1 | // SPDX-License-Identifier: GPL-2.0-only |
---|---|
2 | /* |
3 | * Copyright (c) 2015 Nicira, Inc. |
4 | */ |
5 | |
6 | #include <linux/module.h> |
7 | #include <linux/openvswitch.h> |
8 | #include <linux/tcp.h> |
9 | #include <linux/udp.h> |
10 | #include <linux/sctp.h> |
11 | #include <linux/static_key.h> |
12 | #include <linux/string_helpers.h> |
13 | #include <net/ip.h> |
14 | #include <net/genetlink.h> |
15 | #include <net/netfilter/nf_conntrack_core.h> |
16 | #include <net/netfilter/nf_conntrack_count.h> |
17 | #include <net/netfilter/nf_conntrack_helper.h> |
18 | #include <net/netfilter/nf_conntrack_labels.h> |
19 | #include <net/netfilter/nf_conntrack_seqadj.h> |
20 | #include <net/netfilter/nf_conntrack_timeout.h> |
21 | #include <net/netfilter/nf_conntrack_zones.h> |
22 | #include <net/netfilter/ipv6/nf_defrag_ipv6.h> |
23 | #include <net/ipv6_frag.h> |
24 | |
25 | #if IS_ENABLED(CONFIG_NF_NAT) |
26 | #include <net/netfilter/nf_nat.h> |
27 | #endif |
28 | |
29 | #include <net/netfilter/nf_conntrack_act_ct.h> |
30 | |
31 | #include "datapath.h" |
32 | #include "drop.h" |
33 | #include "conntrack.h" |
34 | #include "flow.h" |
35 | #include "flow_netlink.h" |
36 | |
37 | struct ovs_ct_len_tbl { |
38 | int maxlen; |
39 | int minlen; |
40 | }; |
41 | |
42 | /* Metadata mark for masked write to conntrack mark */ |
43 | struct md_mark { |
44 | u32 value; |
45 | u32 mask; |
46 | }; |
47 | |
48 | /* Metadata label for masked write to conntrack label. */ |
49 | struct md_labels { |
50 | struct ovs_key_ct_labels value; |
51 | struct ovs_key_ct_labels mask; |
52 | }; |
53 | |
54 | enum ovs_ct_nat { |
55 | OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ |
56 | OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ |
57 | OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ |
58 | }; |
59 | |
60 | /* Conntrack action context for execution. */ |
61 | struct ovs_conntrack_info { |
62 | struct nf_conntrack_helper *helper; |
63 | struct nf_conntrack_zone zone; |
64 | struct nf_conn *ct; |
65 | u8 commit : 1; |
66 | u8 nat : 3; /* enum ovs_ct_nat */ |
67 | u8 force : 1; |
68 | u8 have_eventmask : 1; |
69 | u16 family; |
70 | u32 eventmask; /* Mask of 1 << IPCT_*. */ |
71 | struct md_mark mark; |
72 | struct md_labels labels; |
73 | char timeout[CTNL_TIMEOUT_NAME_MAX]; |
74 | struct nf_ct_timeout *nf_ct_timeout; |
75 | #if IS_ENABLED(CONFIG_NF_NAT) |
76 | struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */ |
77 | #endif |
78 | }; |
79 | |
80 | #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) |
81 | #define OVS_CT_LIMIT_UNLIMITED 0 |
82 | #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED |
83 | #define CT_LIMIT_HASH_BUCKETS 512 |
84 | static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled); |
85 | |
86 | struct ovs_ct_limit { |
87 | /* Elements in ovs_ct_limit_info->limits hash table */ |
88 | struct hlist_node hlist_node; |
89 | struct rcu_head rcu; |
90 | u16 zone; |
91 | u32 limit; |
92 | }; |
93 | |
94 | struct ovs_ct_limit_info { |
95 | u32 default_limit; |
96 | struct hlist_head *limits; |
97 | struct nf_conncount_data *data; |
98 | }; |
99 | |
100 | static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = { |
101 | [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, }, |
102 | }; |
103 | #endif |
104 | |
105 | static bool labels_nonzero(const struct ovs_key_ct_labels *labels); |
106 | |
107 | static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); |
108 | |
109 | static u16 key_to_nfproto(const struct sw_flow_key *key) |
110 | { |
111 | switch (ntohs(key->eth.type)) { |
112 | case ETH_P_IP: |
113 | return NFPROTO_IPV4; |
114 | case ETH_P_IPV6: |
115 | return NFPROTO_IPV6; |
116 | default: |
117 | return NFPROTO_UNSPEC; |
118 | } |
119 | } |
120 | |
121 | /* Map SKB connection state into the values used by flow definition. */ |
122 | static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) |
123 | { |
124 | u8 ct_state = OVS_CS_F_TRACKED; |
125 | |
126 | switch (ctinfo) { |
127 | case IP_CT_ESTABLISHED_REPLY: |
128 | case IP_CT_RELATED_REPLY: |
129 | ct_state |= OVS_CS_F_REPLY_DIR; |
130 | break; |
131 | default: |
132 | break; |
133 | } |
134 | |
135 | switch (ctinfo) { |
136 | case IP_CT_ESTABLISHED: |
137 | case IP_CT_ESTABLISHED_REPLY: |
138 | ct_state |= OVS_CS_F_ESTABLISHED; |
139 | break; |
140 | case IP_CT_RELATED: |
141 | case IP_CT_RELATED_REPLY: |
142 | ct_state |= OVS_CS_F_RELATED; |
143 | break; |
144 | case IP_CT_NEW: |
145 | ct_state |= OVS_CS_F_NEW; |
146 | break; |
147 | default: |
148 | break; |
149 | } |
150 | |
151 | return ct_state; |
152 | } |
153 | |
154 | static u32 ovs_ct_get_mark(const struct nf_conn *ct) |
155 | { |
156 | #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) |
157 | return ct ? READ_ONCE(ct->mark) : 0; |
158 | #else |
159 | return 0; |
160 | #endif |
161 | } |
162 | |
163 | /* Guard against conntrack labels max size shrinking below 128 bits. */ |
164 | #if NF_CT_LABELS_MAX_SIZE < 16 |
165 | #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes |
166 | #endif |
167 | |
168 | static void ovs_ct_get_labels(const struct nf_conn *ct, |
169 | struct ovs_key_ct_labels *labels) |
170 | { |
171 | struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; |
172 | |
173 | if (cl) |
174 | memcpy(labels, cl->bits, OVS_CT_LABELS_LEN); |
175 | else |
176 | memset(labels, 0, OVS_CT_LABELS_LEN); |
177 | } |
178 | |
179 | static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key, |
180 | const struct nf_conntrack_tuple *orig, |
181 | u8 icmp_proto) |
182 | { |
183 | key->ct_orig_proto = orig->dst.protonum; |
184 | if (orig->dst.protonum == icmp_proto) { |
185 | key->ct.orig_tp.src = htons(orig->dst.u.icmp.type); |
186 | key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code); |
187 | } else { |
188 | key->ct.orig_tp.src = orig->src.u.all; |
189 | key->ct.orig_tp.dst = orig->dst.u.all; |
190 | } |
191 | } |
192 | |
193 | static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, |
194 | const struct nf_conntrack_zone *zone, |
195 | const struct nf_conn *ct) |
196 | { |
197 | key->ct_state = state; |
198 | key->ct_zone = zone->id; |
199 | key->ct.mark = ovs_ct_get_mark(ct); |
200 | ovs_ct_get_labels(ct, labels: &key->ct.labels); |
201 | |
202 | if (ct) { |
203 | const struct nf_conntrack_tuple *orig; |
204 | |
205 | /* Use the master if we have one. */ |
206 | if (ct->master) |
207 | ct = ct->master; |
208 | orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; |
209 | |
210 | /* IP version must match with the master connection. */ |
211 | if (key->eth.type == htons(ETH_P_IP) && |
212 | nf_ct_l3num(ct) == NFPROTO_IPV4) { |
213 | key->ipv4.ct_orig.src = orig->src.u3.ip; |
214 | key->ipv4.ct_orig.dst = orig->dst.u3.ip; |
215 | __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP); |
216 | return; |
217 | } else if (key->eth.type == htons(ETH_P_IPV6) && |
218 | !sw_flow_key_is_nd(key) && |
219 | nf_ct_l3num(ct) == NFPROTO_IPV6) { |
220 | key->ipv6.ct_orig.src = orig->src.u3.in6; |
221 | key->ipv6.ct_orig.dst = orig->dst.u3.in6; |
222 | __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP); |
223 | return; |
224 | } |
225 | } |
226 | /* Clear 'ct_orig_proto' to mark the non-existence of conntrack |
227 | * original direction key fields. |
228 | */ |
229 | key->ct_orig_proto = 0; |
230 | } |
231 | |
232 | /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has |
233 | * previously sent the packet to conntrack via the ct action. If |
234 | * 'keep_nat_flags' is true, the existing NAT flags retained, else they are |
235 | * initialized from the connection status. |
236 | */ |
237 | static void ovs_ct_update_key(const struct sk_buff *skb, |
238 | const struct ovs_conntrack_info *info, |
239 | struct sw_flow_key *key, bool post_ct, |
240 | bool keep_nat_flags) |
241 | { |
242 | const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; |
243 | enum ip_conntrack_info ctinfo; |
244 | struct nf_conn *ct; |
245 | u8 state = 0; |
246 | |
247 | ct = nf_ct_get(skb, ctinfo: &ctinfo); |
248 | if (ct) { |
249 | state = ovs_ct_get_state(ctinfo); |
250 | /* All unconfirmed entries are NEW connections. */ |
251 | if (!nf_ct_is_confirmed(ct)) |
252 | state |= OVS_CS_F_NEW; |
253 | /* OVS persists the related flag for the duration of the |
254 | * connection. |
255 | */ |
256 | if (ct->master) |
257 | state |= OVS_CS_F_RELATED; |
258 | if (keep_nat_flags) { |
259 | state |= key->ct_state & OVS_CS_F_NAT_MASK; |
260 | } else { |
261 | if (ct->status & IPS_SRC_NAT) |
262 | state |= OVS_CS_F_SRC_NAT; |
263 | if (ct->status & IPS_DST_NAT) |
264 | state |= OVS_CS_F_DST_NAT; |
265 | } |
266 | zone = nf_ct_zone(ct); |
267 | } else if (post_ct) { |
268 | state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; |
269 | if (info) |
270 | zone = &info->zone; |
271 | } |
272 | __ovs_ct_update_key(key, state, zone, ct); |
273 | } |
274 | |
275 | /* This is called to initialize CT key fields possibly coming in from the local |
276 | * stack. |
277 | */ |
278 | void ovs_ct_fill_key(const struct sk_buff *skb, |
279 | struct sw_flow_key *key, |
280 | bool post_ct) |
281 | { |
282 | ovs_ct_update_key(skb, NULL, key, post_ct, keep_nat_flags: false); |
283 | } |
284 | |
285 | int ovs_ct_put_key(const struct sw_flow_key *swkey, |
286 | const struct sw_flow_key *output, struct sk_buff *skb) |
287 | { |
288 | if (nla_put_u32(skb, attrtype: OVS_KEY_ATTR_CT_STATE, value: output->ct_state)) |
289 | return -EMSGSIZE; |
290 | |
291 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && |
292 | nla_put_u16(skb, attrtype: OVS_KEY_ATTR_CT_ZONE, value: output->ct_zone)) |
293 | return -EMSGSIZE; |
294 | |
295 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && |
296 | nla_put_u32(skb, attrtype: OVS_KEY_ATTR_CT_MARK, value: output->ct.mark)) |
297 | return -EMSGSIZE; |
298 | |
299 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && |
300 | nla_put(skb, attrtype: OVS_KEY_ATTR_CT_LABELS, attrlen: sizeof(output->ct.labels), |
301 | data: &output->ct.labels)) |
302 | return -EMSGSIZE; |
303 | |
304 | if (swkey->ct_orig_proto) { |
305 | if (swkey->eth.type == htons(ETH_P_IP)) { |
306 | struct ovs_key_ct_tuple_ipv4 orig; |
307 | |
308 | memset(&orig, 0, sizeof(orig)); |
309 | orig.ipv4_src = output->ipv4.ct_orig.src; |
310 | orig.ipv4_dst = output->ipv4.ct_orig.dst; |
311 | orig.src_port = output->ct.orig_tp.src; |
312 | orig.dst_port = output->ct.orig_tp.dst; |
313 | orig.ipv4_proto = output->ct_orig_proto; |
314 | |
315 | if (nla_put(skb, attrtype: OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4, |
316 | attrlen: sizeof(orig), data: &orig)) |
317 | return -EMSGSIZE; |
318 | } else if (swkey->eth.type == htons(ETH_P_IPV6)) { |
319 | struct ovs_key_ct_tuple_ipv6 orig; |
320 | |
321 | memset(&orig, 0, sizeof(orig)); |
322 | memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32, |
323 | sizeof(orig.ipv6_src)); |
324 | memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32, |
325 | sizeof(orig.ipv6_dst)); |
326 | orig.src_port = output->ct.orig_tp.src; |
327 | orig.dst_port = output->ct.orig_tp.dst; |
328 | orig.ipv6_proto = output->ct_orig_proto; |
329 | |
330 | if (nla_put(skb, attrtype: OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6, |
331 | attrlen: sizeof(orig), data: &orig)) |
332 | return -EMSGSIZE; |
333 | } |
334 | } |
335 | |
336 | return 0; |
337 | } |
338 | |
339 | static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key, |
340 | u32 ct_mark, u32 mask) |
341 | { |
342 | #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) |
343 | u32 new_mark; |
344 | |
345 | new_mark = ct_mark | (READ_ONCE(ct->mark) & ~(mask)); |
346 | if (READ_ONCE(ct->mark) != new_mark) { |
347 | WRITE_ONCE(ct->mark, new_mark); |
348 | if (nf_ct_is_confirmed(ct)) |
349 | nf_conntrack_event_cache(event: IPCT_MARK, ct); |
350 | key->ct.mark = new_mark; |
351 | } |
352 | |
353 | return 0; |
354 | #else |
355 | return -ENOTSUPP; |
356 | #endif |
357 | } |
358 | |
359 | static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct) |
360 | { |
361 | struct nf_conn_labels *cl; |
362 | |
363 | cl = nf_ct_labels_find(ct); |
364 | if (!cl) { |
365 | nf_ct_labels_ext_add(ct); |
366 | cl = nf_ct_labels_find(ct); |
367 | } |
368 | |
369 | return cl; |
370 | } |
371 | |
372 | /* Initialize labels for a new, yet to be committed conntrack entry. Note that |
373 | * since the new connection is not yet confirmed, and thus no-one else has |
374 | * access to it's labels, we simply write them over. |
375 | */ |
376 | static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key, |
377 | const struct ovs_key_ct_labels *labels, |
378 | const struct ovs_key_ct_labels *mask) |
379 | { |
380 | struct nf_conn_labels *cl, *master_cl; |
381 | bool have_mask = labels_nonzero(labels: mask); |
382 | |
383 | /* Inherit master's labels to the related connection? */ |
384 | master_cl = ct->master ? nf_ct_labels_find(ct: ct->master) : NULL; |
385 | |
386 | if (!master_cl && !have_mask) |
387 | return 0; /* Nothing to do. */ |
388 | |
389 | cl = ovs_ct_get_conn_labels(ct); |
390 | if (!cl) |
391 | return -ENOSPC; |
392 | |
393 | /* Inherit the master's labels, if any. */ |
394 | if (master_cl) |
395 | *cl = *master_cl; |
396 | |
397 | if (have_mask) { |
398 | u32 *dst = (u32 *)cl->bits; |
399 | int i; |
400 | |
401 | for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) |
402 | dst[i] = (dst[i] & ~mask->ct_labels_32[i]) | |
403 | (labels->ct_labels_32[i] |
404 | & mask->ct_labels_32[i]); |
405 | } |
406 | |
407 | /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the |
408 | * IPCT_LABEL bit is set in the event cache. |
409 | */ |
410 | nf_conntrack_event_cache(event: IPCT_LABEL, ct); |
411 | |
412 | memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); |
413 | |
414 | return 0; |
415 | } |
416 | |
417 | static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key, |
418 | const struct ovs_key_ct_labels *labels, |
419 | const struct ovs_key_ct_labels *mask) |
420 | { |
421 | struct nf_conn_labels *cl; |
422 | int err; |
423 | |
424 | cl = ovs_ct_get_conn_labels(ct); |
425 | if (!cl) |
426 | return -ENOSPC; |
427 | |
428 | err = nf_connlabels_replace(ct, data: labels->ct_labels_32, |
429 | mask: mask->ct_labels_32, |
430 | OVS_CT_LABELS_LEN_32); |
431 | if (err) |
432 | return err; |
433 | |
434 | memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); |
435 | |
436 | return 0; |
437 | } |
438 | |
439 | static int ovs_ct_handle_fragments(struct net *net, struct sw_flow_key *key, |
440 | u16 zone, int family, struct sk_buff *skb) |
441 | { |
442 | struct ovs_skb_cb ovs_cb = *OVS_CB(skb); |
443 | int err; |
444 | |
445 | err = nf_ct_handle_fragments(net, skb, zone, family, proto: &key->ip.proto, mru: &ovs_cb.mru); |
446 | if (err) |
447 | return err; |
448 | |
449 | /* The key extracted from the fragment that completed this datagram |
450 | * likely didn't have an L4 header, so regenerate it. |
451 | */ |
452 | ovs_flow_key_update_l3l4(skb, key); |
453 | key->ip.frag = OVS_FRAG_TYPE_NONE; |
454 | *OVS_CB(skb) = ovs_cb; |
455 | |
456 | return 0; |
457 | } |
458 | |
459 | /* This replicates logic from nf_conntrack_core.c that is not exported. */ |
460 | static enum ip_conntrack_info |
461 | ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) |
462 | { |
463 | const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(hash: h); |
464 | |
465 | if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) |
466 | return IP_CT_ESTABLISHED_REPLY; |
467 | /* Once we've had two way comms, always ESTABLISHED. */ |
468 | if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) |
469 | return IP_CT_ESTABLISHED; |
470 | if (test_bit(IPS_EXPECTED_BIT, &ct->status)) |
471 | return IP_CT_RELATED; |
472 | return IP_CT_NEW; |
473 | } |
474 | |
475 | /* Find an existing connection which this packet belongs to without |
476 | * re-attributing statistics or modifying the connection state. This allows an |
477 | * skb->_nfct lost due to an upcall to be recovered during actions execution. |
478 | * |
479 | * Must be called with rcu_read_lock. |
480 | * |
481 | * On success, populates skb->_nfct and returns the connection. Returns NULL |
482 | * if there is no existing entry. |
483 | */ |
484 | static struct nf_conn * |
485 | ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, |
486 | u8 l3num, struct sk_buff *skb, bool natted) |
487 | { |
488 | struct nf_conntrack_tuple tuple; |
489 | struct nf_conntrack_tuple_hash *h; |
490 | struct nf_conn *ct; |
491 | |
492 | if (!nf_ct_get_tuplepr(skb, nhoff: skb_network_offset(skb), l3num, |
493 | net, tuple: &tuple)) { |
494 | pr_debug("ovs_ct_find_existing: Can't get tuple\n"); |
495 | return NULL; |
496 | } |
497 | |
498 | /* Must invert the tuple if skb has been transformed by NAT. */ |
499 | if (natted) { |
500 | struct nf_conntrack_tuple inverse; |
501 | |
502 | if (!nf_ct_invert_tuple(inverse: &inverse, orig: &tuple)) { |
503 | pr_debug("ovs_ct_find_existing: Inversion failed!\n"); |
504 | return NULL; |
505 | } |
506 | tuple = inverse; |
507 | } |
508 | |
509 | /* look for tuple match */ |
510 | h = nf_conntrack_find_get(net, zone, tuple: &tuple); |
511 | if (!h) |
512 | return NULL; /* Not found. */ |
513 | |
514 | ct = nf_ct_tuplehash_to_ctrack(hash: h); |
515 | |
516 | /* Inverted packet tuple matches the reverse direction conntrack tuple, |
517 | * select the other tuplehash to get the right 'ctinfo' bits for this |
518 | * packet. |
519 | */ |
520 | if (natted) |
521 | h = &ct->tuplehash[!h->tuple.dst.dir]; |
522 | |
523 | nf_ct_set(skb, ct, info: ovs_ct_get_info(h)); |
524 | return ct; |
525 | } |
526 | |
527 | static |
528 | struct nf_conn *ovs_ct_executed(struct net *net, |
529 | const struct sw_flow_key *key, |
530 | const struct ovs_conntrack_info *info, |
531 | struct sk_buff *skb, |
532 | bool *ct_executed) |
533 | { |
534 | struct nf_conn *ct = NULL; |
535 | |
536 | /* If no ct, check if we have evidence that an existing conntrack entry |
537 | * might be found for this skb. This happens when we lose a skb->_nfct |
538 | * due to an upcall, or if the direction is being forced. If the |
539 | * connection was not confirmed, it is not cached and needs to be run |
540 | * through conntrack again. |
541 | */ |
542 | *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) && |
543 | !(key->ct_state & OVS_CS_F_INVALID) && |
544 | (key->ct_zone == info->zone.id); |
545 | |
546 | if (*ct_executed || (!key->ct_state && info->force)) { |
547 | ct = ovs_ct_find_existing(net, zone: &info->zone, l3num: info->family, skb, |
548 | natted: !!(key->ct_state & |
549 | OVS_CS_F_NAT_MASK)); |
550 | } |
551 | |
552 | return ct; |
553 | } |
554 | |
555 | /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ |
556 | static bool skb_nfct_cached(struct net *net, |
557 | const struct sw_flow_key *key, |
558 | const struct ovs_conntrack_info *info, |
559 | struct sk_buff *skb) |
560 | { |
561 | enum ip_conntrack_info ctinfo; |
562 | struct nf_conn *ct; |
563 | bool ct_executed = true; |
564 | |
565 | ct = nf_ct_get(skb, ctinfo: &ctinfo); |
566 | if (!ct) |
567 | ct = ovs_ct_executed(net, key, info, skb, ct_executed: &ct_executed); |
568 | |
569 | if (ct) |
570 | nf_ct_get(skb, ctinfo: &ctinfo); |
571 | else |
572 | return false; |
573 | |
574 | if (!net_eq(net1: net, net2: read_pnet(pnet: &ct->ct_net))) |
575 | return false; |
576 | if (!nf_ct_zone_equal_any(a: info->ct, b: nf_ct_zone(ct))) |
577 | return false; |
578 | if (info->helper) { |
579 | struct nf_conn_help *help; |
580 | |
581 | help = nf_ct_ext_find(ct, id: NF_CT_EXT_HELPER); |
582 | if (help && rcu_access_pointer(help->helper) != info->helper) |
583 | return false; |
584 | } |
585 | if (info->nf_ct_timeout) { |
586 | struct nf_conn_timeout *timeout_ext; |
587 | |
588 | timeout_ext = nf_ct_timeout_find(ct); |
589 | if (!timeout_ext || info->nf_ct_timeout != |
590 | rcu_dereference(timeout_ext->timeout)) |
591 | return false; |
592 | } |
593 | /* Force conntrack entry direction to the current packet? */ |
594 | if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { |
595 | /* Delete the conntrack entry if confirmed, else just release |
596 | * the reference. |
597 | */ |
598 | if (nf_ct_is_confirmed(ct)) |
599 | nf_ct_delete(ct, pid: 0, report: 0); |
600 | |
601 | nf_ct_put(ct); |
602 | nf_ct_set(skb, NULL, info: 0); |
603 | return false; |
604 | } |
605 | |
606 | return ct_executed; |
607 | } |
608 | |
609 | #if IS_ENABLED(CONFIG_NF_NAT) |
610 | static void ovs_nat_update_key(struct sw_flow_key *key, |
611 | const struct sk_buff *skb, |
612 | enum nf_nat_manip_type maniptype) |
613 | { |
614 | if (maniptype == NF_NAT_MANIP_SRC) { |
615 | __be16 src; |
616 | |
617 | key->ct_state |= OVS_CS_F_SRC_NAT; |
618 | if (key->eth.type == htons(ETH_P_IP)) |
619 | key->ipv4.addr.src = ip_hdr(skb)->saddr; |
620 | else if (key->eth.type == htons(ETH_P_IPV6)) |
621 | memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, |
622 | sizeof(key->ipv6.addr.src)); |
623 | else |
624 | return; |
625 | |
626 | if (key->ip.proto == IPPROTO_UDP) |
627 | src = udp_hdr(skb)->source; |
628 | else if (key->ip.proto == IPPROTO_TCP) |
629 | src = tcp_hdr(skb)->source; |
630 | else if (key->ip.proto == IPPROTO_SCTP) |
631 | src = sctp_hdr(skb)->source; |
632 | else |
633 | return; |
634 | |
635 | key->tp.src = src; |
636 | } else { |
637 | __be16 dst; |
638 | |
639 | key->ct_state |= OVS_CS_F_DST_NAT; |
640 | if (key->eth.type == htons(ETH_P_IP)) |
641 | key->ipv4.addr.dst = ip_hdr(skb)->daddr; |
642 | else if (key->eth.type == htons(ETH_P_IPV6)) |
643 | memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, |
644 | sizeof(key->ipv6.addr.dst)); |
645 | else |
646 | return; |
647 | |
648 | if (key->ip.proto == IPPROTO_UDP) |
649 | dst = udp_hdr(skb)->dest; |
650 | else if (key->ip.proto == IPPROTO_TCP) |
651 | dst = tcp_hdr(skb)->dest; |
652 | else if (key->ip.proto == IPPROTO_SCTP) |
653 | dst = sctp_hdr(skb)->dest; |
654 | else |
655 | return; |
656 | |
657 | key->tp.dst = dst; |
658 | } |
659 | } |
660 | |
661 | /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ |
662 | static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, |
663 | const struct ovs_conntrack_info *info, |
664 | struct sk_buff *skb, struct nf_conn *ct, |
665 | enum ip_conntrack_info ctinfo) |
666 | { |
667 | int err, action = 0; |
668 | |
669 | if (!(info->nat & OVS_CT_NAT)) |
670 | return NF_ACCEPT; |
671 | if (info->nat & OVS_CT_SRC_NAT) |
672 | action |= BIT(NF_NAT_MANIP_SRC); |
673 | if (info->nat & OVS_CT_DST_NAT) |
674 | action |= BIT(NF_NAT_MANIP_DST); |
675 | |
676 | err = nf_ct_nat(skb, ct, ctinfo, action: &action, range: &info->range, commit: info->commit); |
677 | |
678 | if (action & BIT(NF_NAT_MANIP_SRC)) |
679 | ovs_nat_update_key(key, skb, maniptype: NF_NAT_MANIP_SRC); |
680 | if (action & BIT(NF_NAT_MANIP_DST)) |
681 | ovs_nat_update_key(key, skb, maniptype: NF_NAT_MANIP_DST); |
682 | |
683 | return err; |
684 | } |
685 | #else /* !CONFIG_NF_NAT */ |
686 | static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, |
687 | const struct ovs_conntrack_info *info, |
688 | struct sk_buff *skb, struct nf_conn *ct, |
689 | enum ip_conntrack_info ctinfo) |
690 | { |
691 | return NF_ACCEPT; |
692 | } |
693 | #endif |
694 | |
695 | /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if |
696 | * not done already. Update key with new CT state after passing the packet |
697 | * through conntrack. |
698 | * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be |
699 | * set to NULL and 0 will be returned. |
700 | */ |
701 | static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, |
702 | const struct ovs_conntrack_info *info, |
703 | struct sk_buff *skb) |
704 | { |
705 | /* If we are recirculating packets to match on conntrack fields and |
706 | * committing with a separate conntrack action, then we don't need to |
707 | * actually run the packet through conntrack twice unless it's for a |
708 | * different zone. |
709 | */ |
710 | bool cached = skb_nfct_cached(net, key, info, skb); |
711 | enum ip_conntrack_info ctinfo; |
712 | struct nf_conn *ct; |
713 | |
714 | if (!cached) { |
715 | struct nf_hook_state state = { |
716 | .hook = NF_INET_PRE_ROUTING, |
717 | .pf = info->family, |
718 | .net = net, |
719 | }; |
720 | struct nf_conn *tmpl = info->ct; |
721 | int err; |
722 | |
723 | /* Associate skb with specified zone. */ |
724 | if (tmpl) { |
725 | ct = nf_ct_get(skb, ctinfo: &ctinfo); |
726 | nf_ct_put(ct); |
727 | nf_conntrack_get(nfct: &tmpl->ct_general); |
728 | nf_ct_set(skb, ct: tmpl, info: IP_CT_NEW); |
729 | } |
730 | |
731 | err = nf_conntrack_in(skb, state: &state); |
732 | if (err != NF_ACCEPT) |
733 | return -ENOENT; |
734 | |
735 | /* Clear CT state NAT flags to mark that we have not yet done |
736 | * NAT after the nf_conntrack_in() call. We can actually clear |
737 | * the whole state, as it will be re-initialized below. |
738 | */ |
739 | key->ct_state = 0; |
740 | |
741 | /* Update the key, but keep the NAT flags. */ |
742 | ovs_ct_update_key(skb, info, key, post_ct: true, keep_nat_flags: true); |
743 | } |
744 | |
745 | ct = nf_ct_get(skb, ctinfo: &ctinfo); |
746 | if (ct) { |
747 | bool add_helper = false; |
748 | |
749 | /* Packets starting a new connection must be NATted before the |
750 | * helper, so that the helper knows about the NAT. We enforce |
751 | * this by delaying both NAT and helper calls for unconfirmed |
752 | * connections until the committing CT action. For later |
753 | * packets NAT and Helper may be called in either order. |
754 | * |
755 | * NAT will be done only if the CT action has NAT, and only |
756 | * once per packet (per zone), as guarded by the NAT bits in |
757 | * the key->ct_state. |
758 | */ |
759 | if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) && |
760 | (nf_ct_is_confirmed(ct) || info->commit) && |
761 | ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { |
762 | return -EINVAL; |
763 | } |
764 | |
765 | /* Userspace may decide to perform a ct lookup without a helper |
766 | * specified followed by a (recirculate and) commit with one, |
767 | * or attach a helper in a later commit. Therefore, for |
768 | * connections which we will commit, we may need to attach |
769 | * the helper here. |
770 | */ |
771 | if (!nf_ct_is_confirmed(ct) && info->commit && |
772 | info->helper && !nfct_help(ct)) { |
773 | int err = __nf_ct_try_assign_helper(ct, tmpl: info->ct, |
774 | GFP_ATOMIC); |
775 | if (err) |
776 | return err; |
777 | add_helper = true; |
778 | |
779 | /* helper installed, add seqadj if NAT is required */ |
780 | if (info->nat && !nfct_seqadj(ct)) { |
781 | if (!nfct_seqadj_ext_add(ct)) |
782 | return -EINVAL; |
783 | } |
784 | } |
785 | |
786 | /* Call the helper only if: |
787 | * - nf_conntrack_in() was executed above ("!cached") or a |
788 | * helper was just attached ("add_helper") for a confirmed |
789 | * connection, or |
790 | * - When committing an unconfirmed connection. |
791 | */ |
792 | if ((nf_ct_is_confirmed(ct) ? !cached || add_helper : |
793 | info->commit) && |
794 | nf_ct_helper(skb, ct, ctinfo, proto: info->family) != NF_ACCEPT) { |
795 | return -EINVAL; |
796 | } |
797 | |
798 | if (nf_ct_protonum(ct) == IPPROTO_TCP && |
799 | nf_ct_is_confirmed(ct) && nf_conntrack_tcp_established(ct)) { |
800 | /* Be liberal for tcp packets so that out-of-window |
801 | * packets are not marked invalid. |
802 | */ |
803 | nf_ct_set_tcp_be_liberal(ct); |
804 | } |
805 | |
806 | nf_conn_act_ct_ext_fill(skb, ct, ctinfo); |
807 | } |
808 | |
809 | return 0; |
810 | } |
811 | |
812 | /* Lookup connection and read fields into key. */ |
813 | static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, |
814 | const struct ovs_conntrack_info *info, |
815 | struct sk_buff *skb) |
816 | { |
817 | struct nf_conn *ct; |
818 | int err; |
819 | |
820 | err = __ovs_ct_lookup(net, key, info, skb); |
821 | if (err) |
822 | return err; |
823 | |
824 | ct = (struct nf_conn *)skb_nfct(skb); |
825 | if (ct) |
826 | nf_ct_deliver_cached_events(ct); |
827 | |
828 | return 0; |
829 | } |
830 | |
831 | static bool labels_nonzero(const struct ovs_key_ct_labels *labels) |
832 | { |
833 | size_t i; |
834 | |
835 | for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) |
836 | if (labels->ct_labels_32[i]) |
837 | return true; |
838 | |
839 | return false; |
840 | } |
841 | |
842 | #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) |
843 | static struct hlist_head *ct_limit_hash_bucket( |
844 | const struct ovs_ct_limit_info *info, u16 zone) |
845 | { |
846 | return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)]; |
847 | } |
848 | |
849 | /* Call with ovs_mutex */ |
850 | static void ct_limit_set(const struct ovs_ct_limit_info *info, |
851 | struct ovs_ct_limit *new_ct_limit) |
852 | { |
853 | struct ovs_ct_limit *ct_limit; |
854 | struct hlist_head *head; |
855 | |
856 | head = ct_limit_hash_bucket(info, zone: new_ct_limit->zone); |
857 | hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { |
858 | if (ct_limit->zone == new_ct_limit->zone) { |
859 | hlist_replace_rcu(old: &ct_limit->hlist_node, |
860 | new: &new_ct_limit->hlist_node); |
861 | kfree_rcu(ct_limit, rcu); |
862 | return; |
863 | } |
864 | } |
865 | |
866 | hlist_add_head_rcu(n: &new_ct_limit->hlist_node, h: head); |
867 | } |
868 | |
869 | /* Call with ovs_mutex */ |
870 | static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone) |
871 | { |
872 | struct ovs_ct_limit *ct_limit; |
873 | struct hlist_head *head; |
874 | struct hlist_node *n; |
875 | |
876 | head = ct_limit_hash_bucket(info, zone); |
877 | hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) { |
878 | if (ct_limit->zone == zone) { |
879 | hlist_del_rcu(n: &ct_limit->hlist_node); |
880 | kfree_rcu(ct_limit, rcu); |
881 | return; |
882 | } |
883 | } |
884 | } |
885 | |
886 | /* Call with RCU read lock */ |
887 | static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone) |
888 | { |
889 | struct ovs_ct_limit *ct_limit; |
890 | struct hlist_head *head; |
891 | |
892 | head = ct_limit_hash_bucket(info, zone); |
893 | hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { |
894 | if (ct_limit->zone == zone) |
895 | return ct_limit->limit; |
896 | } |
897 | |
898 | return info->default_limit; |
899 | } |
900 | |
901 | static int ovs_ct_check_limit(struct net *net, |
902 | const struct ovs_conntrack_info *info, |
903 | const struct nf_conntrack_tuple *tuple) |
904 | { |
905 | struct ovs_net *ovs_net = net_generic(net, id: ovs_net_id); |
906 | const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; |
907 | u32 per_zone_limit, connections; |
908 | u32 conncount_key; |
909 | |
910 | conncount_key = info->zone.id; |
911 | |
912 | per_zone_limit = ct_limit_get(info: ct_limit_info, zone: info->zone.id); |
913 | if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED) |
914 | return 0; |
915 | |
916 | connections = nf_conncount_count(net, data: ct_limit_info->data, |
917 | key: &conncount_key, tuple, zone: &info->zone); |
918 | if (connections > per_zone_limit) |
919 | return -ENOMEM; |
920 | |
921 | return 0; |
922 | } |
923 | #endif |
924 | |
925 | /* Lookup connection and confirm if unconfirmed. */ |
926 | static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, |
927 | const struct ovs_conntrack_info *info, |
928 | struct sk_buff *skb) |
929 | { |
930 | enum ip_conntrack_info ctinfo; |
931 | struct nf_conn *ct; |
932 | int err; |
933 | |
934 | err = __ovs_ct_lookup(net, key, info, skb); |
935 | if (err) |
936 | return err; |
937 | |
938 | /* The connection could be invalid, in which case this is a no-op.*/ |
939 | ct = nf_ct_get(skb, ctinfo: &ctinfo); |
940 | if (!ct) |
941 | return 0; |
942 | |
943 | #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) |
944 | if (static_branch_unlikely(&ovs_ct_limit_enabled)) { |
945 | if (!nf_ct_is_confirmed(ct)) { |
946 | err = ovs_ct_check_limit(net, info, |
947 | tuple: &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple); |
948 | if (err) { |
949 | net_warn_ratelimited("openvswitch: zone: %u " |
950 | "exceeds conntrack limit\n", |
951 | info->zone.id); |
952 | return err; |
953 | } |
954 | } |
955 | } |
956 | #endif |
957 | |
958 | /* Set the conntrack event mask if given. NEW and DELETE events have |
959 | * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener |
960 | * typically would receive many kinds of updates. Setting the event |
961 | * mask allows those events to be filtered. The set event mask will |
962 | * remain in effect for the lifetime of the connection unless changed |
963 | * by a further CT action with both the commit flag and the eventmask |
964 | * option. */ |
965 | if (info->have_eventmask) { |
966 | struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct); |
967 | |
968 | if (cache) |
969 | cache->ctmask = info->eventmask; |
970 | } |
971 | |
972 | /* Apply changes before confirming the connection so that the initial |
973 | * conntrack NEW netlink event carries the values given in the CT |
974 | * action. |
975 | */ |
976 | if (info->mark.mask) { |
977 | err = ovs_ct_set_mark(ct, key, ct_mark: info->mark.value, |
978 | mask: info->mark.mask); |
979 | if (err) |
980 | return err; |
981 | } |
982 | if (!nf_ct_is_confirmed(ct)) { |
983 | err = ovs_ct_init_labels(ct, key, labels: &info->labels.value, |
984 | mask: &info->labels.mask); |
985 | if (err) |
986 | return err; |
987 | |
988 | nf_conn_act_ct_ext_add(skb, ct, ctinfo); |
989 | } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && |
990 | labels_nonzero(labels: &info->labels.mask)) { |
991 | err = ovs_ct_set_labels(ct, key, labels: &info->labels.value, |
992 | mask: &info->labels.mask); |
993 | if (err) |
994 | return err; |
995 | } |
996 | /* This will take care of sending queued events even if the connection |
997 | * is already confirmed. |
998 | */ |
999 | if (nf_conntrack_confirm(skb) != NF_ACCEPT) |
1000 | return -EINVAL; |
1001 | |
1002 | return 0; |
1003 | } |
1004 | |
1005 | /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero |
1006 | * value if 'skb' is freed. |
1007 | */ |
1008 | int ovs_ct_execute(struct net *net, struct sk_buff *skb, |
1009 | struct sw_flow_key *key, |
1010 | const struct ovs_conntrack_info *info) |
1011 | { |
1012 | int nh_ofs; |
1013 | int err; |
1014 | |
1015 | /* The conntrack module expects to be working at L3. */ |
1016 | nh_ofs = skb_network_offset(skb); |
1017 | skb_pull_rcsum(skb, len: nh_ofs); |
1018 | |
1019 | err = nf_ct_skb_network_trim(skb, family: info->family); |
1020 | if (err) { |
1021 | kfree_skb(skb); |
1022 | return err; |
1023 | } |
1024 | |
1025 | if (key->ip.frag != OVS_FRAG_TYPE_NONE) { |
1026 | err = ovs_ct_handle_fragments(net, key, zone: info->zone.id, |
1027 | family: info->family, skb); |
1028 | if (err) |
1029 | return err; |
1030 | } |
1031 | |
1032 | if (info->commit) |
1033 | err = ovs_ct_commit(net, key, info, skb); |
1034 | else |
1035 | err = ovs_ct_lookup(net, key, info, skb); |
1036 | |
1037 | skb_push_rcsum(skb, len: nh_ofs); |
1038 | if (err) |
1039 | ovs_kfree_skb_reason(skb, reason: OVS_DROP_CONNTRACK); |
1040 | return err; |
1041 | } |
1042 | |
1043 | int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key) |
1044 | { |
1045 | enum ip_conntrack_info ctinfo; |
1046 | struct nf_conn *ct; |
1047 | |
1048 | ct = nf_ct_get(skb, ctinfo: &ctinfo); |
1049 | |
1050 | nf_ct_put(ct); |
1051 | nf_ct_set(skb, NULL, info: IP_CT_UNTRACKED); |
1052 | |
1053 | if (key) |
1054 | ovs_ct_fill_key(skb, key, post_ct: false); |
1055 | |
1056 | return 0; |
1057 | } |
1058 | |
1059 | #if IS_ENABLED(CONFIG_NF_NAT) |
1060 | static int parse_nat(const struct nlattr *attr, |
1061 | struct ovs_conntrack_info *info, bool log) |
1062 | { |
1063 | struct nlattr *a; |
1064 | int rem; |
1065 | bool have_ip_max = false; |
1066 | bool have_proto_max = false; |
1067 | bool ip_vers = (info->family == NFPROTO_IPV6); |
1068 | |
1069 | nla_for_each_nested(a, attr, rem) { |
1070 | static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { |
1071 | [OVS_NAT_ATTR_SRC] = {0, 0}, |
1072 | [OVS_NAT_ATTR_DST] = {0, 0}, |
1073 | [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), |
1074 | sizeof(struct in6_addr)}, |
1075 | [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), |
1076 | sizeof(struct in6_addr)}, |
1077 | [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, |
1078 | [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, |
1079 | [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, |
1080 | [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, |
1081 | [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, |
1082 | }; |
1083 | int type = nla_type(nla: a); |
1084 | |
1085 | if (type > OVS_NAT_ATTR_MAX) { |
1086 | OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)", |
1087 | type, OVS_NAT_ATTR_MAX); |
1088 | return -EINVAL; |
1089 | } |
1090 | |
1091 | if (nla_len(nla: a) != ovs_nat_attr_lens[type][ip_vers]) { |
1092 | OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)", |
1093 | type, nla_len(a), |
1094 | ovs_nat_attr_lens[type][ip_vers]); |
1095 | return -EINVAL; |
1096 | } |
1097 | |
1098 | switch (type) { |
1099 | case OVS_NAT_ATTR_SRC: |
1100 | case OVS_NAT_ATTR_DST: |
1101 | if (info->nat) { |
1102 | OVS_NLERR(log, "Only one type of NAT may be specified"); |
1103 | return -ERANGE; |
1104 | } |
1105 | info->nat |= OVS_CT_NAT; |
1106 | info->nat |= ((type == OVS_NAT_ATTR_SRC) |
1107 | ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); |
1108 | break; |
1109 | |
1110 | case OVS_NAT_ATTR_IP_MIN: |
1111 | nla_memcpy(dest: &info->range.min_addr, src: a, |
1112 | count: sizeof(info->range.min_addr)); |
1113 | info->range.flags |= NF_NAT_RANGE_MAP_IPS; |
1114 | break; |
1115 | |
1116 | case OVS_NAT_ATTR_IP_MAX: |
1117 | have_ip_max = true; |
1118 | nla_memcpy(dest: &info->range.max_addr, src: a, |
1119 | count: sizeof(info->range.max_addr)); |
1120 | info->range.flags |= NF_NAT_RANGE_MAP_IPS; |
1121 | break; |
1122 | |
1123 | case OVS_NAT_ATTR_PROTO_MIN: |
1124 | info->range.min_proto.all = htons(nla_get_u16(a)); |
1125 | info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; |
1126 | break; |
1127 | |
1128 | case OVS_NAT_ATTR_PROTO_MAX: |
1129 | have_proto_max = true; |
1130 | info->range.max_proto.all = htons(nla_get_u16(a)); |
1131 | info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; |
1132 | break; |
1133 | |
1134 | case OVS_NAT_ATTR_PERSISTENT: |
1135 | info->range.flags |= NF_NAT_RANGE_PERSISTENT; |
1136 | break; |
1137 | |
1138 | case OVS_NAT_ATTR_PROTO_HASH: |
1139 | info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; |
1140 | break; |
1141 | |
1142 | case OVS_NAT_ATTR_PROTO_RANDOM: |
1143 | info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; |
1144 | break; |
1145 | |
1146 | default: |
1147 | OVS_NLERR(log, "Unknown nat attribute (%d)", type); |
1148 | return -EINVAL; |
1149 | } |
1150 | } |
1151 | |
1152 | if (rem > 0) { |
1153 | OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem); |
1154 | return -EINVAL; |
1155 | } |
1156 | if (!info->nat) { |
1157 | /* Do not allow flags if no type is given. */ |
1158 | if (info->range.flags) { |
1159 | OVS_NLERR(log, |
1160 | "NAT flags may be given only when NAT range (SRC or DST) is also specified." |
1161 | ); |
1162 | return -EINVAL; |
1163 | } |
1164 | info->nat = OVS_CT_NAT; /* NAT existing connections. */ |
1165 | } else if (!info->commit) { |
1166 | OVS_NLERR(log, |
1167 | "NAT attributes may be specified only when CT COMMIT flag is also specified." |
1168 | ); |
1169 | return -EINVAL; |
1170 | } |
1171 | /* Allow missing IP_MAX. */ |
1172 | if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { |
1173 | memcpy(&info->range.max_addr, &info->range.min_addr, |
1174 | sizeof(info->range.max_addr)); |
1175 | } |
1176 | /* Allow missing PROTO_MAX. */ |
1177 | if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && |
1178 | !have_proto_max) { |
1179 | info->range.max_proto.all = info->range.min_proto.all; |
1180 | } |
1181 | return 0; |
1182 | } |
1183 | #endif |
1184 | |
1185 | static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { |
1186 | [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, |
1187 | [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 }, |
1188 | [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), |
1189 | .maxlen = sizeof(u16) }, |
1190 | [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), |
1191 | .maxlen = sizeof(struct md_mark) }, |
1192 | [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), |
1193 | .maxlen = sizeof(struct md_labels) }, |
1194 | [OVS_CT_ATTR_HELPER] = { .minlen = 1, |
1195 | .maxlen = NF_CT_HELPER_NAME_LEN }, |
1196 | #if IS_ENABLED(CONFIG_NF_NAT) |
1197 | /* NAT length is checked when parsing the nested attributes. */ |
1198 | [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, |
1199 | #endif |
1200 | [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32), |
1201 | .maxlen = sizeof(u32) }, |
1202 | [OVS_CT_ATTR_TIMEOUT] = { .minlen = 1, |
1203 | .maxlen = CTNL_TIMEOUT_NAME_MAX }, |
1204 | }; |
1205 | |
1206 | static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, |
1207 | const char **helper, bool log) |
1208 | { |
1209 | struct nlattr *a; |
1210 | int rem; |
1211 | |
1212 | nla_for_each_nested(a, attr, rem) { |
1213 | int type = nla_type(nla: a); |
1214 | int maxlen; |
1215 | int minlen; |
1216 | |
1217 | if (type > OVS_CT_ATTR_MAX) { |
1218 | OVS_NLERR(log, |
1219 | "Unknown conntrack attr (type=%d, max=%d)", |
1220 | type, OVS_CT_ATTR_MAX); |
1221 | return -EINVAL; |
1222 | } |
1223 | |
1224 | maxlen = ovs_ct_attr_lens[type].maxlen; |
1225 | minlen = ovs_ct_attr_lens[type].minlen; |
1226 | if (nla_len(nla: a) < minlen || nla_len(nla: a) > maxlen) { |
1227 | OVS_NLERR(log, |
1228 | "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", |
1229 | type, nla_len(a), maxlen); |
1230 | return -EINVAL; |
1231 | } |
1232 | |
1233 | switch (type) { |
1234 | case OVS_CT_ATTR_FORCE_COMMIT: |
1235 | info->force = true; |
1236 | fallthrough; |
1237 | case OVS_CT_ATTR_COMMIT: |
1238 | info->commit = true; |
1239 | break; |
1240 | #ifdef CONFIG_NF_CONNTRACK_ZONES |
1241 | case OVS_CT_ATTR_ZONE: |
1242 | info->zone.id = nla_get_u16(nla: a); |
1243 | break; |
1244 | #endif |
1245 | #ifdef CONFIG_NF_CONNTRACK_MARK |
1246 | case OVS_CT_ATTR_MARK: { |
1247 | struct md_mark *mark = nla_data(nla: a); |
1248 | |
1249 | if (!mark->mask) { |
1250 | OVS_NLERR(log, "ct_mark mask cannot be 0"); |
1251 | return -EINVAL; |
1252 | } |
1253 | info->mark = *mark; |
1254 | break; |
1255 | } |
1256 | #endif |
1257 | #ifdef CONFIG_NF_CONNTRACK_LABELS |
1258 | case OVS_CT_ATTR_LABELS: { |
1259 | struct md_labels *labels = nla_data(nla: a); |
1260 | |
1261 | if (!labels_nonzero(labels: &labels->mask)) { |
1262 | OVS_NLERR(log, "ct_labels mask cannot be 0"); |
1263 | return -EINVAL; |
1264 | } |
1265 | info->labels = *labels; |
1266 | break; |
1267 | } |
1268 | #endif |
1269 | case OVS_CT_ATTR_HELPER: |
1270 | *helper = nla_data(nla: a); |
1271 | if (!string_is_terminated(s: *helper, len: nla_len(nla: a))) { |
1272 | OVS_NLERR(log, "Invalid conntrack helper"); |
1273 | return -EINVAL; |
1274 | } |
1275 | break; |
1276 | #if IS_ENABLED(CONFIG_NF_NAT) |
1277 | case OVS_CT_ATTR_NAT: { |
1278 | int err = parse_nat(attr: a, info, log); |
1279 | |
1280 | if (err) |
1281 | return err; |
1282 | break; |
1283 | } |
1284 | #endif |
1285 | case OVS_CT_ATTR_EVENTMASK: |
1286 | info->have_eventmask = true; |
1287 | info->eventmask = nla_get_u32(nla: a); |
1288 | break; |
1289 | #ifdef CONFIG_NF_CONNTRACK_TIMEOUT |
1290 | case OVS_CT_ATTR_TIMEOUT: |
1291 | memcpy(info->timeout, nla_data(a), nla_len(a)); |
1292 | if (!string_is_terminated(s: info->timeout, len: nla_len(nla: a))) { |
1293 | OVS_NLERR(log, "Invalid conntrack timeout"); |
1294 | return -EINVAL; |
1295 | } |
1296 | break; |
1297 | #endif |
1298 | |
1299 | default: |
1300 | OVS_NLERR(log, "Unknown conntrack attr (%d)", |
1301 | type); |
1302 | return -EINVAL; |
1303 | } |
1304 | } |
1305 | |
1306 | #ifdef CONFIG_NF_CONNTRACK_MARK |
1307 | if (!info->commit && info->mark.mask) { |
1308 | OVS_NLERR(log, |
1309 | "Setting conntrack mark requires 'commit' flag."); |
1310 | return -EINVAL; |
1311 | } |
1312 | #endif |
1313 | #ifdef CONFIG_NF_CONNTRACK_LABELS |
1314 | if (!info->commit && labels_nonzero(labels: &info->labels.mask)) { |
1315 | OVS_NLERR(log, |
1316 | "Setting conntrack labels requires 'commit' flag."); |
1317 | return -EINVAL; |
1318 | } |
1319 | #endif |
1320 | if (rem > 0) { |
1321 | OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); |
1322 | return -EINVAL; |
1323 | } |
1324 | |
1325 | return 0; |
1326 | } |
1327 | |
1328 | bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) |
1329 | { |
1330 | if (attr == OVS_KEY_ATTR_CT_STATE) |
1331 | return true; |
1332 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && |
1333 | attr == OVS_KEY_ATTR_CT_ZONE) |
1334 | return true; |
1335 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && |
1336 | attr == OVS_KEY_ATTR_CT_MARK) |
1337 | return true; |
1338 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && |
1339 | attr == OVS_KEY_ATTR_CT_LABELS) { |
1340 | struct ovs_net *ovs_net = net_generic(net, id: ovs_net_id); |
1341 | |
1342 | return ovs_net->xt_label; |
1343 | } |
1344 | |
1345 | return false; |
1346 | } |
1347 | |
1348 | int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, |
1349 | const struct sw_flow_key *key, |
1350 | struct sw_flow_actions **sfa, bool log) |
1351 | { |
1352 | struct ovs_conntrack_info ct_info; |
1353 | const char *helper = NULL; |
1354 | u16 family; |
1355 | int err; |
1356 | |
1357 | family = key_to_nfproto(key); |
1358 | if (family == NFPROTO_UNSPEC) { |
1359 | OVS_NLERR(log, "ct family unspecified"); |
1360 | return -EINVAL; |
1361 | } |
1362 | |
1363 | memset(&ct_info, 0, sizeof(ct_info)); |
1364 | ct_info.family = family; |
1365 | |
1366 | nf_ct_zone_init(zone: &ct_info.zone, NF_CT_DEFAULT_ZONE_ID, |
1367 | NF_CT_DEFAULT_ZONE_DIR, flags: 0); |
1368 | |
1369 | err = parse_ct(attr, info: &ct_info, helper: &helper, log); |
1370 | if (err) |
1371 | return err; |
1372 | |
1373 | /* Set up template for tracking connections in specific zones. */ |
1374 | ct_info.ct = nf_ct_tmpl_alloc(net, zone: &ct_info.zone, GFP_KERNEL); |
1375 | if (!ct_info.ct) { |
1376 | OVS_NLERR(log, "Failed to allocate conntrack template"); |
1377 | return -ENOMEM; |
1378 | } |
1379 | |
1380 | if (ct_info.timeout[0]) { |
1381 | if (nf_ct_set_timeout(net, ct: ct_info.ct, l3num: family, l4num: key->ip.proto, |
1382 | timeout_name: ct_info.timeout)) |
1383 | OVS_NLERR(log, |
1384 | "Failed to associated timeout policy '%s'", |
1385 | ct_info.timeout); |
1386 | else |
1387 | ct_info.nf_ct_timeout = rcu_dereference( |
1388 | nf_ct_timeout_find(ct_info.ct)->timeout); |
1389 | |
1390 | } |
1391 | |
1392 | if (helper) { |
1393 | err = nf_ct_add_helper(ct: ct_info.ct, name: helper, family: ct_info.family, |
1394 | proto: key->ip.proto, nat: ct_info.nat, hp: &ct_info.helper); |
1395 | if (err) { |
1396 | OVS_NLERR(log, "Failed to add %s helper %d", helper, err); |
1397 | goto err_free_ct; |
1398 | } |
1399 | } |
1400 | |
1401 | err = ovs_nla_add_action(sfa, attrtype: OVS_ACTION_ATTR_CT, data: &ct_info, |
1402 | len: sizeof(ct_info), log); |
1403 | if (err) |
1404 | goto err_free_ct; |
1405 | |
1406 | if (ct_info.commit) |
1407 | __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); |
1408 | return 0; |
1409 | err_free_ct: |
1410 | __ovs_ct_free_action(ct_info: &ct_info); |
1411 | return err; |
1412 | } |
1413 | |
1414 | #if IS_ENABLED(CONFIG_NF_NAT) |
1415 | static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, |
1416 | struct sk_buff *skb) |
1417 | { |
1418 | struct nlattr *start; |
1419 | |
1420 | start = nla_nest_start_noflag(skb, attrtype: OVS_CT_ATTR_NAT); |
1421 | if (!start) |
1422 | return false; |
1423 | |
1424 | if (info->nat & OVS_CT_SRC_NAT) { |
1425 | if (nla_put_flag(skb, attrtype: OVS_NAT_ATTR_SRC)) |
1426 | return false; |
1427 | } else if (info->nat & OVS_CT_DST_NAT) { |
1428 | if (nla_put_flag(skb, attrtype: OVS_NAT_ATTR_DST)) |
1429 | return false; |
1430 | } else { |
1431 | goto out; |
1432 | } |
1433 | |
1434 | if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { |
1435 | if (IS_ENABLED(CONFIG_NF_NAT) && |
1436 | info->family == NFPROTO_IPV4) { |
1437 | if (nla_put_in_addr(skb, attrtype: OVS_NAT_ATTR_IP_MIN, |
1438 | addr: info->range.min_addr.ip) || |
1439 | (info->range.max_addr.ip |
1440 | != info->range.min_addr.ip && |
1441 | (nla_put_in_addr(skb, attrtype: OVS_NAT_ATTR_IP_MAX, |
1442 | addr: info->range.max_addr.ip)))) |
1443 | return false; |
1444 | } else if (IS_ENABLED(CONFIG_IPV6) && |
1445 | info->family == NFPROTO_IPV6) { |
1446 | if (nla_put_in6_addr(skb, attrtype: OVS_NAT_ATTR_IP_MIN, |
1447 | addr: &info->range.min_addr.in6) || |
1448 | (memcmp(p: &info->range.max_addr.in6, |
1449 | q: &info->range.min_addr.in6, |
1450 | size: sizeof(info->range.max_addr.in6)) && |
1451 | (nla_put_in6_addr(skb, attrtype: OVS_NAT_ATTR_IP_MAX, |
1452 | addr: &info->range.max_addr.in6)))) |
1453 | return false; |
1454 | } else { |
1455 | return false; |
1456 | } |
1457 | } |
1458 | if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && |
1459 | (nla_put_u16(skb, attrtype: OVS_NAT_ATTR_PROTO_MIN, |
1460 | ntohs(info->range.min_proto.all)) || |
1461 | (info->range.max_proto.all != info->range.min_proto.all && |
1462 | nla_put_u16(skb, attrtype: OVS_NAT_ATTR_PROTO_MAX, |
1463 | ntohs(info->range.max_proto.all))))) |
1464 | return false; |
1465 | |
1466 | if (info->range.flags & NF_NAT_RANGE_PERSISTENT && |
1467 | nla_put_flag(skb, attrtype: OVS_NAT_ATTR_PERSISTENT)) |
1468 | return false; |
1469 | if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && |
1470 | nla_put_flag(skb, attrtype: OVS_NAT_ATTR_PROTO_HASH)) |
1471 | return false; |
1472 | if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && |
1473 | nla_put_flag(skb, attrtype: OVS_NAT_ATTR_PROTO_RANDOM)) |
1474 | return false; |
1475 | out: |
1476 | nla_nest_end(skb, start); |
1477 | |
1478 | return true; |
1479 | } |
1480 | #endif |
1481 | |
1482 | int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, |
1483 | struct sk_buff *skb) |
1484 | { |
1485 | struct nlattr *start; |
1486 | |
1487 | start = nla_nest_start_noflag(skb, attrtype: OVS_ACTION_ATTR_CT); |
1488 | if (!start) |
1489 | return -EMSGSIZE; |
1490 | |
1491 | if (ct_info->commit && nla_put_flag(skb, attrtype: ct_info->force |
1492 | ? OVS_CT_ATTR_FORCE_COMMIT |
1493 | : OVS_CT_ATTR_COMMIT)) |
1494 | return -EMSGSIZE; |
1495 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && |
1496 | nla_put_u16(skb, attrtype: OVS_CT_ATTR_ZONE, value: ct_info->zone.id)) |
1497 | return -EMSGSIZE; |
1498 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && |
1499 | nla_put(skb, attrtype: OVS_CT_ATTR_MARK, attrlen: sizeof(ct_info->mark), |
1500 | data: &ct_info->mark)) |
1501 | return -EMSGSIZE; |
1502 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && |
1503 | labels_nonzero(labels: &ct_info->labels.mask) && |
1504 | nla_put(skb, attrtype: OVS_CT_ATTR_LABELS, attrlen: sizeof(ct_info->labels), |
1505 | data: &ct_info->labels)) |
1506 | return -EMSGSIZE; |
1507 | if (ct_info->helper) { |
1508 | if (nla_put_string(skb, attrtype: OVS_CT_ATTR_HELPER, |
1509 | str: ct_info->helper->name)) |
1510 | return -EMSGSIZE; |
1511 | } |
1512 | if (ct_info->have_eventmask && |
1513 | nla_put_u32(skb, attrtype: OVS_CT_ATTR_EVENTMASK, value: ct_info->eventmask)) |
1514 | return -EMSGSIZE; |
1515 | if (ct_info->timeout[0]) { |
1516 | if (nla_put_string(skb, attrtype: OVS_CT_ATTR_TIMEOUT, str: ct_info->timeout)) |
1517 | return -EMSGSIZE; |
1518 | } |
1519 | |
1520 | #if IS_ENABLED(CONFIG_NF_NAT) |
1521 | if (ct_info->nat && !ovs_ct_nat_to_attr(info: ct_info, skb)) |
1522 | return -EMSGSIZE; |
1523 | #endif |
1524 | nla_nest_end(skb, start); |
1525 | |
1526 | return 0; |
1527 | } |
1528 | |
1529 | void ovs_ct_free_action(const struct nlattr *a) |
1530 | { |
1531 | struct ovs_conntrack_info *ct_info = nla_data(nla: a); |
1532 | |
1533 | __ovs_ct_free_action(ct_info); |
1534 | } |
1535 | |
1536 | static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) |
1537 | { |
1538 | if (ct_info->helper) { |
1539 | #if IS_ENABLED(CONFIG_NF_NAT) |
1540 | if (ct_info->nat) |
1541 | nf_nat_helper_put(helper: ct_info->helper); |
1542 | #endif |
1543 | nf_conntrack_helper_put(helper: ct_info->helper); |
1544 | } |
1545 | if (ct_info->ct) { |
1546 | if (ct_info->timeout[0]) |
1547 | nf_ct_destroy_timeout(ct: ct_info->ct); |
1548 | nf_ct_tmpl_free(tmpl: ct_info->ct); |
1549 | } |
1550 | } |
1551 | |
1552 | #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) |
1553 | static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net) |
1554 | { |
1555 | int i, err; |
1556 | |
1557 | ovs_net->ct_limit_info = kmalloc(size: sizeof(*ovs_net->ct_limit_info), |
1558 | GFP_KERNEL); |
1559 | if (!ovs_net->ct_limit_info) |
1560 | return -ENOMEM; |
1561 | |
1562 | ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT; |
1563 | ovs_net->ct_limit_info->limits = |
1564 | kmalloc_array(CT_LIMIT_HASH_BUCKETS, size: sizeof(struct hlist_head), |
1565 | GFP_KERNEL); |
1566 | if (!ovs_net->ct_limit_info->limits) { |
1567 | kfree(objp: ovs_net->ct_limit_info); |
1568 | return -ENOMEM; |
1569 | } |
1570 | |
1571 | for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++) |
1572 | INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]); |
1573 | |
1574 | ovs_net->ct_limit_info->data = |
1575 | nf_conncount_init(net, family: NFPROTO_INET, keylen: sizeof(u32)); |
1576 | |
1577 | if (IS_ERR(ptr: ovs_net->ct_limit_info->data)) { |
1578 | err = PTR_ERR(ptr: ovs_net->ct_limit_info->data); |
1579 | kfree(objp: ovs_net->ct_limit_info->limits); |
1580 | kfree(objp: ovs_net->ct_limit_info); |
1581 | pr_err("openvswitch: failed to init nf_conncount %d\n", err); |
1582 | return err; |
1583 | } |
1584 | return 0; |
1585 | } |
1586 | |
1587 | static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net) |
1588 | { |
1589 | const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info; |
1590 | int i; |
1591 | |
1592 | nf_conncount_destroy(net, family: NFPROTO_INET, data: info->data); |
1593 | for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { |
1594 | struct hlist_head *head = &info->limits[i]; |
1595 | struct ovs_ct_limit *ct_limit; |
1596 | |
1597 | hlist_for_each_entry_rcu(ct_limit, head, hlist_node, |
1598 | lockdep_ovsl_is_held()) |
1599 | kfree_rcu(ct_limit, rcu); |
1600 | } |
1601 | kfree(objp: info->limits); |
1602 | kfree(objp: info); |
1603 | } |
1604 | |
1605 | static struct sk_buff * |
1606 | ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd, |
1607 | struct ovs_header **ovs_reply_header) |
1608 | { |
1609 | struct ovs_header *ovs_header = genl_info_userhdr(info); |
1610 | struct sk_buff *skb; |
1611 | |
1612 | skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); |
1613 | if (!skb) |
1614 | return ERR_PTR(error: -ENOMEM); |
1615 | |
1616 | *ovs_reply_header = genlmsg_put(skb, portid: info->snd_portid, |
1617 | seq: info->snd_seq, |
1618 | family: &dp_ct_limit_genl_family, flags: 0, cmd); |
1619 | |
1620 | if (!*ovs_reply_header) { |
1621 | nlmsg_free(skb); |
1622 | return ERR_PTR(error: -EMSGSIZE); |
1623 | } |
1624 | (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex; |
1625 | |
1626 | return skb; |
1627 | } |
1628 | |
1629 | static bool check_zone_id(int zone_id, u16 *pzone) |
1630 | { |
1631 | if (zone_id >= 0 && zone_id <= 65535) { |
1632 | *pzone = (u16)zone_id; |
1633 | return true; |
1634 | } |
1635 | return false; |
1636 | } |
1637 | |
1638 | static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit, |
1639 | struct ovs_ct_limit_info *info) |
1640 | { |
1641 | struct ovs_zone_limit *zone_limit; |
1642 | int rem; |
1643 | u16 zone; |
1644 | |
1645 | rem = NLA_ALIGN(nla_len(nla_zone_limit)); |
1646 | zone_limit = (struct ovs_zone_limit *)nla_data(nla: nla_zone_limit); |
1647 | |
1648 | while (rem >= sizeof(*zone_limit)) { |
1649 | if (unlikely(zone_limit->zone_id == |
1650 | OVS_ZONE_LIMIT_DEFAULT_ZONE)) { |
1651 | ovs_lock(); |
1652 | info->default_limit = zone_limit->limit; |
1653 | ovs_unlock(); |
1654 | } else if (unlikely(!check_zone_id( |
1655 | zone_limit->zone_id, &zone))) { |
1656 | OVS_NLERR(true, "zone id is out of range"); |
1657 | } else { |
1658 | struct ovs_ct_limit *ct_limit; |
1659 | |
1660 | ct_limit = kmalloc(size: sizeof(*ct_limit), |
1661 | GFP_KERNEL_ACCOUNT); |
1662 | if (!ct_limit) |
1663 | return -ENOMEM; |
1664 | |
1665 | ct_limit->zone = zone; |
1666 | ct_limit->limit = zone_limit->limit; |
1667 | |
1668 | ovs_lock(); |
1669 | ct_limit_set(info, new_ct_limit: ct_limit); |
1670 | ovs_unlock(); |
1671 | } |
1672 | rem -= NLA_ALIGN(sizeof(*zone_limit)); |
1673 | zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + |
1674 | NLA_ALIGN(sizeof(*zone_limit))); |
1675 | } |
1676 | |
1677 | if (rem) |
1678 | OVS_NLERR(true, "set zone limit has %d unknown bytes", rem); |
1679 | |
1680 | return 0; |
1681 | } |
1682 | |
1683 | static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit, |
1684 | struct ovs_ct_limit_info *info) |
1685 | { |
1686 | struct ovs_zone_limit *zone_limit; |
1687 | int rem; |
1688 | u16 zone; |
1689 | |
1690 | rem = NLA_ALIGN(nla_len(nla_zone_limit)); |
1691 | zone_limit = (struct ovs_zone_limit *)nla_data(nla: nla_zone_limit); |
1692 | |
1693 | while (rem >= sizeof(*zone_limit)) { |
1694 | if (unlikely(zone_limit->zone_id == |
1695 | OVS_ZONE_LIMIT_DEFAULT_ZONE)) { |
1696 | ovs_lock(); |
1697 | info->default_limit = OVS_CT_LIMIT_DEFAULT; |
1698 | ovs_unlock(); |
1699 | } else if (unlikely(!check_zone_id( |
1700 | zone_limit->zone_id, &zone))) { |
1701 | OVS_NLERR(true, "zone id is out of range"); |
1702 | } else { |
1703 | ovs_lock(); |
1704 | ct_limit_del(info, zone); |
1705 | ovs_unlock(); |
1706 | } |
1707 | rem -= NLA_ALIGN(sizeof(*zone_limit)); |
1708 | zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + |
1709 | NLA_ALIGN(sizeof(*zone_limit))); |
1710 | } |
1711 | |
1712 | if (rem) |
1713 | OVS_NLERR(true, "del zone limit has %d unknown bytes", rem); |
1714 | |
1715 | return 0; |
1716 | } |
1717 | |
1718 | static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info, |
1719 | struct sk_buff *reply) |
1720 | { |
1721 | struct ovs_zone_limit zone_limit = { |
1722 | .zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE, |
1723 | .limit = info->default_limit, |
1724 | }; |
1725 | |
1726 | return nla_put_nohdr(skb: reply, attrlen: sizeof(zone_limit), data: &zone_limit); |
1727 | } |
1728 | |
1729 | static int __ovs_ct_limit_get_zone_limit(struct net *net, |
1730 | struct nf_conncount_data *data, |
1731 | u16 zone_id, u32 limit, |
1732 | struct sk_buff *reply) |
1733 | { |
1734 | struct nf_conntrack_zone ct_zone; |
1735 | struct ovs_zone_limit zone_limit; |
1736 | u32 conncount_key = zone_id; |
1737 | |
1738 | zone_limit.zone_id = zone_id; |
1739 | zone_limit.limit = limit; |
1740 | nf_ct_zone_init(zone: &ct_zone, id: zone_id, NF_CT_DEFAULT_ZONE_DIR, flags: 0); |
1741 | |
1742 | zone_limit.count = nf_conncount_count(net, data, key: &conncount_key, NULL, |
1743 | zone: &ct_zone); |
1744 | return nla_put_nohdr(skb: reply, attrlen: sizeof(zone_limit), data: &zone_limit); |
1745 | } |
1746 | |
1747 | static int ovs_ct_limit_get_zone_limit(struct net *net, |
1748 | struct nlattr *nla_zone_limit, |
1749 | struct ovs_ct_limit_info *info, |
1750 | struct sk_buff *reply) |
1751 | { |
1752 | struct ovs_zone_limit *zone_limit; |
1753 | int rem, err; |
1754 | u32 limit; |
1755 | u16 zone; |
1756 | |
1757 | rem = NLA_ALIGN(nla_len(nla_zone_limit)); |
1758 | zone_limit = (struct ovs_zone_limit *)nla_data(nla: nla_zone_limit); |
1759 | |
1760 | while (rem >= sizeof(*zone_limit)) { |
1761 | if (unlikely(zone_limit->zone_id == |
1762 | OVS_ZONE_LIMIT_DEFAULT_ZONE)) { |
1763 | err = ovs_ct_limit_get_default_limit(info, reply); |
1764 | if (err) |
1765 | return err; |
1766 | } else if (unlikely(!check_zone_id(zone_limit->zone_id, |
1767 | &zone))) { |
1768 | OVS_NLERR(true, "zone id is out of range"); |
1769 | } else { |
1770 | rcu_read_lock(); |
1771 | limit = ct_limit_get(info, zone); |
1772 | rcu_read_unlock(); |
1773 | |
1774 | err = __ovs_ct_limit_get_zone_limit( |
1775 | net, data: info->data, zone_id: zone, limit, reply); |
1776 | if (err) |
1777 | return err; |
1778 | } |
1779 | rem -= NLA_ALIGN(sizeof(*zone_limit)); |
1780 | zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + |
1781 | NLA_ALIGN(sizeof(*zone_limit))); |
1782 | } |
1783 | |
1784 | if (rem) |
1785 | OVS_NLERR(true, "get zone limit has %d unknown bytes", rem); |
1786 | |
1787 | return 0; |
1788 | } |
1789 | |
1790 | static int ovs_ct_limit_get_all_zone_limit(struct net *net, |
1791 | struct ovs_ct_limit_info *info, |
1792 | struct sk_buff *reply) |
1793 | { |
1794 | struct ovs_ct_limit *ct_limit; |
1795 | struct hlist_head *head; |
1796 | int i, err = 0; |
1797 | |
1798 | err = ovs_ct_limit_get_default_limit(info, reply); |
1799 | if (err) |
1800 | return err; |
1801 | |
1802 | rcu_read_lock(); |
1803 | for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { |
1804 | head = &info->limits[i]; |
1805 | hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { |
1806 | err = __ovs_ct_limit_get_zone_limit(net, data: info->data, |
1807 | zone_id: ct_limit->zone, limit: ct_limit->limit, reply); |
1808 | if (err) |
1809 | goto exit_err; |
1810 | } |
1811 | } |
1812 | |
1813 | exit_err: |
1814 | rcu_read_unlock(); |
1815 | return err; |
1816 | } |
1817 | |
1818 | static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info) |
1819 | { |
1820 | struct nlattr **a = info->attrs; |
1821 | struct sk_buff *reply; |
1822 | struct ovs_header *ovs_reply_header; |
1823 | struct ovs_net *ovs_net = net_generic(net: sock_net(sk: skb->sk), id: ovs_net_id); |
1824 | struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; |
1825 | int err; |
1826 | |
1827 | reply = ovs_ct_limit_cmd_reply_start(info, cmd: OVS_CT_LIMIT_CMD_SET, |
1828 | ovs_reply_header: &ovs_reply_header); |
1829 | if (IS_ERR(ptr: reply)) |
1830 | return PTR_ERR(ptr: reply); |
1831 | |
1832 | if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { |
1833 | err = -EINVAL; |
1834 | goto exit_err; |
1835 | } |
1836 | |
1837 | err = ovs_ct_limit_set_zone_limit(nla_zone_limit: a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], |
1838 | info: ct_limit_info); |
1839 | if (err) |
1840 | goto exit_err; |
1841 | |
1842 | static_branch_enable(&ovs_ct_limit_enabled); |
1843 | |
1844 | genlmsg_end(skb: reply, hdr: ovs_reply_header); |
1845 | return genlmsg_reply(skb: reply, info); |
1846 | |
1847 | exit_err: |
1848 | nlmsg_free(skb: reply); |
1849 | return err; |
1850 | } |
1851 | |
1852 | static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info) |
1853 | { |
1854 | struct nlattr **a = info->attrs; |
1855 | struct sk_buff *reply; |
1856 | struct ovs_header *ovs_reply_header; |
1857 | struct ovs_net *ovs_net = net_generic(net: sock_net(sk: skb->sk), id: ovs_net_id); |
1858 | struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; |
1859 | int err; |
1860 | |
1861 | reply = ovs_ct_limit_cmd_reply_start(info, cmd: OVS_CT_LIMIT_CMD_DEL, |
1862 | ovs_reply_header: &ovs_reply_header); |
1863 | if (IS_ERR(ptr: reply)) |
1864 | return PTR_ERR(ptr: reply); |
1865 | |
1866 | if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { |
1867 | err = -EINVAL; |
1868 | goto exit_err; |
1869 | } |
1870 | |
1871 | err = ovs_ct_limit_del_zone_limit(nla_zone_limit: a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], |
1872 | info: ct_limit_info); |
1873 | if (err) |
1874 | goto exit_err; |
1875 | |
1876 | genlmsg_end(skb: reply, hdr: ovs_reply_header); |
1877 | return genlmsg_reply(skb: reply, info); |
1878 | |
1879 | exit_err: |
1880 | nlmsg_free(skb: reply); |
1881 | return err; |
1882 | } |
1883 | |
1884 | static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info) |
1885 | { |
1886 | struct nlattr **a = info->attrs; |
1887 | struct nlattr *nla_reply; |
1888 | struct sk_buff *reply; |
1889 | struct ovs_header *ovs_reply_header; |
1890 | struct net *net = sock_net(sk: skb->sk); |
1891 | struct ovs_net *ovs_net = net_generic(net, id: ovs_net_id); |
1892 | struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; |
1893 | int err; |
1894 | |
1895 | reply = ovs_ct_limit_cmd_reply_start(info, cmd: OVS_CT_LIMIT_CMD_GET, |
1896 | ovs_reply_header: &ovs_reply_header); |
1897 | if (IS_ERR(ptr: reply)) |
1898 | return PTR_ERR(ptr: reply); |
1899 | |
1900 | nla_reply = nla_nest_start_noflag(skb: reply, attrtype: OVS_CT_LIMIT_ATTR_ZONE_LIMIT); |
1901 | if (!nla_reply) { |
1902 | err = -EMSGSIZE; |
1903 | goto exit_err; |
1904 | } |
1905 | |
1906 | if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { |
1907 | err = ovs_ct_limit_get_zone_limit( |
1908 | net, nla_zone_limit: a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], info: ct_limit_info, |
1909 | reply); |
1910 | if (err) |
1911 | goto exit_err; |
1912 | } else { |
1913 | err = ovs_ct_limit_get_all_zone_limit(net, info: ct_limit_info, |
1914 | reply); |
1915 | if (err) |
1916 | goto exit_err; |
1917 | } |
1918 | |
1919 | nla_nest_end(skb: reply, start: nla_reply); |
1920 | genlmsg_end(skb: reply, hdr: ovs_reply_header); |
1921 | return genlmsg_reply(skb: reply, info); |
1922 | |
1923 | exit_err: |
1924 | nlmsg_free(skb: reply); |
1925 | return err; |
1926 | } |
1927 | |
1928 | static const struct genl_small_ops ct_limit_genl_ops[] = { |
1929 | { .cmd = OVS_CT_LIMIT_CMD_SET, |
1930 | .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, |
1931 | .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN |
1932 | * privilege. |
1933 | */ |
1934 | .doit = ovs_ct_limit_cmd_set, |
1935 | }, |
1936 | { .cmd = OVS_CT_LIMIT_CMD_DEL, |
1937 | .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, |
1938 | .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN |
1939 | * privilege. |
1940 | */ |
1941 | .doit = ovs_ct_limit_cmd_del, |
1942 | }, |
1943 | { .cmd = OVS_CT_LIMIT_CMD_GET, |
1944 | .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, |
1945 | .flags = 0, /* OK for unprivileged users. */ |
1946 | .doit = ovs_ct_limit_cmd_get, |
1947 | }, |
1948 | }; |
1949 | |
1950 | static const struct genl_multicast_group ovs_ct_limit_multicast_group = { |
1951 | .name = OVS_CT_LIMIT_MCGROUP, |
1952 | }; |
1953 | |
1954 | struct genl_family dp_ct_limit_genl_family __ro_after_init = { |
1955 | .hdrsize = sizeof(struct ovs_header), |
1956 | .name = OVS_CT_LIMIT_FAMILY, |
1957 | .version = OVS_CT_LIMIT_VERSION, |
1958 | .maxattr = OVS_CT_LIMIT_ATTR_MAX, |
1959 | .policy = ct_limit_policy, |
1960 | .netnsok = true, |
1961 | .parallel_ops = true, |
1962 | .small_ops = ct_limit_genl_ops, |
1963 | .n_small_ops = ARRAY_SIZE(ct_limit_genl_ops), |
1964 | .resv_start_op = OVS_CT_LIMIT_CMD_GET + 1, |
1965 | .mcgrps = &ovs_ct_limit_multicast_group, |
1966 | .n_mcgrps = 1, |
1967 | .module = THIS_MODULE, |
1968 | }; |
1969 | #endif |
1970 | |
1971 | int ovs_ct_init(struct net *net) |
1972 | { |
1973 | unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; |
1974 | struct ovs_net *ovs_net = net_generic(net, id: ovs_net_id); |
1975 | |
1976 | if (nf_connlabels_get(net, bit: n_bits - 1)) { |
1977 | ovs_net->xt_label = false; |
1978 | OVS_NLERR(true, "Failed to set connlabel length"); |
1979 | } else { |
1980 | ovs_net->xt_label = true; |
1981 | } |
1982 | |
1983 | #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) |
1984 | return ovs_ct_limit_init(net, ovs_net); |
1985 | #else |
1986 | return 0; |
1987 | #endif |
1988 | } |
1989 | |
1990 | void ovs_ct_exit(struct net *net) |
1991 | { |
1992 | struct ovs_net *ovs_net = net_generic(net, id: ovs_net_id); |
1993 | |
1994 | #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) |
1995 | ovs_ct_limit_exit(net, ovs_net); |
1996 | #endif |
1997 | |
1998 | if (ovs_net->xt_label) |
1999 | nf_connlabels_put(net); |
2000 | } |
2001 |
Definitions
- ovs_ct_len_tbl
- md_mark
- md_labels
- ovs_ct_nat
- ovs_conntrack_info
- ovs_ct_limit_enabled
- ovs_ct_limit
- ovs_ct_limit_info
- ct_limit_policy
- key_to_nfproto
- ovs_ct_get_state
- ovs_ct_get_mark
- ovs_ct_get_labels
- __ovs_ct_update_key_orig_tp
- __ovs_ct_update_key
- ovs_ct_update_key
- ovs_ct_fill_key
- ovs_ct_put_key
- ovs_ct_set_mark
- ovs_ct_get_conn_labels
- ovs_ct_init_labels
- ovs_ct_set_labels
- ovs_ct_handle_fragments
- ovs_ct_get_info
- ovs_ct_find_existing
- ovs_ct_executed
- skb_nfct_cached
- ovs_nat_update_key
- ovs_ct_nat
- __ovs_ct_lookup
- ovs_ct_lookup
- labels_nonzero
- ct_limit_hash_bucket
- ct_limit_set
- ct_limit_del
- ct_limit_get
- ovs_ct_check_limit
- ovs_ct_commit
- ovs_ct_execute
- ovs_ct_clear
- parse_nat
- ovs_ct_attr_lens
- parse_ct
- ovs_ct_verify
- ovs_ct_copy_action
- ovs_ct_nat_to_attr
- ovs_ct_action_to_attr
- ovs_ct_free_action
- __ovs_ct_free_action
- ovs_ct_limit_init
- ovs_ct_limit_exit
- ovs_ct_limit_cmd_reply_start
- check_zone_id
- ovs_ct_limit_set_zone_limit
- ovs_ct_limit_del_zone_limit
- ovs_ct_limit_get_default_limit
- __ovs_ct_limit_get_zone_limit
- ovs_ct_limit_get_zone_limit
- ovs_ct_limit_get_all_zone_limit
- ovs_ct_limit_cmd_set
- ovs_ct_limit_cmd_del
- ovs_ct_limit_cmd_get
- ct_limit_genl_ops
- ovs_ct_limit_multicast_group
- dp_ct_limit_genl_family
- ovs_ct_init
Improve your Profiling and Debugging skills
Find out more