| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (c) 2015 Nicira, Inc. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/module.h> |
| 7 | #include <linux/openvswitch.h> |
| 8 | #include <linux/tcp.h> |
| 9 | #include <linux/udp.h> |
| 10 | #include <linux/sctp.h> |
| 11 | #include <linux/static_key.h> |
| 12 | #include <linux/string_helpers.h> |
| 13 | #include <net/ip.h> |
| 14 | #include <net/genetlink.h> |
| 15 | #include <net/netfilter/nf_conntrack_core.h> |
| 16 | #include <net/netfilter/nf_conntrack_count.h> |
| 17 | #include <net/netfilter/nf_conntrack_helper.h> |
| 18 | #include <net/netfilter/nf_conntrack_labels.h> |
| 19 | #include <net/netfilter/nf_conntrack_seqadj.h> |
| 20 | #include <net/netfilter/nf_conntrack_timeout.h> |
| 21 | #include <net/netfilter/nf_conntrack_zones.h> |
| 22 | #include <net/netfilter/ipv6/nf_defrag_ipv6.h> |
| 23 | #include <net/ipv6_frag.h> |
| 24 | |
| 25 | #if IS_ENABLED(CONFIG_NF_NAT) |
| 26 | #include <net/netfilter/nf_nat.h> |
| 27 | #endif |
| 28 | |
| 29 | #include <net/netfilter/nf_conntrack_act_ct.h> |
| 30 | |
| 31 | #include "datapath.h" |
| 32 | #include "drop.h" |
| 33 | #include "conntrack.h" |
| 34 | #include "flow.h" |
| 35 | #include "flow_netlink.h" |
| 36 | |
| 37 | struct ovs_ct_len_tbl { |
| 38 | int maxlen; |
| 39 | int minlen; |
| 40 | }; |
| 41 | |
| 42 | /* Metadata mark for masked write to conntrack mark */ |
| 43 | struct md_mark { |
| 44 | u32 value; |
| 45 | u32 mask; |
| 46 | }; |
| 47 | |
| 48 | /* Metadata label for masked write to conntrack label. */ |
| 49 | struct md_labels { |
| 50 | struct ovs_key_ct_labels value; |
| 51 | struct ovs_key_ct_labels mask; |
| 52 | }; |
| 53 | |
| 54 | enum ovs_ct_nat { |
| 55 | OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ |
| 56 | OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ |
| 57 | OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ |
| 58 | }; |
| 59 | |
| 60 | /* Conntrack action context for execution. */ |
| 61 | struct ovs_conntrack_info { |
| 62 | struct nf_conntrack_helper *helper; |
| 63 | struct nf_conntrack_zone zone; |
| 64 | struct nf_conn *ct; |
| 65 | u8 commit : 1; |
| 66 | u8 nat : 3; /* enum ovs_ct_nat */ |
| 67 | u8 force : 1; |
| 68 | u8 have_eventmask : 1; |
| 69 | u16 family; |
| 70 | u32 eventmask; /* Mask of 1 << IPCT_*. */ |
| 71 | struct md_mark mark; |
| 72 | struct md_labels labels; |
| 73 | char timeout[CTNL_TIMEOUT_NAME_MAX]; |
| 74 | struct nf_ct_timeout *nf_ct_timeout; |
| 75 | #if IS_ENABLED(CONFIG_NF_NAT) |
| 76 | struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */ |
| 77 | #endif |
| 78 | }; |
| 79 | |
| 80 | #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) |
| 81 | #define OVS_CT_LIMIT_UNLIMITED 0 |
| 82 | #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED |
| 83 | #define CT_LIMIT_HASH_BUCKETS 512 |
| 84 | static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled); |
| 85 | |
| 86 | struct ovs_ct_limit { |
| 87 | /* Elements in ovs_ct_limit_info->limits hash table */ |
| 88 | struct hlist_node hlist_node; |
| 89 | struct rcu_head rcu; |
| 90 | u16 zone; |
| 91 | u32 limit; |
| 92 | }; |
| 93 | |
| 94 | struct ovs_ct_limit_info { |
| 95 | u32 default_limit; |
| 96 | struct hlist_head *limits; |
| 97 | struct nf_conncount_data *data; |
| 98 | }; |
| 99 | |
| 100 | static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = { |
| 101 | [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, }, |
| 102 | }; |
| 103 | #endif |
| 104 | |
| 105 | static bool labels_nonzero(const struct ovs_key_ct_labels *labels); |
| 106 | |
| 107 | static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); |
| 108 | |
| 109 | static u16 key_to_nfproto(const struct sw_flow_key *key) |
| 110 | { |
| 111 | switch (ntohs(key->eth.type)) { |
| 112 | case ETH_P_IP: |
| 113 | return NFPROTO_IPV4; |
| 114 | case ETH_P_IPV6: |
| 115 | return NFPROTO_IPV6; |
| 116 | default: |
| 117 | return NFPROTO_UNSPEC; |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | /* Map SKB connection state into the values used by flow definition. */ |
| 122 | static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) |
| 123 | { |
| 124 | u8 ct_state = OVS_CS_F_TRACKED; |
| 125 | |
| 126 | switch (ctinfo) { |
| 127 | case IP_CT_ESTABLISHED_REPLY: |
| 128 | case IP_CT_RELATED_REPLY: |
| 129 | ct_state |= OVS_CS_F_REPLY_DIR; |
| 130 | break; |
| 131 | default: |
| 132 | break; |
| 133 | } |
| 134 | |
| 135 | switch (ctinfo) { |
| 136 | case IP_CT_ESTABLISHED: |
| 137 | case IP_CT_ESTABLISHED_REPLY: |
| 138 | ct_state |= OVS_CS_F_ESTABLISHED; |
| 139 | break; |
| 140 | case IP_CT_RELATED: |
| 141 | case IP_CT_RELATED_REPLY: |
| 142 | ct_state |= OVS_CS_F_RELATED; |
| 143 | break; |
| 144 | case IP_CT_NEW: |
| 145 | ct_state |= OVS_CS_F_NEW; |
| 146 | break; |
| 147 | default: |
| 148 | break; |
| 149 | } |
| 150 | |
| 151 | return ct_state; |
| 152 | } |
| 153 | |
| 154 | static u32 ovs_ct_get_mark(const struct nf_conn *ct) |
| 155 | { |
| 156 | #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) |
| 157 | return ct ? READ_ONCE(ct->mark) : 0; |
| 158 | #else |
| 159 | return 0; |
| 160 | #endif |
| 161 | } |
| 162 | |
| 163 | /* Guard against conntrack labels max size shrinking below 128 bits. */ |
| 164 | #if NF_CT_LABELS_MAX_SIZE < 16 |
| 165 | #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes |
| 166 | #endif |
| 167 | |
| 168 | static void ovs_ct_get_labels(const struct nf_conn *ct, |
| 169 | struct ovs_key_ct_labels *labels) |
| 170 | { |
| 171 | struct nf_conn_labels *cl = NULL; |
| 172 | |
| 173 | if (ct) { |
| 174 | if (ct->master && !nf_ct_is_confirmed(ct)) |
| 175 | ct = ct->master; |
| 176 | cl = nf_ct_labels_find(ct); |
| 177 | } |
| 178 | if (cl) |
| 179 | memcpy(labels, cl->bits, OVS_CT_LABELS_LEN); |
| 180 | else |
| 181 | memset(labels, 0, OVS_CT_LABELS_LEN); |
| 182 | } |
| 183 | |
| 184 | static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key, |
| 185 | const struct nf_conntrack_tuple *orig, |
| 186 | u8 icmp_proto) |
| 187 | { |
| 188 | key->ct_orig_proto = orig->dst.protonum; |
| 189 | if (orig->dst.protonum == icmp_proto) { |
| 190 | key->ct.orig_tp.src = htons(orig->dst.u.icmp.type); |
| 191 | key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code); |
| 192 | } else { |
| 193 | key->ct.orig_tp.src = orig->src.u.all; |
| 194 | key->ct.orig_tp.dst = orig->dst.u.all; |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, |
| 199 | const struct nf_conntrack_zone *zone, |
| 200 | const struct nf_conn *ct) |
| 201 | { |
| 202 | key->ct_state = state; |
| 203 | key->ct_zone = zone->id; |
| 204 | key->ct.mark = ovs_ct_get_mark(ct); |
| 205 | ovs_ct_get_labels(ct, labels: &key->ct.labels); |
| 206 | |
| 207 | if (ct) { |
| 208 | const struct nf_conntrack_tuple *orig; |
| 209 | |
| 210 | /* Use the master if we have one. */ |
| 211 | if (ct->master) |
| 212 | ct = ct->master; |
| 213 | orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; |
| 214 | |
| 215 | /* IP version must match with the master connection. */ |
| 216 | if (key->eth.type == htons(ETH_P_IP) && |
| 217 | nf_ct_l3num(ct) == NFPROTO_IPV4) { |
| 218 | key->ipv4.ct_orig.src = orig->src.u3.ip; |
| 219 | key->ipv4.ct_orig.dst = orig->dst.u3.ip; |
| 220 | __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP); |
| 221 | return; |
| 222 | } else if (key->eth.type == htons(ETH_P_IPV6) && |
| 223 | !sw_flow_key_is_nd(key) && |
| 224 | nf_ct_l3num(ct) == NFPROTO_IPV6) { |
| 225 | key->ipv6.ct_orig.src = orig->src.u3.in6; |
| 226 | key->ipv6.ct_orig.dst = orig->dst.u3.in6; |
| 227 | __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP); |
| 228 | return; |
| 229 | } |
| 230 | } |
| 231 | /* Clear 'ct_orig_proto' to mark the non-existence of conntrack |
| 232 | * original direction key fields. |
| 233 | */ |
| 234 | key->ct_orig_proto = 0; |
| 235 | } |
| 236 | |
| 237 | /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has |
| 238 | * previously sent the packet to conntrack via the ct action. If |
| 239 | * 'keep_nat_flags' is true, the existing NAT flags retained, else they are |
| 240 | * initialized from the connection status. |
| 241 | */ |
| 242 | static void ovs_ct_update_key(const struct sk_buff *skb, |
| 243 | const struct ovs_conntrack_info *info, |
| 244 | struct sw_flow_key *key, bool post_ct, |
| 245 | bool keep_nat_flags) |
| 246 | { |
| 247 | const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; |
| 248 | enum ip_conntrack_info ctinfo; |
| 249 | struct nf_conn *ct; |
| 250 | u8 state = 0; |
| 251 | |
| 252 | ct = nf_ct_get(skb, ctinfo: &ctinfo); |
| 253 | if (ct) { |
| 254 | state = ovs_ct_get_state(ctinfo); |
| 255 | /* All unconfirmed entries are NEW connections. */ |
| 256 | if (!nf_ct_is_confirmed(ct)) |
| 257 | state |= OVS_CS_F_NEW; |
| 258 | /* OVS persists the related flag for the duration of the |
| 259 | * connection. |
| 260 | */ |
| 261 | if (ct->master) |
| 262 | state |= OVS_CS_F_RELATED; |
| 263 | if (keep_nat_flags) { |
| 264 | state |= key->ct_state & OVS_CS_F_NAT_MASK; |
| 265 | } else { |
| 266 | if (ct->status & IPS_SRC_NAT) |
| 267 | state |= OVS_CS_F_SRC_NAT; |
| 268 | if (ct->status & IPS_DST_NAT) |
| 269 | state |= OVS_CS_F_DST_NAT; |
| 270 | } |
| 271 | zone = nf_ct_zone(ct); |
| 272 | } else if (post_ct) { |
| 273 | state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; |
| 274 | if (info) |
| 275 | zone = &info->zone; |
| 276 | } |
| 277 | __ovs_ct_update_key(key, state, zone, ct); |
| 278 | } |
| 279 | |
| 280 | /* This is called to initialize CT key fields possibly coming in from the local |
| 281 | * stack. |
| 282 | */ |
| 283 | void ovs_ct_fill_key(const struct sk_buff *skb, |
| 284 | struct sw_flow_key *key, |
| 285 | bool post_ct) |
| 286 | { |
| 287 | ovs_ct_update_key(skb, NULL, key, post_ct, keep_nat_flags: false); |
| 288 | } |
| 289 | |
| 290 | int ovs_ct_put_key(const struct sw_flow_key *swkey, |
| 291 | const struct sw_flow_key *output, struct sk_buff *skb) |
| 292 | { |
| 293 | if (nla_put_u32(skb, attrtype: OVS_KEY_ATTR_CT_STATE, value: output->ct_state)) |
| 294 | return -EMSGSIZE; |
| 295 | |
| 296 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && |
| 297 | nla_put_u16(skb, attrtype: OVS_KEY_ATTR_CT_ZONE, value: output->ct_zone)) |
| 298 | return -EMSGSIZE; |
| 299 | |
| 300 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && |
| 301 | nla_put_u32(skb, attrtype: OVS_KEY_ATTR_CT_MARK, value: output->ct.mark)) |
| 302 | return -EMSGSIZE; |
| 303 | |
| 304 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && |
| 305 | nla_put(skb, attrtype: OVS_KEY_ATTR_CT_LABELS, attrlen: sizeof(output->ct.labels), |
| 306 | data: &output->ct.labels)) |
| 307 | return -EMSGSIZE; |
| 308 | |
| 309 | if (swkey->ct_orig_proto) { |
| 310 | if (swkey->eth.type == htons(ETH_P_IP)) { |
| 311 | struct ovs_key_ct_tuple_ipv4 orig; |
| 312 | |
| 313 | memset(&orig, 0, sizeof(orig)); |
| 314 | orig.ipv4_src = output->ipv4.ct_orig.src; |
| 315 | orig.ipv4_dst = output->ipv4.ct_orig.dst; |
| 316 | orig.src_port = output->ct.orig_tp.src; |
| 317 | orig.dst_port = output->ct.orig_tp.dst; |
| 318 | orig.ipv4_proto = output->ct_orig_proto; |
| 319 | |
| 320 | if (nla_put(skb, attrtype: OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4, |
| 321 | attrlen: sizeof(orig), data: &orig)) |
| 322 | return -EMSGSIZE; |
| 323 | } else if (swkey->eth.type == htons(ETH_P_IPV6)) { |
| 324 | struct ovs_key_ct_tuple_ipv6 orig; |
| 325 | |
| 326 | memset(&orig, 0, sizeof(orig)); |
| 327 | memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32, |
| 328 | sizeof(orig.ipv6_src)); |
| 329 | memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32, |
| 330 | sizeof(orig.ipv6_dst)); |
| 331 | orig.src_port = output->ct.orig_tp.src; |
| 332 | orig.dst_port = output->ct.orig_tp.dst; |
| 333 | orig.ipv6_proto = output->ct_orig_proto; |
| 334 | |
| 335 | if (nla_put(skb, attrtype: OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6, |
| 336 | attrlen: sizeof(orig), data: &orig)) |
| 337 | return -EMSGSIZE; |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | return 0; |
| 342 | } |
| 343 | |
| 344 | static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key, |
| 345 | u32 ct_mark, u32 mask) |
| 346 | { |
| 347 | #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) |
| 348 | u32 new_mark; |
| 349 | |
| 350 | new_mark = ct_mark | (READ_ONCE(ct->mark) & ~(mask)); |
| 351 | if (READ_ONCE(ct->mark) != new_mark) { |
| 352 | WRITE_ONCE(ct->mark, new_mark); |
| 353 | if (nf_ct_is_confirmed(ct)) |
| 354 | nf_conntrack_event_cache(event: IPCT_MARK, ct); |
| 355 | key->ct.mark = new_mark; |
| 356 | } |
| 357 | |
| 358 | return 0; |
| 359 | #else |
| 360 | return -ENOTSUPP; |
| 361 | #endif |
| 362 | } |
| 363 | |
| 364 | static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct) |
| 365 | { |
| 366 | struct nf_conn_labels *cl; |
| 367 | |
| 368 | cl = nf_ct_labels_find(ct); |
| 369 | if (!cl) { |
| 370 | nf_ct_labels_ext_add(ct); |
| 371 | cl = nf_ct_labels_find(ct); |
| 372 | } |
| 373 | |
| 374 | return cl; |
| 375 | } |
| 376 | |
| 377 | /* Initialize labels for a new, yet to be committed conntrack entry. Note that |
| 378 | * since the new connection is not yet confirmed, and thus no-one else has |
| 379 | * access to it's labels, we simply write them over. |
| 380 | */ |
| 381 | static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key, |
| 382 | const struct ovs_key_ct_labels *labels, |
| 383 | const struct ovs_key_ct_labels *mask) |
| 384 | { |
| 385 | struct nf_conn_labels *cl, *master_cl; |
| 386 | bool have_mask = labels_nonzero(labels: mask); |
| 387 | |
| 388 | /* Inherit master's labels to the related connection? */ |
| 389 | master_cl = ct->master ? nf_ct_labels_find(ct: ct->master) : NULL; |
| 390 | |
| 391 | if (!master_cl && !have_mask) |
| 392 | return 0; /* Nothing to do. */ |
| 393 | |
| 394 | cl = ovs_ct_get_conn_labels(ct); |
| 395 | if (!cl) |
| 396 | return -ENOSPC; |
| 397 | |
| 398 | /* Inherit the master's labels, if any. */ |
| 399 | if (master_cl) |
| 400 | *cl = *master_cl; |
| 401 | |
| 402 | if (have_mask) { |
| 403 | u32 *dst = (u32 *)cl->bits; |
| 404 | int i; |
| 405 | |
| 406 | for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) |
| 407 | dst[i] = (dst[i] & ~mask->ct_labels_32[i]) | |
| 408 | (labels->ct_labels_32[i] |
| 409 | & mask->ct_labels_32[i]); |
| 410 | } |
| 411 | |
| 412 | /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the |
| 413 | * IPCT_LABEL bit is set in the event cache. |
| 414 | */ |
| 415 | nf_conntrack_event_cache(event: IPCT_LABEL, ct); |
| 416 | |
| 417 | memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); |
| 418 | |
| 419 | return 0; |
| 420 | } |
| 421 | |
| 422 | static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key, |
| 423 | const struct ovs_key_ct_labels *labels, |
| 424 | const struct ovs_key_ct_labels *mask) |
| 425 | { |
| 426 | struct nf_conn_labels *cl; |
| 427 | int err; |
| 428 | |
| 429 | cl = ovs_ct_get_conn_labels(ct); |
| 430 | if (!cl) |
| 431 | return -ENOSPC; |
| 432 | |
| 433 | err = nf_connlabels_replace(ct, data: labels->ct_labels_32, |
| 434 | mask: mask->ct_labels_32, |
| 435 | OVS_CT_LABELS_LEN_32); |
| 436 | if (err) |
| 437 | return err; |
| 438 | |
| 439 | memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); |
| 440 | |
| 441 | return 0; |
| 442 | } |
| 443 | |
| 444 | static int ovs_ct_handle_fragments(struct net *net, struct sw_flow_key *key, |
| 445 | u16 zone, int family, struct sk_buff *skb) |
| 446 | { |
| 447 | struct ovs_skb_cb ovs_cb = *OVS_CB(skb); |
| 448 | int err; |
| 449 | |
| 450 | err = nf_ct_handle_fragments(net, skb, zone, family, proto: &key->ip.proto, mru: &ovs_cb.mru); |
| 451 | if (err) |
| 452 | return err; |
| 453 | |
| 454 | /* The key extracted from the fragment that completed this datagram |
| 455 | * likely didn't have an L4 header, so regenerate it. |
| 456 | */ |
| 457 | ovs_flow_key_update_l3l4(skb, key); |
| 458 | key->ip.frag = OVS_FRAG_TYPE_NONE; |
| 459 | *OVS_CB(skb) = ovs_cb; |
| 460 | |
| 461 | return 0; |
| 462 | } |
| 463 | |
| 464 | /* This replicates logic from nf_conntrack_core.c that is not exported. */ |
| 465 | static enum ip_conntrack_info |
| 466 | ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) |
| 467 | { |
| 468 | const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(hash: h); |
| 469 | |
| 470 | if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) |
| 471 | return IP_CT_ESTABLISHED_REPLY; |
| 472 | /* Once we've had two way comms, always ESTABLISHED. */ |
| 473 | if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) |
| 474 | return IP_CT_ESTABLISHED; |
| 475 | if (test_bit(IPS_EXPECTED_BIT, &ct->status)) |
| 476 | return IP_CT_RELATED; |
| 477 | return IP_CT_NEW; |
| 478 | } |
| 479 | |
| 480 | /* Find an existing connection which this packet belongs to without |
| 481 | * re-attributing statistics or modifying the connection state. This allows an |
| 482 | * skb->_nfct lost due to an upcall to be recovered during actions execution. |
| 483 | * |
| 484 | * Must be called with rcu_read_lock. |
| 485 | * |
| 486 | * On success, populates skb->_nfct and returns the connection. Returns NULL |
| 487 | * if there is no existing entry. |
| 488 | */ |
| 489 | static struct nf_conn * |
| 490 | ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, |
| 491 | u8 l3num, struct sk_buff *skb, bool natted) |
| 492 | { |
| 493 | struct nf_conntrack_tuple tuple; |
| 494 | struct nf_conntrack_tuple_hash *h; |
| 495 | struct nf_conn *ct; |
| 496 | |
| 497 | if (!nf_ct_get_tuplepr(skb, nhoff: skb_network_offset(skb), l3num, |
| 498 | net, tuple: &tuple)) { |
| 499 | pr_debug("ovs_ct_find_existing: Can't get tuple\n" ); |
| 500 | return NULL; |
| 501 | } |
| 502 | |
| 503 | /* Must invert the tuple if skb has been transformed by NAT. */ |
| 504 | if (natted) { |
| 505 | struct nf_conntrack_tuple inverse; |
| 506 | |
| 507 | if (!nf_ct_invert_tuple(inverse: &inverse, orig: &tuple)) { |
| 508 | pr_debug("ovs_ct_find_existing: Inversion failed!\n" ); |
| 509 | return NULL; |
| 510 | } |
| 511 | tuple = inverse; |
| 512 | } |
| 513 | |
| 514 | /* look for tuple match */ |
| 515 | h = nf_conntrack_find_get(net, zone, tuple: &tuple); |
| 516 | if (!h) |
| 517 | return NULL; /* Not found. */ |
| 518 | |
| 519 | ct = nf_ct_tuplehash_to_ctrack(hash: h); |
| 520 | |
| 521 | /* Inverted packet tuple matches the reverse direction conntrack tuple, |
| 522 | * select the other tuplehash to get the right 'ctinfo' bits for this |
| 523 | * packet. |
| 524 | */ |
| 525 | if (natted) |
| 526 | h = &ct->tuplehash[!h->tuple.dst.dir]; |
| 527 | |
| 528 | nf_ct_set(skb, ct, info: ovs_ct_get_info(h)); |
| 529 | return ct; |
| 530 | } |
| 531 | |
| 532 | static |
| 533 | struct nf_conn *ovs_ct_executed(struct net *net, |
| 534 | const struct sw_flow_key *key, |
| 535 | const struct ovs_conntrack_info *info, |
| 536 | struct sk_buff *skb, |
| 537 | bool *ct_executed) |
| 538 | { |
| 539 | struct nf_conn *ct = NULL; |
| 540 | |
| 541 | /* If no ct, check if we have evidence that an existing conntrack entry |
| 542 | * might be found for this skb. This happens when we lose a skb->_nfct |
| 543 | * due to an upcall, or if the direction is being forced. If the |
| 544 | * connection was not confirmed, it is not cached and needs to be run |
| 545 | * through conntrack again. |
| 546 | */ |
| 547 | *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) && |
| 548 | !(key->ct_state & OVS_CS_F_INVALID) && |
| 549 | (key->ct_zone == info->zone.id); |
| 550 | |
| 551 | if (*ct_executed || (!key->ct_state && info->force)) { |
| 552 | ct = ovs_ct_find_existing(net, zone: &info->zone, l3num: info->family, skb, |
| 553 | natted: !!(key->ct_state & |
| 554 | OVS_CS_F_NAT_MASK)); |
| 555 | } |
| 556 | |
| 557 | return ct; |
| 558 | } |
| 559 | |
| 560 | /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ |
| 561 | static bool skb_nfct_cached(struct net *net, |
| 562 | const struct sw_flow_key *key, |
| 563 | const struct ovs_conntrack_info *info, |
| 564 | struct sk_buff *skb) |
| 565 | { |
| 566 | enum ip_conntrack_info ctinfo; |
| 567 | struct nf_conn *ct; |
| 568 | bool ct_executed = true; |
| 569 | |
| 570 | ct = nf_ct_get(skb, ctinfo: &ctinfo); |
| 571 | if (!ct) |
| 572 | ct = ovs_ct_executed(net, key, info, skb, ct_executed: &ct_executed); |
| 573 | |
| 574 | if (ct) |
| 575 | nf_ct_get(skb, ctinfo: &ctinfo); |
| 576 | else |
| 577 | return false; |
| 578 | |
| 579 | if (!net_eq(net1: net, net2: read_pnet(pnet: &ct->ct_net))) |
| 580 | return false; |
| 581 | if (!nf_ct_zone_equal_any(a: info->ct, b: nf_ct_zone(ct))) |
| 582 | return false; |
| 583 | if (info->helper) { |
| 584 | struct nf_conn_help *help; |
| 585 | |
| 586 | help = nf_ct_ext_find(ct, id: NF_CT_EXT_HELPER); |
| 587 | if (help && rcu_access_pointer(help->helper) != info->helper) |
| 588 | return false; |
| 589 | } |
| 590 | if (info->nf_ct_timeout) { |
| 591 | struct nf_conn_timeout *timeout_ext; |
| 592 | |
| 593 | timeout_ext = nf_ct_timeout_find(ct); |
| 594 | if (!timeout_ext || info->nf_ct_timeout != |
| 595 | rcu_dereference(timeout_ext->timeout)) |
| 596 | return false; |
| 597 | } |
| 598 | /* Force conntrack entry direction to the current packet? */ |
| 599 | if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { |
| 600 | /* Delete the conntrack entry if confirmed, else just release |
| 601 | * the reference. |
| 602 | */ |
| 603 | if (nf_ct_is_confirmed(ct)) |
| 604 | nf_ct_delete(ct, pid: 0, report: 0); |
| 605 | |
| 606 | nf_ct_put(ct); |
| 607 | nf_ct_set(skb, NULL, info: 0); |
| 608 | return false; |
| 609 | } |
| 610 | |
| 611 | return ct_executed; |
| 612 | } |
| 613 | |
| 614 | #if IS_ENABLED(CONFIG_NF_NAT) |
| 615 | static void ovs_nat_update_key(struct sw_flow_key *key, |
| 616 | const struct sk_buff *skb, |
| 617 | enum nf_nat_manip_type maniptype) |
| 618 | { |
| 619 | if (maniptype == NF_NAT_MANIP_SRC) { |
| 620 | __be16 src; |
| 621 | |
| 622 | key->ct_state |= OVS_CS_F_SRC_NAT; |
| 623 | if (key->eth.type == htons(ETH_P_IP)) |
| 624 | key->ipv4.addr.src = ip_hdr(skb)->saddr; |
| 625 | else if (key->eth.type == htons(ETH_P_IPV6)) |
| 626 | memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, |
| 627 | sizeof(key->ipv6.addr.src)); |
| 628 | else |
| 629 | return; |
| 630 | |
| 631 | if (key->ip.proto == IPPROTO_UDP) |
| 632 | src = udp_hdr(skb)->source; |
| 633 | else if (key->ip.proto == IPPROTO_TCP) |
| 634 | src = tcp_hdr(skb)->source; |
| 635 | else if (key->ip.proto == IPPROTO_SCTP) |
| 636 | src = sctp_hdr(skb)->source; |
| 637 | else |
| 638 | return; |
| 639 | |
| 640 | key->tp.src = src; |
| 641 | } else { |
| 642 | __be16 dst; |
| 643 | |
| 644 | key->ct_state |= OVS_CS_F_DST_NAT; |
| 645 | if (key->eth.type == htons(ETH_P_IP)) |
| 646 | key->ipv4.addr.dst = ip_hdr(skb)->daddr; |
| 647 | else if (key->eth.type == htons(ETH_P_IPV6)) |
| 648 | memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, |
| 649 | sizeof(key->ipv6.addr.dst)); |
| 650 | else |
| 651 | return; |
| 652 | |
| 653 | if (key->ip.proto == IPPROTO_UDP) |
| 654 | dst = udp_hdr(skb)->dest; |
| 655 | else if (key->ip.proto == IPPROTO_TCP) |
| 656 | dst = tcp_hdr(skb)->dest; |
| 657 | else if (key->ip.proto == IPPROTO_SCTP) |
| 658 | dst = sctp_hdr(skb)->dest; |
| 659 | else |
| 660 | return; |
| 661 | |
| 662 | key->tp.dst = dst; |
| 663 | } |
| 664 | } |
| 665 | |
| 666 | /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ |
| 667 | static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, |
| 668 | const struct ovs_conntrack_info *info, |
| 669 | struct sk_buff *skb, struct nf_conn *ct, |
| 670 | enum ip_conntrack_info ctinfo) |
| 671 | { |
| 672 | int err, action = 0; |
| 673 | |
| 674 | if (!(info->nat & OVS_CT_NAT)) |
| 675 | return NF_ACCEPT; |
| 676 | if (info->nat & OVS_CT_SRC_NAT) |
| 677 | action |= BIT(NF_NAT_MANIP_SRC); |
| 678 | if (info->nat & OVS_CT_DST_NAT) |
| 679 | action |= BIT(NF_NAT_MANIP_DST); |
| 680 | |
| 681 | err = nf_ct_nat(skb, ct, ctinfo, action: &action, range: &info->range, commit: info->commit); |
| 682 | if (err != NF_ACCEPT) |
| 683 | return err; |
| 684 | |
| 685 | if (action & BIT(NF_NAT_MANIP_SRC)) |
| 686 | ovs_nat_update_key(key, skb, maniptype: NF_NAT_MANIP_SRC); |
| 687 | if (action & BIT(NF_NAT_MANIP_DST)) |
| 688 | ovs_nat_update_key(key, skb, maniptype: NF_NAT_MANIP_DST); |
| 689 | |
| 690 | return err; |
| 691 | } |
| 692 | #else /* !CONFIG_NF_NAT */ |
| 693 | static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, |
| 694 | const struct ovs_conntrack_info *info, |
| 695 | struct sk_buff *skb, struct nf_conn *ct, |
| 696 | enum ip_conntrack_info ctinfo) |
| 697 | { |
| 698 | return NF_ACCEPT; |
| 699 | } |
| 700 | #endif |
| 701 | |
| 702 | static int verdict_to_errno(unsigned int verdict) |
| 703 | { |
| 704 | switch (verdict & NF_VERDICT_MASK) { |
| 705 | case NF_ACCEPT: |
| 706 | return 0; |
| 707 | case NF_DROP: |
| 708 | return -EINVAL; |
| 709 | case NF_STOLEN: |
| 710 | return -EINPROGRESS; |
| 711 | default: |
| 712 | break; |
| 713 | } |
| 714 | |
| 715 | return -EINVAL; |
| 716 | } |
| 717 | |
| 718 | /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if |
| 719 | * not done already. Update key with new CT state after passing the packet |
| 720 | * through conntrack. |
| 721 | * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be |
| 722 | * set to NULL and 0 will be returned. |
| 723 | */ |
| 724 | static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, |
| 725 | const struct ovs_conntrack_info *info, |
| 726 | struct sk_buff *skb) |
| 727 | { |
| 728 | /* If we are recirculating packets to match on conntrack fields and |
| 729 | * committing with a separate conntrack action, then we don't need to |
| 730 | * actually run the packet through conntrack twice unless it's for a |
| 731 | * different zone. |
| 732 | */ |
| 733 | bool cached = skb_nfct_cached(net, key, info, skb); |
| 734 | enum ip_conntrack_info ctinfo; |
| 735 | struct nf_conn *ct; |
| 736 | |
| 737 | if (!cached) { |
| 738 | struct nf_hook_state state = { |
| 739 | .hook = NF_INET_PRE_ROUTING, |
| 740 | .pf = info->family, |
| 741 | .net = net, |
| 742 | }; |
| 743 | struct nf_conn *tmpl = info->ct; |
| 744 | int err; |
| 745 | |
| 746 | /* Associate skb with specified zone. */ |
| 747 | if (tmpl) { |
| 748 | ct = nf_ct_get(skb, ctinfo: &ctinfo); |
| 749 | nf_ct_put(ct); |
| 750 | nf_conntrack_get(nfct: &tmpl->ct_general); |
| 751 | nf_ct_set(skb, ct: tmpl, info: IP_CT_NEW); |
| 752 | } |
| 753 | |
| 754 | err = nf_conntrack_in(skb, state: &state); |
| 755 | if (err != NF_ACCEPT) |
| 756 | return verdict_to_errno(verdict: err); |
| 757 | |
| 758 | /* Clear CT state NAT flags to mark that we have not yet done |
| 759 | * NAT after the nf_conntrack_in() call. We can actually clear |
| 760 | * the whole state, as it will be re-initialized below. |
| 761 | */ |
| 762 | key->ct_state = 0; |
| 763 | |
| 764 | /* Update the key, but keep the NAT flags. */ |
| 765 | ovs_ct_update_key(skb, info, key, post_ct: true, keep_nat_flags: true); |
| 766 | } |
| 767 | |
| 768 | ct = nf_ct_get(skb, ctinfo: &ctinfo); |
| 769 | if (ct) { |
| 770 | bool add_helper = false; |
| 771 | |
| 772 | /* Packets starting a new connection must be NATted before the |
| 773 | * helper, so that the helper knows about the NAT. We enforce |
| 774 | * this by delaying both NAT and helper calls for unconfirmed |
| 775 | * connections until the committing CT action. For later |
| 776 | * packets NAT and Helper may be called in either order. |
| 777 | * |
| 778 | * NAT will be done only if the CT action has NAT, and only |
| 779 | * once per packet (per zone), as guarded by the NAT bits in |
| 780 | * the key->ct_state. |
| 781 | */ |
| 782 | if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) && |
| 783 | (nf_ct_is_confirmed(ct) || info->commit)) { |
| 784 | int err = ovs_ct_nat(net, key, info, skb, ct, ctinfo); |
| 785 | |
| 786 | err = verdict_to_errno(verdict: err); |
| 787 | if (err) |
| 788 | return err; |
| 789 | } |
| 790 | |
| 791 | /* Userspace may decide to perform a ct lookup without a helper |
| 792 | * specified followed by a (recirculate and) commit with one, |
| 793 | * or attach a helper in a later commit. Therefore, for |
| 794 | * connections which we will commit, we may need to attach |
| 795 | * the helper here. |
| 796 | */ |
| 797 | if (!nf_ct_is_confirmed(ct) && info->commit && |
| 798 | info->helper && !nfct_help(ct)) { |
| 799 | int err = __nf_ct_try_assign_helper(ct, tmpl: info->ct, |
| 800 | GFP_ATOMIC); |
| 801 | if (err) |
| 802 | return err; |
| 803 | add_helper = true; |
| 804 | |
| 805 | /* helper installed, add seqadj if NAT is required */ |
| 806 | if (info->nat && !nfct_seqadj(ct)) { |
| 807 | if (!nfct_seqadj_ext_add(ct)) |
| 808 | return -EINVAL; |
| 809 | } |
| 810 | } |
| 811 | |
| 812 | /* Call the helper only if: |
| 813 | * - nf_conntrack_in() was executed above ("!cached") or a |
| 814 | * helper was just attached ("add_helper") for a confirmed |
| 815 | * connection, or |
| 816 | * - When committing an unconfirmed connection. |
| 817 | */ |
| 818 | if ((nf_ct_is_confirmed(ct) ? !cached || add_helper : |
| 819 | info->commit)) { |
| 820 | int err = nf_ct_helper(skb, ct, ctinfo, proto: info->family); |
| 821 | |
| 822 | err = verdict_to_errno(verdict: err); |
| 823 | if (err) |
| 824 | return err; |
| 825 | } |
| 826 | |
| 827 | if (nf_ct_protonum(ct) == IPPROTO_TCP && |
| 828 | nf_ct_is_confirmed(ct) && nf_conntrack_tcp_established(ct)) { |
| 829 | /* Be liberal for tcp packets so that out-of-window |
| 830 | * packets are not marked invalid. |
| 831 | */ |
| 832 | nf_ct_set_tcp_be_liberal(ct); |
| 833 | } |
| 834 | |
| 835 | nf_conn_act_ct_ext_fill(skb, ct, ctinfo); |
| 836 | } |
| 837 | |
| 838 | return 0; |
| 839 | } |
| 840 | |
| 841 | /* Lookup connection and read fields into key. */ |
| 842 | static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, |
| 843 | const struct ovs_conntrack_info *info, |
| 844 | struct sk_buff *skb) |
| 845 | { |
| 846 | struct nf_conn *ct; |
| 847 | int err; |
| 848 | |
| 849 | err = __ovs_ct_lookup(net, key, info, skb); |
| 850 | if (err) |
| 851 | return err; |
| 852 | |
| 853 | ct = (struct nf_conn *)skb_nfct(skb); |
| 854 | if (ct) |
| 855 | nf_ct_deliver_cached_events(ct); |
| 856 | |
| 857 | return 0; |
| 858 | } |
| 859 | |
| 860 | static bool labels_nonzero(const struct ovs_key_ct_labels *labels) |
| 861 | { |
| 862 | size_t i; |
| 863 | |
| 864 | for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) |
| 865 | if (labels->ct_labels_32[i]) |
| 866 | return true; |
| 867 | |
| 868 | return false; |
| 869 | } |
| 870 | |
| 871 | #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) |
| 872 | static struct hlist_head *ct_limit_hash_bucket( |
| 873 | const struct ovs_ct_limit_info *info, u16 zone) |
| 874 | { |
| 875 | return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)]; |
| 876 | } |
| 877 | |
| 878 | /* Call with ovs_mutex */ |
| 879 | static void ct_limit_set(const struct ovs_ct_limit_info *info, |
| 880 | struct ovs_ct_limit *new_ct_limit) |
| 881 | { |
| 882 | struct ovs_ct_limit *ct_limit; |
| 883 | struct hlist_head *head; |
| 884 | |
| 885 | head = ct_limit_hash_bucket(info, zone: new_ct_limit->zone); |
| 886 | hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { |
| 887 | if (ct_limit->zone == new_ct_limit->zone) { |
| 888 | hlist_replace_rcu(old: &ct_limit->hlist_node, |
| 889 | new: &new_ct_limit->hlist_node); |
| 890 | kfree_rcu(ct_limit, rcu); |
| 891 | return; |
| 892 | } |
| 893 | } |
| 894 | |
| 895 | hlist_add_head_rcu(n: &new_ct_limit->hlist_node, h: head); |
| 896 | } |
| 897 | |
| 898 | /* Call with ovs_mutex */ |
| 899 | static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone) |
| 900 | { |
| 901 | struct ovs_ct_limit *ct_limit; |
| 902 | struct hlist_head *head; |
| 903 | struct hlist_node *n; |
| 904 | |
| 905 | head = ct_limit_hash_bucket(info, zone); |
| 906 | hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) { |
| 907 | if (ct_limit->zone == zone) { |
| 908 | hlist_del_rcu(n: &ct_limit->hlist_node); |
| 909 | kfree_rcu(ct_limit, rcu); |
| 910 | return; |
| 911 | } |
| 912 | } |
| 913 | } |
| 914 | |
| 915 | /* Call with RCU read lock */ |
| 916 | static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone) |
| 917 | { |
| 918 | struct ovs_ct_limit *ct_limit; |
| 919 | struct hlist_head *head; |
| 920 | |
| 921 | head = ct_limit_hash_bucket(info, zone); |
| 922 | hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { |
| 923 | if (ct_limit->zone == zone) |
| 924 | return ct_limit->limit; |
| 925 | } |
| 926 | |
| 927 | return info->default_limit; |
| 928 | } |
| 929 | |
| 930 | static int ovs_ct_check_limit(struct net *net, |
| 931 | const struct ovs_conntrack_info *info, |
| 932 | const struct nf_conntrack_tuple *tuple) |
| 933 | { |
| 934 | struct ovs_net *ovs_net = net_generic(net, id: ovs_net_id); |
| 935 | const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; |
| 936 | u32 per_zone_limit, connections; |
| 937 | u32 conncount_key; |
| 938 | |
| 939 | conncount_key = info->zone.id; |
| 940 | |
| 941 | per_zone_limit = ct_limit_get(info: ct_limit_info, zone: info->zone.id); |
| 942 | if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED) |
| 943 | return 0; |
| 944 | |
| 945 | connections = nf_conncount_count(net, data: ct_limit_info->data, |
| 946 | key: &conncount_key, tuple, zone: &info->zone); |
| 947 | if (connections > per_zone_limit) |
| 948 | return -ENOMEM; |
| 949 | |
| 950 | return 0; |
| 951 | } |
| 952 | #endif |
| 953 | |
| 954 | /* Lookup connection and confirm if unconfirmed. */ |
| 955 | static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, |
| 956 | const struct ovs_conntrack_info *info, |
| 957 | struct sk_buff *skb) |
| 958 | { |
| 959 | enum ip_conntrack_info ctinfo; |
| 960 | struct nf_conn *ct; |
| 961 | int err; |
| 962 | |
| 963 | err = __ovs_ct_lookup(net, key, info, skb); |
| 964 | if (err) |
| 965 | return err; |
| 966 | |
| 967 | /* The connection could be invalid, in which case this is a no-op.*/ |
| 968 | ct = nf_ct_get(skb, ctinfo: &ctinfo); |
| 969 | if (!ct) |
| 970 | return 0; |
| 971 | |
| 972 | #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) |
| 973 | if (static_branch_unlikely(&ovs_ct_limit_enabled)) { |
| 974 | if (!nf_ct_is_confirmed(ct)) { |
| 975 | err = ovs_ct_check_limit(net, info, |
| 976 | tuple: &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple); |
| 977 | if (err) { |
| 978 | net_warn_ratelimited("openvswitch: zone: %u " |
| 979 | "exceeds conntrack limit\n" , |
| 980 | info->zone.id); |
| 981 | return err; |
| 982 | } |
| 983 | } |
| 984 | } |
| 985 | #endif |
| 986 | |
| 987 | /* Set the conntrack event mask if given. NEW and DELETE events have |
| 988 | * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener |
| 989 | * typically would receive many kinds of updates. Setting the event |
| 990 | * mask allows those events to be filtered. The set event mask will |
| 991 | * remain in effect for the lifetime of the connection unless changed |
| 992 | * by a further CT action with both the commit flag and the eventmask |
| 993 | * option. */ |
| 994 | if (info->have_eventmask) { |
| 995 | struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct); |
| 996 | |
| 997 | if (cache) |
| 998 | cache->ctmask = info->eventmask; |
| 999 | } |
| 1000 | |
| 1001 | /* Apply changes before confirming the connection so that the initial |
| 1002 | * conntrack NEW netlink event carries the values given in the CT |
| 1003 | * action. |
| 1004 | */ |
| 1005 | if (info->mark.mask) { |
| 1006 | err = ovs_ct_set_mark(ct, key, ct_mark: info->mark.value, |
| 1007 | mask: info->mark.mask); |
| 1008 | if (err) |
| 1009 | return err; |
| 1010 | } |
| 1011 | if (!nf_ct_is_confirmed(ct)) { |
| 1012 | err = ovs_ct_init_labels(ct, key, labels: &info->labels.value, |
| 1013 | mask: &info->labels.mask); |
| 1014 | if (err) |
| 1015 | return err; |
| 1016 | |
| 1017 | nf_conn_act_ct_ext_add(skb, ct, ctinfo); |
| 1018 | } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && |
| 1019 | labels_nonzero(labels: &info->labels.mask)) { |
| 1020 | err = ovs_ct_set_labels(ct, key, labels: &info->labels.value, |
| 1021 | mask: &info->labels.mask); |
| 1022 | if (err) |
| 1023 | return err; |
| 1024 | } |
| 1025 | /* This will take care of sending queued events even if the connection |
| 1026 | * is already confirmed. |
| 1027 | */ |
| 1028 | err = nf_conntrack_confirm(skb); |
| 1029 | |
| 1030 | return verdict_to_errno(verdict: err); |
| 1031 | } |
| 1032 | |
| 1033 | /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero |
| 1034 | * value if 'skb' is freed. |
| 1035 | */ |
| 1036 | int ovs_ct_execute(struct net *net, struct sk_buff *skb, |
| 1037 | struct sw_flow_key *key, |
| 1038 | const struct ovs_conntrack_info *info) |
| 1039 | { |
| 1040 | int nh_ofs; |
| 1041 | int err; |
| 1042 | |
| 1043 | /* The conntrack module expects to be working at L3. */ |
| 1044 | nh_ofs = skb_network_offset(skb); |
| 1045 | skb_pull_rcsum(skb, len: nh_ofs); |
| 1046 | |
| 1047 | err = nf_ct_skb_network_trim(skb, family: info->family); |
| 1048 | if (err) { |
| 1049 | kfree_skb(skb); |
| 1050 | return err; |
| 1051 | } |
| 1052 | |
| 1053 | if (key->ip.frag != OVS_FRAG_TYPE_NONE) { |
| 1054 | err = ovs_ct_handle_fragments(net, key, zone: info->zone.id, |
| 1055 | family: info->family, skb); |
| 1056 | if (err) |
| 1057 | return err; |
| 1058 | } |
| 1059 | |
| 1060 | if (info->commit) |
| 1061 | err = ovs_ct_commit(net, key, info, skb); |
| 1062 | else |
| 1063 | err = ovs_ct_lookup(net, key, info, skb); |
| 1064 | |
| 1065 | /* conntrack core returned NF_STOLEN */ |
| 1066 | if (err == -EINPROGRESS) |
| 1067 | return err; |
| 1068 | |
| 1069 | skb_push_rcsum(skb, len: nh_ofs); |
| 1070 | if (err) |
| 1071 | ovs_kfree_skb_reason(skb, reason: OVS_DROP_CONNTRACK); |
| 1072 | return err; |
| 1073 | } |
| 1074 | |
| 1075 | int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key) |
| 1076 | { |
| 1077 | enum ip_conntrack_info ctinfo; |
| 1078 | struct nf_conn *ct; |
| 1079 | |
| 1080 | ct = nf_ct_get(skb, ctinfo: &ctinfo); |
| 1081 | |
| 1082 | nf_ct_put(ct); |
| 1083 | nf_ct_set(skb, NULL, info: IP_CT_UNTRACKED); |
| 1084 | |
| 1085 | if (key) |
| 1086 | ovs_ct_fill_key(skb, key, post_ct: false); |
| 1087 | |
| 1088 | return 0; |
| 1089 | } |
| 1090 | |
| 1091 | #if IS_ENABLED(CONFIG_NF_NAT) |
| 1092 | static int parse_nat(const struct nlattr *attr, |
| 1093 | struct ovs_conntrack_info *info, bool log) |
| 1094 | { |
| 1095 | struct nlattr *a; |
| 1096 | int rem; |
| 1097 | bool have_ip_max = false; |
| 1098 | bool have_proto_max = false; |
| 1099 | bool ip_vers = (info->family == NFPROTO_IPV6); |
| 1100 | |
| 1101 | nla_for_each_nested(a, attr, rem) { |
| 1102 | static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { |
| 1103 | [OVS_NAT_ATTR_SRC] = {0, 0}, |
| 1104 | [OVS_NAT_ATTR_DST] = {0, 0}, |
| 1105 | [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), |
| 1106 | sizeof(struct in6_addr)}, |
| 1107 | [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), |
| 1108 | sizeof(struct in6_addr)}, |
| 1109 | [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, |
| 1110 | [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, |
| 1111 | [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, |
| 1112 | [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, |
| 1113 | [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, |
| 1114 | }; |
| 1115 | int type = nla_type(nla: a); |
| 1116 | |
| 1117 | if (type > OVS_NAT_ATTR_MAX) { |
| 1118 | OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)" , |
| 1119 | type, OVS_NAT_ATTR_MAX); |
| 1120 | return -EINVAL; |
| 1121 | } |
| 1122 | |
| 1123 | if (nla_len(nla: a) != ovs_nat_attr_lens[type][ip_vers]) { |
| 1124 | OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)" , |
| 1125 | type, nla_len(a), |
| 1126 | ovs_nat_attr_lens[type][ip_vers]); |
| 1127 | return -EINVAL; |
| 1128 | } |
| 1129 | |
| 1130 | switch (type) { |
| 1131 | case OVS_NAT_ATTR_SRC: |
| 1132 | case OVS_NAT_ATTR_DST: |
| 1133 | if (info->nat) { |
| 1134 | OVS_NLERR(log, "Only one type of NAT may be specified" ); |
| 1135 | return -ERANGE; |
| 1136 | } |
| 1137 | info->nat |= OVS_CT_NAT; |
| 1138 | info->nat |= ((type == OVS_NAT_ATTR_SRC) |
| 1139 | ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); |
| 1140 | break; |
| 1141 | |
| 1142 | case OVS_NAT_ATTR_IP_MIN: |
| 1143 | nla_memcpy(dest: &info->range.min_addr, src: a, |
| 1144 | count: sizeof(info->range.min_addr)); |
| 1145 | info->range.flags |= NF_NAT_RANGE_MAP_IPS; |
| 1146 | break; |
| 1147 | |
| 1148 | case OVS_NAT_ATTR_IP_MAX: |
| 1149 | have_ip_max = true; |
| 1150 | nla_memcpy(dest: &info->range.max_addr, src: a, |
| 1151 | count: sizeof(info->range.max_addr)); |
| 1152 | info->range.flags |= NF_NAT_RANGE_MAP_IPS; |
| 1153 | break; |
| 1154 | |
| 1155 | case OVS_NAT_ATTR_PROTO_MIN: |
| 1156 | info->range.min_proto.all = htons(nla_get_u16(a)); |
| 1157 | info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; |
| 1158 | break; |
| 1159 | |
| 1160 | case OVS_NAT_ATTR_PROTO_MAX: |
| 1161 | have_proto_max = true; |
| 1162 | info->range.max_proto.all = htons(nla_get_u16(a)); |
| 1163 | info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; |
| 1164 | break; |
| 1165 | |
| 1166 | case OVS_NAT_ATTR_PERSISTENT: |
| 1167 | info->range.flags |= NF_NAT_RANGE_PERSISTENT; |
| 1168 | break; |
| 1169 | |
| 1170 | case OVS_NAT_ATTR_PROTO_HASH: |
| 1171 | info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; |
| 1172 | break; |
| 1173 | |
| 1174 | case OVS_NAT_ATTR_PROTO_RANDOM: |
| 1175 | info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; |
| 1176 | break; |
| 1177 | |
| 1178 | default: |
| 1179 | OVS_NLERR(log, "Unknown nat attribute (%d)" , type); |
| 1180 | return -EINVAL; |
| 1181 | } |
| 1182 | } |
| 1183 | |
| 1184 | if (rem > 0) { |
| 1185 | OVS_NLERR(log, "NAT attribute has %d unknown bytes" , rem); |
| 1186 | return -EINVAL; |
| 1187 | } |
| 1188 | if (!info->nat) { |
| 1189 | /* Do not allow flags if no type is given. */ |
| 1190 | if (info->range.flags) { |
| 1191 | OVS_NLERR(log, |
| 1192 | "NAT flags may be given only when NAT range (SRC or DST) is also specified." |
| 1193 | ); |
| 1194 | return -EINVAL; |
| 1195 | } |
| 1196 | info->nat = OVS_CT_NAT; /* NAT existing connections. */ |
| 1197 | } else if (!info->commit) { |
| 1198 | OVS_NLERR(log, |
| 1199 | "NAT attributes may be specified only when CT COMMIT flag is also specified." |
| 1200 | ); |
| 1201 | return -EINVAL; |
| 1202 | } |
| 1203 | /* Allow missing IP_MAX. */ |
| 1204 | if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { |
| 1205 | memcpy(&info->range.max_addr, &info->range.min_addr, |
| 1206 | sizeof(info->range.max_addr)); |
| 1207 | } |
| 1208 | /* Allow missing PROTO_MAX. */ |
| 1209 | if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && |
| 1210 | !have_proto_max) { |
| 1211 | info->range.max_proto.all = info->range.min_proto.all; |
| 1212 | } |
| 1213 | return 0; |
| 1214 | } |
| 1215 | #endif |
| 1216 | |
| 1217 | static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { |
| 1218 | [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, |
| 1219 | [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 }, |
| 1220 | [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), |
| 1221 | .maxlen = sizeof(u16) }, |
| 1222 | [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), |
| 1223 | .maxlen = sizeof(struct md_mark) }, |
| 1224 | [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), |
| 1225 | .maxlen = sizeof(struct md_labels) }, |
| 1226 | [OVS_CT_ATTR_HELPER] = { .minlen = 1, |
| 1227 | .maxlen = NF_CT_HELPER_NAME_LEN }, |
| 1228 | #if IS_ENABLED(CONFIG_NF_NAT) |
| 1229 | /* NAT length is checked when parsing the nested attributes. */ |
| 1230 | [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, |
| 1231 | #endif |
| 1232 | [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32), |
| 1233 | .maxlen = sizeof(u32) }, |
| 1234 | [OVS_CT_ATTR_TIMEOUT] = { .minlen = 1, |
| 1235 | .maxlen = CTNL_TIMEOUT_NAME_MAX }, |
| 1236 | }; |
| 1237 | |
| 1238 | static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, |
| 1239 | const char **helper, bool log) |
| 1240 | { |
| 1241 | struct nlattr *a; |
| 1242 | int rem; |
| 1243 | |
| 1244 | nla_for_each_nested(a, attr, rem) { |
| 1245 | int type = nla_type(nla: a); |
| 1246 | int maxlen; |
| 1247 | int minlen; |
| 1248 | |
| 1249 | if (type > OVS_CT_ATTR_MAX) { |
| 1250 | OVS_NLERR(log, |
| 1251 | "Unknown conntrack attr (type=%d, max=%d)" , |
| 1252 | type, OVS_CT_ATTR_MAX); |
| 1253 | return -EINVAL; |
| 1254 | } |
| 1255 | |
| 1256 | maxlen = ovs_ct_attr_lens[type].maxlen; |
| 1257 | minlen = ovs_ct_attr_lens[type].minlen; |
| 1258 | if (nla_len(nla: a) < minlen || nla_len(nla: a) > maxlen) { |
| 1259 | OVS_NLERR(log, |
| 1260 | "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)" , |
| 1261 | type, nla_len(a), maxlen); |
| 1262 | return -EINVAL; |
| 1263 | } |
| 1264 | |
| 1265 | switch (type) { |
| 1266 | case OVS_CT_ATTR_FORCE_COMMIT: |
| 1267 | info->force = true; |
| 1268 | fallthrough; |
| 1269 | case OVS_CT_ATTR_COMMIT: |
| 1270 | info->commit = true; |
| 1271 | break; |
| 1272 | #ifdef CONFIG_NF_CONNTRACK_ZONES |
| 1273 | case OVS_CT_ATTR_ZONE: |
| 1274 | info->zone.id = nla_get_u16(nla: a); |
| 1275 | break; |
| 1276 | #endif |
| 1277 | #ifdef CONFIG_NF_CONNTRACK_MARK |
| 1278 | case OVS_CT_ATTR_MARK: { |
| 1279 | struct md_mark *mark = nla_data(nla: a); |
| 1280 | |
| 1281 | if (!mark->mask) { |
| 1282 | OVS_NLERR(log, "ct_mark mask cannot be 0" ); |
| 1283 | return -EINVAL; |
| 1284 | } |
| 1285 | info->mark = *mark; |
| 1286 | break; |
| 1287 | } |
| 1288 | #endif |
| 1289 | #ifdef CONFIG_NF_CONNTRACK_LABELS |
| 1290 | case OVS_CT_ATTR_LABELS: { |
| 1291 | struct md_labels *labels = nla_data(nla: a); |
| 1292 | |
| 1293 | if (!labels_nonzero(labels: &labels->mask)) { |
| 1294 | OVS_NLERR(log, "ct_labels mask cannot be 0" ); |
| 1295 | return -EINVAL; |
| 1296 | } |
| 1297 | info->labels = *labels; |
| 1298 | break; |
| 1299 | } |
| 1300 | #endif |
| 1301 | case OVS_CT_ATTR_HELPER: |
| 1302 | *helper = nla_data(nla: a); |
| 1303 | if (!string_is_terminated(s: *helper, len: nla_len(nla: a))) { |
| 1304 | OVS_NLERR(log, "Invalid conntrack helper" ); |
| 1305 | return -EINVAL; |
| 1306 | } |
| 1307 | break; |
| 1308 | #if IS_ENABLED(CONFIG_NF_NAT) |
| 1309 | case OVS_CT_ATTR_NAT: { |
| 1310 | int err = parse_nat(attr: a, info, log); |
| 1311 | |
| 1312 | if (err) |
| 1313 | return err; |
| 1314 | break; |
| 1315 | } |
| 1316 | #endif |
| 1317 | case OVS_CT_ATTR_EVENTMASK: |
| 1318 | info->have_eventmask = true; |
| 1319 | info->eventmask = nla_get_u32(nla: a); |
| 1320 | break; |
| 1321 | #ifdef CONFIG_NF_CONNTRACK_TIMEOUT |
| 1322 | case OVS_CT_ATTR_TIMEOUT: |
| 1323 | memcpy(info->timeout, nla_data(a), nla_len(a)); |
| 1324 | if (!string_is_terminated(s: info->timeout, len: nla_len(nla: a))) { |
| 1325 | OVS_NLERR(log, "Invalid conntrack timeout" ); |
| 1326 | return -EINVAL; |
| 1327 | } |
| 1328 | break; |
| 1329 | #endif |
| 1330 | |
| 1331 | default: |
| 1332 | OVS_NLERR(log, "Unknown conntrack attr (%d)" , |
| 1333 | type); |
| 1334 | return -EINVAL; |
| 1335 | } |
| 1336 | } |
| 1337 | |
| 1338 | #ifdef CONFIG_NF_CONNTRACK_MARK |
| 1339 | if (!info->commit && info->mark.mask) { |
| 1340 | OVS_NLERR(log, |
| 1341 | "Setting conntrack mark requires 'commit' flag." ); |
| 1342 | return -EINVAL; |
| 1343 | } |
| 1344 | #endif |
| 1345 | #ifdef CONFIG_NF_CONNTRACK_LABELS |
| 1346 | if (!info->commit && labels_nonzero(labels: &info->labels.mask)) { |
| 1347 | OVS_NLERR(log, |
| 1348 | "Setting conntrack labels requires 'commit' flag." ); |
| 1349 | return -EINVAL; |
| 1350 | } |
| 1351 | #endif |
| 1352 | if (rem > 0) { |
| 1353 | OVS_NLERR(log, "Conntrack attr has %d unknown bytes" , rem); |
| 1354 | return -EINVAL; |
| 1355 | } |
| 1356 | |
| 1357 | return 0; |
| 1358 | } |
| 1359 | |
| 1360 | bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) |
| 1361 | { |
| 1362 | if (attr == OVS_KEY_ATTR_CT_STATE) |
| 1363 | return true; |
| 1364 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && |
| 1365 | attr == OVS_KEY_ATTR_CT_ZONE) |
| 1366 | return true; |
| 1367 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && |
| 1368 | attr == OVS_KEY_ATTR_CT_MARK) |
| 1369 | return true; |
| 1370 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && |
| 1371 | attr == OVS_KEY_ATTR_CT_LABELS) { |
| 1372 | struct ovs_net *ovs_net = net_generic(net, id: ovs_net_id); |
| 1373 | |
| 1374 | return ovs_net->xt_label; |
| 1375 | } |
| 1376 | |
| 1377 | return false; |
| 1378 | } |
| 1379 | |
| 1380 | int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, |
| 1381 | const struct sw_flow_key *key, |
| 1382 | struct sw_flow_actions **sfa, bool log) |
| 1383 | { |
| 1384 | struct ovs_conntrack_info ct_info; |
| 1385 | const char *helper = NULL; |
| 1386 | u16 family; |
| 1387 | int err; |
| 1388 | |
| 1389 | family = key_to_nfproto(key); |
| 1390 | if (family == NFPROTO_UNSPEC) { |
| 1391 | OVS_NLERR(log, "ct family unspecified" ); |
| 1392 | return -EINVAL; |
| 1393 | } |
| 1394 | |
| 1395 | memset(&ct_info, 0, sizeof(ct_info)); |
| 1396 | ct_info.family = family; |
| 1397 | |
| 1398 | nf_ct_zone_init(zone: &ct_info.zone, NF_CT_DEFAULT_ZONE_ID, |
| 1399 | NF_CT_DEFAULT_ZONE_DIR, flags: 0); |
| 1400 | |
| 1401 | err = parse_ct(attr, info: &ct_info, helper: &helper, log); |
| 1402 | if (err) |
| 1403 | return err; |
| 1404 | |
| 1405 | /* Set up template for tracking connections in specific zones. */ |
| 1406 | ct_info.ct = nf_ct_tmpl_alloc(net, zone: &ct_info.zone, GFP_KERNEL); |
| 1407 | if (!ct_info.ct) { |
| 1408 | OVS_NLERR(log, "Failed to allocate conntrack template" ); |
| 1409 | return -ENOMEM; |
| 1410 | } |
| 1411 | |
| 1412 | if (ct_info.timeout[0]) { |
| 1413 | if (nf_ct_set_timeout(net, ct: ct_info.ct, l3num: family, l4num: key->ip.proto, |
| 1414 | timeout_name: ct_info.timeout)) |
| 1415 | OVS_NLERR(log, |
| 1416 | "Failed to associated timeout policy '%s'" , |
| 1417 | ct_info.timeout); |
| 1418 | else |
| 1419 | ct_info.nf_ct_timeout = rcu_dereference( |
| 1420 | nf_ct_timeout_find(ct_info.ct)->timeout); |
| 1421 | |
| 1422 | } |
| 1423 | |
| 1424 | if (helper) { |
| 1425 | err = nf_ct_add_helper(ct: ct_info.ct, name: helper, family: ct_info.family, |
| 1426 | proto: key->ip.proto, nat: ct_info.nat, hp: &ct_info.helper); |
| 1427 | if (err) { |
| 1428 | OVS_NLERR(log, "Failed to add %s helper %d" , helper, err); |
| 1429 | goto err_free_ct; |
| 1430 | } |
| 1431 | } |
| 1432 | |
| 1433 | err = ovs_nla_add_action(sfa, attrtype: OVS_ACTION_ATTR_CT, data: &ct_info, |
| 1434 | len: sizeof(ct_info), log); |
| 1435 | if (err) |
| 1436 | goto err_free_ct; |
| 1437 | |
| 1438 | if (ct_info.commit) |
| 1439 | __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); |
| 1440 | return 0; |
| 1441 | err_free_ct: |
| 1442 | __ovs_ct_free_action(ct_info: &ct_info); |
| 1443 | return err; |
| 1444 | } |
| 1445 | |
| 1446 | #if IS_ENABLED(CONFIG_NF_NAT) |
| 1447 | static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, |
| 1448 | struct sk_buff *skb) |
| 1449 | { |
| 1450 | struct nlattr *start; |
| 1451 | |
| 1452 | start = nla_nest_start_noflag(skb, attrtype: OVS_CT_ATTR_NAT); |
| 1453 | if (!start) |
| 1454 | return false; |
| 1455 | |
| 1456 | if (info->nat & OVS_CT_SRC_NAT) { |
| 1457 | if (nla_put_flag(skb, attrtype: OVS_NAT_ATTR_SRC)) |
| 1458 | return false; |
| 1459 | } else if (info->nat & OVS_CT_DST_NAT) { |
| 1460 | if (nla_put_flag(skb, attrtype: OVS_NAT_ATTR_DST)) |
| 1461 | return false; |
| 1462 | } else { |
| 1463 | goto out; |
| 1464 | } |
| 1465 | |
| 1466 | if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { |
| 1467 | if (IS_ENABLED(CONFIG_NF_NAT) && |
| 1468 | info->family == NFPROTO_IPV4) { |
| 1469 | if (nla_put_in_addr(skb, attrtype: OVS_NAT_ATTR_IP_MIN, |
| 1470 | addr: info->range.min_addr.ip) || |
| 1471 | (info->range.max_addr.ip |
| 1472 | != info->range.min_addr.ip && |
| 1473 | (nla_put_in_addr(skb, attrtype: OVS_NAT_ATTR_IP_MAX, |
| 1474 | addr: info->range.max_addr.ip)))) |
| 1475 | return false; |
| 1476 | } else if (IS_ENABLED(CONFIG_IPV6) && |
| 1477 | info->family == NFPROTO_IPV6) { |
| 1478 | if (nla_put_in6_addr(skb, attrtype: OVS_NAT_ATTR_IP_MIN, |
| 1479 | addr: &info->range.min_addr.in6) || |
| 1480 | (memcmp(p: &info->range.max_addr.in6, |
| 1481 | q: &info->range.min_addr.in6, |
| 1482 | size: sizeof(info->range.max_addr.in6)) && |
| 1483 | (nla_put_in6_addr(skb, attrtype: OVS_NAT_ATTR_IP_MAX, |
| 1484 | addr: &info->range.max_addr.in6)))) |
| 1485 | return false; |
| 1486 | } else { |
| 1487 | return false; |
| 1488 | } |
| 1489 | } |
| 1490 | if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && |
| 1491 | (nla_put_u16(skb, attrtype: OVS_NAT_ATTR_PROTO_MIN, |
| 1492 | ntohs(info->range.min_proto.all)) || |
| 1493 | (info->range.max_proto.all != info->range.min_proto.all && |
| 1494 | nla_put_u16(skb, attrtype: OVS_NAT_ATTR_PROTO_MAX, |
| 1495 | ntohs(info->range.max_proto.all))))) |
| 1496 | return false; |
| 1497 | |
| 1498 | if (info->range.flags & NF_NAT_RANGE_PERSISTENT && |
| 1499 | nla_put_flag(skb, attrtype: OVS_NAT_ATTR_PERSISTENT)) |
| 1500 | return false; |
| 1501 | if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && |
| 1502 | nla_put_flag(skb, attrtype: OVS_NAT_ATTR_PROTO_HASH)) |
| 1503 | return false; |
| 1504 | if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && |
| 1505 | nla_put_flag(skb, attrtype: OVS_NAT_ATTR_PROTO_RANDOM)) |
| 1506 | return false; |
| 1507 | out: |
| 1508 | nla_nest_end(skb, start); |
| 1509 | |
| 1510 | return true; |
| 1511 | } |
| 1512 | #endif |
| 1513 | |
| 1514 | int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, |
| 1515 | struct sk_buff *skb) |
| 1516 | { |
| 1517 | struct nlattr *start; |
| 1518 | |
| 1519 | start = nla_nest_start_noflag(skb, attrtype: OVS_ACTION_ATTR_CT); |
| 1520 | if (!start) |
| 1521 | return -EMSGSIZE; |
| 1522 | |
| 1523 | if (ct_info->commit && nla_put_flag(skb, attrtype: ct_info->force |
| 1524 | ? OVS_CT_ATTR_FORCE_COMMIT |
| 1525 | : OVS_CT_ATTR_COMMIT)) |
| 1526 | return -EMSGSIZE; |
| 1527 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && |
| 1528 | nla_put_u16(skb, attrtype: OVS_CT_ATTR_ZONE, value: ct_info->zone.id)) |
| 1529 | return -EMSGSIZE; |
| 1530 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && |
| 1531 | nla_put(skb, attrtype: OVS_CT_ATTR_MARK, attrlen: sizeof(ct_info->mark), |
| 1532 | data: &ct_info->mark)) |
| 1533 | return -EMSGSIZE; |
| 1534 | if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && |
| 1535 | labels_nonzero(labels: &ct_info->labels.mask) && |
| 1536 | nla_put(skb, attrtype: OVS_CT_ATTR_LABELS, attrlen: sizeof(ct_info->labels), |
| 1537 | data: &ct_info->labels)) |
| 1538 | return -EMSGSIZE; |
| 1539 | if (ct_info->helper) { |
| 1540 | if (nla_put_string(skb, attrtype: OVS_CT_ATTR_HELPER, |
| 1541 | str: ct_info->helper->name)) |
| 1542 | return -EMSGSIZE; |
| 1543 | } |
| 1544 | if (ct_info->have_eventmask && |
| 1545 | nla_put_u32(skb, attrtype: OVS_CT_ATTR_EVENTMASK, value: ct_info->eventmask)) |
| 1546 | return -EMSGSIZE; |
| 1547 | if (ct_info->timeout[0]) { |
| 1548 | if (nla_put_string(skb, attrtype: OVS_CT_ATTR_TIMEOUT, str: ct_info->timeout)) |
| 1549 | return -EMSGSIZE; |
| 1550 | } |
| 1551 | |
| 1552 | #if IS_ENABLED(CONFIG_NF_NAT) |
| 1553 | if (ct_info->nat && !ovs_ct_nat_to_attr(info: ct_info, skb)) |
| 1554 | return -EMSGSIZE; |
| 1555 | #endif |
| 1556 | nla_nest_end(skb, start); |
| 1557 | |
| 1558 | return 0; |
| 1559 | } |
| 1560 | |
| 1561 | void ovs_ct_free_action(const struct nlattr *a) |
| 1562 | { |
| 1563 | struct ovs_conntrack_info *ct_info = nla_data(nla: a); |
| 1564 | |
| 1565 | __ovs_ct_free_action(ct_info); |
| 1566 | } |
| 1567 | |
| 1568 | static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) |
| 1569 | { |
| 1570 | if (ct_info->helper) { |
| 1571 | #if IS_ENABLED(CONFIG_NF_NAT) |
| 1572 | if (ct_info->nat) |
| 1573 | nf_nat_helper_put(helper: ct_info->helper); |
| 1574 | #endif |
| 1575 | nf_conntrack_helper_put(helper: ct_info->helper); |
| 1576 | } |
| 1577 | if (ct_info->ct) { |
| 1578 | if (ct_info->timeout[0]) |
| 1579 | nf_ct_destroy_timeout(ct: ct_info->ct); |
| 1580 | nf_ct_tmpl_free(tmpl: ct_info->ct); |
| 1581 | } |
| 1582 | } |
| 1583 | |
| 1584 | #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) |
| 1585 | static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net) |
| 1586 | { |
| 1587 | int i, err; |
| 1588 | |
| 1589 | ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info), |
| 1590 | GFP_KERNEL); |
| 1591 | if (!ovs_net->ct_limit_info) |
| 1592 | return -ENOMEM; |
| 1593 | |
| 1594 | ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT; |
| 1595 | ovs_net->ct_limit_info->limits = |
| 1596 | kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head), |
| 1597 | GFP_KERNEL); |
| 1598 | if (!ovs_net->ct_limit_info->limits) { |
| 1599 | kfree(objp: ovs_net->ct_limit_info); |
| 1600 | return -ENOMEM; |
| 1601 | } |
| 1602 | |
| 1603 | for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++) |
| 1604 | INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]); |
| 1605 | |
| 1606 | ovs_net->ct_limit_info->data = nf_conncount_init(net, keylen: sizeof(u32)); |
| 1607 | |
| 1608 | if (IS_ERR(ptr: ovs_net->ct_limit_info->data)) { |
| 1609 | err = PTR_ERR(ptr: ovs_net->ct_limit_info->data); |
| 1610 | kfree(objp: ovs_net->ct_limit_info->limits); |
| 1611 | kfree(objp: ovs_net->ct_limit_info); |
| 1612 | pr_err("openvswitch: failed to init nf_conncount %d\n" , err); |
| 1613 | return err; |
| 1614 | } |
| 1615 | return 0; |
| 1616 | } |
| 1617 | |
| 1618 | static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net) |
| 1619 | { |
| 1620 | const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info; |
| 1621 | int i; |
| 1622 | |
| 1623 | nf_conncount_destroy(net, data: info->data); |
| 1624 | for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { |
| 1625 | struct hlist_head *head = &info->limits[i]; |
| 1626 | struct ovs_ct_limit *ct_limit; |
| 1627 | struct hlist_node *next; |
| 1628 | |
| 1629 | hlist_for_each_entry_safe(ct_limit, next, head, hlist_node) |
| 1630 | kfree_rcu(ct_limit, rcu); |
| 1631 | } |
| 1632 | kfree(objp: info->limits); |
| 1633 | kfree(objp: info); |
| 1634 | } |
| 1635 | |
| 1636 | static struct sk_buff * |
| 1637 | ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd, |
| 1638 | struct ovs_header **) |
| 1639 | { |
| 1640 | struct ovs_header * = genl_info_userhdr(info); |
| 1641 | struct sk_buff *skb; |
| 1642 | |
| 1643 | skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); |
| 1644 | if (!skb) |
| 1645 | return ERR_PTR(error: -ENOMEM); |
| 1646 | |
| 1647 | *ovs_reply_header = genlmsg_put(skb, portid: info->snd_portid, |
| 1648 | seq: info->snd_seq, |
| 1649 | family: &dp_ct_limit_genl_family, flags: 0, cmd); |
| 1650 | |
| 1651 | if (!*ovs_reply_header) { |
| 1652 | nlmsg_free(skb); |
| 1653 | return ERR_PTR(error: -EMSGSIZE); |
| 1654 | } |
| 1655 | (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex; |
| 1656 | |
| 1657 | return skb; |
| 1658 | } |
| 1659 | |
| 1660 | static bool check_zone_id(int zone_id, u16 *pzone) |
| 1661 | { |
| 1662 | if (zone_id >= 0 && zone_id <= 65535) { |
| 1663 | *pzone = (u16)zone_id; |
| 1664 | return true; |
| 1665 | } |
| 1666 | return false; |
| 1667 | } |
| 1668 | |
| 1669 | static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit, |
| 1670 | struct ovs_ct_limit_info *info) |
| 1671 | { |
| 1672 | struct ovs_zone_limit *zone_limit; |
| 1673 | int rem; |
| 1674 | u16 zone; |
| 1675 | |
| 1676 | rem = NLA_ALIGN(nla_len(nla_zone_limit)); |
| 1677 | zone_limit = (struct ovs_zone_limit *)nla_data(nla: nla_zone_limit); |
| 1678 | |
| 1679 | while (rem >= sizeof(*zone_limit)) { |
| 1680 | if (unlikely(zone_limit->zone_id == |
| 1681 | OVS_ZONE_LIMIT_DEFAULT_ZONE)) { |
| 1682 | ovs_lock(); |
| 1683 | info->default_limit = zone_limit->limit; |
| 1684 | ovs_unlock(); |
| 1685 | } else if (unlikely(!check_zone_id( |
| 1686 | zone_limit->zone_id, &zone))) { |
| 1687 | OVS_NLERR(true, "zone id is out of range" ); |
| 1688 | } else { |
| 1689 | struct ovs_ct_limit *ct_limit; |
| 1690 | |
| 1691 | ct_limit = kmalloc(sizeof(*ct_limit), |
| 1692 | GFP_KERNEL_ACCOUNT); |
| 1693 | if (!ct_limit) |
| 1694 | return -ENOMEM; |
| 1695 | |
| 1696 | ct_limit->zone = zone; |
| 1697 | ct_limit->limit = zone_limit->limit; |
| 1698 | |
| 1699 | ovs_lock(); |
| 1700 | ct_limit_set(info, new_ct_limit: ct_limit); |
| 1701 | ovs_unlock(); |
| 1702 | } |
| 1703 | rem -= NLA_ALIGN(sizeof(*zone_limit)); |
| 1704 | zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + |
| 1705 | NLA_ALIGN(sizeof(*zone_limit))); |
| 1706 | } |
| 1707 | |
| 1708 | if (rem) |
| 1709 | OVS_NLERR(true, "set zone limit has %d unknown bytes" , rem); |
| 1710 | |
| 1711 | return 0; |
| 1712 | } |
| 1713 | |
| 1714 | static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit, |
| 1715 | struct ovs_ct_limit_info *info) |
| 1716 | { |
| 1717 | struct ovs_zone_limit *zone_limit; |
| 1718 | int rem; |
| 1719 | u16 zone; |
| 1720 | |
| 1721 | rem = NLA_ALIGN(nla_len(nla_zone_limit)); |
| 1722 | zone_limit = (struct ovs_zone_limit *)nla_data(nla: nla_zone_limit); |
| 1723 | |
| 1724 | while (rem >= sizeof(*zone_limit)) { |
| 1725 | if (unlikely(zone_limit->zone_id == |
| 1726 | OVS_ZONE_LIMIT_DEFAULT_ZONE)) { |
| 1727 | ovs_lock(); |
| 1728 | info->default_limit = OVS_CT_LIMIT_DEFAULT; |
| 1729 | ovs_unlock(); |
| 1730 | } else if (unlikely(!check_zone_id( |
| 1731 | zone_limit->zone_id, &zone))) { |
| 1732 | OVS_NLERR(true, "zone id is out of range" ); |
| 1733 | } else { |
| 1734 | ovs_lock(); |
| 1735 | ct_limit_del(info, zone); |
| 1736 | ovs_unlock(); |
| 1737 | } |
| 1738 | rem -= NLA_ALIGN(sizeof(*zone_limit)); |
| 1739 | zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + |
| 1740 | NLA_ALIGN(sizeof(*zone_limit))); |
| 1741 | } |
| 1742 | |
| 1743 | if (rem) |
| 1744 | OVS_NLERR(true, "del zone limit has %d unknown bytes" , rem); |
| 1745 | |
| 1746 | return 0; |
| 1747 | } |
| 1748 | |
| 1749 | static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info, |
| 1750 | struct sk_buff *reply) |
| 1751 | { |
| 1752 | struct ovs_zone_limit zone_limit = { |
| 1753 | .zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE, |
| 1754 | .limit = info->default_limit, |
| 1755 | }; |
| 1756 | |
| 1757 | return nla_put_nohdr(skb: reply, attrlen: sizeof(zone_limit), data: &zone_limit); |
| 1758 | } |
| 1759 | |
| 1760 | static int __ovs_ct_limit_get_zone_limit(struct net *net, |
| 1761 | struct nf_conncount_data *data, |
| 1762 | u16 zone_id, u32 limit, |
| 1763 | struct sk_buff *reply) |
| 1764 | { |
| 1765 | struct nf_conntrack_zone ct_zone; |
| 1766 | struct ovs_zone_limit zone_limit; |
| 1767 | u32 conncount_key = zone_id; |
| 1768 | |
| 1769 | zone_limit.zone_id = zone_id; |
| 1770 | zone_limit.limit = limit; |
| 1771 | nf_ct_zone_init(zone: &ct_zone, id: zone_id, NF_CT_DEFAULT_ZONE_DIR, flags: 0); |
| 1772 | |
| 1773 | zone_limit.count = nf_conncount_count(net, data, key: &conncount_key, NULL, |
| 1774 | zone: &ct_zone); |
| 1775 | return nla_put_nohdr(skb: reply, attrlen: sizeof(zone_limit), data: &zone_limit); |
| 1776 | } |
| 1777 | |
| 1778 | static int ovs_ct_limit_get_zone_limit(struct net *net, |
| 1779 | struct nlattr *nla_zone_limit, |
| 1780 | struct ovs_ct_limit_info *info, |
| 1781 | struct sk_buff *reply) |
| 1782 | { |
| 1783 | struct ovs_zone_limit *zone_limit; |
| 1784 | int rem, err; |
| 1785 | u32 limit; |
| 1786 | u16 zone; |
| 1787 | |
| 1788 | rem = NLA_ALIGN(nla_len(nla_zone_limit)); |
| 1789 | zone_limit = (struct ovs_zone_limit *)nla_data(nla: nla_zone_limit); |
| 1790 | |
| 1791 | while (rem >= sizeof(*zone_limit)) { |
| 1792 | if (unlikely(zone_limit->zone_id == |
| 1793 | OVS_ZONE_LIMIT_DEFAULT_ZONE)) { |
| 1794 | err = ovs_ct_limit_get_default_limit(info, reply); |
| 1795 | if (err) |
| 1796 | return err; |
| 1797 | } else if (unlikely(!check_zone_id(zone_limit->zone_id, |
| 1798 | &zone))) { |
| 1799 | OVS_NLERR(true, "zone id is out of range" ); |
| 1800 | } else { |
| 1801 | rcu_read_lock(); |
| 1802 | limit = ct_limit_get(info, zone); |
| 1803 | rcu_read_unlock(); |
| 1804 | |
| 1805 | err = __ovs_ct_limit_get_zone_limit( |
| 1806 | net, data: info->data, zone_id: zone, limit, reply); |
| 1807 | if (err) |
| 1808 | return err; |
| 1809 | } |
| 1810 | rem -= NLA_ALIGN(sizeof(*zone_limit)); |
| 1811 | zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + |
| 1812 | NLA_ALIGN(sizeof(*zone_limit))); |
| 1813 | } |
| 1814 | |
| 1815 | if (rem) |
| 1816 | OVS_NLERR(true, "get zone limit has %d unknown bytes" , rem); |
| 1817 | |
| 1818 | return 0; |
| 1819 | } |
| 1820 | |
| 1821 | static int ovs_ct_limit_get_all_zone_limit(struct net *net, |
| 1822 | struct ovs_ct_limit_info *info, |
| 1823 | struct sk_buff *reply) |
| 1824 | { |
| 1825 | struct ovs_ct_limit *ct_limit; |
| 1826 | struct hlist_head *head; |
| 1827 | int i, err = 0; |
| 1828 | |
| 1829 | err = ovs_ct_limit_get_default_limit(info, reply); |
| 1830 | if (err) |
| 1831 | return err; |
| 1832 | |
| 1833 | rcu_read_lock(); |
| 1834 | for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { |
| 1835 | head = &info->limits[i]; |
| 1836 | hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { |
| 1837 | err = __ovs_ct_limit_get_zone_limit(net, data: info->data, |
| 1838 | zone_id: ct_limit->zone, limit: ct_limit->limit, reply); |
| 1839 | if (err) |
| 1840 | goto exit_err; |
| 1841 | } |
| 1842 | } |
| 1843 | |
| 1844 | exit_err: |
| 1845 | rcu_read_unlock(); |
| 1846 | return err; |
| 1847 | } |
| 1848 | |
| 1849 | static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info) |
| 1850 | { |
| 1851 | struct nlattr **a = info->attrs; |
| 1852 | struct sk_buff *reply; |
| 1853 | struct ovs_header *; |
| 1854 | struct ovs_net *ovs_net = net_generic(net: sock_net(sk: skb->sk), id: ovs_net_id); |
| 1855 | struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; |
| 1856 | int err; |
| 1857 | |
| 1858 | reply = ovs_ct_limit_cmd_reply_start(info, cmd: OVS_CT_LIMIT_CMD_SET, |
| 1859 | ovs_reply_header: &ovs_reply_header); |
| 1860 | if (IS_ERR(ptr: reply)) |
| 1861 | return PTR_ERR(ptr: reply); |
| 1862 | |
| 1863 | if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { |
| 1864 | err = -EINVAL; |
| 1865 | goto exit_err; |
| 1866 | } |
| 1867 | |
| 1868 | err = ovs_ct_limit_set_zone_limit(nla_zone_limit: a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], |
| 1869 | info: ct_limit_info); |
| 1870 | if (err) |
| 1871 | goto exit_err; |
| 1872 | |
| 1873 | static_branch_enable(&ovs_ct_limit_enabled); |
| 1874 | |
| 1875 | genlmsg_end(skb: reply, hdr: ovs_reply_header); |
| 1876 | return genlmsg_reply(skb: reply, info); |
| 1877 | |
| 1878 | exit_err: |
| 1879 | nlmsg_free(skb: reply); |
| 1880 | return err; |
| 1881 | } |
| 1882 | |
| 1883 | static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info) |
| 1884 | { |
| 1885 | struct nlattr **a = info->attrs; |
| 1886 | struct sk_buff *reply; |
| 1887 | struct ovs_header *; |
| 1888 | struct ovs_net *ovs_net = net_generic(net: sock_net(sk: skb->sk), id: ovs_net_id); |
| 1889 | struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; |
| 1890 | int err; |
| 1891 | |
| 1892 | reply = ovs_ct_limit_cmd_reply_start(info, cmd: OVS_CT_LIMIT_CMD_DEL, |
| 1893 | ovs_reply_header: &ovs_reply_header); |
| 1894 | if (IS_ERR(ptr: reply)) |
| 1895 | return PTR_ERR(ptr: reply); |
| 1896 | |
| 1897 | if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { |
| 1898 | err = -EINVAL; |
| 1899 | goto exit_err; |
| 1900 | } |
| 1901 | |
| 1902 | err = ovs_ct_limit_del_zone_limit(nla_zone_limit: a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], |
| 1903 | info: ct_limit_info); |
| 1904 | if (err) |
| 1905 | goto exit_err; |
| 1906 | |
| 1907 | genlmsg_end(skb: reply, hdr: ovs_reply_header); |
| 1908 | return genlmsg_reply(skb: reply, info); |
| 1909 | |
| 1910 | exit_err: |
| 1911 | nlmsg_free(skb: reply); |
| 1912 | return err; |
| 1913 | } |
| 1914 | |
| 1915 | static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info) |
| 1916 | { |
| 1917 | struct nlattr **a = info->attrs; |
| 1918 | struct nlattr *nla_reply; |
| 1919 | struct sk_buff *reply; |
| 1920 | struct ovs_header *; |
| 1921 | struct net *net = sock_net(sk: skb->sk); |
| 1922 | struct ovs_net *ovs_net = net_generic(net, id: ovs_net_id); |
| 1923 | struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; |
| 1924 | int err; |
| 1925 | |
| 1926 | reply = ovs_ct_limit_cmd_reply_start(info, cmd: OVS_CT_LIMIT_CMD_GET, |
| 1927 | ovs_reply_header: &ovs_reply_header); |
| 1928 | if (IS_ERR(ptr: reply)) |
| 1929 | return PTR_ERR(ptr: reply); |
| 1930 | |
| 1931 | nla_reply = nla_nest_start_noflag(skb: reply, attrtype: OVS_CT_LIMIT_ATTR_ZONE_LIMIT); |
| 1932 | if (!nla_reply) { |
| 1933 | err = -EMSGSIZE; |
| 1934 | goto exit_err; |
| 1935 | } |
| 1936 | |
| 1937 | if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { |
| 1938 | err = ovs_ct_limit_get_zone_limit( |
| 1939 | net, nla_zone_limit: a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], info: ct_limit_info, |
| 1940 | reply); |
| 1941 | if (err) |
| 1942 | goto exit_err; |
| 1943 | } else { |
| 1944 | err = ovs_ct_limit_get_all_zone_limit(net, info: ct_limit_info, |
| 1945 | reply); |
| 1946 | if (err) |
| 1947 | goto exit_err; |
| 1948 | } |
| 1949 | |
| 1950 | nla_nest_end(skb: reply, start: nla_reply); |
| 1951 | genlmsg_end(skb: reply, hdr: ovs_reply_header); |
| 1952 | return genlmsg_reply(skb: reply, info); |
| 1953 | |
| 1954 | exit_err: |
| 1955 | nlmsg_free(skb: reply); |
| 1956 | return err; |
| 1957 | } |
| 1958 | |
| 1959 | static const struct genl_small_ops ct_limit_genl_ops[] = { |
| 1960 | { .cmd = OVS_CT_LIMIT_CMD_SET, |
| 1961 | .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, |
| 1962 | .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN |
| 1963 | * privilege. |
| 1964 | */ |
| 1965 | .doit = ovs_ct_limit_cmd_set, |
| 1966 | }, |
| 1967 | { .cmd = OVS_CT_LIMIT_CMD_DEL, |
| 1968 | .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, |
| 1969 | .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN |
| 1970 | * privilege. |
| 1971 | */ |
| 1972 | .doit = ovs_ct_limit_cmd_del, |
| 1973 | }, |
| 1974 | { .cmd = OVS_CT_LIMIT_CMD_GET, |
| 1975 | .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, |
| 1976 | .flags = 0, /* OK for unprivileged users. */ |
| 1977 | .doit = ovs_ct_limit_cmd_get, |
| 1978 | }, |
| 1979 | }; |
| 1980 | |
| 1981 | static const struct genl_multicast_group ovs_ct_limit_multicast_group = { |
| 1982 | .name = OVS_CT_LIMIT_MCGROUP, |
| 1983 | }; |
| 1984 | |
| 1985 | struct genl_family dp_ct_limit_genl_family __ro_after_init = { |
| 1986 | .hdrsize = sizeof(struct ovs_header), |
| 1987 | .name = OVS_CT_LIMIT_FAMILY, |
| 1988 | .version = OVS_CT_LIMIT_VERSION, |
| 1989 | .maxattr = OVS_CT_LIMIT_ATTR_MAX, |
| 1990 | .policy = ct_limit_policy, |
| 1991 | .netnsok = true, |
| 1992 | .parallel_ops = true, |
| 1993 | .small_ops = ct_limit_genl_ops, |
| 1994 | .n_small_ops = ARRAY_SIZE(ct_limit_genl_ops), |
| 1995 | .resv_start_op = OVS_CT_LIMIT_CMD_GET + 1, |
| 1996 | .mcgrps = &ovs_ct_limit_multicast_group, |
| 1997 | .n_mcgrps = 1, |
| 1998 | .module = THIS_MODULE, |
| 1999 | }; |
| 2000 | #endif |
| 2001 | |
| 2002 | int ovs_ct_init(struct net *net) |
| 2003 | { |
| 2004 | unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; |
| 2005 | struct ovs_net *ovs_net = net_generic(net, id: ovs_net_id); |
| 2006 | |
| 2007 | if (nf_connlabels_get(net, bit: n_bits - 1)) { |
| 2008 | ovs_net->xt_label = false; |
| 2009 | OVS_NLERR(true, "Failed to set connlabel length" ); |
| 2010 | } else { |
| 2011 | ovs_net->xt_label = true; |
| 2012 | } |
| 2013 | |
| 2014 | #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) |
| 2015 | return ovs_ct_limit_init(net, ovs_net); |
| 2016 | #else |
| 2017 | return 0; |
| 2018 | #endif |
| 2019 | } |
| 2020 | |
| 2021 | void ovs_ct_exit(struct net *net) |
| 2022 | { |
| 2023 | struct ovs_net *ovs_net = net_generic(net, id: ovs_net_id); |
| 2024 | |
| 2025 | #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) |
| 2026 | ovs_ct_limit_exit(net, ovs_net); |
| 2027 | #endif |
| 2028 | |
| 2029 | if (ovs_net->xt_label) |
| 2030 | nf_connlabels_put(net); |
| 2031 | } |
| 2032 | |