1 | //===--- APValue.cpp - Union class for APFloat/APSInt/Complex -------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the APValue class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/APValue.h" |
14 | #include "Linkage.h" |
15 | #include "clang/AST/ASTContext.h" |
16 | #include "clang/AST/CharUnits.h" |
17 | #include "clang/AST/DeclCXX.h" |
18 | #include "clang/AST/Expr.h" |
19 | #include "clang/AST/ExprCXX.h" |
20 | #include "clang/AST/Type.h" |
21 | #include "llvm/Support/ErrorHandling.h" |
22 | #include "llvm/Support/raw_ostream.h" |
23 | using namespace clang; |
24 | |
25 | /// The identity of a type_info object depends on the canonical unqualified |
26 | /// type only. |
27 | TypeInfoLValue::TypeInfoLValue(const Type *T) |
28 | : T(T->getCanonicalTypeUnqualified().getTypePtr()) {} |
29 | |
30 | void TypeInfoLValue::print(llvm::raw_ostream &Out, |
31 | const PrintingPolicy &Policy) const { |
32 | Out << "typeid("; |
33 | QualType(getType(), 0).print(OS&: Out, Policy); |
34 | Out << ")"; |
35 | } |
36 | |
37 | static_assert( |
38 | 1 << llvm::PointerLikeTypeTraits<TypeInfoLValue>::NumLowBitsAvailable <= |
39 | alignof(Type), |
40 | "Type is insufficiently aligned"); |
41 | |
42 | APValue::LValueBase::LValueBase(const ValueDecl *P, unsigned I, unsigned V) |
43 | : Ptr(P ? cast<ValueDecl>(P->getCanonicalDecl()) : nullptr), Local{.CallIndex: I, .Version: V} {} |
44 | APValue::LValueBase::LValueBase(const Expr *P, unsigned I, unsigned V) |
45 | : Ptr(P), Local{.CallIndex: I, .Version: V} {} |
46 | |
47 | APValue::LValueBase APValue::LValueBase::getDynamicAlloc(DynamicAllocLValue LV, |
48 | QualType Type) { |
49 | LValueBase Base; |
50 | Base.Ptr = LV; |
51 | Base.DynamicAllocType = Type.getAsOpaquePtr(); |
52 | return Base; |
53 | } |
54 | |
55 | APValue::LValueBase APValue::LValueBase::getTypeInfo(TypeInfoLValue LV, |
56 | QualType TypeInfo) { |
57 | LValueBase Base; |
58 | Base.Ptr = LV; |
59 | Base.TypeInfoType = TypeInfo.getAsOpaquePtr(); |
60 | return Base; |
61 | } |
62 | |
63 | QualType APValue::LValueBase::getType() const { |
64 | if (!*this) return QualType(); |
65 | if (const ValueDecl *D = dyn_cast<const ValueDecl*>()) { |
66 | // FIXME: It's unclear where we're supposed to take the type from, and |
67 | // this actually matters for arrays of unknown bound. Eg: |
68 | // |
69 | // extern int arr[]; void f() { extern int arr[3]; }; |
70 | // constexpr int *p = &arr[1]; // valid? |
71 | // |
72 | // For now, we take the most complete type we can find. |
73 | for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl; |
74 | Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) { |
75 | QualType T = Redecl->getType(); |
76 | if (!T->isIncompleteArrayType()) |
77 | return T; |
78 | } |
79 | return D->getType(); |
80 | } |
81 | |
82 | if (is<TypeInfoLValue>()) |
83 | return getTypeInfoType(); |
84 | |
85 | if (is<DynamicAllocLValue>()) |
86 | return getDynamicAllocType(); |
87 | |
88 | const Expr *Base = get<const Expr*>(); |
89 | |
90 | // For a materialized temporary, the type of the temporary we materialized |
91 | // may not be the type of the expression. |
92 | if (const MaterializeTemporaryExpr *MTE = |
93 | llvm::dyn_cast<MaterializeTemporaryExpr>(Val: Base)) { |
94 | SmallVector<const Expr *, 2> CommaLHSs; |
95 | SmallVector<SubobjectAdjustment, 2> Adjustments; |
96 | const Expr *Temp = MTE->getSubExpr(); |
97 | const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHS&: CommaLHSs, |
98 | Adjustments); |
99 | // Keep any cv-qualifiers from the reference if we generated a temporary |
100 | // for it directly. Otherwise use the type after adjustment. |
101 | if (!Adjustments.empty()) |
102 | return Inner->getType(); |
103 | } |
104 | |
105 | return Base->getType(); |
106 | } |
107 | |
108 | unsigned APValue::LValueBase::getCallIndex() const { |
109 | return (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) ? 0 |
110 | : Local.CallIndex; |
111 | } |
112 | |
113 | unsigned APValue::LValueBase::getVersion() const { |
114 | return (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) ? 0 : Local.Version; |
115 | } |
116 | |
117 | QualType APValue::LValueBase::getTypeInfoType() const { |
118 | assert(is<TypeInfoLValue>() && "not a type_info lvalue"); |
119 | return QualType::getFromOpaquePtr(Ptr: TypeInfoType); |
120 | } |
121 | |
122 | QualType APValue::LValueBase::getDynamicAllocType() const { |
123 | assert(is<DynamicAllocLValue>() && "not a dynamic allocation lvalue"); |
124 | return QualType::getFromOpaquePtr(Ptr: DynamicAllocType); |
125 | } |
126 | |
127 | void APValue::LValueBase::Profile(llvm::FoldingSetNodeID &ID) const { |
128 | ID.AddPointer(Ptr: Ptr.getOpaqueValue()); |
129 | if (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) |
130 | return; |
131 | ID.AddInteger(I: Local.CallIndex); |
132 | ID.AddInteger(I: Local.Version); |
133 | } |
134 | |
135 | namespace clang { |
136 | bool operator==(const APValue::LValueBase &LHS, |
137 | const APValue::LValueBase &RHS) { |
138 | if (LHS.Ptr != RHS.Ptr) |
139 | return false; |
140 | if (LHS.is<TypeInfoLValue>() || LHS.is<DynamicAllocLValue>()) |
141 | return true; |
142 | return LHS.Local.CallIndex == RHS.Local.CallIndex && |
143 | LHS.Local.Version == RHS.Local.Version; |
144 | } |
145 | } |
146 | |
147 | APValue::LValuePathEntry::LValuePathEntry(BaseOrMemberType BaseOrMember) { |
148 | if (const Decl *D = BaseOrMember.getPointer()) |
149 | BaseOrMember.setPointer(D->getCanonicalDecl()); |
150 | Value = reinterpret_cast<uintptr_t>(BaseOrMember.getOpaqueValue()); |
151 | } |
152 | |
153 | void APValue::LValuePathEntry::Profile(llvm::FoldingSetNodeID &ID) const { |
154 | ID.AddInteger(I: Value); |
155 | } |
156 | |
157 | APValue::LValuePathSerializationHelper::LValuePathSerializationHelper( |
158 | ArrayRef<LValuePathEntry> Path, QualType ElemTy) |
159 | : Ty((const void *)ElemTy.getTypePtrOrNull()), Path(Path) {} |
160 | |
161 | QualType APValue::LValuePathSerializationHelper::getType() { |
162 | return QualType::getFromOpaquePtr(Ptr: Ty); |
163 | } |
164 | |
165 | namespace { |
166 | struct LVBase { |
167 | APValue::LValueBase Base; |
168 | CharUnits Offset; |
169 | unsigned PathLength; |
170 | bool IsNullPtr : 1; |
171 | bool IsOnePastTheEnd : 1; |
172 | }; |
173 | } |
174 | |
175 | void *APValue::LValueBase::getOpaqueValue() const { |
176 | return Ptr.getOpaqueValue(); |
177 | } |
178 | |
179 | bool APValue::LValueBase::isNull() const { |
180 | return Ptr.isNull(); |
181 | } |
182 | |
183 | APValue::LValueBase::operator bool () const { |
184 | return static_cast<bool>(Ptr); |
185 | } |
186 | |
187 | clang::APValue::LValueBase |
188 | llvm::DenseMapInfo<clang::APValue::LValueBase>::getEmptyKey() { |
189 | clang::APValue::LValueBase B; |
190 | B.Ptr = DenseMapInfo<const ValueDecl*>::getEmptyKey(); |
191 | return B; |
192 | } |
193 | |
194 | clang::APValue::LValueBase |
195 | llvm::DenseMapInfo<clang::APValue::LValueBase>::getTombstoneKey() { |
196 | clang::APValue::LValueBase B; |
197 | B.Ptr = DenseMapInfo<const ValueDecl*>::getTombstoneKey(); |
198 | return B; |
199 | } |
200 | |
201 | namespace clang { |
202 | llvm::hash_code hash_value(const APValue::LValueBase &Base) { |
203 | if (Base.is<TypeInfoLValue>() || Base.is<DynamicAllocLValue>()) |
204 | return llvm::hash_value(ptr: Base.getOpaqueValue()); |
205 | return llvm::hash_combine(args: Base.getOpaqueValue(), args: Base.getCallIndex(), |
206 | args: Base.getVersion()); |
207 | } |
208 | } |
209 | |
210 | unsigned llvm::DenseMapInfo<clang::APValue::LValueBase>::getHashValue( |
211 | const clang::APValue::LValueBase &Base) { |
212 | return hash_value(Base); |
213 | } |
214 | |
215 | bool llvm::DenseMapInfo<clang::APValue::LValueBase>::isEqual( |
216 | const clang::APValue::LValueBase &LHS, |
217 | const clang::APValue::LValueBase &RHS) { |
218 | return LHS == RHS; |
219 | } |
220 | |
221 | struct APValue::LV : LVBase { |
222 | static const unsigned InlinePathSpace = |
223 | (DataSize - sizeof(LVBase)) / sizeof(LValuePathEntry); |
224 | |
225 | /// Path - The sequence of base classes, fields and array indices to follow to |
226 | /// walk from Base to the subobject. When performing GCC-style folding, there |
227 | /// may not be such a path. |
228 | union { |
229 | LValuePathEntry Path[InlinePathSpace]; |
230 | LValuePathEntry *PathPtr; |
231 | }; |
232 | |
233 | LV() { PathLength = (unsigned)-1; } |
234 | ~LV() { resizePath(Length: 0); } |
235 | |
236 | void resizePath(unsigned Length) { |
237 | if (Length == PathLength) |
238 | return; |
239 | if (hasPathPtr()) |
240 | delete [] PathPtr; |
241 | PathLength = Length; |
242 | if (hasPathPtr()) |
243 | PathPtr = new LValuePathEntry[Length]; |
244 | } |
245 | |
246 | bool hasPath() const { return PathLength != (unsigned)-1; } |
247 | bool hasPathPtr() const { return hasPath() && PathLength > InlinePathSpace; } |
248 | |
249 | LValuePathEntry *getPath() { return hasPathPtr() ? PathPtr : Path; } |
250 | const LValuePathEntry *getPath() const { |
251 | return hasPathPtr() ? PathPtr : Path; |
252 | } |
253 | }; |
254 | |
255 | namespace { |
256 | struct MemberPointerBase { |
257 | llvm::PointerIntPair<const ValueDecl*, 1, bool> MemberAndIsDerivedMember; |
258 | unsigned PathLength; |
259 | }; |
260 | } |
261 | |
262 | struct APValue::MemberPointerData : MemberPointerBase { |
263 | static const unsigned InlinePathSpace = |
264 | (DataSize - sizeof(MemberPointerBase)) / sizeof(const CXXRecordDecl*); |
265 | typedef const CXXRecordDecl *PathElem; |
266 | union { |
267 | PathElem Path[InlinePathSpace]; |
268 | PathElem *PathPtr; |
269 | }; |
270 | |
271 | MemberPointerData() { PathLength = 0; } |
272 | ~MemberPointerData() { resizePath(Length: 0); } |
273 | |
274 | void resizePath(unsigned Length) { |
275 | if (Length == PathLength) |
276 | return; |
277 | if (hasPathPtr()) |
278 | delete [] PathPtr; |
279 | PathLength = Length; |
280 | if (hasPathPtr()) |
281 | PathPtr = new PathElem[Length]; |
282 | } |
283 | |
284 | bool hasPathPtr() const { return PathLength > InlinePathSpace; } |
285 | |
286 | PathElem *getPath() { return hasPathPtr() ? PathPtr : Path; } |
287 | const PathElem *getPath() const { |
288 | return hasPathPtr() ? PathPtr : Path; |
289 | } |
290 | }; |
291 | |
292 | // FIXME: Reduce the malloc traffic here. |
293 | |
294 | APValue::Arr::Arr(unsigned NumElts, unsigned Size) : |
295 | Elts(new APValue[NumElts + (NumElts != Size ? 1 : 0)]), |
296 | NumElts(NumElts), ArrSize(Size) {} |
297 | APValue::Arr::~Arr() { delete [] Elts; } |
298 | |
299 | APValue::StructData::StructData(unsigned NumBases, unsigned NumFields) : |
300 | Elts(new APValue[NumBases+NumFields]), |
301 | NumBases(NumBases), NumFields(NumFields) {} |
302 | APValue::StructData::~StructData() { |
303 | delete [] Elts; |
304 | } |
305 | |
306 | APValue::UnionData::UnionData() : Field(nullptr), Value(new APValue) {} |
307 | APValue::UnionData::~UnionData () { |
308 | delete Value; |
309 | } |
310 | |
311 | APValue::APValue(const APValue &RHS) |
312 | : Kind(None), AllowConstexprUnknown(RHS.AllowConstexprUnknown) { |
313 | switch (RHS.getKind()) { |
314 | case None: |
315 | case Indeterminate: |
316 | Kind = RHS.getKind(); |
317 | break; |
318 | case Int: |
319 | MakeInt(); |
320 | setInt(RHS.getInt()); |
321 | break; |
322 | case Float: |
323 | MakeFloat(); |
324 | setFloat(RHS.getFloat()); |
325 | break; |
326 | case FixedPoint: { |
327 | APFixedPoint FXCopy = RHS.getFixedPoint(); |
328 | MakeFixedPoint(FX: std::move(FXCopy)); |
329 | break; |
330 | } |
331 | case Vector: |
332 | MakeVector(); |
333 | setVector(E: ((const Vec *)(const char *)&RHS.Data)->Elts, |
334 | N: RHS.getVectorLength()); |
335 | break; |
336 | case ComplexInt: |
337 | MakeComplexInt(); |
338 | setComplexInt(R: RHS.getComplexIntReal(), I: RHS.getComplexIntImag()); |
339 | break; |
340 | case ComplexFloat: |
341 | MakeComplexFloat(); |
342 | setComplexFloat(R: RHS.getComplexFloatReal(), I: RHS.getComplexFloatImag()); |
343 | break; |
344 | case LValue: |
345 | MakeLValue(); |
346 | if (RHS.hasLValuePath()) |
347 | setLValue(B: RHS.getLValueBase(), O: RHS.getLValueOffset(), Path: RHS.getLValuePath(), |
348 | OnePastTheEnd: RHS.isLValueOnePastTheEnd(), IsNullPtr: RHS.isNullPointer()); |
349 | else |
350 | setLValue(B: RHS.getLValueBase(), O: RHS.getLValueOffset(), NoLValuePath(), |
351 | IsNullPtr: RHS.isNullPointer()); |
352 | break; |
353 | case Array: |
354 | MakeArray(InitElts: RHS.getArrayInitializedElts(), Size: RHS.getArraySize()); |
355 | for (unsigned I = 0, N = RHS.getArrayInitializedElts(); I != N; ++I) |
356 | getArrayInitializedElt(I) = RHS.getArrayInitializedElt(I); |
357 | if (RHS.hasArrayFiller()) |
358 | getArrayFiller() = RHS.getArrayFiller(); |
359 | break; |
360 | case Struct: |
361 | MakeStruct(B: RHS.getStructNumBases(), M: RHS.getStructNumFields()); |
362 | for (unsigned I = 0, N = RHS.getStructNumBases(); I != N; ++I) |
363 | getStructBase(i: I) = RHS.getStructBase(i: I); |
364 | for (unsigned I = 0, N = RHS.getStructNumFields(); I != N; ++I) |
365 | getStructField(i: I) = RHS.getStructField(i: I); |
366 | break; |
367 | case Union: |
368 | MakeUnion(); |
369 | setUnion(Field: RHS.getUnionField(), Value: RHS.getUnionValue()); |
370 | break; |
371 | case MemberPointer: |
372 | MakeMemberPointer(Member: RHS.getMemberPointerDecl(), |
373 | IsDerivedMember: RHS.isMemberPointerToDerivedMember(), |
374 | Path: RHS.getMemberPointerPath()); |
375 | break; |
376 | case AddrLabelDiff: |
377 | MakeAddrLabelDiff(); |
378 | setAddrLabelDiff(LHSExpr: RHS.getAddrLabelDiffLHS(), RHSExpr: RHS.getAddrLabelDiffRHS()); |
379 | break; |
380 | } |
381 | } |
382 | |
383 | APValue::APValue(APValue &&RHS) |
384 | : Kind(RHS.Kind), AllowConstexprUnknown(RHS.AllowConstexprUnknown), |
385 | Data(RHS.Data) { |
386 | RHS.Kind = None; |
387 | } |
388 | |
389 | APValue &APValue::operator=(const APValue &RHS) { |
390 | if (this != &RHS) |
391 | *this = APValue(RHS); |
392 | |
393 | return *this; |
394 | } |
395 | |
396 | APValue &APValue::operator=(APValue &&RHS) { |
397 | if (this != &RHS) { |
398 | if (Kind != None && Kind != Indeterminate) |
399 | DestroyDataAndMakeUninit(); |
400 | Kind = RHS.Kind; |
401 | Data = RHS.Data; |
402 | AllowConstexprUnknown = RHS.AllowConstexprUnknown; |
403 | RHS.Kind = None; |
404 | } |
405 | return *this; |
406 | } |
407 | |
408 | void APValue::DestroyDataAndMakeUninit() { |
409 | if (Kind == Int) |
410 | ((APSInt *)(char *)&Data)->~APSInt(); |
411 | else if (Kind == Float) |
412 | ((APFloat *)(char *)&Data)->~APFloat(); |
413 | else if (Kind == FixedPoint) |
414 | ((APFixedPoint *)(char *)&Data)->~APFixedPoint(); |
415 | else if (Kind == Vector) |
416 | ((Vec *)(char *)&Data)->~Vec(); |
417 | else if (Kind == ComplexInt) |
418 | ((ComplexAPSInt *)(char *)&Data)->~ComplexAPSInt(); |
419 | else if (Kind == ComplexFloat) |
420 | ((ComplexAPFloat *)(char *)&Data)->~ComplexAPFloat(); |
421 | else if (Kind == LValue) |
422 | ((LV *)(char *)&Data)->~LV(); |
423 | else if (Kind == Array) |
424 | ((Arr *)(char *)&Data)->~Arr(); |
425 | else if (Kind == Struct) |
426 | ((StructData *)(char *)&Data)->~StructData(); |
427 | else if (Kind == Union) |
428 | ((UnionData *)(char *)&Data)->~UnionData(); |
429 | else if (Kind == MemberPointer) |
430 | ((MemberPointerData *)(char *)&Data)->~MemberPointerData(); |
431 | else if (Kind == AddrLabelDiff) |
432 | ((AddrLabelDiffData *)(char *)&Data)->~AddrLabelDiffData(); |
433 | Kind = None; |
434 | AllowConstexprUnknown = false; |
435 | } |
436 | |
437 | bool APValue::needsCleanup() const { |
438 | switch (getKind()) { |
439 | case None: |
440 | case Indeterminate: |
441 | case AddrLabelDiff: |
442 | return false; |
443 | case Struct: |
444 | case Union: |
445 | case Array: |
446 | case Vector: |
447 | return true; |
448 | case Int: |
449 | return getInt().needsCleanup(); |
450 | case Float: |
451 | return getFloat().needsCleanup(); |
452 | case FixedPoint: |
453 | return getFixedPoint().getValue().needsCleanup(); |
454 | case ComplexFloat: |
455 | assert(getComplexFloatImag().needsCleanup() == |
456 | getComplexFloatReal().needsCleanup() && |
457 | "In _Complex float types, real and imaginary values always have the " |
458 | "same size."); |
459 | return getComplexFloatReal().needsCleanup(); |
460 | case ComplexInt: |
461 | assert(getComplexIntImag().needsCleanup() == |
462 | getComplexIntReal().needsCleanup() && |
463 | "In _Complex int types, real and imaginary values must have the " |
464 | "same size."); |
465 | return getComplexIntReal().needsCleanup(); |
466 | case LValue: |
467 | return reinterpret_cast<const LV *>(&Data)->hasPathPtr(); |
468 | case MemberPointer: |
469 | return reinterpret_cast<const MemberPointerData *>(&Data)->hasPathPtr(); |
470 | } |
471 | llvm_unreachable("Unknown APValue kind!"); |
472 | } |
473 | |
474 | void APValue::swap(APValue &RHS) { |
475 | std::swap(a&: Kind, b&: RHS.Kind); |
476 | std::swap(a&: Data, b&: RHS.Data); |
477 | // We can't use std::swap w/ bit-fields |
478 | bool tmp = AllowConstexprUnknown; |
479 | AllowConstexprUnknown = RHS.AllowConstexprUnknown; |
480 | RHS.AllowConstexprUnknown = tmp; |
481 | } |
482 | |
483 | /// Profile the value of an APInt, excluding its bit-width. |
484 | static void profileIntValue(llvm::FoldingSetNodeID &ID, const llvm::APInt &V) { |
485 | for (unsigned I = 0, N = V.getBitWidth(); I < N; I += 32) |
486 | ID.AddInteger(I: (uint32_t)V.extractBitsAsZExtValue(numBits: std::min(a: 32u, b: N - I), bitPosition: I)); |
487 | } |
488 | |
489 | void APValue::Profile(llvm::FoldingSetNodeID &ID) const { |
490 | // Note that our profiling assumes that only APValues of the same type are |
491 | // ever compared. As a result, we don't consider collisions that could only |
492 | // happen if the types are different. (For example, structs with different |
493 | // numbers of members could profile the same.) |
494 | |
495 | ID.AddInteger(I: Kind); |
496 | |
497 | switch (Kind) { |
498 | case None: |
499 | case Indeterminate: |
500 | return; |
501 | |
502 | case AddrLabelDiff: |
503 | ID.AddPointer(Ptr: getAddrLabelDiffLHS()->getLabel()->getCanonicalDecl()); |
504 | ID.AddPointer(Ptr: getAddrLabelDiffRHS()->getLabel()->getCanonicalDecl()); |
505 | return; |
506 | |
507 | case Struct: |
508 | for (unsigned I = 0, N = getStructNumBases(); I != N; ++I) |
509 | getStructBase(i: I).Profile(ID); |
510 | for (unsigned I = 0, N = getStructNumFields(); I != N; ++I) |
511 | getStructField(i: I).Profile(ID); |
512 | return; |
513 | |
514 | case Union: |
515 | if (!getUnionField()) { |
516 | ID.AddInteger(I: 0); |
517 | return; |
518 | } |
519 | ID.AddInteger(I: getUnionField()->getFieldIndex() + 1); |
520 | getUnionValue().Profile(ID); |
521 | return; |
522 | |
523 | case Array: { |
524 | if (getArraySize() == 0) |
525 | return; |
526 | |
527 | // The profile should not depend on whether the array is expanded or |
528 | // not, but we don't want to profile the array filler many times for |
529 | // a large array. So treat all equal trailing elements as the filler. |
530 | // Elements are profiled in reverse order to support this, and the |
531 | // first profiled element is followed by a count. For example: |
532 | // |
533 | // ['a', 'c', 'x', 'x', 'x'] is profiled as |
534 | // [5, 'x', 3, 'c', 'a'] |
535 | llvm::FoldingSetNodeID FillerID; |
536 | (hasArrayFiller() ? getArrayFiller() |
537 | : getArrayInitializedElt(I: getArrayInitializedElts() - 1)) |
538 | .Profile(ID&: FillerID); |
539 | ID.AddNodeID(ID: FillerID); |
540 | unsigned NumFillers = getArraySize() - getArrayInitializedElts(); |
541 | unsigned N = getArrayInitializedElts(); |
542 | |
543 | // Count the number of elements equal to the last one. This loop ends |
544 | // by adding an integer indicating the number of such elements, with |
545 | // N set to the number of elements left to profile. |
546 | while (true) { |
547 | if (N == 0) { |
548 | // All elements are fillers. |
549 | assert(NumFillers == getArraySize()); |
550 | ID.AddInteger(I: NumFillers); |
551 | break; |
552 | } |
553 | |
554 | // No need to check if the last element is equal to the last |
555 | // element. |
556 | if (N != getArraySize()) { |
557 | llvm::FoldingSetNodeID ElemID; |
558 | getArrayInitializedElt(I: N - 1).Profile(ID&: ElemID); |
559 | if (ElemID != FillerID) { |
560 | ID.AddInteger(I: NumFillers); |
561 | ID.AddNodeID(ID: ElemID); |
562 | --N; |
563 | break; |
564 | } |
565 | } |
566 | |
567 | // This is a filler. |
568 | ++NumFillers; |
569 | --N; |
570 | } |
571 | |
572 | // Emit the remaining elements. |
573 | for (; N != 0; --N) |
574 | getArrayInitializedElt(I: N - 1).Profile(ID); |
575 | return; |
576 | } |
577 | |
578 | case Vector: |
579 | for (unsigned I = 0, N = getVectorLength(); I != N; ++I) |
580 | getVectorElt(I).Profile(ID); |
581 | return; |
582 | |
583 | case Int: |
584 | profileIntValue(ID, V: getInt()); |
585 | return; |
586 | |
587 | case Float: |
588 | profileIntValue(ID, V: getFloat().bitcastToAPInt()); |
589 | return; |
590 | |
591 | case FixedPoint: |
592 | profileIntValue(ID, V: getFixedPoint().getValue()); |
593 | return; |
594 | |
595 | case ComplexFloat: |
596 | profileIntValue(ID, V: getComplexFloatReal().bitcastToAPInt()); |
597 | profileIntValue(ID, V: getComplexFloatImag().bitcastToAPInt()); |
598 | return; |
599 | |
600 | case ComplexInt: |
601 | profileIntValue(ID, V: getComplexIntReal()); |
602 | profileIntValue(ID, V: getComplexIntImag()); |
603 | return; |
604 | |
605 | case LValue: |
606 | getLValueBase().Profile(ID); |
607 | ID.AddInteger(I: getLValueOffset().getQuantity()); |
608 | ID.AddInteger(I: (isNullPointer() ? 1 : 0) | |
609 | (isLValueOnePastTheEnd() ? 2 : 0) | |
610 | (hasLValuePath() ? 4 : 0)); |
611 | if (hasLValuePath()) { |
612 | ID.AddInteger(I: getLValuePath().size()); |
613 | // For uniqueness, we only need to profile the entries corresponding |
614 | // to union members, but we don't have the type here so we don't know |
615 | // how to interpret the entries. |
616 | for (LValuePathEntry E : getLValuePath()) |
617 | E.Profile(ID); |
618 | } |
619 | return; |
620 | |
621 | case MemberPointer: |
622 | ID.AddPointer(Ptr: getMemberPointerDecl()); |
623 | ID.AddInteger(I: isMemberPointerToDerivedMember()); |
624 | for (const CXXRecordDecl *D : getMemberPointerPath()) |
625 | ID.AddPointer(Ptr: D); |
626 | return; |
627 | } |
628 | |
629 | llvm_unreachable("Unknown APValue kind!"); |
630 | } |
631 | |
632 | static double GetApproxValue(const llvm::APFloat &F) { |
633 | llvm::APFloat V = F; |
634 | bool ignored; |
635 | V.convert(ToSemantics: llvm::APFloat::IEEEdouble(), RM: llvm::APFloat::rmNearestTiesToEven, |
636 | losesInfo: &ignored); |
637 | return V.convertToDouble(); |
638 | } |
639 | |
640 | static bool TryPrintAsStringLiteral(raw_ostream &Out, |
641 | const PrintingPolicy &Policy, |
642 | const ArrayType *ATy, |
643 | ArrayRef<APValue> Inits) { |
644 | if (Inits.empty()) |
645 | return false; |
646 | |
647 | QualType Ty = ATy->getElementType(); |
648 | if (!Ty->isAnyCharacterType()) |
649 | return false; |
650 | |
651 | // Nothing we can do about a sequence that is not null-terminated |
652 | if (!Inits.back().isInt() || !Inits.back().getInt().isZero()) |
653 | return false; |
654 | |
655 | Inits = Inits.drop_back(); |
656 | |
657 | llvm::SmallString<40> Buf; |
658 | Buf.push_back(Elt: '"'); |
659 | |
660 | // Better than printing a two-digit sequence of 10 integers. |
661 | constexpr size_t MaxN = 36; |
662 | StringRef Ellipsis; |
663 | if (Inits.size() > MaxN && !Policy.EntireContentsOfLargeArray) { |
664 | Ellipsis = "[...]"; |
665 | Inits = |
666 | Inits.take_front(N: std::min(a: MaxN - Ellipsis.size() / 2, b: Inits.size())); |
667 | } |
668 | |
669 | for (auto &Val : Inits) { |
670 | if (!Val.isInt()) |
671 | return false; |
672 | int64_t Char64 = Val.getInt().getExtValue(); |
673 | if (!isASCII(c: Char64)) |
674 | return false; // Bye bye, see you in integers. |
675 | auto Ch = static_cast<unsigned char>(Char64); |
676 | // The diagnostic message is 'quoted' |
677 | StringRef Escaped = escapeCStyle<EscapeChar::SingleAndDouble>(Ch); |
678 | if (Escaped.empty()) { |
679 | if (!isPrintable(c: Ch)) |
680 | return false; |
681 | Buf.emplace_back(Args&: Ch); |
682 | } else { |
683 | Buf.append(RHS: Escaped); |
684 | } |
685 | } |
686 | |
687 | Buf.append(RHS: Ellipsis); |
688 | Buf.push_back(Elt: '"'); |
689 | |
690 | if (Ty->isWideCharType()) |
691 | Out << 'L'; |
692 | else if (Ty->isChar8Type()) |
693 | Out << "u8"; |
694 | else if (Ty->isChar16Type()) |
695 | Out << 'u'; |
696 | else if (Ty->isChar32Type()) |
697 | Out << 'U'; |
698 | |
699 | Out << Buf; |
700 | return true; |
701 | } |
702 | |
703 | void APValue::printPretty(raw_ostream &Out, const ASTContext &Ctx, |
704 | QualType Ty) const { |
705 | printPretty(OS&: Out, Policy: Ctx.getPrintingPolicy(), Ty, Ctx: &Ctx); |
706 | } |
707 | |
708 | void APValue::printPretty(raw_ostream &Out, const PrintingPolicy &Policy, |
709 | QualType Ty, const ASTContext *Ctx) const { |
710 | // There are no objects of type 'void', but values of this type can be |
711 | // returned from functions. |
712 | if (Ty->isVoidType()) { |
713 | Out << "void()"; |
714 | return; |
715 | } |
716 | |
717 | if (const auto *AT = Ty->getAs<AtomicType>()) |
718 | Ty = AT->getValueType(); |
719 | |
720 | switch (getKind()) { |
721 | case APValue::None: |
722 | Out << "<out of lifetime>"; |
723 | return; |
724 | case APValue::Indeterminate: |
725 | Out << "<uninitialized>"; |
726 | return; |
727 | case APValue::Int: |
728 | if (Ty->isBooleanType()) |
729 | Out << (getInt().getBoolValue() ? "true": "false"); |
730 | else |
731 | Out << getInt(); |
732 | return; |
733 | case APValue::Float: |
734 | Out << GetApproxValue(F: getFloat()); |
735 | return; |
736 | case APValue::FixedPoint: |
737 | Out << getFixedPoint(); |
738 | return; |
739 | case APValue::Vector: { |
740 | Out << '{'; |
741 | QualType ElemTy = Ty->castAs<VectorType>()->getElementType(); |
742 | getVectorElt(I: 0).printPretty(Out, Policy, Ty: ElemTy, Ctx); |
743 | for (unsigned i = 1; i != getVectorLength(); ++i) { |
744 | Out << ", "; |
745 | getVectorElt(I: i).printPretty(Out, Policy, Ty: ElemTy, Ctx); |
746 | } |
747 | Out << '}'; |
748 | return; |
749 | } |
750 | case APValue::ComplexInt: |
751 | Out << getComplexIntReal() << "+"<< getComplexIntImag() << "i"; |
752 | return; |
753 | case APValue::ComplexFloat: |
754 | Out << GetApproxValue(F: getComplexFloatReal()) << "+" |
755 | << GetApproxValue(F: getComplexFloatImag()) << "i"; |
756 | return; |
757 | case APValue::LValue: { |
758 | bool IsReference = Ty->isReferenceType(); |
759 | QualType InnerTy |
760 | = IsReference ? Ty.getNonReferenceType() : Ty->getPointeeType(); |
761 | if (InnerTy.isNull()) |
762 | InnerTy = Ty; |
763 | |
764 | LValueBase Base = getLValueBase(); |
765 | if (!Base) { |
766 | if (isNullPointer()) { |
767 | Out << (Policy.Nullptr ? "nullptr": "0"); |
768 | } else if (IsReference) { |
769 | Out << "*("<< InnerTy.stream(Policy) << "*)" |
770 | << getLValueOffset().getQuantity(); |
771 | } else { |
772 | Out << "("<< Ty.stream(Policy) << ")" |
773 | << getLValueOffset().getQuantity(); |
774 | } |
775 | return; |
776 | } |
777 | |
778 | if (!hasLValuePath()) { |
779 | // No lvalue path: just print the offset. |
780 | CharUnits O = getLValueOffset(); |
781 | CharUnits S = Ctx ? Ctx->getTypeSizeInCharsIfKnown(Ty: InnerTy).value_or( |
782 | u: CharUnits::Zero()) |
783 | : CharUnits::Zero(); |
784 | if (!O.isZero()) { |
785 | if (IsReference) |
786 | Out << "*("; |
787 | if (S.isZero() || O % S) { |
788 | Out << "(char*)"; |
789 | S = CharUnits::One(); |
790 | } |
791 | Out << '&'; |
792 | } else if (!IsReference) { |
793 | Out << '&'; |
794 | } |
795 | |
796 | if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) |
797 | Out << *VD; |
798 | else if (TypeInfoLValue TI = Base.dyn_cast<TypeInfoLValue>()) { |
799 | TI.print(Out, Policy); |
800 | } else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { |
801 | Out << "{*new " |
802 | << Base.getDynamicAllocType().stream(Policy) << "#" |
803 | << DA.getIndex() << "}"; |
804 | } else { |
805 | assert(Base.get<const Expr *>() != nullptr && |
806 | "Expecting non-null Expr"); |
807 | Base.get<const Expr*>()->printPretty(Out, nullptr, Policy); |
808 | } |
809 | |
810 | if (!O.isZero()) { |
811 | Out << " + "<< (O / S); |
812 | if (IsReference) |
813 | Out << ')'; |
814 | } |
815 | return; |
816 | } |
817 | |
818 | // We have an lvalue path. Print it out nicely. |
819 | if (!IsReference) |
820 | Out << '&'; |
821 | else if (isLValueOnePastTheEnd()) |
822 | Out << "*(&"; |
823 | |
824 | QualType ElemTy = Base.getType(); |
825 | if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) { |
826 | Out << *VD; |
827 | } else if (TypeInfoLValue TI = Base.dyn_cast<TypeInfoLValue>()) { |
828 | TI.print(Out, Policy); |
829 | } else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { |
830 | Out << "{*new "<< Base.getDynamicAllocType().stream(Policy) << "#" |
831 | << DA.getIndex() << "}"; |
832 | } else { |
833 | const Expr *E = Base.get<const Expr*>(); |
834 | assert(E != nullptr && "Expecting non-null Expr"); |
835 | E->printPretty(Out, nullptr, Policy); |
836 | } |
837 | |
838 | ArrayRef<LValuePathEntry> Path = getLValuePath(); |
839 | const CXXRecordDecl *CastToBase = nullptr; |
840 | for (unsigned I = 0, N = Path.size(); I != N; ++I) { |
841 | if (ElemTy->isRecordType()) { |
842 | // The lvalue refers to a class type, so the next path entry is a base |
843 | // or member. |
844 | const Decl *BaseOrMember = Path[I].getAsBaseOrMember().getPointer(); |
845 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: BaseOrMember)) { |
846 | CastToBase = RD; |
847 | // Leave ElemTy referring to the most-derived class. The actual type |
848 | // doesn't matter except for array types. |
849 | } else { |
850 | const ValueDecl *VD = cast<ValueDecl>(Val: BaseOrMember); |
851 | Out << "."; |
852 | if (CastToBase) |
853 | Out << *CastToBase << "::"; |
854 | Out << *VD; |
855 | ElemTy = VD->getType(); |
856 | } |
857 | } else if (ElemTy->isAnyComplexType()) { |
858 | // The lvalue refers to a complex type |
859 | Out << (Path[I].getAsArrayIndex() == 0 ? ".real": ".imag"); |
860 | ElemTy = ElemTy->castAs<ComplexType>()->getElementType(); |
861 | } else { |
862 | // The lvalue must refer to an array. |
863 | Out << '[' << Path[I].getAsArrayIndex() << ']'; |
864 | ElemTy = ElemTy->castAsArrayTypeUnsafe()->getElementType(); |
865 | } |
866 | } |
867 | |
868 | // Handle formatting of one-past-the-end lvalues. |
869 | if (isLValueOnePastTheEnd()) { |
870 | // FIXME: If CastToBase is non-0, we should prefix the output with |
871 | // "(CastToBase*)". |
872 | Out << " + 1"; |
873 | if (IsReference) |
874 | Out << ')'; |
875 | } |
876 | return; |
877 | } |
878 | case APValue::Array: { |
879 | const ArrayType *AT = Ty->castAsArrayTypeUnsafe(); |
880 | unsigned N = getArrayInitializedElts(); |
881 | if (N != 0 && TryPrintAsStringLiteral(Out, Policy, ATy: AT, |
882 | Inits: {&getArrayInitializedElt(I: 0), N})) |
883 | return; |
884 | QualType ElemTy = AT->getElementType(); |
885 | Out << '{'; |
886 | unsigned I = 0; |
887 | switch (N) { |
888 | case 0: |
889 | for (; I != N; ++I) { |
890 | Out << ", "; |
891 | if (I == 10 && !Policy.EntireContentsOfLargeArray) { |
892 | Out << "...}"; |
893 | return; |
894 | } |
895 | [[fallthrough]]; |
896 | default: |
897 | getArrayInitializedElt(I).printPretty(Out, Policy, Ty: ElemTy, Ctx); |
898 | } |
899 | } |
900 | Out << '}'; |
901 | return; |
902 | } |
903 | case APValue::Struct: { |
904 | Out << '{'; |
905 | const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl(); |
906 | bool First = true; |
907 | if (unsigned N = getStructNumBases()) { |
908 | const CXXRecordDecl *CD = cast<CXXRecordDecl>(Val: RD); |
909 | CXXRecordDecl::base_class_const_iterator BI = CD->bases_begin(); |
910 | for (unsigned I = 0; I != N; ++I, ++BI) { |
911 | assert(BI != CD->bases_end()); |
912 | if (!First) |
913 | Out << ", "; |
914 | getStructBase(i: I).printPretty(Out, Policy, Ty: BI->getType(), Ctx); |
915 | First = false; |
916 | } |
917 | } |
918 | for (const auto *FI : RD->fields()) { |
919 | if (!First) |
920 | Out << ", "; |
921 | if (FI->isUnnamedBitField()) |
922 | continue; |
923 | getStructField(i: FI->getFieldIndex()). |
924 | printPretty(Out, Policy, FI->getType(), Ctx); |
925 | First = false; |
926 | } |
927 | Out << '}'; |
928 | return; |
929 | } |
930 | case APValue::Union: |
931 | Out << '{'; |
932 | if (const FieldDecl *FD = getUnionField()) { |
933 | Out << "."<< *FD << " = "; |
934 | getUnionValue().printPretty(Out, Policy, FD->getType(), Ctx); |
935 | } |
936 | Out << '}'; |
937 | return; |
938 | case APValue::MemberPointer: |
939 | // FIXME: This is not enough to unambiguously identify the member in a |
940 | // multiple-inheritance scenario. |
941 | if (const ValueDecl *VD = getMemberPointerDecl()) { |
942 | Out << '&' << *cast<CXXRecordDecl>(VD->getDeclContext()) << "::"<< *VD; |
943 | return; |
944 | } |
945 | Out << "0"; |
946 | return; |
947 | case APValue::AddrLabelDiff: |
948 | Out << "&&"<< getAddrLabelDiffLHS()->getLabel()->getName(); |
949 | Out << " - "; |
950 | Out << "&&"<< getAddrLabelDiffRHS()->getLabel()->getName(); |
951 | return; |
952 | } |
953 | llvm_unreachable("Unknown APValue kind!"); |
954 | } |
955 | |
956 | std::string APValue::getAsString(const ASTContext &Ctx, QualType Ty) const { |
957 | std::string Result; |
958 | llvm::raw_string_ostream Out(Result); |
959 | printPretty(Out, Ctx, Ty); |
960 | return Result; |
961 | } |
962 | |
963 | bool APValue::toIntegralConstant(APSInt &Result, QualType SrcTy, |
964 | const ASTContext &Ctx) const { |
965 | if (isInt()) { |
966 | Result = getInt(); |
967 | return true; |
968 | } |
969 | |
970 | if (isLValue() && isNullPointer()) { |
971 | Result = Ctx.MakeIntValue(Value: Ctx.getTargetNullPointerValue(QT: SrcTy), Type: SrcTy); |
972 | return true; |
973 | } |
974 | |
975 | if (isLValue() && !getLValueBase()) { |
976 | Result = Ctx.MakeIntValue(Value: getLValueOffset().getQuantity(), Type: SrcTy); |
977 | return true; |
978 | } |
979 | |
980 | return false; |
981 | } |
982 | |
983 | const APValue::LValueBase APValue::getLValueBase() const { |
984 | assert(isLValue() && "Invalid accessor"); |
985 | return ((const LV *)(const void *)&Data)->Base; |
986 | } |
987 | |
988 | bool APValue::isLValueOnePastTheEnd() const { |
989 | assert(isLValue() && "Invalid accessor"); |
990 | return ((const LV *)(const void *)&Data)->IsOnePastTheEnd; |
991 | } |
992 | |
993 | CharUnits &APValue::getLValueOffset() { |
994 | assert(isLValue() && "Invalid accessor"); |
995 | return ((LV *)(void *)&Data)->Offset; |
996 | } |
997 | |
998 | bool APValue::hasLValuePath() const { |
999 | assert(isLValue() && "Invalid accessor"); |
1000 | return ((const LV *)(const char *)&Data)->hasPath(); |
1001 | } |
1002 | |
1003 | ArrayRef<APValue::LValuePathEntry> APValue::getLValuePath() const { |
1004 | assert(isLValue() && hasLValuePath() && "Invalid accessor"); |
1005 | const LV &LVal = *((const LV *)(const char *)&Data); |
1006 | return llvm::ArrayRef(LVal.getPath(), LVal.PathLength); |
1007 | } |
1008 | |
1009 | unsigned APValue::getLValueCallIndex() const { |
1010 | assert(isLValue() && "Invalid accessor"); |
1011 | return ((const LV *)(const char *)&Data)->Base.getCallIndex(); |
1012 | } |
1013 | |
1014 | unsigned APValue::getLValueVersion() const { |
1015 | assert(isLValue() && "Invalid accessor"); |
1016 | return ((const LV *)(const char *)&Data)->Base.getVersion(); |
1017 | } |
1018 | |
1019 | bool APValue::isNullPointer() const { |
1020 | assert(isLValue() && "Invalid usage"); |
1021 | return ((const LV *)(const char *)&Data)->IsNullPtr; |
1022 | } |
1023 | |
1024 | void APValue::setLValue(LValueBase B, const CharUnits &O, NoLValuePath, |
1025 | bool IsNullPtr) { |
1026 | assert(isLValue() && "Invalid accessor"); |
1027 | LV &LVal = *((LV *)(char *)&Data); |
1028 | LVal.Base = B; |
1029 | LVal.IsOnePastTheEnd = false; |
1030 | LVal.Offset = O; |
1031 | LVal.resizePath(Length: (unsigned)-1); |
1032 | LVal.IsNullPtr = IsNullPtr; |
1033 | } |
1034 | |
1035 | MutableArrayRef<APValue::LValuePathEntry> |
1036 | APValue::setLValueUninit(LValueBase B, const CharUnits &O, unsigned Size, |
1037 | bool IsOnePastTheEnd, bool IsNullPtr) { |
1038 | assert(isLValue() && "Invalid accessor"); |
1039 | LV &LVal = *((LV *)(char *)&Data); |
1040 | LVal.Base = B; |
1041 | LVal.IsOnePastTheEnd = IsOnePastTheEnd; |
1042 | LVal.Offset = O; |
1043 | LVal.IsNullPtr = IsNullPtr; |
1044 | LVal.resizePath(Length: Size); |
1045 | return {LVal.getPath(), Size}; |
1046 | } |
1047 | |
1048 | void APValue::setLValue(LValueBase B, const CharUnits &O, |
1049 | ArrayRef<LValuePathEntry> Path, bool IsOnePastTheEnd, |
1050 | bool IsNullPtr) { |
1051 | MutableArrayRef<APValue::LValuePathEntry> InternalPath = |
1052 | setLValueUninit(B, O, Size: Path.size(), IsOnePastTheEnd, IsNullPtr); |
1053 | if (Path.size()) { |
1054 | memcpy(dest: InternalPath.data(), src: Path.data(), |
1055 | n: Path.size() * sizeof(LValuePathEntry)); |
1056 | } |
1057 | } |
1058 | |
1059 | void APValue::setUnion(const FieldDecl *Field, const APValue &Value) { |
1060 | assert(isUnion() && "Invalid accessor"); |
1061 | ((UnionData *)(char *)&Data)->Field = |
1062 | Field ? Field->getCanonicalDecl() : nullptr; |
1063 | *((UnionData *)(char *)&Data)->Value = Value; |
1064 | } |
1065 | |
1066 | const ValueDecl *APValue::getMemberPointerDecl() const { |
1067 | assert(isMemberPointer() && "Invalid accessor"); |
1068 | const MemberPointerData &MPD = |
1069 | *((const MemberPointerData *)(const char *)&Data); |
1070 | return MPD.MemberAndIsDerivedMember.getPointer(); |
1071 | } |
1072 | |
1073 | bool APValue::isMemberPointerToDerivedMember() const { |
1074 | assert(isMemberPointer() && "Invalid accessor"); |
1075 | const MemberPointerData &MPD = |
1076 | *((const MemberPointerData *)(const char *)&Data); |
1077 | return MPD.MemberAndIsDerivedMember.getInt(); |
1078 | } |
1079 | |
1080 | ArrayRef<const CXXRecordDecl*> APValue::getMemberPointerPath() const { |
1081 | assert(isMemberPointer() && "Invalid accessor"); |
1082 | const MemberPointerData &MPD = |
1083 | *((const MemberPointerData *)(const char *)&Data); |
1084 | return llvm::ArrayRef(MPD.getPath(), MPD.PathLength); |
1085 | } |
1086 | |
1087 | void APValue::MakeLValue() { |
1088 | assert(isAbsent() && "Bad state change"); |
1089 | static_assert(sizeof(LV) <= DataSize, "LV too big"); |
1090 | new ((void *)(char *)&Data) LV(); |
1091 | Kind = LValue; |
1092 | } |
1093 | |
1094 | void APValue::MakeArray(unsigned InitElts, unsigned Size) { |
1095 | assert(isAbsent() && "Bad state change"); |
1096 | new ((void *)(char *)&Data) Arr(InitElts, Size); |
1097 | Kind = Array; |
1098 | } |
1099 | |
1100 | MutableArrayRef<const CXXRecordDecl *> |
1101 | APValue::setMemberPointerUninit(const ValueDecl *Member, bool IsDerivedMember, |
1102 | unsigned Size) { |
1103 | assert(isAbsent() && "Bad state change"); |
1104 | MemberPointerData *MPD = new ((void *)(char *)&Data) MemberPointerData; |
1105 | Kind = MemberPointer; |
1106 | MPD->MemberAndIsDerivedMember.setPointer( |
1107 | Member ? cast<ValueDecl>(Member->getCanonicalDecl()) : nullptr); |
1108 | MPD->MemberAndIsDerivedMember.setInt(IsDerivedMember); |
1109 | MPD->resizePath(Length: Size); |
1110 | return {MPD->getPath(), MPD->PathLength}; |
1111 | } |
1112 | |
1113 | void APValue::MakeMemberPointer(const ValueDecl *Member, bool IsDerivedMember, |
1114 | ArrayRef<const CXXRecordDecl *> Path) { |
1115 | MutableArrayRef<const CXXRecordDecl *> InternalPath = |
1116 | setMemberPointerUninit(Member, IsDerivedMember, Size: Path.size()); |
1117 | for (unsigned I = 0; I != Path.size(); ++I) |
1118 | InternalPath[I] = Path[I]->getCanonicalDecl(); |
1119 | } |
1120 | |
1121 | LinkageInfo LinkageComputer::getLVForValue(const APValue &V, |
1122 | LVComputationKind computation) { |
1123 | LinkageInfo LV = LinkageInfo::external(); |
1124 | |
1125 | auto MergeLV = [&](LinkageInfo MergeLV) { |
1126 | LV.merge(other: MergeLV); |
1127 | return LV.getLinkage() == Linkage::Internal; |
1128 | }; |
1129 | auto Merge = [&](const APValue &V) { |
1130 | return MergeLV(getLVForValue(V, computation)); |
1131 | }; |
1132 | |
1133 | switch (V.getKind()) { |
1134 | case APValue::None: |
1135 | case APValue::Indeterminate: |
1136 | case APValue::Int: |
1137 | case APValue::Float: |
1138 | case APValue::FixedPoint: |
1139 | case APValue::ComplexInt: |
1140 | case APValue::ComplexFloat: |
1141 | case APValue::Vector: |
1142 | break; |
1143 | |
1144 | case APValue::AddrLabelDiff: |
1145 | // Even for an inline function, it's not reasonable to treat a difference |
1146 | // between the addresses of labels as an external value. |
1147 | return LinkageInfo::internal(); |
1148 | |
1149 | case APValue::Struct: { |
1150 | for (unsigned I = 0, N = V.getStructNumBases(); I != N; ++I) |
1151 | if (Merge(V.getStructBase(i: I))) |
1152 | break; |
1153 | for (unsigned I = 0, N = V.getStructNumFields(); I != N; ++I) |
1154 | if (Merge(V.getStructField(i: I))) |
1155 | break; |
1156 | break; |
1157 | } |
1158 | |
1159 | case APValue::Union: |
1160 | if (V.getUnionField()) |
1161 | Merge(V.getUnionValue()); |
1162 | break; |
1163 | |
1164 | case APValue::Array: { |
1165 | for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I) |
1166 | if (Merge(V.getArrayInitializedElt(I))) |
1167 | break; |
1168 | if (V.hasArrayFiller()) |
1169 | Merge(V.getArrayFiller()); |
1170 | break; |
1171 | } |
1172 | |
1173 | case APValue::LValue: { |
1174 | if (!V.getLValueBase()) { |
1175 | // Null or absolute address: this is external. |
1176 | } else if (const auto *VD = |
1177 | V.getLValueBase().dyn_cast<const ValueDecl *>()) { |
1178 | if (VD && MergeLV(getLVForDecl(VD, computation))) |
1179 | break; |
1180 | } else if (const auto TI = V.getLValueBase().dyn_cast<TypeInfoLValue>()) { |
1181 | if (MergeLV(getLVForType(T: *TI.getType(), computation))) |
1182 | break; |
1183 | } else if (const Expr *E = V.getLValueBase().dyn_cast<const Expr *>()) { |
1184 | // Almost all expression bases are internal. The exception is |
1185 | // lifetime-extended temporaries. |
1186 | // FIXME: These should be modeled as having the |
1187 | // LifetimeExtendedTemporaryDecl itself as the base. |
1188 | // FIXME: If we permit Objective-C object literals in template arguments, |
1189 | // they should not imply internal linkage. |
1190 | auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: E); |
1191 | if (!MTE || MTE->getStorageDuration() == SD_FullExpression) |
1192 | return LinkageInfo::internal(); |
1193 | if (MergeLV(getLVForDecl(MTE->getExtendingDecl(), computation))) |
1194 | break; |
1195 | } else { |
1196 | assert(V.getLValueBase().is<DynamicAllocLValue>() && |
1197 | "unexpected LValueBase kind"); |
1198 | return LinkageInfo::internal(); |
1199 | } |
1200 | // The lvalue path doesn't matter: pointers to all subobjects always have |
1201 | // the same visibility as pointers to the complete object. |
1202 | break; |
1203 | } |
1204 | |
1205 | case APValue::MemberPointer: |
1206 | if (const NamedDecl *D = V.getMemberPointerDecl()) |
1207 | MergeLV(getLVForDecl(D, computation)); |
1208 | // Note that we could have a base-to-derived conversion here to a member of |
1209 | // a derived class with less linkage/visibility. That's covered by the |
1210 | // linkage and visibility of the value's type. |
1211 | break; |
1212 | } |
1213 | |
1214 | return LV; |
1215 | } |
1216 |
Definitions
- TypeInfoLValue
- LValueBase
- LValueBase
- getDynamicAlloc
- getTypeInfo
- getType
- getCallIndex
- getVersion
- getTypeInfoType
- getDynamicAllocType
- Profile
- operator==
- LValuePathEntry
- Profile
- LValuePathSerializationHelper
- getType
- LVBase
- getOpaqueValue
- isNull
- operator bool
- getEmptyKey
- getTombstoneKey
- hash_value
- getHashValue
- isEqual
- LV
- LV
- ~LV
- resizePath
- hasPath
- hasPathPtr
- getPath
- getPath
- MemberPointerBase
- MemberPointerData
- MemberPointerData
- ~MemberPointerData
- resizePath
- hasPathPtr
- getPath
- getPath
- Arr
- ~Arr
- StructData
- ~StructData
- UnionData
- ~UnionData
- APValue
- APValue
- operator=
- operator=
- DestroyDataAndMakeUninit
- needsCleanup
- swap
- profileIntValue
- Profile
- GetApproxValue
- TryPrintAsStringLiteral
- printPretty
- printPretty
- getAsString
- toIntegralConstant
- getLValueBase
- isLValueOnePastTheEnd
- getLValueOffset
- hasLValuePath
- getLValuePath
- getLValueCallIndex
- getLValueVersion
- isNullPointer
- setLValue
- setLValueUninit
- setLValue
- setUnion
- getMemberPointerDecl
- isMemberPointerToDerivedMember
- getMemberPointerPath
- MakeLValue
- MakeArray
- setMemberPointerUninit
- MakeMemberPointer
Improve your Profiling and Debugging skills
Find out more