| 1 | //===--- InlayHints.cpp ------------------------------------------*- C++-*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | #include "InlayHints.h" |
| 9 | #include "../clang-tidy/utils/DesignatedInitializers.h" |
| 10 | #include "AST.h" |
| 11 | #include "Config.h" |
| 12 | #include "ParsedAST.h" |
| 13 | #include "Protocol.h" |
| 14 | #include "SourceCode.h" |
| 15 | #include "clang/AST/ASTDiagnostic.h" |
| 16 | #include "clang/AST/Decl.h" |
| 17 | #include "clang/AST/DeclBase.h" |
| 18 | #include "clang/AST/DeclarationName.h" |
| 19 | #include "clang/AST/Expr.h" |
| 20 | #include "clang/AST/ExprCXX.h" |
| 21 | #include "clang/AST/RecursiveASTVisitor.h" |
| 22 | #include "clang/AST/Stmt.h" |
| 23 | #include "clang/AST/StmtVisitor.h" |
| 24 | #include "clang/AST/Type.h" |
| 25 | #include "clang/Basic/Builtins.h" |
| 26 | #include "clang/Basic/OperatorKinds.h" |
| 27 | #include "clang/Basic/SourceLocation.h" |
| 28 | #include "clang/Basic/SourceManager.h" |
| 29 | #include "clang/Sema/HeuristicResolver.h" |
| 30 | #include "llvm/ADT/DenseSet.h" |
| 31 | #include "llvm/ADT/STLExtras.h" |
| 32 | #include "llvm/ADT/SmallVector.h" |
| 33 | #include "llvm/ADT/StringExtras.h" |
| 34 | #include "llvm/ADT/StringRef.h" |
| 35 | #include "llvm/ADT/Twine.h" |
| 36 | #include "llvm/ADT/identity.h" |
| 37 | #include "llvm/Support/Casting.h" |
| 38 | #include "llvm/Support/ErrorHandling.h" |
| 39 | #include "llvm/Support/FormatVariadic.h" |
| 40 | #include "llvm/Support/SaveAndRestore.h" |
| 41 | #include "llvm/Support/ScopedPrinter.h" |
| 42 | #include "llvm/Support/raw_ostream.h" |
| 43 | #include <algorithm> |
| 44 | #include <iterator> |
| 45 | #include <optional> |
| 46 | #include <string> |
| 47 | |
| 48 | namespace clang { |
| 49 | namespace clangd { |
| 50 | namespace { |
| 51 | |
| 52 | // For now, inlay hints are always anchored at the left or right of their range. |
| 53 | enum class HintSide { Left, Right }; |
| 54 | |
| 55 | void stripLeadingUnderscores(StringRef &Name) { Name = Name.ltrim(Char: '_'); } |
| 56 | |
| 57 | // getDeclForType() returns the decl responsible for Type's spelling. |
| 58 | // This is the inverse of ASTContext::getTypeDeclType(). |
| 59 | template <typename Ty, typename = decltype(((Ty *)nullptr)->getDecl())> |
| 60 | const NamedDecl *getDeclForTypeImpl(const Ty *T) { |
| 61 | return T->getDecl(); |
| 62 | } |
| 63 | const NamedDecl *getDeclForTypeImpl(const void *T) { return nullptr; } |
| 64 | const NamedDecl *getDeclForType(const Type *T) { |
| 65 | switch (T->getTypeClass()) { |
| 66 | #define ABSTRACT_TYPE(TY, BASE) |
| 67 | #define TYPE(TY, BASE) \ |
| 68 | case Type::TY: \ |
| 69 | return getDeclForTypeImpl(llvm::cast<TY##Type>(T)); |
| 70 | #include "clang/AST/TypeNodes.inc" |
| 71 | } |
| 72 | llvm_unreachable("Unknown TypeClass enum" ); |
| 73 | } |
| 74 | |
| 75 | // getSimpleName() returns the plain identifier for an entity, if any. |
| 76 | llvm::StringRef getSimpleName(const DeclarationName &DN) { |
| 77 | if (IdentifierInfo *Ident = DN.getAsIdentifierInfo()) |
| 78 | return Ident->getName(); |
| 79 | return "" ; |
| 80 | } |
| 81 | llvm::StringRef getSimpleName(const NamedDecl &D) { |
| 82 | return getSimpleName(DN: D.getDeclName()); |
| 83 | } |
| 84 | llvm::StringRef getSimpleName(QualType T) { |
| 85 | if (const auto *ET = llvm::dyn_cast<ElaboratedType>(T)) |
| 86 | return getSimpleName(ET->getNamedType()); |
| 87 | if (const auto *BT = llvm::dyn_cast<BuiltinType>(T)) { |
| 88 | PrintingPolicy PP(LangOptions{}); |
| 89 | PP.adjustForCPlusPlus(); |
| 90 | return BT->getName(PP); |
| 91 | } |
| 92 | if (const auto *D = getDeclForType(T: T.getTypePtr())) |
| 93 | return getSimpleName(DN: D->getDeclName()); |
| 94 | return "" ; |
| 95 | } |
| 96 | |
| 97 | // Returns a very abbreviated form of an expression, or "" if it's too complex. |
| 98 | // For example: `foo->bar()` would produce "bar". |
| 99 | // This is used to summarize e.g. the condition of a while loop. |
| 100 | std::string summarizeExpr(const Expr *E) { |
| 101 | struct Namer : ConstStmtVisitor<Namer, std::string> { |
| 102 | std::string Visit(const Expr *E) { |
| 103 | if (E == nullptr) |
| 104 | return "" ; |
| 105 | return ConstStmtVisitor::Visit(E->IgnoreImplicit()); |
| 106 | } |
| 107 | |
| 108 | // Any sort of decl reference, we just use the unqualified name. |
| 109 | std::string VisitMemberExpr(const MemberExpr *E) { |
| 110 | return getSimpleName(*E->getMemberDecl()).str(); |
| 111 | } |
| 112 | std::string VisitDeclRefExpr(const DeclRefExpr *E) { |
| 113 | return getSimpleName(D: *E->getFoundDecl()).str(); |
| 114 | } |
| 115 | std::string VisitCallExpr(const CallExpr *E) { |
| 116 | std::string Result = Visit(E: E->getCallee()); |
| 117 | Result += E->getNumArgs() == 0 ? "()" : "(...)" ; |
| 118 | return Result; |
| 119 | } |
| 120 | std::string |
| 121 | VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) { |
| 122 | return getSimpleName(DN: E->getMember()).str(); |
| 123 | } |
| 124 | std::string |
| 125 | VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) { |
| 126 | return getSimpleName(DN: E->getDeclName()).str(); |
| 127 | } |
| 128 | std::string VisitCXXFunctionalCastExpr(const CXXFunctionalCastExpr *E) { |
| 129 | return getSimpleName(E->getType()).str(); |
| 130 | } |
| 131 | std::string VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *E) { |
| 132 | return getSimpleName(E->getType()).str(); |
| 133 | } |
| 134 | |
| 135 | // Step through implicit nodes that clang doesn't classify as such. |
| 136 | std::string VisitCXXMemberCallExpr(const CXXMemberCallExpr *E) { |
| 137 | // Call to operator bool() inside if (X): dispatch to X. |
| 138 | if (E->getNumArgs() == 0 && E->getMethodDecl() && |
| 139 | E->getMethodDecl()->getDeclName().getNameKind() == |
| 140 | DeclarationName::CXXConversionFunctionName && |
| 141 | E->getSourceRange() == |
| 142 | E->getImplicitObjectArgument()->getSourceRange()) |
| 143 | return Visit(E: E->getImplicitObjectArgument()); |
| 144 | return ConstStmtVisitor::VisitCXXMemberCallExpr(E); |
| 145 | } |
| 146 | std::string VisitCXXConstructExpr(const CXXConstructExpr *E) { |
| 147 | if (E->getNumArgs() == 1) |
| 148 | return Visit(E: E->getArg(Arg: 0)); |
| 149 | return "" ; |
| 150 | } |
| 151 | |
| 152 | // Literals are just printed |
| 153 | std::string VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { |
| 154 | return "nullptr" ; |
| 155 | } |
| 156 | std::string VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
| 157 | return E->getValue() ? "true" : "false" ; |
| 158 | } |
| 159 | std::string VisitIntegerLiteral(const IntegerLiteral *E) { |
| 160 | return llvm::to_string(E->getValue()); |
| 161 | } |
| 162 | std::string VisitFloatingLiteral(const FloatingLiteral *E) { |
| 163 | std::string Result; |
| 164 | llvm::raw_string_ostream OS(Result); |
| 165 | E->getValue().print(OS); |
| 166 | // Printer adds newlines?! |
| 167 | Result.resize(n: llvm::StringRef(Result).rtrim().size()); |
| 168 | return Result; |
| 169 | } |
| 170 | std::string VisitStringLiteral(const StringLiteral *E) { |
| 171 | std::string Result = "\"" ; |
| 172 | if (E->containsNonAscii()) { |
| 173 | Result += "..." ; |
| 174 | } else { |
| 175 | llvm::raw_string_ostream OS(Result); |
| 176 | if (E->getLength() > 10) { |
| 177 | llvm::printEscapedString(Name: E->getString().take_front(N: 7), Out&: OS); |
| 178 | Result += "..." ; |
| 179 | } else { |
| 180 | llvm::printEscapedString(Name: E->getString(), Out&: OS); |
| 181 | } |
| 182 | } |
| 183 | Result.push_back(c: '"'); |
| 184 | return Result; |
| 185 | } |
| 186 | |
| 187 | // Simple operators. Motivating cases are `!x` and `I < Length`. |
| 188 | std::string printUnary(llvm::StringRef Spelling, const Expr *Operand, |
| 189 | bool Prefix) { |
| 190 | std::string Sub = Visit(E: Operand); |
| 191 | if (Sub.empty()) |
| 192 | return "" ; |
| 193 | if (Prefix) |
| 194 | return (Spelling + Sub).str(); |
| 195 | Sub += Spelling; |
| 196 | return Sub; |
| 197 | } |
| 198 | bool InsideBinary = false; // No recursing into binary expressions. |
| 199 | std::string printBinary(llvm::StringRef Spelling, const Expr *LHSOp, |
| 200 | const Expr *RHSOp) { |
| 201 | if (InsideBinary) |
| 202 | return "" ; |
| 203 | llvm::SaveAndRestore InBinary(InsideBinary, true); |
| 204 | |
| 205 | std::string LHS = Visit(E: LHSOp); |
| 206 | std::string RHS = Visit(E: RHSOp); |
| 207 | if (LHS.empty() && RHS.empty()) |
| 208 | return "" ; |
| 209 | |
| 210 | if (LHS.empty()) |
| 211 | LHS = "..." ; |
| 212 | LHS.push_back(c: ' '); |
| 213 | LHS += Spelling; |
| 214 | LHS.push_back(c: ' '); |
| 215 | if (RHS.empty()) |
| 216 | LHS += "..." ; |
| 217 | else |
| 218 | LHS += RHS; |
| 219 | return LHS; |
| 220 | } |
| 221 | std::string VisitUnaryOperator(const UnaryOperator *E) { |
| 222 | return printUnary(Spelling: E->getOpcodeStr(Op: E->getOpcode()), Operand: E->getSubExpr(), |
| 223 | Prefix: !E->isPostfix()); |
| 224 | } |
| 225 | std::string VisitBinaryOperator(const BinaryOperator *E) { |
| 226 | return printBinary(Spelling: E->getOpcodeStr(Op: E->getOpcode()), LHSOp: E->getLHS(), |
| 227 | RHSOp: E->getRHS()); |
| 228 | } |
| 229 | std::string VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *E) { |
| 230 | const char *Spelling = getOperatorSpelling(Operator: E->getOperator()); |
| 231 | // Handle weird unary-that-look-like-binary postfix operators. |
| 232 | if ((E->getOperator() == OO_PlusPlus || |
| 233 | E->getOperator() == OO_MinusMinus) && |
| 234 | E->getNumArgs() == 2) |
| 235 | return printUnary(Spelling, Operand: E->getArg(0), Prefix: false); |
| 236 | if (E->isInfixBinaryOp()) |
| 237 | return printBinary(Spelling, LHSOp: E->getArg(0), RHSOp: E->getArg(1)); |
| 238 | if (E->getNumArgs() == 1) { |
| 239 | switch (E->getOperator()) { |
| 240 | case OO_Plus: |
| 241 | case OO_Minus: |
| 242 | case OO_Star: |
| 243 | case OO_Amp: |
| 244 | case OO_Tilde: |
| 245 | case OO_Exclaim: |
| 246 | case OO_PlusPlus: |
| 247 | case OO_MinusMinus: |
| 248 | return printUnary(Spelling, Operand: E->getArg(0), Prefix: true); |
| 249 | default: |
| 250 | break; |
| 251 | } |
| 252 | } |
| 253 | return "" ; |
| 254 | } |
| 255 | }; |
| 256 | return Namer{}.Visit(E); |
| 257 | } |
| 258 | |
| 259 | // Determines if any intermediate type in desugaring QualType QT is of |
| 260 | // substituted template parameter type. Ignore pointer or reference wrappers. |
| 261 | bool isSugaredTemplateParameter(QualType QT) { |
| 262 | static auto PeelWrapper = [](QualType QT) { |
| 263 | // Neither `PointerType` nor `ReferenceType` is considered as sugared |
| 264 | // type. Peel it. |
| 265 | QualType Peeled = QT->getPointeeType(); |
| 266 | return Peeled.isNull() ? QT : Peeled; |
| 267 | }; |
| 268 | |
| 269 | // This is a bit tricky: we traverse the type structure and find whether or |
| 270 | // not a type in the desugaring process is of SubstTemplateTypeParmType. |
| 271 | // During the process, we may encounter pointer or reference types that are |
| 272 | // not marked as sugared; therefore, the desugar function won't apply. To |
| 273 | // move forward the traversal, we retrieve the pointees using |
| 274 | // QualType::getPointeeType(). |
| 275 | // |
| 276 | // However, getPointeeType could leap over our interests: The QT::getAs<T>() |
| 277 | // invoked would implicitly desugar the type. Consequently, if the |
| 278 | // SubstTemplateTypeParmType is encompassed within a TypedefType, we may lose |
| 279 | // the chance to visit it. |
| 280 | // For example, given a QT that represents `std::vector<int *>::value_type`: |
| 281 | // `-ElaboratedType 'value_type' sugar |
| 282 | // `-TypedefType 'vector<int *>::value_type' sugar |
| 283 | // |-Typedef 'value_type' |
| 284 | // `-SubstTemplateTypeParmType 'int *' sugar class depth 0 index 0 T |
| 285 | // |-ClassTemplateSpecialization 'vector' |
| 286 | // `-PointerType 'int *' |
| 287 | // `-BuiltinType 'int' |
| 288 | // Applying `getPointeeType` to QT results in 'int', a child of our target |
| 289 | // node SubstTemplateTypeParmType. |
| 290 | // |
| 291 | // As such, we always prefer the desugared over the pointee for next type |
| 292 | // in the iteration. It could avoid the getPointeeType's implicit desugaring. |
| 293 | while (true) { |
| 294 | if (QT->getAs<SubstTemplateTypeParmType>()) |
| 295 | return true; |
| 296 | QualType Desugared = QT->getLocallyUnqualifiedSingleStepDesugaredType(); |
| 297 | if (Desugared != QT) |
| 298 | QT = Desugared; |
| 299 | else if (auto Peeled = PeelWrapper(Desugared); Peeled != QT) |
| 300 | QT = Peeled; |
| 301 | else |
| 302 | break; |
| 303 | } |
| 304 | return false; |
| 305 | } |
| 306 | |
| 307 | // A simple wrapper for `clang::desugarForDiagnostic` that provides optional |
| 308 | // semantic. |
| 309 | std::optional<QualType> desugar(ASTContext &AST, QualType QT) { |
| 310 | bool ShouldAKA = false; |
| 311 | auto Desugared = clang::desugarForDiagnostic(Context&: AST, QT, ShouldAKA); |
| 312 | if (!ShouldAKA) |
| 313 | return std::nullopt; |
| 314 | return Desugared; |
| 315 | } |
| 316 | |
| 317 | // Apply a series of heuristic methods to determine whether or not a QualType QT |
| 318 | // is suitable for desugaring (e.g. getting the real name behind the using-alias |
| 319 | // name). If so, return the desugared type. Otherwise, return the unchanged |
| 320 | // parameter QT. |
| 321 | // |
| 322 | // This could be refined further. See |
| 323 | // https://github.com/clangd/clangd/issues/1298. |
| 324 | QualType maybeDesugar(ASTContext &AST, QualType QT) { |
| 325 | // Prefer desugared type for name that aliases the template parameters. |
| 326 | // This can prevent things like printing opaque `: type` when accessing std |
| 327 | // containers. |
| 328 | if (isSugaredTemplateParameter(QT)) |
| 329 | return desugar(AST, QT).value_or(QT); |
| 330 | |
| 331 | // Prefer desugared type for `decltype(expr)` specifiers. |
| 332 | if (QT->isDecltypeType()) |
| 333 | return QT.getCanonicalType(); |
| 334 | if (const AutoType *AT = QT->getContainedAutoType()) |
| 335 | if (!AT->getDeducedType().isNull() && |
| 336 | AT->getDeducedType()->isDecltypeType()) |
| 337 | return QT.getCanonicalType(); |
| 338 | |
| 339 | return QT; |
| 340 | } |
| 341 | |
| 342 | // Given a callee expression `Fn`, if the call is through a function pointer, |
| 343 | // try to find the declaration of the corresponding function pointer type, |
| 344 | // so that we can recover argument names from it. |
| 345 | // FIXME: This function is mostly duplicated in SemaCodeComplete.cpp; unify. |
| 346 | static FunctionProtoTypeLoc getPrototypeLoc(Expr *Fn) { |
| 347 | TypeLoc Target; |
| 348 | Expr *NakedFn = Fn->IgnoreParenCasts(); |
| 349 | if (const auto *T = NakedFn->getType().getTypePtr()->getAs<TypedefType>()) { |
| 350 | Target = T->getDecl()->getTypeSourceInfo()->getTypeLoc(); |
| 351 | } else if (const auto *DR = dyn_cast<DeclRefExpr>(NakedFn)) { |
| 352 | const auto *D = DR->getDecl(); |
| 353 | if (const auto *const VD = dyn_cast<VarDecl>(D)) { |
| 354 | Target = VD->getTypeSourceInfo()->getTypeLoc(); |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | if (!Target) |
| 359 | return {}; |
| 360 | |
| 361 | // Unwrap types that may be wrapping the function type |
| 362 | while (true) { |
| 363 | if (auto P = Target.getAs<PointerTypeLoc>()) { |
| 364 | Target = P.getPointeeLoc(); |
| 365 | continue; |
| 366 | } |
| 367 | if (auto A = Target.getAs<AttributedTypeLoc>()) { |
| 368 | Target = A.getModifiedLoc(); |
| 369 | continue; |
| 370 | } |
| 371 | if (auto P = Target.getAs<ParenTypeLoc>()) { |
| 372 | Target = P.getInnerLoc(); |
| 373 | continue; |
| 374 | } |
| 375 | break; |
| 376 | } |
| 377 | |
| 378 | if (auto F = Target.getAs<FunctionProtoTypeLoc>()) { |
| 379 | // In some edge cases the AST can contain a "trivial" FunctionProtoTypeLoc |
| 380 | // which has null parameters. Avoid these as they don't contain useful |
| 381 | // information. |
| 382 | if (llvm::all_of(F.getParams(), llvm::identity<ParmVarDecl *>())) |
| 383 | return F; |
| 384 | } |
| 385 | |
| 386 | return {}; |
| 387 | } |
| 388 | |
| 389 | ArrayRef<const ParmVarDecl *> |
| 390 | maybeDropCxxExplicitObjectParameters(ArrayRef<const ParmVarDecl *> Params) { |
| 391 | if (!Params.empty() && Params.front()->isExplicitObjectParameter()) |
| 392 | Params = Params.drop_front(1); |
| 393 | return Params; |
| 394 | } |
| 395 | |
| 396 | template <typename R> |
| 397 | std::string joinAndTruncate(const R &Range, size_t MaxLength) { |
| 398 | std::string Out; |
| 399 | llvm::raw_string_ostream OS(Out); |
| 400 | llvm::ListSeparator Sep(", " ); |
| 401 | for (auto &&Element : Range) { |
| 402 | OS << Sep; |
| 403 | if (Out.size() + Element.size() >= MaxLength) { |
| 404 | OS << "..." ; |
| 405 | break; |
| 406 | } |
| 407 | OS << Element; |
| 408 | } |
| 409 | OS.flush(); |
| 410 | return Out; |
| 411 | } |
| 412 | |
| 413 | struct Callee { |
| 414 | // Only one of Decl or Loc is set. |
| 415 | // Loc is for calls through function pointers. |
| 416 | const FunctionDecl *Decl = nullptr; |
| 417 | FunctionProtoTypeLoc Loc; |
| 418 | }; |
| 419 | |
| 420 | class InlayHintVisitor : public RecursiveASTVisitor<InlayHintVisitor> { |
| 421 | public: |
| 422 | InlayHintVisitor(std::vector<InlayHint> &Results, ParsedAST &AST, |
| 423 | const Config &Cfg, std::optional<Range> RestrictRange, |
| 424 | InlayHintOptions HintOptions) |
| 425 | : Results(Results), AST(AST.getASTContext()), Tokens(AST.getTokens()), |
| 426 | Cfg(Cfg), RestrictRange(std::move(RestrictRange)), |
| 427 | MainFileID(AST.getSourceManager().getMainFileID()), |
| 428 | Resolver(AST.getHeuristicResolver()), |
| 429 | TypeHintPolicy(this->AST.getPrintingPolicy()), |
| 430 | HintOptions(HintOptions) { |
| 431 | bool Invalid = false; |
| 432 | llvm::StringRef Buf = |
| 433 | AST.getSourceManager().getBufferData(FID: MainFileID, Invalid: &Invalid); |
| 434 | MainFileBuf = Invalid ? StringRef{} : Buf; |
| 435 | |
| 436 | TypeHintPolicy.SuppressScope = true; // keep type names short |
| 437 | TypeHintPolicy.AnonymousTagLocations = |
| 438 | false; // do not print lambda locations |
| 439 | |
| 440 | // Not setting PrintCanonicalTypes for "auto" allows |
| 441 | // SuppressDefaultTemplateArgs (set by default) to have an effect. |
| 442 | } |
| 443 | |
| 444 | bool VisitTypeLoc(TypeLoc TL) { |
| 445 | if (const auto *DT = llvm::dyn_cast<DecltypeType>(TL.getType())) |
| 446 | if (QualType UT = DT->getUnderlyingType(); !UT->isDependentType()) |
| 447 | addTypeHint(R: TL.getSourceRange(), T: UT, Prefix: ": " ); |
| 448 | return true; |
| 449 | } |
| 450 | |
| 451 | bool VisitCXXConstructExpr(CXXConstructExpr *E) { |
| 452 | // Weed out constructor calls that don't look like a function call with |
| 453 | // an argument list, by checking the validity of getParenOrBraceRange(). |
| 454 | // Also weed out std::initializer_list constructors as there are no names |
| 455 | // for the individual arguments. |
| 456 | if (!E->getParenOrBraceRange().isValid() || |
| 457 | E->isStdInitListInitialization()) { |
| 458 | return true; |
| 459 | } |
| 460 | |
| 461 | Callee Callee; |
| 462 | Callee.Decl = E->getConstructor(); |
| 463 | if (!Callee.Decl) |
| 464 | return true; |
| 465 | processCall(Callee, RParenOrBraceLoc: E->getParenOrBraceRange().getEnd(), |
| 466 | Args: {E->getArgs(), E->getNumArgs()}); |
| 467 | return true; |
| 468 | } |
| 469 | |
| 470 | // Carefully recurse into PseudoObjectExprs, which typically incorporate |
| 471 | // a syntactic expression and several semantic expressions. |
| 472 | bool TraversePseudoObjectExpr(PseudoObjectExpr *E) { |
| 473 | Expr *SyntacticExpr = E->getSyntacticForm(); |
| 474 | if (isa<CallExpr>(SyntacticExpr)) |
| 475 | // Since the counterpart semantics usually get the identical source |
| 476 | // locations as the syntactic one, visiting those would end up presenting |
| 477 | // confusing hints e.g., __builtin_dump_struct. |
| 478 | // Thus, only traverse the syntactic forms if this is written as a |
| 479 | // CallExpr. This leaves the door open in case the arguments in the |
| 480 | // syntactic form could possibly get parameter names. |
| 481 | return RecursiveASTVisitor<InlayHintVisitor>::TraverseStmt(SyntacticExpr); |
| 482 | // We don't want the hints for some of the MS property extensions. |
| 483 | // e.g. |
| 484 | // struct S { |
| 485 | // __declspec(property(get=GetX, put=PutX)) int x[]; |
| 486 | // void PutX(int y); |
| 487 | // void Work(int y) { x = y; } // Bad: `x = y: y`. |
| 488 | // }; |
| 489 | if (isa<BinaryOperator>(SyntacticExpr)) |
| 490 | return true; |
| 491 | // FIXME: Handle other forms of a pseudo object expression. |
| 492 | return RecursiveASTVisitor<InlayHintVisitor>::TraversePseudoObjectExpr(E); |
| 493 | } |
| 494 | |
| 495 | bool VisitCallExpr(CallExpr *E) { |
| 496 | if (!Cfg.InlayHints.Parameters) |
| 497 | return true; |
| 498 | |
| 499 | bool IsFunctor = isFunctionObjectCallExpr(E); |
| 500 | // Do not show parameter hints for user-defined literals or |
| 501 | // operator calls except for operator(). (Among other reasons, the resulting |
| 502 | // hints can look awkward, e.g. the expression can itself be a function |
| 503 | // argument and then we'd get two hints side by side). |
| 504 | if ((isa<CXXOperatorCallExpr>(E) && !IsFunctor) || |
| 505 | isa<UserDefinedLiteral>(E)) |
| 506 | return true; |
| 507 | |
| 508 | auto CalleeDecls = Resolver->resolveCalleeOfCallExpr(E); |
| 509 | if (CalleeDecls.size() != 1) |
| 510 | return true; |
| 511 | |
| 512 | Callee Callee; |
| 513 | if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecls[0])) |
| 514 | Callee.Decl = FD; |
| 515 | else if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(CalleeDecls[0])) |
| 516 | Callee.Decl = FTD->getTemplatedDecl(); |
| 517 | else if (FunctionProtoTypeLoc Loc = getPrototypeLoc(E->getCallee())) |
| 518 | Callee.Loc = Loc; |
| 519 | else |
| 520 | return true; |
| 521 | |
| 522 | // N4868 [over.call.object]p3 says, |
| 523 | // The argument list submitted to overload resolution consists of the |
| 524 | // argument expressions present in the function call syntax preceded by the |
| 525 | // implied object argument (E). |
| 526 | // |
| 527 | // As well as the provision from P0847R7 Deducing This [expr.call]p7: |
| 528 | // ...If the function is an explicit object member function and there is an |
| 529 | // implied object argument ([over.call.func]), the list of provided |
| 530 | // arguments is preceded by the implied object argument for the purposes of |
| 531 | // this correspondence... |
| 532 | llvm::ArrayRef<const Expr *> Args = {E->getArgs(), E->getNumArgs()}; |
| 533 | // We don't have the implied object argument through a function pointer |
| 534 | // either. |
| 535 | if (const CXXMethodDecl *Method = |
| 536 | dyn_cast_or_null<CXXMethodDecl>(Callee.Decl)) |
| 537 | if (IsFunctor || Method->hasCXXExplicitFunctionObjectParameter()) |
| 538 | Args = Args.drop_front(N: 1); |
| 539 | processCall(Callee, RParenOrBraceLoc: E->getRParenLoc(), Args); |
| 540 | return true; |
| 541 | } |
| 542 | |
| 543 | bool VisitFunctionDecl(FunctionDecl *D) { |
| 544 | if (auto *FPT = |
| 545 | llvm::dyn_cast<FunctionProtoType>(D->getType().getTypePtr())) { |
| 546 | if (!FPT->hasTrailingReturn()) { |
| 547 | if (auto FTL = D->getFunctionTypeLoc()) |
| 548 | addReturnTypeHint(D, Range: FTL.getRParenLoc()); |
| 549 | } |
| 550 | } |
| 551 | if (Cfg.InlayHints.BlockEnd && D->isThisDeclarationADefinition()) { |
| 552 | // We use `printName` here to properly print name of ctor/dtor/operator |
| 553 | // overload. |
| 554 | if (const Stmt *Body = D->getBody()) |
| 555 | addBlockEndHint(BraceRange: Body->getSourceRange(), DeclPrefix: "" , Name: printName(AST, *D), OptionalPunctuation: "" ); |
| 556 | } |
| 557 | return true; |
| 558 | } |
| 559 | |
| 560 | bool VisitForStmt(ForStmt *S) { |
| 561 | if (Cfg.InlayHints.BlockEnd) { |
| 562 | std::string Name; |
| 563 | // Common case: for (int I = 0; I < N; I++). Use "I" as the name. |
| 564 | if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S->getInit()); |
| 565 | DS && DS->isSingleDecl()) |
| 566 | Name = getSimpleName(llvm::cast<NamedDecl>(*DS->getSingleDecl())); |
| 567 | else |
| 568 | Name = summarizeExpr(E: S->getCond()); |
| 569 | markBlockEnd(Body: S->getBody(), Label: "for" , Name); |
| 570 | } |
| 571 | return true; |
| 572 | } |
| 573 | |
| 574 | bool VisitCXXForRangeStmt(CXXForRangeStmt *S) { |
| 575 | if (Cfg.InlayHints.BlockEnd) |
| 576 | markBlockEnd(Body: S->getBody(), Label: "for" , Name: getSimpleName(*S->getLoopVariable())); |
| 577 | return true; |
| 578 | } |
| 579 | |
| 580 | bool VisitWhileStmt(WhileStmt *S) { |
| 581 | if (Cfg.InlayHints.BlockEnd) |
| 582 | markBlockEnd(Body: S->getBody(), Label: "while" , Name: summarizeExpr(E: S->getCond())); |
| 583 | return true; |
| 584 | } |
| 585 | |
| 586 | bool VisitSwitchStmt(SwitchStmt *S) { |
| 587 | if (Cfg.InlayHints.BlockEnd) |
| 588 | markBlockEnd(Body: S->getBody(), Label: "switch" , Name: summarizeExpr(E: S->getCond())); |
| 589 | return true; |
| 590 | } |
| 591 | |
| 592 | // If/else chains are tricky. |
| 593 | // if (cond1) { |
| 594 | // } else if (cond2) { |
| 595 | // } // mark as "cond1" or "cond2"? |
| 596 | // For now, the answer is neither, just mark as "if". |
| 597 | // The ElseIf is a different IfStmt that doesn't know about the outer one. |
| 598 | llvm::DenseSet<const IfStmt *> ElseIfs; // not eligible for names |
| 599 | bool VisitIfStmt(IfStmt *S) { |
| 600 | if (Cfg.InlayHints.BlockEnd) { |
| 601 | if (const auto *ElseIf = llvm::dyn_cast_or_null<IfStmt>(S->getElse())) |
| 602 | ElseIfs.insert(ElseIf); |
| 603 | // Don't use markBlockEnd: the relevant range is [then.begin, else.end]. |
| 604 | if (const auto *EndCS = llvm::dyn_cast<CompoundStmt>( |
| 605 | S->getElse() ? S->getElse() : S->getThen())) { |
| 606 | addBlockEndHint( |
| 607 | {S->getThen()->getBeginLoc(), EndCS->getRBracLoc()}, "if" , |
| 608 | ElseIfs.contains(S) ? "" : summarizeExpr(S->getCond()), "" ); |
| 609 | } |
| 610 | } |
| 611 | return true; |
| 612 | } |
| 613 | |
| 614 | void markBlockEnd(const Stmt *Body, llvm::StringRef Label, |
| 615 | llvm::StringRef Name = "" ) { |
| 616 | if (const auto *CS = llvm::dyn_cast_or_null<CompoundStmt>(Body)) |
| 617 | addBlockEndHint(BraceRange: CS->getSourceRange(), DeclPrefix: Label, Name, OptionalPunctuation: "" ); |
| 618 | } |
| 619 | |
| 620 | bool VisitTagDecl(TagDecl *D) { |
| 621 | if (Cfg.InlayHints.BlockEnd && D->isThisDeclarationADefinition()) { |
| 622 | std::string DeclPrefix = D->getKindName().str(); |
| 623 | if (const auto *ED = dyn_cast<EnumDecl>(D)) { |
| 624 | if (ED->isScoped()) |
| 625 | DeclPrefix += ED->isScopedUsingClassTag() ? " class" : " struct" ; |
| 626 | }; |
| 627 | addBlockEndHint(BraceRange: D->getBraceRange(), DeclPrefix, Name: getSimpleName(*D), OptionalPunctuation: ";" ); |
| 628 | } |
| 629 | return true; |
| 630 | } |
| 631 | |
| 632 | bool VisitNamespaceDecl(NamespaceDecl *D) { |
| 633 | if (Cfg.InlayHints.BlockEnd) { |
| 634 | // For namespace, the range actually starts at the namespace keyword. But |
| 635 | // it should be fine since it's usually very short. |
| 636 | addBlockEndHint(BraceRange: D->getSourceRange(), DeclPrefix: "namespace" , Name: getSimpleName(*D), OptionalPunctuation: "" ); |
| 637 | } |
| 638 | return true; |
| 639 | } |
| 640 | |
| 641 | bool VisitLambdaExpr(LambdaExpr *E) { |
| 642 | FunctionDecl *D = E->getCallOperator(); |
| 643 | if (!E->hasExplicitResultType()) { |
| 644 | SourceLocation TypeHintLoc; |
| 645 | if (!E->hasExplicitParameters()) |
| 646 | TypeHintLoc = E->getIntroducerRange().getEnd(); |
| 647 | else if (auto FTL = D->getFunctionTypeLoc()) |
| 648 | TypeHintLoc = FTL.getRParenLoc(); |
| 649 | if (TypeHintLoc.isValid()) |
| 650 | addReturnTypeHint(D, Range: TypeHintLoc); |
| 651 | } |
| 652 | return true; |
| 653 | } |
| 654 | |
| 655 | void addReturnTypeHint(FunctionDecl *D, SourceRange Range) { |
| 656 | auto *AT = D->getReturnType()->getContainedAutoType(); |
| 657 | if (!AT || AT->getDeducedType().isNull()) |
| 658 | return; |
| 659 | addTypeHint(R: Range, T: D->getReturnType(), /*Prefix=*/"-> " ); |
| 660 | } |
| 661 | |
| 662 | bool VisitVarDecl(VarDecl *D) { |
| 663 | // Do not show hints for the aggregate in a structured binding, |
| 664 | // but show hints for the individual bindings. |
| 665 | if (auto *DD = dyn_cast<DecompositionDecl>(D)) { |
| 666 | for (auto *Binding : DD->bindings()) { |
| 667 | // For structured bindings, print canonical types. This is important |
| 668 | // because for bindings that use the tuple_element protocol, the |
| 669 | // non-canonical types would be "tuple_element<I, A>::type". |
| 670 | if (auto Type = Binding->getType(); |
| 671 | !Type.isNull() && !Type->isDependentType()) |
| 672 | addTypeHint(Binding->getLocation(), Type.getCanonicalType(), |
| 673 | /*Prefix=*/": " ); |
| 674 | } |
| 675 | return true; |
| 676 | } |
| 677 | |
| 678 | if (auto *AT = D->getType()->getContainedAutoType()) { |
| 679 | if (AT->isDeduced() && !D->getType()->isDependentType()) { |
| 680 | // Our current approach is to place the hint on the variable |
| 681 | // and accordingly print the full type |
| 682 | // (e.g. for `const auto& x = 42`, print `const int&`). |
| 683 | // Alternatively, we could place the hint on the `auto` |
| 684 | // (and then just print the type deduced for the `auto`). |
| 685 | addTypeHint(R: D->getLocation(), T: D->getType(), /*Prefix=*/": " ); |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | // Handle templates like `int foo(auto x)` with exactly one instantiation. |
| 690 | if (auto *PVD = llvm::dyn_cast<ParmVarDecl>(D)) { |
| 691 | if (D->getIdentifier() && PVD->getType()->isDependentType() && |
| 692 | !getContainedAutoParamType(D->getTypeSourceInfo()->getTypeLoc()) |
| 693 | .isNull()) { |
| 694 | if (auto *IPVD = getOnlyParamInstantiation(PVD)) |
| 695 | addTypeHint(R: D->getLocation(), T: IPVD->getType(), /*Prefix=*/": " ); |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | return true; |
| 700 | } |
| 701 | |
| 702 | ParmVarDecl *getOnlyParamInstantiation(ParmVarDecl *D) { |
| 703 | auto *TemplateFunction = llvm::dyn_cast<FunctionDecl>(D->getDeclContext()); |
| 704 | if (!TemplateFunction) |
| 705 | return nullptr; |
| 706 | auto *InstantiatedFunction = llvm::dyn_cast_or_null<FunctionDecl>( |
| 707 | getOnlyInstantiation(TemplateFunction)); |
| 708 | if (!InstantiatedFunction) |
| 709 | return nullptr; |
| 710 | |
| 711 | unsigned ParamIdx = 0; |
| 712 | for (auto *Param : TemplateFunction->parameters()) { |
| 713 | // Can't reason about param indexes in the presence of preceding packs. |
| 714 | // And if this param is a pack, it may expand to multiple params. |
| 715 | if (Param->isParameterPack()) |
| 716 | return nullptr; |
| 717 | if (Param == D) |
| 718 | break; |
| 719 | ++ParamIdx; |
| 720 | } |
| 721 | assert(ParamIdx < TemplateFunction->getNumParams() && |
| 722 | "Couldn't find param in list?" ); |
| 723 | assert(ParamIdx < InstantiatedFunction->getNumParams() && |
| 724 | "Instantiated function has fewer (non-pack) parameters?" ); |
| 725 | return InstantiatedFunction->getParamDecl(ParamIdx); |
| 726 | } |
| 727 | |
| 728 | bool VisitInitListExpr(InitListExpr *Syn) { |
| 729 | // We receive the syntactic form here (shouldVisitImplicitCode() is false). |
| 730 | // This is the one we will ultimately attach designators to. |
| 731 | // It may have subobject initializers inlined without braces. The *semantic* |
| 732 | // form of the init-list has nested init-lists for these. |
| 733 | // getUnwrittenDesignators will look at the semantic form to determine the |
| 734 | // labels. |
| 735 | assert(Syn->isSyntacticForm() && "RAV should not visit implicit code!" ); |
| 736 | if (!Cfg.InlayHints.Designators) |
| 737 | return true; |
| 738 | if (Syn->isIdiomaticZeroInitializer(LangOpts: AST.getLangOpts())) |
| 739 | return true; |
| 740 | llvm::DenseMap<SourceLocation, std::string> Designators = |
| 741 | tidy::utils::getUnwrittenDesignators(Syn); |
| 742 | for (const Expr *Init : Syn->inits()) { |
| 743 | if (llvm::isa<DesignatedInitExpr>(Init)) |
| 744 | continue; |
| 745 | auto It = Designators.find(Init->getBeginLoc()); |
| 746 | if (It != Designators.end() && |
| 747 | !isPrecededByParamNameComment(E: Init, ParamName: It->second)) |
| 748 | addDesignatorHint(R: Init->getSourceRange(), Text: It->second); |
| 749 | } |
| 750 | return true; |
| 751 | } |
| 752 | |
| 753 | // FIXME: Handle RecoveryExpr to try to hint some invalid calls. |
| 754 | |
| 755 | private: |
| 756 | using NameVec = SmallVector<StringRef, 8>; |
| 757 | |
| 758 | void processCall(Callee Callee, SourceLocation RParenOrBraceLoc, |
| 759 | llvm::ArrayRef<const Expr *> Args) { |
| 760 | assert(Callee.Decl || Callee.Loc); |
| 761 | |
| 762 | if ((!Cfg.InlayHints.Parameters && !Cfg.InlayHints.DefaultArguments) || |
| 763 | Args.size() == 0) |
| 764 | return; |
| 765 | |
| 766 | // The parameter name of a move or copy constructor is not very interesting. |
| 767 | if (Callee.Decl) |
| 768 | if (auto *Ctor = dyn_cast<CXXConstructorDecl>(Callee.Decl)) |
| 769 | if (Ctor->isCopyOrMoveConstructor()) |
| 770 | return; |
| 771 | |
| 772 | SmallVector<std::string> FormattedDefaultArgs; |
| 773 | bool HasNonDefaultArgs = false; |
| 774 | |
| 775 | ArrayRef<const ParmVarDecl *> Params, ForwardedParams; |
| 776 | // Resolve parameter packs to their forwarded parameter |
| 777 | SmallVector<const ParmVarDecl *> ForwardedParamsStorage; |
| 778 | if (Callee.Decl) { |
| 779 | Params = maybeDropCxxExplicitObjectParameters(Callee.Decl->parameters()); |
| 780 | ForwardedParamsStorage = resolveForwardingParameters(Callee.Decl); |
| 781 | ForwardedParams = |
| 782 | maybeDropCxxExplicitObjectParameters(ForwardedParamsStorage); |
| 783 | } else { |
| 784 | Params = maybeDropCxxExplicitObjectParameters(Callee.Loc.getParams()); |
| 785 | ForwardedParams = {Params.begin(), Params.end()}; |
| 786 | } |
| 787 | |
| 788 | NameVec ParameterNames = chooseParameterNames(Parameters: ForwardedParams); |
| 789 | |
| 790 | // Exclude setters (i.e. functions with one argument whose name begins with |
| 791 | // "set"), and builtins like std::move/forward/... as their parameter name |
| 792 | // is also not likely to be interesting. |
| 793 | if (Callee.Decl && |
| 794 | (isSetter(Callee: Callee.Decl, ParamNames: ParameterNames) || isSimpleBuiltin(Callee: Callee.Decl))) |
| 795 | return; |
| 796 | |
| 797 | for (size_t I = 0; I < ParameterNames.size() && I < Args.size(); ++I) { |
| 798 | // Pack expansion expressions cause the 1:1 mapping between arguments and |
| 799 | // parameters to break down, so we don't add further inlay hints if we |
| 800 | // encounter one. |
| 801 | if (isa<PackExpansionExpr>(Args[I])) { |
| 802 | break; |
| 803 | } |
| 804 | |
| 805 | StringRef Name = ParameterNames[I]; |
| 806 | const bool NameHint = |
| 807 | shouldHintName(Arg: Args[I], ParamName: Name) && Cfg.InlayHints.Parameters; |
| 808 | const bool ReferenceHint = |
| 809 | shouldHintReference(Param: Params[I], ForwardedParam: ForwardedParams[I]) && |
| 810 | Cfg.InlayHints.Parameters; |
| 811 | |
| 812 | const bool IsDefault = isa<CXXDefaultArgExpr>(Args[I]); |
| 813 | HasNonDefaultArgs |= !IsDefault; |
| 814 | if (IsDefault) { |
| 815 | if (Cfg.InlayHints.DefaultArguments) { |
| 816 | const auto SourceText = Lexer::getSourceText( |
| 817 | Range: CharSourceRange::getTokenRange(Params[I]->getDefaultArgRange()), |
| 818 | SM: AST.getSourceManager(), LangOpts: AST.getLangOpts()); |
| 819 | const auto Abbrev = |
| 820 | (SourceText.size() > Cfg.InlayHints.TypeNameLimit || |
| 821 | SourceText.contains("\n" )) |
| 822 | ? "..." |
| 823 | : SourceText; |
| 824 | if (NameHint) |
| 825 | FormattedDefaultArgs.emplace_back( |
| 826 | llvm::formatv("{0}: {1}" , Name, Abbrev)); |
| 827 | else |
| 828 | FormattedDefaultArgs.emplace_back(llvm::formatv("{0}" , Abbrev)); |
| 829 | } |
| 830 | } else if (NameHint || ReferenceHint) { |
| 831 | addInlayHint(Args[I]->getSourceRange(), HintSide::Left, |
| 832 | InlayHintKind::Parameter, ReferenceHint ? "&" : "" , |
| 833 | NameHint ? Name : "" , ": " ); |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | if (!FormattedDefaultArgs.empty()) { |
| 838 | std::string Hint = |
| 839 | joinAndTruncate(FormattedDefaultArgs, Cfg.InlayHints.TypeNameLimit); |
| 840 | addInlayHint(R: SourceRange{RParenOrBraceLoc}, Side: HintSide::Left, |
| 841 | Kind: InlayHintKind::DefaultArgument, |
| 842 | Prefix: HasNonDefaultArgs ? ", " : "" , Label: Hint, Suffix: "" ); |
| 843 | } |
| 844 | } |
| 845 | |
| 846 | static bool isSetter(const FunctionDecl *Callee, const NameVec &ParamNames) { |
| 847 | if (ParamNames.size() != 1) |
| 848 | return false; |
| 849 | |
| 850 | StringRef Name = getSimpleName(*Callee); |
| 851 | if (!Name.starts_with_insensitive(Prefix: "set" )) |
| 852 | return false; |
| 853 | |
| 854 | // In addition to checking that the function has one parameter and its |
| 855 | // name starts with "set", also check that the part after "set" matches |
| 856 | // the name of the parameter (ignoring case). The idea here is that if |
| 857 | // the parameter name differs, it may contain extra information that |
| 858 | // may be useful to show in a hint, as in: |
| 859 | // void setTimeout(int timeoutMillis); |
| 860 | // This currently doesn't handle cases where params use snake_case |
| 861 | // and functions don't, e.g. |
| 862 | // void setExceptionHandler(EHFunc exception_handler); |
| 863 | // We could improve this by replacing `equals_insensitive` with some |
| 864 | // `sloppy_equals` which ignores case and also skips underscores. |
| 865 | StringRef WhatItIsSetting = Name.substr(Start: 3).ltrim(Chars: "_" ); |
| 866 | return WhatItIsSetting.equals_insensitive(RHS: ParamNames[0]); |
| 867 | } |
| 868 | |
| 869 | // Checks if the callee is one of the builtins |
| 870 | // addressof, as_const, forward, move(_if_noexcept) |
| 871 | static bool isSimpleBuiltin(const FunctionDecl *Callee) { |
| 872 | switch (Callee->getBuiltinID()) { |
| 873 | case Builtin::BIaddressof: |
| 874 | case Builtin::BIas_const: |
| 875 | case Builtin::BIforward: |
| 876 | case Builtin::BImove: |
| 877 | case Builtin::BImove_if_noexcept: |
| 878 | return true; |
| 879 | default: |
| 880 | return false; |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | bool shouldHintName(const Expr *Arg, StringRef ParamName) { |
| 885 | if (ParamName.empty()) |
| 886 | return false; |
| 887 | |
| 888 | // If the argument expression is a single name and it matches the |
| 889 | // parameter name exactly, omit the name hint. |
| 890 | if (ParamName == getSpelledIdentifier(E: Arg)) |
| 891 | return false; |
| 892 | |
| 893 | // Exclude argument expressions preceded by a /*paramName*/. |
| 894 | if (isPrecededByParamNameComment(E: Arg, ParamName)) |
| 895 | return false; |
| 896 | |
| 897 | return true; |
| 898 | } |
| 899 | |
| 900 | bool shouldHintReference(const ParmVarDecl *Param, |
| 901 | const ParmVarDecl *ForwardedParam) { |
| 902 | // We add a & hint only when the argument is passed as mutable reference. |
| 903 | // For parameters that are not part of an expanded pack, this is |
| 904 | // straightforward. For expanded pack parameters, it's likely that they will |
| 905 | // be forwarded to another function. In this situation, we only want to add |
| 906 | // the reference hint if the argument is actually being used via mutable |
| 907 | // reference. This means we need to check |
| 908 | // 1. whether the value category of the argument is preserved, i.e. each |
| 909 | // pack expansion uses std::forward correctly. |
| 910 | // 2. whether the argument is ever copied/cast instead of passed |
| 911 | // by-reference |
| 912 | // Instead of checking this explicitly, we use the following proxy: |
| 913 | // 1. the value category can only change from rvalue to lvalue during |
| 914 | // forwarding, so checking whether both the parameter of the forwarding |
| 915 | // function and the forwarded function are lvalue references detects such |
| 916 | // a conversion. |
| 917 | // 2. if the argument is copied/cast somewhere in the chain of forwarding |
| 918 | // calls, it can only be passed on to an rvalue reference or const lvalue |
| 919 | // reference parameter. Thus if the forwarded parameter is a mutable |
| 920 | // lvalue reference, it cannot have been copied/cast to on the way. |
| 921 | // Additionally, we should not add a reference hint if the forwarded |
| 922 | // parameter was only partially resolved, i.e. points to an expanded pack |
| 923 | // parameter, since we do not know how it will be used eventually. |
| 924 | auto Type = Param->getType(); |
| 925 | auto ForwardedType = ForwardedParam->getType(); |
| 926 | return Type->isLValueReferenceType() && |
| 927 | ForwardedType->isLValueReferenceType() && |
| 928 | !ForwardedType.getNonReferenceType().isConstQualified() && |
| 929 | !isExpandedFromParameterPack(D: ForwardedParam); |
| 930 | } |
| 931 | |
| 932 | // Checks if "E" is spelled in the main file and preceded by a C-style comment |
| 933 | // whose contents match ParamName (allowing for whitespace and an optional "=" |
| 934 | // at the end. |
| 935 | bool (const Expr *E, StringRef ParamName) { |
| 936 | auto &SM = AST.getSourceManager(); |
| 937 | auto FileLoc = SM.getFileLoc(Loc: E->getBeginLoc()); |
| 938 | auto Decomposed = SM.getDecomposedLoc(Loc: FileLoc); |
| 939 | if (Decomposed.first != MainFileID) |
| 940 | return false; |
| 941 | |
| 942 | StringRef SourcePrefix = MainFileBuf.substr(Start: 0, N: Decomposed.second); |
| 943 | // Allow whitespace between comment and expression. |
| 944 | SourcePrefix = SourcePrefix.rtrim(); |
| 945 | // Check for comment ending. |
| 946 | if (!SourcePrefix.consume_back(Suffix: "*/" )) |
| 947 | return false; |
| 948 | // Ignore some punctuation and whitespace around comment. |
| 949 | // In particular this allows designators to match nicely. |
| 950 | llvm::StringLiteral IgnoreChars = " =." ; |
| 951 | SourcePrefix = SourcePrefix.rtrim(Chars: IgnoreChars); |
| 952 | ParamName = ParamName.trim(Chars: IgnoreChars); |
| 953 | // Other than that, the comment must contain exactly ParamName. |
| 954 | if (!SourcePrefix.consume_back(Suffix: ParamName)) |
| 955 | return false; |
| 956 | SourcePrefix = SourcePrefix.rtrim(Chars: IgnoreChars); |
| 957 | return SourcePrefix.ends_with(Suffix: "/*" ); |
| 958 | } |
| 959 | |
| 960 | // If "E" spells a single unqualified identifier, return that name. |
| 961 | // Otherwise, return an empty string. |
| 962 | static StringRef getSpelledIdentifier(const Expr *E) { |
| 963 | E = E->IgnoreUnlessSpelledInSource(); |
| 964 | |
| 965 | if (auto *DRE = dyn_cast<DeclRefExpr>(E)) |
| 966 | if (!DRE->getQualifier()) |
| 967 | return getSimpleName(*DRE->getDecl()); |
| 968 | |
| 969 | if (auto *ME = dyn_cast<MemberExpr>(E)) |
| 970 | if (!ME->getQualifier() && ME->isImplicitAccess()) |
| 971 | return getSimpleName(*ME->getMemberDecl()); |
| 972 | |
| 973 | return {}; |
| 974 | } |
| 975 | |
| 976 | NameVec chooseParameterNames(ArrayRef<const ParmVarDecl *> Parameters) { |
| 977 | NameVec ParameterNames; |
| 978 | for (const auto *P : Parameters) { |
| 979 | if (isExpandedFromParameterPack(P)) { |
| 980 | // If we haven't resolved a pack paramater (e.g. foo(Args... args)) to a |
| 981 | // non-pack parameter, then hinting as foo(args: 1, args: 2, args: 3) is |
| 982 | // unlikely to be useful. |
| 983 | ParameterNames.emplace_back(); |
| 984 | } else { |
| 985 | auto SimpleName = getSimpleName(*P); |
| 986 | // If the parameter is unnamed in the declaration: |
| 987 | // attempt to get its name from the definition |
| 988 | if (SimpleName.empty()) { |
| 989 | if (const auto *PD = getParamDefinition(P)) { |
| 990 | SimpleName = getSimpleName(*PD); |
| 991 | } |
| 992 | } |
| 993 | ParameterNames.emplace_back(SimpleName); |
| 994 | } |
| 995 | } |
| 996 | |
| 997 | // Standard library functions often have parameter names that start |
| 998 | // with underscores, which makes the hints noisy, so strip them out. |
| 999 | for (auto &Name : ParameterNames) |
| 1000 | stripLeadingUnderscores(Name); |
| 1001 | |
| 1002 | return ParameterNames; |
| 1003 | } |
| 1004 | |
| 1005 | // for a ParmVarDecl from a function declaration, returns the corresponding |
| 1006 | // ParmVarDecl from the definition if possible, nullptr otherwise. |
| 1007 | static const ParmVarDecl *getParamDefinition(const ParmVarDecl *P) { |
| 1008 | if (auto *Callee = dyn_cast<FunctionDecl>(P->getDeclContext())) { |
| 1009 | if (auto *Def = Callee->getDefinition()) { |
| 1010 | auto I = std::distance(Callee->param_begin(), |
| 1011 | llvm::find(Callee->parameters(), P)); |
| 1012 | if (I < (int)Callee->getNumParams()) { |
| 1013 | return Def->getParamDecl(I); |
| 1014 | } |
| 1015 | } |
| 1016 | } |
| 1017 | return nullptr; |
| 1018 | } |
| 1019 | |
| 1020 | // We pass HintSide rather than SourceLocation because we want to ensure |
| 1021 | // it is in the same file as the common file range. |
| 1022 | void addInlayHint(SourceRange R, HintSide Side, InlayHintKind Kind, |
| 1023 | llvm::StringRef Prefix, llvm::StringRef Label, |
| 1024 | llvm::StringRef Suffix) { |
| 1025 | auto LSPRange = getHintRange(R); |
| 1026 | if (!LSPRange) |
| 1027 | return; |
| 1028 | |
| 1029 | addInlayHint(LSPRange: *LSPRange, Side, Kind, Prefix, Label, Suffix); |
| 1030 | } |
| 1031 | |
| 1032 | void addInlayHint(Range LSPRange, HintSide Side, InlayHintKind Kind, |
| 1033 | llvm::StringRef Prefix, llvm::StringRef Label, |
| 1034 | llvm::StringRef Suffix) { |
| 1035 | // We shouldn't get as far as adding a hint if the category is disabled. |
| 1036 | // We'd like to disable as much of the analysis as possible above instead. |
| 1037 | // Assert in debug mode but add a dynamic check in production. |
| 1038 | assert(Cfg.InlayHints.Enabled && "Shouldn't get here if disabled!" ); |
| 1039 | switch (Kind) { |
| 1040 | #define CHECK_KIND(Enumerator, ConfigProperty) \ |
| 1041 | case InlayHintKind::Enumerator: \ |
| 1042 | assert(Cfg.InlayHints.ConfigProperty && \ |
| 1043 | "Shouldn't get here if kind is disabled!"); \ |
| 1044 | if (!Cfg.InlayHints.ConfigProperty) \ |
| 1045 | return; \ |
| 1046 | break |
| 1047 | CHECK_KIND(Parameter, Parameters); |
| 1048 | CHECK_KIND(Type, DeducedTypes); |
| 1049 | CHECK_KIND(Designator, Designators); |
| 1050 | CHECK_KIND(BlockEnd, BlockEnd); |
| 1051 | CHECK_KIND(DefaultArgument, DefaultArguments); |
| 1052 | #undef CHECK_KIND |
| 1053 | } |
| 1054 | |
| 1055 | Position LSPPos = Side == HintSide::Left ? LSPRange.start : LSPRange.end; |
| 1056 | if (RestrictRange && |
| 1057 | (LSPPos < RestrictRange->start || !(LSPPos < RestrictRange->end))) |
| 1058 | return; |
| 1059 | bool PadLeft = Prefix.consume_front(Prefix: " " ); |
| 1060 | bool PadRight = Suffix.consume_back(Suffix: " " ); |
| 1061 | Results.push_back(InlayHint{LSPPos, |
| 1062 | /*label=*/{(Prefix + Label + Suffix).str()}, |
| 1063 | Kind, PadLeft, PadRight, LSPRange}); |
| 1064 | } |
| 1065 | |
| 1066 | // Get the range of the main file that *exactly* corresponds to R. |
| 1067 | std::optional<Range> getHintRange(SourceRange R) { |
| 1068 | const auto &SM = AST.getSourceManager(); |
| 1069 | auto Spelled = Tokens.spelledForExpanded(Tokens.expandedTokens(R)); |
| 1070 | // TokenBuffer will return null if e.g. R corresponds to only part of a |
| 1071 | // macro expansion. |
| 1072 | if (!Spelled || Spelled->empty()) |
| 1073 | return std::nullopt; |
| 1074 | // Hint must be within the main file, not e.g. a non-preamble include. |
| 1075 | if (SM.getFileID(Spelled->front().location()) != SM.getMainFileID() || |
| 1076 | SM.getFileID(Spelled->back().location()) != SM.getMainFileID()) |
| 1077 | return std::nullopt; |
| 1078 | return Range{sourceLocToPosition(SM, Spelled->front().location()), |
| 1079 | sourceLocToPosition(SM, Spelled->back().endLocation())}; |
| 1080 | } |
| 1081 | |
| 1082 | void addTypeHint(SourceRange R, QualType T, llvm::StringRef Prefix) { |
| 1083 | if (!Cfg.InlayHints.DeducedTypes || T.isNull()) |
| 1084 | return; |
| 1085 | |
| 1086 | // The sugared type is more useful in some cases, and the canonical |
| 1087 | // type in other cases. |
| 1088 | auto Desugared = maybeDesugar(AST, QT: T); |
| 1089 | std::string TypeName = Desugared.getAsString(Policy: TypeHintPolicy); |
| 1090 | if (T != Desugared && !shouldPrintTypeHint(TypeName)) { |
| 1091 | // If the desugared type is too long to display, fallback to the sugared |
| 1092 | // type. |
| 1093 | TypeName = T.getAsString(Policy: TypeHintPolicy); |
| 1094 | } |
| 1095 | if (shouldPrintTypeHint(TypeName)) |
| 1096 | addInlayHint(R, Side: HintSide::Right, Kind: InlayHintKind::Type, Prefix, Label: TypeName, |
| 1097 | /*Suffix=*/"" ); |
| 1098 | } |
| 1099 | |
| 1100 | void addDesignatorHint(SourceRange R, llvm::StringRef Text) { |
| 1101 | addInlayHint(R, Side: HintSide::Left, Kind: InlayHintKind::Designator, |
| 1102 | /*Prefix=*/"" , Label: Text, /*Suffix=*/"=" ); |
| 1103 | } |
| 1104 | |
| 1105 | bool shouldPrintTypeHint(llvm::StringRef TypeName) const noexcept { |
| 1106 | return Cfg.InlayHints.TypeNameLimit == 0 || |
| 1107 | TypeName.size() < Cfg.InlayHints.TypeNameLimit; |
| 1108 | } |
| 1109 | |
| 1110 | void addBlockEndHint(SourceRange BraceRange, StringRef DeclPrefix, |
| 1111 | StringRef Name, StringRef OptionalPunctuation) { |
| 1112 | auto HintRange = computeBlockEndHintRange(BraceRange, OptionalPunctuation); |
| 1113 | if (!HintRange) |
| 1114 | return; |
| 1115 | |
| 1116 | std::string Label = DeclPrefix.str(); |
| 1117 | if (!Label.empty() && !Name.empty()) |
| 1118 | Label += ' '; |
| 1119 | Label += Name; |
| 1120 | |
| 1121 | constexpr unsigned HintMaxLengthLimit = 60; |
| 1122 | if (Label.length() > HintMaxLengthLimit) |
| 1123 | return; |
| 1124 | |
| 1125 | addInlayHint(LSPRange: *HintRange, Side: HintSide::Right, Kind: InlayHintKind::BlockEnd, Prefix: " // " , |
| 1126 | Label, Suffix: "" ); |
| 1127 | } |
| 1128 | |
| 1129 | // Compute the LSP range to attach the block end hint to, if any allowed. |
| 1130 | // 1. "}" is the last non-whitespace character on the line. The range of "}" |
| 1131 | // is returned. |
| 1132 | // 2. After "}", if the trimmed trailing text is exactly |
| 1133 | // `OptionalPunctuation`, say ";". The range of "} ... ;" is returned. |
| 1134 | // Otherwise, the hint shouldn't be shown. |
| 1135 | std::optional<Range> computeBlockEndHintRange(SourceRange BraceRange, |
| 1136 | StringRef OptionalPunctuation) { |
| 1137 | |
| 1138 | auto &SM = AST.getSourceManager(); |
| 1139 | auto [BlockBeginFileId, BlockBeginOffset] = |
| 1140 | SM.getDecomposedLoc(SM.getFileLoc(Loc: BraceRange.getBegin())); |
| 1141 | auto RBraceLoc = SM.getFileLoc(Loc: BraceRange.getEnd()); |
| 1142 | auto [RBraceFileId, RBraceOffset] = SM.getDecomposedLoc(RBraceLoc); |
| 1143 | |
| 1144 | // Because we need to check the block satisfies the minimum line limit, we |
| 1145 | // require both source location to be in the main file. This prevents hint |
| 1146 | // to be shown in weird cases like '{' is actually in a "#include", but it's |
| 1147 | // rare anyway. |
| 1148 | if (BlockBeginFileId != MainFileID || RBraceFileId != MainFileID) |
| 1149 | return std::nullopt; |
| 1150 | |
| 1151 | StringRef RestOfLine = MainFileBuf.substr(Start: RBraceOffset).split('\n').first; |
| 1152 | if (!RestOfLine.starts_with(Prefix: "}" )) |
| 1153 | return std::nullopt; |
| 1154 | |
| 1155 | StringRef TrimmedTrailingText = RestOfLine.drop_front().trim(); |
| 1156 | if (!TrimmedTrailingText.empty() && |
| 1157 | TrimmedTrailingText != OptionalPunctuation) |
| 1158 | return std::nullopt; |
| 1159 | |
| 1160 | auto BlockBeginLine = SM.getLineNumber(FID: BlockBeginFileId, FilePos: BlockBeginOffset); |
| 1161 | auto RBraceLine = SM.getLineNumber(FID: RBraceFileId, FilePos: RBraceOffset); |
| 1162 | |
| 1163 | // Don't show hint on trivial blocks like `class X {};` |
| 1164 | if (BlockBeginLine + HintOptions.HintMinLineLimit - 1 > RBraceLine) |
| 1165 | return std::nullopt; |
| 1166 | |
| 1167 | // This is what we attach the hint to, usually "}" or "};". |
| 1168 | StringRef HintRangeText = RestOfLine.take_front( |
| 1169 | N: TrimmedTrailingText.empty() |
| 1170 | ? 1 |
| 1171 | : TrimmedTrailingText.bytes_end() - RestOfLine.bytes_begin()); |
| 1172 | |
| 1173 | Position HintStart = sourceLocToPosition(SM, Loc: RBraceLoc); |
| 1174 | Position HintEnd = sourceLocToPosition( |
| 1175 | SM, Loc: RBraceLoc.getLocWithOffset(Offset: HintRangeText.size())); |
| 1176 | return Range{.start: HintStart, .end: HintEnd}; |
| 1177 | } |
| 1178 | |
| 1179 | static bool isFunctionObjectCallExpr(CallExpr *E) noexcept { |
| 1180 | if (auto *CallExpr = dyn_cast<CXXOperatorCallExpr>(E)) |
| 1181 | return CallExpr->getOperator() == OverloadedOperatorKind::OO_Call; |
| 1182 | return false; |
| 1183 | } |
| 1184 | |
| 1185 | std::vector<InlayHint> &Results; |
| 1186 | ASTContext &AST; |
| 1187 | const syntax::TokenBuffer &Tokens; |
| 1188 | const Config &Cfg; |
| 1189 | std::optional<Range> RestrictRange; |
| 1190 | FileID MainFileID; |
| 1191 | StringRef MainFileBuf; |
| 1192 | const HeuristicResolver *Resolver; |
| 1193 | PrintingPolicy TypeHintPolicy; |
| 1194 | InlayHintOptions HintOptions; |
| 1195 | }; |
| 1196 | |
| 1197 | } // namespace |
| 1198 | |
| 1199 | std::vector<InlayHint> inlayHints(ParsedAST &AST, |
| 1200 | std::optional<Range> RestrictRange, |
| 1201 | InlayHintOptions HintOptions) { |
| 1202 | std::vector<InlayHint> Results; |
| 1203 | const auto &Cfg = Config::current(); |
| 1204 | if (!Cfg.InlayHints.Enabled) |
| 1205 | return Results; |
| 1206 | InlayHintVisitor Visitor(Results, AST, Cfg, std::move(RestrictRange), |
| 1207 | HintOptions); |
| 1208 | Visitor.TraverseAST(AST.getASTContext()); |
| 1209 | |
| 1210 | // De-duplicate hints. Duplicates can sometimes occur due to e.g. explicit |
| 1211 | // template instantiations. |
| 1212 | llvm::sort(Results); |
| 1213 | Results.erase(llvm::unique(Results), Results.end()); |
| 1214 | |
| 1215 | return Results; |
| 1216 | } |
| 1217 | |
| 1218 | } // namespace clangd |
| 1219 | } // namespace clang |
| 1220 | |