1 | //===- bolt/Profile/BoltAddressTranslation.cpp ----------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "bolt/Profile/BoltAddressTranslation.h" |
10 | #include "bolt/Core/BinaryFunction.h" |
11 | #include "llvm/ADT/APInt.h" |
12 | #include "llvm/Support/Errc.h" |
13 | #include "llvm/Support/Error.h" |
14 | #include "llvm/Support/LEB128.h" |
15 | |
16 | #define DEBUG_TYPE "bolt-bat" |
17 | |
18 | namespace llvm { |
19 | namespace bolt { |
20 | |
21 | const char *BoltAddressTranslation::SECTION_NAME = ".note.bolt_bat" ; |
22 | |
23 | void BoltAddressTranslation::writeEntriesForBB(MapTy &Map, |
24 | const BinaryBasicBlock &BB, |
25 | uint64_t FuncInputAddress, |
26 | uint64_t FuncOutputAddress) { |
27 | const uint64_t BBOutputOffset = |
28 | BB.getOutputAddressRange().first - FuncOutputAddress; |
29 | const uint32_t BBInputOffset = BB.getInputOffset(); |
30 | |
31 | // Every output BB must track back to an input BB for profile collection |
32 | // in bolted binaries. If we are missing an offset, it means this block was |
33 | // created by a pass. We will skip writing any entries for it, and this means |
34 | // any traffic happening in this block will map to the previous block in the |
35 | // layout. This covers the case where an input basic block is split into two, |
36 | // and the second one lacks any offset. |
37 | if (BBInputOffset == BinaryBasicBlock::INVALID_OFFSET) |
38 | return; |
39 | |
40 | LLVM_DEBUG(dbgs() << "BB " << BB.getName() << "\n" ); |
41 | LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(BBOutputOffset) |
42 | << " Val: " << Twine::utohexstr(BBInputOffset) << "\n" ); |
43 | // NB: in `writeEntriesForBB` we use the input address because hashes are |
44 | // saved early in `saveMetadata` before output addresses are assigned. |
45 | const BBHashMapTy &BBHashMap = getBBHashMap(FuncOutputAddress: FuncInputAddress); |
46 | (void)BBHashMap; |
47 | LLVM_DEBUG( |
48 | dbgs() << formatv(" Hash: {0:x}\n" , BBHashMap.getBBHash(BBInputOffset))); |
49 | LLVM_DEBUG( |
50 | dbgs() << formatv(" Index: {0}\n" , BBHashMap.getBBIndex(BBInputOffset))); |
51 | // In case of conflicts (same Key mapping to different Vals), the last |
52 | // update takes precedence. Of course it is not ideal to have conflicts and |
53 | // those happen when we have an empty BB that either contained only |
54 | // NOPs or a jump to the next block (successor). Either way, the successor |
55 | // and this deleted block will both share the same output address (the same |
56 | // key), and we need to map back. We choose here to privilege the successor by |
57 | // allowing it to overwrite the previously inserted key in the map. |
58 | Map[BBOutputOffset] = BBInputOffset << 1; |
59 | |
60 | const auto &IOAddressMap = |
61 | BB.getFunction()->getBinaryContext().getIOAddressMap(); |
62 | |
63 | for (const auto &[InputOffset, Sym] : BB.getLocSyms()) { |
64 | const auto InputAddress = BB.getFunction()->getAddress() + InputOffset; |
65 | const auto OutputAddress = IOAddressMap.lookup(InputAddress); |
66 | assert(OutputAddress && "Unknown instruction address" ); |
67 | const auto OutputOffset = *OutputAddress - FuncOutputAddress; |
68 | |
69 | // Is this the first instruction in the BB? No need to duplicate the entry. |
70 | if (OutputOffset == BBOutputOffset) |
71 | continue; |
72 | |
73 | LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(OutputOffset) << " Val: " |
74 | << Twine::utohexstr(InputOffset) << " (branch)\n" ); |
75 | Map.insert(x: std::pair<uint32_t, uint32_t>(OutputOffset, |
76 | (InputOffset << 1) | BRANCHENTRY)); |
77 | } |
78 | } |
79 | |
80 | void BoltAddressTranslation::write(const BinaryContext &BC, raw_ostream &OS) { |
81 | LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Writing BOLT Address Translation Tables\n" ); |
82 | for (auto &BFI : BC.getBinaryFunctions()) { |
83 | const BinaryFunction &Function = BFI.second; |
84 | const uint64_t InputAddress = Function.getAddress(); |
85 | const uint64_t OutputAddress = Function.getOutputAddress(); |
86 | // We don't need a translation table if the body of the function hasn't |
87 | // changed |
88 | if (Function.isIgnored() || (!BC.HasRelocations && !Function.isSimple())) |
89 | continue; |
90 | |
91 | uint32_t NumSecondaryEntryPoints = 0; |
92 | Function.forEachEntryPoint(Callback: [&](uint64_t Offset, const MCSymbol *) { |
93 | if (!Offset) |
94 | return true; |
95 | ++NumSecondaryEntryPoints; |
96 | SecondaryEntryPointsMap[OutputAddress].push_back(x: Offset); |
97 | return true; |
98 | }); |
99 | |
100 | LLVM_DEBUG(dbgs() << "Function name: " << Function.getPrintName() << "\n" ); |
101 | LLVM_DEBUG(dbgs() << " Address reference: 0x" |
102 | << Twine::utohexstr(Function.getOutputAddress()) << "\n" ); |
103 | LLVM_DEBUG(dbgs() << formatv(" Hash: {0:x}\n" , getBFHash(InputAddress))); |
104 | LLVM_DEBUG(dbgs() << " Secondary Entry Points: " << NumSecondaryEntryPoints |
105 | << '\n'); |
106 | |
107 | MapTy Map; |
108 | for (const BinaryBasicBlock *const BB : |
109 | Function.getLayout().getMainFragment()) |
110 | writeEntriesForBB(Map, BB: *BB, FuncInputAddress: InputAddress, FuncOutputAddress: OutputAddress); |
111 | Maps.emplace(args: Function.getOutputAddress(), args: std::move(Map)); |
112 | ReverseMap.emplace(args: OutputAddress, args: InputAddress); |
113 | |
114 | if (!Function.isSplit()) |
115 | continue; |
116 | |
117 | // Split maps |
118 | LLVM_DEBUG(dbgs() << " Cold part\n" ); |
119 | for (const FunctionFragment &FF : |
120 | Function.getLayout().getSplitFragments()) { |
121 | ColdPartSource.emplace(args: FF.getAddress(), args: Function.getOutputAddress()); |
122 | Map.clear(); |
123 | for (const BinaryBasicBlock *const BB : FF) |
124 | writeEntriesForBB(Map, BB: *BB, FuncInputAddress: InputAddress, FuncOutputAddress: FF.getAddress()); |
125 | |
126 | Maps.emplace(args: FF.getAddress(), args: std::move(Map)); |
127 | } |
128 | } |
129 | |
130 | // Output addresses are delta-encoded |
131 | uint64_t PrevAddress = 0; |
132 | writeMaps</*Cold=*/false>(Maps, PrevAddress, OS); |
133 | writeMaps</*Cold=*/true>(Maps, PrevAddress, OS); |
134 | |
135 | BC.outs() << "BOLT-INFO: Wrote " << Maps.size() << " BAT maps\n" ; |
136 | BC.outs() << "BOLT-INFO: Wrote " << FuncHashes.getNumFunctions() |
137 | << " function and " << FuncHashes.getNumBasicBlocks() |
138 | << " basic block hashes\n" ; |
139 | } |
140 | |
141 | APInt BoltAddressTranslation::calculateBranchEntriesBitMask(MapTy &Map, |
142 | size_t EqualElems) { |
143 | APInt BitMask(alignTo(Value: EqualElems, Align: 8), 0); |
144 | size_t Index = 0; |
145 | for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) { |
146 | if (Index == EqualElems) |
147 | break; |
148 | const uint32_t OutputOffset = KeyVal.second; |
149 | if (OutputOffset & BRANCHENTRY) |
150 | BitMask.setBit(Index); |
151 | ++Index; |
152 | } |
153 | return BitMask; |
154 | } |
155 | |
156 | size_t BoltAddressTranslation::getNumEqualOffsets(const MapTy &Map, |
157 | uint32_t Skew) const { |
158 | size_t EqualOffsets = 0; |
159 | for (const std::pair<const uint32_t, uint32_t> &KeyVal : Map) { |
160 | const uint32_t OutputOffset = KeyVal.first; |
161 | const uint32_t InputOffset = KeyVal.second >> 1; |
162 | if (OutputOffset == InputOffset - Skew) |
163 | ++EqualOffsets; |
164 | else |
165 | break; |
166 | } |
167 | return EqualOffsets; |
168 | } |
169 | |
170 | template <bool Cold> |
171 | void BoltAddressTranslation::writeMaps(std::map<uint64_t, MapTy> &Maps, |
172 | uint64_t &PrevAddress, raw_ostream &OS) { |
173 | const uint32_t NumFuncs = |
174 | llvm::count_if(llvm::make_first_range(c&: Maps), [&](const uint64_t Address) { |
175 | return Cold == ColdPartSource.count(x: Address); |
176 | }); |
177 | encodeULEB128(Value: NumFuncs, OS); |
178 | LLVM_DEBUG(dbgs() << "Writing " << NumFuncs << (Cold ? " cold" : "" ) |
179 | << " functions for BAT.\n" ); |
180 | size_t PrevIndex = 0; |
181 | for (auto &MapEntry : Maps) { |
182 | const uint64_t Address = MapEntry.first; |
183 | // Only process cold fragments in cold mode, and vice versa. |
184 | if (Cold != ColdPartSource.count(x: Address)) |
185 | continue; |
186 | // NB: in `writeMaps` we use the input address because hashes are saved |
187 | // early in `saveMetadata` before output addresses are assigned. |
188 | const uint64_t HotInputAddress = |
189 | ReverseMap[Cold ? ColdPartSource[Address] : Address]; |
190 | MapTy &Map = MapEntry.second; |
191 | const uint32_t NumEntries = Map.size(); |
192 | LLVM_DEBUG(dbgs() << "Writing " << NumEntries << " entries for 0x" |
193 | << Twine::utohexstr(Address) << ".\n" ); |
194 | encodeULEB128(Value: Address - PrevAddress, OS); |
195 | PrevAddress = Address; |
196 | const uint32_t NumSecondaryEntryPoints = |
197 | SecondaryEntryPointsMap.count(x: Address) |
198 | ? SecondaryEntryPointsMap[Address].size() |
199 | : 0; |
200 | uint32_t Skew = 0; |
201 | if (Cold) { |
202 | auto HotEntryIt = Maps.find(x: ColdPartSource[Address]); |
203 | assert(HotEntryIt != Maps.end()); |
204 | size_t HotIndex = std::distance(first: Maps.begin(), last: HotEntryIt); |
205 | encodeULEB128(Value: HotIndex - PrevIndex, OS); |
206 | PrevIndex = HotIndex; |
207 | // Skew of all input offsets for cold fragments is simply the first input |
208 | // offset. |
209 | Skew = Map.begin()->second >> 1; |
210 | encodeULEB128(Value: Skew, OS); |
211 | } else { |
212 | // Function hash |
213 | size_t BFHash = getBFHash(FuncOutputAddress: HotInputAddress); |
214 | LLVM_DEBUG(dbgs() << "Hash: " << formatv("{0:x}\n" , BFHash)); |
215 | OS.write(Ptr: reinterpret_cast<char *>(&BFHash), Size: 8); |
216 | // Number of basic blocks |
217 | size_t NumBasicBlocks = NumBasicBlocksMap[HotInputAddress]; |
218 | LLVM_DEBUG(dbgs() << "Basic blocks: " << NumBasicBlocks << '\n'); |
219 | encodeULEB128(Value: NumBasicBlocks, OS); |
220 | // Secondary entry points |
221 | encodeULEB128(Value: NumSecondaryEntryPoints, OS); |
222 | LLVM_DEBUG(dbgs() << "Secondary Entry Points: " << NumSecondaryEntryPoints |
223 | << '\n'); |
224 | } |
225 | encodeULEB128(Value: NumEntries, OS); |
226 | // Encode the number of equal offsets (output = input - skew) in the |
227 | // beginning of the function. Only encode one offset in these cases. |
228 | const size_t EqualElems = getNumEqualOffsets(Map, Skew); |
229 | encodeULEB128(Value: EqualElems, OS); |
230 | if (EqualElems) { |
231 | const size_t BranchEntriesBytes = alignTo(Value: EqualElems, Align: 8) / 8; |
232 | APInt BranchEntries = calculateBranchEntriesBitMask(Map, EqualElems); |
233 | OS.write(Ptr: reinterpret_cast<const char *>(BranchEntries.getRawData()), |
234 | Size: BranchEntriesBytes); |
235 | LLVM_DEBUG({ |
236 | dbgs() << "BranchEntries: " ; |
237 | SmallString<8> BitMaskStr; |
238 | BranchEntries.toString(BitMaskStr, 2, false); |
239 | dbgs() << BitMaskStr << '\n'; |
240 | }); |
241 | } |
242 | const BBHashMapTy &BBHashMap = getBBHashMap(FuncOutputAddress: HotInputAddress); |
243 | size_t Index = 0; |
244 | uint64_t InOffset = 0; |
245 | size_t PrevBBIndex = 0; |
246 | // Output and Input addresses and delta-encoded |
247 | for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) { |
248 | const uint64_t OutputAddress = KeyVal.first + Address; |
249 | encodeULEB128(Value: OutputAddress - PrevAddress, OS); |
250 | PrevAddress = OutputAddress; |
251 | if (Index++ >= EqualElems) |
252 | encodeSLEB128(Value: KeyVal.second - InOffset, OS); |
253 | InOffset = KeyVal.second; // Keeping InOffset as if BRANCHENTRY is encoded |
254 | if ((InOffset & BRANCHENTRY) == 0) { |
255 | const bool IsBlock = BBHashMap.isInputBlock(InputOffset: InOffset >> 1); |
256 | unsigned BBIndex = IsBlock ? BBHashMap.getBBIndex(BBInputOffset: InOffset >> 1) : 0; |
257 | size_t BBHash = IsBlock ? BBHashMap.getBBHash(BBInputOffset: InOffset >> 1) : 0; |
258 | OS.write(Ptr: reinterpret_cast<char *>(&BBHash), Size: 8); |
259 | // Basic block index in the input binary |
260 | encodeULEB128(Value: BBIndex - PrevBBIndex, OS); |
261 | PrevBBIndex = BBIndex; |
262 | LLVM_DEBUG(dbgs() << formatv("{0:x} -> {1:x} {2:x} {3}\n" , KeyVal.first, |
263 | InOffset >> 1, BBHash, BBIndex)); |
264 | } |
265 | } |
266 | uint32_t PrevOffset = 0; |
267 | if (!Cold && NumSecondaryEntryPoints) { |
268 | LLVM_DEBUG(dbgs() << "Secondary entry points: " ); |
269 | // Secondary entry point offsets, delta-encoded |
270 | for (uint32_t Offset : SecondaryEntryPointsMap[Address]) { |
271 | encodeULEB128(Value: Offset - PrevOffset, OS); |
272 | LLVM_DEBUG(dbgs() << formatv("{0:x} " , Offset)); |
273 | PrevOffset = Offset; |
274 | } |
275 | LLVM_DEBUG(dbgs() << '\n'); |
276 | } |
277 | } |
278 | } |
279 | |
280 | std::error_code BoltAddressTranslation::parse(raw_ostream &OS, StringRef Buf) { |
281 | DataExtractor DE = DataExtractor(Buf, true, 8); |
282 | uint64_t Offset = 0; |
283 | if (Buf.size() < 12) |
284 | return make_error_code(E: llvm::errc::io_error); |
285 | |
286 | const uint32_t NameSz = DE.getU32(offset_ptr: &Offset); |
287 | const uint32_t DescSz = DE.getU32(offset_ptr: &Offset); |
288 | const uint32_t Type = DE.getU32(offset_ptr: &Offset); |
289 | |
290 | if (Type != BinarySection::NT_BOLT_BAT || |
291 | Buf.size() + Offset < alignTo(Value: NameSz, Align: 4) + DescSz) |
292 | return make_error_code(E: llvm::errc::io_error); |
293 | |
294 | StringRef Name = Buf.slice(Start: Offset, End: Offset + NameSz); |
295 | Offset = alignTo(Value: Offset + NameSz, Align: 4); |
296 | if (Name.substr(Start: 0, N: 4) != "BOLT" ) |
297 | return make_error_code(E: llvm::errc::io_error); |
298 | |
299 | Error Err(Error::success()); |
300 | std::vector<uint64_t> HotFuncs; |
301 | uint64_t PrevAddress = 0; |
302 | parseMaps</*Cold=*/false>(HotFuncs, PrevAddress, DE, Offset, Err); |
303 | parseMaps</*Cold=*/true>(HotFuncs, PrevAddress, DE, Offset, Err); |
304 | OS << "BOLT-INFO: Parsed " << Maps.size() << " BAT entries\n" ; |
305 | return errorToErrorCode(Err: std::move(Err)); |
306 | } |
307 | |
308 | template <bool Cold> |
309 | void BoltAddressTranslation::(std::vector<uint64_t> &HotFuncs, |
310 | uint64_t &PrevAddress, DataExtractor &DE, |
311 | uint64_t &Offset, Error &Err) { |
312 | const uint32_t NumFunctions = DE.getULEB128(offset_ptr: &Offset, Err: &Err); |
313 | LLVM_DEBUG(dbgs() << "Parsing " << NumFunctions << (Cold ? " cold" : "" ) |
314 | << " functions\n" ); |
315 | size_t HotIndex = 0; |
316 | for (uint32_t I = 0; I < NumFunctions; ++I) { |
317 | const uint64_t Address = PrevAddress + DE.getULEB128(offset_ptr: &Offset, Err: &Err); |
318 | uint64_t HotAddress = Cold ? 0 : Address; |
319 | PrevAddress = Address; |
320 | uint32_t SecondaryEntryPoints = 0; |
321 | uint64_t ColdInputSkew = 0; |
322 | if (Cold) { |
323 | HotIndex += DE.getULEB128(offset_ptr: &Offset, Err: &Err); |
324 | HotAddress = HotFuncs[HotIndex]; |
325 | ColdPartSource.emplace(args: Address, args&: HotAddress); |
326 | ColdInputSkew = DE.getULEB128(offset_ptr: &Offset, Err: &Err); |
327 | } else { |
328 | HotFuncs.push_back(x: Address); |
329 | // Function hash |
330 | const size_t FuncHash = DE.getU64(offset_ptr: &Offset, Err: &Err); |
331 | FuncHashes.addEntry(FuncOutputAddress: Address, BFHash: FuncHash); |
332 | LLVM_DEBUG(dbgs() << formatv("{0:x}: hash {1:x}\n" , Address, FuncHash)); |
333 | // Number of basic blocks |
334 | const size_t NumBasicBlocks = DE.getULEB128(offset_ptr: &Offset, Err: &Err); |
335 | NumBasicBlocksMap.emplace(args: Address, args: NumBasicBlocks); |
336 | LLVM_DEBUG(dbgs() << formatv("{0:x}: #bbs {1}, {2} bytes\n" , Address, |
337 | NumBasicBlocks, |
338 | getULEB128Size(NumBasicBlocks))); |
339 | // Secondary entry points |
340 | SecondaryEntryPoints = DE.getULEB128(offset_ptr: &Offset, Err: &Err); |
341 | LLVM_DEBUG( |
342 | dbgs() << formatv("{0:x}: secondary entry points {1}, {2} bytes\n" , |
343 | Address, SecondaryEntryPoints, |
344 | getULEB128Size(SecondaryEntryPoints))); |
345 | } |
346 | const uint32_t NumEntries = DE.getULEB128(offset_ptr: &Offset, Err: &Err); |
347 | // Equal offsets. |
348 | const size_t EqualElems = DE.getULEB128(offset_ptr: &Offset, Err: &Err); |
349 | APInt BEBitMask; |
350 | LLVM_DEBUG(dbgs() << formatv("Equal offsets: {0}, {1} bytes\n" , EqualElems, |
351 | getULEB128Size(EqualElems))); |
352 | if (EqualElems) { |
353 | const size_t BranchEntriesBytes = alignTo(Value: EqualElems, Align: 8) / 8; |
354 | BEBitMask = APInt(alignTo(Value: EqualElems, Align: 8), 0); |
355 | LoadIntFromMemory( |
356 | IntVal&: BEBitMask, |
357 | Src: reinterpret_cast<const uint8_t *>( |
358 | DE.getBytes(OffsetPtr: &Offset, Length: BranchEntriesBytes, Err: &Err).data()), |
359 | LoadBytes: BranchEntriesBytes); |
360 | LLVM_DEBUG({ |
361 | dbgs() << "BEBitMask: " ; |
362 | SmallString<8> BitMaskStr; |
363 | BEBitMask.toString(BitMaskStr, 2, false); |
364 | dbgs() << BitMaskStr << ", " << BranchEntriesBytes << " bytes\n" ; |
365 | }); |
366 | } |
367 | MapTy Map; |
368 | |
369 | LLVM_DEBUG(dbgs() << "Parsing " << NumEntries << " entries for 0x" |
370 | << Twine::utohexstr(Address) << "\n" ); |
371 | uint64_t InputOffset = 0; |
372 | size_t BBIndex = 0; |
373 | for (uint32_t J = 0; J < NumEntries; ++J) { |
374 | const uint64_t OutputDelta = DE.getULEB128(offset_ptr: &Offset, Err: &Err); |
375 | const uint64_t OutputAddress = PrevAddress + OutputDelta; |
376 | const uint64_t OutputOffset = OutputAddress - Address; |
377 | PrevAddress = OutputAddress; |
378 | int64_t InputDelta = 0; |
379 | if (J < EqualElems) { |
380 | InputOffset = ((OutputOffset + ColdInputSkew) << 1) | BEBitMask[J]; |
381 | } else { |
382 | InputDelta = DE.getSLEB128(OffsetPtr: &Offset, Err: &Err); |
383 | InputOffset += InputDelta; |
384 | } |
385 | Map.insert(x: std::pair<uint32_t, uint32_t>(OutputOffset, InputOffset)); |
386 | size_t BBHash = 0; |
387 | size_t BBIndexDelta = 0; |
388 | const bool IsBranchEntry = InputOffset & BRANCHENTRY; |
389 | if (!IsBranchEntry) { |
390 | BBHash = DE.getU64(offset_ptr: &Offset, Err: &Err); |
391 | BBIndexDelta = DE.getULEB128(offset_ptr: &Offset, Err: &Err); |
392 | BBIndex += BBIndexDelta; |
393 | // Map basic block hash to hot fragment by input offset |
394 | getBBHashMap(FuncOutputAddress: HotAddress).addEntry(BBInputOffset: InputOffset >> 1, BBIndex, BBHash); |
395 | } |
396 | LLVM_DEBUG({ |
397 | dbgs() << formatv( |
398 | "{0:x} -> {1:x} ({2}/{3}b -> {4}/{5}b), {6:x}" , OutputOffset, |
399 | InputOffset, OutputDelta, getULEB128Size(OutputDelta), InputDelta, |
400 | (J < EqualElems) ? 0 : getSLEB128Size(InputDelta), OutputAddress); |
401 | if (!IsBranchEntry) { |
402 | dbgs() << formatv(" {0:x} {1}/{2}b" , BBHash, BBIndex, |
403 | getULEB128Size(BBIndexDelta)); |
404 | } |
405 | dbgs() << '\n'; |
406 | }); |
407 | } |
408 | Maps.insert(x: std::pair<uint64_t, MapTy>(Address, Map)); |
409 | if (!Cold && SecondaryEntryPoints) { |
410 | uint32_t EntryPointOffset = 0; |
411 | LLVM_DEBUG(dbgs() << "Secondary entry points: " ); |
412 | for (uint32_t EntryPointId = 0; EntryPointId != SecondaryEntryPoints; |
413 | ++EntryPointId) { |
414 | uint32_t OffsetDelta = DE.getULEB128(offset_ptr: &Offset, Err: &Err); |
415 | EntryPointOffset += OffsetDelta; |
416 | SecondaryEntryPointsMap[Address].push_back(x: EntryPointOffset); |
417 | LLVM_DEBUG(dbgs() << formatv("{0:x}/{1}b " , EntryPointOffset, |
418 | getULEB128Size(OffsetDelta))); |
419 | } |
420 | LLVM_DEBUG(dbgs() << '\n'); |
421 | } |
422 | } |
423 | } |
424 | |
425 | void BoltAddressTranslation::dump(raw_ostream &OS) { |
426 | const size_t NumTables = Maps.size(); |
427 | OS << "BAT tables for " << NumTables << " functions:\n" ; |
428 | for (const auto &MapEntry : Maps) { |
429 | const uint64_t Address = MapEntry.first; |
430 | const uint64_t HotAddress = fetchParentAddress(Address); |
431 | const bool IsHotFunction = HotAddress == 0; |
432 | OS << "Function Address: 0x" << Twine::utohexstr(Val: Address); |
433 | if (IsHotFunction) |
434 | OS << formatv(Fmt: ", hash: {0:x}" , Vals: getBFHash(FuncOutputAddress: Address)); |
435 | OS << "\n" ; |
436 | OS << "BB mappings:\n" ; |
437 | const BBHashMapTy &BBHashMap = |
438 | getBBHashMap(FuncOutputAddress: HotAddress ? HotAddress : Address); |
439 | for (const auto &Entry : MapEntry.second) { |
440 | const bool IsBranch = Entry.second & BRANCHENTRY; |
441 | const uint32_t Val = Entry.second >> 1; // dropping BRANCHENTRY bit |
442 | OS << "0x" << Twine::utohexstr(Val: Entry.first) << " -> " |
443 | << "0x" << Twine::utohexstr(Val); |
444 | if (IsBranch) |
445 | OS << " (branch)" ; |
446 | else |
447 | OS << formatv(Fmt: " hash: {0:x}" , Vals: BBHashMap.getBBHash(BBInputOffset: Val)); |
448 | OS << "\n" ; |
449 | } |
450 | if (IsHotFunction) |
451 | OS << "NumBlocks: " << NumBasicBlocksMap[Address] << '\n'; |
452 | if (SecondaryEntryPointsMap.count(x: Address)) { |
453 | const std::vector<uint32_t> &SecondaryEntryPoints = |
454 | SecondaryEntryPointsMap[Address]; |
455 | OS << SecondaryEntryPoints.size() << " secondary entry points:\n" ; |
456 | for (uint32_t EntryPointOffset : SecondaryEntryPoints) |
457 | OS << formatv(Fmt: "{0:x}\n" , Vals&: EntryPointOffset); |
458 | } |
459 | OS << "\n" ; |
460 | } |
461 | const size_t NumColdParts = ColdPartSource.size(); |
462 | if (!NumColdParts) |
463 | return; |
464 | |
465 | OS << NumColdParts << " cold mappings:\n" ; |
466 | for (const auto &Entry : ColdPartSource) { |
467 | OS << "0x" << Twine::utohexstr(Val: Entry.first) << " -> " |
468 | << Twine::utohexstr(Val: Entry.second) << "\n" ; |
469 | } |
470 | OS << "\n" ; |
471 | } |
472 | |
473 | uint64_t BoltAddressTranslation::translate(uint64_t FuncAddress, |
474 | uint64_t Offset, |
475 | bool IsBranchSrc) const { |
476 | auto Iter = Maps.find(x: FuncAddress); |
477 | if (Iter == Maps.end()) |
478 | return Offset; |
479 | |
480 | const MapTy &Map = Iter->second; |
481 | auto KeyVal = Map.upper_bound(x: Offset); |
482 | if (KeyVal == Map.begin()) |
483 | return Offset; |
484 | |
485 | --KeyVal; |
486 | |
487 | const uint32_t Val = KeyVal->second >> 1; // dropping BRANCHENTRY bit |
488 | // Branch source addresses are translated to the first instruction of the |
489 | // source BB to avoid accounting for modifications BOLT may have made in the |
490 | // BB regarding deletion/addition of instructions. |
491 | if (IsBranchSrc) |
492 | return Val; |
493 | return Offset - KeyVal->first + Val; |
494 | } |
495 | |
496 | std::optional<BoltAddressTranslation::FallthroughListTy> |
497 | BoltAddressTranslation::getFallthroughsInTrace(uint64_t FuncAddress, |
498 | uint64_t From, |
499 | uint64_t To) const { |
500 | SmallVector<std::pair<uint64_t, uint64_t>, 16> Res; |
501 | |
502 | // Filter out trivial case |
503 | if (From >= To) |
504 | return Res; |
505 | |
506 | From -= FuncAddress; |
507 | To -= FuncAddress; |
508 | |
509 | auto Iter = Maps.find(x: FuncAddress); |
510 | if (Iter == Maps.end()) |
511 | return std::nullopt; |
512 | |
513 | const MapTy &Map = Iter->second; |
514 | auto FromIter = Map.upper_bound(x: From); |
515 | if (FromIter == Map.begin()) |
516 | return Res; |
517 | // Skip instruction entries, to create fallthroughs we are only interested in |
518 | // BB boundaries |
519 | do { |
520 | if (FromIter == Map.begin()) |
521 | return Res; |
522 | --FromIter; |
523 | } while (FromIter->second & BRANCHENTRY); |
524 | |
525 | auto ToIter = Map.upper_bound(x: To); |
526 | if (ToIter == Map.begin()) |
527 | return Res; |
528 | --ToIter; |
529 | if (FromIter->first >= ToIter->first) |
530 | return Res; |
531 | |
532 | for (auto Iter = FromIter; Iter != ToIter;) { |
533 | const uint32_t Src = Iter->first; |
534 | if (Iter->second & BRANCHENTRY) { |
535 | ++Iter; |
536 | continue; |
537 | } |
538 | |
539 | ++Iter; |
540 | while (Iter->second & BRANCHENTRY && Iter != ToIter) |
541 | ++Iter; |
542 | if (Iter->second & BRANCHENTRY) |
543 | break; |
544 | Res.emplace_back(Args: Src, Args: Iter->first); |
545 | } |
546 | |
547 | return Res; |
548 | } |
549 | |
550 | uint64_t BoltAddressTranslation::fetchParentAddress(uint64_t Address) const { |
551 | auto Iter = ColdPartSource.find(x: Address); |
552 | if (Iter == ColdPartSource.end()) |
553 | return 0; |
554 | return Iter->second; |
555 | } |
556 | |
557 | bool BoltAddressTranslation::enabledFor( |
558 | llvm::object::ELFObjectFileBase *InputFile) const { |
559 | for (const SectionRef &Section : InputFile->sections()) { |
560 | Expected<StringRef> SectionNameOrErr = Section.getName(); |
561 | if (Error E = SectionNameOrErr.takeError()) |
562 | continue; |
563 | |
564 | if (SectionNameOrErr.get() == SECTION_NAME) |
565 | return true; |
566 | } |
567 | return false; |
568 | } |
569 | |
570 | void BoltAddressTranslation::saveMetadata(BinaryContext &BC) { |
571 | for (BinaryFunction &BF : llvm::make_second_range(c&: BC.getBinaryFunctions())) { |
572 | // We don't need a translation table if the body of the function hasn't |
573 | // changed |
574 | if (BF.isIgnored() || (!BC.HasRelocations && !BF.isSimple())) |
575 | continue; |
576 | // Prepare function and block hashes |
577 | FuncHashes.addEntry(FuncOutputAddress: BF.getAddress(), BFHash: BF.computeHash()); |
578 | BF.computeBlockHashes(); |
579 | BBHashMapTy &BBHashMap = getBBHashMap(FuncOutputAddress: BF.getAddress()); |
580 | // Set BF/BB metadata |
581 | for (const BinaryBasicBlock &BB : BF) |
582 | BBHashMap.addEntry(BBInputOffset: BB.getInputOffset(), BBIndex: BB.getIndex(), BBHash: BB.getHash()); |
583 | NumBasicBlocksMap.emplace(args: BF.getAddress(), args: BF.size()); |
584 | } |
585 | } |
586 | |
587 | unsigned |
588 | BoltAddressTranslation::getSecondaryEntryPointId(uint64_t Address, |
589 | uint32_t Offset) const { |
590 | auto FunctionIt = SecondaryEntryPointsMap.find(x: Address); |
591 | if (FunctionIt == SecondaryEntryPointsMap.end()) |
592 | return 0; |
593 | const std::vector<uint32_t> &Offsets = FunctionIt->second; |
594 | auto OffsetIt = std::find(first: Offsets.begin(), last: Offsets.end(), val: Offset); |
595 | if (OffsetIt == Offsets.end()) |
596 | return 0; |
597 | // Adding one here because main entry point is not stored in BAT, and |
598 | // enumeration for secondary entry points starts with 1. |
599 | return OffsetIt - Offsets.begin() + 1; |
600 | } |
601 | |
602 | std::pair<const BinaryFunction *, unsigned> |
603 | BoltAddressTranslation::translateSymbol(const BinaryContext &BC, |
604 | const MCSymbol &Symbol, |
605 | uint32_t Offset) const { |
606 | // The symbol could be a secondary entry in a cold fragment. |
607 | uint64_t SymbolValue = cantFail(ValOrErr: errorOrToExpected(EO: BC.getSymbolValue(Symbol))); |
608 | |
609 | const BinaryFunction *Callee = BC.getFunctionForSymbol(Symbol: &Symbol); |
610 | assert(Callee); |
611 | |
612 | // Containing function, not necessarily the same as symbol value. |
613 | const uint64_t CalleeAddress = Callee->getAddress(); |
614 | const uint32_t OutputOffset = SymbolValue - CalleeAddress; |
615 | |
616 | const uint64_t ParentAddress = fetchParentAddress(Address: CalleeAddress); |
617 | const uint64_t HotAddress = ParentAddress ? ParentAddress : CalleeAddress; |
618 | |
619 | const BinaryFunction *ParentBF = BC.getBinaryFunctionAtAddress(Address: HotAddress); |
620 | |
621 | const uint32_t InputOffset = |
622 | translate(FuncAddress: CalleeAddress, Offset: OutputOffset, /*IsBranchSrc*/ false) + Offset; |
623 | |
624 | unsigned SecondaryEntryId{0}; |
625 | if (InputOffset) |
626 | SecondaryEntryId = getSecondaryEntryPointId(Address: HotAddress, Offset: InputOffset); |
627 | |
628 | return std::pair(ParentBF, SecondaryEntryId); |
629 | } |
630 | |
631 | } // namespace bolt |
632 | } // namespace llvm |
633 | |