsa_tree_setup_lags(dst);
897 if (err)
898 goto teardown_conduit;
899
900 dst->setup = true;
901
902 pr_info("DSA: tree %d setup\n", dst->index);
903
904 return 0;
905
906teardown_conduit:
907 dsa_tree_teardown_conduit(dst);
908teardown_ports:
909 dsa_tree_teardown_ports(dst);
910teardown_switches:
911 dsa_tree_teardown_switches(dst);
912teardown_cpu_ports:
913 dsa_tree_teardown_cpu_ports(dst);
914
915 return err;
916}
917
918static void dsa_tree_teardown(struct dsa_switch_tree *dst)
919{
920 struct dsa_link *dl, *next;
921
922 if (!dst->setup)
923 return;
924
925 dsa_tree_teardown_lags(dst);
926
927 dsa_tree_teardown_conduit(dst);
928
929 dsa_tree_teardown_ports(dst);
930
931 dsa_tree_teardown_switches(dst);
932
933 dsa_tree_teardown_cpu_ports(dst);
934
935 list_for_each_entry_safe(dl, next, &dst->rtable, list) {
936 list_del(entry: &dl->list);
937 kfree(objp: dl);
938 }
939
940 pr_info("DSA: tree %d torn down\n", dst->index);
941
942 dst->setup = false;
943}
944
945static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
946 const struct dsa_device_ops *tag_ops)
947{
948 const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
949 struct dsa_notifier_tag_proto_info info;
950 int err;
951
952 dst->tag_ops = tag_ops;
953
954 /* Notify the switches from this tree about the connection
955 * to the new tagger
956 */
957 info.tag_ops = tag_ops;
958 err = dsa_tree_notify(dst, e: DSA_NOTIFIER_TAG_PROTO_CONNECT, v: &info);
959 if (err && err != -EOPNOTSUPP)
960 goto out_disconnect;
961
962 /* Notify the old tagger about the disconnection from this tree */
963 info.tag_ops = old_tag_ops;
964 dsa_tree_notify(dst, e: DSA_NOTIFIER_TAG_PROTO_DISCONNECT, v: &info);
965
966 return 0;
967
968out_disconnect:
969 info.tag_ops = tag_ops;
970 dsa_tree_notify(dst, e: DSA_NOTIFIER_TAG_PROTO_DISCONNECT, v: &info);
971 dst->tag_ops = old_tag_ops;
972
973 return err;
974}
975
976/* Since the dsa/tagging sysfs device attribute is per conduit, the assumption
977 * is that all DSA switches within a tree share the same tagger, otherwise
978 * they would have formed disjoint trees (different "dsa,member" values).
979 */
980int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
981 const struct dsa_device_ops *tag_ops,
982 const struct dsa_device_ops *old_tag_ops)
983{
984 struct dsa_notifier_tag_proto_info info;
985 struct dsa_port *dp;
986 int err = -EBUSY;
987
988 if (!rtnl_trylock())
989 return restart_syscall();
990
991 /* At the moment we don't allow changing the tag protocol under
992 * traffic. The rtnl_mutex also happens to serialize concurrent
993 * attempts to change the tagging protocol. If we ever lift the IFF_UP
994 * restriction, there needs to be another mutex which serializes this.
995 */
996 dsa_tree_for_each_user_port(dp, dst) {
997 if (dsa_port_to_conduit(dp)->flags & IFF_UP)
998 goto out_unlock;
999
1000 if (dp->user->flags & IFF_UP)
1001 goto out_unlock;
1002 }
1003
1004 /* Notify the tag protocol change */
1005 info.tag_ops = tag_ops;
1006 err = dsa_tree_notify(dst, e: DSA_NOTIFIER_TAG_PROTO, v: &info);
1007 if (err)
1008 goto out_unwind_tagger;
1009
1010 err = dsa_tree_bind_tag_proto(dst, tag_ops);
1011 if (err)
1012 goto out_unwind_tagger;
1013
1014 rtnl_unlock();
1015
1016 return 0;
1017
1018out_unwind_tagger:
1019 info.tag_ops = old_tag_ops;
1020 dsa_tree_notify(dst, e: DSA_NOTIFIER_TAG_PROTO, v: &info);
1021out_unlock:
1022 rtnl_unlock();
1023 return err;
1024}
1025
1026static void dsa_tree_conduit_state_change(struct dsa_switch_tree *dst,
1027 struct net_device *conduit)
1028{
1029 struct dsa_notifier_conduit_state_info info;
1030 struct dsa_port *cpu_dp = conduit->dsa_ptr;
1031
1032 info.conduit = conduit;
1033 info.operational = dsa_port_conduit_is_operational(dp: cpu_dp);
1034
1035 dsa_tree_notify(dst, e: DSA_NOTIFIER_CONDUIT_STATE_CHANGE, v: &info);
1036}
1037
1038void dsa_tree_conduit_admin_state_change(struct dsa_switch_tree *dst,
1039 struct net_device *conduit,
1040 bool up)
1041{
1042 struct dsa_port *cpu_dp = conduit->dsa_ptr;
1043 bool notify = false;
1044
1045 /* Don't keep track of admin state on LAG DSA conduits,
1046 * but rather just of physical DSA conduits
1047 */
1048 if (netif_is_lag_master(dev: conduit))
1049 return;
1050
1051 if ((dsa_port_conduit_is_operational(dp: cpu_dp)) !=
1052 (up && cpu_dp->conduit_oper_up))
1053 notify = true;
1054
1055 cpu_dp->conduit_admin_up = up;
1056
1057 if (notify)
1058 dsa_tree_conduit_state_change(dst, conduit);
1059}
1060
1061void dsa_tree_conduit_oper_state_change(struct dsa_switch_tree *dst,
1062 struct net_device *conduit,
1063 bool up)
1064{
1065 struct dsa_port *cpu_dp = conduit->dsa_ptr;
1066 bool notify = false;
1067
1068 /* Don't keep track of oper state on LAG DSA conduits,
1069 * but rather just of physical DSA conduits
1070 */
1071 if (netif_is_lag_master(dev: conduit))
1072 return;
1073
1074 if ((dsa_port_conduit_is_operational(dp: cpu_dp)) !=
1075 (cpu_dp->conduit_admin_up && up))
1076 notify = true;
1077
1078 cpu_dp->conduit_oper_up = up;
1079
1080 if (notify)
1081 dsa_tree_conduit_state_change(dst, conduit);
1082}
1083
1084static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1085{
1086 struct dsa_switch_tree *dst = ds->dst;
1087 struct dsa_port *dp;
1088
1089 dsa_switch_for_each_port(dp, ds)
1090 if (dp->index == index)
1091 return dp;
1092
1093 dp = kzalloc(size: sizeof(*dp), GFP_KERNEL);
1094 if (!dp)
1095 return NULL;
1096
1097 dp->ds = ds;
1098 dp->index = index;
1099
1100 mutex_init(&dp->addr_lists_lock);
1101 mutex_init(&dp->vlans_lock);
1102 INIT_LIST_HEAD(list: &dp->fdbs);
1103 INIT_LIST_HEAD(list: &dp->mdbs);
1104 INIT_LIST_HEAD(list: &dp->vlans); /* also initializes &dp->user_vlans */
1105 INIT_LIST_HEAD(list: &dp->list);
1106 list_add_tail(new: &dp->list, head: &dst->ports);
1107
1108 return dp;
1109}
1110
1111static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1112{
1113 dp->type = DSA_PORT_TYPE_USER;
1114 dp->name = name;
1115
1116 return 0;
1117}
1118
1119static int dsa_port_parse_dsa(struct dsa_port *dp)
1120{
1121 dp->type = DSA_PORT_TYPE_DSA;
1122
1123 return 0;
1124}
1125
1126static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1127 struct net_device *conduit)
1128{
1129 enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1130 struct dsa_switch *mds, *ds = dp->ds;
1131 unsigned int mdp_upstream;
1132 struct dsa_port *mdp;
1133
1134 /* It is possible to stack DSA switches onto one another when that
1135 * happens the switch driver may want to know if its tagging protocol
1136 * is going to work in such a configuration.
1137 */
1138 if (dsa_user_dev_check(dev: conduit)) {
1139 mdp = dsa_user_to_port(dev: conduit);
1140 mds = mdp->ds;
1141 mdp_upstream = dsa_upstream_port(ds: mds, port: mdp->index);
1142 tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1143 DSA_TAG_PROTO_NONE);
1144 }
1145
1146 /* If the conduit device is not itself a DSA user in a disjoint DSA
1147 * tree, then return immediately.
1148 */
1149 return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1150}
1151
1152static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *conduit,
1153 const char *user_protocol)
1154{
1155 const struct dsa_device_ops *tag_ops = NULL;
1156 struct dsa_switch *ds = dp->ds;
1157 struct dsa_switch_tree *dst = ds->dst;
1158 enum dsa_tag_protocol default_proto;
1159
1160 /* Find out which protocol the switch would prefer. */
1161 default_proto = dsa_get_tag_protocol(dp, conduit);
1162 if (dst->default_proto) {
1163 if (dst->default_proto != default_proto) {
1164 dev_err(ds->dev,
1165 "A DSA switch tree can have only one tagging protocol\n");
1166 return -EINVAL;
1167 }
1168 } else {
1169 dst->default_proto = default_proto;
1170 }
1171
1172 /* See if the user wants to override that preference. */
1173 if (user_protocol) {
1174 if (!ds->ops->change_tag_protocol) {
1175 dev_err(ds->dev, "Tag protocol cannot be modified\n");
1176 return -EINVAL;
1177 }
1178
1179 tag_ops = dsa_tag_driver_get_by_name(name: user_protocol);
1180 if (IS_ERR(ptr: tag_ops)) {
1181 dev_warn(ds->dev,
1182 "Failed to find a tagging driver for protocol %s, using default\n",
1183 user_protocol);
1184 tag_ops = NULL;
1185 }
1186 }
1187
1188 if (!tag_ops)
1189 tag_ops = dsa_tag_driver_get_by_id(tag_protocol: default_proto);
1190
1191 if (IS_ERR(ptr: tag_ops)) {
1192 if (PTR_ERR(ptr: tag_ops) == -ENOPROTOOPT)
1193 return -EPROBE_DEFER;
1194
1195 dev_warn(ds->dev, "No tagger for this switch\n");
1196 return PTR_ERR(ptr: tag_ops);
1197 }
1198
1199 if (dst->tag_ops) {
1200 if (dst->tag_ops != tag_ops) {
1201 dev_err(ds->dev,
1202 "A DSA switch tree can have only one tagging protocol\n");
1203
1204 dsa_tag_driver_put(ops: tag_ops);
1205 return -EINVAL;
1206 }
1207
1208 /* In the case of multiple CPU ports per switch, the tagging
1209 * protocol is still reference-counted only per switch tree.
1210 */
1211 dsa_tag_driver_put(ops: tag_ops);
1212 } else {
1213 dst->tag_ops = tag_ops;
1214 }
1215
1216 dp->conduit = conduit;
1217 dp->type = DSA_PORT_TYPE_CPU;
1218 dsa_port_set_tag_protocol(cpu_dp: dp, tag_ops: dst->tag_ops);
1219 dp->dst = dst;
1220
1221 /* At this point, the tree may be configured to use a different
1222 * tagger than the one chosen by the switch driver during
1223 * .setup, in the case when a user selects a custom protocol
1224 * through the DT.
1225 *
1226 * This is resolved by syncing the driver with the tree in
1227 * dsa_switch_setup_tag_protocol once .setup has run and the
1228 * driver is ready to accept calls to .change_tag_protocol. If
1229 * the driver does not support the custom protocol at that
1230 * point, the tree is wholly rejected, thereby ensuring that the
1231 * tree and driver are always in agreement on the protocol to
1232 * use.
1233 */
1234 return 0;
1235}
1236
1237static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1238{
1239 struct device_node *ethernet = of_parse_phandle(np: dn, phandle_name: "ethernet", index: 0);
1240 const char *name = of_get_property(node: dn, name: "label", NULL);
1241 bool link = of_property_read_bool(np: dn, propname: "link");
1242
1243 dp->dn = dn;
1244
1245 if (ethernet) {
1246 struct net_device *conduit;
1247 const char *user_protocol;
1248
1249 conduit = of_find_net_device_by_node(np: ethernet);
1250 of_node_put(node: ethernet);
1251 if (!conduit)
1252 return -EPROBE_DEFER;
1253
1254 user_protocol = of_get_property(node: dn, name: "dsa-tag-protocol", NULL);
1255 return dsa_port_parse_cpu(dp, conduit, user_protocol);
1256 }
1257
1258 if (link)
1259 return dsa_port_parse_dsa(dp);
1260
1261 return dsa_port_parse_user(dp, name);
1262}
1263
1264static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1265 struct device_node *dn)
1266{
1267 struct device_node *ports, *port;
1268 struct dsa_port *dp;
1269 int err = 0;
1270 u32 reg;
1271
1272 ports = of_get_child_by_name(node: dn, name: "ports");
1273 if (!ports) {
1274 /* The second possibility is "ethernet-ports" */
1275 ports = of_get_child_by_name(node: dn, name: "ethernet-ports");
1276 if (!ports) {
1277 dev_err(ds->dev, "no ports child node found\n");
1278 return -EINVAL;
1279 }
1280 }
1281
1282 for_each_available_child_of_node(ports, port) {
1283 err = of_property_read_u32(np: port, propname: "reg", out_value: &reg);
1284 if (err) {
1285 of_node_put(node: port);
1286 goto out_put_node;
1287 }
1288
1289 if (reg >= ds->num_ports) {
1290 dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
1291 port, reg, ds->num_ports);
1292 of_node_put(node: port);
1293 err = -EINVAL;
1294 goto out_put_node;
1295 }
1296
1297 dp = dsa_to_port(ds, p: reg);
1298
1299 err = dsa_port_parse_of(dp, dn: port);
1300 if (err) {
1301 of_node_put(node: port);
1302 goto out_put_node;
1303 }
1304 }
1305
1306out_put_node:
1307 of_node_put(node: ports);
1308 return err;
1309}
1310
1311static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1312 struct device_node *dn)
1313{
1314 u32 m[2] = { 0, 0 };
1315 int sz;
1316
1317 /* Don't error out if this optional property isn't found */
1318 sz = of_property_read_variable_u32_array(np: dn, propname: "dsa,member", out_values: m, sz_min: 2, sz_max: 2);
1319 if (sz < 0 && sz != -EINVAL)
1320 return sz;
1321
1322 ds->index = m[1];
1323
1324 ds->dst = dsa_tree_touch(index: m[0]);
1325 if (!ds->dst)
1326 return -ENOMEM;
1327
1328 if (dsa_switch_find(ds->dst->index, ds->index)) {
1329 dev_err(ds->dev,
1330 "A DSA switch with index %d already exists in tree %d\n",
1331 ds->index, ds->dst->index);
1332 return -EEXIST;
1333 }
1334
1335 if (ds->dst->last_switch < ds->index)
1336 ds->dst->last_switch = ds->index;
1337
1338 return 0;
1339}
1340
1341static int dsa_switch_touch_ports(struct dsa_switch *ds)
1342{
1343 struct dsa_port *dp;
1344 int port;
1345
1346 for (port = 0; port < ds->num_ports; port++) {
1347 dp = dsa_port_touch(ds, index: port);
1348 if (!dp)
1349 return -ENOMEM;
1350 }
1351
1352 return 0;
1353}
1354
1355static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1356{
1357 int err;
1358
1359 err = dsa_switch_parse_member_of(ds, dn);
1360 if (err)
1361 return err;
1362
1363 err = dsa_switch_touch_ports(ds);
1364 if (err)
1365 return err;
1366
1367 return dsa_switch_parse_ports_of(ds, dn);
1368}
1369
1370static int dev_is_class(struct device *dev, void *class)
1371{
1372 if (dev->class != NULL && !strcmp(dev->class->name, class))
1373 return 1;
1374
1375 return 0;
1376}
1377
1378static struct device *dev_find_class(struct device *parent, char *class)
1379{
1380 if (dev_is_class(dev: parent, class)) {
1381 get_device(dev: parent);
1382 return parent;
1383 }
1384
1385 return device_find_child(dev: parent, data: class, match: dev_is_class);
1386}
1387
1388static struct net_device *dsa_dev_to_net_device(struct device *dev)
1389{
1390 struct device *d;
1391
1392 d = dev_find_class(parent: dev, class: "net");
1393 if (d != NULL) {
1394 struct net_device *nd;
1395
1396 nd = to_net_dev(d);
1397 dev_hold(dev: nd);
1398 put_device(dev: d);
1399
1400 return nd;
1401 }
1402
1403 return NULL;
1404}
1405
1406static int dsa_port_parse(struct dsa_port *dp, const char *name,
1407 struct device *dev)
1408{
1409 if (!strcmp(name, "cpu")) {
1410 struct net_device *conduit;
1411
1412 conduit = dsa_dev_to_net_device(dev);
1413 if (!conduit)
1414 return -EPROBE_DEFER;
1415
1416 dev_put(dev: conduit);
1417
1418 return dsa_port_parse_cpu(dp, conduit, NULL);
1419 }
1420
1421 if (!strcmp(name, "dsa"))
1422 return dsa_port_parse_dsa(dp);
1423
1424 return dsa_port_parse_user(dp, name);
1425}
1426
1427static int dsa_switch_parse_ports(struct dsa_switch *ds,
1428 struct dsa_chip_data *cd)
1429{
1430 bool valid_name_found = false;
1431 struct dsa_port *dp;
1432 struct device *dev;
1433 const char *name;
1434 unsigned int i;
1435 int err;
1436
1437 for (i = 0; i < DSA_MAX_PORTS; i++) {
1438 name = cd->port_names[i];
1439 dev = cd->netdev[i];
1440 dp = dsa_to_port(ds, p: i);
1441
1442 if (!name)
1443 continue;
1444
1445 err = dsa_port_parse(dp, name, dev);
1446 if (err)
1447 return err;
1448
1449 valid_name_found = true;
1450 }
1451
1452 if (!valid_name_found && i == DSA_MAX_PORTS)
1453 return -EINVAL;
1454
1455 return 0;
1456}
1457
1458static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1459{
1460 int err;
1461
1462 ds->cd = cd;
1463
1464 /* We don't support interconnected switches nor multiple trees via
1465 * platform data, so this is the unique switch of the tree.
1466 */
1467 ds->index = 0;
1468 ds->dst = dsa_tree_touch(index: 0);
1469 if (!ds->dst)
1470 return -ENOMEM;
1471
1472 err = dsa_switch_touch_ports(ds);
1473 if (err)
1474 return err;
1475
1476 return dsa_switch_parse_ports(ds, cd);
1477}
1478
1479static void dsa_switch_release_ports(struct dsa_switch *ds)
1480{
1481 struct dsa_port *dp, *next;
1482
1483 dsa_switch_for_each_port_safe(dp, next, ds) {
1484 WARN_ON(!list_empty(&dp->fdbs));
1485 WARN_ON(!list_empty(&dp->mdbs));
1486 WARN_ON(!list_empty(&dp->vlans));
1487 list_del(entry: &dp->list);
1488 kfree(objp: dp);
1489 }
1490}
1491
1492static int dsa_switch_probe(struct dsa_switch *ds)
1493{
1494 struct dsa_switch_tree *dst;
1495 struct dsa_chip_data *pdata;
1496 struct device_node *np;
1497 int err;
1498
1499 if (!ds->dev)
1500 return -ENODEV;
1501
1502 pdata = ds->dev->platform_data;
1503 np = ds->dev->of_node;
1504
1505 if (!ds->num_ports)
1506 return -EINVAL;
1507
1508 if (np) {
1509 err = dsa_switch_parse_of(ds, dn: np);
1510 if (err)
1511 dsa_switch_release_ports(ds);
1512 } else if (pdata) {
1513 err = dsa_switch_parse(ds, cd: pdata);
1514 if (err)
1515 dsa_switch_release_ports(ds);
1516 } else {
1517 err = -ENODEV;
1518 }
1519
1520 if (err)
1521 return err;
1522
1523 dst = ds->dst;
1524 dsa_tree_get(dst);
1525 err = dsa_tree_setup(dst);
1526 if (err) {
1527 dsa_switch_release_ports(ds);
1528 dsa_tree_put(dst);
1529 }
1530
1531 return err;
1532}
1533
1534int dsa_register_switch(struct dsa_switch *ds)
1535{
1536 int err;
1537
1538 mutex_lock(&dsa2_mutex);
1539 err = dsa_switch_probe(ds);
1540 dsa_tree_put(dst: ds->dst);
1541 mutex_unlock(lock: &dsa2_mutex);
1542
1543 return err;
1544}
1545EXPORT_SYMBOL_GPL(dsa_register_switch);
1546
1547static void dsa_switch_remove(struct dsa_switch *ds)
1548{
1549 struct dsa_switch_tree *dst = ds->dst;
1550
1551 dsa_tree_teardown(dst);
1552 dsa_switch_release_ports(ds);
1553 dsa_tree_put(dst);
1554}
1555
1556void dsa_unregister_switch(struct dsa_switch *ds)
1557{
1558 mutex_lock(&dsa2_mutex);
1559 dsa_switch_remove(ds);
1560 mutex_unlock(lock: &dsa2_mutex);
1561}
1562EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1563
1564/* If the DSA conduit chooses to unregister its net_device on .shutdown, DSA is
1565 * blocking that operation from completion, due to the dev_hold taken inside
1566 * netdev_upper_dev_link. Unlink the DSA user interfaces from being uppers of
1567 * the DSA conduit, so that the system can reboot successfully.
1568 */
1569void dsa_switch_shutdown(struct dsa_switch *ds)
1570{
1571 struct net_device *conduit, *user_dev;
1572 struct dsa_port *dp;
1573
1574 mutex_lock(&dsa2_mutex);
1575
1576 if (!ds->setup)
1577 goto out;
1578
1579 rtnl_lock();
1580
1581 dsa_switch_for_each_user_port(dp, ds) {
1582 conduit = dsa_port_to_conduit(dp);
1583 user_dev = dp->user;
1584
1585 netdev_upper_dev_unlink(dev: conduit, upper_dev: user_dev);
1586 }
1587
1588 /* Disconnect from further netdevice notifiers on the conduit,
1589 * since netdev_uses_dsa() will now return false.
1590 */
1591 dsa_switch_for_each_cpu_port(dp, ds)
1592 dp->conduit->dsa_ptr = NULL;
1593
1594 rtnl_unlock();
1595out:
1596 mutex_unlock(lock: &dsa2_mutex);
1597}
1598EXPORT_SYMBOL_GPL(dsa_switch_shutdown);
1599
1600#ifdef CONFIG_PM_SLEEP
1601static bool dsa_port_is_initialized(const struct dsa_port *dp)
1602{
1603 return dp->type == DSA_PORT_TYPE_USER && dp->user;
1604}
1605
1606int dsa_switch_suspend(struct dsa_switch *ds)
1607{
1608 struct dsa_port *dp;
1609 int ret = 0;
1610
1611 /* Suspend user network devices */
1612 dsa_switch_for_each_port(dp, ds) {
1613 if (!dsa_port_is_initialized(dp))
1614 continue;
1615
1616 ret = dsa_user_suspend(user_dev: dp->user);
1617 if (ret)
1618 return ret;
1619 }
1620
1621 if (ds->ops->suspend)
1622 ret = ds->ops->suspend(ds);
1623
1624 return ret;
1625}
1626EXPORT_SYMBOL_GPL(dsa_switch_suspend);
1627
1628int dsa_switch_resume(struct dsa_switch *ds)
1629{
1630 struct dsa_port *dp;
1631 int ret = 0;
1632
1633 if (ds->ops->resume)
1634 ret = ds->ops->resume(ds);
1635
1636 if (ret)
1637 return ret;
1638
1639 /* Resume user network devices */
1640 dsa_switch_for_each_port(dp, ds) {
1641 if (!dsa_port_is_initialized(dp))
1642 continue;
1643
1644 ret = dsa_user_resume(user_dev: dp->user);
1645 if (ret)
1646 return ret;
1647 }
1648
1649 return 0;
1650}
1651EXPORT_SYMBOL_GPL(dsa_switch_resume);
1652#endif
1653
1654struct dsa_port *dsa_port_from_netdev(struct net_device *netdev)
1655{
1656 if (!netdev || !dsa_user_dev_check(dev: netdev))
1657 return ERR_PTR(error: -ENODEV);
1658
1659 return dsa_user_to_port(dev: netdev);
1660}
1661EXPORT_SYMBOL_GPL(dsa_port_from_netdev);
1662
1663bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b)
1664{
1665 if (a->type != b->type)
1666 return false;
1667
1668 switch (a->type) {
1669 case DSA_DB_PORT:
1670 return a->dp == b->dp;
1671 case DSA_DB_LAG:
1672 return a->lag.dev == b->lag.dev;
1673 case DSA_DB_BRIDGE:
1674 return a->bridge.num == b->bridge.num;
1675 default:
1676 WARN_ON(1);
1677 return false;
1678 }
1679}
1680
1681bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port,
1682 const unsigned char *addr, u16 vid,
1683 struct dsa_db db)
1684{
1685 struct dsa_port *dp = dsa_to_port(ds, p: port);
1686 struct dsa_mac_addr *a;
1687
1688 lockdep_assert_held(&dp->addr_lists_lock);
1689
1690 list_for_each_entry(a, &dp->fdbs, list) {
1691 if (!ether_addr_equal(addr1: a->addr, addr2: addr) || a->vid != vid)
1692 continue;
1693
1694 if (a->db.type == db.type && !dsa_db_equal(a: &a->db, b: &db))
1695 return true;
1696 }
1697
1698 return false;
1699}
1700EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db);
1701
1702bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port,
1703 const struct switchdev_obj_port_mdb *mdb,
1704 struct dsa_db db)
1705{
1706 struct dsa_port *dp = dsa_to_port(ds, p: port);
1707 struct dsa_mac_addr *a;
1708
1709 lockdep_assert_held(&dp->addr_lists_lock);
1710
1711 list_for_each_entry(a, &dp->mdbs, list) {
1712 if (!ether_addr_equal(addr1: a->addr, addr2: mdb->addr) || a->vid != mdb->vid)
1713 continue;
1714
1715 if (a->db.type == db.type && !dsa_db_equal(a: &a->db, b: &db))
1716 return true;
1717 }
1718
1719 return false;
1720}
1721EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db);
1722
1723static const struct dsa_stubs __dsa_stubs = {
1724 .conduit_hwtstamp_validate = __dsa_conduit_hwtstamp_validate,
1725};
1726
1727static void dsa_register_stubs(void)
1728{
1729 dsa_stubs = &__dsa_stubs;
1730}
1731
1732static void dsa_unregister_stubs(void)
1733{
1734 dsa_stubs = NULL;
1735}
1736
1737static int __init dsa_init_module(void)
1738{
1739 int rc;
1740
1741 dsa_owq = alloc_ordered_workqueue("dsa_ordered",
1742 WQ_MEM_RECLAIM);
1743 if (!dsa_owq)
1744 return -ENOMEM;
1745
1746 rc = dsa_user_register_notifier();
1747 if (rc)
1748 goto register_notifier_fail;
1749
1750 dev_add_pack(pt: &dsa_pack_type);
1751
1752 rc = rtnl_link_register(ops: &dsa_link_ops);
1753 if (rc)
1754 goto netlink_register_fail;
1755
1756 dsa_register_stubs();
1757
1758 return 0;
1759
1760netlink_register_fail:
1761 dsa_user_unregister_notifier();
1762 dev_remove_pack(pt: &dsa_pack_type);
1763register_notifier_fail:
1764 destroy_workqueue(wq: dsa_owq);
1765
1766 return rc;
1767}
1768module_init(dsa_init_module);
1769
1770static void __exit dsa_cleanup_module(void)
1771{
1772 dsa_unregister_stubs();
1773
1774 rtnl_link_unregister(ops: &dsa_link_ops);
1775
1776 dsa_user_unregister_notifier();
1777 dev_remove_pack(pt: &dsa_pack_type);
1778 destroy_workqueue(wq: dsa_owq);
1779}
1780module_exit(dsa_cleanup_module);
1781
1782MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
1783MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
1784MODULE_LICENSE("GPL");
1785MODULE_ALIAS("platform:dsa");
1786

source code of linux/net/dsa/dsa.c