1//===--- APValue.cpp - Union class for APFloat/APSInt/Complex -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the APValue class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/APValue.h"
14#include "Linkage.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CharUnits.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/Type.h"
21#include "llvm/Support/ErrorHandling.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace clang;
24
25/// The identity of a type_info object depends on the canonical unqualified
26/// type only.
27TypeInfoLValue::TypeInfoLValue(const Type *T)
28 : T(T->getCanonicalTypeUnqualified().getTypePtr()) {}
29
30void TypeInfoLValue::print(llvm::raw_ostream &Out,
31 const PrintingPolicy &Policy) const {
32 Out << "typeid(";
33 QualType(getType(), 0).print(OS&: Out, Policy);
34 Out << ")";
35}
36
37static_assert(
38 1 << llvm::PointerLikeTypeTraits<TypeInfoLValue>::NumLowBitsAvailable <=
39 alignof(Type),
40 "Type is insufficiently aligned");
41
42APValue::LValueBase::LValueBase(const ValueDecl *P, unsigned I, unsigned V)
43 : Ptr(P ? cast<ValueDecl>(P->getCanonicalDecl()) : nullptr), Local{.CallIndex: I, .Version: V} {}
44APValue::LValueBase::LValueBase(const Expr *P, unsigned I, unsigned V)
45 : Ptr(P), Local{.CallIndex: I, .Version: V} {}
46
47APValue::LValueBase APValue::LValueBase::getDynamicAlloc(DynamicAllocLValue LV,
48 QualType Type) {
49 LValueBase Base;
50 Base.Ptr = LV;
51 Base.DynamicAllocType = Type.getAsOpaquePtr();
52 return Base;
53}
54
55APValue::LValueBase APValue::LValueBase::getTypeInfo(TypeInfoLValue LV,
56 QualType TypeInfo) {
57 LValueBase Base;
58 Base.Ptr = LV;
59 Base.TypeInfoType = TypeInfo.getAsOpaquePtr();
60 return Base;
61}
62
63QualType APValue::LValueBase::getType() const {
64 if (!*this) return QualType();
65 if (const ValueDecl *D = dyn_cast<const ValueDecl*>()) {
66 // FIXME: It's unclear where we're supposed to take the type from, and
67 // this actually matters for arrays of unknown bound. Eg:
68 //
69 // extern int arr[]; void f() { extern int arr[3]; };
70 // constexpr int *p = &arr[1]; // valid?
71 //
72 // For now, we take the most complete type we can find.
73 for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl;
74 Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) {
75 QualType T = Redecl->getType();
76 if (!T->isIncompleteArrayType())
77 return T;
78 }
79 return D->getType();
80 }
81
82 if (is<TypeInfoLValue>())
83 return getTypeInfoType();
84
85 if (is<DynamicAllocLValue>())
86 return getDynamicAllocType();
87
88 const Expr *Base = get<const Expr*>();
89
90 // For a materialized temporary, the type of the temporary we materialized
91 // may not be the type of the expression.
92 if (const MaterializeTemporaryExpr *MTE =
93 llvm::dyn_cast<MaterializeTemporaryExpr>(Val: Base)) {
94 SmallVector<const Expr *, 2> CommaLHSs;
95 SmallVector<SubobjectAdjustment, 2> Adjustments;
96 const Expr *Temp = MTE->getSubExpr();
97 const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHS&: CommaLHSs,
98 Adjustments);
99 // Keep any cv-qualifiers from the reference if we generated a temporary
100 // for it directly. Otherwise use the type after adjustment.
101 if (!Adjustments.empty())
102 return Inner->getType();
103 }
104
105 return Base->getType();
106}
107
108unsigned APValue::LValueBase::getCallIndex() const {
109 return (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) ? 0
110 : Local.CallIndex;
111}
112
113unsigned APValue::LValueBase::getVersion() const {
114 return (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) ? 0 : Local.Version;
115}
116
117QualType APValue::LValueBase::getTypeInfoType() const {
118 assert(is<TypeInfoLValue>() && "not a type_info lvalue");
119 return QualType::getFromOpaquePtr(Ptr: TypeInfoType);
120}
121
122QualType APValue::LValueBase::getDynamicAllocType() const {
123 assert(is<DynamicAllocLValue>() && "not a dynamic allocation lvalue");
124 return QualType::getFromOpaquePtr(Ptr: DynamicAllocType);
125}
126
127void APValue::LValueBase::Profile(llvm::FoldingSetNodeID &ID) const {
128 ID.AddPointer(Ptr: Ptr.getOpaqueValue());
129 if (is<TypeInfoLValue>() || is<DynamicAllocLValue>())
130 return;
131 ID.AddInteger(I: Local.CallIndex);
132 ID.AddInteger(I: Local.Version);
133}
134
135namespace clang {
136bool operator==(const APValue::LValueBase &LHS,
137 const APValue::LValueBase &RHS) {
138 if (LHS.Ptr != RHS.Ptr)
139 return false;
140 if (LHS.is<TypeInfoLValue>() || LHS.is<DynamicAllocLValue>())
141 return true;
142 return LHS.Local.CallIndex == RHS.Local.CallIndex &&
143 LHS.Local.Version == RHS.Local.Version;
144}
145}
146
147APValue::LValuePathEntry::LValuePathEntry(BaseOrMemberType BaseOrMember) {
148 if (const Decl *D = BaseOrMember.getPointer())
149 BaseOrMember.setPointer(D->getCanonicalDecl());
150 Value = reinterpret_cast<uintptr_t>(BaseOrMember.getOpaqueValue());
151}
152
153void APValue::LValuePathEntry::Profile(llvm::FoldingSetNodeID &ID) const {
154 ID.AddInteger(I: Value);
155}
156
157APValue::LValuePathSerializationHelper::LValuePathSerializationHelper(
158 ArrayRef<LValuePathEntry> Path, QualType ElemTy)
159 : Ty((const void *)ElemTy.getTypePtrOrNull()), Path(Path) {}
160
161QualType APValue::LValuePathSerializationHelper::getType() {
162 return QualType::getFromOpaquePtr(Ptr: Ty);
163}
164
165namespace {
166 struct LVBase {
167 APValue::LValueBase Base;
168 CharUnits Offset;
169 unsigned PathLength;
170 bool IsNullPtr : 1;
171 bool IsOnePastTheEnd : 1;
172 };
173}
174
175void *APValue::LValueBase::getOpaqueValue() const {
176 return Ptr.getOpaqueValue();
177}
178
179bool APValue::LValueBase::isNull() const {
180 return Ptr.isNull();
181}
182
183APValue::LValueBase::operator bool () const {
184 return static_cast<bool>(Ptr);
185}
186
187clang::APValue::LValueBase
188llvm::DenseMapInfo<clang::APValue::LValueBase>::getEmptyKey() {
189 clang::APValue::LValueBase B;
190 B.Ptr = DenseMapInfo<const ValueDecl*>::getEmptyKey();
191 return B;
192}
193
194clang::APValue::LValueBase
195llvm::DenseMapInfo<clang::APValue::LValueBase>::getTombstoneKey() {
196 clang::APValue::LValueBase B;
197 B.Ptr = DenseMapInfo<const ValueDecl*>::getTombstoneKey();
198 return B;
199}
200
201namespace clang {
202llvm::hash_code hash_value(const APValue::LValueBase &Base) {
203 if (Base.is<TypeInfoLValue>() || Base.is<DynamicAllocLValue>())
204 return llvm::hash_value(ptr: Base.getOpaqueValue());
205 return llvm::hash_combine(args: Base.getOpaqueValue(), args: Base.getCallIndex(),
206 args: Base.getVersion());
207}
208}
209
210unsigned llvm::DenseMapInfo<clang::APValue::LValueBase>::getHashValue(
211 const clang::APValue::LValueBase &Base) {
212 return hash_value(Base);
213}
214
215bool llvm::DenseMapInfo<clang::APValue::LValueBase>::isEqual(
216 const clang::APValue::LValueBase &LHS,
217 const clang::APValue::LValueBase &RHS) {
218 return LHS == RHS;
219}
220
221struct APValue::LV : LVBase {
222 static const unsigned InlinePathSpace =
223 (DataSize - sizeof(LVBase)) / sizeof(LValuePathEntry);
224
225 /// Path - The sequence of base classes, fields and array indices to follow to
226 /// walk from Base to the subobject. When performing GCC-style folding, there
227 /// may not be such a path.
228 union {
229 LValuePathEntry Path[InlinePathSpace];
230 LValuePathEntry *PathPtr;
231 };
232
233 LV() { PathLength = (unsigned)-1; }
234 ~LV() { resizePath(Length: 0); }
235
236 void resizePath(unsigned Length) {
237 if (Length == PathLength)
238 return;
239 if (hasPathPtr())
240 delete [] PathPtr;
241 PathLength = Length;
242 if (hasPathPtr())
243 PathPtr = new LValuePathEntry[Length];
244 }
245
246 bool hasPath() const { return PathLength != (unsigned)-1; }
247 bool hasPathPtr() const { return hasPath() && PathLength > InlinePathSpace; }
248
249 LValuePathEntry *getPath() { return hasPathPtr() ? PathPtr : Path; }
250 const LValuePathEntry *getPath() const {
251 return hasPathPtr() ? PathPtr : Path;
252 }
253};
254
255namespace {
256 struct MemberPointerBase {
257 llvm::PointerIntPair<const ValueDecl*, 1, bool> MemberAndIsDerivedMember;
258 unsigned PathLength;
259 };
260}
261
262struct APValue::MemberPointerData : MemberPointerBase {
263 static const unsigned InlinePathSpace =
264 (DataSize - sizeof(MemberPointerBase)) / sizeof(const CXXRecordDecl*);
265 typedef const CXXRecordDecl *PathElem;
266 union {
267 PathElem Path[InlinePathSpace];
268 PathElem *PathPtr;
269 };
270
271 MemberPointerData() { PathLength = 0; }
272 ~MemberPointerData() { resizePath(Length: 0); }
273
274 void resizePath(unsigned Length) {
275 if (Length == PathLength)
276 return;
277 if (hasPathPtr())
278 delete [] PathPtr;
279 PathLength = Length;
280 if (hasPathPtr())
281 PathPtr = new PathElem[Length];
282 }
283
284 bool hasPathPtr() const { return PathLength > InlinePathSpace; }
285
286 PathElem *getPath() { return hasPathPtr() ? PathPtr : Path; }
287 const PathElem *getPath() const {
288 return hasPathPtr() ? PathPtr : Path;
289 }
290};
291
292// FIXME: Reduce the malloc traffic here.
293
294APValue::Arr::Arr(unsigned NumElts, unsigned Size) :
295 Elts(new APValue[NumElts + (NumElts != Size ? 1 : 0)]),
296 NumElts(NumElts), ArrSize(Size) {}
297APValue::Arr::~Arr() { delete [] Elts; }
298
299APValue::StructData::StructData(unsigned NumBases, unsigned NumFields) :
300 Elts(new APValue[NumBases+NumFields]),
301 NumBases(NumBases), NumFields(NumFields) {}
302APValue::StructData::~StructData() {
303 delete [] Elts;
304}
305
306APValue::UnionData::UnionData() : Field(nullptr), Value(new APValue) {}
307APValue::UnionData::~UnionData () {
308 delete Value;
309}
310
311APValue::APValue(const APValue &RHS)
312 : Kind(None), AllowConstexprUnknown(RHS.AllowConstexprUnknown) {
313 switch (RHS.getKind()) {
314 case None:
315 case Indeterminate:
316 Kind = RHS.getKind();
317 break;
318 case Int:
319 MakeInt();
320 setInt(RHS.getInt());
321 break;
322 case Float:
323 MakeFloat();
324 setFloat(RHS.getFloat());
325 break;
326 case FixedPoint: {
327 APFixedPoint FXCopy = RHS.getFixedPoint();
328 MakeFixedPoint(FX: std::move(FXCopy));
329 break;
330 }
331 case Vector:
332 MakeVector();
333 setVector(E: ((const Vec *)(const char *)&RHS.Data)->Elts,
334 N: RHS.getVectorLength());
335 break;
336 case ComplexInt:
337 MakeComplexInt();
338 setComplexInt(R: RHS.getComplexIntReal(), I: RHS.getComplexIntImag());
339 break;
340 case ComplexFloat:
341 MakeComplexFloat();
342 setComplexFloat(R: RHS.getComplexFloatReal(), I: RHS.getComplexFloatImag());
343 break;
344 case LValue:
345 MakeLValue();
346 if (RHS.hasLValuePath())
347 setLValue(B: RHS.getLValueBase(), O: RHS.getLValueOffset(), Path: RHS.getLValuePath(),
348 OnePastTheEnd: RHS.isLValueOnePastTheEnd(), IsNullPtr: RHS.isNullPointer());
349 else
350 setLValue(B: RHS.getLValueBase(), O: RHS.getLValueOffset(), NoLValuePath(),
351 IsNullPtr: RHS.isNullPointer());
352 break;
353 case Array:
354 MakeArray(InitElts: RHS.getArrayInitializedElts(), Size: RHS.getArraySize());
355 for (unsigned I = 0, N = RHS.getArrayInitializedElts(); I != N; ++I)
356 getArrayInitializedElt(I) = RHS.getArrayInitializedElt(I);
357 if (RHS.hasArrayFiller())
358 getArrayFiller() = RHS.getArrayFiller();
359 break;
360 case Struct:
361 MakeStruct(B: RHS.getStructNumBases(), M: RHS.getStructNumFields());
362 for (unsigned I = 0, N = RHS.getStructNumBases(); I != N; ++I)
363 getStructBase(i: I) = RHS.getStructBase(i: I);
364 for (unsigned I = 0, N = RHS.getStructNumFields(); I != N; ++I)
365 getStructField(i: I) = RHS.getStructField(i: I);
366 break;
367 case Union:
368 MakeUnion();
369 setUnion(Field: RHS.getUnionField(), Value: RHS.getUnionValue());
370 break;
371 case MemberPointer:
372 MakeMemberPointer(Member: RHS.getMemberPointerDecl(),
373 IsDerivedMember: RHS.isMemberPointerToDerivedMember(),
374 Path: RHS.getMemberPointerPath());
375 break;
376 case AddrLabelDiff:
377 MakeAddrLabelDiff();
378 setAddrLabelDiff(LHSExpr: RHS.getAddrLabelDiffLHS(), RHSExpr: RHS.getAddrLabelDiffRHS());
379 break;
380 }
381}
382
383APValue::APValue(APValue &&RHS)
384 : Kind(RHS.Kind), AllowConstexprUnknown(RHS.AllowConstexprUnknown),
385 Data(RHS.Data) {
386 RHS.Kind = None;
387}
388
389APValue &APValue::operator=(const APValue &RHS) {
390 if (this != &RHS)
391 *this = APValue(RHS);
392
393 return *this;
394}
395
396APValue &APValue::operator=(APValue &&RHS) {
397 if (this != &RHS) {
398 if (Kind != None && Kind != Indeterminate)
399 DestroyDataAndMakeUninit();
400 Kind = RHS.Kind;
401 Data = RHS.Data;
402 AllowConstexprUnknown = RHS.AllowConstexprUnknown;
403 RHS.Kind = None;
404 }
405 return *this;
406}
407
408void APValue::DestroyDataAndMakeUninit() {
409 if (Kind == Int)
410 ((APSInt *)(char *)&Data)->~APSInt();
411 else if (Kind == Float)
412 ((APFloat *)(char *)&Data)->~APFloat();
413 else if (Kind == FixedPoint)
414 ((APFixedPoint *)(char *)&Data)->~APFixedPoint();
415 else if (Kind == Vector)
416 ((Vec *)(char *)&Data)->~Vec();
417 else if (Kind == ComplexInt)
418 ((ComplexAPSInt *)(char *)&Data)->~ComplexAPSInt();
419 else if (Kind == ComplexFloat)
420 ((ComplexAPFloat *)(char *)&Data)->~ComplexAPFloat();
421 else if (Kind == LValue)
422 ((LV *)(char *)&Data)->~LV();
423 else if (Kind == Array)
424 ((Arr *)(char *)&Data)->~Arr();
425 else if (Kind == Struct)
426 ((StructData *)(char *)&Data)->~StructData();
427 else if (Kind == Union)
428 ((UnionData *)(char *)&Data)->~UnionData();
429 else if (Kind == MemberPointer)
430 ((MemberPointerData *)(char *)&Data)->~MemberPointerData();
431 else if (Kind == AddrLabelDiff)
432 ((AddrLabelDiffData *)(char *)&Data)->~AddrLabelDiffData();
433 Kind = None;
434 AllowConstexprUnknown = false;
435}
436
437bool APValue::needsCleanup() const {
438 switch (getKind()) {
439 case None:
440 case Indeterminate:
441 case AddrLabelDiff:
442 return false;
443 case Struct:
444 case Union:
445 case Array:
446 case Vector:
447 return true;
448 case Int:
449 return getInt().needsCleanup();
450 case Float:
451 return getFloat().needsCleanup();
452 case FixedPoint:
453 return getFixedPoint().getValue().needsCleanup();
454 case ComplexFloat:
455 assert(getComplexFloatImag().needsCleanup() ==
456 getComplexFloatReal().needsCleanup() &&
457 "In _Complex float types, real and imaginary values always have the "
458 "same size.");
459 return getComplexFloatReal().needsCleanup();
460 case ComplexInt:
461 assert(getComplexIntImag().needsCleanup() ==
462 getComplexIntReal().needsCleanup() &&
463 "In _Complex int types, real and imaginary values must have the "
464 "same size.");
465 return getComplexIntReal().needsCleanup();
466 case LValue:
467 return reinterpret_cast<const LV *>(&Data)->hasPathPtr();
468 case MemberPointer:
469 return reinterpret_cast<const MemberPointerData *>(&Data)->hasPathPtr();
470 }
471 llvm_unreachable("Unknown APValue kind!");
472}
473
474void APValue::swap(APValue &RHS) {
475 std::swap(a&: Kind, b&: RHS.Kind);
476 std::swap(a&: Data, b&: RHS.Data);
477 // We can't use std::swap w/ bit-fields
478 bool tmp = AllowConstexprUnknown;
479 AllowConstexprUnknown = RHS.AllowConstexprUnknown;
480 RHS.AllowConstexprUnknown = tmp;
481}
482
483/// Profile the value of an APInt, excluding its bit-width.
484static void profileIntValue(llvm::FoldingSetNodeID &ID, const llvm::APInt &V) {
485 for (unsigned I = 0, N = V.getBitWidth(); I < N; I += 32)
486 ID.AddInteger(I: (uint32_t)V.extractBitsAsZExtValue(numBits: std::min(a: 32u, b: N - I), bitPosition: I));
487}
488
489void APValue::Profile(llvm::FoldingSetNodeID &ID) const {
490 // Note that our profiling assumes that only APValues of the same type are
491 // ever compared. As a result, we don't consider collisions that could only
492 // happen if the types are different. (For example, structs with different
493 // numbers of members could profile the same.)
494
495 ID.AddInteger(I: Kind);
496
497 switch (Kind) {
498 case None:
499 case Indeterminate:
500 return;
501
502 case AddrLabelDiff:
503 ID.AddPointer(Ptr: getAddrLabelDiffLHS()->getLabel()->getCanonicalDecl());
504 ID.AddPointer(Ptr: getAddrLabelDiffRHS()->getLabel()->getCanonicalDecl());
505 return;
506
507 case Struct:
508 for (unsigned I = 0, N = getStructNumBases(); I != N; ++I)
509 getStructBase(i: I).Profile(ID);
510 for (unsigned I = 0, N = getStructNumFields(); I != N; ++I)
511 getStructField(i: I).Profile(ID);
512 return;
513
514 case Union:
515 if (!getUnionField()) {
516 ID.AddInteger(I: 0);
517 return;
518 }
519 ID.AddInteger(I: getUnionField()->getFieldIndex() + 1);
520 getUnionValue().Profile(ID);
521 return;
522
523 case Array: {
524 if (getArraySize() == 0)
525 return;
526
527 // The profile should not depend on whether the array is expanded or
528 // not, but we don't want to profile the array filler many times for
529 // a large array. So treat all equal trailing elements as the filler.
530 // Elements are profiled in reverse order to support this, and the
531 // first profiled element is followed by a count. For example:
532 //
533 // ['a', 'c', 'x', 'x', 'x'] is profiled as
534 // [5, 'x', 3, 'c', 'a']
535 llvm::FoldingSetNodeID FillerID;
536 (hasArrayFiller() ? getArrayFiller()
537 : getArrayInitializedElt(I: getArrayInitializedElts() - 1))
538 .Profile(ID&: FillerID);
539 ID.AddNodeID(ID: FillerID);
540 unsigned NumFillers = getArraySize() - getArrayInitializedElts();
541 unsigned N = getArrayInitializedElts();
542
543 // Count the number of elements equal to the last one. This loop ends
544 // by adding an integer indicating the number of such elements, with
545 // N set to the number of elements left to profile.
546 while (true) {
547 if (N == 0) {
548 // All elements are fillers.
549 assert(NumFillers == getArraySize());
550 ID.AddInteger(I: NumFillers);
551 break;
552 }
553
554 // No need to check if the last element is equal to the last
555 // element.
556 if (N != getArraySize()) {
557 llvm::FoldingSetNodeID ElemID;
558 getArrayInitializedElt(I: N - 1).Profile(ID&: ElemID);
559 if (ElemID != FillerID) {
560 ID.AddInteger(I: NumFillers);
561 ID.AddNodeID(ID: ElemID);
562 --N;
563 break;
564 }
565 }
566
567 // This is a filler.
568 ++NumFillers;
569 --N;
570 }
571
572 // Emit the remaining elements.
573 for (; N != 0; --N)
574 getArrayInitializedElt(I: N - 1).Profile(ID);
575 return;
576 }
577
578 case Vector:
579 for (unsigned I = 0, N = getVectorLength(); I != N; ++I)
580 getVectorElt(I).Profile(ID);
581 return;
582
583 case Int:
584 profileIntValue(ID, V: getInt());
585 return;
586
587 case Float:
588 profileIntValue(ID, V: getFloat().bitcastToAPInt());
589 return;
590
591 case FixedPoint:
592 profileIntValue(ID, V: getFixedPoint().getValue());
593 return;
594
595 case ComplexFloat:
596 profileIntValue(ID, V: getComplexFloatReal().bitcastToAPInt());
597 profileIntValue(ID, V: getComplexFloatImag().bitcastToAPInt());
598 return;
599
600 case ComplexInt:
601 profileIntValue(ID, V: getComplexIntReal());
602 profileIntValue(ID, V: getComplexIntImag());
603 return;
604
605 case LValue:
606 getLValueBase().Profile(ID);
607 ID.AddInteger(I: getLValueOffset().getQuantity());
608 ID.AddInteger(I: (isNullPointer() ? 1 : 0) |
609 (isLValueOnePastTheEnd() ? 2 : 0) |
610 (hasLValuePath() ? 4 : 0));
611 if (hasLValuePath()) {
612 ID.AddInteger(I: getLValuePath().size());
613 // For uniqueness, we only need to profile the entries corresponding
614 // to union members, but we don't have the type here so we don't know
615 // how to interpret the entries.
616 for (LValuePathEntry E : getLValuePath())
617 E.Profile(ID);
618 }
619 return;
620
621 case MemberPointer:
622 ID.AddPointer(Ptr: getMemberPointerDecl());
623 ID.AddInteger(I: isMemberPointerToDerivedMember());
624 for (const CXXRecordDecl *D : getMemberPointerPath())
625 ID.AddPointer(Ptr: D);
626 return;
627 }
628
629 llvm_unreachable("Unknown APValue kind!");
630}
631
632static double GetApproxValue(const llvm::APFloat &F) {
633 llvm::APFloat V = F;
634 bool ignored;
635 V.convert(ToSemantics: llvm::APFloat::IEEEdouble(), RM: llvm::APFloat::rmNearestTiesToEven,
636 losesInfo: &ignored);
637 return V.convertToDouble();
638}
639
640static bool TryPrintAsStringLiteral(raw_ostream &Out,
641 const PrintingPolicy &Policy,
642 const ArrayType *ATy,
643 ArrayRef<APValue> Inits) {
644 if (Inits.empty())
645 return false;
646
647 QualType Ty = ATy->getElementType();
648 if (!Ty->isAnyCharacterType())
649 return false;
650
651 // Nothing we can do about a sequence that is not null-terminated
652 if (!Inits.back().isInt() || !Inits.back().getInt().isZero())
653 return false;
654
655 Inits = Inits.drop_back();
656
657 llvm::SmallString<40> Buf;
658 Buf.push_back(Elt: '"');
659
660 // Better than printing a two-digit sequence of 10 integers.
661 constexpr size_t MaxN = 36;
662 StringRef Ellipsis;
663 if (Inits.size() > MaxN && !Policy.EntireContentsOfLargeArray) {
664 Ellipsis = "[...]";
665 Inits =
666 Inits.take_front(N: std::min(a: MaxN - Ellipsis.size() / 2, b: Inits.size()));
667 }
668
669 for (auto &Val : Inits) {
670 if (!Val.isInt())
671 return false;
672 int64_t Char64 = Val.getInt().getExtValue();
673 if (!isASCII(c: Char64))
674 return false; // Bye bye, see you in integers.
675 auto Ch = static_cast<unsigned char>(Char64);
676 // The diagnostic message is 'quoted'
677 StringRef Escaped = escapeCStyle<EscapeChar::SingleAndDouble>(Ch);
678 if (Escaped.empty()) {
679 if (!isPrintable(c: Ch))
680 return false;
681 Buf.emplace_back(Args&: Ch);
682 } else {
683 Buf.append(RHS: Escaped);
684 }
685 }
686
687 Buf.append(RHS: Ellipsis);
688 Buf.push_back(Elt: '"');
689
690 if (Ty->isWideCharType())
691 Out << 'L';
692 else if (Ty->isChar8Type())
693 Out << "u8";
694 else if (Ty->isChar16Type())
695 Out << 'u';
696 else if (Ty->isChar32Type())
697 Out << 'U';
698
699 Out << Buf;
700 return true;
701}
702
703void APValue::printPretty(raw_ostream &Out, const ASTContext &Ctx,
704 QualType Ty) const {
705 printPretty(OS&: Out, Policy: Ctx.getPrintingPolicy(), Ty, Ctx: &Ctx);
706}
707
708void APValue::printPretty(raw_ostream &Out, const PrintingPolicy &Policy,
709 QualType Ty, const ASTContext *Ctx) const {
710 // There are no objects of type 'void', but values of this type can be
711 // returned from functions.
712 if (Ty->isVoidType()) {
713 Out << "void()";
714 return;
715 }
716
717 if (const auto *AT = Ty->getAs<AtomicType>())
718 Ty = AT->getValueType();
719
720 switch (getKind()) {
721 case APValue::None:
722 Out << "<out of lifetime>";
723 return;
724 case APValue::Indeterminate:
725 Out << "<uninitialized>";
726 return;
727 case APValue::Int:
728 if (Ty->isBooleanType())
729 Out << (getInt().getBoolValue() ? "true" : "false");
730 else
731 Out << getInt();
732 return;
733 case APValue::Float:
734 Out << GetApproxValue(F: getFloat());
735 return;
736 case APValue::FixedPoint:
737 Out << getFixedPoint();
738 return;
739 case APValue::Vector: {
740 Out << '{';
741 QualType ElemTy = Ty->castAs<VectorType>()->getElementType();
742 getVectorElt(I: 0).printPretty(Out, Policy, Ty: ElemTy, Ctx);
743 for (unsigned i = 1; i != getVectorLength(); ++i) {
744 Out << ", ";
745 getVectorElt(I: i).printPretty(Out, Policy, Ty: ElemTy, Ctx);
746 }
747 Out << '}';
748 return;
749 }
750 case APValue::ComplexInt:
751 Out << getComplexIntReal() << "+" << getComplexIntImag() << "i";
752 return;
753 case APValue::ComplexFloat:
754 Out << GetApproxValue(F: getComplexFloatReal()) << "+"
755 << GetApproxValue(F: getComplexFloatImag()) << "i";
756 return;
757 case APValue::LValue: {
758 bool IsReference = Ty->isReferenceType();
759 QualType InnerTy
760 = IsReference ? Ty.getNonReferenceType() : Ty->getPointeeType();
761 if (InnerTy.isNull())
762 InnerTy = Ty;
763
764 LValueBase Base = getLValueBase();
765 if (!Base) {
766 if (isNullPointer()) {
767 Out << (Policy.Nullptr ? "nullptr" : "0");
768 } else if (IsReference) {
769 Out << "*(" << InnerTy.stream(Policy) << "*)"
770 << getLValueOffset().getQuantity();
771 } else {
772 Out << "(" << Ty.stream(Policy) << ")"
773 << getLValueOffset().getQuantity();
774 }
775 return;
776 }
777
778 if (!hasLValuePath()) {
779 // No lvalue path: just print the offset.
780 CharUnits O = getLValueOffset();
781 CharUnits S = Ctx ? Ctx->getTypeSizeInCharsIfKnown(Ty: InnerTy).value_or(
782 u: CharUnits::Zero())
783 : CharUnits::Zero();
784 if (!O.isZero()) {
785 if (IsReference)
786 Out << "*(";
787 if (S.isZero() || O % S) {
788 Out << "(char*)";
789 S = CharUnits::One();
790 }
791 Out << '&';
792 } else if (!IsReference) {
793 Out << '&';
794 }
795
796 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
797 Out << *VD;
798 else if (TypeInfoLValue TI = Base.dyn_cast<TypeInfoLValue>()) {
799 TI.print(Out, Policy);
800 } else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
801 Out << "{*new "
802 << Base.getDynamicAllocType().stream(Policy) << "#"
803 << DA.getIndex() << "}";
804 } else {
805 assert(Base.get<const Expr *>() != nullptr &&
806 "Expecting non-null Expr");
807 Base.get<const Expr*>()->printPretty(Out, nullptr, Policy);
808 }
809
810 if (!O.isZero()) {
811 Out << " + " << (O / S);
812 if (IsReference)
813 Out << ')';
814 }
815 return;
816 }
817
818 // We have an lvalue path. Print it out nicely.
819 if (!IsReference)
820 Out << '&';
821 else if (isLValueOnePastTheEnd())
822 Out << "*(&";
823
824 QualType ElemTy = Base.getType();
825 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
826 Out << *VD;
827 } else if (TypeInfoLValue TI = Base.dyn_cast<TypeInfoLValue>()) {
828 TI.print(Out, Policy);
829 } else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
830 Out << "{*new " << Base.getDynamicAllocType().stream(Policy) << "#"
831 << DA.getIndex() << "}";
832 } else {
833 const Expr *E = Base.get<const Expr*>();
834 assert(E != nullptr && "Expecting non-null Expr");
835 E->printPretty(Out, nullptr, Policy);
836 }
837
838 ArrayRef<LValuePathEntry> Path = getLValuePath();
839 const CXXRecordDecl *CastToBase = nullptr;
840 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
841 if (ElemTy->isRecordType()) {
842 // The lvalue refers to a class type, so the next path entry is a base
843 // or member.
844 const Decl *BaseOrMember = Path[I].getAsBaseOrMember().getPointer();
845 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: BaseOrMember)) {
846 CastToBase = RD;
847 // Leave ElemTy referring to the most-derived class. The actual type
848 // doesn't matter except for array types.
849 } else {
850 const ValueDecl *VD = cast<ValueDecl>(Val: BaseOrMember);
851 Out << ".";
852 if (CastToBase)
853 Out << *CastToBase << "::";
854 Out << *VD;
855 ElemTy = VD->getType();
856 }
857 } else if (ElemTy->isAnyComplexType()) {
858 // The lvalue refers to a complex type
859 Out << (Path[I].getAsArrayIndex() == 0 ? ".real" : ".imag");
860 ElemTy = ElemTy->castAs<ComplexType>()->getElementType();
861 } else {
862 // The lvalue must refer to an array.
863 Out << '[' << Path[I].getAsArrayIndex() << ']';
864 ElemTy = ElemTy->castAsArrayTypeUnsafe()->getElementType();
865 }
866 }
867
868 // Handle formatting of one-past-the-end lvalues.
869 if (isLValueOnePastTheEnd()) {
870 // FIXME: If CastToBase is non-0, we should prefix the output with
871 // "(CastToBase*)".
872 Out << " + 1";
873 if (IsReference)
874 Out << ')';
875 }
876 return;
877 }
878 case APValue::Array: {
879 const ArrayType *AT = Ty->castAsArrayTypeUnsafe();
880 unsigned N = getArrayInitializedElts();
881 if (N != 0 && TryPrintAsStringLiteral(Out, Policy, ATy: AT,
882 Inits: {&getArrayInitializedElt(I: 0), N}))
883 return;
884 QualType ElemTy = AT->getElementType();
885 Out << '{';
886 unsigned I = 0;
887 switch (N) {
888 case 0:
889 for (; I != N; ++I) {
890 Out << ", ";
891 if (I == 10 && !Policy.EntireContentsOfLargeArray) {
892 Out << "...}";
893 return;
894 }
895 [[fallthrough]];
896 default:
897 getArrayInitializedElt(I).printPretty(Out, Policy, Ty: ElemTy, Ctx);
898 }
899 }
900 Out << '}';
901 return;
902 }
903 case APValue::Struct: {
904 Out << '{';
905 const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
906 bool First = true;
907 if (unsigned N = getStructNumBases()) {
908 const CXXRecordDecl *CD = cast<CXXRecordDecl>(Val: RD);
909 CXXRecordDecl::base_class_const_iterator BI = CD->bases_begin();
910 for (unsigned I = 0; I != N; ++I, ++BI) {
911 assert(BI != CD->bases_end());
912 if (!First)
913 Out << ", ";
914 getStructBase(i: I).printPretty(Out, Policy, Ty: BI->getType(), Ctx);
915 First = false;
916 }
917 }
918 for (const auto *FI : RD->fields()) {
919 if (!First)
920 Out << ", ";
921 if (FI->isUnnamedBitField())
922 continue;
923 getStructField(i: FI->getFieldIndex()).
924 printPretty(Out, Policy, FI->getType(), Ctx);
925 First = false;
926 }
927 Out << '}';
928 return;
929 }
930 case APValue::Union:
931 Out << '{';
932 if (const FieldDecl *FD = getUnionField()) {
933 Out << "." << *FD << " = ";
934 getUnionValue().printPretty(Out, Policy, FD->getType(), Ctx);
935 }
936 Out << '}';
937 return;
938 case APValue::MemberPointer:
939 // FIXME: This is not enough to unambiguously identify the member in a
940 // multiple-inheritance scenario.
941 if (const ValueDecl *VD = getMemberPointerDecl()) {
942 Out << '&' << *cast<CXXRecordDecl>(VD->getDeclContext()) << "::" << *VD;
943 return;
944 }
945 Out << "0";
946 return;
947 case APValue::AddrLabelDiff:
948 Out << "&&" << getAddrLabelDiffLHS()->getLabel()->getName();
949 Out << " - ";
950 Out << "&&" << getAddrLabelDiffRHS()->getLabel()->getName();
951 return;
952 }
953 llvm_unreachable("Unknown APValue kind!");
954}
955
956std::string APValue::getAsString(const ASTContext &Ctx, QualType Ty) const {
957 std::string Result;
958 llvm::raw_string_ostream Out(Result);
959 printPretty(Out, Ctx, Ty);
960 return Result;
961}
962
963bool APValue::toIntegralConstant(APSInt &Result, QualType SrcTy,
964 const ASTContext &Ctx) const {
965 if (isInt()) {
966 Result = getInt();
967 return true;
968 }
969
970 if (isLValue() && isNullPointer()) {
971 Result = Ctx.MakeIntValue(Value: Ctx.getTargetNullPointerValue(QT: SrcTy), Type: SrcTy);
972 return true;
973 }
974
975 if (isLValue() && !getLValueBase()) {
976 Result = Ctx.MakeIntValue(Value: getLValueOffset().getQuantity(), Type: SrcTy);
977 return true;
978 }
979
980 return false;
981}
982
983const APValue::LValueBase APValue::getLValueBase() const {
984 assert(isLValue() && "Invalid accessor");
985 return ((const LV *)(const void *)&Data)->Base;
986}
987
988bool APValue::isLValueOnePastTheEnd() const {
989 assert(isLValue() && "Invalid accessor");
990 return ((const LV *)(const void *)&Data)->IsOnePastTheEnd;
991}
992
993CharUnits &APValue::getLValueOffset() {
994 assert(isLValue() && "Invalid accessor");
995 return ((LV *)(void *)&Data)->Offset;
996}
997
998bool APValue::hasLValuePath() const {
999 assert(isLValue() && "Invalid accessor");
1000 return ((const LV *)(const char *)&Data)->hasPath();
1001}
1002
1003ArrayRef<APValue::LValuePathEntry> APValue::getLValuePath() const {
1004 assert(isLValue() && hasLValuePath() && "Invalid accessor");
1005 const LV &LVal = *((const LV *)(const char *)&Data);
1006 return llvm::ArrayRef(LVal.getPath(), LVal.PathLength);
1007}
1008
1009unsigned APValue::getLValueCallIndex() const {
1010 assert(isLValue() && "Invalid accessor");
1011 return ((const LV *)(const char *)&Data)->Base.getCallIndex();
1012}
1013
1014unsigned APValue::getLValueVersion() const {
1015 assert(isLValue() && "Invalid accessor");
1016 return ((const LV *)(const char *)&Data)->Base.getVersion();
1017}
1018
1019bool APValue::isNullPointer() const {
1020 assert(isLValue() && "Invalid usage");
1021 return ((const LV *)(const char *)&Data)->IsNullPtr;
1022}
1023
1024void APValue::setLValue(LValueBase B, const CharUnits &O, NoLValuePath,
1025 bool IsNullPtr) {
1026 assert(isLValue() && "Invalid accessor");
1027 LV &LVal = *((LV *)(char *)&Data);
1028 LVal.Base = B;
1029 LVal.IsOnePastTheEnd = false;
1030 LVal.Offset = O;
1031 LVal.resizePath(Length: (unsigned)-1);
1032 LVal.IsNullPtr = IsNullPtr;
1033}
1034
1035MutableArrayRef<APValue::LValuePathEntry>
1036APValue::setLValueUninit(LValueBase B, const CharUnits &O, unsigned Size,
1037 bool IsOnePastTheEnd, bool IsNullPtr) {
1038 assert(isLValue() && "Invalid accessor");
1039 LV &LVal = *((LV *)(char *)&Data);
1040 LVal.Base = B;
1041 LVal.IsOnePastTheEnd = IsOnePastTheEnd;
1042 LVal.Offset = O;
1043 LVal.IsNullPtr = IsNullPtr;
1044 LVal.resizePath(Length: Size);
1045 return {LVal.getPath(), Size};
1046}
1047
1048void APValue::setLValue(LValueBase B, const CharUnits &O,
1049 ArrayRef<LValuePathEntry> Path, bool IsOnePastTheEnd,
1050 bool IsNullPtr) {
1051 MutableArrayRef<APValue::LValuePathEntry> InternalPath =
1052 setLValueUninit(B, O, Size: Path.size(), IsOnePastTheEnd, IsNullPtr);
1053 if (Path.size()) {
1054 memcpy(dest: InternalPath.data(), src: Path.data(),
1055 n: Path.size() * sizeof(LValuePathEntry));
1056 }
1057}
1058
1059void APValue::setUnion(const FieldDecl *Field, const APValue &Value) {
1060 assert(isUnion() && "Invalid accessor");
1061 ((UnionData *)(char *)&Data)->Field =
1062 Field ? Field->getCanonicalDecl() : nullptr;
1063 *((UnionData *)(char *)&Data)->Value = Value;
1064}
1065
1066const ValueDecl *APValue::getMemberPointerDecl() const {
1067 assert(isMemberPointer() && "Invalid accessor");
1068 const MemberPointerData &MPD =
1069 *((const MemberPointerData *)(const char *)&Data);
1070 return MPD.MemberAndIsDerivedMember.getPointer();
1071}
1072
1073bool APValue::isMemberPointerToDerivedMember() const {
1074 assert(isMemberPointer() && "Invalid accessor");
1075 const MemberPointerData &MPD =
1076 *((const MemberPointerData *)(const char *)&Data);
1077 return MPD.MemberAndIsDerivedMember.getInt();
1078}
1079
1080ArrayRef<const CXXRecordDecl*> APValue::getMemberPointerPath() const {
1081 assert(isMemberPointer() && "Invalid accessor");
1082 const MemberPointerData &MPD =
1083 *((const MemberPointerData *)(const char *)&Data);
1084 return llvm::ArrayRef(MPD.getPath(), MPD.PathLength);
1085}
1086
1087void APValue::MakeLValue() {
1088 assert(isAbsent() && "Bad state change");
1089 static_assert(sizeof(LV) <= DataSize, "LV too big");
1090 new ((void *)(char *)&Data) LV();
1091 Kind = LValue;
1092}
1093
1094void APValue::MakeArray(unsigned InitElts, unsigned Size) {
1095 assert(isAbsent() && "Bad state change");
1096 new ((void *)(char *)&Data) Arr(InitElts, Size);
1097 Kind = Array;
1098}
1099
1100MutableArrayRef<const CXXRecordDecl *>
1101APValue::setMemberPointerUninit(const ValueDecl *Member, bool IsDerivedMember,
1102 unsigned Size) {
1103 assert(isAbsent() && "Bad state change");
1104 MemberPointerData *MPD = new ((void *)(char *)&Data) MemberPointerData;
1105 Kind = MemberPointer;
1106 MPD->MemberAndIsDerivedMember.setPointer(
1107 Member ? cast<ValueDecl>(Member->getCanonicalDecl()) : nullptr);
1108 MPD->MemberAndIsDerivedMember.setInt(IsDerivedMember);
1109 MPD->resizePath(Length: Size);
1110 return {MPD->getPath(), MPD->PathLength};
1111}
1112
1113void APValue::MakeMemberPointer(const ValueDecl *Member, bool IsDerivedMember,
1114 ArrayRef<const CXXRecordDecl *> Path) {
1115 MutableArrayRef<const CXXRecordDecl *> InternalPath =
1116 setMemberPointerUninit(Member, IsDerivedMember, Size: Path.size());
1117 for (unsigned I = 0; I != Path.size(); ++I)
1118 InternalPath[I] = Path[I]->getCanonicalDecl();
1119}
1120
1121LinkageInfo LinkageComputer::getLVForValue(const APValue &V,
1122 LVComputationKind computation) {
1123 LinkageInfo LV = LinkageInfo::external();
1124
1125 auto MergeLV = [&](LinkageInfo MergeLV) {
1126 LV.merge(other: MergeLV);
1127 return LV.getLinkage() == Linkage::Internal;
1128 };
1129 auto Merge = [&](const APValue &V) {
1130 return MergeLV(getLVForValue(V, computation));
1131 };
1132
1133 switch (V.getKind()) {
1134 case APValue::None:
1135 case APValue::Indeterminate:
1136 case APValue::Int:
1137 case APValue::Float:
1138 case APValue::FixedPoint:
1139 case APValue::ComplexInt:
1140 case APValue::ComplexFloat:
1141 case APValue::Vector:
1142 break;
1143
1144 case APValue::AddrLabelDiff:
1145 // Even for an inline function, it's not reasonable to treat a difference
1146 // between the addresses of labels as an external value.
1147 return LinkageInfo::internal();
1148
1149 case APValue::Struct: {
1150 for (unsigned I = 0, N = V.getStructNumBases(); I != N; ++I)
1151 if (Merge(V.getStructBase(i: I)))
1152 break;
1153 for (unsigned I = 0, N = V.getStructNumFields(); I != N; ++I)
1154 if (Merge(V.getStructField(i: I)))
1155 break;
1156 break;
1157 }
1158
1159 case APValue::Union:
1160 if (V.getUnionField())
1161 Merge(V.getUnionValue());
1162 break;
1163
1164 case APValue::Array: {
1165 for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I)
1166 if (Merge(V.getArrayInitializedElt(I)))
1167 break;
1168 if (V.hasArrayFiller())
1169 Merge(V.getArrayFiller());
1170 break;
1171 }
1172
1173 case APValue::LValue: {
1174 if (!V.getLValueBase()) {
1175 // Null or absolute address: this is external.
1176 } else if (const auto *VD =
1177 V.getLValueBase().dyn_cast<const ValueDecl *>()) {
1178 if (VD && MergeLV(getLVForDecl(VD, computation)))
1179 break;
1180 } else if (const auto TI = V.getLValueBase().dyn_cast<TypeInfoLValue>()) {
1181 if (MergeLV(getLVForType(T: *TI.getType(), computation)))
1182 break;
1183 } else if (const Expr *E = V.getLValueBase().dyn_cast<const Expr *>()) {
1184 // Almost all expression bases are internal. The exception is
1185 // lifetime-extended temporaries.
1186 // FIXME: These should be modeled as having the
1187 // LifetimeExtendedTemporaryDecl itself as the base.
1188 // FIXME: If we permit Objective-C object literals in template arguments,
1189 // they should not imply internal linkage.
1190 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: E);
1191 if (!MTE || MTE->getStorageDuration() == SD_FullExpression)
1192 return LinkageInfo::internal();
1193 if (MergeLV(getLVForDecl(MTE->getExtendingDecl(), computation)))
1194 break;
1195 } else {
1196 assert(V.getLValueBase().is<DynamicAllocLValue>() &&
1197 "unexpected LValueBase kind");
1198 return LinkageInfo::internal();
1199 }
1200 // The lvalue path doesn't matter: pointers to all subobjects always have
1201 // the same visibility as pointers to the complete object.
1202 break;
1203 }
1204
1205 case APValue::MemberPointer:
1206 if (const NamedDecl *D = V.getMemberPointerDecl())
1207 MergeLV(getLVForDecl(D, computation));
1208 // Note that we could have a base-to-derived conversion here to a member of
1209 // a derived class with less linkage/visibility. That's covered by the
1210 // linkage and visibility of the value's type.
1211 break;
1212 }
1213
1214 return LV;
1215}
1216

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of clang/lib/AST/APValue.cpp