1 | //===--- InlayHints.cpp ------------------------------------------*- C++-*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | #include "InlayHints.h" |
9 | #include "../clang-tidy/utils/DesignatedInitializers.h" |
10 | #include "AST.h" |
11 | #include "Config.h" |
12 | #include "HeuristicResolver.h" |
13 | #include "ParsedAST.h" |
14 | #include "SourceCode.h" |
15 | #include "clang/AST/ASTDiagnostic.h" |
16 | #include "clang/AST/Decl.h" |
17 | #include "clang/AST/DeclarationName.h" |
18 | #include "clang/AST/Expr.h" |
19 | #include "clang/AST/ExprCXX.h" |
20 | #include "clang/AST/RecursiveASTVisitor.h" |
21 | #include "clang/AST/Stmt.h" |
22 | #include "clang/AST/StmtVisitor.h" |
23 | #include "clang/AST/Type.h" |
24 | #include "clang/Basic/Builtins.h" |
25 | #include "clang/Basic/OperatorKinds.h" |
26 | #include "clang/Basic/SourceManager.h" |
27 | #include "llvm/ADT/DenseSet.h" |
28 | #include "llvm/ADT/StringExtras.h" |
29 | #include "llvm/ADT/StringRef.h" |
30 | #include "llvm/ADT/Twine.h" |
31 | #include "llvm/Support/Casting.h" |
32 | #include "llvm/Support/SaveAndRestore.h" |
33 | #include "llvm/Support/ScopedPrinter.h" |
34 | #include "llvm/Support/raw_ostream.h" |
35 | #include <optional> |
36 | #include <string> |
37 | |
38 | namespace clang { |
39 | namespace clangd { |
40 | namespace { |
41 | |
42 | // For now, inlay hints are always anchored at the left or right of their range. |
43 | enum class HintSide { Left, Right }; |
44 | |
45 | void stripLeadingUnderscores(StringRef &Name) { Name = Name.ltrim(Char: '_'); } |
46 | |
47 | // getDeclForType() returns the decl responsible for Type's spelling. |
48 | // This is the inverse of ASTContext::getTypeDeclType(). |
49 | template <typename Ty, typename = decltype(((Ty *)nullptr)->getDecl())> |
50 | const NamedDecl *getDeclForTypeImpl(const Ty *T) { |
51 | return T->getDecl(); |
52 | } |
53 | const NamedDecl *getDeclForTypeImpl(const void *T) { return nullptr; } |
54 | const NamedDecl *getDeclForType(const Type *T) { |
55 | switch (T->getTypeClass()) { |
56 | #define ABSTRACT_TYPE(TY, BASE) |
57 | #define TYPE(TY, BASE) \ |
58 | case Type::TY: \ |
59 | return getDeclForTypeImpl(llvm::cast<TY##Type>(T)); |
60 | #include "clang/AST/TypeNodes.inc" |
61 | } |
62 | llvm_unreachable("Unknown TypeClass enum" ); |
63 | } |
64 | |
65 | // getSimpleName() returns the plain identifier for an entity, if any. |
66 | llvm::StringRef getSimpleName(const DeclarationName &DN) { |
67 | if (IdentifierInfo *Ident = DN.getAsIdentifierInfo()) |
68 | return Ident->getName(); |
69 | return "" ; |
70 | } |
71 | llvm::StringRef getSimpleName(const NamedDecl &D) { |
72 | return getSimpleName(DN: D.getDeclName()); |
73 | } |
74 | llvm::StringRef getSimpleName(QualType T) { |
75 | if (const auto *ET = llvm::dyn_cast<ElaboratedType>(T)) |
76 | return getSimpleName(ET->getNamedType()); |
77 | if (const auto *BT = llvm::dyn_cast<BuiltinType>(T)) { |
78 | PrintingPolicy PP(LangOptions{}); |
79 | PP.adjustForCPlusPlus(); |
80 | return BT->getName(PP); |
81 | } |
82 | if (const auto *D = getDeclForType(T: T.getTypePtr())) |
83 | return getSimpleName(DN: D->getDeclName()); |
84 | return "" ; |
85 | } |
86 | |
87 | // Returns a very abbreviated form of an expression, or "" if it's too complex. |
88 | // For example: `foo->bar()` would produce "bar". |
89 | // This is used to summarize e.g. the condition of a while loop. |
90 | std::string summarizeExpr(const Expr *E) { |
91 | struct Namer : ConstStmtVisitor<Namer, std::string> { |
92 | std::string Visit(const Expr *E) { |
93 | if (E == nullptr) |
94 | return "" ; |
95 | return ConstStmtVisitor::Visit(E->IgnoreImplicit()); |
96 | } |
97 | |
98 | // Any sort of decl reference, we just use the unqualified name. |
99 | std::string VisitMemberExpr(const MemberExpr *E) { |
100 | return getSimpleName(*E->getMemberDecl()).str(); |
101 | } |
102 | std::string VisitDeclRefExpr(const DeclRefExpr *E) { |
103 | return getSimpleName(D: *E->getFoundDecl()).str(); |
104 | } |
105 | std::string VisitCallExpr(const CallExpr *E) { |
106 | return Visit(E: E->getCallee()); |
107 | } |
108 | std::string |
109 | VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) { |
110 | return getSimpleName(DN: E->getMember()).str(); |
111 | } |
112 | std::string |
113 | VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) { |
114 | return getSimpleName(DN: E->getDeclName()).str(); |
115 | } |
116 | std::string VisitCXXFunctionalCastExpr(const CXXFunctionalCastExpr *E) { |
117 | return getSimpleName(E->getType()).str(); |
118 | } |
119 | std::string VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *E) { |
120 | return getSimpleName(E->getType()).str(); |
121 | } |
122 | |
123 | // Step through implicit nodes that clang doesn't classify as such. |
124 | std::string VisitCXXMemberCallExpr(const CXXMemberCallExpr *E) { |
125 | // Call to operator bool() inside if (X): dispatch to X. |
126 | if (E->getNumArgs() == 0 && E->getMethodDecl() && |
127 | E->getMethodDecl()->getDeclName().getNameKind() == |
128 | DeclarationName::CXXConversionFunctionName && |
129 | E->getSourceRange() == |
130 | E->getImplicitObjectArgument()->getSourceRange()) |
131 | return Visit(E: E->getImplicitObjectArgument()); |
132 | return ConstStmtVisitor::VisitCXXMemberCallExpr(E); |
133 | } |
134 | std::string VisitCXXConstructExpr(const CXXConstructExpr *E) { |
135 | if (E->getNumArgs() == 1) |
136 | return Visit(E: E->getArg(Arg: 0)); |
137 | return "" ; |
138 | } |
139 | |
140 | // Literals are just printed |
141 | std::string VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
142 | return E->getValue() ? "true" : "false" ; |
143 | } |
144 | std::string VisitIntegerLiteral(const IntegerLiteral *E) { |
145 | return llvm::to_string(E->getValue()); |
146 | } |
147 | std::string VisitFloatingLiteral(const FloatingLiteral *E) { |
148 | std::string Result; |
149 | llvm::raw_string_ostream OS(Result); |
150 | E->getValue().print(OS); |
151 | // Printer adds newlines?! |
152 | Result.resize(n: llvm::StringRef(Result).rtrim().size()); |
153 | return Result; |
154 | } |
155 | std::string VisitStringLiteral(const StringLiteral *E) { |
156 | std::string Result = "\"" ; |
157 | if (E->containsNonAscii()) { |
158 | Result += "..." ; |
159 | } else if (E->getLength() > 10) { |
160 | Result += E->getString().take_front(N: 7); |
161 | Result += "..." ; |
162 | } else { |
163 | llvm::raw_string_ostream OS(Result); |
164 | llvm::printEscapedString(Name: E->getString(), Out&: OS); |
165 | } |
166 | Result.push_back(c: '"'); |
167 | return Result; |
168 | } |
169 | |
170 | // Simple operators. Motivating cases are `!x` and `I < Length`. |
171 | std::string printUnary(llvm::StringRef Spelling, const Expr *Operand, |
172 | bool Prefix) { |
173 | std::string Sub = Visit(E: Operand); |
174 | if (Sub.empty()) |
175 | return "" ; |
176 | if (Prefix) |
177 | return (Spelling + Sub).str(); |
178 | Sub += Spelling; |
179 | return Sub; |
180 | } |
181 | bool InsideBinary = false; // No recursing into binary expressions. |
182 | std::string printBinary(llvm::StringRef Spelling, const Expr *LHSOp, |
183 | const Expr *RHSOp) { |
184 | if (InsideBinary) |
185 | return "" ; |
186 | llvm::SaveAndRestore InBinary(InsideBinary, true); |
187 | |
188 | std::string LHS = Visit(E: LHSOp); |
189 | std::string RHS = Visit(E: RHSOp); |
190 | if (LHS.empty() && RHS.empty()) |
191 | return "" ; |
192 | |
193 | if (LHS.empty()) |
194 | LHS = "..." ; |
195 | LHS.push_back(c: ' '); |
196 | LHS += Spelling; |
197 | LHS.push_back(c: ' '); |
198 | if (RHS.empty()) |
199 | LHS += "..." ; |
200 | else |
201 | LHS += RHS; |
202 | return LHS; |
203 | } |
204 | std::string VisitUnaryOperator(const UnaryOperator *E) { |
205 | return printUnary(Spelling: E->getOpcodeStr(Op: E->getOpcode()), Operand: E->getSubExpr(), |
206 | Prefix: !E->isPostfix()); |
207 | } |
208 | std::string VisitBinaryOperator(const BinaryOperator *E) { |
209 | return printBinary(Spelling: E->getOpcodeStr(Op: E->getOpcode()), LHSOp: E->getLHS(), |
210 | RHSOp: E->getRHS()); |
211 | } |
212 | std::string VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *E) { |
213 | const char *Spelling = getOperatorSpelling(Operator: E->getOperator()); |
214 | // Handle weird unary-that-look-like-binary postfix operators. |
215 | if ((E->getOperator() == OO_PlusPlus || |
216 | E->getOperator() == OO_MinusMinus) && |
217 | E->getNumArgs() == 2) |
218 | return printUnary(Spelling, Operand: E->getArg(0), Prefix: false); |
219 | if (E->isInfixBinaryOp()) |
220 | return printBinary(Spelling, LHSOp: E->getArg(0), RHSOp: E->getArg(1)); |
221 | if (E->getNumArgs() == 1) { |
222 | switch (E->getOperator()) { |
223 | case OO_Plus: |
224 | case OO_Minus: |
225 | case OO_Star: |
226 | case OO_Amp: |
227 | case OO_Tilde: |
228 | case OO_Exclaim: |
229 | case OO_PlusPlus: |
230 | case OO_MinusMinus: |
231 | return printUnary(Spelling, Operand: E->getArg(0), Prefix: true); |
232 | default: |
233 | break; |
234 | } |
235 | } |
236 | return "" ; |
237 | } |
238 | }; |
239 | return Namer{}.Visit(E); |
240 | } |
241 | |
242 | // Determines if any intermediate type in desugaring QualType QT is of |
243 | // substituted template parameter type. Ignore pointer or reference wrappers. |
244 | bool isSugaredTemplateParameter(QualType QT) { |
245 | static auto PeelWrapper = [](QualType QT) { |
246 | // Neither `PointerType` nor `ReferenceType` is considered as sugared |
247 | // type. Peel it. |
248 | QualType Peeled = QT->getPointeeType(); |
249 | return Peeled.isNull() ? QT : Peeled; |
250 | }; |
251 | |
252 | // This is a bit tricky: we traverse the type structure and find whether or |
253 | // not a type in the desugaring process is of SubstTemplateTypeParmType. |
254 | // During the process, we may encounter pointer or reference types that are |
255 | // not marked as sugared; therefore, the desugar function won't apply. To |
256 | // move forward the traversal, we retrieve the pointees using |
257 | // QualType::getPointeeType(). |
258 | // |
259 | // However, getPointeeType could leap over our interests: The QT::getAs<T>() |
260 | // invoked would implicitly desugar the type. Consequently, if the |
261 | // SubstTemplateTypeParmType is encompassed within a TypedefType, we may lose |
262 | // the chance to visit it. |
263 | // For example, given a QT that represents `std::vector<int *>::value_type`: |
264 | // `-ElaboratedType 'value_type' sugar |
265 | // `-TypedefType 'vector<int *>::value_type' sugar |
266 | // |-Typedef 'value_type' |
267 | // `-SubstTemplateTypeParmType 'int *' sugar class depth 0 index 0 T |
268 | // |-ClassTemplateSpecialization 'vector' |
269 | // `-PointerType 'int *' |
270 | // `-BuiltinType 'int' |
271 | // Applying `getPointeeType` to QT results in 'int', a child of our target |
272 | // node SubstTemplateTypeParmType. |
273 | // |
274 | // As such, we always prefer the desugared over the pointee for next type |
275 | // in the iteration. It could avoid the getPointeeType's implicit desugaring. |
276 | while (true) { |
277 | if (QT->getAs<SubstTemplateTypeParmType>()) |
278 | return true; |
279 | QualType Desugared = QT->getLocallyUnqualifiedSingleStepDesugaredType(); |
280 | if (Desugared != QT) |
281 | QT = Desugared; |
282 | else if (auto Peeled = PeelWrapper(Desugared); Peeled != QT) |
283 | QT = Peeled; |
284 | else |
285 | break; |
286 | } |
287 | return false; |
288 | } |
289 | |
290 | // A simple wrapper for `clang::desugarForDiagnostic` that provides optional |
291 | // semantic. |
292 | std::optional<QualType> desugar(ASTContext &AST, QualType QT) { |
293 | bool ShouldAKA = false; |
294 | auto Desugared = clang::desugarForDiagnostic(Context&: AST, QT, ShouldAKA); |
295 | if (!ShouldAKA) |
296 | return std::nullopt; |
297 | return Desugared; |
298 | } |
299 | |
300 | // Apply a series of heuristic methods to determine whether or not a QualType QT |
301 | // is suitable for desugaring (e.g. getting the real name behind the using-alias |
302 | // name). If so, return the desugared type. Otherwise, return the unchanged |
303 | // parameter QT. |
304 | // |
305 | // This could be refined further. See |
306 | // https://github.com/clangd/clangd/issues/1298. |
307 | QualType maybeDesugar(ASTContext &AST, QualType QT) { |
308 | // Prefer desugared type for name that aliases the template parameters. |
309 | // This can prevent things like printing opaque `: type` when accessing std |
310 | // containers. |
311 | if (isSugaredTemplateParameter(QT)) |
312 | return desugar(AST, QT).value_or(QT); |
313 | |
314 | // Prefer desugared type for `decltype(expr)` specifiers. |
315 | if (QT->isDecltypeType()) |
316 | return QT.getCanonicalType(); |
317 | if (const AutoType *AT = QT->getContainedAutoType()) |
318 | if (!AT->getDeducedType().isNull() && |
319 | AT->getDeducedType()->isDecltypeType()) |
320 | return QT.getCanonicalType(); |
321 | |
322 | return QT; |
323 | } |
324 | |
325 | // Given a callee expression `Fn`, if the call is through a function pointer, |
326 | // try to find the declaration of the corresponding function pointer type, |
327 | // so that we can recover argument names from it. |
328 | // FIXME: This function is mostly duplicated in SemaCodeComplete.cpp; unify. |
329 | static FunctionProtoTypeLoc getPrototypeLoc(Expr *Fn) { |
330 | TypeLoc Target; |
331 | Expr *NakedFn = Fn->IgnoreParenCasts(); |
332 | if (const auto *T = NakedFn->getType().getTypePtr()->getAs<TypedefType>()) { |
333 | Target = T->getDecl()->getTypeSourceInfo()->getTypeLoc(); |
334 | } else if (const auto *DR = dyn_cast<DeclRefExpr>(NakedFn)) { |
335 | const auto *D = DR->getDecl(); |
336 | if (const auto *const VD = dyn_cast<VarDecl>(D)) { |
337 | Target = VD->getTypeSourceInfo()->getTypeLoc(); |
338 | } |
339 | } |
340 | |
341 | if (!Target) |
342 | return {}; |
343 | |
344 | // Unwrap types that may be wrapping the function type |
345 | while (true) { |
346 | if (auto P = Target.getAs<PointerTypeLoc>()) { |
347 | Target = P.getPointeeLoc(); |
348 | continue; |
349 | } |
350 | if (auto A = Target.getAs<AttributedTypeLoc>()) { |
351 | Target = A.getModifiedLoc(); |
352 | continue; |
353 | } |
354 | if (auto P = Target.getAs<ParenTypeLoc>()) { |
355 | Target = P.getInnerLoc(); |
356 | continue; |
357 | } |
358 | break; |
359 | } |
360 | |
361 | if (auto F = Target.getAs<FunctionProtoTypeLoc>()) { |
362 | return F; |
363 | } |
364 | |
365 | return {}; |
366 | } |
367 | |
368 | ArrayRef<const ParmVarDecl *> |
369 | maybeDropCxxExplicitObjectParameters(ArrayRef<const ParmVarDecl *> Params) { |
370 | if (!Params.empty() && Params.front()->isExplicitObjectParameter()) |
371 | Params = Params.drop_front(1); |
372 | return Params; |
373 | } |
374 | |
375 | struct Callee { |
376 | // Only one of Decl or Loc is set. |
377 | // Loc is for calls through function pointers. |
378 | const FunctionDecl *Decl = nullptr; |
379 | FunctionProtoTypeLoc Loc; |
380 | }; |
381 | |
382 | class InlayHintVisitor : public RecursiveASTVisitor<InlayHintVisitor> { |
383 | public: |
384 | InlayHintVisitor(std::vector<InlayHint> &Results, ParsedAST &AST, |
385 | const Config &Cfg, std::optional<Range> RestrictRange) |
386 | : Results(Results), AST(AST.getASTContext()), Tokens(AST.getTokens()), |
387 | Cfg(Cfg), RestrictRange(std::move(RestrictRange)), |
388 | MainFileID(AST.getSourceManager().getMainFileID()), |
389 | Resolver(AST.getHeuristicResolver()), |
390 | TypeHintPolicy(this->AST.getPrintingPolicy()) { |
391 | bool Invalid = false; |
392 | llvm::StringRef Buf = |
393 | AST.getSourceManager().getBufferData(FID: MainFileID, Invalid: &Invalid); |
394 | MainFileBuf = Invalid ? StringRef{} : Buf; |
395 | |
396 | TypeHintPolicy.SuppressScope = true; // keep type names short |
397 | TypeHintPolicy.AnonymousTagLocations = |
398 | false; // do not print lambda locations |
399 | |
400 | // Not setting PrintCanonicalTypes for "auto" allows |
401 | // SuppressDefaultTemplateArgs (set by default) to have an effect. |
402 | } |
403 | |
404 | bool VisitTypeLoc(TypeLoc TL) { |
405 | if (const auto *DT = llvm::dyn_cast<DecltypeType>(TL.getType())) |
406 | if (QualType UT = DT->getUnderlyingType(); !UT->isDependentType()) |
407 | addTypeHint(R: TL.getSourceRange(), T: UT, Prefix: ": " ); |
408 | return true; |
409 | } |
410 | |
411 | bool VisitCXXConstructExpr(CXXConstructExpr *E) { |
412 | // Weed out constructor calls that don't look like a function call with |
413 | // an argument list, by checking the validity of getParenOrBraceRange(). |
414 | // Also weed out std::initializer_list constructors as there are no names |
415 | // for the individual arguments. |
416 | if (!E->getParenOrBraceRange().isValid() || |
417 | E->isStdInitListInitialization()) { |
418 | return true; |
419 | } |
420 | |
421 | Callee Callee; |
422 | Callee.Decl = E->getConstructor(); |
423 | if (!Callee.Decl) |
424 | return true; |
425 | processCall(Callee, Args: {E->getArgs(), E->getNumArgs()}); |
426 | return true; |
427 | } |
428 | |
429 | // Carefully recurse into PseudoObjectExprs, which typically incorporate |
430 | // a syntactic expression and several semantic expressions. |
431 | bool TraversePseudoObjectExpr(PseudoObjectExpr *E) { |
432 | Expr *SyntacticExpr = E->getSyntacticForm(); |
433 | if (isa<CallExpr>(SyntacticExpr)) |
434 | // Since the counterpart semantics usually get the identical source |
435 | // locations as the syntactic one, visiting those would end up presenting |
436 | // confusing hints e.g., __builtin_dump_struct. |
437 | // Thus, only traverse the syntactic forms if this is written as a |
438 | // CallExpr. This leaves the door open in case the arguments in the |
439 | // syntactic form could possibly get parameter names. |
440 | return RecursiveASTVisitor<InlayHintVisitor>::TraverseStmt(SyntacticExpr); |
441 | // We don't want the hints for some of the MS property extensions. |
442 | // e.g. |
443 | // struct S { |
444 | // __declspec(property(get=GetX, put=PutX)) int x[]; |
445 | // void PutX(int y); |
446 | // void Work(int y) { x = y; } // Bad: `x = y: y`. |
447 | // }; |
448 | if (isa<BinaryOperator>(SyntacticExpr)) |
449 | return true; |
450 | // FIXME: Handle other forms of a pseudo object expression. |
451 | return RecursiveASTVisitor<InlayHintVisitor>::TraversePseudoObjectExpr(E); |
452 | } |
453 | |
454 | bool VisitCallExpr(CallExpr *E) { |
455 | if (!Cfg.InlayHints.Parameters) |
456 | return true; |
457 | |
458 | bool IsFunctor = isFunctionObjectCallExpr(E); |
459 | // Do not show parameter hints for user-defined literals or |
460 | // operator calls except for operator(). (Among other reasons, the resulting |
461 | // hints can look awkward, e.g. the expression can itself be a function |
462 | // argument and then we'd get two hints side by side). |
463 | if ((isa<CXXOperatorCallExpr>(E) && !IsFunctor) || |
464 | isa<UserDefinedLiteral>(E)) |
465 | return true; |
466 | |
467 | auto CalleeDecls = Resolver->resolveCalleeOfCallExpr(E); |
468 | if (CalleeDecls.size() != 1) |
469 | return true; |
470 | |
471 | Callee Callee; |
472 | if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecls[0])) |
473 | Callee.Decl = FD; |
474 | else if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(CalleeDecls[0])) |
475 | Callee.Decl = FTD->getTemplatedDecl(); |
476 | else if (FunctionProtoTypeLoc Loc = getPrototypeLoc(E->getCallee())) |
477 | Callee.Loc = Loc; |
478 | else |
479 | return true; |
480 | |
481 | // N4868 [over.call.object]p3 says, |
482 | // The argument list submitted to overload resolution consists of the |
483 | // argument expressions present in the function call syntax preceded by the |
484 | // implied object argument (E). |
485 | // |
486 | // As well as the provision from P0847R7 Deducing This [expr.call]p7: |
487 | // ...If the function is an explicit object member function and there is an |
488 | // implied object argument ([over.call.func]), the list of provided |
489 | // arguments is preceded by the implied object argument for the purposes of |
490 | // this correspondence... |
491 | llvm::ArrayRef<const Expr *> Args = {E->getArgs(), E->getNumArgs()}; |
492 | // We don't have the implied object argument through a function pointer |
493 | // either. |
494 | if (const CXXMethodDecl *Method = |
495 | dyn_cast_or_null<CXXMethodDecl>(Callee.Decl)) |
496 | if (IsFunctor || Method->hasCXXExplicitFunctionObjectParameter()) |
497 | Args = Args.drop_front(N: 1); |
498 | processCall(Callee, Args); |
499 | return true; |
500 | } |
501 | |
502 | bool VisitFunctionDecl(FunctionDecl *D) { |
503 | if (auto *FPT = |
504 | llvm::dyn_cast<FunctionProtoType>(D->getType().getTypePtr())) { |
505 | if (!FPT->hasTrailingReturn()) { |
506 | if (auto FTL = D->getFunctionTypeLoc()) |
507 | addReturnTypeHint(D, Range: FTL.getRParenLoc()); |
508 | } |
509 | } |
510 | if (Cfg.InlayHints.BlockEnd && D->isThisDeclarationADefinition()) { |
511 | // We use `printName` here to properly print name of ctor/dtor/operator |
512 | // overload. |
513 | if (const Stmt *Body = D->getBody()) |
514 | addBlockEndHint(BraceRange: Body->getSourceRange(), DeclPrefix: "" , Name: printName(AST, *D), OptionalPunctuation: "" ); |
515 | } |
516 | return true; |
517 | } |
518 | |
519 | bool VisitForStmt(ForStmt *S) { |
520 | if (Cfg.InlayHints.BlockEnd) { |
521 | std::string Name; |
522 | // Common case: for (int I = 0; I < N; I++). Use "I" as the name. |
523 | if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S->getInit()); |
524 | DS && DS->isSingleDecl()) |
525 | Name = getSimpleName(llvm::cast<NamedDecl>(*DS->getSingleDecl())); |
526 | else |
527 | Name = summarizeExpr(E: S->getCond()); |
528 | markBlockEnd(Body: S->getBody(), Label: "for" , Name); |
529 | } |
530 | return true; |
531 | } |
532 | |
533 | bool VisitCXXForRangeStmt(CXXForRangeStmt *S) { |
534 | if (Cfg.InlayHints.BlockEnd) |
535 | markBlockEnd(Body: S->getBody(), Label: "for" , Name: getSimpleName(*S->getLoopVariable())); |
536 | return true; |
537 | } |
538 | |
539 | bool VisitWhileStmt(WhileStmt *S) { |
540 | if (Cfg.InlayHints.BlockEnd) |
541 | markBlockEnd(Body: S->getBody(), Label: "while" , Name: summarizeExpr(E: S->getCond())); |
542 | return true; |
543 | } |
544 | |
545 | bool VisitSwitchStmt(SwitchStmt *S) { |
546 | if (Cfg.InlayHints.BlockEnd) |
547 | markBlockEnd(Body: S->getBody(), Label: "switch" , Name: summarizeExpr(E: S->getCond())); |
548 | return true; |
549 | } |
550 | |
551 | // If/else chains are tricky. |
552 | // if (cond1) { |
553 | // } else if (cond2) { |
554 | // } // mark as "cond1" or "cond2"? |
555 | // For now, the answer is neither, just mark as "if". |
556 | // The ElseIf is a different IfStmt that doesn't know about the outer one. |
557 | llvm::DenseSet<const IfStmt *> ElseIfs; // not eligible for names |
558 | bool VisitIfStmt(IfStmt *S) { |
559 | if (Cfg.InlayHints.BlockEnd) { |
560 | if (const auto *ElseIf = llvm::dyn_cast_or_null<IfStmt>(S->getElse())) |
561 | ElseIfs.insert(ElseIf); |
562 | // Don't use markBlockEnd: the relevant range is [then.begin, else.end]. |
563 | if (const auto *EndCS = llvm::dyn_cast<CompoundStmt>( |
564 | S->getElse() ? S->getElse() : S->getThen())) { |
565 | addBlockEndHint( |
566 | {S->getThen()->getBeginLoc(), EndCS->getRBracLoc()}, "if" , |
567 | ElseIfs.contains(S) ? "" : summarizeExpr(S->getCond()), "" ); |
568 | } |
569 | } |
570 | return true; |
571 | } |
572 | |
573 | void markBlockEnd(const Stmt *Body, llvm::StringRef Label, |
574 | llvm::StringRef Name = "" ) { |
575 | if (const auto *CS = llvm::dyn_cast_or_null<CompoundStmt>(Body)) |
576 | addBlockEndHint(BraceRange: CS->getSourceRange(), DeclPrefix: Label, Name, OptionalPunctuation: "" ); |
577 | } |
578 | |
579 | bool VisitTagDecl(TagDecl *D) { |
580 | if (Cfg.InlayHints.BlockEnd && D->isThisDeclarationADefinition()) { |
581 | std::string DeclPrefix = D->getKindName().str(); |
582 | if (const auto *ED = dyn_cast<EnumDecl>(D)) { |
583 | if (ED->isScoped()) |
584 | DeclPrefix += ED->isScopedUsingClassTag() ? " class" : " struct" ; |
585 | }; |
586 | addBlockEndHint(BraceRange: D->getBraceRange(), DeclPrefix, Name: getSimpleName(*D), OptionalPunctuation: ";" ); |
587 | } |
588 | return true; |
589 | } |
590 | |
591 | bool VisitNamespaceDecl(NamespaceDecl *D) { |
592 | if (Cfg.InlayHints.BlockEnd) { |
593 | // For namespace, the range actually starts at the namespace keyword. But |
594 | // it should be fine since it's usually very short. |
595 | addBlockEndHint(BraceRange: D->getSourceRange(), DeclPrefix: "namespace" , Name: getSimpleName(*D), OptionalPunctuation: "" ); |
596 | } |
597 | return true; |
598 | } |
599 | |
600 | bool VisitLambdaExpr(LambdaExpr *E) { |
601 | FunctionDecl *D = E->getCallOperator(); |
602 | if (!E->hasExplicitResultType()) |
603 | addReturnTypeHint(D, Range: E->hasExplicitParameters() |
604 | ? D->getFunctionTypeLoc().getRParenLoc() |
605 | : E->getIntroducerRange().getEnd()); |
606 | return true; |
607 | } |
608 | |
609 | void addReturnTypeHint(FunctionDecl *D, SourceRange Range) { |
610 | auto *AT = D->getReturnType()->getContainedAutoType(); |
611 | if (!AT || AT->getDeducedType().isNull()) |
612 | return; |
613 | addTypeHint(R: Range, T: D->getReturnType(), /*Prefix=*/"-> " ); |
614 | } |
615 | |
616 | bool VisitVarDecl(VarDecl *D) { |
617 | // Do not show hints for the aggregate in a structured binding, |
618 | // but show hints for the individual bindings. |
619 | if (auto *DD = dyn_cast<DecompositionDecl>(D)) { |
620 | for (auto *Binding : DD->bindings()) { |
621 | // For structured bindings, print canonical types. This is important |
622 | // because for bindings that use the tuple_element protocol, the |
623 | // non-canonical types would be "tuple_element<I, A>::type". |
624 | if (auto Type = Binding->getType(); |
625 | !Type.isNull() && !Type->isDependentType()) |
626 | addTypeHint(Binding->getLocation(), Type.getCanonicalType(), |
627 | /*Prefix=*/": " ); |
628 | } |
629 | return true; |
630 | } |
631 | |
632 | if (auto *AT = D->getType()->getContainedAutoType()) { |
633 | if (AT->isDeduced() && !D->getType()->isDependentType()) { |
634 | // Our current approach is to place the hint on the variable |
635 | // and accordingly print the full type |
636 | // (e.g. for `const auto& x = 42`, print `const int&`). |
637 | // Alternatively, we could place the hint on the `auto` |
638 | // (and then just print the type deduced for the `auto`). |
639 | addTypeHint(R: D->getLocation(), T: D->getType(), /*Prefix=*/": " ); |
640 | } |
641 | } |
642 | |
643 | // Handle templates like `int foo(auto x)` with exactly one instantiation. |
644 | if (auto *PVD = llvm::dyn_cast<ParmVarDecl>(D)) { |
645 | if (D->getIdentifier() && PVD->getType()->isDependentType() && |
646 | !getContainedAutoParamType(D->getTypeSourceInfo()->getTypeLoc()) |
647 | .isNull()) { |
648 | if (auto *IPVD = getOnlyParamInstantiation(PVD)) |
649 | addTypeHint(R: D->getLocation(), T: IPVD->getType(), /*Prefix=*/": " ); |
650 | } |
651 | } |
652 | |
653 | return true; |
654 | } |
655 | |
656 | ParmVarDecl *getOnlyParamInstantiation(ParmVarDecl *D) { |
657 | auto *TemplateFunction = llvm::dyn_cast<FunctionDecl>(D->getDeclContext()); |
658 | if (!TemplateFunction) |
659 | return nullptr; |
660 | auto *InstantiatedFunction = llvm::dyn_cast_or_null<FunctionDecl>( |
661 | getOnlyInstantiation(TemplateFunction)); |
662 | if (!InstantiatedFunction) |
663 | return nullptr; |
664 | |
665 | unsigned ParamIdx = 0; |
666 | for (auto *Param : TemplateFunction->parameters()) { |
667 | // Can't reason about param indexes in the presence of preceding packs. |
668 | // And if this param is a pack, it may expand to multiple params. |
669 | if (Param->isParameterPack()) |
670 | return nullptr; |
671 | if (Param == D) |
672 | break; |
673 | ++ParamIdx; |
674 | } |
675 | assert(ParamIdx < TemplateFunction->getNumParams() && |
676 | "Couldn't find param in list?" ); |
677 | assert(ParamIdx < InstantiatedFunction->getNumParams() && |
678 | "Instantiated function has fewer (non-pack) parameters?" ); |
679 | return InstantiatedFunction->getParamDecl(ParamIdx); |
680 | } |
681 | |
682 | bool VisitInitListExpr(InitListExpr *Syn) { |
683 | // We receive the syntactic form here (shouldVisitImplicitCode() is false). |
684 | // This is the one we will ultimately attach designators to. |
685 | // It may have subobject initializers inlined without braces. The *semantic* |
686 | // form of the init-list has nested init-lists for these. |
687 | // getUnwrittenDesignators will look at the semantic form to determine the |
688 | // labels. |
689 | assert(Syn->isSyntacticForm() && "RAV should not visit implicit code!" ); |
690 | if (!Cfg.InlayHints.Designators) |
691 | return true; |
692 | if (Syn->isIdiomaticZeroInitializer(LangOpts: AST.getLangOpts())) |
693 | return true; |
694 | llvm::DenseMap<SourceLocation, std::string> Designators = |
695 | tidy::utils::getUnwrittenDesignators(Syn); |
696 | for (const Expr *Init : Syn->inits()) { |
697 | if (llvm::isa<DesignatedInitExpr>(Init)) |
698 | continue; |
699 | auto It = Designators.find(Init->getBeginLoc()); |
700 | if (It != Designators.end() && |
701 | !isPrecededByParamNameComment(E: Init, ParamName: It->second)) |
702 | addDesignatorHint(R: Init->getSourceRange(), Text: It->second); |
703 | } |
704 | return true; |
705 | } |
706 | |
707 | // FIXME: Handle RecoveryExpr to try to hint some invalid calls. |
708 | |
709 | private: |
710 | using NameVec = SmallVector<StringRef, 8>; |
711 | |
712 | void processCall(Callee Callee, llvm::ArrayRef<const Expr *> Args) { |
713 | assert(Callee.Decl || Callee.Loc); |
714 | |
715 | if (!Cfg.InlayHints.Parameters || Args.size() == 0) |
716 | return; |
717 | |
718 | // The parameter name of a move or copy constructor is not very interesting. |
719 | if (Callee.Decl) |
720 | if (auto *Ctor = dyn_cast<CXXConstructorDecl>(Callee.Decl)) |
721 | if (Ctor->isCopyOrMoveConstructor()) |
722 | return; |
723 | |
724 | ArrayRef<const ParmVarDecl *> Params, ForwardedParams; |
725 | // Resolve parameter packs to their forwarded parameter |
726 | SmallVector<const ParmVarDecl *> ForwardedParamsStorage; |
727 | if (Callee.Decl) { |
728 | Params = maybeDropCxxExplicitObjectParameters(Callee.Decl->parameters()); |
729 | ForwardedParamsStorage = resolveForwardingParameters(Callee.Decl); |
730 | ForwardedParams = |
731 | maybeDropCxxExplicitObjectParameters(ForwardedParamsStorage); |
732 | } else { |
733 | Params = maybeDropCxxExplicitObjectParameters(Callee.Loc.getParams()); |
734 | ForwardedParams = {Params.begin(), Params.end()}; |
735 | } |
736 | |
737 | NameVec ParameterNames = chooseParameterNames(Parameters: ForwardedParams); |
738 | |
739 | // Exclude setters (i.e. functions with one argument whose name begins with |
740 | // "set"), and builtins like std::move/forward/... as their parameter name |
741 | // is also not likely to be interesting. |
742 | if (Callee.Decl && |
743 | (isSetter(Callee: Callee.Decl, ParamNames: ParameterNames) || isSimpleBuiltin(Callee: Callee.Decl))) |
744 | return; |
745 | |
746 | for (size_t I = 0; I < ParameterNames.size() && I < Args.size(); ++I) { |
747 | // Pack expansion expressions cause the 1:1 mapping between arguments and |
748 | // parameters to break down, so we don't add further inlay hints if we |
749 | // encounter one. |
750 | if (isa<PackExpansionExpr>(Args[I])) { |
751 | break; |
752 | } |
753 | |
754 | StringRef Name = ParameterNames[I]; |
755 | bool NameHint = shouldHintName(Arg: Args[I], ParamName: Name); |
756 | bool ReferenceHint = shouldHintReference(Param: Params[I], ForwardedParam: ForwardedParams[I]); |
757 | |
758 | if (NameHint || ReferenceHint) { |
759 | addInlayHint(Args[I]->getSourceRange(), HintSide::Left, |
760 | InlayHintKind::Parameter, ReferenceHint ? "&" : "" , |
761 | NameHint ? Name : "" , ": " ); |
762 | } |
763 | } |
764 | } |
765 | |
766 | static bool isSetter(const FunctionDecl *Callee, const NameVec &ParamNames) { |
767 | if (ParamNames.size() != 1) |
768 | return false; |
769 | |
770 | StringRef Name = getSimpleName(*Callee); |
771 | if (!Name.starts_with_insensitive(Prefix: "set" )) |
772 | return false; |
773 | |
774 | // In addition to checking that the function has one parameter and its |
775 | // name starts with "set", also check that the part after "set" matches |
776 | // the name of the parameter (ignoring case). The idea here is that if |
777 | // the parameter name differs, it may contain extra information that |
778 | // may be useful to show in a hint, as in: |
779 | // void setTimeout(int timeoutMillis); |
780 | // This currently doesn't handle cases where params use snake_case |
781 | // and functions don't, e.g. |
782 | // void setExceptionHandler(EHFunc exception_handler); |
783 | // We could improve this by replacing `equals_insensitive` with some |
784 | // `sloppy_equals` which ignores case and also skips underscores. |
785 | StringRef WhatItIsSetting = Name.substr(Start: 3).ltrim(Chars: "_" ); |
786 | return WhatItIsSetting.equals_insensitive(RHS: ParamNames[0]); |
787 | } |
788 | |
789 | // Checks if the callee is one of the builtins |
790 | // addressof, as_const, forward, move(_if_noexcept) |
791 | static bool isSimpleBuiltin(const FunctionDecl *Callee) { |
792 | switch (Callee->getBuiltinID()) { |
793 | case Builtin::BIaddressof: |
794 | case Builtin::BIas_const: |
795 | case Builtin::BIforward: |
796 | case Builtin::BImove: |
797 | case Builtin::BImove_if_noexcept: |
798 | return true; |
799 | default: |
800 | return false; |
801 | } |
802 | } |
803 | |
804 | bool shouldHintName(const Expr *Arg, StringRef ParamName) { |
805 | if (ParamName.empty()) |
806 | return false; |
807 | |
808 | // If the argument expression is a single name and it matches the |
809 | // parameter name exactly, omit the name hint. |
810 | if (ParamName == getSpelledIdentifier(E: Arg)) |
811 | return false; |
812 | |
813 | // Exclude argument expressions preceded by a /*paramName*/. |
814 | if (isPrecededByParamNameComment(E: Arg, ParamName)) |
815 | return false; |
816 | |
817 | return true; |
818 | } |
819 | |
820 | bool shouldHintReference(const ParmVarDecl *Param, |
821 | const ParmVarDecl *ForwardedParam) { |
822 | // We add a & hint only when the argument is passed as mutable reference. |
823 | // For parameters that are not part of an expanded pack, this is |
824 | // straightforward. For expanded pack parameters, it's likely that they will |
825 | // be forwarded to another function. In this situation, we only want to add |
826 | // the reference hint if the argument is actually being used via mutable |
827 | // reference. This means we need to check |
828 | // 1. whether the value category of the argument is preserved, i.e. each |
829 | // pack expansion uses std::forward correctly. |
830 | // 2. whether the argument is ever copied/cast instead of passed |
831 | // by-reference |
832 | // Instead of checking this explicitly, we use the following proxy: |
833 | // 1. the value category can only change from rvalue to lvalue during |
834 | // forwarding, so checking whether both the parameter of the forwarding |
835 | // function and the forwarded function are lvalue references detects such |
836 | // a conversion. |
837 | // 2. if the argument is copied/cast somewhere in the chain of forwarding |
838 | // calls, it can only be passed on to an rvalue reference or const lvalue |
839 | // reference parameter. Thus if the forwarded parameter is a mutable |
840 | // lvalue reference, it cannot have been copied/cast to on the way. |
841 | // Additionally, we should not add a reference hint if the forwarded |
842 | // parameter was only partially resolved, i.e. points to an expanded pack |
843 | // parameter, since we do not know how it will be used eventually. |
844 | auto Type = Param->getType(); |
845 | auto ForwardedType = ForwardedParam->getType(); |
846 | return Type->isLValueReferenceType() && |
847 | ForwardedType->isLValueReferenceType() && |
848 | !ForwardedType.getNonReferenceType().isConstQualified() && |
849 | !isExpandedFromParameterPack(D: ForwardedParam); |
850 | } |
851 | |
852 | // Checks if "E" is spelled in the main file and preceded by a C-style comment |
853 | // whose contents match ParamName (allowing for whitespace and an optional "=" |
854 | // at the end. |
855 | bool (const Expr *E, StringRef ParamName) { |
856 | auto &SM = AST.getSourceManager(); |
857 | auto FileLoc = SM.getFileLoc(Loc: E->getBeginLoc()); |
858 | auto Decomposed = SM.getDecomposedLoc(Loc: FileLoc); |
859 | if (Decomposed.first != MainFileID) |
860 | return false; |
861 | |
862 | StringRef SourcePrefix = MainFileBuf.substr(Start: 0, N: Decomposed.second); |
863 | // Allow whitespace between comment and expression. |
864 | SourcePrefix = SourcePrefix.rtrim(); |
865 | // Check for comment ending. |
866 | if (!SourcePrefix.consume_back(Suffix: "*/" )) |
867 | return false; |
868 | // Ignore some punctuation and whitespace around comment. |
869 | // In particular this allows designators to match nicely. |
870 | llvm::StringLiteral IgnoreChars = " =." ; |
871 | SourcePrefix = SourcePrefix.rtrim(Chars: IgnoreChars); |
872 | ParamName = ParamName.trim(Chars: IgnoreChars); |
873 | // Other than that, the comment must contain exactly ParamName. |
874 | if (!SourcePrefix.consume_back(Suffix: ParamName)) |
875 | return false; |
876 | SourcePrefix = SourcePrefix.rtrim(Chars: IgnoreChars); |
877 | return SourcePrefix.ends_with(Suffix: "/*" ); |
878 | } |
879 | |
880 | // If "E" spells a single unqualified identifier, return that name. |
881 | // Otherwise, return an empty string. |
882 | static StringRef getSpelledIdentifier(const Expr *E) { |
883 | E = E->IgnoreUnlessSpelledInSource(); |
884 | |
885 | if (auto *DRE = dyn_cast<DeclRefExpr>(E)) |
886 | if (!DRE->getQualifier()) |
887 | return getSimpleName(*DRE->getDecl()); |
888 | |
889 | if (auto *ME = dyn_cast<MemberExpr>(E)) |
890 | if (!ME->getQualifier() && ME->isImplicitAccess()) |
891 | return getSimpleName(*ME->getMemberDecl()); |
892 | |
893 | return {}; |
894 | } |
895 | |
896 | NameVec chooseParameterNames(ArrayRef<const ParmVarDecl *> Parameters) { |
897 | NameVec ParameterNames; |
898 | for (const auto *P : Parameters) { |
899 | if (isExpandedFromParameterPack(P)) { |
900 | // If we haven't resolved a pack paramater (e.g. foo(Args... args)) to a |
901 | // non-pack parameter, then hinting as foo(args: 1, args: 2, args: 3) is |
902 | // unlikely to be useful. |
903 | ParameterNames.emplace_back(); |
904 | } else { |
905 | auto SimpleName = getSimpleName(*P); |
906 | // If the parameter is unnamed in the declaration: |
907 | // attempt to get its name from the definition |
908 | if (SimpleName.empty()) { |
909 | if (const auto *PD = getParamDefinition(P)) { |
910 | SimpleName = getSimpleName(*PD); |
911 | } |
912 | } |
913 | ParameterNames.emplace_back(SimpleName); |
914 | } |
915 | } |
916 | |
917 | // Standard library functions often have parameter names that start |
918 | // with underscores, which makes the hints noisy, so strip them out. |
919 | for (auto &Name : ParameterNames) |
920 | stripLeadingUnderscores(Name); |
921 | |
922 | return ParameterNames; |
923 | } |
924 | |
925 | // for a ParmVarDecl from a function declaration, returns the corresponding |
926 | // ParmVarDecl from the definition if possible, nullptr otherwise. |
927 | static const ParmVarDecl *getParamDefinition(const ParmVarDecl *P) { |
928 | if (auto *Callee = dyn_cast<FunctionDecl>(P->getDeclContext())) { |
929 | if (auto *Def = Callee->getDefinition()) { |
930 | auto I = std::distance(Callee->param_begin(), |
931 | llvm::find(Callee->parameters(), P)); |
932 | if (I < (int)Callee->getNumParams()) { |
933 | return Def->getParamDecl(I); |
934 | } |
935 | } |
936 | } |
937 | return nullptr; |
938 | } |
939 | |
940 | // We pass HintSide rather than SourceLocation because we want to ensure |
941 | // it is in the same file as the common file range. |
942 | void addInlayHint(SourceRange R, HintSide Side, InlayHintKind Kind, |
943 | llvm::StringRef Prefix, llvm::StringRef Label, |
944 | llvm::StringRef Suffix) { |
945 | auto LSPRange = getHintRange(R); |
946 | if (!LSPRange) |
947 | return; |
948 | |
949 | addInlayHint(LSPRange: *LSPRange, Side, Kind, Prefix, Label, Suffix); |
950 | } |
951 | |
952 | void addInlayHint(Range LSPRange, HintSide Side, InlayHintKind Kind, |
953 | llvm::StringRef Prefix, llvm::StringRef Label, |
954 | llvm::StringRef Suffix) { |
955 | // We shouldn't get as far as adding a hint if the category is disabled. |
956 | // We'd like to disable as much of the analysis as possible above instead. |
957 | // Assert in debug mode but add a dynamic check in production. |
958 | assert(Cfg.InlayHints.Enabled && "Shouldn't get here if disabled!" ); |
959 | switch (Kind) { |
960 | #define CHECK_KIND(Enumerator, ConfigProperty) \ |
961 | case InlayHintKind::Enumerator: \ |
962 | assert(Cfg.InlayHints.ConfigProperty && \ |
963 | "Shouldn't get here if kind is disabled!"); \ |
964 | if (!Cfg.InlayHints.ConfigProperty) \ |
965 | return; \ |
966 | break |
967 | CHECK_KIND(Parameter, Parameters); |
968 | CHECK_KIND(Type, DeducedTypes); |
969 | CHECK_KIND(Designator, Designators); |
970 | CHECK_KIND(BlockEnd, BlockEnd); |
971 | #undef CHECK_KIND |
972 | } |
973 | |
974 | Position LSPPos = Side == HintSide::Left ? LSPRange.start : LSPRange.end; |
975 | if (RestrictRange && |
976 | (LSPPos < RestrictRange->start || !(LSPPos < RestrictRange->end))) |
977 | return; |
978 | bool PadLeft = Prefix.consume_front(Prefix: " " ); |
979 | bool PadRight = Suffix.consume_back(Suffix: " " ); |
980 | Results.push_back(InlayHint{LSPPos, |
981 | /*label=*/{(Prefix + Label + Suffix).str()}, |
982 | Kind, PadLeft, PadRight, LSPRange}); |
983 | } |
984 | |
985 | // Get the range of the main file that *exactly* corresponds to R. |
986 | std::optional<Range> getHintRange(SourceRange R) { |
987 | const auto &SM = AST.getSourceManager(); |
988 | auto Spelled = Tokens.spelledForExpanded(Tokens.expandedTokens(R)); |
989 | // TokenBuffer will return null if e.g. R corresponds to only part of a |
990 | // macro expansion. |
991 | if (!Spelled || Spelled->empty()) |
992 | return std::nullopt; |
993 | // Hint must be within the main file, not e.g. a non-preamble include. |
994 | if (SM.getFileID(Spelled->front().location()) != SM.getMainFileID() || |
995 | SM.getFileID(Spelled->back().location()) != SM.getMainFileID()) |
996 | return std::nullopt; |
997 | return Range{sourceLocToPosition(SM, Spelled->front().location()), |
998 | sourceLocToPosition(SM, Spelled->back().endLocation())}; |
999 | } |
1000 | |
1001 | void addTypeHint(SourceRange R, QualType T, llvm::StringRef Prefix) { |
1002 | if (!Cfg.InlayHints.DeducedTypes || T.isNull()) |
1003 | return; |
1004 | |
1005 | // The sugared type is more useful in some cases, and the canonical |
1006 | // type in other cases. |
1007 | auto Desugared = maybeDesugar(AST, QT: T); |
1008 | std::string TypeName = Desugared.getAsString(Policy: TypeHintPolicy); |
1009 | if (T != Desugared && !shouldPrintTypeHint(TypeName)) { |
1010 | // If the desugared type is too long to display, fallback to the sugared |
1011 | // type. |
1012 | TypeName = T.getAsString(Policy: TypeHintPolicy); |
1013 | } |
1014 | if (shouldPrintTypeHint(TypeName)) |
1015 | addInlayHint(R, Side: HintSide::Right, Kind: InlayHintKind::Type, Prefix, Label: TypeName, |
1016 | /*Suffix=*/"" ); |
1017 | } |
1018 | |
1019 | void addDesignatorHint(SourceRange R, llvm::StringRef Text) { |
1020 | addInlayHint(R, Side: HintSide::Left, Kind: InlayHintKind::Designator, |
1021 | /*Prefix=*/"" , Label: Text, /*Suffix=*/"=" ); |
1022 | } |
1023 | |
1024 | bool shouldPrintTypeHint(llvm::StringRef TypeName) const noexcept { |
1025 | return Cfg.InlayHints.TypeNameLimit == 0 || |
1026 | TypeName.size() < Cfg.InlayHints.TypeNameLimit; |
1027 | } |
1028 | |
1029 | void addBlockEndHint(SourceRange BraceRange, StringRef DeclPrefix, |
1030 | StringRef Name, StringRef OptionalPunctuation) { |
1031 | auto HintRange = computeBlockEndHintRange(BraceRange, OptionalPunctuation); |
1032 | if (!HintRange) |
1033 | return; |
1034 | |
1035 | std::string Label = DeclPrefix.str(); |
1036 | if (!Label.empty() && !Name.empty()) |
1037 | Label += ' '; |
1038 | Label += Name; |
1039 | |
1040 | constexpr unsigned HintMaxLengthLimit = 60; |
1041 | if (Label.length() > HintMaxLengthLimit) |
1042 | return; |
1043 | |
1044 | addInlayHint(LSPRange: *HintRange, Side: HintSide::Right, Kind: InlayHintKind::BlockEnd, Prefix: " // " , |
1045 | Label, Suffix: "" ); |
1046 | } |
1047 | |
1048 | // Compute the LSP range to attach the block end hint to, if any allowed. |
1049 | // 1. "}" is the last non-whitespace character on the line. The range of "}" |
1050 | // is returned. |
1051 | // 2. After "}", if the trimmed trailing text is exactly |
1052 | // `OptionalPunctuation`, say ";". The range of "} ... ;" is returned. |
1053 | // Otherwise, the hint shouldn't be shown. |
1054 | std::optional<Range> computeBlockEndHintRange(SourceRange BraceRange, |
1055 | StringRef OptionalPunctuation) { |
1056 | constexpr unsigned HintMinLineLimit = 2; |
1057 | |
1058 | auto &SM = AST.getSourceManager(); |
1059 | auto [BlockBeginFileId, BlockBeginOffset] = |
1060 | SM.getDecomposedLoc(SM.getFileLoc(Loc: BraceRange.getBegin())); |
1061 | auto RBraceLoc = SM.getFileLoc(Loc: BraceRange.getEnd()); |
1062 | auto [RBraceFileId, RBraceOffset] = SM.getDecomposedLoc(RBraceLoc); |
1063 | |
1064 | // Because we need to check the block satisfies the minimum line limit, we |
1065 | // require both source location to be in the main file. This prevents hint |
1066 | // to be shown in weird cases like '{' is actually in a "#include", but it's |
1067 | // rare anyway. |
1068 | if (BlockBeginFileId != MainFileID || RBraceFileId != MainFileID) |
1069 | return std::nullopt; |
1070 | |
1071 | StringRef RestOfLine = MainFileBuf.substr(Start: RBraceOffset).split('\n').first; |
1072 | if (!RestOfLine.starts_with(Prefix: "}" )) |
1073 | return std::nullopt; |
1074 | |
1075 | StringRef TrimmedTrailingText = RestOfLine.drop_front().trim(); |
1076 | if (!TrimmedTrailingText.empty() && |
1077 | TrimmedTrailingText != OptionalPunctuation) |
1078 | return std::nullopt; |
1079 | |
1080 | auto BlockBeginLine = SM.getLineNumber(FID: BlockBeginFileId, FilePos: BlockBeginOffset); |
1081 | auto RBraceLine = SM.getLineNumber(FID: RBraceFileId, FilePos: RBraceOffset); |
1082 | |
1083 | // Don't show hint on trivial blocks like `class X {};` |
1084 | if (BlockBeginLine + HintMinLineLimit - 1 > RBraceLine) |
1085 | return std::nullopt; |
1086 | |
1087 | // This is what we attach the hint to, usually "}" or "};". |
1088 | StringRef HintRangeText = RestOfLine.take_front( |
1089 | N: TrimmedTrailingText.empty() |
1090 | ? 1 |
1091 | : TrimmedTrailingText.bytes_end() - RestOfLine.bytes_begin()); |
1092 | |
1093 | Position HintStart = sourceLocToPosition(SM, Loc: RBraceLoc); |
1094 | Position HintEnd = sourceLocToPosition( |
1095 | SM, Loc: RBraceLoc.getLocWithOffset(Offset: HintRangeText.size())); |
1096 | return Range{.start: HintStart, .end: HintEnd}; |
1097 | } |
1098 | |
1099 | static bool isFunctionObjectCallExpr(CallExpr *E) noexcept { |
1100 | if (auto *CallExpr = dyn_cast<CXXOperatorCallExpr>(E)) |
1101 | return CallExpr->getOperator() == OverloadedOperatorKind::OO_Call; |
1102 | return false; |
1103 | } |
1104 | |
1105 | std::vector<InlayHint> &Results; |
1106 | ASTContext &AST; |
1107 | const syntax::TokenBuffer &Tokens; |
1108 | const Config &Cfg; |
1109 | std::optional<Range> RestrictRange; |
1110 | FileID MainFileID; |
1111 | StringRef MainFileBuf; |
1112 | const HeuristicResolver *Resolver; |
1113 | PrintingPolicy TypeHintPolicy; |
1114 | }; |
1115 | |
1116 | } // namespace |
1117 | |
1118 | std::vector<InlayHint> inlayHints(ParsedAST &AST, |
1119 | std::optional<Range> RestrictRange) { |
1120 | std::vector<InlayHint> Results; |
1121 | const auto &Cfg = Config::current(); |
1122 | if (!Cfg.InlayHints.Enabled) |
1123 | return Results; |
1124 | InlayHintVisitor Visitor(Results, AST, Cfg, std::move(RestrictRange)); |
1125 | Visitor.TraverseAST(AST.getASTContext()); |
1126 | |
1127 | // De-duplicate hints. Duplicates can sometimes occur due to e.g. explicit |
1128 | // template instantiations. |
1129 | llvm::sort(Results); |
1130 | Results.erase(std::unique(Results.begin(), Results.end()), Results.end()); |
1131 | |
1132 | return Results; |
1133 | } |
1134 | |
1135 | } // namespace clangd |
1136 | } // namespace clang |
1137 | |