| 1 | //===--- ExceptionAnalyzer.cpp - clang-tidy -------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "ExceptionAnalyzer.h" |
| 10 | |
| 11 | namespace clang::tidy::utils { |
| 12 | |
| 13 | void ExceptionAnalyzer::ExceptionInfo::registerException( |
| 14 | const Type *ExceptionType) { |
| 15 | assert(ExceptionType != nullptr && "Only valid types are accepted" ); |
| 16 | Behaviour = State::Throwing; |
| 17 | ThrownExceptions.insert(Ptr: ExceptionType); |
| 18 | } |
| 19 | |
| 20 | void ExceptionAnalyzer::ExceptionInfo::registerExceptions( |
| 21 | const Throwables &Exceptions) { |
| 22 | if (Exceptions.empty()) |
| 23 | return; |
| 24 | Behaviour = State::Throwing; |
| 25 | ThrownExceptions.insert_range(R: Exceptions); |
| 26 | } |
| 27 | |
| 28 | ExceptionAnalyzer::ExceptionInfo &ExceptionAnalyzer::ExceptionInfo::merge( |
| 29 | const ExceptionAnalyzer::ExceptionInfo &Other) { |
| 30 | // Only the following two cases require an update to the local |
| 31 | // 'Behaviour'. If the local entity is already throwing there will be no |
| 32 | // change and if the other entity is throwing the merged entity will throw |
| 33 | // as well. |
| 34 | // If one of both entities is 'Unknown' and the other one does not throw |
| 35 | // the merged entity is 'Unknown' as well. |
| 36 | if (Other.Behaviour == State::Throwing) |
| 37 | Behaviour = State::Throwing; |
| 38 | else if (Other.Behaviour == State::Unknown && Behaviour == State::NotThrowing) |
| 39 | Behaviour = State::Unknown; |
| 40 | |
| 41 | ContainsUnknown = ContainsUnknown || Other.ContainsUnknown; |
| 42 | ThrownExceptions.insert_range(R: Other.ThrownExceptions); |
| 43 | return *this; |
| 44 | } |
| 45 | |
| 46 | // FIXME: This could be ported to clang later. |
| 47 | namespace { |
| 48 | |
| 49 | bool isUnambiguousPublicBaseClass(const Type *DerivedType, |
| 50 | const Type *BaseType) { |
| 51 | const auto *DerivedClass = |
| 52 | DerivedType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl(); |
| 53 | const auto *BaseClass = |
| 54 | BaseType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl(); |
| 55 | if (!DerivedClass || !BaseClass) |
| 56 | return false; |
| 57 | |
| 58 | CXXBasePaths Paths; |
| 59 | Paths.setOrigin(DerivedClass); |
| 60 | |
| 61 | bool IsPublicBaseClass = false; |
| 62 | DerivedClass->lookupInBases( |
| 63 | [&BaseClass, &IsPublicBaseClass](const CXXBaseSpecifier *BS, |
| 64 | CXXBasePath &) { |
| 65 | if (BS->getType() |
| 66 | ->getCanonicalTypeUnqualified() |
| 67 | ->getAsCXXRecordDecl() == BaseClass && |
| 68 | BS->getAccessSpecifier() == AS_public) { |
| 69 | IsPublicBaseClass = true; |
| 70 | return true; |
| 71 | } |
| 72 | |
| 73 | return false; |
| 74 | }, |
| 75 | Paths); |
| 76 | |
| 77 | return !Paths.isAmbiguous(BaseType: BaseType->getCanonicalTypeUnqualified()) && |
| 78 | IsPublicBaseClass; |
| 79 | } |
| 80 | |
| 81 | inline bool isPointerOrPointerToMember(const Type *T) { |
| 82 | return T->isPointerType() || T->isMemberPointerType(); |
| 83 | } |
| 84 | |
| 85 | std::optional<QualType> getPointeeOrArrayElementQualType(QualType T) { |
| 86 | if (T->isAnyPointerType() || T->isMemberPointerType()) |
| 87 | return T->getPointeeType(); |
| 88 | |
| 89 | if (T->isArrayType()) |
| 90 | return T->getAsArrayTypeUnsafe()->getElementType(); |
| 91 | |
| 92 | return std::nullopt; |
| 93 | } |
| 94 | |
| 95 | bool isBaseOf(const Type *DerivedType, const Type *BaseType) { |
| 96 | const auto *DerivedClass = DerivedType->getAsCXXRecordDecl(); |
| 97 | const auto *BaseClass = BaseType->getAsCXXRecordDecl(); |
| 98 | if (!DerivedClass || !BaseClass) |
| 99 | return false; |
| 100 | |
| 101 | return !DerivedClass->forallBases( |
| 102 | BaseMatches: [BaseClass](const CXXRecordDecl *Cur) { return Cur != BaseClass; }); |
| 103 | } |
| 104 | |
| 105 | // Check if T1 is more or Equally qualified than T2. |
| 106 | bool moreOrEquallyQualified(QualType T1, QualType T2) { |
| 107 | return T1.getQualifiers().isStrictSupersetOf(Other: T2.getQualifiers()) || |
| 108 | T1.getQualifiers() == T2.getQualifiers(); |
| 109 | } |
| 110 | |
| 111 | bool isStandardPointerConvertible(QualType From, QualType To) { |
| 112 | assert((From->isPointerType() || From->isMemberPointerType()) && |
| 113 | (To->isPointerType() || To->isMemberPointerType()) && |
| 114 | "Pointer conversion should be performed on pointer types only." ); |
| 115 | |
| 116 | if (!moreOrEquallyQualified(T1: To->getPointeeType(), T2: From->getPointeeType())) |
| 117 | return false; |
| 118 | |
| 119 | // (1) |
| 120 | // A null pointer constant can be converted to a pointer type ... |
| 121 | // The conversion of a null pointer constant to a pointer to cv-qualified type |
| 122 | // is a single conversion, and not the sequence of a pointer conversion |
| 123 | // followed by a qualification conversion. A null pointer constant of integral |
| 124 | // type can be converted to a prvalue of type std::nullptr_t |
| 125 | if (To->isPointerType() && From->isNullPtrType()) |
| 126 | return true; |
| 127 | |
| 128 | // (2) |
| 129 | // A prvalue of type “pointer to cv T”, where T is an object type, can be |
| 130 | // converted to a prvalue of type “pointer to cv void”. |
| 131 | if (To->isVoidPointerType() && From->isObjectPointerType()) |
| 132 | return true; |
| 133 | |
| 134 | // (3) |
| 135 | // A prvalue of type “pointer to cv D”, where D is a complete class type, can |
| 136 | // be converted to a prvalue of type “pointer to cv B”, where B is a base |
| 137 | // class of D. If B is an inaccessible or ambiguous base class of D, a program |
| 138 | // that necessitates this conversion is ill-formed. |
| 139 | if (const auto *RD = From->getPointeeCXXRecordDecl()) { |
| 140 | if (RD->isCompleteDefinition() && |
| 141 | isBaseOf(DerivedType: From->getPointeeType().getTypePtr(), |
| 142 | BaseType: To->getPointeeType().getTypePtr())) { |
| 143 | // If B is an inaccessible or ambiguous base class of D, a program |
| 144 | // that necessitates this conversion is ill-formed |
| 145 | return isUnambiguousPublicBaseClass(DerivedType: From->getPointeeType().getTypePtr(), |
| 146 | BaseType: To->getPointeeType().getTypePtr()); |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | return false; |
| 151 | } |
| 152 | |
| 153 | bool isFunctionPointerConvertible(QualType From, QualType To) { |
| 154 | if (!From->isFunctionPointerType() && !From->isFunctionType() && |
| 155 | !From->isMemberFunctionPointerType()) |
| 156 | return false; |
| 157 | |
| 158 | if (!To->isFunctionPointerType() && !To->isMemberFunctionPointerType()) |
| 159 | return false; |
| 160 | |
| 161 | if (To->isFunctionPointerType()) { |
| 162 | if (From->isFunctionPointerType()) |
| 163 | return To->getPointeeType() == From->getPointeeType(); |
| 164 | |
| 165 | if (From->isFunctionType()) |
| 166 | return To->getPointeeType() == From; |
| 167 | |
| 168 | return false; |
| 169 | } |
| 170 | |
| 171 | if (To->isMemberFunctionPointerType()) { |
| 172 | if (!From->isMemberFunctionPointerType()) |
| 173 | return false; |
| 174 | |
| 175 | const auto *FromMember = cast<MemberPointerType>(Val&: From); |
| 176 | const auto *ToMember = cast<MemberPointerType>(Val&: To); |
| 177 | |
| 178 | // Note: converting Derived::* to Base::* is a different kind of conversion, |
| 179 | // called Pointer-to-member conversion. |
| 180 | return FromMember->getQualifier() == ToMember->getQualifier() && |
| 181 | FromMember->getMostRecentCXXRecordDecl() == |
| 182 | ToMember->getMostRecentCXXRecordDecl() && |
| 183 | FromMember->getPointeeType() == ToMember->getPointeeType(); |
| 184 | } |
| 185 | |
| 186 | return false; |
| 187 | } |
| 188 | |
| 189 | // Checks if From is qualification convertible to To based on the current |
| 190 | // LangOpts. If From is any array, we perform the array to pointer conversion |
| 191 | // first. The function only performs checks based on C++ rules, which can differ |
| 192 | // from the C rules. |
| 193 | // |
| 194 | // The function should only be called in C++ mode. |
| 195 | bool isQualificationConvertiblePointer(QualType From, QualType To, |
| 196 | LangOptions LangOpts) { |
| 197 | |
| 198 | // [N4659 7.5 (1)] |
| 199 | // A cv-decomposition of a type T is a sequence of cv_i and P_i such that T is |
| 200 | // cv_0 P_0 cv_1 P_1 ... cv_n−1 P_n−1 cv_n U” for n > 0, |
| 201 | // where each cv_i is a set of cv-qualifiers, and each P_i is “pointer to”, |
| 202 | // “pointer to member of class C_i of type”, “array of N_i”, or |
| 203 | // “array of unknown bound of”. |
| 204 | // |
| 205 | // If P_i designates an array, the cv-qualifiers cv_i+1 on the element type |
| 206 | // are also taken as the cv-qualifiers cvi of the array. |
| 207 | // |
| 208 | // The n-tuple of cv-qualifiers after the first one in the longest |
| 209 | // cv-decomposition of T, that is, cv_1, cv_2, ... , cv_n, is called the |
| 210 | // cv-qualification signature of T. |
| 211 | |
| 212 | // NOLINTNEXTLINE (readability-identifier-naming): Preserve original notation |
| 213 | auto IsValidP_i = [](QualType P) { |
| 214 | return P->isPointerType() || P->isMemberPointerType() || |
| 215 | P->isConstantArrayType() || P->isIncompleteArrayType(); |
| 216 | }; |
| 217 | |
| 218 | // NOLINTNEXTLINE (readability-identifier-naming): Preserve original notation |
| 219 | auto IsSameP_i = [](QualType P1, QualType P2) { |
| 220 | if (P1->isPointerType()) |
| 221 | return P2->isPointerType(); |
| 222 | |
| 223 | if (P1->isMemberPointerType()) |
| 224 | return P2->isMemberPointerType() && |
| 225 | P1->getAs<MemberPointerType>()->getMostRecentCXXRecordDecl() == |
| 226 | P2->getAs<MemberPointerType>()->getMostRecentCXXRecordDecl(); |
| 227 | |
| 228 | if (P1->isConstantArrayType()) |
| 229 | return P2->isConstantArrayType() && |
| 230 | cast<ConstantArrayType>(Val&: P1)->getSize() == |
| 231 | cast<ConstantArrayType>(Val&: P2)->getSize(); |
| 232 | |
| 233 | if (P1->isIncompleteArrayType()) |
| 234 | return P2->isIncompleteArrayType(); |
| 235 | |
| 236 | return false; |
| 237 | }; |
| 238 | |
| 239 | // (2) |
| 240 | // Two types From and To are similar if they have cv-decompositions with the |
| 241 | // same n such that corresponding P_i components are the same [(added by |
| 242 | // N4849 7.3.5) or one is “array of N_i” and the other is “array of unknown |
| 243 | // bound of”], and the types denoted by U are the same. |
| 244 | // |
| 245 | // (3) |
| 246 | // A prvalue expression of type From can be converted to type To if the |
| 247 | // following conditions are satisfied: |
| 248 | // - From and To are similar |
| 249 | // - For every i > 0, if const is in cv_i of From then const is in cv_i of |
| 250 | // To, and similarly for volatile. |
| 251 | // - [(derived from addition by N4849 7.3.5) If P_i of From is “array of |
| 252 | // unknown bound of”, P_i of To is “array of unknown bound of”.] |
| 253 | // - If the cv_i of From and cv_i of To are different, then const is in every |
| 254 | // cv_k of To for 0 < k < i. |
| 255 | |
| 256 | int I = 0; |
| 257 | bool ConstUntilI = true; |
| 258 | auto SatisfiesCVRules = [&I, &ConstUntilI](const QualType &From, |
| 259 | const QualType &To) { |
| 260 | if (I > 1) { |
| 261 | if (From.getQualifiers() != To.getQualifiers() && !ConstUntilI) |
| 262 | return false; |
| 263 | } |
| 264 | |
| 265 | if (I > 0) { |
| 266 | if (From.isConstQualified() && !To.isConstQualified()) |
| 267 | return false; |
| 268 | |
| 269 | if (From.isVolatileQualified() && !To.isVolatileQualified()) |
| 270 | return false; |
| 271 | |
| 272 | ConstUntilI = To.isConstQualified(); |
| 273 | } |
| 274 | |
| 275 | return true; |
| 276 | }; |
| 277 | |
| 278 | while (IsValidP_i(From) && IsValidP_i(To)) { |
| 279 | // Remove every sugar. |
| 280 | From = From.getCanonicalType(); |
| 281 | To = To.getCanonicalType(); |
| 282 | |
| 283 | if (!SatisfiesCVRules(From, To)) |
| 284 | return false; |
| 285 | |
| 286 | if (!IsSameP_i(From, To)) { |
| 287 | if (LangOpts.CPlusPlus20) { |
| 288 | if (From->isConstantArrayType() && !To->isIncompleteArrayType()) |
| 289 | return false; |
| 290 | |
| 291 | if (From->isIncompleteArrayType() && !To->isIncompleteArrayType()) |
| 292 | return false; |
| 293 | |
| 294 | } else { |
| 295 | return false; |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | ++I; |
| 300 | std::optional<QualType> FromPointeeOrElem = |
| 301 | getPointeeOrArrayElementQualType(From); |
| 302 | std::optional<QualType> ToPointeeOrElem = |
| 303 | getPointeeOrArrayElementQualType(To); |
| 304 | |
| 305 | assert(FromPointeeOrElem && |
| 306 | "From pointer or array has no pointee or element!" ); |
| 307 | assert(ToPointeeOrElem && "To pointer or array has no pointee or element!" ); |
| 308 | |
| 309 | From = *FromPointeeOrElem; |
| 310 | To = *ToPointeeOrElem; |
| 311 | } |
| 312 | |
| 313 | // In this case the length (n) of From and To are not the same. |
| 314 | if (IsValidP_i(From) || IsValidP_i(To)) |
| 315 | return false; |
| 316 | |
| 317 | // We hit U. |
| 318 | if (!SatisfiesCVRules(From, To)) |
| 319 | return false; |
| 320 | |
| 321 | return From.getTypePtr() == To.getTypePtr(); |
| 322 | } |
| 323 | } // namespace |
| 324 | |
| 325 | static bool canThrow(const FunctionDecl *Func) { |
| 326 | // consteval specifies that every call to the function must produce a |
| 327 | // compile-time constant, which cannot evaluate a throw expression without |
| 328 | // producing a compilation error. |
| 329 | if (Func->isConsteval()) |
| 330 | return false; |
| 331 | |
| 332 | const auto *FunProto = Func->getType()->getAs<FunctionProtoType>(); |
| 333 | if (!FunProto) |
| 334 | return true; |
| 335 | |
| 336 | switch (FunProto->canThrow()) { |
| 337 | case CT_Cannot: |
| 338 | return false; |
| 339 | case CT_Dependent: { |
| 340 | const Expr *NoexceptExpr = FunProto->getNoexceptExpr(); |
| 341 | if (!NoexceptExpr) |
| 342 | return true; // no noexcept - can throw |
| 343 | |
| 344 | if (NoexceptExpr->isValueDependent()) |
| 345 | return true; // depend on template - some instance can throw |
| 346 | |
| 347 | bool Result = false; |
| 348 | if (!NoexceptExpr->EvaluateAsBooleanCondition(Result, Ctx: Func->getASTContext(), |
| 349 | /*InConstantContext=*/true)) |
| 350 | return true; // complex X condition in noexcept(X), cannot validate, |
| 351 | // assume that may throw |
| 352 | return !Result; // noexcept(false) - can throw |
| 353 | } |
| 354 | default: |
| 355 | return true; |
| 356 | }; |
| 357 | } |
| 358 | |
| 359 | bool ExceptionAnalyzer::ExceptionInfo::filterByCatch( |
| 360 | const Type *HandlerTy, const ASTContext &Context) { |
| 361 | llvm::SmallVector<const Type *, 8> TypesToDelete; |
| 362 | for (const Type *ExceptionTy : ThrownExceptions) { |
| 363 | CanQualType ExceptionCanTy = ExceptionTy->getCanonicalTypeUnqualified(); |
| 364 | CanQualType HandlerCanTy = HandlerTy->getCanonicalTypeUnqualified(); |
| 365 | |
| 366 | // The handler is of type cv T or cv T& and E and T are the same type |
| 367 | // (ignoring the top-level cv-qualifiers) ... |
| 368 | if (ExceptionCanTy == HandlerCanTy) { |
| 369 | TypesToDelete.push_back(Elt: ExceptionTy); |
| 370 | } |
| 371 | |
| 372 | // The handler is of type cv T or cv T& and T is an unambiguous public base |
| 373 | // class of E ... |
| 374 | else if (isUnambiguousPublicBaseClass(ExceptionCanTy->getTypePtr(), |
| 375 | HandlerCanTy->getTypePtr())) { |
| 376 | TypesToDelete.push_back(Elt: ExceptionTy); |
| 377 | } |
| 378 | |
| 379 | if (HandlerCanTy->getTypeClass() == Type::RValueReference || |
| 380 | (HandlerCanTy->getTypeClass() == Type::LValueReference && |
| 381 | !HandlerCanTy->getTypePtr()->getPointeeType().isConstQualified())) |
| 382 | continue; |
| 383 | // The handler is of type cv T or const T& where T is a pointer or |
| 384 | // pointer-to-member type and E is a pointer or pointer-to-member type that |
| 385 | // can be converted to T by one or more of ... |
| 386 | if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) && |
| 387 | isPointerOrPointerToMember(ExceptionCanTy->getTypePtr())) { |
| 388 | // A standard pointer conversion not involving conversions to pointers to |
| 389 | // private or protected or ambiguous classes ... |
| 390 | if (isStandardPointerConvertible(From: ExceptionCanTy, To: HandlerCanTy)) { |
| 391 | TypesToDelete.push_back(Elt: ExceptionTy); |
| 392 | } |
| 393 | // A function pointer conversion ... |
| 394 | else if (isFunctionPointerConvertible(From: ExceptionCanTy, To: HandlerCanTy)) { |
| 395 | TypesToDelete.push_back(Elt: ExceptionTy); |
| 396 | } |
| 397 | // A a qualification conversion ... |
| 398 | else if (isQualificationConvertiblePointer(From: ExceptionCanTy, To: HandlerCanTy, |
| 399 | LangOpts: Context.getLangOpts())) { |
| 400 | TypesToDelete.push_back(Elt: ExceptionTy); |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | // The handler is of type cv T or const T& where T is a pointer or |
| 405 | // pointer-to-member type and E is std::nullptr_t. |
| 406 | else if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) && |
| 407 | ExceptionCanTy->isNullPtrType()) { |
| 408 | TypesToDelete.push_back(Elt: ExceptionTy); |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | for (const Type *T : TypesToDelete) |
| 413 | ThrownExceptions.erase(Ptr: T); |
| 414 | |
| 415 | reevaluateBehaviour(); |
| 416 | return !TypesToDelete.empty(); |
| 417 | } |
| 418 | |
| 419 | ExceptionAnalyzer::ExceptionInfo & |
| 420 | ExceptionAnalyzer::ExceptionInfo::filterIgnoredExceptions( |
| 421 | const llvm::StringSet<> &IgnoredTypes, bool IgnoreBadAlloc) { |
| 422 | llvm::SmallVector<const Type *, 8> TypesToDelete; |
| 423 | // Note: Using a 'SmallSet' with 'llvm::remove_if()' is not possible. |
| 424 | // Therefore this slightly hacky implementation is required. |
| 425 | for (const Type *T : ThrownExceptions) { |
| 426 | if (const auto *TD = T->getAsTagDecl()) { |
| 427 | if (TD->getDeclName().isIdentifier()) { |
| 428 | if ((IgnoreBadAlloc && |
| 429 | (TD->getName() == "bad_alloc" && TD->isInStdNamespace())) || |
| 430 | (IgnoredTypes.contains(key: TD->getName()))) |
| 431 | TypesToDelete.push_back(Elt: T); |
| 432 | } |
| 433 | } |
| 434 | } |
| 435 | for (const Type *T : TypesToDelete) |
| 436 | ThrownExceptions.erase(Ptr: T); |
| 437 | |
| 438 | reevaluateBehaviour(); |
| 439 | return *this; |
| 440 | } |
| 441 | |
| 442 | void ExceptionAnalyzer::ExceptionInfo::clear() { |
| 443 | Behaviour = State::NotThrowing; |
| 444 | ContainsUnknown = false; |
| 445 | ThrownExceptions.clear(); |
| 446 | } |
| 447 | |
| 448 | void ExceptionAnalyzer::ExceptionInfo::reevaluateBehaviour() { |
| 449 | if (ThrownExceptions.empty()) |
| 450 | if (ContainsUnknown) |
| 451 | Behaviour = State::Unknown; |
| 452 | else |
| 453 | Behaviour = State::NotThrowing; |
| 454 | else |
| 455 | Behaviour = State::Throwing; |
| 456 | } |
| 457 | |
| 458 | ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException( |
| 459 | const FunctionDecl *Func, const ExceptionInfo::Throwables &Caught, |
| 460 | llvm::SmallSet<const FunctionDecl *, 32> &CallStack) { |
| 461 | if (!Func || CallStack.contains(Ptr: Func) || |
| 462 | (!CallStack.empty() && !canThrow(Func))) |
| 463 | return ExceptionInfo::createNonThrowing(); |
| 464 | |
| 465 | if (const Stmt *Body = Func->getBody()) { |
| 466 | CallStack.insert(Ptr: Func); |
| 467 | ExceptionInfo Result = throwsException(St: Body, Caught, CallStack); |
| 468 | |
| 469 | // For a constructor, we also have to check the initializers. |
| 470 | if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Val: Func)) { |
| 471 | for (const CXXCtorInitializer *Init : Ctor->inits()) { |
| 472 | ExceptionInfo Excs = |
| 473 | throwsException(Init->getInit(), Caught, CallStack); |
| 474 | Result.merge(Other: Excs); |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | CallStack.erase(Ptr: Func); |
| 479 | return Result; |
| 480 | } |
| 481 | |
| 482 | auto Result = ExceptionInfo::createUnknown(); |
| 483 | if (const auto *FPT = Func->getType()->getAs<FunctionProtoType>()) { |
| 484 | for (const QualType &Ex : FPT->exceptions()) |
| 485 | Result.registerException(Ex.getTypePtr()); |
| 486 | } |
| 487 | return Result; |
| 488 | } |
| 489 | |
| 490 | /// Analyzes a single statement on it's throwing behaviour. This is in principle |
| 491 | /// possible except some 'Unknown' functions are called. |
| 492 | ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException( |
| 493 | const Stmt *St, const ExceptionInfo::Throwables &Caught, |
| 494 | llvm::SmallSet<const FunctionDecl *, 32> &CallStack) { |
| 495 | auto Results = ExceptionInfo::createNonThrowing(); |
| 496 | if (!St) |
| 497 | return Results; |
| 498 | |
| 499 | if (const auto *Throw = dyn_cast<CXXThrowExpr>(Val: St)) { |
| 500 | if (const auto *ThrownExpr = Throw->getSubExpr()) { |
| 501 | const auto *ThrownType = |
| 502 | ThrownExpr->getType()->getUnqualifiedDesugaredType(); |
| 503 | if (ThrownType->isReferenceType()) |
| 504 | ThrownType = ThrownType->castAs<ReferenceType>() |
| 505 | ->getPointeeType() |
| 506 | ->getUnqualifiedDesugaredType(); |
| 507 | Results.registerException( |
| 508 | ExceptionType: ThrownExpr->getType()->getUnqualifiedDesugaredType()); |
| 509 | } else |
| 510 | // A rethrow of a caught exception happens which makes it possible |
| 511 | // to throw all exception that are caught in the 'catch' clause of |
| 512 | // the parent try-catch block. |
| 513 | Results.registerExceptions(Exceptions: Caught); |
| 514 | } else if (const auto *Try = dyn_cast<CXXTryStmt>(Val: St)) { |
| 515 | ExceptionInfo Uncaught = |
| 516 | throwsException(Try->getTryBlock(), Caught, CallStack); |
| 517 | for (unsigned I = 0; I < Try->getNumHandlers(); ++I) { |
| 518 | const CXXCatchStmt *Catch = Try->getHandler(i: I); |
| 519 | |
| 520 | // Everything is caught through 'catch(...)'. |
| 521 | if (!Catch->getExceptionDecl()) { |
| 522 | ExceptionInfo Rethrown = throwsException( |
| 523 | St: Catch->getHandlerBlock(), Caught: Uncaught.getExceptionTypes(), CallStack); |
| 524 | Results.merge(Other: Rethrown); |
| 525 | Uncaught.clear(); |
| 526 | } else { |
| 527 | const auto *CaughtType = |
| 528 | Catch->getCaughtType()->getUnqualifiedDesugaredType(); |
| 529 | if (CaughtType->isReferenceType()) { |
| 530 | CaughtType = CaughtType->castAs<ReferenceType>() |
| 531 | ->getPointeeType() |
| 532 | ->getUnqualifiedDesugaredType(); |
| 533 | } |
| 534 | |
| 535 | // If the caught exception will catch multiple previously potential |
| 536 | // thrown types (because it's sensitive to inheritance) the throwing |
| 537 | // situation changes. First of all filter the exception types and |
| 538 | // analyze if the baseclass-exception is rethrown. |
| 539 | if (Uncaught.filterByCatch( |
| 540 | HandlerTy: CaughtType, Context: Catch->getExceptionDecl()->getASTContext())) { |
| 541 | ExceptionInfo::Throwables CaughtExceptions; |
| 542 | CaughtExceptions.insert(Ptr: CaughtType); |
| 543 | ExceptionInfo Rethrown = throwsException(St: Catch->getHandlerBlock(), |
| 544 | Caught: CaughtExceptions, CallStack); |
| 545 | Results.merge(Other: Rethrown); |
| 546 | } |
| 547 | } |
| 548 | } |
| 549 | Results.merge(Other: Uncaught); |
| 550 | } else if (const auto *Call = dyn_cast<CallExpr>(Val: St)) { |
| 551 | if (const FunctionDecl *Func = Call->getDirectCallee()) { |
| 552 | ExceptionInfo Excs = throwsException(Func, Caught, CallStack); |
| 553 | Results.merge(Other: Excs); |
| 554 | } |
| 555 | } else if (const auto *Construct = dyn_cast<CXXConstructExpr>(Val: St)) { |
| 556 | ExceptionInfo Excs = |
| 557 | throwsException(Construct->getConstructor(), Caught, CallStack); |
| 558 | Results.merge(Other: Excs); |
| 559 | } else if (const auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(Val: St)) { |
| 560 | ExceptionInfo Excs = |
| 561 | throwsException(DefaultInit->getExpr(), Caught, CallStack); |
| 562 | Results.merge(Other: Excs); |
| 563 | } else if (const auto *Coro = dyn_cast<CoroutineBodyStmt>(Val: St)) { |
| 564 | for (const Stmt *Child : Coro->childrenExclBody()) { |
| 565 | if (Child != Coro->getExceptionHandler()) { |
| 566 | ExceptionInfo Excs = throwsException(St: Child, Caught, CallStack); |
| 567 | Results.merge(Other: Excs); |
| 568 | } |
| 569 | } |
| 570 | ExceptionInfo Excs = throwsException(Coro->getBody(), Caught, CallStack); |
| 571 | Results.merge(Other: throwsException(St: Coro->getExceptionHandler(), |
| 572 | Caught: Excs.getExceptionTypes(), CallStack)); |
| 573 | for (const Type *Throwable : Excs.getExceptionTypes()) { |
| 574 | if (const auto *ThrowableRec = Throwable->getAsCXXRecordDecl()) { |
| 575 | ExceptionInfo DestructorExcs = |
| 576 | throwsException(ThrowableRec->getDestructor(), Caught, CallStack); |
| 577 | Results.merge(DestructorExcs); |
| 578 | } |
| 579 | } |
| 580 | } else { |
| 581 | for (const Stmt *Child : St->children()) { |
| 582 | ExceptionInfo Excs = throwsException(St: Child, Caught, CallStack); |
| 583 | Results.merge(Other: Excs); |
| 584 | } |
| 585 | } |
| 586 | return Results; |
| 587 | } |
| 588 | |
| 589 | ExceptionAnalyzer::ExceptionInfo |
| 590 | ExceptionAnalyzer::analyzeImpl(const FunctionDecl *Func) { |
| 591 | ExceptionInfo ExceptionList; |
| 592 | |
| 593 | // Check if the function has already been analyzed and reuse that result. |
| 594 | const auto CacheEntry = FunctionCache.find(Val: Func); |
| 595 | if (CacheEntry == FunctionCache.end()) { |
| 596 | llvm::SmallSet<const FunctionDecl *, 32> CallStack; |
| 597 | ExceptionList = |
| 598 | throwsException(Func, Caught: ExceptionInfo::Throwables(), CallStack); |
| 599 | |
| 600 | // Cache the result of the analysis. This is done prior to filtering |
| 601 | // because it is best to keep as much information as possible. |
| 602 | // The results here might be relevant to different analysis passes |
| 603 | // with different needs as well. |
| 604 | FunctionCache.try_emplace(Key: Func, Args&: ExceptionList); |
| 605 | } else |
| 606 | ExceptionList = CacheEntry->getSecond(); |
| 607 | |
| 608 | return ExceptionList; |
| 609 | } |
| 610 | |
| 611 | ExceptionAnalyzer::ExceptionInfo |
| 612 | ExceptionAnalyzer::analyzeImpl(const Stmt *Stmt) { |
| 613 | llvm::SmallSet<const FunctionDecl *, 32> CallStack; |
| 614 | return throwsException(St: Stmt, Caught: ExceptionInfo::Throwables(), CallStack); |
| 615 | } |
| 616 | |
| 617 | template <typename T> |
| 618 | ExceptionAnalyzer::ExceptionInfo |
| 619 | ExceptionAnalyzer::analyzeDispatch(const T *Node) { |
| 620 | ExceptionInfo ExceptionList = analyzeImpl(Node); |
| 621 | |
| 622 | if (ExceptionList.getBehaviour() == State::NotThrowing || |
| 623 | ExceptionList.getBehaviour() == State::Unknown) |
| 624 | return ExceptionList; |
| 625 | |
| 626 | // Remove all ignored exceptions from the list of exceptions that can be |
| 627 | // thrown. |
| 628 | ExceptionList.filterIgnoredExceptions(IgnoredTypes: IgnoredExceptions, IgnoreBadAlloc); |
| 629 | |
| 630 | return ExceptionList; |
| 631 | } |
| 632 | |
| 633 | ExceptionAnalyzer::ExceptionInfo |
| 634 | ExceptionAnalyzer::analyze(const FunctionDecl *Func) { |
| 635 | return analyzeDispatch(Node: Func); |
| 636 | } |
| 637 | |
| 638 | ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::analyze(const Stmt *Stmt) { |
| 639 | return analyzeDispatch(Node: Stmt); |
| 640 | } |
| 641 | |
| 642 | } // namespace clang::tidy::utils |
| 643 | |