1/* SPDX-License-Identifier: GPL-2.0 */
2/* XDP user-space ring structure
3 * Copyright(c) 2018 Intel Corporation.
4 */
5
6#ifndef _LINUX_XSK_QUEUE_H
7#define _LINUX_XSK_QUEUE_H
8
9#include <linux/types.h>
10#include <linux/if_xdp.h>
11#include <net/xdp_sock.h>
12#include <net/xsk_buff_pool.h>
13
14#include "xsk.h"
15
16struct xdp_ring {
17 u32 producer ____cacheline_aligned_in_smp;
18 /* Hinder the adjacent cache prefetcher to prefetch the consumer
19 * pointer if the producer pointer is touched and vice versa.
20 */
21 u32 pad1 ____cacheline_aligned_in_smp;
22 u32 consumer ____cacheline_aligned_in_smp;
23 u32 pad2 ____cacheline_aligned_in_smp;
24 u32 flags;
25 u32 pad3 ____cacheline_aligned_in_smp;
26};
27
28/* Used for the RX and TX queues for packets */
29struct xdp_rxtx_ring {
30 struct xdp_ring ptrs;
31 struct xdp_desc desc[] ____cacheline_aligned_in_smp;
32};
33
34/* Used for the fill and completion queues for buffers */
35struct xdp_umem_ring {
36 struct xdp_ring ptrs;
37 u64 desc[] ____cacheline_aligned_in_smp;
38};
39
40struct xsk_queue {
41 u32 ring_mask;
42 u32 nentries;
43 u32 cached_prod;
44 u32 cached_cons;
45 struct xdp_ring *ring;
46 u64 invalid_descs;
47 u64 queue_empty_descs;
48 size_t ring_vmalloc_size;
49};
50
51struct parsed_desc {
52 u32 mb;
53 u32 valid;
54};
55
56/* The structure of the shared state of the rings are a simple
57 * circular buffer, as outlined in
58 * Documentation/core-api/circular-buffers.rst. For the Rx and
59 * completion ring, the kernel is the producer and user space is the
60 * consumer. For the Tx and fill rings, the kernel is the consumer and
61 * user space is the producer.
62 *
63 * producer consumer
64 *
65 * if (LOAD ->consumer) { (A) LOAD.acq ->producer (C)
66 * STORE $data LOAD $data
67 * STORE.rel ->producer (B) STORE.rel ->consumer (D)
68 * }
69 *
70 * (A) pairs with (D), and (B) pairs with (C).
71 *
72 * Starting with (B), it protects the data from being written after
73 * the producer pointer. If this barrier was missing, the consumer
74 * could observe the producer pointer being set and thus load the data
75 * before the producer has written the new data. The consumer would in
76 * this case load the old data.
77 *
78 * (C) protects the consumer from speculatively loading the data before
79 * the producer pointer actually has been read. If we do not have this
80 * barrier, some architectures could load old data as speculative loads
81 * are not discarded as the CPU does not know there is a dependency
82 * between ->producer and data.
83 *
84 * (A) is a control dependency that separates the load of ->consumer
85 * from the stores of $data. In case ->consumer indicates there is no
86 * room in the buffer to store $data we do not. The dependency will
87 * order both of the stores after the loads. So no barrier is needed.
88 *
89 * (D) protects the load of the data to be observed to happen after the
90 * store of the consumer pointer. If we did not have this memory
91 * barrier, the producer could observe the consumer pointer being set
92 * and overwrite the data with a new value before the consumer got the
93 * chance to read the old value. The consumer would thus miss reading
94 * the old entry and very likely read the new entry twice, once right
95 * now and again after circling through the ring.
96 */
97
98/* The operations on the rings are the following:
99 *
100 * producer consumer
101 *
102 * RESERVE entries PEEK in the ring for entries
103 * WRITE data into the ring READ data from the ring
104 * SUBMIT entries RELEASE entries
105 *
106 * The producer reserves one or more entries in the ring. It can then
107 * fill in these entries and finally submit them so that they can be
108 * seen and read by the consumer.
109 *
110 * The consumer peeks into the ring to see if the producer has written
111 * any new entries. If so, the consumer can then read these entries
112 * and when it is done reading them release them back to the producer
113 * so that the producer can use these slots to fill in new entries.
114 *
115 * The function names below reflect these operations.
116 */
117
118/* Functions that read and validate content from consumer rings. */
119
120static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue *q, u32 cached_cons, u64 *addr)
121{
122 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
123 u32 idx = cached_cons & q->ring_mask;
124
125 *addr = ring->desc[idx];
126}
127
128static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
129{
130 if (q->cached_cons != q->cached_prod) {
131 __xskq_cons_read_addr_unchecked(q, cached_cons: q->cached_cons, addr);
132 return true;
133 }
134
135 return false;
136}
137
138static inline bool xp_unused_options_set(u32 options)
139{
140 return options & ~(XDP_PKT_CONTD | XDP_TX_METADATA);
141}
142
143static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
144 struct xdp_desc *desc)
145{
146 u64 addr = desc->addr - pool->tx_metadata_len;
147 u64 len = desc->len + pool->tx_metadata_len;
148 u64 offset = addr & (pool->chunk_size - 1);
149
150 if (!desc->len)
151 return false;
152
153 if (offset + len > pool->chunk_size)
154 return false;
155
156 if (addr >= pool->addrs_cnt)
157 return false;
158
159 if (xp_unused_options_set(options: desc->options))
160 return false;
161 return true;
162}
163
164static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
165 struct xdp_desc *desc)
166{
167 u64 addr = xp_unaligned_add_offset_to_addr(addr: desc->addr) - pool->tx_metadata_len;
168 u64 len = desc->len + pool->tx_metadata_len;
169
170 if (!desc->len)
171 return false;
172
173 if (len > pool->chunk_size)
174 return false;
175
176 if (addr >= pool->addrs_cnt || addr + len > pool->addrs_cnt ||
177 xp_desc_crosses_non_contig_pg(pool, addr, len))
178 return false;
179
180 if (xp_unused_options_set(options: desc->options))
181 return false;
182 return true;
183}
184
185static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
186 struct xdp_desc *desc)
187{
188 return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
189 xp_aligned_validate_desc(pool, desc);
190}
191
192static inline bool xskq_has_descs(struct xsk_queue *q)
193{
194 return q->cached_cons != q->cached_prod;
195}
196
197static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
198 struct xdp_desc *d,
199 struct xsk_buff_pool *pool)
200{
201 if (!xp_validate_desc(pool, desc: d)) {
202 q->invalid_descs++;
203 return false;
204 }
205 return true;
206}
207
208static inline bool xskq_cons_read_desc(struct xsk_queue *q,
209 struct xdp_desc *desc,
210 struct xsk_buff_pool *pool)
211{
212 if (q->cached_cons != q->cached_prod) {
213 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
214 u32 idx = q->cached_cons & q->ring_mask;
215
216 *desc = ring->desc[idx];
217 return xskq_cons_is_valid_desc(q, d: desc, pool);
218 }
219
220 q->queue_empty_descs++;
221 return false;
222}
223
224static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt)
225{
226 q->cached_cons += cnt;
227}
228
229static inline void parse_desc(struct xsk_queue *q, struct xsk_buff_pool *pool,
230 struct xdp_desc *desc, struct parsed_desc *parsed)
231{
232 parsed->valid = xskq_cons_is_valid_desc(q, d: desc, pool);
233 parsed->mb = xp_mb_desc(desc);
234}
235
236static inline
237u32 xskq_cons_read_desc_batch(struct xsk_queue *q, struct xsk_buff_pool *pool,
238 u32 max)
239{
240 u32 cached_cons = q->cached_cons, nb_entries = 0;
241 struct xdp_desc *descs = pool->tx_descs;
242 u32 total_descs = 0, nr_frags = 0;
243
244 /* track first entry, if stumble upon *any* invalid descriptor, rewind
245 * current packet that consists of frags and stop the processing
246 */
247 while (cached_cons != q->cached_prod && nb_entries < max) {
248 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
249 u32 idx = cached_cons & q->ring_mask;
250 struct parsed_desc parsed;
251
252 descs[nb_entries] = ring->desc[idx];
253 cached_cons++;
254 parse_desc(q, pool, desc: &descs[nb_entries], parsed: &parsed);
255 if (unlikely(!parsed.valid))
256 break;
257
258 if (likely(!parsed.mb)) {
259 total_descs += (nr_frags + 1);
260 nr_frags = 0;
261 } else {
262 nr_frags++;
263 if (nr_frags == pool->netdev->xdp_zc_max_segs) {
264 nr_frags = 0;
265 break;
266 }
267 }
268 nb_entries++;
269 }
270
271 cached_cons -= nr_frags;
272 /* Release valid plus any invalid entries */
273 xskq_cons_release_n(q, cnt: cached_cons - q->cached_cons);
274 return total_descs;
275}
276
277/* Functions for consumers */
278
279static inline void __xskq_cons_release(struct xsk_queue *q)
280{
281 smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */
282}
283
284static inline void __xskq_cons_peek(struct xsk_queue *q)
285{
286 /* Refresh the local pointer */
287 q->cached_prod = smp_load_acquire(&q->ring->producer); /* C, matches B */
288}
289
290static inline void xskq_cons_get_entries(struct xsk_queue *q)
291{
292 __xskq_cons_release(q);
293 __xskq_cons_peek(q);
294}
295
296static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max)
297{
298 u32 entries = q->cached_prod - q->cached_cons;
299
300 if (entries >= max)
301 return max;
302
303 __xskq_cons_peek(q);
304 entries = q->cached_prod - q->cached_cons;
305
306 return entries >= max ? max : entries;
307}
308
309static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
310{
311 return xskq_cons_nb_entries(q, max: cnt) >= cnt;
312}
313
314static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
315{
316 if (q->cached_prod == q->cached_cons)
317 xskq_cons_get_entries(q);
318 return xskq_cons_read_addr_unchecked(q, addr);
319}
320
321static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
322 struct xdp_desc *desc,
323 struct xsk_buff_pool *pool)
324{
325 if (q->cached_prod == q->cached_cons)
326 xskq_cons_get_entries(q);
327 return xskq_cons_read_desc(q, desc, pool);
328}
329
330/* To improve performance in the xskq_cons_release functions, only update local state here.
331 * Reflect this to global state when we get new entries from the ring in
332 * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop.
333 */
334static inline void xskq_cons_release(struct xsk_queue *q)
335{
336 q->cached_cons++;
337}
338
339static inline void xskq_cons_cancel_n(struct xsk_queue *q, u32 cnt)
340{
341 q->cached_cons -= cnt;
342}
343
344static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
345{
346 /* No barriers needed since data is not accessed */
347 return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
348}
349
350/* Functions for producers */
351
352static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max)
353{
354 u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
355
356 if (free_entries >= max)
357 return max;
358
359 /* Refresh the local tail pointer */
360 q->cached_cons = READ_ONCE(q->ring->consumer);
361 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
362
363 return free_entries >= max ? max : free_entries;
364}
365
366static inline bool xskq_prod_is_full(struct xsk_queue *q)
367{
368 return xskq_prod_nb_free(q, max: 1) ? false : true;
369}
370
371static inline void xskq_prod_cancel_n(struct xsk_queue *q, u32 cnt)
372{
373 q->cached_prod -= cnt;
374}
375
376static inline int xskq_prod_reserve(struct xsk_queue *q)
377{
378 if (xskq_prod_is_full(q))
379 return -ENOSPC;
380
381 /* A, matches D */
382 q->cached_prod++;
383 return 0;
384}
385
386static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
387{
388 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
389
390 if (xskq_prod_is_full(q))
391 return -ENOSPC;
392
393 /* A, matches D */
394 ring->desc[q->cached_prod++ & q->ring_mask] = addr;
395 return 0;
396}
397
398static inline void xskq_prod_write_addr_batch(struct xsk_queue *q, struct xdp_desc *descs,
399 u32 nb_entries)
400{
401 struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
402 u32 i, cached_prod;
403
404 /* A, matches D */
405 cached_prod = q->cached_prod;
406 for (i = 0; i < nb_entries; i++)
407 ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr;
408 q->cached_prod = cached_prod;
409}
410
411static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
412 u64 addr, u32 len, u32 flags)
413{
414 struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
415 u32 idx;
416
417 if (xskq_prod_is_full(q))
418 return -ENOBUFS;
419
420 /* A, matches D */
421 idx = q->cached_prod++ & q->ring_mask;
422 ring->desc[idx].addr = addr;
423 ring->desc[idx].len = len;
424 ring->desc[idx].options = flags;
425
426 return 0;
427}
428
429static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
430{
431 smp_store_release(&q->ring->producer, idx); /* B, matches C */
432}
433
434static inline void xskq_prod_submit(struct xsk_queue *q)
435{
436 __xskq_prod_submit(q, idx: q->cached_prod);
437}
438
439static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
440{
441 __xskq_prod_submit(q, idx: q->ring->producer + nb_entries);
442}
443
444static inline bool xskq_prod_is_empty(struct xsk_queue *q)
445{
446 /* No barriers needed since data is not accessed */
447 return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
448}
449
450/* For both producers and consumers */
451
452static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
453{
454 return q ? q->invalid_descs : 0;
455}
456
457static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
458{
459 return q ? q->queue_empty_descs : 0;
460}
461
462struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
463void xskq_destroy(struct xsk_queue *q_ops);
464
465#endif /* _LINUX_XSK_QUEUE_H */
466

source code of linux/net/xdp/xsk_queue.h