1 | //===--- AST.h - Utility AST functions -------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Various code that examines C++ source code using AST. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_CLANG_TOOLS_EXTRA_CLANGD_AST_H |
14 | #define |
15 | |
16 | #include "Headers.h" |
17 | #include "index/Symbol.h" |
18 | #include "index/SymbolID.h" |
19 | #include "clang/AST/Decl.h" |
20 | #include "clang/AST/DeclObjC.h" |
21 | #include "clang/AST/NestedNameSpecifier.h" |
22 | #include "clang/AST/TypeLoc.h" |
23 | #include "clang/Basic/SourceLocation.h" |
24 | #include "clang/Lex/MacroInfo.h" |
25 | #include "llvm/ADT/StringRef.h" |
26 | #include <optional> |
27 | #include <string> |
28 | #include <vector> |
29 | |
30 | namespace clang { |
31 | class SourceManager; |
32 | class Decl; |
33 | class DynTypedNode; |
34 | |
35 | namespace clangd { |
36 | |
37 | /// Returns true if the declaration is considered implementation detail based on |
38 | /// heuristics. For example, a declaration whose name is not explicitly spelled |
39 | /// in code is considered implementation detail. |
40 | bool isImplementationDetail(const Decl *D); |
41 | |
42 | /// Find the source location of the identifier for \p D. |
43 | /// Transforms macro locations to locations spelled inside files. All code |
44 | /// that needs locations of declaration names (e.g. the index) should go through |
45 | /// this function. |
46 | SourceLocation nameLocation(const clang::Decl &D, const SourceManager &SM); |
47 | |
48 | /// Returns the qualified name of ND. The scope doesn't contain unwritten scopes |
49 | /// like inline namespaces. |
50 | std::string printQualifiedName(const NamedDecl &ND); |
51 | |
52 | /// Returns the first enclosing namespace scope starting from \p DC. |
53 | std::string printNamespaceScope(const DeclContext &DC); |
54 | |
55 | /// Returns the name of the namespace inside the 'using namespace' directive, as |
56 | /// written in the code. E.g., passing 'using namespace ::std' will result in |
57 | /// '::std'. |
58 | std::string printUsingNamespaceName(const ASTContext &Ctx, |
59 | const UsingDirectiveDecl &D); |
60 | |
61 | /// Prints unqualified name of the decl for the purpose of displaying it to the |
62 | /// user. Anonymous decls return names of the form "(anonymous {kind})", e.g. |
63 | /// "(anonymous struct)" or "(anonymous namespace)". |
64 | std::string printName(const ASTContext &Ctx, const NamedDecl &ND); |
65 | |
66 | /// Prints template arguments of a decl as written in the source code, including |
67 | /// enclosing '<' and '>', e.g for a partial specialization like: template |
68 | /// <typename U> struct Foo<int, U> will return '<int, U>'. Returns an empty |
69 | /// string if decl is not a template specialization. |
70 | std::string printTemplateSpecializationArgs(const NamedDecl &ND); |
71 | |
72 | /// Print the Objective-C method name, including the full container name, e.g. |
73 | /// `-[MyClass(Category) method:]` |
74 | std::string printObjCMethod(const ObjCMethodDecl &Method); |
75 | |
76 | /// Print the Objective-C container name including categories, e.g. `MyClass`, |
77 | // `MyClass()`, `MyClass(Category)`, and `MyProtocol`. |
78 | std::string printObjCContainer(const ObjCContainerDecl &C); |
79 | |
80 | /// Returns true if this is a NamedDecl with a reserved name. |
81 | bool hasReservedName(const Decl &); |
82 | /// Returns true if this scope would be written with a reserved name. |
83 | /// This does not include unwritten scope elements like __1 in std::__1::vector. |
84 | bool hasReservedScope(const DeclContext &); |
85 | |
86 | /// Gets the symbol ID for a declaration. Returned SymbolID might be null. |
87 | SymbolID getSymbolID(const Decl *D); |
88 | |
89 | /// Gets the symbol ID for a macro. Returned SymbolID might be null. |
90 | /// Currently, this is an encoded USR of the macro, which incorporates macro |
91 | /// locations (e.g. file name, offset in file). |
92 | /// FIXME: the USR semantics might not be stable enough as the ID for index |
93 | /// macro (e.g. a change in definition offset can result in a different USR). We |
94 | /// could change these semantics in the future by reimplementing this funcure |
95 | /// (e.g. avoid USR for macros). |
96 | SymbolID getSymbolID(const llvm::StringRef MacroName, const MacroInfo *MI, |
97 | const SourceManager &SM); |
98 | |
99 | /// Return the corresponding implementation/definition for the given ObjC |
100 | /// container if it has one, otherwise, return nullptr. |
101 | /// |
102 | /// Objective-C classes can have three types of declarations: |
103 | /// |
104 | /// - forward declaration: "@class MyClass;" |
105 | /// - true declaration (interface definition): "@interface MyClass ... @end" |
106 | /// - true definition (implementation): "@implementation MyClass ... @end" |
107 | /// |
108 | /// Objective-C categories are extensions on classes: |
109 | /// |
110 | /// - declaration: "@interface MyClass (Ext) ... @end" |
111 | /// - definition: "@implementation MyClass (Ext) ... @end" |
112 | /// |
113 | /// With one special case, a class extension, which is normally used to keep |
114 | /// some declarations internal to a file without exposing them in a header. |
115 | /// |
116 | /// - class extension declaration: "@interface MyClass () ... @end" |
117 | /// - which really links to class definition: "@implementation MyClass ... @end" |
118 | /// |
119 | /// For Objective-C protocols, e.g. "@protocol MyProtocol ... @end" this will |
120 | /// return nullptr as protocols don't have an implementation. |
121 | const ObjCImplDecl *getCorrespondingObjCImpl(const ObjCContainerDecl *D); |
122 | |
123 | /// Infer the include directive to use for the given \p FileName. It aims for |
124 | /// #import for ObjC files and #include for the rest. |
125 | /// |
126 | /// - For source files we use LangOpts directly to infer ObjC-ness. |
127 | /// - For header files we also check for symbols declared by the file and |
128 | /// existing include directives, as the language can be set to ObjC++ as a |
129 | /// fallback in the absence of compile flags. |
130 | Symbol::IncludeDirective |
131 | preferredIncludeDirective(llvm::StringRef FileName, const LangOptions &LangOpts, |
132 | ArrayRef<Inclusion> MainFileIncludes, |
133 | ArrayRef<const Decl *> TopLevelDecls); |
134 | |
135 | /// Returns a QualType as string. The result doesn't contain unwritten scopes |
136 | /// like anonymous/inline namespace. |
137 | std::string printType(const QualType QT, const DeclContext &CurContext, |
138 | llvm::StringRef Placeholder = "" ); |
139 | |
140 | /// Indicates if \p D is a template instantiation implicitly generated by the |
141 | /// compiler, e.g. |
142 | /// template <class T> struct vector {}; |
143 | /// vector<int> v; // 'vector<int>' is an implicit instantiation |
144 | bool isImplicitTemplateInstantiation(const NamedDecl *D); |
145 | /// Indicates if \p D is an explicit template specialization, e.g. |
146 | /// template <class T> struct vector {}; |
147 | /// template <> struct vector<bool> {}; // <-- explicit specialization |
148 | /// |
149 | /// Note that explicit instantiations are NOT explicit specializations, albeit |
150 | /// they look similar. |
151 | /// template struct vector<bool>; // <-- explicit instantiation, NOT an |
152 | /// explicit specialization. |
153 | bool isExplicitTemplateSpecialization(const NamedDecl *D); |
154 | |
155 | /// Returns a nested name specifier loc of \p ND if it was present in the |
156 | /// source, e.g. |
157 | /// void ns::something::foo() -> returns 'ns::something' |
158 | /// void foo() -> returns null |
159 | NestedNameSpecifierLoc getQualifierLoc(const NamedDecl &ND); |
160 | |
161 | // Returns a type corresponding to a declaration of that type. |
162 | // Unlike the method on ASTContext, attempts to preserve the type as-written |
163 | // (i.e. vector<T*> rather than vector<type-parameter-0-0 *>. |
164 | QualType declaredType(const TypeDecl *D); |
165 | |
166 | /// Retrieves the deduced type at a given location (auto, decltype). |
167 | /// It will return the underlying type. |
168 | /// If the type is an undeduced auto, returns the type itself. |
169 | std::optional<QualType> getDeducedType(ASTContext &, SourceLocation Loc); |
170 | |
171 | // Find the abbreviated-function-template `auto` within a type, or returns null. |
172 | // Similar to getContainedAutoTypeLoc, but these `auto`s are |
173 | // TemplateTypeParmTypes for implicit TTPs, instead of AutoTypes. |
174 | // Also we don't look very hard, just stripping const, references, pointers. |
175 | // FIXME: handle more type patterns. |
176 | TemplateTypeParmTypeLoc getContainedAutoParamType(TypeLoc TL); |
177 | |
178 | // If TemplatedDecl is the generic body of a template, and the template has |
179 | // exactly one visible instantiation, return the instantiated body. |
180 | NamedDecl *getOnlyInstantiation(NamedDecl *TemplatedDecl); |
181 | |
182 | /// Return attributes attached directly to a node. |
183 | std::vector<const Attr *> getAttributes(const DynTypedNode &); |
184 | |
185 | /// Gets the nested name specifier necessary for spelling \p ND in \p |
186 | /// DestContext, at \p InsertionPoint. It selects the shortest suffix of \p ND |
187 | /// such that it is visible in \p DestContext. |
188 | /// Returns an empty string if no qualification is necessary. For example, if |
189 | /// you want to qualify clang::clangd::bar::foo in clang::clangd::x, this |
190 | /// function will return bar. Note that the result might be sub-optimal for |
191 | /// classes, e.g. when the \p ND is a member of the base class. |
192 | /// |
193 | /// This version considers all the using namespace directives before \p |
194 | /// InsertionPoint. i.e, if you have `using namespace |
195 | /// clang::clangd::bar`, this function will return an empty string for the |
196 | /// example above since no qualification is necessary in that case. |
197 | /// FIXME: Also take using directives and namespace aliases inside function body |
198 | /// into account. |
199 | std::string getQualification(ASTContext &Context, |
200 | const DeclContext *DestContext, |
201 | SourceLocation InsertionPoint, |
202 | const NamedDecl *ND); |
203 | |
204 | /// This function uses the \p VisibleNamespaces to figure out if a shorter |
205 | /// qualification is sufficient for \p ND, and ignores any using namespace |
206 | /// directives. It can be useful if there's no AST for the DestContext, but some |
207 | /// pseudo-parsing is done. i.e. if \p ND is ns1::ns2::X and \p DestContext is |
208 | /// ns1::, users can provide `ns2::` as visible to change the result to be |
209 | /// empty. |
210 | /// Elements in VisibleNamespaces should be in the form: `ns::`, with trailing |
211 | /// "::". |
212 | /// Note that this is just textual and might be incorrect. e.g. when there are |
213 | /// two namespaces ns1::a and ns2::a, the function will early exit if "a::" is |
214 | /// present in \p VisibleNamespaces, no matter whether it is from ns1:: or ns2:: |
215 | std::string getQualification(ASTContext &Context, |
216 | const DeclContext *DestContext, |
217 | const NamedDecl *ND, |
218 | llvm::ArrayRef<std::string> VisibleNamespaces); |
219 | |
220 | /// Whether we must avoid computing linkage for D during code completion. |
221 | /// Clang aggressively caches linkage computation, which is stable after the AST |
222 | /// is built. Unfortunately the AST is incomplete during code completion, so |
223 | /// linkage may still change. |
224 | /// |
225 | /// Example: `auto x = []{^}` at file scope. |
226 | /// During code completion, the initializer for x hasn't been parsed yet. |
227 | /// x has type `undeduced auto`, and external linkage. |
228 | /// If we compute linkage at this point, the external linkage will be cached. |
229 | /// |
230 | /// After code completion the initializer is attached, and x has a lambda type. |
231 | /// This means x has "unique external" linkage. If we computed linkage above, |
232 | /// the cached value is incorrect. (clang catches this with an assertion). |
233 | bool hasUnstableLinkage(const Decl *D); |
234 | |
235 | /// Checks whether \p D is more than \p MaxDepth away from translation unit |
236 | /// scope. |
237 | /// This is useful for limiting traversals to keep operation latencies |
238 | /// reasonable. |
239 | bool isDeeplyNested(const Decl *D, unsigned MaxDepth = 10); |
240 | |
241 | /// Recursively resolves the parameters of a FunctionDecl that forwards its |
242 | /// parameters to another function via variadic template parameters. This can |
243 | /// for example be used to retrieve the constructor parameter ParmVarDecl for a |
244 | /// make_unique or emplace_back call. |
245 | llvm::SmallVector<const ParmVarDecl *> |
246 | resolveForwardingParameters(const FunctionDecl *D, unsigned MaxDepth = 10); |
247 | |
248 | /// Checks whether D is instantiated from a function parameter pack |
249 | /// whose type is a bare type parameter pack (e.g. `Args...`), or a |
250 | /// reference to one (e.g. `Args&...` or `Args&&...`). |
251 | bool isExpandedFromParameterPack(const ParmVarDecl *D); |
252 | |
253 | } // namespace clangd |
254 | } // namespace clang |
255 | |
256 | #endif // LLVM_CLANG_TOOLS_EXTRA_CLANGD_AST_H |
257 | |