| 1 | //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "Compiler.h" |
| 10 | #include "ByteCodeEmitter.h" |
| 11 | #include "Context.h" |
| 12 | #include "FixedPoint.h" |
| 13 | #include "Floating.h" |
| 14 | #include "Function.h" |
| 15 | #include "InterpShared.h" |
| 16 | #include "PrimType.h" |
| 17 | #include "Program.h" |
| 18 | #include "clang/AST/Attr.h" |
| 19 | |
| 20 | using namespace clang; |
| 21 | using namespace clang::interp; |
| 22 | |
| 23 | using APSInt = llvm::APSInt; |
| 24 | |
| 25 | namespace clang { |
| 26 | namespace interp { |
| 27 | |
| 28 | static std::optional<bool> getBoolValue(const Expr *E) { |
| 29 | if (const auto *CE = dyn_cast_if_present<ConstantExpr>(Val: E); |
| 30 | CE && CE->hasAPValueResult() && |
| 31 | CE->getResultAPValueKind() == APValue::ValueKind::Int) { |
| 32 | return CE->getResultAsAPSInt().getBoolValue(); |
| 33 | } |
| 34 | |
| 35 | return std::nullopt; |
| 36 | } |
| 37 | |
| 38 | /// Scope used to handle temporaries in toplevel variable declarations. |
| 39 | template <class Emitter> class DeclScope final : public LocalScope<Emitter> { |
| 40 | public: |
| 41 | DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) |
| 42 | : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P), |
| 43 | OldInitializingDecl(Ctx->InitializingDecl) { |
| 44 | Ctx->InitializingDecl = VD; |
| 45 | Ctx->InitStack.push_back(InitLink::Decl(D: VD)); |
| 46 | } |
| 47 | |
| 48 | ~DeclScope() { |
| 49 | this->Ctx->InitializingDecl = OldInitializingDecl; |
| 50 | this->Ctx->InitStack.pop_back(); |
| 51 | } |
| 52 | |
| 53 | private: |
| 54 | Program::DeclScope Scope; |
| 55 | const ValueDecl *OldInitializingDecl; |
| 56 | }; |
| 57 | |
| 58 | /// Scope used to handle initialization methods. |
| 59 | template <class Emitter> class OptionScope final { |
| 60 | public: |
| 61 | /// Root constructor, compiling or discarding primitives. |
| 62 | OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, |
| 63 | bool NewInitializing) |
| 64 | : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), |
| 65 | OldInitializing(Ctx->Initializing) { |
| 66 | Ctx->DiscardResult = NewDiscardResult; |
| 67 | Ctx->Initializing = NewInitializing; |
| 68 | } |
| 69 | |
| 70 | ~OptionScope() { |
| 71 | Ctx->DiscardResult = OldDiscardResult; |
| 72 | Ctx->Initializing = OldInitializing; |
| 73 | } |
| 74 | |
| 75 | private: |
| 76 | /// Parent context. |
| 77 | Compiler<Emitter> *Ctx; |
| 78 | /// Old discard flag to restore. |
| 79 | bool OldDiscardResult; |
| 80 | bool OldInitializing; |
| 81 | }; |
| 82 | |
| 83 | template <class Emitter> |
| 84 | bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { |
| 85 | switch (Kind) { |
| 86 | case K_This: |
| 87 | return Ctx->emitThis(E); |
| 88 | case K_Field: |
| 89 | // We're assuming there's a base pointer on the stack already. |
| 90 | return Ctx->emitGetPtrFieldPop(Offset, E); |
| 91 | case K_Temp: |
| 92 | return Ctx->emitGetPtrLocal(Offset, E); |
| 93 | case K_Decl: |
| 94 | return Ctx->visitDeclRef(D, E); |
| 95 | case K_Elem: |
| 96 | if (!Ctx->emitConstUint32(Offset, E)) |
| 97 | return false; |
| 98 | return Ctx->emitArrayElemPtrPopUint32(E); |
| 99 | case K_RVO: |
| 100 | return Ctx->emitRVOPtr(E); |
| 101 | case K_InitList: |
| 102 | return true; |
| 103 | default: |
| 104 | llvm_unreachable("Unhandled InitLink kind" ); |
| 105 | } |
| 106 | return true; |
| 107 | } |
| 108 | |
| 109 | /// Scope managing label targets. |
| 110 | template <class Emitter> class LabelScope { |
| 111 | public: |
| 112 | virtual ~LabelScope() {} |
| 113 | |
| 114 | protected: |
| 115 | LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} |
| 116 | /// Compiler instance. |
| 117 | Compiler<Emitter> *Ctx; |
| 118 | }; |
| 119 | |
| 120 | /// Sets the context for break/continue statements. |
| 121 | template <class Emitter> class LoopScope final : public LabelScope<Emitter> { |
| 122 | public: |
| 123 | using LabelTy = typename Compiler<Emitter>::LabelTy; |
| 124 | using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; |
| 125 | |
| 126 | LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) |
| 127 | : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), |
| 128 | OldContinueLabel(Ctx->ContinueLabel), |
| 129 | OldBreakVarScope(Ctx->BreakVarScope), |
| 130 | OldContinueVarScope(Ctx->ContinueVarScope) { |
| 131 | this->Ctx->BreakLabel = BreakLabel; |
| 132 | this->Ctx->ContinueLabel = ContinueLabel; |
| 133 | this->Ctx->BreakVarScope = this->Ctx->VarScope; |
| 134 | this->Ctx->ContinueVarScope = this->Ctx->VarScope; |
| 135 | } |
| 136 | |
| 137 | ~LoopScope() { |
| 138 | this->Ctx->BreakLabel = OldBreakLabel; |
| 139 | this->Ctx->ContinueLabel = OldContinueLabel; |
| 140 | this->Ctx->ContinueVarScope = OldContinueVarScope; |
| 141 | this->Ctx->BreakVarScope = OldBreakVarScope; |
| 142 | } |
| 143 | |
| 144 | private: |
| 145 | OptLabelTy OldBreakLabel; |
| 146 | OptLabelTy OldContinueLabel; |
| 147 | VariableScope<Emitter> *OldBreakVarScope; |
| 148 | VariableScope<Emitter> *OldContinueVarScope; |
| 149 | }; |
| 150 | |
| 151 | // Sets the context for a switch scope, mapping labels. |
| 152 | template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { |
| 153 | public: |
| 154 | using LabelTy = typename Compiler<Emitter>::LabelTy; |
| 155 | using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; |
| 156 | using CaseMap = typename Compiler<Emitter>::CaseMap; |
| 157 | |
| 158 | SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, |
| 159 | OptLabelTy DefaultLabel) |
| 160 | : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), |
| 161 | OldDefaultLabel(this->Ctx->DefaultLabel), |
| 162 | OldCaseLabels(std::move(this->Ctx->CaseLabels)), |
| 163 | OldLabelVarScope(Ctx->BreakVarScope) { |
| 164 | this->Ctx->BreakLabel = BreakLabel; |
| 165 | this->Ctx->DefaultLabel = DefaultLabel; |
| 166 | this->Ctx->CaseLabels = std::move(CaseLabels); |
| 167 | this->Ctx->BreakVarScope = this->Ctx->VarScope; |
| 168 | } |
| 169 | |
| 170 | ~SwitchScope() { |
| 171 | this->Ctx->BreakLabel = OldBreakLabel; |
| 172 | this->Ctx->DefaultLabel = OldDefaultLabel; |
| 173 | this->Ctx->CaseLabels = std::move(OldCaseLabels); |
| 174 | this->Ctx->BreakVarScope = OldLabelVarScope; |
| 175 | } |
| 176 | |
| 177 | private: |
| 178 | OptLabelTy OldBreakLabel; |
| 179 | OptLabelTy OldDefaultLabel; |
| 180 | CaseMap OldCaseLabels; |
| 181 | VariableScope<Emitter> *OldLabelVarScope; |
| 182 | }; |
| 183 | |
| 184 | template <class Emitter> class StmtExprScope final { |
| 185 | public: |
| 186 | StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { |
| 187 | Ctx->InStmtExpr = true; |
| 188 | } |
| 189 | |
| 190 | ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } |
| 191 | |
| 192 | private: |
| 193 | Compiler<Emitter> *Ctx; |
| 194 | bool OldFlag; |
| 195 | }; |
| 196 | |
| 197 | } // namespace interp |
| 198 | } // namespace clang |
| 199 | |
| 200 | template <class Emitter> |
| 201 | bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { |
| 202 | const Expr *SubExpr = CE->getSubExpr(); |
| 203 | |
| 204 | if (DiscardResult) |
| 205 | return this->delegate(SubExpr); |
| 206 | |
| 207 | switch (CE->getCastKind()) { |
| 208 | case CK_LValueToRValue: { |
| 209 | if (SubExpr->getType().isVolatileQualified()) |
| 210 | return this->emitInvalidCast(CastKind::Volatile, /*Fatal=*/true, CE); |
| 211 | |
| 212 | std::optional<PrimType> SubExprT = classify(SubExpr->getType()); |
| 213 | // Prepare storage for the result. |
| 214 | if (!Initializing && !SubExprT) { |
| 215 | std::optional<unsigned> LocalIndex = allocateLocal(Decl: SubExpr); |
| 216 | if (!LocalIndex) |
| 217 | return false; |
| 218 | if (!this->emitGetPtrLocal(*LocalIndex, CE)) |
| 219 | return false; |
| 220 | } |
| 221 | |
| 222 | if (!this->visit(SubExpr)) |
| 223 | return false; |
| 224 | |
| 225 | if (SubExprT) |
| 226 | return this->emitLoadPop(*SubExprT, CE); |
| 227 | |
| 228 | // If the subexpr type is not primitive, we need to perform a copy here. |
| 229 | // This happens for example in C when dereferencing a pointer of struct |
| 230 | // type. |
| 231 | return this->emitMemcpy(CE); |
| 232 | } |
| 233 | |
| 234 | case CK_DerivedToBaseMemberPointer: { |
| 235 | assert(classifyPrim(CE->getType()) == PT_MemberPtr); |
| 236 | assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); |
| 237 | const auto *FromMP = SubExpr->getType()->castAs<MemberPointerType>(); |
| 238 | const auto *ToMP = CE->getType()->castAs<MemberPointerType>(); |
| 239 | |
| 240 | unsigned DerivedOffset = |
| 241 | Ctx.collectBaseOffset(BaseDecl: ToMP->getMostRecentCXXRecordDecl(), |
| 242 | DerivedDecl: FromMP->getMostRecentCXXRecordDecl()); |
| 243 | |
| 244 | if (!this->delegate(SubExpr)) |
| 245 | return false; |
| 246 | |
| 247 | return this->emitGetMemberPtrBasePop(DerivedOffset, CE); |
| 248 | } |
| 249 | |
| 250 | case CK_BaseToDerivedMemberPointer: { |
| 251 | assert(classifyPrim(CE) == PT_MemberPtr); |
| 252 | assert(classifyPrim(SubExpr) == PT_MemberPtr); |
| 253 | const auto *FromMP = SubExpr->getType()->castAs<MemberPointerType>(); |
| 254 | const auto *ToMP = CE->getType()->castAs<MemberPointerType>(); |
| 255 | |
| 256 | unsigned DerivedOffset = |
| 257 | Ctx.collectBaseOffset(BaseDecl: FromMP->getMostRecentCXXRecordDecl(), |
| 258 | DerivedDecl: ToMP->getMostRecentCXXRecordDecl()); |
| 259 | |
| 260 | if (!this->delegate(SubExpr)) |
| 261 | return false; |
| 262 | return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); |
| 263 | } |
| 264 | |
| 265 | case CK_UncheckedDerivedToBase: |
| 266 | case CK_DerivedToBase: { |
| 267 | if (!this->delegate(SubExpr)) |
| 268 | return false; |
| 269 | |
| 270 | const auto = [](QualType Ty) -> const CXXRecordDecl * { |
| 271 | if (const auto *PT = dyn_cast<PointerType>(Val&: Ty)) |
| 272 | return PT->getPointeeType()->getAsCXXRecordDecl(); |
| 273 | return Ty->getAsCXXRecordDecl(); |
| 274 | }; |
| 275 | |
| 276 | // FIXME: We can express a series of non-virtual casts as a single |
| 277 | // GetPtrBasePop op. |
| 278 | QualType CurType = SubExpr->getType(); |
| 279 | for (const CXXBaseSpecifier *B : CE->path()) { |
| 280 | if (B->isVirtual()) { |
| 281 | if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) |
| 282 | return false; |
| 283 | CurType = B->getType(); |
| 284 | } else { |
| 285 | unsigned DerivedOffset = collectBaseOffset(BaseType: B->getType(), DerivedType: CurType); |
| 286 | if (!this->emitGetPtrBasePop( |
| 287 | DerivedOffset, /*NullOK=*/CE->getType()->isPointerType(), CE)) |
| 288 | return false; |
| 289 | CurType = B->getType(); |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | return true; |
| 294 | } |
| 295 | |
| 296 | case CK_BaseToDerived: { |
| 297 | if (!this->delegate(SubExpr)) |
| 298 | return false; |
| 299 | unsigned DerivedOffset = |
| 300 | collectBaseOffset(BaseType: SubExpr->getType(), DerivedType: CE->getType()); |
| 301 | |
| 302 | const Type *TargetType = CE->getType().getTypePtr(); |
| 303 | if (TargetType->isPointerOrReferenceType()) |
| 304 | TargetType = TargetType->getPointeeType().getTypePtr(); |
| 305 | return this->emitGetPtrDerivedPop(DerivedOffset, |
| 306 | /*NullOK=*/CE->getType()->isPointerType(), |
| 307 | TargetType, CE); |
| 308 | } |
| 309 | |
| 310 | case CK_FloatingCast: { |
| 311 | // HLSL uses CK_FloatingCast to cast between vectors. |
| 312 | if (!SubExpr->getType()->isFloatingType() || |
| 313 | !CE->getType()->isFloatingType()) |
| 314 | return false; |
| 315 | if (!this->visit(SubExpr)) |
| 316 | return false; |
| 317 | const auto *TargetSemantics = &Ctx.getFloatSemantics(T: CE->getType()); |
| 318 | return this->emitCastFP(TargetSemantics, getRoundingMode(E: CE), CE); |
| 319 | } |
| 320 | |
| 321 | case CK_IntegralToFloating: { |
| 322 | if (!CE->getType()->isRealFloatingType()) |
| 323 | return false; |
| 324 | if (!this->visit(SubExpr)) |
| 325 | return false; |
| 326 | const auto *TargetSemantics = &Ctx.getFloatSemantics(T: CE->getType()); |
| 327 | return this->emitCastIntegralFloating( |
| 328 | classifyPrim(SubExpr), TargetSemantics, getFPOptions(E: CE), CE); |
| 329 | } |
| 330 | |
| 331 | case CK_FloatingToBoolean: { |
| 332 | if (!SubExpr->getType()->isRealFloatingType() || |
| 333 | !CE->getType()->isBooleanType()) |
| 334 | return false; |
| 335 | if (const auto *FL = dyn_cast<FloatingLiteral>(Val: SubExpr)) |
| 336 | return this->emitConstBool(FL->getValue().isNonZero(), CE); |
| 337 | if (!this->visit(SubExpr)) |
| 338 | return false; |
| 339 | return this->emitCastFloatingIntegralBool(getFPOptions(E: CE), CE); |
| 340 | } |
| 341 | |
| 342 | case CK_FloatingToIntegral: { |
| 343 | if (!this->visit(SubExpr)) |
| 344 | return false; |
| 345 | PrimType ToT = classifyPrim(CE); |
| 346 | if (ToT == PT_IntAP) |
| 347 | return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(T: CE->getType()), |
| 348 | getFPOptions(E: CE), CE); |
| 349 | if (ToT == PT_IntAPS) |
| 350 | return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(T: CE->getType()), |
| 351 | getFPOptions(E: CE), CE); |
| 352 | |
| 353 | return this->emitCastFloatingIntegral(ToT, getFPOptions(E: CE), CE); |
| 354 | } |
| 355 | |
| 356 | case CK_NullToPointer: |
| 357 | case CK_NullToMemberPointer: { |
| 358 | if (!this->discard(SubExpr)) |
| 359 | return false; |
| 360 | const Descriptor *Desc = nullptr; |
| 361 | const QualType PointeeType = CE->getType()->getPointeeType(); |
| 362 | if (!PointeeType.isNull()) { |
| 363 | if (std::optional<PrimType> T = classify(PointeeType)) |
| 364 | Desc = P.createDescriptor(D: SubExpr, T: *T); |
| 365 | else |
| 366 | Desc = P.createDescriptor(D: SubExpr, Ty: PointeeType.getTypePtr(), |
| 367 | MDSize: std::nullopt, /*IsConst=*/true); |
| 368 | } |
| 369 | |
| 370 | uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(QT: CE->getType()); |
| 371 | return this->emitNull(classifyPrim(CE->getType()), Val, Desc, CE); |
| 372 | } |
| 373 | |
| 374 | case CK_PointerToIntegral: { |
| 375 | if (!this->visit(SubExpr)) |
| 376 | return false; |
| 377 | |
| 378 | // If SubExpr doesn't result in a pointer, make it one. |
| 379 | if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { |
| 380 | assert(isPtrType(FromT)); |
| 381 | if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) |
| 382 | return false; |
| 383 | } |
| 384 | |
| 385 | PrimType T = classifyPrim(CE->getType()); |
| 386 | if (T == PT_IntAP) |
| 387 | return this->emitCastPointerIntegralAP(Ctx.getBitWidth(T: CE->getType()), |
| 388 | CE); |
| 389 | if (T == PT_IntAPS) |
| 390 | return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(T: CE->getType()), |
| 391 | CE); |
| 392 | return this->emitCastPointerIntegral(T, CE); |
| 393 | } |
| 394 | |
| 395 | case CK_ArrayToPointerDecay: { |
| 396 | if (!this->visit(SubExpr)) |
| 397 | return false; |
| 398 | return this->emitArrayDecay(CE); |
| 399 | } |
| 400 | |
| 401 | case CK_IntegralToPointer: { |
| 402 | QualType IntType = SubExpr->getType(); |
| 403 | assert(IntType->isIntegralOrEnumerationType()); |
| 404 | if (!this->visit(SubExpr)) |
| 405 | return false; |
| 406 | // FIXME: I think the discard is wrong since the int->ptr cast might cause a |
| 407 | // diagnostic. |
| 408 | PrimType T = classifyPrim(IntType); |
| 409 | QualType PtrType = CE->getType(); |
| 410 | const Descriptor *Desc; |
| 411 | if (std::optional<PrimType> T = classify(PtrType->getPointeeType())) |
| 412 | Desc = P.createDescriptor(D: SubExpr, T: *T); |
| 413 | else if (PtrType->getPointeeType()->isVoidType()) |
| 414 | Desc = nullptr; |
| 415 | else |
| 416 | Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), |
| 417 | Descriptor::InlineDescMD, /*IsConst=*/true); |
| 418 | |
| 419 | if (!this->emitGetIntPtr(T, Desc, CE)) |
| 420 | return false; |
| 421 | |
| 422 | PrimType DestPtrT = classifyPrim(PtrType); |
| 423 | if (DestPtrT == PT_Ptr) |
| 424 | return true; |
| 425 | |
| 426 | // In case we're converting the integer to a non-Pointer. |
| 427 | return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); |
| 428 | } |
| 429 | |
| 430 | case CK_AtomicToNonAtomic: |
| 431 | case CK_ConstructorConversion: |
| 432 | case CK_FunctionToPointerDecay: |
| 433 | case CK_NonAtomicToAtomic: |
| 434 | case CK_NoOp: |
| 435 | case CK_UserDefinedConversion: |
| 436 | case CK_AddressSpaceConversion: |
| 437 | case CK_CPointerToObjCPointerCast: |
| 438 | return this->delegate(SubExpr); |
| 439 | |
| 440 | case CK_BitCast: { |
| 441 | // Reject bitcasts to atomic types. |
| 442 | if (CE->getType()->isAtomicType()) { |
| 443 | if (!this->discard(SubExpr)) |
| 444 | return false; |
| 445 | return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE); |
| 446 | } |
| 447 | QualType SubExprTy = SubExpr->getType(); |
| 448 | std::optional<PrimType> FromT = classify(SubExprTy); |
| 449 | // Casts from integer/vector to vector. |
| 450 | if (CE->getType()->isVectorType()) |
| 451 | return this->emitBuiltinBitCast(CE); |
| 452 | |
| 453 | std::optional<PrimType> ToT = classify(CE->getType()); |
| 454 | if (!FromT || !ToT) |
| 455 | return false; |
| 456 | |
| 457 | assert(isPtrType(*FromT)); |
| 458 | assert(isPtrType(*ToT)); |
| 459 | if (FromT == ToT) { |
| 460 | if (CE->getType()->isVoidPointerType()) |
| 461 | return this->delegate(SubExpr); |
| 462 | |
| 463 | if (!this->visit(SubExpr)) |
| 464 | return false; |
| 465 | if (CE->getType()->isFunctionPointerType()) |
| 466 | return true; |
| 467 | if (FromT == PT_Ptr) |
| 468 | return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); |
| 469 | return true; |
| 470 | } |
| 471 | |
| 472 | if (!this->visit(SubExpr)) |
| 473 | return false; |
| 474 | return this->emitDecayPtr(*FromT, *ToT, CE); |
| 475 | } |
| 476 | case CK_IntegralToBoolean: |
| 477 | case CK_FixedPointToBoolean: { |
| 478 | // HLSL uses this to cast to one-element vectors. |
| 479 | std::optional<PrimType> FromT = classify(SubExpr->getType()); |
| 480 | if (!FromT) |
| 481 | return false; |
| 482 | |
| 483 | if (const auto *IL = dyn_cast<IntegerLiteral>(Val: SubExpr)) |
| 484 | return this->emitConst(IL->getValue(), CE); |
| 485 | if (!this->visit(SubExpr)) |
| 486 | return false; |
| 487 | return this->emitCast(*FromT, classifyPrim(CE), CE); |
| 488 | } |
| 489 | |
| 490 | case CK_BooleanToSignedIntegral: |
| 491 | case CK_IntegralCast: { |
| 492 | std::optional<PrimType> FromT = classify(SubExpr->getType()); |
| 493 | std::optional<PrimType> ToT = classify(CE->getType()); |
| 494 | if (!FromT || !ToT) |
| 495 | return false; |
| 496 | |
| 497 | // Try to emit a casted known constant value directly. |
| 498 | if (const auto *IL = dyn_cast<IntegerLiteral>(Val: SubExpr)) { |
| 499 | if (ToT != PT_IntAP && ToT != PT_IntAPS && FromT != PT_IntAP && |
| 500 | FromT != PT_IntAPS && !CE->getType()->isEnumeralType()) |
| 501 | return this->emitConst(IL->getValue(), CE); |
| 502 | if (!this->emitConst(IL->getValue(), SubExpr)) |
| 503 | return false; |
| 504 | } else { |
| 505 | if (!this->visit(SubExpr)) |
| 506 | return false; |
| 507 | } |
| 508 | |
| 509 | // Possibly diagnose casts to enum types if the target type does not |
| 510 | // have a fixed size. |
| 511 | if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { |
| 512 | if (const auto *ET = CE->getType().getCanonicalType()->castAs<EnumType>(); |
| 513 | !ET->getDecl()->isFixed()) { |
| 514 | if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) |
| 515 | return false; |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | if (ToT == PT_IntAP) { |
| 520 | if (!this->emitCastAP(*FromT, Ctx.getBitWidth(T: CE->getType()), CE)) |
| 521 | return false; |
| 522 | } else if (ToT == PT_IntAPS) { |
| 523 | if (!this->emitCastAPS(*FromT, Ctx.getBitWidth(T: CE->getType()), CE)) |
| 524 | return false; |
| 525 | } else { |
| 526 | if (FromT == ToT) |
| 527 | return true; |
| 528 | if (!this->emitCast(*FromT, *ToT, CE)) |
| 529 | return false; |
| 530 | } |
| 531 | if (CE->getCastKind() == CK_BooleanToSignedIntegral) |
| 532 | return this->emitNeg(*ToT, CE); |
| 533 | return true; |
| 534 | } |
| 535 | |
| 536 | case CK_PointerToBoolean: |
| 537 | case CK_MemberPointerToBoolean: { |
| 538 | PrimType PtrT = classifyPrim(SubExpr->getType()); |
| 539 | |
| 540 | if (!this->visit(SubExpr)) |
| 541 | return false; |
| 542 | return this->emitIsNonNull(PtrT, CE); |
| 543 | } |
| 544 | |
| 545 | case CK_IntegralComplexToBoolean: |
| 546 | case CK_FloatingComplexToBoolean: { |
| 547 | if (!this->visit(SubExpr)) |
| 548 | return false; |
| 549 | return this->emitComplexBoolCast(SubExpr); |
| 550 | } |
| 551 | |
| 552 | case CK_IntegralComplexToReal: |
| 553 | case CK_FloatingComplexToReal: |
| 554 | return this->emitComplexReal(SubExpr); |
| 555 | |
| 556 | case CK_IntegralRealToComplex: |
| 557 | case CK_FloatingRealToComplex: { |
| 558 | // We're creating a complex value here, so we need to |
| 559 | // allocate storage for it. |
| 560 | if (!Initializing) { |
| 561 | std::optional<unsigned> LocalIndex = allocateTemporary(E: CE); |
| 562 | if (!LocalIndex) |
| 563 | return false; |
| 564 | if (!this->emitGetPtrLocal(*LocalIndex, CE)) |
| 565 | return false; |
| 566 | } |
| 567 | |
| 568 | PrimType T = classifyPrim(SubExpr->getType()); |
| 569 | // Init the complex value to {SubExpr, 0}. |
| 570 | if (!this->visitArrayElemInit(0, SubExpr, T)) |
| 571 | return false; |
| 572 | // Zero-init the second element. |
| 573 | if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) |
| 574 | return false; |
| 575 | return this->emitInitElem(T, 1, SubExpr); |
| 576 | } |
| 577 | |
| 578 | case CK_IntegralComplexCast: |
| 579 | case CK_FloatingComplexCast: |
| 580 | case CK_IntegralComplexToFloatingComplex: |
| 581 | case CK_FloatingComplexToIntegralComplex: { |
| 582 | assert(CE->getType()->isAnyComplexType()); |
| 583 | assert(SubExpr->getType()->isAnyComplexType()); |
| 584 | if (!Initializing) { |
| 585 | std::optional<unsigned> LocalIndex = allocateLocal(Decl: CE); |
| 586 | if (!LocalIndex) |
| 587 | return false; |
| 588 | if (!this->emitGetPtrLocal(*LocalIndex, CE)) |
| 589 | return false; |
| 590 | } |
| 591 | |
| 592 | // Location for the SubExpr. |
| 593 | // Since SubExpr is of complex type, visiting it results in a pointer |
| 594 | // anyway, so we just create a temporary pointer variable. |
| 595 | unsigned SubExprOffset = |
| 596 | allocateLocalPrimitive(Decl: SubExpr, Ty: PT_Ptr, /*IsConst=*/true); |
| 597 | if (!this->visit(SubExpr)) |
| 598 | return false; |
| 599 | if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) |
| 600 | return false; |
| 601 | |
| 602 | PrimType SourceElemT = classifyComplexElementType(T: SubExpr->getType()); |
| 603 | QualType DestElemType = |
| 604 | CE->getType()->getAs<ComplexType>()->getElementType(); |
| 605 | PrimType DestElemT = classifyPrim(DestElemType); |
| 606 | // Cast both elements individually. |
| 607 | for (unsigned I = 0; I != 2; ++I) { |
| 608 | if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) |
| 609 | return false; |
| 610 | if (!this->emitArrayElemPop(SourceElemT, I, CE)) |
| 611 | return false; |
| 612 | |
| 613 | // Do the cast. |
| 614 | if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) |
| 615 | return false; |
| 616 | |
| 617 | // Save the value. |
| 618 | if (!this->emitInitElem(DestElemT, I, CE)) |
| 619 | return false; |
| 620 | } |
| 621 | return true; |
| 622 | } |
| 623 | |
| 624 | case CK_VectorSplat: { |
| 625 | assert(!classify(CE->getType())); |
| 626 | assert(classify(SubExpr->getType())); |
| 627 | assert(CE->getType()->isVectorType()); |
| 628 | |
| 629 | if (!Initializing) { |
| 630 | std::optional<unsigned> LocalIndex = allocateLocal(Decl: CE); |
| 631 | if (!LocalIndex) |
| 632 | return false; |
| 633 | if (!this->emitGetPtrLocal(*LocalIndex, CE)) |
| 634 | return false; |
| 635 | } |
| 636 | |
| 637 | const auto *VT = CE->getType()->getAs<VectorType>(); |
| 638 | PrimType ElemT = classifyPrim(SubExpr->getType()); |
| 639 | unsigned ElemOffset = |
| 640 | allocateLocalPrimitive(Decl: SubExpr, Ty: ElemT, /*IsConst=*/true); |
| 641 | |
| 642 | // Prepare a local variable for the scalar value. |
| 643 | if (!this->visit(SubExpr)) |
| 644 | return false; |
| 645 | if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) |
| 646 | return false; |
| 647 | |
| 648 | if (!this->emitSetLocal(ElemT, ElemOffset, CE)) |
| 649 | return false; |
| 650 | |
| 651 | for (unsigned I = 0; I != VT->getNumElements(); ++I) { |
| 652 | if (!this->emitGetLocal(ElemT, ElemOffset, CE)) |
| 653 | return false; |
| 654 | if (!this->emitInitElem(ElemT, I, CE)) |
| 655 | return false; |
| 656 | } |
| 657 | |
| 658 | return true; |
| 659 | } |
| 660 | |
| 661 | case CK_HLSLVectorTruncation: { |
| 662 | assert(SubExpr->getType()->isVectorType()); |
| 663 | if (std::optional<PrimType> ResultT = classify(CE)) { |
| 664 | assert(!DiscardResult); |
| 665 | // Result must be either a float or integer. Take the first element. |
| 666 | if (!this->visit(SubExpr)) |
| 667 | return false; |
| 668 | return this->emitArrayElemPop(*ResultT, 0, CE); |
| 669 | } |
| 670 | // Otherwise, this truncates from one vector type to another. |
| 671 | assert(CE->getType()->isVectorType()); |
| 672 | |
| 673 | if (!Initializing) { |
| 674 | std::optional<unsigned> LocalIndex = allocateTemporary(E: CE); |
| 675 | if (!LocalIndex) |
| 676 | return false; |
| 677 | if (!this->emitGetPtrLocal(*LocalIndex, CE)) |
| 678 | return false; |
| 679 | } |
| 680 | unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements(); |
| 681 | assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize); |
| 682 | if (!this->visit(SubExpr)) |
| 683 | return false; |
| 684 | return this->emitCopyArray(classifyVectorElementType(T: CE->getType()), 0, 0, |
| 685 | ToSize, CE); |
| 686 | }; |
| 687 | |
| 688 | case CK_IntegralToFixedPoint: { |
| 689 | if (!this->visit(SubExpr)) |
| 690 | return false; |
| 691 | |
| 692 | auto Sem = |
| 693 | Ctx.getASTContext().getFixedPointSemantics(Ty: CE->getType()).toOpaqueInt(); |
| 694 | return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), |
| 695 | Sem, CE); |
| 696 | } |
| 697 | case CK_FloatingToFixedPoint: { |
| 698 | if (!this->visit(SubExpr)) |
| 699 | return false; |
| 700 | |
| 701 | auto Sem = |
| 702 | Ctx.getASTContext().getFixedPointSemantics(Ty: CE->getType()).toOpaqueInt(); |
| 703 | return this->emitCastFloatingFixedPoint(Sem, CE); |
| 704 | } |
| 705 | case CK_FixedPointToFloating: { |
| 706 | if (!this->visit(SubExpr)) |
| 707 | return false; |
| 708 | const auto *TargetSemantics = &Ctx.getFloatSemantics(T: CE->getType()); |
| 709 | return this->emitCastFixedPointFloating(TargetSemantics, CE); |
| 710 | } |
| 711 | case CK_FixedPointToIntegral: { |
| 712 | if (!this->visit(SubExpr)) |
| 713 | return false; |
| 714 | return this->emitCastFixedPointIntegral(classifyPrim(CE->getType()), CE); |
| 715 | } |
| 716 | case CK_FixedPointCast: { |
| 717 | if (!this->visit(SubExpr)) |
| 718 | return false; |
| 719 | auto Sem = |
| 720 | Ctx.getASTContext().getFixedPointSemantics(Ty: CE->getType()).toOpaqueInt(); |
| 721 | return this->emitCastFixedPoint(Sem, CE); |
| 722 | } |
| 723 | |
| 724 | case CK_ToVoid: |
| 725 | return discard(E: SubExpr); |
| 726 | |
| 727 | default: |
| 728 | return this->emitInvalid(CE); |
| 729 | } |
| 730 | llvm_unreachable("Unhandled clang::CastKind enum" ); |
| 731 | } |
| 732 | |
| 733 | template <class Emitter> |
| 734 | bool Compiler<Emitter>::VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) { |
| 735 | return this->emitBuiltinBitCast(E); |
| 736 | } |
| 737 | |
| 738 | template <class Emitter> |
| 739 | bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { |
| 740 | if (DiscardResult) |
| 741 | return true; |
| 742 | |
| 743 | return this->emitConst(LE->getValue(), LE); |
| 744 | } |
| 745 | |
| 746 | template <class Emitter> |
| 747 | bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { |
| 748 | if (DiscardResult) |
| 749 | return true; |
| 750 | |
| 751 | return this->emitConstFloat(E->getValue(), E); |
| 752 | } |
| 753 | |
| 754 | template <class Emitter> |
| 755 | bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { |
| 756 | assert(E->getType()->isAnyComplexType()); |
| 757 | if (DiscardResult) |
| 758 | return true; |
| 759 | |
| 760 | if (!Initializing) { |
| 761 | std::optional<unsigned> LocalIndex = allocateTemporary(E); |
| 762 | if (!LocalIndex) |
| 763 | return false; |
| 764 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| 765 | return false; |
| 766 | } |
| 767 | |
| 768 | const Expr *SubExpr = E->getSubExpr(); |
| 769 | PrimType SubExprT = classifyPrim(SubExpr->getType()); |
| 770 | |
| 771 | if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) |
| 772 | return false; |
| 773 | if (!this->emitInitElem(SubExprT, 0, SubExpr)) |
| 774 | return false; |
| 775 | return this->visitArrayElemInit(1, SubExpr, SubExprT); |
| 776 | } |
| 777 | |
| 778 | template <class Emitter> |
| 779 | bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) { |
| 780 | assert(E->getType()->isFixedPointType()); |
| 781 | assert(classifyPrim(E) == PT_FixedPoint); |
| 782 | |
| 783 | if (DiscardResult) |
| 784 | return true; |
| 785 | |
| 786 | auto Sem = Ctx.getASTContext().getFixedPointSemantics(Ty: E->getType()); |
| 787 | APInt Value = E->getValue(); |
| 788 | return this->emitConstFixedPoint(FixedPoint(Value, Sem), E); |
| 789 | } |
| 790 | |
| 791 | template <class Emitter> |
| 792 | bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { |
| 793 | return this->delegate(E->getSubExpr()); |
| 794 | } |
| 795 | |
| 796 | template <class Emitter> |
| 797 | bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { |
| 798 | // Need short-circuiting for these. |
| 799 | if (BO->isLogicalOp() && !BO->getType()->isVectorType()) |
| 800 | return this->VisitLogicalBinOp(BO); |
| 801 | |
| 802 | const Expr *LHS = BO->getLHS(); |
| 803 | const Expr *RHS = BO->getRHS(); |
| 804 | |
| 805 | // Handle comma operators. Just discard the LHS |
| 806 | // and delegate to RHS. |
| 807 | if (BO->isCommaOp()) { |
| 808 | if (!this->discard(LHS)) |
| 809 | return false; |
| 810 | if (RHS->getType()->isVoidType()) |
| 811 | return this->discard(RHS); |
| 812 | |
| 813 | return this->delegate(RHS); |
| 814 | } |
| 815 | |
| 816 | if (BO->getType()->isAnyComplexType()) |
| 817 | return this->VisitComplexBinOp(BO); |
| 818 | if (BO->getType()->isVectorType()) |
| 819 | return this->VisitVectorBinOp(BO); |
| 820 | if ((LHS->getType()->isAnyComplexType() || |
| 821 | RHS->getType()->isAnyComplexType()) && |
| 822 | BO->isComparisonOp()) |
| 823 | return this->emitComplexComparison(LHS, RHS, BO); |
| 824 | if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType()) |
| 825 | return this->VisitFixedPointBinOp(BO); |
| 826 | |
| 827 | if (BO->isPtrMemOp()) { |
| 828 | if (!this->visit(LHS)) |
| 829 | return false; |
| 830 | |
| 831 | if (!this->visit(RHS)) |
| 832 | return false; |
| 833 | |
| 834 | if (!this->emitToMemberPtr(BO)) |
| 835 | return false; |
| 836 | |
| 837 | if (classifyPrim(BO) == PT_MemberPtr) |
| 838 | return true; |
| 839 | |
| 840 | if (!this->emitCastMemberPtrPtr(BO)) |
| 841 | return false; |
| 842 | return DiscardResult ? this->emitPopPtr(BO) : true; |
| 843 | } |
| 844 | |
| 845 | // Typecheck the args. |
| 846 | std::optional<PrimType> LT = classify(LHS); |
| 847 | std::optional<PrimType> RT = classify(RHS); |
| 848 | std::optional<PrimType> T = classify(BO->getType()); |
| 849 | |
| 850 | // Special case for C++'s three-way/spaceship operator <=>, which |
| 851 | // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't |
| 852 | // have a PrimType). |
| 853 | if (!T && BO->getOpcode() == BO_Cmp) { |
| 854 | if (DiscardResult) |
| 855 | return true; |
| 856 | const ComparisonCategoryInfo *CmpInfo = |
| 857 | Ctx.getASTContext().CompCategories.lookupInfoForType(Ty: BO->getType()); |
| 858 | assert(CmpInfo); |
| 859 | |
| 860 | // We need a temporary variable holding our return value. |
| 861 | if (!Initializing) { |
| 862 | std::optional<unsigned> ResultIndex = this->allocateLocal(BO); |
| 863 | if (!this->emitGetPtrLocal(*ResultIndex, BO)) |
| 864 | return false; |
| 865 | } |
| 866 | |
| 867 | if (!visit(E: LHS) || !visit(E: RHS)) |
| 868 | return false; |
| 869 | |
| 870 | return this->emitCMP3(*LT, CmpInfo, BO); |
| 871 | } |
| 872 | |
| 873 | if (!LT || !RT || !T) |
| 874 | return false; |
| 875 | |
| 876 | // Pointer arithmetic special case. |
| 877 | if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { |
| 878 | if (isPtrType(T: *T) || (isPtrType(T: *LT) && isPtrType(T: *RT))) |
| 879 | return this->VisitPointerArithBinOp(BO); |
| 880 | } |
| 881 | |
| 882 | // Assignments require us to evalute the RHS first. |
| 883 | if (BO->getOpcode() == BO_Assign) { |
| 884 | |
| 885 | if (!visit(E: RHS) || !visit(E: LHS)) |
| 886 | return false; |
| 887 | |
| 888 | // We don't support assignments in C. |
| 889 | if (!Ctx.getLangOpts().CPlusPlus && !this->emitInvalid(BO)) |
| 890 | return false; |
| 891 | |
| 892 | if (!this->emitFlip(*LT, *RT, BO)) |
| 893 | return false; |
| 894 | } else { |
| 895 | if (!visit(E: LHS) || !visit(E: RHS)) |
| 896 | return false; |
| 897 | } |
| 898 | |
| 899 | // For languages such as C, cast the result of one |
| 900 | // of our comparision opcodes to T (which is usually int). |
| 901 | auto MaybeCastToBool = [this, T, BO](bool Result) { |
| 902 | if (!Result) |
| 903 | return false; |
| 904 | if (DiscardResult) |
| 905 | return this->emitPop(*T, BO); |
| 906 | if (T != PT_Bool) |
| 907 | return this->emitCast(PT_Bool, *T, BO); |
| 908 | return true; |
| 909 | }; |
| 910 | |
| 911 | auto Discard = [this, T, BO](bool Result) { |
| 912 | if (!Result) |
| 913 | return false; |
| 914 | return DiscardResult ? this->emitPop(*T, BO) : true; |
| 915 | }; |
| 916 | |
| 917 | switch (BO->getOpcode()) { |
| 918 | case BO_EQ: |
| 919 | return MaybeCastToBool(this->emitEQ(*LT, BO)); |
| 920 | case BO_NE: |
| 921 | return MaybeCastToBool(this->emitNE(*LT, BO)); |
| 922 | case BO_LT: |
| 923 | return MaybeCastToBool(this->emitLT(*LT, BO)); |
| 924 | case BO_LE: |
| 925 | return MaybeCastToBool(this->emitLE(*LT, BO)); |
| 926 | case BO_GT: |
| 927 | return MaybeCastToBool(this->emitGT(*LT, BO)); |
| 928 | case BO_GE: |
| 929 | return MaybeCastToBool(this->emitGE(*LT, BO)); |
| 930 | case BO_Sub: |
| 931 | if (BO->getType()->isFloatingType()) |
| 932 | return Discard(this->emitSubf(getFPOptions(E: BO), BO)); |
| 933 | return Discard(this->emitSub(*T, BO)); |
| 934 | case BO_Add: |
| 935 | if (BO->getType()->isFloatingType()) |
| 936 | return Discard(this->emitAddf(getFPOptions(E: BO), BO)); |
| 937 | return Discard(this->emitAdd(*T, BO)); |
| 938 | case BO_Mul: |
| 939 | if (BO->getType()->isFloatingType()) |
| 940 | return Discard(this->emitMulf(getFPOptions(E: BO), BO)); |
| 941 | return Discard(this->emitMul(*T, BO)); |
| 942 | case BO_Rem: |
| 943 | return Discard(this->emitRem(*T, BO)); |
| 944 | case BO_Div: |
| 945 | if (BO->getType()->isFloatingType()) |
| 946 | return Discard(this->emitDivf(getFPOptions(E: BO), BO)); |
| 947 | return Discard(this->emitDiv(*T, BO)); |
| 948 | case BO_Assign: |
| 949 | if (DiscardResult) |
| 950 | return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) |
| 951 | : this->emitStorePop(*T, BO); |
| 952 | if (LHS->refersToBitField()) { |
| 953 | if (!this->emitStoreBitField(*T, BO)) |
| 954 | return false; |
| 955 | } else { |
| 956 | if (!this->emitStore(*T, BO)) |
| 957 | return false; |
| 958 | } |
| 959 | // Assignments aren't necessarily lvalues in C. |
| 960 | // Load from them in that case. |
| 961 | if (!BO->isLValue()) |
| 962 | return this->emitLoadPop(*T, BO); |
| 963 | return true; |
| 964 | case BO_And: |
| 965 | return Discard(this->emitBitAnd(*T, BO)); |
| 966 | case BO_Or: |
| 967 | return Discard(this->emitBitOr(*T, BO)); |
| 968 | case BO_Shl: |
| 969 | return Discard(this->emitShl(*LT, *RT, BO)); |
| 970 | case BO_Shr: |
| 971 | return Discard(this->emitShr(*LT, *RT, BO)); |
| 972 | case BO_Xor: |
| 973 | return Discard(this->emitBitXor(*T, BO)); |
| 974 | case BO_LOr: |
| 975 | case BO_LAnd: |
| 976 | llvm_unreachable("Already handled earlier" ); |
| 977 | default: |
| 978 | return false; |
| 979 | } |
| 980 | |
| 981 | llvm_unreachable("Unhandled binary op" ); |
| 982 | } |
| 983 | |
| 984 | /// Perform addition/subtraction of a pointer and an integer or |
| 985 | /// subtraction of two pointers. |
| 986 | template <class Emitter> |
| 987 | bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { |
| 988 | BinaryOperatorKind Op = E->getOpcode(); |
| 989 | const Expr *LHS = E->getLHS(); |
| 990 | const Expr *RHS = E->getRHS(); |
| 991 | |
| 992 | if ((Op != BO_Add && Op != BO_Sub) || |
| 993 | (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) |
| 994 | return false; |
| 995 | |
| 996 | std::optional<PrimType> LT = classify(LHS); |
| 997 | std::optional<PrimType> RT = classify(RHS); |
| 998 | |
| 999 | if (!LT || !RT) |
| 1000 | return false; |
| 1001 | |
| 1002 | // Visit the given pointer expression and optionally convert to a PT_Ptr. |
| 1003 | auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool { |
| 1004 | if (!this->visit(E)) |
| 1005 | return false; |
| 1006 | if (T != PT_Ptr) |
| 1007 | return this->emitDecayPtr(T, PT_Ptr, E); |
| 1008 | return true; |
| 1009 | }; |
| 1010 | |
| 1011 | if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { |
| 1012 | if (Op != BO_Sub) |
| 1013 | return false; |
| 1014 | |
| 1015 | assert(E->getType()->isIntegerType()); |
| 1016 | if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT)) |
| 1017 | return false; |
| 1018 | |
| 1019 | PrimType IntT = classifyPrim(E->getType()); |
| 1020 | if (!this->emitSubPtr(IntT, E)) |
| 1021 | return false; |
| 1022 | return DiscardResult ? this->emitPop(IntT, E) : true; |
| 1023 | } |
| 1024 | |
| 1025 | PrimType OffsetType; |
| 1026 | if (LHS->getType()->isIntegerType()) { |
| 1027 | if (!visitAsPointer(RHS, *RT)) |
| 1028 | return false; |
| 1029 | if (!this->visit(LHS)) |
| 1030 | return false; |
| 1031 | OffsetType = *LT; |
| 1032 | } else if (RHS->getType()->isIntegerType()) { |
| 1033 | if (!visitAsPointer(LHS, *LT)) |
| 1034 | return false; |
| 1035 | if (!this->visit(RHS)) |
| 1036 | return false; |
| 1037 | OffsetType = *RT; |
| 1038 | } else { |
| 1039 | return false; |
| 1040 | } |
| 1041 | |
| 1042 | // Do the operation and optionally transform to |
| 1043 | // result pointer type. |
| 1044 | if (Op == BO_Add) { |
| 1045 | if (!this->emitAddOffset(OffsetType, E)) |
| 1046 | return false; |
| 1047 | |
| 1048 | if (classifyPrim(E) != PT_Ptr) |
| 1049 | return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); |
| 1050 | return true; |
| 1051 | } else if (Op == BO_Sub) { |
| 1052 | if (!this->emitSubOffset(OffsetType, E)) |
| 1053 | return false; |
| 1054 | |
| 1055 | if (classifyPrim(E) != PT_Ptr) |
| 1056 | return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); |
| 1057 | return true; |
| 1058 | } |
| 1059 | |
| 1060 | return false; |
| 1061 | } |
| 1062 | |
| 1063 | template <class Emitter> |
| 1064 | bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { |
| 1065 | assert(E->isLogicalOp()); |
| 1066 | BinaryOperatorKind Op = E->getOpcode(); |
| 1067 | const Expr *LHS = E->getLHS(); |
| 1068 | const Expr *RHS = E->getRHS(); |
| 1069 | std::optional<PrimType> T = classify(E->getType()); |
| 1070 | |
| 1071 | if (Op == BO_LOr) { |
| 1072 | // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. |
| 1073 | LabelTy LabelTrue = this->getLabel(); |
| 1074 | LabelTy LabelEnd = this->getLabel(); |
| 1075 | |
| 1076 | if (!this->visitBool(LHS)) |
| 1077 | return false; |
| 1078 | if (!this->jumpTrue(LabelTrue)) |
| 1079 | return false; |
| 1080 | |
| 1081 | if (!this->visitBool(RHS)) |
| 1082 | return false; |
| 1083 | if (!this->jump(LabelEnd)) |
| 1084 | return false; |
| 1085 | |
| 1086 | this->emitLabel(LabelTrue); |
| 1087 | this->emitConstBool(true, E); |
| 1088 | this->fallthrough(LabelEnd); |
| 1089 | this->emitLabel(LabelEnd); |
| 1090 | |
| 1091 | } else { |
| 1092 | assert(Op == BO_LAnd); |
| 1093 | // Logical AND. |
| 1094 | // Visit LHS. Only visit RHS if LHS was TRUE. |
| 1095 | LabelTy LabelFalse = this->getLabel(); |
| 1096 | LabelTy LabelEnd = this->getLabel(); |
| 1097 | |
| 1098 | if (!this->visitBool(LHS)) |
| 1099 | return false; |
| 1100 | if (!this->jumpFalse(LabelFalse)) |
| 1101 | return false; |
| 1102 | |
| 1103 | if (!this->visitBool(RHS)) |
| 1104 | return false; |
| 1105 | if (!this->jump(LabelEnd)) |
| 1106 | return false; |
| 1107 | |
| 1108 | this->emitLabel(LabelFalse); |
| 1109 | this->emitConstBool(false, E); |
| 1110 | this->fallthrough(LabelEnd); |
| 1111 | this->emitLabel(LabelEnd); |
| 1112 | } |
| 1113 | |
| 1114 | if (DiscardResult) |
| 1115 | return this->emitPopBool(E); |
| 1116 | |
| 1117 | // For C, cast back to integer type. |
| 1118 | assert(T); |
| 1119 | if (T != PT_Bool) |
| 1120 | return this->emitCast(PT_Bool, *T, E); |
| 1121 | return true; |
| 1122 | } |
| 1123 | |
| 1124 | template <class Emitter> |
| 1125 | bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { |
| 1126 | // Prepare storage for result. |
| 1127 | if (!Initializing) { |
| 1128 | std::optional<unsigned> LocalIndex = allocateTemporary(E); |
| 1129 | if (!LocalIndex) |
| 1130 | return false; |
| 1131 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| 1132 | return false; |
| 1133 | } |
| 1134 | |
| 1135 | // Both LHS and RHS might _not_ be of complex type, but one of them |
| 1136 | // needs to be. |
| 1137 | const Expr *LHS = E->getLHS(); |
| 1138 | const Expr *RHS = E->getRHS(); |
| 1139 | |
| 1140 | PrimType ResultElemT = this->classifyComplexElementType(E->getType()); |
| 1141 | unsigned ResultOffset = ~0u; |
| 1142 | if (!DiscardResult) |
| 1143 | ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, /*IsConst=*/true); |
| 1144 | |
| 1145 | // Save result pointer in ResultOffset |
| 1146 | if (!this->DiscardResult) { |
| 1147 | if (!this->emitDupPtr(E)) |
| 1148 | return false; |
| 1149 | if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) |
| 1150 | return false; |
| 1151 | } |
| 1152 | QualType LHSType = LHS->getType(); |
| 1153 | if (const auto *AT = LHSType->getAs<AtomicType>()) |
| 1154 | LHSType = AT->getValueType(); |
| 1155 | QualType RHSType = RHS->getType(); |
| 1156 | if (const auto *AT = RHSType->getAs<AtomicType>()) |
| 1157 | RHSType = AT->getValueType(); |
| 1158 | |
| 1159 | bool LHSIsComplex = LHSType->isAnyComplexType(); |
| 1160 | unsigned LHSOffset; |
| 1161 | bool RHSIsComplex = RHSType->isAnyComplexType(); |
| 1162 | |
| 1163 | // For ComplexComplex Mul, we have special ops to make their implementation |
| 1164 | // easier. |
| 1165 | BinaryOperatorKind Op = E->getOpcode(); |
| 1166 | if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { |
| 1167 | assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == |
| 1168 | classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); |
| 1169 | PrimType ElemT = |
| 1170 | classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); |
| 1171 | if (!this->visit(LHS)) |
| 1172 | return false; |
| 1173 | if (!this->visit(RHS)) |
| 1174 | return false; |
| 1175 | return this->emitMulc(ElemT, E); |
| 1176 | } |
| 1177 | |
| 1178 | if (Op == BO_Div && RHSIsComplex) { |
| 1179 | QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); |
| 1180 | PrimType ElemT = classifyPrim(ElemQT); |
| 1181 | // If the LHS is not complex, we still need to do the full complex |
| 1182 | // division, so just stub create a complex value and stub it out with |
| 1183 | // the LHS and a zero. |
| 1184 | |
| 1185 | if (!LHSIsComplex) { |
| 1186 | // This is using the RHS type for the fake-complex LHS. |
| 1187 | std::optional<unsigned> LocalIndex = allocateTemporary(E: RHS); |
| 1188 | if (!LocalIndex) |
| 1189 | return false; |
| 1190 | LHSOffset = *LocalIndex; |
| 1191 | |
| 1192 | if (!this->emitGetPtrLocal(LHSOffset, E)) |
| 1193 | return false; |
| 1194 | |
| 1195 | if (!this->visit(LHS)) |
| 1196 | return false; |
| 1197 | // real is LHS |
| 1198 | if (!this->emitInitElem(ElemT, 0, E)) |
| 1199 | return false; |
| 1200 | // imag is zero |
| 1201 | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| 1202 | return false; |
| 1203 | if (!this->emitInitElem(ElemT, 1, E)) |
| 1204 | return false; |
| 1205 | } else { |
| 1206 | if (!this->visit(LHS)) |
| 1207 | return false; |
| 1208 | } |
| 1209 | |
| 1210 | if (!this->visit(RHS)) |
| 1211 | return false; |
| 1212 | return this->emitDivc(ElemT, E); |
| 1213 | } |
| 1214 | |
| 1215 | // Evaluate LHS and save value to LHSOffset. |
| 1216 | if (LHSType->isAnyComplexType()) { |
| 1217 | LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true); |
| 1218 | if (!this->visit(LHS)) |
| 1219 | return false; |
| 1220 | if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) |
| 1221 | return false; |
| 1222 | } else { |
| 1223 | PrimType LHST = classifyPrim(LHSType); |
| 1224 | LHSOffset = this->allocateLocalPrimitive(LHS, LHST, /*IsConst=*/true); |
| 1225 | if (!this->visit(LHS)) |
| 1226 | return false; |
| 1227 | if (!this->emitSetLocal(LHST, LHSOffset, E)) |
| 1228 | return false; |
| 1229 | } |
| 1230 | |
| 1231 | // Same with RHS. |
| 1232 | unsigned RHSOffset; |
| 1233 | if (RHSType->isAnyComplexType()) { |
| 1234 | RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true); |
| 1235 | if (!this->visit(RHS)) |
| 1236 | return false; |
| 1237 | if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) |
| 1238 | return false; |
| 1239 | } else { |
| 1240 | PrimType RHST = classifyPrim(RHSType); |
| 1241 | RHSOffset = this->allocateLocalPrimitive(RHS, RHST, /*IsConst=*/true); |
| 1242 | if (!this->visit(RHS)) |
| 1243 | return false; |
| 1244 | if (!this->emitSetLocal(RHST, RHSOffset, E)) |
| 1245 | return false; |
| 1246 | } |
| 1247 | |
| 1248 | // For both LHS and RHS, either load the value from the complex pointer, or |
| 1249 | // directly from the local variable. For index 1 (i.e. the imaginary part), |
| 1250 | // just load 0 and do the operation anyway. |
| 1251 | auto loadComplexValue = [this](bool IsComplex, bool LoadZero, |
| 1252 | unsigned ElemIndex, unsigned Offset, |
| 1253 | const Expr *E) -> bool { |
| 1254 | if (IsComplex) { |
| 1255 | if (!this->emitGetLocal(PT_Ptr, Offset, E)) |
| 1256 | return false; |
| 1257 | return this->emitArrayElemPop(classifyComplexElementType(T: E->getType()), |
| 1258 | ElemIndex, E); |
| 1259 | } |
| 1260 | if (ElemIndex == 0 || !LoadZero) |
| 1261 | return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); |
| 1262 | return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), |
| 1263 | E); |
| 1264 | }; |
| 1265 | |
| 1266 | // Now we can get pointers to the LHS and RHS from the offsets above. |
| 1267 | for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { |
| 1268 | // Result pointer for the store later. |
| 1269 | if (!this->DiscardResult) { |
| 1270 | if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) |
| 1271 | return false; |
| 1272 | } |
| 1273 | |
| 1274 | // The actual operation. |
| 1275 | switch (Op) { |
| 1276 | case BO_Add: |
| 1277 | if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) |
| 1278 | return false; |
| 1279 | |
| 1280 | if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) |
| 1281 | return false; |
| 1282 | if (ResultElemT == PT_Float) { |
| 1283 | if (!this->emitAddf(getFPOptions(E), E)) |
| 1284 | return false; |
| 1285 | } else { |
| 1286 | if (!this->emitAdd(ResultElemT, E)) |
| 1287 | return false; |
| 1288 | } |
| 1289 | break; |
| 1290 | case BO_Sub: |
| 1291 | if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) |
| 1292 | return false; |
| 1293 | |
| 1294 | if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) |
| 1295 | return false; |
| 1296 | if (ResultElemT == PT_Float) { |
| 1297 | if (!this->emitSubf(getFPOptions(E), E)) |
| 1298 | return false; |
| 1299 | } else { |
| 1300 | if (!this->emitSub(ResultElemT, E)) |
| 1301 | return false; |
| 1302 | } |
| 1303 | break; |
| 1304 | case BO_Mul: |
| 1305 | if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) |
| 1306 | return false; |
| 1307 | |
| 1308 | if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) |
| 1309 | return false; |
| 1310 | |
| 1311 | if (ResultElemT == PT_Float) { |
| 1312 | if (!this->emitMulf(getFPOptions(E), E)) |
| 1313 | return false; |
| 1314 | } else { |
| 1315 | if (!this->emitMul(ResultElemT, E)) |
| 1316 | return false; |
| 1317 | } |
| 1318 | break; |
| 1319 | case BO_Div: |
| 1320 | assert(!RHSIsComplex); |
| 1321 | if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) |
| 1322 | return false; |
| 1323 | |
| 1324 | if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) |
| 1325 | return false; |
| 1326 | |
| 1327 | if (ResultElemT == PT_Float) { |
| 1328 | if (!this->emitDivf(getFPOptions(E), E)) |
| 1329 | return false; |
| 1330 | } else { |
| 1331 | if (!this->emitDiv(ResultElemT, E)) |
| 1332 | return false; |
| 1333 | } |
| 1334 | break; |
| 1335 | |
| 1336 | default: |
| 1337 | return false; |
| 1338 | } |
| 1339 | |
| 1340 | if (!this->DiscardResult) { |
| 1341 | // Initialize array element with the value we just computed. |
| 1342 | if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) |
| 1343 | return false; |
| 1344 | } else { |
| 1345 | if (!this->emitPop(ResultElemT, E)) |
| 1346 | return false; |
| 1347 | } |
| 1348 | } |
| 1349 | return true; |
| 1350 | } |
| 1351 | |
| 1352 | template <class Emitter> |
| 1353 | bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) { |
| 1354 | assert(!E->isCommaOp() && |
| 1355 | "Comma op should be handled in VisitBinaryOperator" ); |
| 1356 | assert(E->getType()->isVectorType()); |
| 1357 | assert(E->getLHS()->getType()->isVectorType()); |
| 1358 | assert(E->getRHS()->getType()->isVectorType()); |
| 1359 | |
| 1360 | // Prepare storage for result. |
| 1361 | if (!Initializing && !E->isCompoundAssignmentOp()) { |
| 1362 | std::optional<unsigned> LocalIndex = allocateTemporary(E); |
| 1363 | if (!LocalIndex) |
| 1364 | return false; |
| 1365 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| 1366 | return false; |
| 1367 | } |
| 1368 | |
| 1369 | const Expr *LHS = E->getLHS(); |
| 1370 | const Expr *RHS = E->getRHS(); |
| 1371 | const auto *VecTy = E->getType()->getAs<VectorType>(); |
| 1372 | auto Op = E->isCompoundAssignmentOp() |
| 1373 | ? BinaryOperator::getOpForCompoundAssignment(Opc: E->getOpcode()) |
| 1374 | : E->getOpcode(); |
| 1375 | |
| 1376 | PrimType ElemT = this->classifyVectorElementType(LHS->getType()); |
| 1377 | PrimType RHSElemT = this->classifyVectorElementType(RHS->getType()); |
| 1378 | PrimType ResultElemT = this->classifyVectorElementType(E->getType()); |
| 1379 | |
| 1380 | // Evaluate LHS and save value to LHSOffset. |
| 1381 | unsigned LHSOffset = |
| 1382 | this->allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true); |
| 1383 | if (!this->visit(LHS)) |
| 1384 | return false; |
| 1385 | if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) |
| 1386 | return false; |
| 1387 | |
| 1388 | // Evaluate RHS and save value to RHSOffset. |
| 1389 | unsigned RHSOffset = |
| 1390 | this->allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true); |
| 1391 | if (!this->visit(RHS)) |
| 1392 | return false; |
| 1393 | if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) |
| 1394 | return false; |
| 1395 | |
| 1396 | if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E)) |
| 1397 | return false; |
| 1398 | |
| 1399 | // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the |
| 1400 | // integer promotion. |
| 1401 | bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp()); |
| 1402 | QualType PromotTy = |
| 1403 | Ctx.getASTContext().getPromotedIntegerType(PromotableType: Ctx.getASTContext().BoolTy); |
| 1404 | PrimType PromotT = classifyPrim(PromotTy); |
| 1405 | PrimType OpT = NeedIntPromot ? PromotT : ElemT; |
| 1406 | |
| 1407 | auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) { |
| 1408 | if (!this->emitGetLocal(PT_Ptr, Offset, E)) |
| 1409 | return false; |
| 1410 | if (!this->emitArrayElemPop(ElemT, Index, E)) |
| 1411 | return false; |
| 1412 | if (E->isLogicalOp()) { |
| 1413 | if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) |
| 1414 | return false; |
| 1415 | if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) |
| 1416 | return false; |
| 1417 | } else if (NeedIntPromot) { |
| 1418 | if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E)) |
| 1419 | return false; |
| 1420 | } |
| 1421 | return true; |
| 1422 | }; |
| 1423 | |
| 1424 | #define EMIT_ARITH_OP(OP) \ |
| 1425 | { \ |
| 1426 | if (ElemT == PT_Float) { \ |
| 1427 | if (!this->emit##OP##f(getFPOptions(E), E)) \ |
| 1428 | return false; \ |
| 1429 | } else { \ |
| 1430 | if (!this->emit##OP(ElemT, E)) \ |
| 1431 | return false; \ |
| 1432 | } \ |
| 1433 | break; \ |
| 1434 | } |
| 1435 | |
| 1436 | for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { |
| 1437 | if (!getElem(LHSOffset, ElemT, I)) |
| 1438 | return false; |
| 1439 | if (!getElem(RHSOffset, RHSElemT, I)) |
| 1440 | return false; |
| 1441 | switch (Op) { |
| 1442 | case BO_Add: |
| 1443 | EMIT_ARITH_OP(Add) |
| 1444 | case BO_Sub: |
| 1445 | EMIT_ARITH_OP(Sub) |
| 1446 | case BO_Mul: |
| 1447 | EMIT_ARITH_OP(Mul) |
| 1448 | case BO_Div: |
| 1449 | EMIT_ARITH_OP(Div) |
| 1450 | case BO_Rem: |
| 1451 | if (!this->emitRem(ElemT, E)) |
| 1452 | return false; |
| 1453 | break; |
| 1454 | case BO_And: |
| 1455 | if (!this->emitBitAnd(OpT, E)) |
| 1456 | return false; |
| 1457 | break; |
| 1458 | case BO_Or: |
| 1459 | if (!this->emitBitOr(OpT, E)) |
| 1460 | return false; |
| 1461 | break; |
| 1462 | case BO_Xor: |
| 1463 | if (!this->emitBitXor(OpT, E)) |
| 1464 | return false; |
| 1465 | break; |
| 1466 | case BO_Shl: |
| 1467 | if (!this->emitShl(OpT, RHSElemT, E)) |
| 1468 | return false; |
| 1469 | break; |
| 1470 | case BO_Shr: |
| 1471 | if (!this->emitShr(OpT, RHSElemT, E)) |
| 1472 | return false; |
| 1473 | break; |
| 1474 | case BO_EQ: |
| 1475 | if (!this->emitEQ(ElemT, E)) |
| 1476 | return false; |
| 1477 | break; |
| 1478 | case BO_NE: |
| 1479 | if (!this->emitNE(ElemT, E)) |
| 1480 | return false; |
| 1481 | break; |
| 1482 | case BO_LE: |
| 1483 | if (!this->emitLE(ElemT, E)) |
| 1484 | return false; |
| 1485 | break; |
| 1486 | case BO_LT: |
| 1487 | if (!this->emitLT(ElemT, E)) |
| 1488 | return false; |
| 1489 | break; |
| 1490 | case BO_GE: |
| 1491 | if (!this->emitGE(ElemT, E)) |
| 1492 | return false; |
| 1493 | break; |
| 1494 | case BO_GT: |
| 1495 | if (!this->emitGT(ElemT, E)) |
| 1496 | return false; |
| 1497 | break; |
| 1498 | case BO_LAnd: |
| 1499 | // a && b is equivalent to a!=0 & b!=0 |
| 1500 | if (!this->emitBitAnd(ResultElemT, E)) |
| 1501 | return false; |
| 1502 | break; |
| 1503 | case BO_LOr: |
| 1504 | // a || b is equivalent to a!=0 | b!=0 |
| 1505 | if (!this->emitBitOr(ResultElemT, E)) |
| 1506 | return false; |
| 1507 | break; |
| 1508 | default: |
| 1509 | return this->emitInvalid(E); |
| 1510 | } |
| 1511 | |
| 1512 | // The result of the comparison is a vector of the same width and number |
| 1513 | // of elements as the comparison operands with a signed integral element |
| 1514 | // type. |
| 1515 | // |
| 1516 | // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html |
| 1517 | if (E->isComparisonOp()) { |
| 1518 | if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) |
| 1519 | return false; |
| 1520 | if (!this->emitNeg(ResultElemT, E)) |
| 1521 | return false; |
| 1522 | } |
| 1523 | |
| 1524 | // If we performed an integer promotion, we need to cast the compute result |
| 1525 | // into result vector element type. |
| 1526 | if (NeedIntPromot && |
| 1527 | !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E)) |
| 1528 | return false; |
| 1529 | |
| 1530 | // Initialize array element with the value we just computed. |
| 1531 | if (!this->emitInitElem(ResultElemT, I, E)) |
| 1532 | return false; |
| 1533 | } |
| 1534 | |
| 1535 | if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E)) |
| 1536 | return false; |
| 1537 | return true; |
| 1538 | } |
| 1539 | |
| 1540 | template <class Emitter> |
| 1541 | bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) { |
| 1542 | const Expr *LHS = E->getLHS(); |
| 1543 | const Expr *RHS = E->getRHS(); |
| 1544 | const ASTContext &ASTCtx = Ctx.getASTContext(); |
| 1545 | |
| 1546 | assert(LHS->getType()->isFixedPointType() || |
| 1547 | RHS->getType()->isFixedPointType()); |
| 1548 | |
| 1549 | auto LHSSema = ASTCtx.getFixedPointSemantics(Ty: LHS->getType()); |
| 1550 | auto LHSSemaInt = LHSSema.toOpaqueInt(); |
| 1551 | auto RHSSema = ASTCtx.getFixedPointSemantics(Ty: RHS->getType()); |
| 1552 | auto RHSSemaInt = RHSSema.toOpaqueInt(); |
| 1553 | |
| 1554 | if (!this->visit(LHS)) |
| 1555 | return false; |
| 1556 | if (!LHS->getType()->isFixedPointType()) { |
| 1557 | if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), |
| 1558 | LHSSemaInt, E)) |
| 1559 | return false; |
| 1560 | } |
| 1561 | |
| 1562 | if (!this->visit(RHS)) |
| 1563 | return false; |
| 1564 | if (!RHS->getType()->isFixedPointType()) { |
| 1565 | if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), |
| 1566 | RHSSemaInt, E)) |
| 1567 | return false; |
| 1568 | } |
| 1569 | |
| 1570 | // Convert the result to the target semantics. |
| 1571 | auto ConvertResult = [&](bool R) -> bool { |
| 1572 | if (!R) |
| 1573 | return false; |
| 1574 | auto ResultSema = ASTCtx.getFixedPointSemantics(Ty: E->getType()).toOpaqueInt(); |
| 1575 | auto CommonSema = LHSSema.getCommonSemantics(Other: RHSSema).toOpaqueInt(); |
| 1576 | if (ResultSema != CommonSema) |
| 1577 | return this->emitCastFixedPoint(ResultSema, E); |
| 1578 | return true; |
| 1579 | }; |
| 1580 | |
| 1581 | auto MaybeCastToBool = [&](bool Result) { |
| 1582 | if (!Result) |
| 1583 | return false; |
| 1584 | PrimType T = classifyPrim(E); |
| 1585 | if (DiscardResult) |
| 1586 | return this->emitPop(T, E); |
| 1587 | if (T != PT_Bool) |
| 1588 | return this->emitCast(PT_Bool, T, E); |
| 1589 | return true; |
| 1590 | }; |
| 1591 | |
| 1592 | switch (E->getOpcode()) { |
| 1593 | case BO_EQ: |
| 1594 | return MaybeCastToBool(this->emitEQFixedPoint(E)); |
| 1595 | case BO_NE: |
| 1596 | return MaybeCastToBool(this->emitNEFixedPoint(E)); |
| 1597 | case BO_LT: |
| 1598 | return MaybeCastToBool(this->emitLTFixedPoint(E)); |
| 1599 | case BO_LE: |
| 1600 | return MaybeCastToBool(this->emitLEFixedPoint(E)); |
| 1601 | case BO_GT: |
| 1602 | return MaybeCastToBool(this->emitGTFixedPoint(E)); |
| 1603 | case BO_GE: |
| 1604 | return MaybeCastToBool(this->emitGEFixedPoint(E)); |
| 1605 | case BO_Add: |
| 1606 | return ConvertResult(this->emitAddFixedPoint(E)); |
| 1607 | case BO_Sub: |
| 1608 | return ConvertResult(this->emitSubFixedPoint(E)); |
| 1609 | case BO_Mul: |
| 1610 | return ConvertResult(this->emitMulFixedPoint(E)); |
| 1611 | case BO_Div: |
| 1612 | return ConvertResult(this->emitDivFixedPoint(E)); |
| 1613 | case BO_Shl: |
| 1614 | return ConvertResult(this->emitShiftFixedPoint(/*Left=*/true, E)); |
| 1615 | case BO_Shr: |
| 1616 | return ConvertResult(this->emitShiftFixedPoint(/*Left=*/false, E)); |
| 1617 | |
| 1618 | default: |
| 1619 | return this->emitInvalid(E); |
| 1620 | } |
| 1621 | |
| 1622 | llvm_unreachable("unhandled binop opcode" ); |
| 1623 | } |
| 1624 | |
| 1625 | template <class Emitter> |
| 1626 | bool Compiler<Emitter>::VisitFixedPointUnaryOperator(const UnaryOperator *E) { |
| 1627 | const Expr *SubExpr = E->getSubExpr(); |
| 1628 | assert(SubExpr->getType()->isFixedPointType()); |
| 1629 | |
| 1630 | switch (E->getOpcode()) { |
| 1631 | case UO_Plus: |
| 1632 | return this->delegate(SubExpr); |
| 1633 | case UO_Minus: |
| 1634 | if (!this->visit(SubExpr)) |
| 1635 | return false; |
| 1636 | return this->emitNegFixedPoint(E); |
| 1637 | default: |
| 1638 | return false; |
| 1639 | } |
| 1640 | |
| 1641 | llvm_unreachable("Unhandled unary opcode" ); |
| 1642 | } |
| 1643 | |
| 1644 | template <class Emitter> |
| 1645 | bool Compiler<Emitter>::VisitImplicitValueInitExpr( |
| 1646 | const ImplicitValueInitExpr *E) { |
| 1647 | QualType QT = E->getType(); |
| 1648 | |
| 1649 | if (std::optional<PrimType> T = classify(QT)) |
| 1650 | return this->visitZeroInitializer(*T, QT, E); |
| 1651 | |
| 1652 | if (QT->isRecordType()) { |
| 1653 | const RecordDecl *RD = QT->getAsRecordDecl(); |
| 1654 | assert(RD); |
| 1655 | if (RD->isInvalidDecl()) |
| 1656 | return false; |
| 1657 | |
| 1658 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD); |
| 1659 | CXXRD && CXXRD->getNumVBases() > 0) { |
| 1660 | // TODO: Diagnose. |
| 1661 | return false; |
| 1662 | } |
| 1663 | |
| 1664 | const Record *R = getRecord(QT); |
| 1665 | if (!R) |
| 1666 | return false; |
| 1667 | |
| 1668 | assert(Initializing); |
| 1669 | return this->visitZeroRecordInitializer(R, E); |
| 1670 | } |
| 1671 | |
| 1672 | if (QT->isIncompleteArrayType()) |
| 1673 | return true; |
| 1674 | |
| 1675 | if (QT->isArrayType()) |
| 1676 | return this->visitZeroArrayInitializer(QT, E); |
| 1677 | |
| 1678 | if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { |
| 1679 | assert(Initializing); |
| 1680 | QualType ElemQT = ComplexTy->getElementType(); |
| 1681 | PrimType ElemT = classifyPrim(ElemQT); |
| 1682 | for (unsigned I = 0; I < 2; ++I) { |
| 1683 | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| 1684 | return false; |
| 1685 | if (!this->emitInitElem(ElemT, I, E)) |
| 1686 | return false; |
| 1687 | } |
| 1688 | return true; |
| 1689 | } |
| 1690 | |
| 1691 | if (const auto *VecT = E->getType()->getAs<VectorType>()) { |
| 1692 | unsigned NumVecElements = VecT->getNumElements(); |
| 1693 | QualType ElemQT = VecT->getElementType(); |
| 1694 | PrimType ElemT = classifyPrim(ElemQT); |
| 1695 | |
| 1696 | for (unsigned I = 0; I < NumVecElements; ++I) { |
| 1697 | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| 1698 | return false; |
| 1699 | if (!this->emitInitElem(ElemT, I, E)) |
| 1700 | return false; |
| 1701 | } |
| 1702 | return true; |
| 1703 | } |
| 1704 | |
| 1705 | return false; |
| 1706 | } |
| 1707 | |
| 1708 | template <class Emitter> |
| 1709 | bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { |
| 1710 | const Expr *LHS = E->getLHS(); |
| 1711 | const Expr *RHS = E->getRHS(); |
| 1712 | const Expr *Index = E->getIdx(); |
| 1713 | const Expr *Base = E->getBase(); |
| 1714 | |
| 1715 | // C++17's rules require us to evaluate the LHS first, regardless of which |
| 1716 | // side is the base. |
| 1717 | bool Success = true; |
| 1718 | for (const Expr *SubExpr : {LHS, RHS}) { |
| 1719 | if (!this->visit(SubExpr)) { |
| 1720 | Success = false; |
| 1721 | continue; |
| 1722 | } |
| 1723 | |
| 1724 | // Expand the base if this is a subscript on a |
| 1725 | // pointer expression. |
| 1726 | if (SubExpr == Base && Base->getType()->isPointerType()) { |
| 1727 | if (!this->emitExpandPtr(E)) |
| 1728 | Success = false; |
| 1729 | } |
| 1730 | } |
| 1731 | |
| 1732 | if (!Success) |
| 1733 | return false; |
| 1734 | |
| 1735 | std::optional<PrimType> IndexT = classify(Index->getType()); |
| 1736 | // In error-recovery cases, the index expression has a dependent type. |
| 1737 | if (!IndexT) |
| 1738 | return this->emitError(E); |
| 1739 | // If the index is first, we need to change that. |
| 1740 | if (LHS == Index) { |
| 1741 | if (!this->emitFlip(PT_Ptr, *IndexT, E)) |
| 1742 | return false; |
| 1743 | } |
| 1744 | |
| 1745 | if (!this->emitArrayElemPtrPop(*IndexT, E)) |
| 1746 | return false; |
| 1747 | if (DiscardResult) |
| 1748 | return this->emitPopPtr(E); |
| 1749 | return true; |
| 1750 | } |
| 1751 | |
| 1752 | template <class Emitter> |
| 1753 | bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, |
| 1754 | const Expr *ArrayFiller, const Expr *E) { |
| 1755 | InitLinkScope<Emitter> ILS(this, InitLink::InitList()); |
| 1756 | |
| 1757 | QualType QT = E->getType(); |
| 1758 | if (const auto *AT = QT->getAs<AtomicType>()) |
| 1759 | QT = AT->getValueType(); |
| 1760 | |
| 1761 | if (QT->isVoidType()) { |
| 1762 | if (Inits.size() == 0) |
| 1763 | return true; |
| 1764 | return this->emitInvalid(E); |
| 1765 | } |
| 1766 | |
| 1767 | // Handle discarding first. |
| 1768 | if (DiscardResult) { |
| 1769 | for (const Expr *Init : Inits) { |
| 1770 | if (!this->discard(Init)) |
| 1771 | return false; |
| 1772 | } |
| 1773 | return true; |
| 1774 | } |
| 1775 | |
| 1776 | // Primitive values. |
| 1777 | if (std::optional<PrimType> T = classify(QT)) { |
| 1778 | assert(!DiscardResult); |
| 1779 | if (Inits.size() == 0) |
| 1780 | return this->visitZeroInitializer(*T, QT, E); |
| 1781 | assert(Inits.size() == 1); |
| 1782 | return this->delegate(Inits[0]); |
| 1783 | } |
| 1784 | |
| 1785 | if (QT->isRecordType()) { |
| 1786 | const Record *R = getRecord(QT); |
| 1787 | |
| 1788 | if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) |
| 1789 | return this->delegate(Inits[0]); |
| 1790 | |
| 1791 | auto initPrimitiveField = [=](const Record::Field *FieldToInit, |
| 1792 | const Expr *Init, PrimType T) -> bool { |
| 1793 | InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Val: Init)); |
| 1794 | InitLinkScope<Emitter> ILS(this, InitLink::Field(Offset: FieldToInit->Offset)); |
| 1795 | if (!this->visit(Init)) |
| 1796 | return false; |
| 1797 | |
| 1798 | if (FieldToInit->isBitField()) |
| 1799 | return this->emitInitBitField(T, FieldToInit, E); |
| 1800 | return this->emitInitField(T, FieldToInit->Offset, E); |
| 1801 | }; |
| 1802 | |
| 1803 | auto initCompositeField = [=](const Record::Field *FieldToInit, |
| 1804 | const Expr *Init) -> bool { |
| 1805 | InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Val: Init)); |
| 1806 | InitLinkScope<Emitter> ILS(this, InitLink::Field(Offset: FieldToInit->Offset)); |
| 1807 | |
| 1808 | // Non-primitive case. Get a pointer to the field-to-initialize |
| 1809 | // on the stack and recurse into visitInitializer(). |
| 1810 | if (!this->emitGetPtrField(FieldToInit->Offset, Init)) |
| 1811 | return false; |
| 1812 | if (!this->visitInitializer(Init)) |
| 1813 | return false; |
| 1814 | return this->emitPopPtr(E); |
| 1815 | }; |
| 1816 | |
| 1817 | if (R->isUnion()) { |
| 1818 | if (Inits.size() == 0) { |
| 1819 | if (!this->visitZeroRecordInitializer(R, E)) |
| 1820 | return false; |
| 1821 | } else { |
| 1822 | const Expr *Init = Inits[0]; |
| 1823 | const FieldDecl *FToInit = nullptr; |
| 1824 | if (const auto *ILE = dyn_cast<InitListExpr>(Val: E)) |
| 1825 | FToInit = ILE->getInitializedFieldInUnion(); |
| 1826 | else |
| 1827 | FToInit = cast<CXXParenListInitExpr>(Val: E)->getInitializedFieldInUnion(); |
| 1828 | |
| 1829 | const Record::Field *FieldToInit = R->getField(FD: FToInit); |
| 1830 | if (std::optional<PrimType> T = classify(Init)) { |
| 1831 | if (!initPrimitiveField(FieldToInit, Init, *T)) |
| 1832 | return false; |
| 1833 | } else { |
| 1834 | if (!initCompositeField(FieldToInit, Init)) |
| 1835 | return false; |
| 1836 | } |
| 1837 | } |
| 1838 | return this->emitFinishInit(E); |
| 1839 | } |
| 1840 | |
| 1841 | assert(!R->isUnion()); |
| 1842 | unsigned InitIndex = 0; |
| 1843 | for (const Expr *Init : Inits) { |
| 1844 | // Skip unnamed bitfields. |
| 1845 | while (InitIndex < R->getNumFields() && |
| 1846 | R->getField(I: InitIndex)->isUnnamedBitField()) |
| 1847 | ++InitIndex; |
| 1848 | |
| 1849 | if (std::optional<PrimType> T = classify(Init)) { |
| 1850 | const Record::Field *FieldToInit = R->getField(I: InitIndex); |
| 1851 | if (!initPrimitiveField(FieldToInit, Init, *T)) |
| 1852 | return false; |
| 1853 | ++InitIndex; |
| 1854 | } else { |
| 1855 | // Initializer for a direct base class. |
| 1856 | if (const Record::Base *B = R->getBase(T: Init->getType())) { |
| 1857 | if (!this->emitGetPtrBase(B->Offset, Init)) |
| 1858 | return false; |
| 1859 | |
| 1860 | if (!this->visitInitializer(Init)) |
| 1861 | return false; |
| 1862 | |
| 1863 | if (!this->emitFinishInitPop(E)) |
| 1864 | return false; |
| 1865 | // Base initializers don't increase InitIndex, since they don't count |
| 1866 | // into the Record's fields. |
| 1867 | } else { |
| 1868 | const Record::Field *FieldToInit = R->getField(I: InitIndex); |
| 1869 | if (!initCompositeField(FieldToInit, Init)) |
| 1870 | return false; |
| 1871 | ++InitIndex; |
| 1872 | } |
| 1873 | } |
| 1874 | } |
| 1875 | return this->emitFinishInit(E); |
| 1876 | } |
| 1877 | |
| 1878 | if (QT->isArrayType()) { |
| 1879 | if (Inits.size() == 1 && QT == Inits[0]->getType()) |
| 1880 | return this->delegate(Inits[0]); |
| 1881 | |
| 1882 | const ConstantArrayType *CAT = |
| 1883 | Ctx.getASTContext().getAsConstantArrayType(T: QT); |
| 1884 | uint64_t NumElems = CAT->getZExtSize(); |
| 1885 | |
| 1886 | if (!this->emitCheckArraySize(NumElems, E)) |
| 1887 | return false; |
| 1888 | |
| 1889 | std::optional<PrimType> InitT = classify(CAT->getElementType()); |
| 1890 | unsigned ElementIndex = 0; |
| 1891 | for (const Expr *Init : Inits) { |
| 1892 | if (const auto *EmbedS = |
| 1893 | dyn_cast<EmbedExpr>(Val: Init->IgnoreParenImpCasts())) { |
| 1894 | PrimType TargetT = classifyPrim(Init->getType()); |
| 1895 | |
| 1896 | auto Eval = [&](const Expr *Init, unsigned ElemIndex) { |
| 1897 | PrimType InitT = classifyPrim(Init->getType()); |
| 1898 | if (!this->visit(Init)) |
| 1899 | return false; |
| 1900 | if (InitT != TargetT) { |
| 1901 | if (!this->emitCast(InitT, TargetT, E)) |
| 1902 | return false; |
| 1903 | } |
| 1904 | return this->emitInitElem(TargetT, ElemIndex, Init); |
| 1905 | }; |
| 1906 | if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) |
| 1907 | return false; |
| 1908 | } else { |
| 1909 | if (!this->visitArrayElemInit(ElementIndex, Init, InitT)) |
| 1910 | return false; |
| 1911 | ++ElementIndex; |
| 1912 | } |
| 1913 | } |
| 1914 | |
| 1915 | // Expand the filler expression. |
| 1916 | // FIXME: This should go away. |
| 1917 | if (ArrayFiller) { |
| 1918 | for (; ElementIndex != NumElems; ++ElementIndex) { |
| 1919 | if (!this->visitArrayElemInit(ElementIndex, ArrayFiller, InitT)) |
| 1920 | return false; |
| 1921 | } |
| 1922 | } |
| 1923 | |
| 1924 | return this->emitFinishInit(E); |
| 1925 | } |
| 1926 | |
| 1927 | if (const auto *ComplexTy = QT->getAs<ComplexType>()) { |
| 1928 | unsigned NumInits = Inits.size(); |
| 1929 | |
| 1930 | if (NumInits == 1) |
| 1931 | return this->delegate(Inits[0]); |
| 1932 | |
| 1933 | QualType ElemQT = ComplexTy->getElementType(); |
| 1934 | PrimType ElemT = classifyPrim(ElemQT); |
| 1935 | if (NumInits == 0) { |
| 1936 | // Zero-initialize both elements. |
| 1937 | for (unsigned I = 0; I < 2; ++I) { |
| 1938 | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| 1939 | return false; |
| 1940 | if (!this->emitInitElem(ElemT, I, E)) |
| 1941 | return false; |
| 1942 | } |
| 1943 | } else if (NumInits == 2) { |
| 1944 | unsigned InitIndex = 0; |
| 1945 | for (const Expr *Init : Inits) { |
| 1946 | if (!this->visit(Init)) |
| 1947 | return false; |
| 1948 | |
| 1949 | if (!this->emitInitElem(ElemT, InitIndex, E)) |
| 1950 | return false; |
| 1951 | ++InitIndex; |
| 1952 | } |
| 1953 | } |
| 1954 | return true; |
| 1955 | } |
| 1956 | |
| 1957 | if (const auto *VecT = QT->getAs<VectorType>()) { |
| 1958 | unsigned NumVecElements = VecT->getNumElements(); |
| 1959 | assert(NumVecElements >= Inits.size()); |
| 1960 | |
| 1961 | QualType ElemQT = VecT->getElementType(); |
| 1962 | PrimType ElemT = classifyPrim(ElemQT); |
| 1963 | |
| 1964 | // All initializer elements. |
| 1965 | unsigned InitIndex = 0; |
| 1966 | for (const Expr *Init : Inits) { |
| 1967 | if (!this->visit(Init)) |
| 1968 | return false; |
| 1969 | |
| 1970 | // If the initializer is of vector type itself, we have to deconstruct |
| 1971 | // that and initialize all the target fields from the initializer fields. |
| 1972 | if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { |
| 1973 | if (!this->emitCopyArray(ElemT, 0, InitIndex, |
| 1974 | InitVecT->getNumElements(), E)) |
| 1975 | return false; |
| 1976 | InitIndex += InitVecT->getNumElements(); |
| 1977 | } else { |
| 1978 | if (!this->emitInitElem(ElemT, InitIndex, E)) |
| 1979 | return false; |
| 1980 | ++InitIndex; |
| 1981 | } |
| 1982 | } |
| 1983 | |
| 1984 | assert(InitIndex <= NumVecElements); |
| 1985 | |
| 1986 | // Fill the rest with zeroes. |
| 1987 | for (; InitIndex != NumVecElements; ++InitIndex) { |
| 1988 | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| 1989 | return false; |
| 1990 | if (!this->emitInitElem(ElemT, InitIndex, E)) |
| 1991 | return false; |
| 1992 | } |
| 1993 | return true; |
| 1994 | } |
| 1995 | |
| 1996 | return false; |
| 1997 | } |
| 1998 | |
| 1999 | /// Pointer to the array(not the element!) must be on the stack when calling |
| 2000 | /// this. |
| 2001 | template <class Emitter> |
| 2002 | bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, const Expr *Init, |
| 2003 | std::optional<PrimType> InitT) { |
| 2004 | if (InitT) { |
| 2005 | // Visit the primitive element like normal. |
| 2006 | if (!this->visit(Init)) |
| 2007 | return false; |
| 2008 | return this->emitInitElem(*InitT, ElemIndex, Init); |
| 2009 | } |
| 2010 | |
| 2011 | InitLinkScope<Emitter> ILS(this, InitLink::Elem(Index: ElemIndex)); |
| 2012 | // Advance the pointer currently on the stack to the given |
| 2013 | // dimension. |
| 2014 | if (!this->emitConstUint32(ElemIndex, Init)) |
| 2015 | return false; |
| 2016 | if (!this->emitArrayElemPtrUint32(Init)) |
| 2017 | return false; |
| 2018 | if (!this->visitInitializer(Init)) |
| 2019 | return false; |
| 2020 | return this->emitFinishInitPop(Init); |
| 2021 | } |
| 2022 | |
| 2023 | template <class Emitter> |
| 2024 | bool Compiler<Emitter>::visitCallArgs(ArrayRef<const Expr *> Args, |
| 2025 | const FunctionDecl *FuncDecl) { |
| 2026 | assert(VarScope->getKind() == ScopeKind::Call); |
| 2027 | llvm::BitVector NonNullArgs = collectNonNullArgs(F: FuncDecl, Args); |
| 2028 | |
| 2029 | unsigned ArgIndex = 0; |
| 2030 | for (const Expr *Arg : Args) { |
| 2031 | if (std::optional<PrimType> T = classify(Arg)) { |
| 2032 | if (!this->visit(Arg)) |
| 2033 | return false; |
| 2034 | } else { |
| 2035 | |
| 2036 | std::optional<unsigned> LocalIndex = allocateLocal( |
| 2037 | Decl: Arg, Ty: Arg->getType(), /*ExtendingDecl=*/nullptr, ScopeKind::Call); |
| 2038 | if (!LocalIndex) |
| 2039 | return false; |
| 2040 | |
| 2041 | if (!this->emitGetPtrLocal(*LocalIndex, Arg)) |
| 2042 | return false; |
| 2043 | InitLinkScope<Emitter> ILS(this, InitLink::Temp(Offset: *LocalIndex)); |
| 2044 | if (!this->visitInitializer(Arg)) |
| 2045 | return false; |
| 2046 | } |
| 2047 | |
| 2048 | if (FuncDecl && NonNullArgs[ArgIndex]) { |
| 2049 | PrimType ArgT = classify(Arg).value_or(PT_Ptr); |
| 2050 | if (ArgT == PT_Ptr) { |
| 2051 | if (!this->emitCheckNonNullArg(ArgT, Arg)) |
| 2052 | return false; |
| 2053 | } |
| 2054 | } |
| 2055 | |
| 2056 | ++ArgIndex; |
| 2057 | } |
| 2058 | |
| 2059 | return true; |
| 2060 | } |
| 2061 | |
| 2062 | template <class Emitter> |
| 2063 | bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { |
| 2064 | return this->visitInitList(E->inits(), E->getArrayFiller(), E); |
| 2065 | } |
| 2066 | |
| 2067 | template <class Emitter> |
| 2068 | bool Compiler<Emitter>::VisitCXXParenListInitExpr( |
| 2069 | const CXXParenListInitExpr *E) { |
| 2070 | return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); |
| 2071 | } |
| 2072 | |
| 2073 | template <class Emitter> |
| 2074 | bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( |
| 2075 | const SubstNonTypeTemplateParmExpr *E) { |
| 2076 | return this->delegate(E->getReplacement()); |
| 2077 | } |
| 2078 | |
| 2079 | template <class Emitter> |
| 2080 | bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { |
| 2081 | std::optional<PrimType> T = classify(E->getType()); |
| 2082 | if (T && E->hasAPValueResult()) { |
| 2083 | // Try to emit the APValue directly, without visiting the subexpr. |
| 2084 | // This will only fail if we can't emit the APValue, so won't emit any |
| 2085 | // diagnostics or any double values. |
| 2086 | if (DiscardResult) |
| 2087 | return true; |
| 2088 | |
| 2089 | if (this->visitAPValue(E->getAPValueResult(), *T, E)) |
| 2090 | return true; |
| 2091 | } |
| 2092 | return this->delegate(E->getSubExpr()); |
| 2093 | } |
| 2094 | |
| 2095 | template <class Emitter> |
| 2096 | bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { |
| 2097 | auto It = E->begin(); |
| 2098 | return this->visit(*It); |
| 2099 | } |
| 2100 | |
| 2101 | static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, |
| 2102 | UnaryExprOrTypeTrait Kind) { |
| 2103 | bool AlignOfReturnsPreferred = |
| 2104 | ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; |
| 2105 | |
| 2106 | // C++ [expr.alignof]p3: |
| 2107 | // When alignof is applied to a reference type, the result is the |
| 2108 | // alignment of the referenced type. |
| 2109 | if (const auto *Ref = T->getAs<ReferenceType>()) |
| 2110 | T = Ref->getPointeeType(); |
| 2111 | |
| 2112 | if (T.getQualifiers().hasUnaligned()) |
| 2113 | return CharUnits::One(); |
| 2114 | |
| 2115 | // __alignof is defined to return the preferred alignment. |
| 2116 | // Before 8, clang returned the preferred alignment for alignof and |
| 2117 | // _Alignof as well. |
| 2118 | if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) |
| 2119 | return ASTCtx.toCharUnitsFromBits(BitSize: ASTCtx.getPreferredTypeAlign(T)); |
| 2120 | |
| 2121 | return ASTCtx.getTypeAlignInChars(T); |
| 2122 | } |
| 2123 | |
| 2124 | template <class Emitter> |
| 2125 | bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( |
| 2126 | const UnaryExprOrTypeTraitExpr *E) { |
| 2127 | UnaryExprOrTypeTrait Kind = E->getKind(); |
| 2128 | const ASTContext &ASTCtx = Ctx.getASTContext(); |
| 2129 | |
| 2130 | if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { |
| 2131 | QualType ArgType = E->getTypeOfArgument(); |
| 2132 | |
| 2133 | // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, |
| 2134 | // the result is the size of the referenced type." |
| 2135 | if (const auto *Ref = ArgType->getAs<ReferenceType>()) |
| 2136 | ArgType = Ref->getPointeeType(); |
| 2137 | |
| 2138 | CharUnits Size; |
| 2139 | if (ArgType->isVoidType() || ArgType->isFunctionType()) |
| 2140 | Size = CharUnits::One(); |
| 2141 | else { |
| 2142 | if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) |
| 2143 | return this->emitInvalid(E); |
| 2144 | |
| 2145 | if (Kind == UETT_SizeOf) |
| 2146 | Size = ASTCtx.getTypeSizeInChars(T: ArgType); |
| 2147 | else |
| 2148 | Size = ASTCtx.getTypeInfoDataSizeInChars(T: ArgType).Width; |
| 2149 | } |
| 2150 | |
| 2151 | if (DiscardResult) |
| 2152 | return true; |
| 2153 | |
| 2154 | return this->emitConst(Size.getQuantity(), E); |
| 2155 | } |
| 2156 | |
| 2157 | if (Kind == UETT_CountOf) { |
| 2158 | QualType Ty = E->getTypeOfArgument(); |
| 2159 | assert(Ty->isArrayType()); |
| 2160 | |
| 2161 | // We don't need to worry about array element qualifiers, so getting the |
| 2162 | // unsafe array type is fine. |
| 2163 | if (const auto *CAT = |
| 2164 | dyn_cast<ConstantArrayType>(Ty->getAsArrayTypeUnsafe())) { |
| 2165 | if (DiscardResult) |
| 2166 | return true; |
| 2167 | return this->emitConst(CAT->getSize(), E); |
| 2168 | } |
| 2169 | |
| 2170 | assert(!Ty->isConstantSizeType()); |
| 2171 | |
| 2172 | // If it's a variable-length array type, we need to check whether it is a |
| 2173 | // multidimensional array. If so, we need to check the size expression of |
| 2174 | // the VLA to see if it's a constant size. If so, we can return that value. |
| 2175 | const auto *VAT = ASTCtx.getAsVariableArrayType(T: Ty); |
| 2176 | assert(VAT); |
| 2177 | if (VAT->getElementType()->isArrayType()) { |
| 2178 | std::optional<APSInt> Res = |
| 2179 | VAT->getSizeExpr()->getIntegerConstantExpr(Ctx: ASTCtx); |
| 2180 | if (Res) { |
| 2181 | if (DiscardResult) |
| 2182 | return true; |
| 2183 | return this->emitConst(*Res, E); |
| 2184 | } |
| 2185 | } |
| 2186 | } |
| 2187 | |
| 2188 | if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { |
| 2189 | CharUnits Size; |
| 2190 | |
| 2191 | if (E->isArgumentType()) { |
| 2192 | QualType ArgType = E->getTypeOfArgument(); |
| 2193 | |
| 2194 | Size = AlignOfType(T: ArgType, ASTCtx, Kind); |
| 2195 | } else { |
| 2196 | // Argument is an expression, not a type. |
| 2197 | const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); |
| 2198 | |
| 2199 | // The kinds of expressions that we have special-case logic here for |
| 2200 | // should be kept up to date with the special checks for those |
| 2201 | // expressions in Sema. |
| 2202 | |
| 2203 | // alignof decl is always accepted, even if it doesn't make sense: we |
| 2204 | // default to 1 in those cases. |
| 2205 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: Arg)) |
| 2206 | Size = ASTCtx.getDeclAlign(DRE->getDecl(), |
| 2207 | /*RefAsPointee*/ true); |
| 2208 | else if (const auto *ME = dyn_cast<MemberExpr>(Val: Arg)) |
| 2209 | Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), |
| 2210 | /*RefAsPointee*/ true); |
| 2211 | else |
| 2212 | Size = AlignOfType(T: Arg->getType(), ASTCtx, Kind); |
| 2213 | } |
| 2214 | |
| 2215 | if (DiscardResult) |
| 2216 | return true; |
| 2217 | |
| 2218 | return this->emitConst(Size.getQuantity(), E); |
| 2219 | } |
| 2220 | |
| 2221 | if (Kind == UETT_VectorElements) { |
| 2222 | if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) |
| 2223 | return this->emitConst(VT->getNumElements(), E); |
| 2224 | assert(E->getTypeOfArgument()->isSizelessVectorType()); |
| 2225 | return this->emitSizelessVectorElementSize(E); |
| 2226 | } |
| 2227 | |
| 2228 | if (Kind == UETT_VecStep) { |
| 2229 | if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { |
| 2230 | unsigned N = VT->getNumElements(); |
| 2231 | |
| 2232 | // The vec_step built-in functions that take a 3-component |
| 2233 | // vector return 4. (OpenCL 1.1 spec 6.11.12) |
| 2234 | if (N == 3) |
| 2235 | N = 4; |
| 2236 | |
| 2237 | return this->emitConst(N, E); |
| 2238 | } |
| 2239 | return this->emitConst(1, E); |
| 2240 | } |
| 2241 | |
| 2242 | if (Kind == UETT_OpenMPRequiredSimdAlign) { |
| 2243 | assert(E->isArgumentType()); |
| 2244 | unsigned Bits = ASTCtx.getOpenMPDefaultSimdAlign(T: E->getArgumentType()); |
| 2245 | |
| 2246 | return this->emitConst(ASTCtx.toCharUnitsFromBits(BitSize: Bits).getQuantity(), E); |
| 2247 | } |
| 2248 | |
| 2249 | if (Kind == UETT_PtrAuthTypeDiscriminator) { |
| 2250 | if (E->getArgumentType()->isDependentType()) |
| 2251 | return this->emitInvalid(E); |
| 2252 | |
| 2253 | return this->emitConst( |
| 2254 | const_cast<ASTContext &>(ASTCtx).getPointerAuthTypeDiscriminator( |
| 2255 | T: E->getArgumentType()), |
| 2256 | E); |
| 2257 | } |
| 2258 | |
| 2259 | return false; |
| 2260 | } |
| 2261 | |
| 2262 | template <class Emitter> |
| 2263 | bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { |
| 2264 | // 'Base.Member' |
| 2265 | const Expr *Base = E->getBase(); |
| 2266 | const ValueDecl *Member = E->getMemberDecl(); |
| 2267 | |
| 2268 | if (DiscardResult) |
| 2269 | return this->discard(Base); |
| 2270 | |
| 2271 | // MemberExprs are almost always lvalues, in which case we don't need to |
| 2272 | // do the load. But sometimes they aren't. |
| 2273 | const auto maybeLoadValue = [&]() -> bool { |
| 2274 | if (E->isGLValue()) |
| 2275 | return true; |
| 2276 | if (std::optional<PrimType> T = classify(E)) |
| 2277 | return this->emitLoadPop(*T, E); |
| 2278 | return false; |
| 2279 | }; |
| 2280 | |
| 2281 | if (const auto *VD = dyn_cast<VarDecl>(Val: Member)) { |
| 2282 | // I am almost confident in saying that a var decl must be static |
| 2283 | // and therefore registered as a global variable. But this will probably |
| 2284 | // turn out to be wrong some time in the future, as always. |
| 2285 | if (auto GlobalIndex = P.getGlobal(VD)) |
| 2286 | return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); |
| 2287 | return false; |
| 2288 | } |
| 2289 | |
| 2290 | if (!isa<FieldDecl>(Val: Member)) { |
| 2291 | if (!this->discard(Base) && !this->emitSideEffect(E)) |
| 2292 | return false; |
| 2293 | |
| 2294 | return this->visitDeclRef(Member, E); |
| 2295 | } |
| 2296 | |
| 2297 | if (Initializing) { |
| 2298 | if (!this->delegate(Base)) |
| 2299 | return false; |
| 2300 | } else { |
| 2301 | if (!this->visit(Base)) |
| 2302 | return false; |
| 2303 | } |
| 2304 | |
| 2305 | // Base above gives us a pointer on the stack. |
| 2306 | const auto *FD = cast<FieldDecl>(Val: Member); |
| 2307 | const RecordDecl *RD = FD->getParent(); |
| 2308 | const Record *R = getRecord(RD); |
| 2309 | if (!R) |
| 2310 | return false; |
| 2311 | const Record::Field *F = R->getField(FD); |
| 2312 | // Leave a pointer to the field on the stack. |
| 2313 | if (F->Decl->getType()->isReferenceType()) |
| 2314 | return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); |
| 2315 | return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); |
| 2316 | } |
| 2317 | |
| 2318 | template <class Emitter> |
| 2319 | bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { |
| 2320 | // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated |
| 2321 | // stand-alone, e.g. via EvaluateAsInt(). |
| 2322 | if (!ArrayIndex) |
| 2323 | return false; |
| 2324 | return this->emitConst(*ArrayIndex, E); |
| 2325 | } |
| 2326 | |
| 2327 | template <class Emitter> |
| 2328 | bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { |
| 2329 | assert(Initializing); |
| 2330 | assert(!DiscardResult); |
| 2331 | |
| 2332 | // We visit the common opaque expression here once so we have its value |
| 2333 | // cached. |
| 2334 | if (!this->discard(E->getCommonExpr())) |
| 2335 | return false; |
| 2336 | |
| 2337 | // TODO: This compiles to quite a lot of bytecode if the array is larger. |
| 2338 | // Investigate compiling this to a loop. |
| 2339 | const Expr *SubExpr = E->getSubExpr(); |
| 2340 | size_t Size = E->getArraySize().getZExtValue(); |
| 2341 | std::optional<PrimType> SubExprT = classify(SubExpr); |
| 2342 | |
| 2343 | // So, every iteration, we execute an assignment here |
| 2344 | // where the LHS is on the stack (the target array) |
| 2345 | // and the RHS is our SubExpr. |
| 2346 | for (size_t I = 0; I != Size; ++I) { |
| 2347 | ArrayIndexScope<Emitter> IndexScope(this, I); |
| 2348 | BlockScope<Emitter> BS(this); |
| 2349 | |
| 2350 | if (!this->visitArrayElemInit(I, SubExpr, SubExprT)) |
| 2351 | return false; |
| 2352 | if (!BS.destroyLocals()) |
| 2353 | return false; |
| 2354 | } |
| 2355 | return true; |
| 2356 | } |
| 2357 | |
| 2358 | template <class Emitter> |
| 2359 | bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { |
| 2360 | const Expr *SourceExpr = E->getSourceExpr(); |
| 2361 | if (!SourceExpr) |
| 2362 | return false; |
| 2363 | |
| 2364 | if (Initializing) |
| 2365 | return this->visitInitializer(SourceExpr); |
| 2366 | |
| 2367 | PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); |
| 2368 | if (auto It = OpaqueExprs.find(Val: E); It != OpaqueExprs.end()) |
| 2369 | return this->emitGetLocal(SubExprT, It->second, E); |
| 2370 | |
| 2371 | if (!this->visit(SourceExpr)) |
| 2372 | return false; |
| 2373 | |
| 2374 | // At this point we either have the evaluated source expression or a pointer |
| 2375 | // to an object on the stack. We want to create a local variable that stores |
| 2376 | // this value. |
| 2377 | unsigned LocalIndex = allocateLocalPrimitive(Decl: E, Ty: SubExprT, /*IsConst=*/true); |
| 2378 | if (!this->emitSetLocal(SubExprT, LocalIndex, E)) |
| 2379 | return false; |
| 2380 | |
| 2381 | // Here the local variable is created but the value is removed from the stack, |
| 2382 | // so we put it back if the caller needs it. |
| 2383 | if (!DiscardResult) { |
| 2384 | if (!this->emitGetLocal(SubExprT, LocalIndex, E)) |
| 2385 | return false; |
| 2386 | } |
| 2387 | |
| 2388 | // This is cleaned up when the local variable is destroyed. |
| 2389 | OpaqueExprs.insert(KV: {E, LocalIndex}); |
| 2390 | |
| 2391 | return true; |
| 2392 | } |
| 2393 | |
| 2394 | template <class Emitter> |
| 2395 | bool Compiler<Emitter>::VisitAbstractConditionalOperator( |
| 2396 | const AbstractConditionalOperator *E) { |
| 2397 | const Expr *Condition = E->getCond(); |
| 2398 | const Expr *TrueExpr = E->getTrueExpr(); |
| 2399 | const Expr *FalseExpr = E->getFalseExpr(); |
| 2400 | |
| 2401 | auto visitChildExpr = [&](const Expr *E) -> bool { |
| 2402 | LocalScope<Emitter> S(this); |
| 2403 | if (!this->delegate(E)) |
| 2404 | return false; |
| 2405 | return S.destroyLocals(); |
| 2406 | }; |
| 2407 | |
| 2408 | if (std::optional<bool> BoolValue = getBoolValue(E: Condition)) { |
| 2409 | if (BoolValue) |
| 2410 | return visitChildExpr(TrueExpr); |
| 2411 | return visitChildExpr(FalseExpr); |
| 2412 | } |
| 2413 | |
| 2414 | bool IsBcpCall = false; |
| 2415 | if (const auto *CE = dyn_cast<CallExpr>(Val: Condition->IgnoreParenCasts()); |
| 2416 | CE && CE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) { |
| 2417 | IsBcpCall = true; |
| 2418 | } |
| 2419 | |
| 2420 | LabelTy LabelEnd = this->getLabel(); // Label after the operator. |
| 2421 | LabelTy LabelFalse = this->getLabel(); // Label for the false expr. |
| 2422 | |
| 2423 | if (IsBcpCall) { |
| 2424 | if (!this->emitStartSpeculation(E)) |
| 2425 | return false; |
| 2426 | } |
| 2427 | |
| 2428 | if (!this->visitBool(Condition)) { |
| 2429 | // If the condition failed and we're checking for undefined behavior |
| 2430 | // (which only happens with EvalEmitter) check the TrueExpr and FalseExpr |
| 2431 | // as well. |
| 2432 | if (this->checkingForUndefinedBehavior()) { |
| 2433 | if (!this->discard(TrueExpr)) |
| 2434 | return false; |
| 2435 | if (!this->discard(FalseExpr)) |
| 2436 | return false; |
| 2437 | } |
| 2438 | return false; |
| 2439 | } |
| 2440 | |
| 2441 | if (!this->jumpFalse(LabelFalse)) |
| 2442 | return false; |
| 2443 | if (!visitChildExpr(TrueExpr)) |
| 2444 | return false; |
| 2445 | if (!this->jump(LabelEnd)) |
| 2446 | return false; |
| 2447 | this->emitLabel(LabelFalse); |
| 2448 | if (!visitChildExpr(FalseExpr)) |
| 2449 | return false; |
| 2450 | this->fallthrough(LabelEnd); |
| 2451 | this->emitLabel(LabelEnd); |
| 2452 | |
| 2453 | if (IsBcpCall) |
| 2454 | return this->emitEndSpeculation(E); |
| 2455 | return true; |
| 2456 | } |
| 2457 | |
| 2458 | template <class Emitter> |
| 2459 | bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { |
| 2460 | if (DiscardResult) |
| 2461 | return true; |
| 2462 | |
| 2463 | if (!Initializing) { |
| 2464 | unsigned StringIndex = P.createGlobalString(S: E); |
| 2465 | return this->emitGetPtrGlobal(StringIndex, E); |
| 2466 | } |
| 2467 | |
| 2468 | // We are initializing an array on the stack. |
| 2469 | const ConstantArrayType *CAT = |
| 2470 | Ctx.getASTContext().getAsConstantArrayType(T: E->getType()); |
| 2471 | assert(CAT && "a string literal that's not a constant array?" ); |
| 2472 | |
| 2473 | // If the initializer string is too long, a diagnostic has already been |
| 2474 | // emitted. Read only the array length from the string literal. |
| 2475 | unsigned ArraySize = CAT->getZExtSize(); |
| 2476 | unsigned N = std::min(a: ArraySize, b: E->getLength()); |
| 2477 | unsigned CharWidth = E->getCharByteWidth(); |
| 2478 | |
| 2479 | for (unsigned I = 0; I != N; ++I) { |
| 2480 | uint32_t CodeUnit = E->getCodeUnit(i: I); |
| 2481 | |
| 2482 | if (CharWidth == 1) { |
| 2483 | this->emitConstSint8(CodeUnit, E); |
| 2484 | this->emitInitElemSint8(I, E); |
| 2485 | } else if (CharWidth == 2) { |
| 2486 | this->emitConstUint16(CodeUnit, E); |
| 2487 | this->emitInitElemUint16(I, E); |
| 2488 | } else if (CharWidth == 4) { |
| 2489 | this->emitConstUint32(CodeUnit, E); |
| 2490 | this->emitInitElemUint32(I, E); |
| 2491 | } else { |
| 2492 | llvm_unreachable("unsupported character width" ); |
| 2493 | } |
| 2494 | } |
| 2495 | |
| 2496 | // Fill up the rest of the char array with NUL bytes. |
| 2497 | for (unsigned I = N; I != ArraySize; ++I) { |
| 2498 | if (CharWidth == 1) { |
| 2499 | this->emitConstSint8(0, E); |
| 2500 | this->emitInitElemSint8(I, E); |
| 2501 | } else if (CharWidth == 2) { |
| 2502 | this->emitConstUint16(0, E); |
| 2503 | this->emitInitElemUint16(I, E); |
| 2504 | } else if (CharWidth == 4) { |
| 2505 | this->emitConstUint32(0, E); |
| 2506 | this->emitInitElemUint32(I, E); |
| 2507 | } else { |
| 2508 | llvm_unreachable("unsupported character width" ); |
| 2509 | } |
| 2510 | } |
| 2511 | |
| 2512 | return true; |
| 2513 | } |
| 2514 | |
| 2515 | template <class Emitter> |
| 2516 | bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { |
| 2517 | if (DiscardResult) |
| 2518 | return true; |
| 2519 | return this->emitDummyPtr(E, E); |
| 2520 | } |
| 2521 | |
| 2522 | template <class Emitter> |
| 2523 | bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { |
| 2524 | auto &A = Ctx.getASTContext(); |
| 2525 | std::string Str; |
| 2526 | A.getObjCEncodingForType(T: E->getEncodedType(), S&: Str); |
| 2527 | StringLiteral *SL = |
| 2528 | StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, |
| 2529 | /*Pascal=*/false, E->getType(), E->getAtLoc()); |
| 2530 | return this->delegate(SL); |
| 2531 | } |
| 2532 | |
| 2533 | template <class Emitter> |
| 2534 | bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( |
| 2535 | const SYCLUniqueStableNameExpr *E) { |
| 2536 | if (DiscardResult) |
| 2537 | return true; |
| 2538 | |
| 2539 | assert(!Initializing); |
| 2540 | |
| 2541 | auto &A = Ctx.getASTContext(); |
| 2542 | std::string ResultStr = E->ComputeName(Context&: A); |
| 2543 | |
| 2544 | QualType CharTy = A.CharTy.withConst(); |
| 2545 | APInt Size(A.getTypeSize(T: A.getSizeType()), ResultStr.size() + 1); |
| 2546 | QualType ArrayTy = A.getConstantArrayType(EltTy: CharTy, ArySize: Size, SizeExpr: nullptr, |
| 2547 | ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 2548 | |
| 2549 | StringLiteral *SL = |
| 2550 | StringLiteral::Create(Ctx: A, Str: ResultStr, Kind: StringLiteralKind::Ordinary, |
| 2551 | /*Pascal=*/false, Ty: ArrayTy, Loc: E->getLocation()); |
| 2552 | |
| 2553 | unsigned StringIndex = P.createGlobalString(S: SL); |
| 2554 | return this->emitGetPtrGlobal(StringIndex, E); |
| 2555 | } |
| 2556 | |
| 2557 | template <class Emitter> |
| 2558 | bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { |
| 2559 | if (DiscardResult) |
| 2560 | return true; |
| 2561 | return this->emitConst(E->getValue(), E); |
| 2562 | } |
| 2563 | |
| 2564 | template <class Emitter> |
| 2565 | bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( |
| 2566 | const CompoundAssignOperator *E) { |
| 2567 | |
| 2568 | const Expr *LHS = E->getLHS(); |
| 2569 | const Expr *RHS = E->getRHS(); |
| 2570 | QualType LHSType = LHS->getType(); |
| 2571 | QualType LHSComputationType = E->getComputationLHSType(); |
| 2572 | QualType ResultType = E->getComputationResultType(); |
| 2573 | std::optional<PrimType> LT = classify(LHSComputationType); |
| 2574 | std::optional<PrimType> RT = classify(ResultType); |
| 2575 | |
| 2576 | assert(ResultType->isFloatingType()); |
| 2577 | |
| 2578 | if (!LT || !RT) |
| 2579 | return false; |
| 2580 | |
| 2581 | PrimType LHST = classifyPrim(LHSType); |
| 2582 | |
| 2583 | // C++17 onwards require that we evaluate the RHS first. |
| 2584 | // Compute RHS and save it in a temporary variable so we can |
| 2585 | // load it again later. |
| 2586 | if (!visit(E: RHS)) |
| 2587 | return false; |
| 2588 | |
| 2589 | unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); |
| 2590 | if (!this->emitSetLocal(*RT, TempOffset, E)) |
| 2591 | return false; |
| 2592 | |
| 2593 | // First, visit LHS. |
| 2594 | if (!visit(E: LHS)) |
| 2595 | return false; |
| 2596 | if (!this->emitLoad(LHST, E)) |
| 2597 | return false; |
| 2598 | |
| 2599 | // If necessary, convert LHS to its computation type. |
| 2600 | if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), |
| 2601 | LHSComputationType, E)) |
| 2602 | return false; |
| 2603 | |
| 2604 | // Now load RHS. |
| 2605 | if (!this->emitGetLocal(*RT, TempOffset, E)) |
| 2606 | return false; |
| 2607 | |
| 2608 | switch (E->getOpcode()) { |
| 2609 | case BO_AddAssign: |
| 2610 | if (!this->emitAddf(getFPOptions(E), E)) |
| 2611 | return false; |
| 2612 | break; |
| 2613 | case BO_SubAssign: |
| 2614 | if (!this->emitSubf(getFPOptions(E), E)) |
| 2615 | return false; |
| 2616 | break; |
| 2617 | case BO_MulAssign: |
| 2618 | if (!this->emitMulf(getFPOptions(E), E)) |
| 2619 | return false; |
| 2620 | break; |
| 2621 | case BO_DivAssign: |
| 2622 | if (!this->emitDivf(getFPOptions(E), E)) |
| 2623 | return false; |
| 2624 | break; |
| 2625 | default: |
| 2626 | return false; |
| 2627 | } |
| 2628 | |
| 2629 | if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) |
| 2630 | return false; |
| 2631 | |
| 2632 | if (DiscardResult) |
| 2633 | return this->emitStorePop(LHST, E); |
| 2634 | return this->emitStore(LHST, E); |
| 2635 | } |
| 2636 | |
| 2637 | template <class Emitter> |
| 2638 | bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( |
| 2639 | const CompoundAssignOperator *E) { |
| 2640 | BinaryOperatorKind Op = E->getOpcode(); |
| 2641 | const Expr *LHS = E->getLHS(); |
| 2642 | const Expr *RHS = E->getRHS(); |
| 2643 | std::optional<PrimType> LT = classify(LHS->getType()); |
| 2644 | std::optional<PrimType> RT = classify(RHS->getType()); |
| 2645 | |
| 2646 | if (Op != BO_AddAssign && Op != BO_SubAssign) |
| 2647 | return false; |
| 2648 | |
| 2649 | if (!LT || !RT) |
| 2650 | return false; |
| 2651 | |
| 2652 | if (!visit(E: LHS)) |
| 2653 | return false; |
| 2654 | |
| 2655 | if (!this->emitLoad(*LT, LHS)) |
| 2656 | return false; |
| 2657 | |
| 2658 | if (!visit(E: RHS)) |
| 2659 | return false; |
| 2660 | |
| 2661 | if (Op == BO_AddAssign) { |
| 2662 | if (!this->emitAddOffset(*RT, E)) |
| 2663 | return false; |
| 2664 | } else { |
| 2665 | if (!this->emitSubOffset(*RT, E)) |
| 2666 | return false; |
| 2667 | } |
| 2668 | |
| 2669 | if (DiscardResult) |
| 2670 | return this->emitStorePopPtr(E); |
| 2671 | return this->emitStorePtr(E); |
| 2672 | } |
| 2673 | |
| 2674 | template <class Emitter> |
| 2675 | bool Compiler<Emitter>::VisitCompoundAssignOperator( |
| 2676 | const CompoundAssignOperator *E) { |
| 2677 | if (E->getType()->isVectorType()) |
| 2678 | return VisitVectorBinOp(E); |
| 2679 | |
| 2680 | const Expr *LHS = E->getLHS(); |
| 2681 | const Expr *RHS = E->getRHS(); |
| 2682 | std::optional<PrimType> LHSComputationT = |
| 2683 | classify(E->getComputationLHSType()); |
| 2684 | std::optional<PrimType> LT = classify(LHS->getType()); |
| 2685 | std::optional<PrimType> RT = classify(RHS->getType()); |
| 2686 | std::optional<PrimType> ResultT = classify(E->getType()); |
| 2687 | |
| 2688 | if (!Ctx.getLangOpts().CPlusPlus14) |
| 2689 | return this->visit(RHS) && this->visit(LHS) && this->emitError(E); |
| 2690 | |
| 2691 | if (!LT || !RT || !ResultT || !LHSComputationT) |
| 2692 | return false; |
| 2693 | |
| 2694 | // Handle floating point operations separately here, since they |
| 2695 | // require special care. |
| 2696 | |
| 2697 | if (ResultT == PT_Float || RT == PT_Float) |
| 2698 | return VisitFloatCompoundAssignOperator(E); |
| 2699 | |
| 2700 | if (E->getType()->isPointerType()) |
| 2701 | return VisitPointerCompoundAssignOperator(E); |
| 2702 | |
| 2703 | assert(!E->getType()->isPointerType() && "Handled above" ); |
| 2704 | assert(!E->getType()->isFloatingType() && "Handled above" ); |
| 2705 | |
| 2706 | // C++17 onwards require that we evaluate the RHS first. |
| 2707 | // Compute RHS and save it in a temporary variable so we can |
| 2708 | // load it again later. |
| 2709 | // FIXME: Compound assignments are unsequenced in C, so we might |
| 2710 | // have to figure out how to reject them. |
| 2711 | if (!visit(E: RHS)) |
| 2712 | return false; |
| 2713 | |
| 2714 | unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); |
| 2715 | |
| 2716 | if (!this->emitSetLocal(*RT, TempOffset, E)) |
| 2717 | return false; |
| 2718 | |
| 2719 | // Get LHS pointer, load its value and cast it to the |
| 2720 | // computation type if necessary. |
| 2721 | if (!visit(E: LHS)) |
| 2722 | return false; |
| 2723 | if (!this->emitLoad(*LT, E)) |
| 2724 | return false; |
| 2725 | if (LT != LHSComputationT) { |
| 2726 | if (!this->emitCast(*LT, *LHSComputationT, E)) |
| 2727 | return false; |
| 2728 | } |
| 2729 | |
| 2730 | // Get the RHS value on the stack. |
| 2731 | if (!this->emitGetLocal(*RT, TempOffset, E)) |
| 2732 | return false; |
| 2733 | |
| 2734 | // Perform operation. |
| 2735 | switch (E->getOpcode()) { |
| 2736 | case BO_AddAssign: |
| 2737 | if (!this->emitAdd(*LHSComputationT, E)) |
| 2738 | return false; |
| 2739 | break; |
| 2740 | case BO_SubAssign: |
| 2741 | if (!this->emitSub(*LHSComputationT, E)) |
| 2742 | return false; |
| 2743 | break; |
| 2744 | case BO_MulAssign: |
| 2745 | if (!this->emitMul(*LHSComputationT, E)) |
| 2746 | return false; |
| 2747 | break; |
| 2748 | case BO_DivAssign: |
| 2749 | if (!this->emitDiv(*LHSComputationT, E)) |
| 2750 | return false; |
| 2751 | break; |
| 2752 | case BO_RemAssign: |
| 2753 | if (!this->emitRem(*LHSComputationT, E)) |
| 2754 | return false; |
| 2755 | break; |
| 2756 | case BO_ShlAssign: |
| 2757 | if (!this->emitShl(*LHSComputationT, *RT, E)) |
| 2758 | return false; |
| 2759 | break; |
| 2760 | case BO_ShrAssign: |
| 2761 | if (!this->emitShr(*LHSComputationT, *RT, E)) |
| 2762 | return false; |
| 2763 | break; |
| 2764 | case BO_AndAssign: |
| 2765 | if (!this->emitBitAnd(*LHSComputationT, E)) |
| 2766 | return false; |
| 2767 | break; |
| 2768 | case BO_XorAssign: |
| 2769 | if (!this->emitBitXor(*LHSComputationT, E)) |
| 2770 | return false; |
| 2771 | break; |
| 2772 | case BO_OrAssign: |
| 2773 | if (!this->emitBitOr(*LHSComputationT, E)) |
| 2774 | return false; |
| 2775 | break; |
| 2776 | default: |
| 2777 | llvm_unreachable("Unimplemented compound assign operator" ); |
| 2778 | } |
| 2779 | |
| 2780 | // And now cast from LHSComputationT to ResultT. |
| 2781 | if (ResultT != LHSComputationT) { |
| 2782 | if (!this->emitCast(*LHSComputationT, *ResultT, E)) |
| 2783 | return false; |
| 2784 | } |
| 2785 | |
| 2786 | // And store the result in LHS. |
| 2787 | if (DiscardResult) { |
| 2788 | if (LHS->refersToBitField()) |
| 2789 | return this->emitStoreBitFieldPop(*ResultT, E); |
| 2790 | return this->emitStorePop(*ResultT, E); |
| 2791 | } |
| 2792 | if (LHS->refersToBitField()) |
| 2793 | return this->emitStoreBitField(*ResultT, E); |
| 2794 | return this->emitStore(*ResultT, E); |
| 2795 | } |
| 2796 | |
| 2797 | template <class Emitter> |
| 2798 | bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { |
| 2799 | LocalScope<Emitter> ES(this); |
| 2800 | const Expr *SubExpr = E->getSubExpr(); |
| 2801 | |
| 2802 | return this->delegate(SubExpr) && ES.destroyLocals(E); |
| 2803 | } |
| 2804 | |
| 2805 | template <class Emitter> |
| 2806 | bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( |
| 2807 | const MaterializeTemporaryExpr *E) { |
| 2808 | const Expr *SubExpr = E->getSubExpr(); |
| 2809 | |
| 2810 | if (Initializing) { |
| 2811 | // We already have a value, just initialize that. |
| 2812 | return this->delegate(SubExpr); |
| 2813 | } |
| 2814 | // If we don't end up using the materialized temporary anyway, don't |
| 2815 | // bother creating it. |
| 2816 | if (DiscardResult) |
| 2817 | return this->discard(SubExpr); |
| 2818 | |
| 2819 | // When we're initializing a global variable *or* the storage duration of |
| 2820 | // the temporary is explicitly static, create a global variable. |
| 2821 | std::optional<PrimType> SubExprT = classify(SubExpr); |
| 2822 | bool IsStatic = E->getStorageDuration() == SD_Static; |
| 2823 | if (IsStatic) { |
| 2824 | std::optional<unsigned> GlobalIndex = P.createGlobal(E); |
| 2825 | if (!GlobalIndex) |
| 2826 | return false; |
| 2827 | |
| 2828 | const LifetimeExtendedTemporaryDecl *TempDecl = |
| 2829 | E->getLifetimeExtendedTemporaryDecl(); |
| 2830 | if (IsStatic) |
| 2831 | assert(TempDecl); |
| 2832 | |
| 2833 | if (SubExprT) { |
| 2834 | if (!this->visit(SubExpr)) |
| 2835 | return false; |
| 2836 | if (IsStatic) { |
| 2837 | if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) |
| 2838 | return false; |
| 2839 | } else { |
| 2840 | if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) |
| 2841 | return false; |
| 2842 | } |
| 2843 | return this->emitGetPtrGlobal(*GlobalIndex, E); |
| 2844 | } |
| 2845 | |
| 2846 | if (!this->checkLiteralType(SubExpr)) |
| 2847 | return false; |
| 2848 | // Non-primitive values. |
| 2849 | if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
| 2850 | return false; |
| 2851 | if (!this->visitInitializer(SubExpr)) |
| 2852 | return false; |
| 2853 | if (IsStatic) |
| 2854 | return this->emitInitGlobalTempComp(TempDecl, E); |
| 2855 | return true; |
| 2856 | } |
| 2857 | |
| 2858 | // For everyhing else, use local variables. |
| 2859 | if (SubExprT) { |
| 2860 | bool IsConst = SubExpr->getType().isConstQualified(); |
| 2861 | unsigned LocalIndex = |
| 2862 | allocateLocalPrimitive(Decl: E, Ty: *SubExprT, IsConst, ExtendingDecl: E->getExtendingDecl()); |
| 2863 | if (!this->visit(SubExpr)) |
| 2864 | return false; |
| 2865 | if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) |
| 2866 | return false; |
| 2867 | return this->emitGetPtrLocal(LocalIndex, E); |
| 2868 | } else { |
| 2869 | |
| 2870 | if (!this->checkLiteralType(SubExpr)) |
| 2871 | return false; |
| 2872 | |
| 2873 | const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); |
| 2874 | if (std::optional<unsigned> LocalIndex = |
| 2875 | allocateLocal(Decl: E, Ty: Inner->getType(), ExtendingDecl: E->getExtendingDecl())) { |
| 2876 | InitLinkScope<Emitter> ILS(this, InitLink::Temp(Offset: *LocalIndex)); |
| 2877 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| 2878 | return false; |
| 2879 | return this->visitInitializer(SubExpr) && this->emitFinishInit(E); |
| 2880 | } |
| 2881 | } |
| 2882 | return false; |
| 2883 | } |
| 2884 | |
| 2885 | template <class Emitter> |
| 2886 | bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( |
| 2887 | const CXXBindTemporaryExpr *E) { |
| 2888 | return this->delegate(E->getSubExpr()); |
| 2889 | } |
| 2890 | |
| 2891 | template <class Emitter> |
| 2892 | bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { |
| 2893 | const Expr *Init = E->getInitializer(); |
| 2894 | if (DiscardResult) |
| 2895 | return this->discard(Init); |
| 2896 | |
| 2897 | if (Initializing) { |
| 2898 | // We already have a value, just initialize that. |
| 2899 | return this->visitInitializer(Init) && this->emitFinishInit(E); |
| 2900 | } |
| 2901 | |
| 2902 | std::optional<PrimType> T = classify(E->getType()); |
| 2903 | if (E->isFileScope()) { |
| 2904 | // Avoid creating a variable if this is a primitive RValue anyway. |
| 2905 | if (T && !E->isLValue()) |
| 2906 | return this->delegate(Init); |
| 2907 | |
| 2908 | if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { |
| 2909 | if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
| 2910 | return false; |
| 2911 | |
| 2912 | if (T) { |
| 2913 | if (!this->visit(Init)) |
| 2914 | return false; |
| 2915 | return this->emitInitGlobal(*T, *GlobalIndex, E); |
| 2916 | } |
| 2917 | |
| 2918 | return this->visitInitializer(Init) && this->emitFinishInit(E); |
| 2919 | } |
| 2920 | |
| 2921 | return false; |
| 2922 | } |
| 2923 | |
| 2924 | // Otherwise, use a local variable. |
| 2925 | if (T && !E->isLValue()) { |
| 2926 | // For primitive types, we just visit the initializer. |
| 2927 | return this->delegate(Init); |
| 2928 | } |
| 2929 | |
| 2930 | unsigned LocalIndex; |
| 2931 | if (T) |
| 2932 | LocalIndex = this->allocateLocalPrimitive(Init, *T, /*IsConst=*/false); |
| 2933 | else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) |
| 2934 | LocalIndex = *MaybeIndex; |
| 2935 | else |
| 2936 | return false; |
| 2937 | |
| 2938 | if (!this->emitGetPtrLocal(LocalIndex, E)) |
| 2939 | return false; |
| 2940 | |
| 2941 | if (T) |
| 2942 | return this->visit(Init) && this->emitInit(*T, E); |
| 2943 | return this->visitInitializer(Init) && this->emitFinishInit(E); |
| 2944 | } |
| 2945 | |
| 2946 | template <class Emitter> |
| 2947 | bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { |
| 2948 | if (DiscardResult) |
| 2949 | return true; |
| 2950 | if (E->isStoredAsBoolean()) { |
| 2951 | if (E->getType()->isBooleanType()) |
| 2952 | return this->emitConstBool(E->getBoolValue(), E); |
| 2953 | return this->emitConst(E->getBoolValue(), E); |
| 2954 | } |
| 2955 | PrimType T = classifyPrim(E->getType()); |
| 2956 | return this->visitAPValue(E->getAPValue(), T, E); |
| 2957 | } |
| 2958 | |
| 2959 | template <class Emitter> |
| 2960 | bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { |
| 2961 | if (DiscardResult) |
| 2962 | return true; |
| 2963 | return this->emitConst(E->getValue(), E); |
| 2964 | } |
| 2965 | |
| 2966 | template <class Emitter> |
| 2967 | bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { |
| 2968 | if (DiscardResult) |
| 2969 | return true; |
| 2970 | |
| 2971 | assert(Initializing); |
| 2972 | const Record *R = P.getOrCreateRecord(E->getLambdaClass()); |
| 2973 | if (!R) |
| 2974 | return false; |
| 2975 | |
| 2976 | auto *CaptureInitIt = E->capture_init_begin(); |
| 2977 | // Initialize all fields (which represent lambda captures) of the |
| 2978 | // record with their initializers. |
| 2979 | for (const Record::Field &F : R->fields()) { |
| 2980 | const Expr *Init = *CaptureInitIt; |
| 2981 | if (!Init || Init->containsErrors()) |
| 2982 | continue; |
| 2983 | ++CaptureInitIt; |
| 2984 | |
| 2985 | if (std::optional<PrimType> T = classify(Init)) { |
| 2986 | if (!this->visit(Init)) |
| 2987 | return false; |
| 2988 | |
| 2989 | if (!this->emitInitField(*T, F.Offset, E)) |
| 2990 | return false; |
| 2991 | } else { |
| 2992 | if (!this->emitGetPtrField(F.Offset, E)) |
| 2993 | return false; |
| 2994 | |
| 2995 | if (!this->visitInitializer(Init)) |
| 2996 | return false; |
| 2997 | |
| 2998 | if (!this->emitPopPtr(E)) |
| 2999 | return false; |
| 3000 | } |
| 3001 | } |
| 3002 | |
| 3003 | return true; |
| 3004 | } |
| 3005 | |
| 3006 | template <class Emitter> |
| 3007 | bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { |
| 3008 | if (DiscardResult) |
| 3009 | return true; |
| 3010 | |
| 3011 | if (!Initializing) { |
| 3012 | unsigned StringIndex = P.createGlobalString(E->getFunctionName(), E); |
| 3013 | return this->emitGetPtrGlobal(StringIndex, E); |
| 3014 | } |
| 3015 | |
| 3016 | return this->delegate(E->getFunctionName()); |
| 3017 | } |
| 3018 | |
| 3019 | template <class Emitter> |
| 3020 | bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { |
| 3021 | if (E->getSubExpr() && !this->discard(E->getSubExpr())) |
| 3022 | return false; |
| 3023 | |
| 3024 | return this->emitInvalid(E); |
| 3025 | } |
| 3026 | |
| 3027 | template <class Emitter> |
| 3028 | bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( |
| 3029 | const CXXReinterpretCastExpr *E) { |
| 3030 | const Expr *SubExpr = E->getSubExpr(); |
| 3031 | |
| 3032 | std::optional<PrimType> FromT = classify(SubExpr); |
| 3033 | std::optional<PrimType> ToT = classify(E); |
| 3034 | |
| 3035 | if (!FromT || !ToT) |
| 3036 | return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E); |
| 3037 | |
| 3038 | if (FromT == PT_Ptr || ToT == PT_Ptr) { |
| 3039 | // Both types could be PT_Ptr because their expressions are glvalues. |
| 3040 | std::optional<PrimType> PointeeFromT; |
| 3041 | if (SubExpr->getType()->isPointerOrReferenceType()) |
| 3042 | PointeeFromT = classify(SubExpr->getType()->getPointeeType()); |
| 3043 | else |
| 3044 | PointeeFromT = classify(SubExpr->getType()); |
| 3045 | |
| 3046 | std::optional<PrimType> PointeeToT; |
| 3047 | if (E->getType()->isPointerOrReferenceType()) |
| 3048 | PointeeToT = classify(E->getType()->getPointeeType()); |
| 3049 | else |
| 3050 | PointeeToT = classify(E->getType()); |
| 3051 | |
| 3052 | bool Fatal = true; |
| 3053 | if (PointeeToT && PointeeFromT) { |
| 3054 | if (isIntegralType(T: *PointeeFromT) && isIntegralType(T: *PointeeToT)) |
| 3055 | Fatal = false; |
| 3056 | } else { |
| 3057 | Fatal = SubExpr->getType().getTypePtr() != E->getType().getTypePtr(); |
| 3058 | } |
| 3059 | |
| 3060 | if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) |
| 3061 | return false; |
| 3062 | |
| 3063 | if (E->getCastKind() == CK_LValueBitCast) |
| 3064 | return this->delegate(SubExpr); |
| 3065 | return this->VisitCastExpr(E); |
| 3066 | } |
| 3067 | |
| 3068 | // Try to actually do the cast. |
| 3069 | bool Fatal = (ToT != FromT); |
| 3070 | if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) |
| 3071 | return false; |
| 3072 | |
| 3073 | return this->VisitCastExpr(E); |
| 3074 | } |
| 3075 | |
| 3076 | template <class Emitter> |
| 3077 | bool Compiler<Emitter>::VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) { |
| 3078 | |
| 3079 | if (!Ctx.getLangOpts().CPlusPlus20) { |
| 3080 | if (!this->emitInvalidCast(CastKind::Dynamic, /*Fatal=*/false, E)) |
| 3081 | return false; |
| 3082 | } |
| 3083 | |
| 3084 | return this->VisitCastExpr(E); |
| 3085 | } |
| 3086 | |
| 3087 | template <class Emitter> |
| 3088 | bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { |
| 3089 | assert(E->getType()->isBooleanType()); |
| 3090 | |
| 3091 | if (DiscardResult) |
| 3092 | return true; |
| 3093 | return this->emitConstBool(E->getValue(), E); |
| 3094 | } |
| 3095 | |
| 3096 | template <class Emitter> |
| 3097 | bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { |
| 3098 | QualType T = E->getType(); |
| 3099 | assert(!classify(T)); |
| 3100 | |
| 3101 | if (T->isRecordType()) { |
| 3102 | const CXXConstructorDecl *Ctor = E->getConstructor(); |
| 3103 | |
| 3104 | // Trivial copy/move constructor. Avoid copy. |
| 3105 | if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && |
| 3106 | Ctor->isTrivial() && |
| 3107 | E->getArg(Arg: 0)->isTemporaryObject(Ctx&: Ctx.getASTContext(), |
| 3108 | TempTy: T->getAsCXXRecordDecl())) |
| 3109 | return this->visitInitializer(E->getArg(Arg: 0)); |
| 3110 | |
| 3111 | // If we're discarding a construct expression, we still need |
| 3112 | // to allocate a variable and call the constructor and destructor. |
| 3113 | if (DiscardResult) { |
| 3114 | if (Ctor->isTrivial()) |
| 3115 | return true; |
| 3116 | assert(!Initializing); |
| 3117 | std::optional<unsigned> LocalIndex = allocateLocal(Decl: E); |
| 3118 | |
| 3119 | if (!LocalIndex) |
| 3120 | return false; |
| 3121 | |
| 3122 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| 3123 | return false; |
| 3124 | } |
| 3125 | |
| 3126 | // Zero initialization. |
| 3127 | if (E->requiresZeroInitialization()) { |
| 3128 | const Record *R = getRecord(E->getType()); |
| 3129 | |
| 3130 | if (!this->visitZeroRecordInitializer(R, E)) |
| 3131 | return false; |
| 3132 | |
| 3133 | // If the constructor is trivial anyway, we're done. |
| 3134 | if (Ctor->isTrivial()) |
| 3135 | return true; |
| 3136 | } |
| 3137 | |
| 3138 | const Function *Func = getFunction(FD: Ctor); |
| 3139 | |
| 3140 | if (!Func) |
| 3141 | return false; |
| 3142 | |
| 3143 | assert(Func->hasThisPointer()); |
| 3144 | assert(!Func->hasRVO()); |
| 3145 | |
| 3146 | // The This pointer is already on the stack because this is an initializer, |
| 3147 | // but we need to dup() so the call() below has its own copy. |
| 3148 | if (!this->emitDupPtr(E)) |
| 3149 | return false; |
| 3150 | |
| 3151 | // Constructor arguments. |
| 3152 | for (const auto *Arg : E->arguments()) { |
| 3153 | if (!this->visit(Arg)) |
| 3154 | return false; |
| 3155 | } |
| 3156 | |
| 3157 | if (Func->isVariadic()) { |
| 3158 | uint32_t VarArgSize = 0; |
| 3159 | unsigned NumParams = Func->getNumWrittenParams(); |
| 3160 | for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { |
| 3161 | VarArgSize += |
| 3162 | align(primSize(classify(E->getArg(Arg: I)->getType()).value_or(PT_Ptr))); |
| 3163 | } |
| 3164 | if (!this->emitCallVar(Func, VarArgSize, E)) |
| 3165 | return false; |
| 3166 | } else { |
| 3167 | if (!this->emitCall(Func, 0, E)) { |
| 3168 | // When discarding, we don't need the result anyway, so clean up |
| 3169 | // the instance dup we did earlier in case surrounding code wants |
| 3170 | // to keep evaluating. |
| 3171 | if (DiscardResult) |
| 3172 | (void)this->emitPopPtr(E); |
| 3173 | return false; |
| 3174 | } |
| 3175 | } |
| 3176 | |
| 3177 | if (DiscardResult) |
| 3178 | return this->emitPopPtr(E); |
| 3179 | return this->emitFinishInit(E); |
| 3180 | } |
| 3181 | |
| 3182 | if (T->isArrayType()) { |
| 3183 | const ConstantArrayType *CAT = |
| 3184 | Ctx.getASTContext().getAsConstantArrayType(T: E->getType()); |
| 3185 | if (!CAT) |
| 3186 | return false; |
| 3187 | |
| 3188 | size_t NumElems = CAT->getZExtSize(); |
| 3189 | const Function *Func = getFunction(FD: E->getConstructor()); |
| 3190 | if (!Func) |
| 3191 | return false; |
| 3192 | |
| 3193 | // FIXME(perf): We're calling the constructor once per array element here, |
| 3194 | // in the old intepreter we had a special-case for trivial constructors. |
| 3195 | for (size_t I = 0; I != NumElems; ++I) { |
| 3196 | if (!this->emitConstUint64(I, E)) |
| 3197 | return false; |
| 3198 | if (!this->emitArrayElemPtrUint64(E)) |
| 3199 | return false; |
| 3200 | |
| 3201 | // Constructor arguments. |
| 3202 | for (const auto *Arg : E->arguments()) { |
| 3203 | if (!this->visit(Arg)) |
| 3204 | return false; |
| 3205 | } |
| 3206 | |
| 3207 | if (!this->emitCall(Func, 0, E)) |
| 3208 | return false; |
| 3209 | } |
| 3210 | return true; |
| 3211 | } |
| 3212 | |
| 3213 | return false; |
| 3214 | } |
| 3215 | |
| 3216 | template <class Emitter> |
| 3217 | bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { |
| 3218 | if (DiscardResult) |
| 3219 | return true; |
| 3220 | |
| 3221 | const APValue Val = |
| 3222 | E->EvaluateInContext(Ctx: Ctx.getASTContext(), DefaultExpr: SourceLocDefaultExpr); |
| 3223 | |
| 3224 | // Things like __builtin_LINE(). |
| 3225 | if (E->getType()->isIntegerType()) { |
| 3226 | assert(Val.isInt()); |
| 3227 | const APSInt &I = Val.getInt(); |
| 3228 | return this->emitConst(I, E); |
| 3229 | } |
| 3230 | // Otherwise, the APValue is an LValue, with only one element. |
| 3231 | // Theoretically, we don't need the APValue at all of course. |
| 3232 | assert(E->getType()->isPointerType()); |
| 3233 | assert(Val.isLValue()); |
| 3234 | const APValue::LValueBase &Base = Val.getLValueBase(); |
| 3235 | if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) |
| 3236 | return this->visit(LValueExpr); |
| 3237 | |
| 3238 | // Otherwise, we have a decl (which is the case for |
| 3239 | // __builtin_source_location). |
| 3240 | assert(Base.is<const ValueDecl *>()); |
| 3241 | assert(Val.getLValuePath().size() == 0); |
| 3242 | const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); |
| 3243 | assert(BaseDecl); |
| 3244 | |
| 3245 | auto *UGCD = cast<UnnamedGlobalConstantDecl>(Val: BaseDecl); |
| 3246 | |
| 3247 | std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); |
| 3248 | if (!GlobalIndex) |
| 3249 | return false; |
| 3250 | |
| 3251 | if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
| 3252 | return false; |
| 3253 | |
| 3254 | const Record *R = getRecord(E->getType()); |
| 3255 | const APValue &V = UGCD->getValue(); |
| 3256 | for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { |
| 3257 | const Record::Field *F = R->getField(I); |
| 3258 | const APValue &FieldValue = V.getStructField(i: I); |
| 3259 | |
| 3260 | PrimType FieldT = classifyPrim(F->Decl->getType()); |
| 3261 | |
| 3262 | if (!this->visitAPValue(FieldValue, FieldT, E)) |
| 3263 | return false; |
| 3264 | if (!this->emitInitField(FieldT, F->Offset, E)) |
| 3265 | return false; |
| 3266 | } |
| 3267 | |
| 3268 | // Leave the pointer to the global on the stack. |
| 3269 | return true; |
| 3270 | } |
| 3271 | |
| 3272 | template <class Emitter> |
| 3273 | bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { |
| 3274 | unsigned N = E->getNumComponents(); |
| 3275 | if (N == 0) |
| 3276 | return false; |
| 3277 | |
| 3278 | for (unsigned I = 0; I != N; ++I) { |
| 3279 | const OffsetOfNode &Node = E->getComponent(Idx: I); |
| 3280 | if (Node.getKind() == OffsetOfNode::Array) { |
| 3281 | const Expr *ArrayIndexExpr = E->getIndexExpr(Idx: Node.getArrayExprIndex()); |
| 3282 | PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); |
| 3283 | |
| 3284 | if (DiscardResult) { |
| 3285 | if (!this->discard(ArrayIndexExpr)) |
| 3286 | return false; |
| 3287 | continue; |
| 3288 | } |
| 3289 | |
| 3290 | if (!this->visit(ArrayIndexExpr)) |
| 3291 | return false; |
| 3292 | // Cast to Sint64. |
| 3293 | if (IndexT != PT_Sint64) { |
| 3294 | if (!this->emitCast(IndexT, PT_Sint64, E)) |
| 3295 | return false; |
| 3296 | } |
| 3297 | } |
| 3298 | } |
| 3299 | |
| 3300 | if (DiscardResult) |
| 3301 | return true; |
| 3302 | |
| 3303 | PrimType T = classifyPrim(E->getType()); |
| 3304 | return this->emitOffsetOf(T, E, E); |
| 3305 | } |
| 3306 | |
| 3307 | template <class Emitter> |
| 3308 | bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( |
| 3309 | const CXXScalarValueInitExpr *E) { |
| 3310 | QualType Ty = E->getType(); |
| 3311 | |
| 3312 | if (DiscardResult || Ty->isVoidType()) |
| 3313 | return true; |
| 3314 | |
| 3315 | if (std::optional<PrimType> T = classify(Ty)) |
| 3316 | return this->visitZeroInitializer(*T, Ty, E); |
| 3317 | |
| 3318 | if (const auto *CT = Ty->getAs<ComplexType>()) { |
| 3319 | if (!Initializing) { |
| 3320 | std::optional<unsigned> LocalIndex = allocateLocal(Decl: E); |
| 3321 | if (!LocalIndex) |
| 3322 | return false; |
| 3323 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| 3324 | return false; |
| 3325 | } |
| 3326 | |
| 3327 | // Initialize both fields to 0. |
| 3328 | QualType ElemQT = CT->getElementType(); |
| 3329 | PrimType ElemT = classifyPrim(ElemQT); |
| 3330 | |
| 3331 | for (unsigned I = 0; I != 2; ++I) { |
| 3332 | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| 3333 | return false; |
| 3334 | if (!this->emitInitElem(ElemT, I, E)) |
| 3335 | return false; |
| 3336 | } |
| 3337 | return true; |
| 3338 | } |
| 3339 | |
| 3340 | if (const auto *VT = Ty->getAs<VectorType>()) { |
| 3341 | // FIXME: Code duplication with the _Complex case above. |
| 3342 | if (!Initializing) { |
| 3343 | std::optional<unsigned> LocalIndex = allocateLocal(Decl: E); |
| 3344 | if (!LocalIndex) |
| 3345 | return false; |
| 3346 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| 3347 | return false; |
| 3348 | } |
| 3349 | |
| 3350 | // Initialize all fields to 0. |
| 3351 | QualType ElemQT = VT->getElementType(); |
| 3352 | PrimType ElemT = classifyPrim(ElemQT); |
| 3353 | |
| 3354 | for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { |
| 3355 | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
| 3356 | return false; |
| 3357 | if (!this->emitInitElem(ElemT, I, E)) |
| 3358 | return false; |
| 3359 | } |
| 3360 | return true; |
| 3361 | } |
| 3362 | |
| 3363 | return false; |
| 3364 | } |
| 3365 | |
| 3366 | template <class Emitter> |
| 3367 | bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { |
| 3368 | return this->emitConst(E->getPackLength(), E); |
| 3369 | } |
| 3370 | |
| 3371 | template <class Emitter> |
| 3372 | bool Compiler<Emitter>::VisitGenericSelectionExpr( |
| 3373 | const GenericSelectionExpr *E) { |
| 3374 | return this->delegate(E->getResultExpr()); |
| 3375 | } |
| 3376 | |
| 3377 | template <class Emitter> |
| 3378 | bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { |
| 3379 | return this->delegate(E->getChosenSubExpr()); |
| 3380 | } |
| 3381 | |
| 3382 | template <class Emitter> |
| 3383 | bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { |
| 3384 | if (DiscardResult) |
| 3385 | return true; |
| 3386 | |
| 3387 | return this->emitConst(E->getValue(), E); |
| 3388 | } |
| 3389 | |
| 3390 | template <class Emitter> |
| 3391 | bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( |
| 3392 | const CXXInheritedCtorInitExpr *E) { |
| 3393 | const CXXConstructorDecl *Ctor = E->getConstructor(); |
| 3394 | assert(!Ctor->isTrivial() && |
| 3395 | "Trivial CXXInheritedCtorInitExpr, implement. (possible?)" ); |
| 3396 | const Function *F = this->getFunction(Ctor); |
| 3397 | assert(F); |
| 3398 | assert(!F->hasRVO()); |
| 3399 | assert(F->hasThisPointer()); |
| 3400 | |
| 3401 | if (!this->emitDupPtr(SourceInfo{})) |
| 3402 | return false; |
| 3403 | |
| 3404 | // Forward all arguments of the current function (which should be a |
| 3405 | // constructor itself) to the inherited ctor. |
| 3406 | // This is necessary because the calling code has pushed the pointer |
| 3407 | // of the correct base for us already, but the arguments need |
| 3408 | // to come after. |
| 3409 | unsigned Offset = align(Size: primSize(Type: PT_Ptr)); // instance pointer. |
| 3410 | for (const ParmVarDecl *PD : Ctor->parameters()) { |
| 3411 | PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); |
| 3412 | |
| 3413 | if (!this->emitGetParam(PT, Offset, E)) |
| 3414 | return false; |
| 3415 | Offset += align(primSize(PT)); |
| 3416 | } |
| 3417 | |
| 3418 | return this->emitCall(F, 0, E); |
| 3419 | } |
| 3420 | |
| 3421 | // FIXME: This function has become rather unwieldy, especially |
| 3422 | // the part where we initialize an array allocation of dynamic size. |
| 3423 | template <class Emitter> |
| 3424 | bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { |
| 3425 | assert(classifyPrim(E->getType()) == PT_Ptr); |
| 3426 | const Expr *Init = E->getInitializer(); |
| 3427 | QualType ElementType = E->getAllocatedType(); |
| 3428 | std::optional<PrimType> ElemT = classify(ElementType); |
| 3429 | unsigned PlacementArgs = E->getNumPlacementArgs(); |
| 3430 | const FunctionDecl *OperatorNew = E->getOperatorNew(); |
| 3431 | const Expr *PlacementDest = nullptr; |
| 3432 | bool IsNoThrow = false; |
| 3433 | |
| 3434 | if (PlacementArgs != 0) { |
| 3435 | // FIXME: There is no restriction on this, but it's not clear that any |
| 3436 | // other form makes any sense. We get here for cases such as: |
| 3437 | // |
| 3438 | // new (std::align_val_t{N}) X(int) |
| 3439 | // |
| 3440 | // (which should presumably be valid only if N is a multiple of |
| 3441 | // alignof(int), and in any case can't be deallocated unless N is |
| 3442 | // alignof(X) and X has new-extended alignment). |
| 3443 | if (PlacementArgs == 1) { |
| 3444 | const Expr *Arg1 = E->getPlacementArg(I: 0); |
| 3445 | if (Arg1->getType()->isNothrowT()) { |
| 3446 | if (!this->discard(Arg1)) |
| 3447 | return false; |
| 3448 | IsNoThrow = true; |
| 3449 | } else { |
| 3450 | // Invalid unless we have C++26 or are in a std:: function. |
| 3451 | if (!this->emitInvalidNewDeleteExpr(E, E)) |
| 3452 | return false; |
| 3453 | |
| 3454 | // If we have a placement-new destination, we'll later use that instead |
| 3455 | // of allocating. |
| 3456 | if (OperatorNew->isReservedGlobalPlacementOperator()) |
| 3457 | PlacementDest = Arg1; |
| 3458 | } |
| 3459 | } else { |
| 3460 | // Always invalid. |
| 3461 | return this->emitInvalid(E); |
| 3462 | } |
| 3463 | } else if (!OperatorNew |
| 3464 | ->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) |
| 3465 | return this->emitInvalidNewDeleteExpr(E, E); |
| 3466 | |
| 3467 | const Descriptor *Desc; |
| 3468 | if (!PlacementDest) { |
| 3469 | if (ElemT) { |
| 3470 | if (E->isArray()) |
| 3471 | Desc = nullptr; // We're not going to use it in this case. |
| 3472 | else |
| 3473 | Desc = P.createDescriptor(E, *ElemT, /*SourceTy=*/nullptr, |
| 3474 | Descriptor::InlineDescMD); |
| 3475 | } else { |
| 3476 | Desc = P.createDescriptor( |
| 3477 | E, ElementType.getTypePtr(), |
| 3478 | E->isArray() ? std::nullopt : Descriptor::InlineDescMD, |
| 3479 | /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, |
| 3480 | /*IsVolatile=*/false, Init); |
| 3481 | } |
| 3482 | } |
| 3483 | |
| 3484 | if (E->isArray()) { |
| 3485 | std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); |
| 3486 | if (!ArraySizeExpr) |
| 3487 | return false; |
| 3488 | |
| 3489 | const Expr *Stripped = *ArraySizeExpr; |
| 3490 | for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Val: Stripped); |
| 3491 | Stripped = ICE->getSubExpr()) |
| 3492 | if (ICE->getCastKind() != CK_NoOp && |
| 3493 | ICE->getCastKind() != CK_IntegralCast) |
| 3494 | break; |
| 3495 | |
| 3496 | PrimType SizeT = classifyPrim(Stripped->getType()); |
| 3497 | |
| 3498 | // Save evaluated array size to a variable. |
| 3499 | unsigned ArrayLen = |
| 3500 | allocateLocalPrimitive(Decl: Stripped, Ty: SizeT, /*IsConst=*/false); |
| 3501 | if (!this->visit(Stripped)) |
| 3502 | return false; |
| 3503 | if (!this->emitSetLocal(SizeT, ArrayLen, E)) |
| 3504 | return false; |
| 3505 | |
| 3506 | if (PlacementDest) { |
| 3507 | if (!this->visit(PlacementDest)) |
| 3508 | return false; |
| 3509 | if (!this->emitStartLifetime(E)) |
| 3510 | return false; |
| 3511 | if (!this->emitGetLocal(SizeT, ArrayLen, E)) |
| 3512 | return false; |
| 3513 | if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E)) |
| 3514 | return false; |
| 3515 | } else { |
| 3516 | if (!this->emitGetLocal(SizeT, ArrayLen, E)) |
| 3517 | return false; |
| 3518 | |
| 3519 | if (ElemT) { |
| 3520 | // N primitive elements. |
| 3521 | if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) |
| 3522 | return false; |
| 3523 | } else { |
| 3524 | // N Composite elements. |
| 3525 | if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) |
| 3526 | return false; |
| 3527 | } |
| 3528 | } |
| 3529 | |
| 3530 | if (Init) { |
| 3531 | QualType InitType = Init->getType(); |
| 3532 | size_t StaticInitElems = 0; |
| 3533 | const Expr *DynamicInit = nullptr; |
| 3534 | if (const ConstantArrayType *CAT = |
| 3535 | Ctx.getASTContext().getAsConstantArrayType(T: InitType)) { |
| 3536 | StaticInitElems = CAT->getZExtSize(); |
| 3537 | if (!this->visitInitializer(Init)) |
| 3538 | return false; |
| 3539 | |
| 3540 | if (const auto *ILE = dyn_cast<InitListExpr>(Val: Init); |
| 3541 | ILE && ILE->hasArrayFiller()) |
| 3542 | DynamicInit = ILE->getArrayFiller(); |
| 3543 | } |
| 3544 | |
| 3545 | // The initializer initializes a certain number of elements, S. |
| 3546 | // However, the complete number of elements, N, might be larger than that. |
| 3547 | // In this case, we need to get an initializer for the remaining elements. |
| 3548 | // There are to cases: |
| 3549 | // 1) For the form 'new Struct[n];', the initializer is a |
| 3550 | // CXXConstructExpr and its type is an IncompleteArrayType. |
| 3551 | // 2) For the form 'new Struct[n]{1,2,3}', the initializer is an |
| 3552 | // InitListExpr and the initializer for the remaining elements |
| 3553 | // is the array filler. |
| 3554 | |
| 3555 | if (DynamicInit || InitType->isIncompleteArrayType()) { |
| 3556 | const Function *CtorFunc = nullptr; |
| 3557 | if (const auto *CE = dyn_cast<CXXConstructExpr>(Val: Init)) { |
| 3558 | CtorFunc = getFunction(FD: CE->getConstructor()); |
| 3559 | if (!CtorFunc) |
| 3560 | return false; |
| 3561 | } else if (!DynamicInit) |
| 3562 | DynamicInit = Init; |
| 3563 | |
| 3564 | LabelTy EndLabel = this->getLabel(); |
| 3565 | LabelTy StartLabel = this->getLabel(); |
| 3566 | |
| 3567 | // In the nothrow case, the alloc above might have returned nullptr. |
| 3568 | // Don't call any constructors that case. |
| 3569 | if (IsNoThrow) { |
| 3570 | if (!this->emitDupPtr(E)) |
| 3571 | return false; |
| 3572 | if (!this->emitNullPtr(0, nullptr, E)) |
| 3573 | return false; |
| 3574 | if (!this->emitEQPtr(E)) |
| 3575 | return false; |
| 3576 | if (!this->jumpTrue(EndLabel)) |
| 3577 | return false; |
| 3578 | } |
| 3579 | |
| 3580 | // Create loop variables. |
| 3581 | unsigned Iter = |
| 3582 | allocateLocalPrimitive(Decl: Stripped, Ty: SizeT, /*IsConst=*/false); |
| 3583 | if (!this->emitConst(StaticInitElems, SizeT, E)) |
| 3584 | return false; |
| 3585 | if (!this->emitSetLocal(SizeT, Iter, E)) |
| 3586 | return false; |
| 3587 | |
| 3588 | this->fallthrough(StartLabel); |
| 3589 | this->emitLabel(StartLabel); |
| 3590 | // Condition. Iter < ArrayLen? |
| 3591 | if (!this->emitGetLocal(SizeT, Iter, E)) |
| 3592 | return false; |
| 3593 | if (!this->emitGetLocal(SizeT, ArrayLen, E)) |
| 3594 | return false; |
| 3595 | if (!this->emitLT(SizeT, E)) |
| 3596 | return false; |
| 3597 | if (!this->jumpFalse(EndLabel)) |
| 3598 | return false; |
| 3599 | |
| 3600 | // Pointer to the allocated array is already on the stack. |
| 3601 | if (!this->emitGetLocal(SizeT, Iter, E)) |
| 3602 | return false; |
| 3603 | if (!this->emitArrayElemPtr(SizeT, E)) |
| 3604 | return false; |
| 3605 | |
| 3606 | if (isa_and_nonnull<ImplicitValueInitExpr>(Val: DynamicInit) && |
| 3607 | DynamicInit->getType()->isArrayType()) { |
| 3608 | QualType ElemType = |
| 3609 | DynamicInit->getType()->getAsArrayTypeUnsafe()->getElementType(); |
| 3610 | PrimType InitT = classifyPrim(ElemType); |
| 3611 | if (!this->visitZeroInitializer(InitT, ElemType, E)) |
| 3612 | return false; |
| 3613 | if (!this->emitStorePop(InitT, E)) |
| 3614 | return false; |
| 3615 | } else if (DynamicInit) { |
| 3616 | if (std::optional<PrimType> InitT = classify(DynamicInit)) { |
| 3617 | if (!this->visit(DynamicInit)) |
| 3618 | return false; |
| 3619 | if (!this->emitStorePop(*InitT, E)) |
| 3620 | return false; |
| 3621 | } else { |
| 3622 | if (!this->visitInitializer(DynamicInit)) |
| 3623 | return false; |
| 3624 | if (!this->emitPopPtr(E)) |
| 3625 | return false; |
| 3626 | } |
| 3627 | } else { |
| 3628 | assert(CtorFunc); |
| 3629 | if (!this->emitCall(CtorFunc, 0, E)) |
| 3630 | return false; |
| 3631 | } |
| 3632 | |
| 3633 | // ++Iter; |
| 3634 | if (!this->emitGetPtrLocal(Iter, E)) |
| 3635 | return false; |
| 3636 | if (!this->emitIncPop(SizeT, false, E)) |
| 3637 | return false; |
| 3638 | |
| 3639 | if (!this->jump(StartLabel)) |
| 3640 | return false; |
| 3641 | |
| 3642 | this->fallthrough(EndLabel); |
| 3643 | this->emitLabel(EndLabel); |
| 3644 | } |
| 3645 | } |
| 3646 | } else { // Non-array. |
| 3647 | if (PlacementDest) { |
| 3648 | if (!this->visit(PlacementDest)) |
| 3649 | return false; |
| 3650 | if (!this->emitStartLifetime(E)) |
| 3651 | return false; |
| 3652 | if (!this->emitCheckNewTypeMismatch(E, E)) |
| 3653 | return false; |
| 3654 | } else { |
| 3655 | // Allocate just one element. |
| 3656 | if (!this->emitAlloc(Desc, E)) |
| 3657 | return false; |
| 3658 | } |
| 3659 | |
| 3660 | if (Init) { |
| 3661 | if (ElemT) { |
| 3662 | if (!this->visit(Init)) |
| 3663 | return false; |
| 3664 | |
| 3665 | if (!this->emitInit(*ElemT, E)) |
| 3666 | return false; |
| 3667 | } else { |
| 3668 | // Composite. |
| 3669 | if (!this->visitInitializer(Init)) |
| 3670 | return false; |
| 3671 | } |
| 3672 | } |
| 3673 | } |
| 3674 | |
| 3675 | if (DiscardResult) |
| 3676 | return this->emitPopPtr(E); |
| 3677 | |
| 3678 | return true; |
| 3679 | } |
| 3680 | |
| 3681 | template <class Emitter> |
| 3682 | bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { |
| 3683 | const Expr *Arg = E->getArgument(); |
| 3684 | |
| 3685 | const FunctionDecl *OperatorDelete = E->getOperatorDelete(); |
| 3686 | |
| 3687 | if (!OperatorDelete->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) |
| 3688 | return this->emitInvalidNewDeleteExpr(E, E); |
| 3689 | |
| 3690 | // Arg must be an lvalue. |
| 3691 | if (!this->visit(Arg)) |
| 3692 | return false; |
| 3693 | |
| 3694 | return this->emitFree(E->isArrayForm(), E->isGlobalDelete(), E); |
| 3695 | } |
| 3696 | |
| 3697 | template <class Emitter> |
| 3698 | bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) { |
| 3699 | if (DiscardResult) |
| 3700 | return true; |
| 3701 | |
| 3702 | const Function *Func = nullptr; |
| 3703 | if (auto F = Ctx.getOrCreateObjCBlock(E)) |
| 3704 | Func = F; |
| 3705 | |
| 3706 | if (!Func) |
| 3707 | return false; |
| 3708 | return this->emitGetFnPtr(Func, E); |
| 3709 | } |
| 3710 | |
| 3711 | template <class Emitter> |
| 3712 | bool Compiler<Emitter>::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { |
| 3713 | const Type *TypeInfoType = E->getType().getTypePtr(); |
| 3714 | |
| 3715 | auto canonType = [](const Type *T) { |
| 3716 | return T->getCanonicalTypeUnqualified().getTypePtr(); |
| 3717 | }; |
| 3718 | |
| 3719 | if (!E->isPotentiallyEvaluated()) { |
| 3720 | if (DiscardResult) |
| 3721 | return true; |
| 3722 | |
| 3723 | if (E->isTypeOperand()) |
| 3724 | return this->emitGetTypeid( |
| 3725 | canonType(E->getTypeOperand(Context: Ctx.getASTContext()).getTypePtr()), |
| 3726 | TypeInfoType, E); |
| 3727 | |
| 3728 | return this->emitGetTypeid( |
| 3729 | canonType(E->getExprOperand()->getType().getTypePtr()), TypeInfoType, |
| 3730 | E); |
| 3731 | } |
| 3732 | |
| 3733 | // Otherwise, we need to evaluate the expression operand. |
| 3734 | assert(E->getExprOperand()); |
| 3735 | assert(E->getExprOperand()->isLValue()); |
| 3736 | |
| 3737 | if (!Ctx.getLangOpts().CPlusPlus20 && !this->emitDiagTypeid(E)) |
| 3738 | return false; |
| 3739 | |
| 3740 | if (!this->visit(E->getExprOperand())) |
| 3741 | return false; |
| 3742 | |
| 3743 | if (!this->emitGetTypeidPtr(TypeInfoType, E)) |
| 3744 | return false; |
| 3745 | if (DiscardResult) |
| 3746 | return this->emitPopPtr(E); |
| 3747 | return true; |
| 3748 | } |
| 3749 | |
| 3750 | template <class Emitter> |
| 3751 | bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { |
| 3752 | assert(Ctx.getLangOpts().CPlusPlus); |
| 3753 | return this->emitConstBool(E->getValue(), E); |
| 3754 | } |
| 3755 | |
| 3756 | template <class Emitter> |
| 3757 | bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { |
| 3758 | if (DiscardResult) |
| 3759 | return true; |
| 3760 | assert(!Initializing); |
| 3761 | |
| 3762 | const MSGuidDecl *GuidDecl = E->getGuidDecl(); |
| 3763 | const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); |
| 3764 | assert(RD); |
| 3765 | // If the definiton of the result type is incomplete, just return a dummy. |
| 3766 | // If (and when) that is read from, we will fail, but not now. |
| 3767 | if (!RD->isCompleteDefinition()) |
| 3768 | return this->emitDummyPtr(GuidDecl, E); |
| 3769 | |
| 3770 | std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); |
| 3771 | if (!GlobalIndex) |
| 3772 | return false; |
| 3773 | if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
| 3774 | return false; |
| 3775 | |
| 3776 | assert(this->getRecord(E->getType())); |
| 3777 | |
| 3778 | const APValue &V = GuidDecl->getAsAPValue(); |
| 3779 | if (V.getKind() == APValue::None) |
| 3780 | return true; |
| 3781 | |
| 3782 | assert(V.isStruct()); |
| 3783 | assert(V.getStructNumBases() == 0); |
| 3784 | if (!this->visitAPValueInitializer(V, E, E->getType())) |
| 3785 | return false; |
| 3786 | |
| 3787 | return this->emitFinishInit(E); |
| 3788 | } |
| 3789 | |
| 3790 | template <class Emitter> |
| 3791 | bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { |
| 3792 | assert(classifyPrim(E->getType()) == PT_Bool); |
| 3793 | if (DiscardResult) |
| 3794 | return true; |
| 3795 | return this->emitConstBool(E->isSatisfied(), E); |
| 3796 | } |
| 3797 | |
| 3798 | template <class Emitter> |
| 3799 | bool Compiler<Emitter>::VisitConceptSpecializationExpr( |
| 3800 | const ConceptSpecializationExpr *E) { |
| 3801 | assert(classifyPrim(E->getType()) == PT_Bool); |
| 3802 | if (DiscardResult) |
| 3803 | return true; |
| 3804 | return this->emitConstBool(E->isSatisfied(), E); |
| 3805 | } |
| 3806 | |
| 3807 | template <class Emitter> |
| 3808 | bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( |
| 3809 | const CXXRewrittenBinaryOperator *E) { |
| 3810 | return this->delegate(E->getSemanticForm()); |
| 3811 | } |
| 3812 | |
| 3813 | template <class Emitter> |
| 3814 | bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { |
| 3815 | |
| 3816 | for (const Expr *SemE : E->semantics()) { |
| 3817 | if (auto *OVE = dyn_cast<OpaqueValueExpr>(Val: SemE)) { |
| 3818 | if (SemE == E->getResultExpr()) |
| 3819 | return false; |
| 3820 | |
| 3821 | if (OVE->isUnique()) |
| 3822 | continue; |
| 3823 | |
| 3824 | if (!this->discard(OVE)) |
| 3825 | return false; |
| 3826 | } else if (SemE == E->getResultExpr()) { |
| 3827 | if (!this->delegate(SemE)) |
| 3828 | return false; |
| 3829 | } else { |
| 3830 | if (!this->discard(SemE)) |
| 3831 | return false; |
| 3832 | } |
| 3833 | } |
| 3834 | return true; |
| 3835 | } |
| 3836 | |
| 3837 | template <class Emitter> |
| 3838 | bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { |
| 3839 | return this->delegate(E->getSelectedExpr()); |
| 3840 | } |
| 3841 | |
| 3842 | template <class Emitter> |
| 3843 | bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { |
| 3844 | return this->emitError(E); |
| 3845 | } |
| 3846 | |
| 3847 | template <class Emitter> |
| 3848 | bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { |
| 3849 | assert(E->getType()->isVoidPointerType()); |
| 3850 | |
| 3851 | unsigned Offset = |
| 3852 | allocateLocalPrimitive(Decl: E->getLabel(), Ty: PT_Ptr, /*IsConst=*/true); |
| 3853 | |
| 3854 | return this->emitGetLocal(PT_Ptr, Offset, E); |
| 3855 | } |
| 3856 | |
| 3857 | template <class Emitter> |
| 3858 | bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { |
| 3859 | assert(Initializing); |
| 3860 | const auto *VT = E->getType()->castAs<VectorType>(); |
| 3861 | QualType ElemType = VT->getElementType(); |
| 3862 | PrimType ElemT = classifyPrim(ElemType); |
| 3863 | const Expr *Src = E->getSrcExpr(); |
| 3864 | QualType SrcType = Src->getType(); |
| 3865 | PrimType SrcElemT = classifyVectorElementType(T: SrcType); |
| 3866 | |
| 3867 | unsigned SrcOffset = |
| 3868 | this->allocateLocalPrimitive(Src, PT_Ptr, /*IsConst=*/true); |
| 3869 | if (!this->visit(Src)) |
| 3870 | return false; |
| 3871 | if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) |
| 3872 | return false; |
| 3873 | |
| 3874 | for (unsigned I = 0; I != VT->getNumElements(); ++I) { |
| 3875 | if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) |
| 3876 | return false; |
| 3877 | if (!this->emitArrayElemPop(SrcElemT, I, E)) |
| 3878 | return false; |
| 3879 | |
| 3880 | // Cast to the desired result element type. |
| 3881 | if (SrcElemT != ElemT) { |
| 3882 | if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) |
| 3883 | return false; |
| 3884 | } else if (ElemType->isFloatingType() && SrcType != ElemType) { |
| 3885 | const auto *TargetSemantics = &Ctx.getFloatSemantics(T: ElemType); |
| 3886 | if (!this->emitCastFP(TargetSemantics, getRoundingMode(E), E)) |
| 3887 | return false; |
| 3888 | } |
| 3889 | if (!this->emitInitElem(ElemT, I, E)) |
| 3890 | return false; |
| 3891 | } |
| 3892 | |
| 3893 | return true; |
| 3894 | } |
| 3895 | |
| 3896 | template <class Emitter> |
| 3897 | bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { |
| 3898 | assert(Initializing); |
| 3899 | assert(E->getNumSubExprs() > 2); |
| 3900 | |
| 3901 | const Expr *Vecs[] = {E->getExpr(Index: 0), E->getExpr(Index: 1)}; |
| 3902 | const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); |
| 3903 | PrimType ElemT = classifyPrim(VT->getElementType()); |
| 3904 | unsigned NumInputElems = VT->getNumElements(); |
| 3905 | unsigned NumOutputElems = E->getNumSubExprs() - 2; |
| 3906 | assert(NumOutputElems > 0); |
| 3907 | |
| 3908 | // Save both input vectors to a local variable. |
| 3909 | unsigned VectorOffsets[2]; |
| 3910 | for (unsigned I = 0; I != 2; ++I) { |
| 3911 | VectorOffsets[I] = |
| 3912 | this->allocateLocalPrimitive(Vecs[I], PT_Ptr, /*IsConst=*/true); |
| 3913 | if (!this->visit(Vecs[I])) |
| 3914 | return false; |
| 3915 | if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) |
| 3916 | return false; |
| 3917 | } |
| 3918 | for (unsigned I = 0; I != NumOutputElems; ++I) { |
| 3919 | APSInt ShuffleIndex = E->getShuffleMaskIdx(N: I); |
| 3920 | assert(ShuffleIndex >= -1); |
| 3921 | if (ShuffleIndex == -1) |
| 3922 | return this->emitInvalidShuffleVectorIndex(I, E); |
| 3923 | |
| 3924 | assert(ShuffleIndex < (NumInputElems * 2)); |
| 3925 | if (!this->emitGetLocal(PT_Ptr, |
| 3926 | VectorOffsets[ShuffleIndex >= NumInputElems], E)) |
| 3927 | return false; |
| 3928 | unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; |
| 3929 | if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) |
| 3930 | return false; |
| 3931 | |
| 3932 | if (!this->emitInitElem(ElemT, I, E)) |
| 3933 | return false; |
| 3934 | } |
| 3935 | |
| 3936 | return true; |
| 3937 | } |
| 3938 | |
| 3939 | template <class Emitter> |
| 3940 | bool Compiler<Emitter>::VisitExtVectorElementExpr( |
| 3941 | const ExtVectorElementExpr *E) { |
| 3942 | const Expr *Base = E->getBase(); |
| 3943 | assert( |
| 3944 | Base->getType()->isVectorType() || |
| 3945 | Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); |
| 3946 | |
| 3947 | SmallVector<uint32_t, 4> Indices; |
| 3948 | E->getEncodedElementAccess(Elts&: Indices); |
| 3949 | |
| 3950 | if (Indices.size() == 1) { |
| 3951 | if (!this->visit(Base)) |
| 3952 | return false; |
| 3953 | |
| 3954 | if (E->isGLValue()) { |
| 3955 | if (!this->emitConstUint32(Indices[0], E)) |
| 3956 | return false; |
| 3957 | return this->emitArrayElemPtrPop(PT_Uint32, E); |
| 3958 | } |
| 3959 | // Else, also load the value. |
| 3960 | return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); |
| 3961 | } |
| 3962 | |
| 3963 | // Create a local variable for the base. |
| 3964 | unsigned BaseOffset = allocateLocalPrimitive(Decl: Base, Ty: PT_Ptr, /*IsConst=*/true); |
| 3965 | if (!this->visit(Base)) |
| 3966 | return false; |
| 3967 | if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) |
| 3968 | return false; |
| 3969 | |
| 3970 | // Now the vector variable for the return value. |
| 3971 | if (!Initializing) { |
| 3972 | std::optional<unsigned> ResultIndex; |
| 3973 | ResultIndex = allocateLocal(Decl: E); |
| 3974 | if (!ResultIndex) |
| 3975 | return false; |
| 3976 | if (!this->emitGetPtrLocal(*ResultIndex, E)) |
| 3977 | return false; |
| 3978 | } |
| 3979 | |
| 3980 | assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); |
| 3981 | |
| 3982 | PrimType ElemT = |
| 3983 | classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); |
| 3984 | uint32_t DstIndex = 0; |
| 3985 | for (uint32_t I : Indices) { |
| 3986 | if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) |
| 3987 | return false; |
| 3988 | if (!this->emitArrayElemPop(ElemT, I, E)) |
| 3989 | return false; |
| 3990 | if (!this->emitInitElem(ElemT, DstIndex, E)) |
| 3991 | return false; |
| 3992 | ++DstIndex; |
| 3993 | } |
| 3994 | |
| 3995 | // Leave the result pointer on the stack. |
| 3996 | assert(!DiscardResult); |
| 3997 | return true; |
| 3998 | } |
| 3999 | |
| 4000 | template <class Emitter> |
| 4001 | bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { |
| 4002 | const Expr *SubExpr = E->getSubExpr(); |
| 4003 | if (!E->isExpressibleAsConstantInitializer()) |
| 4004 | return this->discard(SubExpr) && this->emitInvalid(E); |
| 4005 | |
| 4006 | if (DiscardResult) |
| 4007 | return true; |
| 4008 | |
| 4009 | assert(classifyPrim(E) == PT_Ptr); |
| 4010 | return this->emitDummyPtr(E, E); |
| 4011 | } |
| 4012 | |
| 4013 | template <class Emitter> |
| 4014 | bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( |
| 4015 | const CXXStdInitializerListExpr *E) { |
| 4016 | const Expr *SubExpr = E->getSubExpr(); |
| 4017 | const ConstantArrayType *ArrayType = |
| 4018 | Ctx.getASTContext().getAsConstantArrayType(T: SubExpr->getType()); |
| 4019 | const Record *R = getRecord(E->getType()); |
| 4020 | assert(Initializing); |
| 4021 | assert(SubExpr->isGLValue()); |
| 4022 | |
| 4023 | if (!this->visit(SubExpr)) |
| 4024 | return false; |
| 4025 | if (!this->emitConstUint8(0, E)) |
| 4026 | return false; |
| 4027 | if (!this->emitArrayElemPtrPopUint8(E)) |
| 4028 | return false; |
| 4029 | if (!this->emitInitFieldPtr(R->getField(I: 0u)->Offset, E)) |
| 4030 | return false; |
| 4031 | |
| 4032 | PrimType SecondFieldT = classifyPrim(R->getField(I: 1u)->Decl->getType()); |
| 4033 | if (isIntegralType(T: SecondFieldT)) { |
| 4034 | if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), |
| 4035 | SecondFieldT, E)) |
| 4036 | return false; |
| 4037 | return this->emitInitField(SecondFieldT, R->getField(I: 1u)->Offset, E); |
| 4038 | } |
| 4039 | assert(SecondFieldT == PT_Ptr); |
| 4040 | |
| 4041 | if (!this->emitGetFieldPtr(R->getField(I: 0u)->Offset, E)) |
| 4042 | return false; |
| 4043 | if (!this->emitExpandPtr(E)) |
| 4044 | return false; |
| 4045 | if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) |
| 4046 | return false; |
| 4047 | if (!this->emitArrayElemPtrPop(PT_Uint64, E)) |
| 4048 | return false; |
| 4049 | return this->emitInitFieldPtr(R->getField(I: 1u)->Offset, E); |
| 4050 | } |
| 4051 | |
| 4052 | template <class Emitter> |
| 4053 | bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { |
| 4054 | BlockScope<Emitter> BS(this); |
| 4055 | StmtExprScope<Emitter> SS(this); |
| 4056 | |
| 4057 | const CompoundStmt *CS = E->getSubStmt(); |
| 4058 | const Stmt *Result = CS->getStmtExprResult(); |
| 4059 | for (const Stmt *S : CS->body()) { |
| 4060 | if (S != Result) { |
| 4061 | if (!this->visitStmt(S)) |
| 4062 | return false; |
| 4063 | continue; |
| 4064 | } |
| 4065 | |
| 4066 | assert(S == Result); |
| 4067 | if (const Expr *ResultExpr = dyn_cast<Expr>(Val: S)) |
| 4068 | return this->delegate(ResultExpr); |
| 4069 | return this->emitUnsupported(E); |
| 4070 | } |
| 4071 | |
| 4072 | return BS.destroyLocals(); |
| 4073 | } |
| 4074 | |
| 4075 | template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { |
| 4076 | OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, |
| 4077 | /*NewInitializing=*/false); |
| 4078 | return this->Visit(E); |
| 4079 | } |
| 4080 | |
| 4081 | template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { |
| 4082 | // We're basically doing: |
| 4083 | // OptionScope<Emitter> Scope(this, DicardResult, Initializing); |
| 4084 | // but that's unnecessary of course. |
| 4085 | return this->Visit(E); |
| 4086 | } |
| 4087 | |
| 4088 | template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { |
| 4089 | if (E->getType().isNull()) |
| 4090 | return false; |
| 4091 | |
| 4092 | if (E->getType()->isVoidType()) |
| 4093 | return this->discard(E); |
| 4094 | |
| 4095 | // Create local variable to hold the return value. |
| 4096 | if (!E->isGLValue() && !E->getType()->isAnyComplexType() && |
| 4097 | !classify(E->getType())) { |
| 4098 | std::optional<unsigned> LocalIndex = allocateLocal(Decl: E); |
| 4099 | if (!LocalIndex) |
| 4100 | return false; |
| 4101 | |
| 4102 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| 4103 | return false; |
| 4104 | InitLinkScope<Emitter> ILS(this, InitLink::Temp(Offset: *LocalIndex)); |
| 4105 | return this->visitInitializer(E); |
| 4106 | } |
| 4107 | |
| 4108 | // Otherwise,we have a primitive return value, produce the value directly |
| 4109 | // and push it on the stack. |
| 4110 | OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, |
| 4111 | /*NewInitializing=*/false); |
| 4112 | return this->Visit(E); |
| 4113 | } |
| 4114 | |
| 4115 | template <class Emitter> |
| 4116 | bool Compiler<Emitter>::visitInitializer(const Expr *E) { |
| 4117 | assert(!classify(E->getType())); |
| 4118 | |
| 4119 | OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, |
| 4120 | /*NewInitializing=*/true); |
| 4121 | return this->Visit(E); |
| 4122 | } |
| 4123 | |
| 4124 | template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { |
| 4125 | std::optional<PrimType> T = classify(E->getType()); |
| 4126 | if (!T) { |
| 4127 | // Convert complex values to bool. |
| 4128 | if (E->getType()->isAnyComplexType()) { |
| 4129 | if (!this->visit(E)) |
| 4130 | return false; |
| 4131 | return this->emitComplexBoolCast(E); |
| 4132 | } |
| 4133 | return false; |
| 4134 | } |
| 4135 | |
| 4136 | if (!this->visit(E)) |
| 4137 | return false; |
| 4138 | |
| 4139 | if (T == PT_Bool) |
| 4140 | return true; |
| 4141 | |
| 4142 | // Convert pointers to bool. |
| 4143 | if (T == PT_Ptr) |
| 4144 | return this->emitIsNonNullPtr(E); |
| 4145 | |
| 4146 | // Or Floats. |
| 4147 | if (T == PT_Float) |
| 4148 | return this->emitCastFloatingIntegralBool(getFPOptions(E), E); |
| 4149 | |
| 4150 | // Or anything else we can. |
| 4151 | return this->emitCast(*T, PT_Bool, E); |
| 4152 | } |
| 4153 | |
| 4154 | template <class Emitter> |
| 4155 | bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, |
| 4156 | const Expr *E) { |
| 4157 | if (const auto *AT = QT->getAs<AtomicType>()) |
| 4158 | QT = AT->getValueType(); |
| 4159 | |
| 4160 | switch (T) { |
| 4161 | case PT_Bool: |
| 4162 | return this->emitZeroBool(E); |
| 4163 | case PT_Sint8: |
| 4164 | return this->emitZeroSint8(E); |
| 4165 | case PT_Uint8: |
| 4166 | return this->emitZeroUint8(E); |
| 4167 | case PT_Sint16: |
| 4168 | return this->emitZeroSint16(E); |
| 4169 | case PT_Uint16: |
| 4170 | return this->emitZeroUint16(E); |
| 4171 | case PT_Sint32: |
| 4172 | return this->emitZeroSint32(E); |
| 4173 | case PT_Uint32: |
| 4174 | return this->emitZeroUint32(E); |
| 4175 | case PT_Sint64: |
| 4176 | return this->emitZeroSint64(E); |
| 4177 | case PT_Uint64: |
| 4178 | return this->emitZeroUint64(E); |
| 4179 | case PT_IntAP: |
| 4180 | return this->emitZeroIntAP(Ctx.getBitWidth(T: QT), E); |
| 4181 | case PT_IntAPS: |
| 4182 | return this->emitZeroIntAPS(Ctx.getBitWidth(T: QT), E); |
| 4183 | case PT_Ptr: |
| 4184 | return this->emitNullPtr(Ctx.getASTContext().getTargetNullPointerValue(QT), |
| 4185 | nullptr, E); |
| 4186 | case PT_MemberPtr: |
| 4187 | return this->emitNullMemberPtr(0, nullptr, E); |
| 4188 | case PT_Float: |
| 4189 | return this->emitConstFloat(APFloat::getZero(Sem: Ctx.getFloatSemantics(T: QT)), E); |
| 4190 | case PT_FixedPoint: { |
| 4191 | auto Sem = Ctx.getASTContext().getFixedPointSemantics(Ty: E->getType()); |
| 4192 | return this->emitConstFixedPoint(FixedPoint::zero(Sem), E); |
| 4193 | } |
| 4194 | llvm_unreachable("Implement" ); |
| 4195 | } |
| 4196 | llvm_unreachable("unknown primitive type" ); |
| 4197 | } |
| 4198 | |
| 4199 | template <class Emitter> |
| 4200 | bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, |
| 4201 | const Expr *E) { |
| 4202 | assert(E); |
| 4203 | assert(R); |
| 4204 | // Fields |
| 4205 | for (const Record::Field &Field : R->fields()) { |
| 4206 | if (Field.isUnnamedBitField()) |
| 4207 | continue; |
| 4208 | |
| 4209 | const Descriptor *D = Field.Desc; |
| 4210 | if (D->isPrimitive()) { |
| 4211 | QualType QT = D->getType(); |
| 4212 | PrimType T = classifyPrim(D->getType()); |
| 4213 | if (!this->visitZeroInitializer(T, QT, E)) |
| 4214 | return false; |
| 4215 | if (!this->emitInitField(T, Field.Offset, E)) |
| 4216 | return false; |
| 4217 | if (R->isUnion()) |
| 4218 | break; |
| 4219 | continue; |
| 4220 | } |
| 4221 | |
| 4222 | if (!this->emitGetPtrField(Field.Offset, E)) |
| 4223 | return false; |
| 4224 | |
| 4225 | if (D->isPrimitiveArray()) { |
| 4226 | QualType ET = D->getElemQualType(); |
| 4227 | PrimType T = classifyPrim(ET); |
| 4228 | for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { |
| 4229 | if (!this->visitZeroInitializer(T, ET, E)) |
| 4230 | return false; |
| 4231 | if (!this->emitInitElem(T, I, E)) |
| 4232 | return false; |
| 4233 | } |
| 4234 | } else if (D->isCompositeArray()) { |
| 4235 | // Can't be a vector or complex field. |
| 4236 | if (!this->visitZeroArrayInitializer(D->getType(), E)) |
| 4237 | return false; |
| 4238 | } else if (D->isRecord()) { |
| 4239 | if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) |
| 4240 | return false; |
| 4241 | } else |
| 4242 | return false; |
| 4243 | |
| 4244 | if (!this->emitFinishInitPop(E)) |
| 4245 | return false; |
| 4246 | |
| 4247 | // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the |
| 4248 | // object's first non-static named data member is zero-initialized |
| 4249 | if (R->isUnion()) |
| 4250 | break; |
| 4251 | } |
| 4252 | |
| 4253 | for (const Record::Base &B : R->bases()) { |
| 4254 | if (!this->emitGetPtrBase(B.Offset, E)) |
| 4255 | return false; |
| 4256 | if (!this->visitZeroRecordInitializer(B.R, E)) |
| 4257 | return false; |
| 4258 | if (!this->emitFinishInitPop(E)) |
| 4259 | return false; |
| 4260 | } |
| 4261 | |
| 4262 | // FIXME: Virtual bases. |
| 4263 | |
| 4264 | return true; |
| 4265 | } |
| 4266 | |
| 4267 | template <class Emitter> |
| 4268 | bool Compiler<Emitter>::visitZeroArrayInitializer(QualType T, const Expr *E) { |
| 4269 | assert(T->isArrayType() || T->isAnyComplexType() || T->isVectorType()); |
| 4270 | const ArrayType *AT = T->getAsArrayTypeUnsafe(); |
| 4271 | QualType ElemType = AT->getElementType(); |
| 4272 | size_t NumElems = cast<ConstantArrayType>(Val: AT)->getZExtSize(); |
| 4273 | |
| 4274 | if (std::optional<PrimType> ElemT = classify(ElemType)) { |
| 4275 | for (size_t I = 0; I != NumElems; ++I) { |
| 4276 | if (!this->visitZeroInitializer(*ElemT, ElemType, E)) |
| 4277 | return false; |
| 4278 | if (!this->emitInitElem(*ElemT, I, E)) |
| 4279 | return false; |
| 4280 | } |
| 4281 | return true; |
| 4282 | } else if (ElemType->isRecordType()) { |
| 4283 | const Record *R = getRecord(ElemType); |
| 4284 | |
| 4285 | for (size_t I = 0; I != NumElems; ++I) { |
| 4286 | if (!this->emitConstUint32(I, E)) |
| 4287 | return false; |
| 4288 | if (!this->emitArrayElemPtr(PT_Uint32, E)) |
| 4289 | return false; |
| 4290 | if (!this->visitZeroRecordInitializer(R, E)) |
| 4291 | return false; |
| 4292 | if (!this->emitPopPtr(E)) |
| 4293 | return false; |
| 4294 | } |
| 4295 | return true; |
| 4296 | } else if (ElemType->isArrayType()) { |
| 4297 | for (size_t I = 0; I != NumElems; ++I) { |
| 4298 | if (!this->emitConstUint32(I, E)) |
| 4299 | return false; |
| 4300 | if (!this->emitArrayElemPtr(PT_Uint32, E)) |
| 4301 | return false; |
| 4302 | if (!this->visitZeroArrayInitializer(ElemType, E)) |
| 4303 | return false; |
| 4304 | if (!this->emitPopPtr(E)) |
| 4305 | return false; |
| 4306 | } |
| 4307 | return true; |
| 4308 | } |
| 4309 | |
| 4310 | return false; |
| 4311 | } |
| 4312 | |
| 4313 | template <class Emitter> |
| 4314 | template <typename T> |
| 4315 | bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { |
| 4316 | switch (Ty) { |
| 4317 | case PT_Sint8: |
| 4318 | return this->emitConstSint8(Value, E); |
| 4319 | case PT_Uint8: |
| 4320 | return this->emitConstUint8(Value, E); |
| 4321 | case PT_Sint16: |
| 4322 | return this->emitConstSint16(Value, E); |
| 4323 | case PT_Uint16: |
| 4324 | return this->emitConstUint16(Value, E); |
| 4325 | case PT_Sint32: |
| 4326 | return this->emitConstSint32(Value, E); |
| 4327 | case PT_Uint32: |
| 4328 | return this->emitConstUint32(Value, E); |
| 4329 | case PT_Sint64: |
| 4330 | return this->emitConstSint64(Value, E); |
| 4331 | case PT_Uint64: |
| 4332 | return this->emitConstUint64(Value, E); |
| 4333 | case PT_Bool: |
| 4334 | return this->emitConstBool(Value, E); |
| 4335 | case PT_Ptr: |
| 4336 | case PT_MemberPtr: |
| 4337 | case PT_Float: |
| 4338 | case PT_IntAP: |
| 4339 | case PT_IntAPS: |
| 4340 | case PT_FixedPoint: |
| 4341 | llvm_unreachable("Invalid integral type" ); |
| 4342 | break; |
| 4343 | } |
| 4344 | llvm_unreachable("unknown primitive type" ); |
| 4345 | } |
| 4346 | |
| 4347 | template <class Emitter> |
| 4348 | template <typename T> |
| 4349 | bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { |
| 4350 | return this->emitConst(Value, classifyPrim(E->getType()), E); |
| 4351 | } |
| 4352 | |
| 4353 | template <class Emitter> |
| 4354 | bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, |
| 4355 | const Expr *E) { |
| 4356 | if (Ty == PT_IntAPS) |
| 4357 | return this->emitConstIntAPS(Value, E); |
| 4358 | if (Ty == PT_IntAP) |
| 4359 | return this->emitConstIntAP(Value, E); |
| 4360 | |
| 4361 | if (Value.isSigned()) |
| 4362 | return this->emitConst(Value.getSExtValue(), Ty, E); |
| 4363 | return this->emitConst(Value.getZExtValue(), Ty, E); |
| 4364 | } |
| 4365 | |
| 4366 | template <class Emitter> |
| 4367 | bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { |
| 4368 | return this->emitConst(Value, classifyPrim(E->getType()), E); |
| 4369 | } |
| 4370 | |
| 4371 | template <class Emitter> |
| 4372 | unsigned Compiler<Emitter>::allocateLocalPrimitive( |
| 4373 | DeclTy &&Src, PrimType Ty, bool IsConst, const ValueDecl *ExtendingDecl, |
| 4374 | ScopeKind SC, bool IsConstexprUnknown) { |
| 4375 | // Make sure we don't accidentally register the same decl twice. |
| 4376 | if (const auto *VD = |
| 4377 | dyn_cast_if_present<ValueDecl>(Val: Src.dyn_cast<const Decl *>())) { |
| 4378 | assert(!P.getGlobal(VD)); |
| 4379 | assert(!Locals.contains(VD)); |
| 4380 | (void)VD; |
| 4381 | } |
| 4382 | |
| 4383 | // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. |
| 4384 | // (int){12} in C. Consider using Expr::isTemporaryObject() instead |
| 4385 | // or isa<MaterializeTemporaryExpr>(). |
| 4386 | Descriptor *D = P.createDescriptor(D: Src, T: Ty, SourceTy: nullptr, MDSize: Descriptor::InlineDescMD, |
| 4387 | IsConst, IsTemporary: isa<const Expr *>(Val: Src)); |
| 4388 | D->IsConstexprUnknown = IsConstexprUnknown; |
| 4389 | Scope::Local Local = this->createLocal(D); |
| 4390 | if (auto *VD = dyn_cast_if_present<ValueDecl>(Val: Src.dyn_cast<const Decl *>())) |
| 4391 | Locals.insert(KV: {VD, Local}); |
| 4392 | if (ExtendingDecl) |
| 4393 | VarScope->addExtended(Local, ExtendingDecl); |
| 4394 | else |
| 4395 | VarScope->addForScopeKind(Local, SC); |
| 4396 | return Local.Offset; |
| 4397 | } |
| 4398 | |
| 4399 | template <class Emitter> |
| 4400 | std::optional<unsigned> |
| 4401 | Compiler<Emitter>::allocateLocal(DeclTy &&Src, QualType Ty, |
| 4402 | const ValueDecl *ExtendingDecl, ScopeKind SC, |
| 4403 | bool IsConstexprUnknown) { |
| 4404 | // Make sure we don't accidentally register the same decl twice. |
| 4405 | if ([[maybe_unused]] const auto *VD = |
| 4406 | dyn_cast_if_present<ValueDecl>(Val: Src.dyn_cast<const Decl *>())) { |
| 4407 | assert(!P.getGlobal(VD)); |
| 4408 | assert(!Locals.contains(VD)); |
| 4409 | } |
| 4410 | |
| 4411 | const ValueDecl *Key = nullptr; |
| 4412 | const Expr *Init = nullptr; |
| 4413 | bool IsTemporary = false; |
| 4414 | if (auto *VD = dyn_cast_if_present<ValueDecl>(Val: Src.dyn_cast<const Decl *>())) { |
| 4415 | Key = VD; |
| 4416 | Ty = VD->getType(); |
| 4417 | |
| 4418 | if (const auto *VarD = dyn_cast<VarDecl>(Val: VD)) |
| 4419 | Init = VarD->getInit(); |
| 4420 | } |
| 4421 | if (auto *E = Src.dyn_cast<const Expr *>()) { |
| 4422 | IsTemporary = true; |
| 4423 | if (Ty.isNull()) |
| 4424 | Ty = E->getType(); |
| 4425 | } |
| 4426 | |
| 4427 | Descriptor *D = P.createDescriptor( |
| 4428 | D: Src, Ty: Ty.getTypePtr(), MDSize: Descriptor::InlineDescMD, IsConst: Ty.isConstQualified(), |
| 4429 | IsTemporary, /*IsMutable=*/false, /*IsVolatile=*/false, Init); |
| 4430 | if (!D) |
| 4431 | return std::nullopt; |
| 4432 | D->IsConstexprUnknown = IsConstexprUnknown; |
| 4433 | |
| 4434 | Scope::Local Local = this->createLocal(D); |
| 4435 | if (Key) |
| 4436 | Locals.insert(KV: {Key, Local}); |
| 4437 | if (ExtendingDecl) |
| 4438 | VarScope->addExtended(Local, ExtendingDecl); |
| 4439 | else |
| 4440 | VarScope->addForScopeKind(Local, SC); |
| 4441 | return Local.Offset; |
| 4442 | } |
| 4443 | |
| 4444 | template <class Emitter> |
| 4445 | std::optional<unsigned> Compiler<Emitter>::allocateTemporary(const Expr *E) { |
| 4446 | QualType Ty = E->getType(); |
| 4447 | assert(!Ty->isRecordType()); |
| 4448 | |
| 4449 | Descriptor *D = P.createDescriptor( |
| 4450 | D: E, Ty: Ty.getTypePtr(), MDSize: Descriptor::InlineDescMD, IsConst: Ty.isConstQualified(), |
| 4451 | /*IsTemporary=*/true); |
| 4452 | |
| 4453 | if (!D) |
| 4454 | return std::nullopt; |
| 4455 | |
| 4456 | Scope::Local Local = this->createLocal(D); |
| 4457 | VariableScope<Emitter> *S = VarScope; |
| 4458 | assert(S); |
| 4459 | // Attach to topmost scope. |
| 4460 | while (S->getParent()) |
| 4461 | S = S->getParent(); |
| 4462 | assert(S && !S->getParent()); |
| 4463 | S->addLocal(Local); |
| 4464 | return Local.Offset; |
| 4465 | } |
| 4466 | |
| 4467 | template <class Emitter> |
| 4468 | const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { |
| 4469 | if (const PointerType *PT = dyn_cast<PointerType>(Val&: Ty)) |
| 4470 | return PT->getPointeeType()->getAs<RecordType>(); |
| 4471 | return Ty->getAs<RecordType>(); |
| 4472 | } |
| 4473 | |
| 4474 | template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { |
| 4475 | if (const auto *RecordTy = getRecordTy(Ty)) |
| 4476 | return getRecord(RecordTy->getDecl()); |
| 4477 | return nullptr; |
| 4478 | } |
| 4479 | |
| 4480 | template <class Emitter> |
| 4481 | Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { |
| 4482 | return P.getOrCreateRecord(RD); |
| 4483 | } |
| 4484 | |
| 4485 | template <class Emitter> |
| 4486 | const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { |
| 4487 | return Ctx.getOrCreateFunction(FuncDecl: FD); |
| 4488 | } |
| 4489 | |
| 4490 | template <class Emitter> |
| 4491 | bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) { |
| 4492 | LocalScope<Emitter> RootScope(this); |
| 4493 | |
| 4494 | // If we won't destroy the toplevel scope, check for memory leaks first. |
| 4495 | if (!DestroyToplevelScope) { |
| 4496 | if (!this->emitCheckAllocations(E)) |
| 4497 | return false; |
| 4498 | } |
| 4499 | |
| 4500 | auto maybeDestroyLocals = [&]() -> bool { |
| 4501 | if (DestroyToplevelScope) |
| 4502 | return RootScope.destroyLocals() && this->emitCheckAllocations(E); |
| 4503 | return this->emitCheckAllocations(E); |
| 4504 | }; |
| 4505 | |
| 4506 | // Void expressions. |
| 4507 | if (E->getType()->isVoidType()) { |
| 4508 | if (!visit(E)) |
| 4509 | return false; |
| 4510 | return this->emitRetVoid(E) && maybeDestroyLocals(); |
| 4511 | } |
| 4512 | |
| 4513 | // Expressions with a primitive return type. |
| 4514 | if (std::optional<PrimType> T = classify(E)) { |
| 4515 | if (!visit(E)) |
| 4516 | return false; |
| 4517 | |
| 4518 | return this->emitRet(*T, E) && maybeDestroyLocals(); |
| 4519 | } |
| 4520 | |
| 4521 | // Expressions with a composite return type. |
| 4522 | // For us, that means everything we don't |
| 4523 | // have a PrimType for. |
| 4524 | if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { |
| 4525 | InitLinkScope<Emitter> ILS(this, InitLink::Temp(Offset: *LocalOffset)); |
| 4526 | if (!this->emitGetPtrLocal(*LocalOffset, E)) |
| 4527 | return false; |
| 4528 | |
| 4529 | if (!visitInitializer(E)) |
| 4530 | return false; |
| 4531 | |
| 4532 | if (!this->emitFinishInit(E)) |
| 4533 | return false; |
| 4534 | // We are destroying the locals AFTER the Ret op. |
| 4535 | // The Ret op needs to copy the (alive) values, but the |
| 4536 | // destructors may still turn the entire expression invalid. |
| 4537 | return this->emitRetValue(E) && maybeDestroyLocals(); |
| 4538 | } |
| 4539 | |
| 4540 | return maybeDestroyLocals() && this->emitCheckAllocations(E) && false; |
| 4541 | } |
| 4542 | |
| 4543 | template <class Emitter> |
| 4544 | VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD, |
| 4545 | bool IsConstexprUnknown) { |
| 4546 | |
| 4547 | auto R = this->visitVarDecl(VD, /*Toplevel=*/true, IsConstexprUnknown); |
| 4548 | |
| 4549 | if (R.notCreated()) |
| 4550 | return R; |
| 4551 | |
| 4552 | if (R) |
| 4553 | return true; |
| 4554 | |
| 4555 | if (!R && Context::shouldBeGloballyIndexed(VD)) { |
| 4556 | if (auto GlobalIndex = P.getGlobal(VD)) { |
| 4557 | Block *GlobalBlock = P.getGlobal(*GlobalIndex); |
| 4558 | GlobalInlineDescriptor &GD = |
| 4559 | *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); |
| 4560 | |
| 4561 | GD.InitState = GlobalInitState::InitializerFailed; |
| 4562 | GlobalBlock->invokeDtor(); |
| 4563 | } |
| 4564 | } |
| 4565 | |
| 4566 | return R; |
| 4567 | } |
| 4568 | |
| 4569 | /// Toplevel visitDeclAndReturn(). |
| 4570 | /// We get here from evaluateAsInitializer(). |
| 4571 | /// We need to evaluate the initializer and return its value. |
| 4572 | template <class Emitter> |
| 4573 | bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, |
| 4574 | bool ConstantContext) { |
| 4575 | std::optional<PrimType> VarT = classify(VD->getType()); |
| 4576 | |
| 4577 | // We only create variables if we're evaluating in a constant context. |
| 4578 | // Otherwise, just evaluate the initializer and return it. |
| 4579 | if (!ConstantContext) { |
| 4580 | DeclScope<Emitter> LS(this, VD); |
| 4581 | if (!this->visit(VD->getAnyInitializer())) |
| 4582 | return false; |
| 4583 | return this->emitRet(VarT.value_or(u: PT_Ptr), VD) && LS.destroyLocals() && |
| 4584 | this->emitCheckAllocations(VD); |
| 4585 | } |
| 4586 | |
| 4587 | LocalScope<Emitter> VDScope(this, VD); |
| 4588 | if (!this->visitVarDecl(VD, /*Toplevel=*/true)) |
| 4589 | return false; |
| 4590 | |
| 4591 | if (Context::shouldBeGloballyIndexed(VD)) { |
| 4592 | auto GlobalIndex = P.getGlobal(VD); |
| 4593 | assert(GlobalIndex); // visitVarDecl() didn't return false. |
| 4594 | if (VarT) { |
| 4595 | if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) |
| 4596 | return false; |
| 4597 | } else { |
| 4598 | if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) |
| 4599 | return false; |
| 4600 | } |
| 4601 | } else { |
| 4602 | auto Local = Locals.find(VD); |
| 4603 | assert(Local != Locals.end()); // Same here. |
| 4604 | if (VarT) { |
| 4605 | if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) |
| 4606 | return false; |
| 4607 | } else { |
| 4608 | if (!this->emitGetPtrLocal(Local->second.Offset, VD)) |
| 4609 | return false; |
| 4610 | } |
| 4611 | } |
| 4612 | |
| 4613 | // Return the value. |
| 4614 | if (!this->emitRet(VarT.value_or(u: PT_Ptr), VD)) { |
| 4615 | // If the Ret above failed and this is a global variable, mark it as |
| 4616 | // uninitialized, even everything else succeeded. |
| 4617 | if (Context::shouldBeGloballyIndexed(VD)) { |
| 4618 | auto GlobalIndex = P.getGlobal(VD); |
| 4619 | assert(GlobalIndex); |
| 4620 | Block *GlobalBlock = P.getGlobal(*GlobalIndex); |
| 4621 | GlobalInlineDescriptor &GD = |
| 4622 | *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); |
| 4623 | |
| 4624 | GD.InitState = GlobalInitState::InitializerFailed; |
| 4625 | GlobalBlock->invokeDtor(); |
| 4626 | } |
| 4627 | return false; |
| 4628 | } |
| 4629 | |
| 4630 | return VDScope.destroyLocals() && this->emitCheckAllocations(VD); |
| 4631 | } |
| 4632 | |
| 4633 | template <class Emitter> |
| 4634 | VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, |
| 4635 | bool Toplevel, |
| 4636 | bool IsConstexprUnknown) { |
| 4637 | // We don't know what to do with these, so just return false. |
| 4638 | if (VD->getType().isNull()) |
| 4639 | return false; |
| 4640 | |
| 4641 | // This case is EvalEmitter-only. If we won't create any instructions for the |
| 4642 | // initializer anyway, don't bother creating the variable in the first place. |
| 4643 | if (!this->isActive()) |
| 4644 | return VarCreationState::NotCreated(); |
| 4645 | |
| 4646 | const Expr *Init = VD->getInit(); |
| 4647 | std::optional<PrimType> VarT = classify(VD->getType()); |
| 4648 | |
| 4649 | if (Init && Init->isValueDependent()) |
| 4650 | return false; |
| 4651 | |
| 4652 | if (Context::shouldBeGloballyIndexed(VD)) { |
| 4653 | auto checkDecl = [&]() -> bool { |
| 4654 | bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); |
| 4655 | return !NeedsOp || this->emitCheckDecl(VD, VD); |
| 4656 | }; |
| 4657 | |
| 4658 | auto initGlobal = [&](unsigned GlobalIndex) -> bool { |
| 4659 | assert(Init); |
| 4660 | |
| 4661 | if (VarT) { |
| 4662 | if (!this->visit(Init)) |
| 4663 | return checkDecl() && false; |
| 4664 | |
| 4665 | return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); |
| 4666 | } |
| 4667 | |
| 4668 | if (!checkDecl()) |
| 4669 | return false; |
| 4670 | |
| 4671 | if (!this->emitGetPtrGlobal(GlobalIndex, Init)) |
| 4672 | return false; |
| 4673 | |
| 4674 | if (!visitInitializer(E: Init)) |
| 4675 | return false; |
| 4676 | |
| 4677 | if (!this->emitFinishInit(Init)) |
| 4678 | return false; |
| 4679 | |
| 4680 | return this->emitPopPtr(Init); |
| 4681 | }; |
| 4682 | |
| 4683 | DeclScope<Emitter> LocalScope(this, VD); |
| 4684 | |
| 4685 | // We've already seen and initialized this global. |
| 4686 | if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { |
| 4687 | if (P.getPtrGlobal(Idx: *GlobalIndex).isInitialized()) |
| 4688 | return checkDecl(); |
| 4689 | |
| 4690 | // The previous attempt at initialization might've been unsuccessful, |
| 4691 | // so let's try this one. |
| 4692 | return Init && checkDecl() && initGlobal(*GlobalIndex); |
| 4693 | } |
| 4694 | |
| 4695 | std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); |
| 4696 | |
| 4697 | if (!GlobalIndex) |
| 4698 | return false; |
| 4699 | |
| 4700 | return !Init || (checkDecl() && initGlobal(*GlobalIndex)); |
| 4701 | } else { |
| 4702 | InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); |
| 4703 | |
| 4704 | if (VarT) { |
| 4705 | unsigned Offset = this->allocateLocalPrimitive( |
| 4706 | VD, *VarT, VD->getType().isConstQualified(), nullptr, |
| 4707 | ScopeKind::Block, IsConstexprUnknown); |
| 4708 | if (Init) { |
| 4709 | // If this is a toplevel declaration, create a scope for the |
| 4710 | // initializer. |
| 4711 | if (Toplevel) { |
| 4712 | LocalScope<Emitter> Scope(this); |
| 4713 | if (!this->visit(Init)) |
| 4714 | return false; |
| 4715 | return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); |
| 4716 | } else { |
| 4717 | if (!this->visit(Init)) |
| 4718 | return false; |
| 4719 | return this->emitSetLocal(*VarT, Offset, VD); |
| 4720 | } |
| 4721 | } |
| 4722 | } else { |
| 4723 | if (std::optional<unsigned> Offset = |
| 4724 | this->allocateLocal(VD, VD->getType(), nullptr, ScopeKind::Block, |
| 4725 | IsConstexprUnknown)) { |
| 4726 | if (!Init) |
| 4727 | return true; |
| 4728 | |
| 4729 | if (!this->emitGetPtrLocal(*Offset, Init)) |
| 4730 | return false; |
| 4731 | |
| 4732 | if (!visitInitializer(E: Init)) |
| 4733 | return false; |
| 4734 | |
| 4735 | if (!this->emitFinishInit(Init)) |
| 4736 | return false; |
| 4737 | |
| 4738 | return this->emitPopPtr(Init); |
| 4739 | } |
| 4740 | return false; |
| 4741 | } |
| 4742 | return true; |
| 4743 | } |
| 4744 | |
| 4745 | return false; |
| 4746 | } |
| 4747 | |
| 4748 | template <class Emitter> |
| 4749 | bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, |
| 4750 | const Expr *E) { |
| 4751 | assert(!DiscardResult); |
| 4752 | if (Val.isInt()) |
| 4753 | return this->emitConst(Val.getInt(), ValType, E); |
| 4754 | else if (Val.isFloat()) |
| 4755 | return this->emitConstFloat(Val.getFloat(), E); |
| 4756 | |
| 4757 | if (Val.isLValue()) { |
| 4758 | if (Val.isNullPointer()) |
| 4759 | return this->emitNull(ValType, 0, nullptr, E); |
| 4760 | APValue::LValueBase Base = Val.getLValueBase(); |
| 4761 | if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) |
| 4762 | return this->visit(BaseExpr); |
| 4763 | else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { |
| 4764 | return this->visitDeclRef(VD, E); |
| 4765 | } |
| 4766 | } else if (Val.isMemberPointer()) { |
| 4767 | if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) |
| 4768 | return this->emitGetMemberPtr(MemberDecl, E); |
| 4769 | return this->emitNullMemberPtr(0, nullptr, E); |
| 4770 | } |
| 4771 | |
| 4772 | return false; |
| 4773 | } |
| 4774 | |
| 4775 | template <class Emitter> |
| 4776 | bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, |
| 4777 | const Expr *E, QualType T) { |
| 4778 | if (Val.isStruct()) { |
| 4779 | const Record *R = this->getRecord(T); |
| 4780 | assert(R); |
| 4781 | for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { |
| 4782 | const APValue &F = Val.getStructField(i: I); |
| 4783 | const Record::Field *RF = R->getField(I); |
| 4784 | QualType FieldType = RF->Decl->getType(); |
| 4785 | |
| 4786 | if (std::optional<PrimType> PT = classify(FieldType)) { |
| 4787 | if (!this->visitAPValue(F, *PT, E)) |
| 4788 | return false; |
| 4789 | if (!this->emitInitField(*PT, RF->Offset, E)) |
| 4790 | return false; |
| 4791 | } else { |
| 4792 | if (!this->emitGetPtrField(RF->Offset, E)) |
| 4793 | return false; |
| 4794 | if (!this->visitAPValueInitializer(F, E, FieldType)) |
| 4795 | return false; |
| 4796 | if (!this->emitPopPtr(E)) |
| 4797 | return false; |
| 4798 | } |
| 4799 | } |
| 4800 | return true; |
| 4801 | } else if (Val.isUnion()) { |
| 4802 | const FieldDecl *UnionField = Val.getUnionField(); |
| 4803 | const Record *R = this->getRecord(UnionField->getParent()); |
| 4804 | assert(R); |
| 4805 | const APValue &F = Val.getUnionValue(); |
| 4806 | const Record::Field *RF = R->getField(FD: UnionField); |
| 4807 | PrimType T = classifyPrim(RF->Decl->getType()); |
| 4808 | if (!this->visitAPValue(F, T, E)) |
| 4809 | return false; |
| 4810 | return this->emitInitField(T, RF->Offset, E); |
| 4811 | } else if (Val.isArray()) { |
| 4812 | const auto *ArrType = T->getAsArrayTypeUnsafe(); |
| 4813 | QualType ElemType = ArrType->getElementType(); |
| 4814 | for (unsigned A = 0, AN = Val.getArraySize(); A != AN; ++A) { |
| 4815 | const APValue &Elem = Val.getArrayInitializedElt(I: A); |
| 4816 | if (std::optional<PrimType> ElemT = classify(ElemType)) { |
| 4817 | if (!this->visitAPValue(Elem, *ElemT, E)) |
| 4818 | return false; |
| 4819 | if (!this->emitInitElem(*ElemT, A, E)) |
| 4820 | return false; |
| 4821 | } else { |
| 4822 | if (!this->emitConstUint32(A, E)) |
| 4823 | return false; |
| 4824 | if (!this->emitArrayElemPtrUint32(E)) |
| 4825 | return false; |
| 4826 | if (!this->visitAPValueInitializer(Elem, E, ElemType)) |
| 4827 | return false; |
| 4828 | if (!this->emitPopPtr(E)) |
| 4829 | return false; |
| 4830 | } |
| 4831 | } |
| 4832 | return true; |
| 4833 | } |
| 4834 | // TODO: Other types. |
| 4835 | |
| 4836 | return false; |
| 4837 | } |
| 4838 | |
| 4839 | template <class Emitter> |
| 4840 | bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E, |
| 4841 | unsigned BuiltinID) { |
| 4842 | |
| 4843 | if (BuiltinID == Builtin::BI__builtin_constant_p) { |
| 4844 | // Void argument is always invalid and harder to handle later. |
| 4845 | if (E->getArg(Arg: 0)->getType()->isVoidType()) { |
| 4846 | if (DiscardResult) |
| 4847 | return true; |
| 4848 | return this->emitConst(0, E); |
| 4849 | } |
| 4850 | |
| 4851 | if (!this->emitStartSpeculation(E)) |
| 4852 | return false; |
| 4853 | LabelTy EndLabel = this->getLabel(); |
| 4854 | if (!this->speculate(E, EndLabel)) |
| 4855 | return false; |
| 4856 | this->fallthrough(EndLabel); |
| 4857 | if (!this->emitEndSpeculation(E)) |
| 4858 | return false; |
| 4859 | if (DiscardResult) |
| 4860 | return this->emitPop(classifyPrim(E), E); |
| 4861 | return true; |
| 4862 | } |
| 4863 | |
| 4864 | // For these, we're expected to ultimately return an APValue pointing |
| 4865 | // to the CallExpr. This is needed to get the correct codegen. |
| 4866 | if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || |
| 4867 | BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString || |
| 4868 | BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant || |
| 4869 | BuiltinID == Builtin::BI__builtin_function_start) { |
| 4870 | if (DiscardResult) |
| 4871 | return true; |
| 4872 | return this->emitDummyPtr(E, E); |
| 4873 | } |
| 4874 | |
| 4875 | QualType ReturnType = E->getType(); |
| 4876 | std::optional<PrimType> ReturnT = classify(E); |
| 4877 | |
| 4878 | // Non-primitive return type. Prepare storage. |
| 4879 | if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { |
| 4880 | std::optional<unsigned> LocalIndex = allocateLocal(Src: E); |
| 4881 | if (!LocalIndex) |
| 4882 | return false; |
| 4883 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| 4884 | return false; |
| 4885 | } |
| 4886 | |
| 4887 | if (!Context::isUnevaluatedBuiltin(ID: BuiltinID)) { |
| 4888 | // Put arguments on the stack. |
| 4889 | for (const auto *Arg : E->arguments()) { |
| 4890 | if (!this->visit(Arg)) |
| 4891 | return false; |
| 4892 | } |
| 4893 | } |
| 4894 | |
| 4895 | if (!this->emitCallBI(E, BuiltinID, E)) |
| 4896 | return false; |
| 4897 | |
| 4898 | if (DiscardResult && !ReturnType->isVoidType()) { |
| 4899 | assert(ReturnT); |
| 4900 | return this->emitPop(*ReturnT, E); |
| 4901 | } |
| 4902 | |
| 4903 | return true; |
| 4904 | } |
| 4905 | |
| 4906 | template <class Emitter> |
| 4907 | bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { |
| 4908 | const FunctionDecl *FuncDecl = E->getDirectCallee(); |
| 4909 | |
| 4910 | if (FuncDecl) { |
| 4911 | if (unsigned BuiltinID = FuncDecl->getBuiltinID()) |
| 4912 | return VisitBuiltinCallExpr(E, BuiltinID); |
| 4913 | |
| 4914 | // Calls to replaceable operator new/operator delete. |
| 4915 | if (FuncDecl->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) { |
| 4916 | if (FuncDecl->getDeclName().isAnyOperatorNew()) { |
| 4917 | return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new); |
| 4918 | } else { |
| 4919 | assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete); |
| 4920 | return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete); |
| 4921 | } |
| 4922 | } |
| 4923 | |
| 4924 | // Explicit calls to trivial destructors |
| 4925 | if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: FuncDecl); |
| 4926 | DD && DD->isTrivial()) { |
| 4927 | const auto *MemberCall = cast<CXXMemberCallExpr>(Val: E); |
| 4928 | if (!this->visit(MemberCall->getImplicitObjectArgument())) |
| 4929 | return false; |
| 4930 | return this->emitCheckDestruction(E) && this->emitEndLifetime(E) && |
| 4931 | this->emitPopPtr(E); |
| 4932 | } |
| 4933 | } |
| 4934 | |
| 4935 | BlockScope<Emitter> CallScope(this, ScopeKind::Call); |
| 4936 | |
| 4937 | QualType ReturnType = E->getCallReturnType(Ctx: Ctx.getASTContext()); |
| 4938 | std::optional<PrimType> T = classify(ReturnType); |
| 4939 | bool HasRVO = !ReturnType->isVoidType() && !T; |
| 4940 | |
| 4941 | if (HasRVO) { |
| 4942 | if (DiscardResult) { |
| 4943 | // If we need to discard the return value but the function returns its |
| 4944 | // value via an RVO pointer, we need to create one such pointer just |
| 4945 | // for this call. |
| 4946 | if (std::optional<unsigned> LocalIndex = allocateLocal(Src: E)) { |
| 4947 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| 4948 | return false; |
| 4949 | } |
| 4950 | } else { |
| 4951 | // We need the result. Prepare a pointer to return or |
| 4952 | // dup the current one. |
| 4953 | if (!Initializing) { |
| 4954 | if (std::optional<unsigned> LocalIndex = allocateLocal(Src: E)) { |
| 4955 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| 4956 | return false; |
| 4957 | } |
| 4958 | } |
| 4959 | if (!this->emitDupPtr(E)) |
| 4960 | return false; |
| 4961 | } |
| 4962 | } |
| 4963 | |
| 4964 | SmallVector<const Expr *, 8> Args( |
| 4965 | llvm::ArrayRef(E->getArgs(), E->getNumArgs())); |
| 4966 | |
| 4967 | bool IsAssignmentOperatorCall = false; |
| 4968 | if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(Val: E); |
| 4969 | OCE && OCE->isAssignmentOp()) { |
| 4970 | // Just like with regular assignments, we need to special-case assignment |
| 4971 | // operators here and evaluate the RHS (the second arg) before the LHS (the |
| 4972 | // first arg). We fix this by using a Flip op later. |
| 4973 | assert(Args.size() == 2); |
| 4974 | IsAssignmentOperatorCall = true; |
| 4975 | std::reverse(first: Args.begin(), last: Args.end()); |
| 4976 | } |
| 4977 | // Calling a static operator will still |
| 4978 | // pass the instance, but we don't need it. |
| 4979 | // Discard it here. |
| 4980 | if (isa<CXXOperatorCallExpr>(Val: E)) { |
| 4981 | if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(Val: FuncDecl); |
| 4982 | MD && MD->isStatic()) { |
| 4983 | if (!this->discard(E->getArg(Arg: 0))) |
| 4984 | return false; |
| 4985 | // Drop first arg. |
| 4986 | Args.erase(CI: Args.begin()); |
| 4987 | } |
| 4988 | } |
| 4989 | |
| 4990 | std::optional<unsigned> CalleeOffset; |
| 4991 | // Add the (optional, implicit) This pointer. |
| 4992 | if (const auto *MC = dyn_cast<CXXMemberCallExpr>(Val: E)) { |
| 4993 | if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { |
| 4994 | // If we end up creating a CallPtr op for this, we need the base of the |
| 4995 | // member pointer as the instance pointer, and later extract the function |
| 4996 | // decl as the function pointer. |
| 4997 | const Expr *Callee = E->getCallee(); |
| 4998 | CalleeOffset = |
| 4999 | this->allocateLocalPrimitive(Callee, PT_MemberPtr, /*IsConst=*/true); |
| 5000 | if (!this->visit(Callee)) |
| 5001 | return false; |
| 5002 | if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) |
| 5003 | return false; |
| 5004 | if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) |
| 5005 | return false; |
| 5006 | if (!this->emitGetMemberPtrBase(E)) |
| 5007 | return false; |
| 5008 | } else if (!this->visit(MC->getImplicitObjectArgument())) { |
| 5009 | return false; |
| 5010 | } |
| 5011 | } else if (const auto *PD = |
| 5012 | dyn_cast<CXXPseudoDestructorExpr>(Val: E->getCallee())) { |
| 5013 | if (!this->emitCheckPseudoDtor(E)) |
| 5014 | return false; |
| 5015 | const Expr *Base = PD->getBase(); |
| 5016 | if (!Base->isGLValue()) |
| 5017 | return this->discard(Base); |
| 5018 | if (!this->visit(Base)) |
| 5019 | return false; |
| 5020 | return this->emitEndLifetimePop(E); |
| 5021 | } else if (!FuncDecl) { |
| 5022 | const Expr *Callee = E->getCallee(); |
| 5023 | CalleeOffset = |
| 5024 | this->allocateLocalPrimitive(Callee, PT_Ptr, /*IsConst=*/true); |
| 5025 | if (!this->visit(Callee)) |
| 5026 | return false; |
| 5027 | if (!this->emitSetLocal(PT_Ptr, *CalleeOffset, E)) |
| 5028 | return false; |
| 5029 | } |
| 5030 | |
| 5031 | if (!this->visitCallArgs(Args, FuncDecl)) |
| 5032 | return false; |
| 5033 | |
| 5034 | // Undo the argument reversal we did earlier. |
| 5035 | if (IsAssignmentOperatorCall) { |
| 5036 | assert(Args.size() == 2); |
| 5037 | PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr); |
| 5038 | PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr); |
| 5039 | if (!this->emitFlip(Arg2T, Arg1T, E)) |
| 5040 | return false; |
| 5041 | } |
| 5042 | |
| 5043 | if (FuncDecl) { |
| 5044 | const Function *Func = getFunction(FD: FuncDecl); |
| 5045 | if (!Func) |
| 5046 | return false; |
| 5047 | assert(HasRVO == Func->hasRVO()); |
| 5048 | |
| 5049 | bool HasQualifier = false; |
| 5050 | if (const auto *ME = dyn_cast<MemberExpr>(Val: E->getCallee())) |
| 5051 | HasQualifier = ME->hasQualifier(); |
| 5052 | |
| 5053 | bool IsVirtual = false; |
| 5054 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FuncDecl)) |
| 5055 | IsVirtual = MD->isVirtual(); |
| 5056 | |
| 5057 | // In any case call the function. The return value will end up on the stack |
| 5058 | // and if the function has RVO, we already have the pointer on the stack to |
| 5059 | // write the result into. |
| 5060 | if (IsVirtual && !HasQualifier) { |
| 5061 | uint32_t VarArgSize = 0; |
| 5062 | unsigned NumParams = |
| 5063 | Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(Val: E); |
| 5064 | for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) |
| 5065 | VarArgSize += align(primSize(classify(E->getArg(Arg: I)).value_or(PT_Ptr))); |
| 5066 | |
| 5067 | if (!this->emitCallVirt(Func, VarArgSize, E)) |
| 5068 | return false; |
| 5069 | } else if (Func->isVariadic()) { |
| 5070 | uint32_t VarArgSize = 0; |
| 5071 | unsigned NumParams = |
| 5072 | Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(Val: E); |
| 5073 | for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) |
| 5074 | VarArgSize += align(primSize(classify(E->getArg(Arg: I)).value_or(PT_Ptr))); |
| 5075 | if (!this->emitCallVar(Func, VarArgSize, E)) |
| 5076 | return false; |
| 5077 | } else { |
| 5078 | if (!this->emitCall(Func, 0, E)) |
| 5079 | return false; |
| 5080 | } |
| 5081 | } else { |
| 5082 | // Indirect call. Visit the callee, which will leave a FunctionPointer on |
| 5083 | // the stack. Cleanup of the returned value if necessary will be done after |
| 5084 | // the function call completed. |
| 5085 | |
| 5086 | // Sum the size of all args from the call expr. |
| 5087 | uint32_t ArgSize = 0; |
| 5088 | for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) |
| 5089 | ArgSize += align(primSize(classify(E->getArg(Arg: I)).value_or(PT_Ptr))); |
| 5090 | |
| 5091 | // Get the callee, either from a member pointer or function pointer saved in |
| 5092 | // CalleeOffset. |
| 5093 | if (isa<CXXMemberCallExpr>(Val: E) && CalleeOffset) { |
| 5094 | if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) |
| 5095 | return false; |
| 5096 | if (!this->emitGetMemberPtrDecl(E)) |
| 5097 | return false; |
| 5098 | } else { |
| 5099 | if (!this->emitGetLocal(PT_Ptr, *CalleeOffset, E)) |
| 5100 | return false; |
| 5101 | } |
| 5102 | if (!this->emitCallPtr(ArgSize, E, E)) |
| 5103 | return false; |
| 5104 | } |
| 5105 | |
| 5106 | // Cleanup for discarded return values. |
| 5107 | if (DiscardResult && !ReturnType->isVoidType() && T) |
| 5108 | return this->emitPop(*T, E) && CallScope.destroyLocals(); |
| 5109 | |
| 5110 | return CallScope.destroyLocals(); |
| 5111 | } |
| 5112 | |
| 5113 | template <class Emitter> |
| 5114 | bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { |
| 5115 | SourceLocScope<Emitter> SLS(this, E); |
| 5116 | |
| 5117 | return this->delegate(E->getExpr()); |
| 5118 | } |
| 5119 | |
| 5120 | template <class Emitter> |
| 5121 | bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { |
| 5122 | SourceLocScope<Emitter> SLS(this, E); |
| 5123 | |
| 5124 | return this->delegate(E->getExpr()); |
| 5125 | } |
| 5126 | |
| 5127 | template <class Emitter> |
| 5128 | bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
| 5129 | if (DiscardResult) |
| 5130 | return true; |
| 5131 | |
| 5132 | return this->emitConstBool(E->getValue(), E); |
| 5133 | } |
| 5134 | |
| 5135 | template <class Emitter> |
| 5136 | bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( |
| 5137 | const CXXNullPtrLiteralExpr *E) { |
| 5138 | if (DiscardResult) |
| 5139 | return true; |
| 5140 | |
| 5141 | uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(QT: E->getType()); |
| 5142 | return this->emitNullPtr(Val, nullptr, E); |
| 5143 | } |
| 5144 | |
| 5145 | template <class Emitter> |
| 5146 | bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { |
| 5147 | if (DiscardResult) |
| 5148 | return true; |
| 5149 | |
| 5150 | assert(E->getType()->isIntegerType()); |
| 5151 | |
| 5152 | PrimType T = classifyPrim(E->getType()); |
| 5153 | return this->emitZero(T, E); |
| 5154 | } |
| 5155 | |
| 5156 | template <class Emitter> |
| 5157 | bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { |
| 5158 | if (DiscardResult) |
| 5159 | return true; |
| 5160 | |
| 5161 | if (this->LambdaThisCapture.Offset > 0) { |
| 5162 | if (this->LambdaThisCapture.IsPtr) |
| 5163 | return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); |
| 5164 | return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); |
| 5165 | } |
| 5166 | |
| 5167 | // In some circumstances, the 'this' pointer does not actually refer to the |
| 5168 | // instance pointer of the current function frame, but e.g. to the declaration |
| 5169 | // currently being initialized. Here we emit the necessary instruction(s) for |
| 5170 | // this scenario. |
| 5171 | if (!InitStackActive) |
| 5172 | return this->emitThis(E); |
| 5173 | |
| 5174 | if (!InitStack.empty()) { |
| 5175 | // If our init stack is, for example: |
| 5176 | // 0 Stack: 3 (decl) |
| 5177 | // 1 Stack: 6 (init list) |
| 5178 | // 2 Stack: 1 (field) |
| 5179 | // 3 Stack: 6 (init list) |
| 5180 | // 4 Stack: 1 (field) |
| 5181 | // |
| 5182 | // We want to find the LAST element in it that's an init list, |
| 5183 | // which is marked with the K_InitList marker. The index right |
| 5184 | // before that points to an init list. We need to find the |
| 5185 | // elements before the K_InitList element that point to a base |
| 5186 | // (e.g. a decl or This), optionally followed by field, elem, etc. |
| 5187 | // In the example above, we want to emit elements [0..2]. |
| 5188 | unsigned StartIndex = 0; |
| 5189 | unsigned EndIndex = 0; |
| 5190 | // Find the init list. |
| 5191 | for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { |
| 5192 | if (InitStack[StartIndex].Kind == InitLink::K_InitList || |
| 5193 | InitStack[StartIndex].Kind == InitLink::K_This) { |
| 5194 | EndIndex = StartIndex; |
| 5195 | --StartIndex; |
| 5196 | break; |
| 5197 | } |
| 5198 | } |
| 5199 | |
| 5200 | // Walk backwards to find the base. |
| 5201 | for (; StartIndex > 0; --StartIndex) { |
| 5202 | if (InitStack[StartIndex].Kind == InitLink::K_InitList) |
| 5203 | continue; |
| 5204 | |
| 5205 | if (InitStack[StartIndex].Kind != InitLink::K_Field && |
| 5206 | InitStack[StartIndex].Kind != InitLink::K_Elem) |
| 5207 | break; |
| 5208 | } |
| 5209 | |
| 5210 | // Emit the instructions. |
| 5211 | for (unsigned I = StartIndex; I != EndIndex; ++I) { |
| 5212 | if (InitStack[I].Kind == InitLink::K_InitList) |
| 5213 | continue; |
| 5214 | if (!InitStack[I].template emit<Emitter>(this, E)) |
| 5215 | return false; |
| 5216 | } |
| 5217 | return true; |
| 5218 | } |
| 5219 | return this->emitThis(E); |
| 5220 | } |
| 5221 | |
| 5222 | template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { |
| 5223 | switch (S->getStmtClass()) { |
| 5224 | case Stmt::CompoundStmtClass: |
| 5225 | return visitCompoundStmt(S: cast<CompoundStmt>(Val: S)); |
| 5226 | case Stmt::DeclStmtClass: |
| 5227 | return visitDeclStmt(DS: cast<DeclStmt>(Val: S), /*EvaluateConditionDecl=*/true); |
| 5228 | case Stmt::ReturnStmtClass: |
| 5229 | return visitReturnStmt(RS: cast<ReturnStmt>(Val: S)); |
| 5230 | case Stmt::IfStmtClass: |
| 5231 | return visitIfStmt(IS: cast<IfStmt>(Val: S)); |
| 5232 | case Stmt::WhileStmtClass: |
| 5233 | return visitWhileStmt(S: cast<WhileStmt>(Val: S)); |
| 5234 | case Stmt::DoStmtClass: |
| 5235 | return visitDoStmt(S: cast<DoStmt>(Val: S)); |
| 5236 | case Stmt::ForStmtClass: |
| 5237 | return visitForStmt(S: cast<ForStmt>(Val: S)); |
| 5238 | case Stmt::CXXForRangeStmtClass: |
| 5239 | return visitCXXForRangeStmt(S: cast<CXXForRangeStmt>(Val: S)); |
| 5240 | case Stmt::BreakStmtClass: |
| 5241 | return visitBreakStmt(S: cast<BreakStmt>(Val: S)); |
| 5242 | case Stmt::ContinueStmtClass: |
| 5243 | return visitContinueStmt(S: cast<ContinueStmt>(Val: S)); |
| 5244 | case Stmt::SwitchStmtClass: |
| 5245 | return visitSwitchStmt(S: cast<SwitchStmt>(Val: S)); |
| 5246 | case Stmt::CaseStmtClass: |
| 5247 | return visitCaseStmt(S: cast<CaseStmt>(Val: S)); |
| 5248 | case Stmt::DefaultStmtClass: |
| 5249 | return visitDefaultStmt(S: cast<DefaultStmt>(Val: S)); |
| 5250 | case Stmt::AttributedStmtClass: |
| 5251 | return visitAttributedStmt(S: cast<AttributedStmt>(Val: S)); |
| 5252 | case Stmt::CXXTryStmtClass: |
| 5253 | return visitCXXTryStmt(S: cast<CXXTryStmt>(Val: S)); |
| 5254 | case Stmt::NullStmtClass: |
| 5255 | return true; |
| 5256 | // Always invalid statements. |
| 5257 | case Stmt::GCCAsmStmtClass: |
| 5258 | case Stmt::MSAsmStmtClass: |
| 5259 | case Stmt::GotoStmtClass: |
| 5260 | return this->emitInvalid(S); |
| 5261 | case Stmt::LabelStmtClass: |
| 5262 | return this->visitStmt(cast<LabelStmt>(Val: S)->getSubStmt()); |
| 5263 | default: { |
| 5264 | if (const auto *E = dyn_cast<Expr>(Val: S)) |
| 5265 | return this->discard(E); |
| 5266 | return false; |
| 5267 | } |
| 5268 | } |
| 5269 | } |
| 5270 | |
| 5271 | template <class Emitter> |
| 5272 | bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { |
| 5273 | BlockScope<Emitter> Scope(this); |
| 5274 | for (const auto *InnerStmt : S->body()) |
| 5275 | if (!visitStmt(S: InnerStmt)) |
| 5276 | return false; |
| 5277 | return Scope.destroyLocals(); |
| 5278 | } |
| 5279 | |
| 5280 | template <class Emitter> |
| 5281 | bool Compiler<Emitter>::maybeEmitDeferredVarInit(const VarDecl *VD) { |
| 5282 | if (auto *DD = dyn_cast_if_present<DecompositionDecl>(Val: VD)) { |
| 5283 | for (auto *BD : DD->bindings()) |
| 5284 | if (auto *KD = BD->getHoldingVar(); KD && !this->visitVarDecl(KD)) |
| 5285 | return false; |
| 5286 | } |
| 5287 | return true; |
| 5288 | } |
| 5289 | |
| 5290 | template <class Emitter> |
| 5291 | bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS, |
| 5292 | bool EvaluateConditionDecl) { |
| 5293 | for (const auto *D : DS->decls()) { |
| 5294 | if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, BaseUsingDecl, |
| 5295 | FunctionDecl, NamespaceAliasDecl, UsingDirectiveDecl>(Val: D)) |
| 5296 | continue; |
| 5297 | |
| 5298 | const auto *VD = dyn_cast<VarDecl>(Val: D); |
| 5299 | if (!VD) |
| 5300 | return false; |
| 5301 | if (!this->visitVarDecl(VD)) |
| 5302 | return false; |
| 5303 | |
| 5304 | // Register decomposition decl holding vars. |
| 5305 | if (EvaluateConditionDecl && !this->maybeEmitDeferredVarInit(VD)) |
| 5306 | return false; |
| 5307 | } |
| 5308 | |
| 5309 | return true; |
| 5310 | } |
| 5311 | |
| 5312 | template <class Emitter> |
| 5313 | bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { |
| 5314 | if (this->InStmtExpr) |
| 5315 | return this->emitUnsupported(RS); |
| 5316 | |
| 5317 | if (const Expr *RE = RS->getRetValue()) { |
| 5318 | LocalScope<Emitter> RetScope(this); |
| 5319 | if (ReturnType) { |
| 5320 | // Primitive types are simply returned. |
| 5321 | if (!this->visit(RE)) |
| 5322 | return false; |
| 5323 | this->emitCleanup(); |
| 5324 | return this->emitRet(*ReturnType, RS); |
| 5325 | } else if (RE->getType()->isVoidType()) { |
| 5326 | if (!this->visit(RE)) |
| 5327 | return false; |
| 5328 | } else { |
| 5329 | InitLinkScope<Emitter> ILS(this, InitLink::RVO()); |
| 5330 | // RVO - construct the value in the return location. |
| 5331 | if (!this->emitRVOPtr(RE)) |
| 5332 | return false; |
| 5333 | if (!this->visitInitializer(RE)) |
| 5334 | return false; |
| 5335 | if (!this->emitPopPtr(RE)) |
| 5336 | return false; |
| 5337 | |
| 5338 | this->emitCleanup(); |
| 5339 | return this->emitRetVoid(RS); |
| 5340 | } |
| 5341 | } |
| 5342 | |
| 5343 | // Void return. |
| 5344 | this->emitCleanup(); |
| 5345 | return this->emitRetVoid(RS); |
| 5346 | } |
| 5347 | |
| 5348 | template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { |
| 5349 | auto visitChildStmt = [&](const Stmt *S) -> bool { |
| 5350 | LocalScope<Emitter> SScope(this); |
| 5351 | if (!visitStmt(S)) |
| 5352 | return false; |
| 5353 | return SScope.destroyLocals(); |
| 5354 | }; |
| 5355 | if (auto *CondInit = IS->getInit()) |
| 5356 | if (!visitStmt(S: CondInit)) |
| 5357 | return false; |
| 5358 | |
| 5359 | if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) |
| 5360 | if (!visitDeclStmt(DS: CondDecl)) |
| 5361 | return false; |
| 5362 | |
| 5363 | // Save ourselves compiling some code and the jumps, etc. if the condition is |
| 5364 | // stataically known to be either true or false. We could look at more cases |
| 5365 | // here, but I think all the ones that actually happen are using a |
| 5366 | // ConstantExpr. |
| 5367 | if (std::optional<bool> BoolValue = getBoolValue(E: IS->getCond())) { |
| 5368 | if (*BoolValue) |
| 5369 | return visitChildStmt(IS->getThen()); |
| 5370 | else if (const Stmt *Else = IS->getElse()) |
| 5371 | return visitChildStmt(Else); |
| 5372 | return true; |
| 5373 | } |
| 5374 | |
| 5375 | // Otherwise, compile the condition. |
| 5376 | if (IS->isNonNegatedConsteval()) { |
| 5377 | if (!this->emitIsConstantContext(IS)) |
| 5378 | return false; |
| 5379 | } else if (IS->isNegatedConsteval()) { |
| 5380 | if (!this->emitIsConstantContext(IS)) |
| 5381 | return false; |
| 5382 | if (!this->emitInv(IS)) |
| 5383 | return false; |
| 5384 | } else { |
| 5385 | if (!this->visitBool(IS->getCond())) |
| 5386 | return false; |
| 5387 | } |
| 5388 | |
| 5389 | if (!this->maybeEmitDeferredVarInit(IS->getConditionVariable())) |
| 5390 | return false; |
| 5391 | |
| 5392 | if (const Stmt *Else = IS->getElse()) { |
| 5393 | LabelTy LabelElse = this->getLabel(); |
| 5394 | LabelTy LabelEnd = this->getLabel(); |
| 5395 | if (!this->jumpFalse(LabelElse)) |
| 5396 | return false; |
| 5397 | if (!visitChildStmt(IS->getThen())) |
| 5398 | return false; |
| 5399 | if (!this->jump(LabelEnd)) |
| 5400 | return false; |
| 5401 | this->emitLabel(LabelElse); |
| 5402 | if (!visitChildStmt(Else)) |
| 5403 | return false; |
| 5404 | this->emitLabel(LabelEnd); |
| 5405 | } else { |
| 5406 | LabelTy LabelEnd = this->getLabel(); |
| 5407 | if (!this->jumpFalse(LabelEnd)) |
| 5408 | return false; |
| 5409 | if (!visitChildStmt(IS->getThen())) |
| 5410 | return false; |
| 5411 | this->emitLabel(LabelEnd); |
| 5412 | } |
| 5413 | |
| 5414 | return true; |
| 5415 | } |
| 5416 | |
| 5417 | template <class Emitter> |
| 5418 | bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { |
| 5419 | const Expr *Cond = S->getCond(); |
| 5420 | const Stmt *Body = S->getBody(); |
| 5421 | |
| 5422 | LabelTy CondLabel = this->getLabel(); // Label before the condition. |
| 5423 | LabelTy EndLabel = this->getLabel(); // Label after the loop. |
| 5424 | LoopScope<Emitter> LS(this, EndLabel, CondLabel); |
| 5425 | |
| 5426 | this->fallthrough(CondLabel); |
| 5427 | this->emitLabel(CondLabel); |
| 5428 | |
| 5429 | { |
| 5430 | LocalScope<Emitter> CondScope(this); |
| 5431 | if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) |
| 5432 | if (!visitDeclStmt(DS: CondDecl)) |
| 5433 | return false; |
| 5434 | |
| 5435 | if (!this->visitBool(Cond)) |
| 5436 | return false; |
| 5437 | |
| 5438 | if (!this->maybeEmitDeferredVarInit(S->getConditionVariable())) |
| 5439 | return false; |
| 5440 | |
| 5441 | if (!this->jumpFalse(EndLabel)) |
| 5442 | return false; |
| 5443 | |
| 5444 | if (!this->visitStmt(Body)) |
| 5445 | return false; |
| 5446 | |
| 5447 | if (!CondScope.destroyLocals()) |
| 5448 | return false; |
| 5449 | } |
| 5450 | if (!this->jump(CondLabel)) |
| 5451 | return false; |
| 5452 | this->fallthrough(EndLabel); |
| 5453 | this->emitLabel(EndLabel); |
| 5454 | |
| 5455 | return true; |
| 5456 | } |
| 5457 | |
| 5458 | template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { |
| 5459 | const Expr *Cond = S->getCond(); |
| 5460 | const Stmt *Body = S->getBody(); |
| 5461 | |
| 5462 | LabelTy StartLabel = this->getLabel(); |
| 5463 | LabelTy EndLabel = this->getLabel(); |
| 5464 | LabelTy CondLabel = this->getLabel(); |
| 5465 | LoopScope<Emitter> LS(this, EndLabel, CondLabel); |
| 5466 | |
| 5467 | this->fallthrough(StartLabel); |
| 5468 | this->emitLabel(StartLabel); |
| 5469 | |
| 5470 | { |
| 5471 | LocalScope<Emitter> CondScope(this); |
| 5472 | if (!this->visitStmt(Body)) |
| 5473 | return false; |
| 5474 | this->fallthrough(CondLabel); |
| 5475 | this->emitLabel(CondLabel); |
| 5476 | if (!this->visitBool(Cond)) |
| 5477 | return false; |
| 5478 | |
| 5479 | if (!CondScope.destroyLocals()) |
| 5480 | return false; |
| 5481 | } |
| 5482 | if (!this->jumpTrue(StartLabel)) |
| 5483 | return false; |
| 5484 | |
| 5485 | this->fallthrough(EndLabel); |
| 5486 | this->emitLabel(EndLabel); |
| 5487 | return true; |
| 5488 | } |
| 5489 | |
| 5490 | template <class Emitter> |
| 5491 | bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { |
| 5492 | // for (Init; Cond; Inc) { Body } |
| 5493 | const Stmt *Init = S->getInit(); |
| 5494 | const Expr *Cond = S->getCond(); |
| 5495 | const Expr *Inc = S->getInc(); |
| 5496 | const Stmt *Body = S->getBody(); |
| 5497 | |
| 5498 | LabelTy EndLabel = this->getLabel(); |
| 5499 | LabelTy CondLabel = this->getLabel(); |
| 5500 | LabelTy IncLabel = this->getLabel(); |
| 5501 | LoopScope<Emitter> LS(this, EndLabel, IncLabel); |
| 5502 | |
| 5503 | if (Init && !this->visitStmt(Init)) |
| 5504 | return false; |
| 5505 | |
| 5506 | this->fallthrough(CondLabel); |
| 5507 | this->emitLabel(CondLabel); |
| 5508 | |
| 5509 | // Start of loop body. |
| 5510 | LocalScope<Emitter> CondScope(this); |
| 5511 | if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) |
| 5512 | if (!visitDeclStmt(DS: CondDecl)) |
| 5513 | return false; |
| 5514 | |
| 5515 | if (Cond) { |
| 5516 | if (!this->visitBool(Cond)) |
| 5517 | return false; |
| 5518 | if (!this->jumpFalse(EndLabel)) |
| 5519 | return false; |
| 5520 | } |
| 5521 | if (!this->maybeEmitDeferredVarInit(S->getConditionVariable())) |
| 5522 | return false; |
| 5523 | |
| 5524 | if (Body && !this->visitStmt(Body)) |
| 5525 | return false; |
| 5526 | |
| 5527 | this->fallthrough(IncLabel); |
| 5528 | this->emitLabel(IncLabel); |
| 5529 | if (Inc && !this->discard(Inc)) |
| 5530 | return false; |
| 5531 | |
| 5532 | if (!CondScope.destroyLocals()) |
| 5533 | return false; |
| 5534 | if (!this->jump(CondLabel)) |
| 5535 | return false; |
| 5536 | // End of loop body. |
| 5537 | |
| 5538 | this->emitLabel(EndLabel); |
| 5539 | // If we jumped out of the loop above, we still need to clean up the condition |
| 5540 | // scope. |
| 5541 | return CondScope.destroyLocals(); |
| 5542 | } |
| 5543 | |
| 5544 | template <class Emitter> |
| 5545 | bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { |
| 5546 | const Stmt *Init = S->getInit(); |
| 5547 | const Expr *Cond = S->getCond(); |
| 5548 | const Expr *Inc = S->getInc(); |
| 5549 | const Stmt *Body = S->getBody(); |
| 5550 | const Stmt *BeginStmt = S->getBeginStmt(); |
| 5551 | const Stmt *RangeStmt = S->getRangeStmt(); |
| 5552 | const Stmt *EndStmt = S->getEndStmt(); |
| 5553 | const VarDecl *LoopVar = S->getLoopVariable(); |
| 5554 | |
| 5555 | LabelTy EndLabel = this->getLabel(); |
| 5556 | LabelTy CondLabel = this->getLabel(); |
| 5557 | LabelTy IncLabel = this->getLabel(); |
| 5558 | LoopScope<Emitter> LS(this, EndLabel, IncLabel); |
| 5559 | |
| 5560 | // Emit declarations needed in the loop. |
| 5561 | if (Init && !this->visitStmt(Init)) |
| 5562 | return false; |
| 5563 | if (!this->visitStmt(RangeStmt)) |
| 5564 | return false; |
| 5565 | if (!this->visitStmt(BeginStmt)) |
| 5566 | return false; |
| 5567 | if (!this->visitStmt(EndStmt)) |
| 5568 | return false; |
| 5569 | |
| 5570 | // Now the condition as well as the loop variable assignment. |
| 5571 | this->fallthrough(CondLabel); |
| 5572 | this->emitLabel(CondLabel); |
| 5573 | if (!this->visitBool(Cond)) |
| 5574 | return false; |
| 5575 | if (!this->jumpFalse(EndLabel)) |
| 5576 | return false; |
| 5577 | |
| 5578 | if (!this->visitVarDecl(LoopVar)) |
| 5579 | return false; |
| 5580 | |
| 5581 | // Body. |
| 5582 | { |
| 5583 | if (!this->visitStmt(Body)) |
| 5584 | return false; |
| 5585 | |
| 5586 | this->fallthrough(IncLabel); |
| 5587 | this->emitLabel(IncLabel); |
| 5588 | if (!this->discard(Inc)) |
| 5589 | return false; |
| 5590 | } |
| 5591 | |
| 5592 | if (!this->jump(CondLabel)) |
| 5593 | return false; |
| 5594 | |
| 5595 | this->fallthrough(EndLabel); |
| 5596 | this->emitLabel(EndLabel); |
| 5597 | return true; |
| 5598 | } |
| 5599 | |
| 5600 | template <class Emitter> |
| 5601 | bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { |
| 5602 | if (!BreakLabel) |
| 5603 | return false; |
| 5604 | |
| 5605 | for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope; |
| 5606 | C = C->getParent()) |
| 5607 | C->emitDestruction(); |
| 5608 | return this->jump(*BreakLabel); |
| 5609 | } |
| 5610 | |
| 5611 | template <class Emitter> |
| 5612 | bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { |
| 5613 | if (!ContinueLabel) |
| 5614 | return false; |
| 5615 | |
| 5616 | for (VariableScope<Emitter> *C = VarScope; |
| 5617 | C && C->getParent() != ContinueVarScope; C = C->getParent()) |
| 5618 | C->emitDestruction(); |
| 5619 | return this->jump(*ContinueLabel); |
| 5620 | } |
| 5621 | |
| 5622 | template <class Emitter> |
| 5623 | bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { |
| 5624 | const Expr *Cond = S->getCond(); |
| 5625 | PrimType CondT = this->classifyPrim(Cond->getType()); |
| 5626 | LocalScope<Emitter> LS(this); |
| 5627 | |
| 5628 | LabelTy EndLabel = this->getLabel(); |
| 5629 | OptLabelTy DefaultLabel = std::nullopt; |
| 5630 | unsigned CondVar = |
| 5631 | this->allocateLocalPrimitive(Cond, CondT, /*IsConst=*/true); |
| 5632 | |
| 5633 | if (const auto *CondInit = S->getInit()) |
| 5634 | if (!visitStmt(S: CondInit)) |
| 5635 | return false; |
| 5636 | |
| 5637 | if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) |
| 5638 | if (!visitDeclStmt(DS: CondDecl)) |
| 5639 | return false; |
| 5640 | |
| 5641 | // Initialize condition variable. |
| 5642 | if (!this->visit(Cond)) |
| 5643 | return false; |
| 5644 | if (!this->emitSetLocal(CondT, CondVar, S)) |
| 5645 | return false; |
| 5646 | |
| 5647 | if (!this->maybeEmitDeferredVarInit(S->getConditionVariable())) |
| 5648 | return false; |
| 5649 | |
| 5650 | CaseMap CaseLabels; |
| 5651 | // Create labels and comparison ops for all case statements. |
| 5652 | for (const SwitchCase *SC = S->getSwitchCaseList(); SC; |
| 5653 | SC = SC->getNextSwitchCase()) { |
| 5654 | if (const auto *CS = dyn_cast<CaseStmt>(Val: SC)) { |
| 5655 | // FIXME: Implement ranges. |
| 5656 | if (CS->caseStmtIsGNURange()) |
| 5657 | return false; |
| 5658 | CaseLabels[SC] = this->getLabel(); |
| 5659 | |
| 5660 | const Expr *Value = CS->getLHS(); |
| 5661 | PrimType ValueT = this->classifyPrim(Value->getType()); |
| 5662 | |
| 5663 | // Compare the case statement's value to the switch condition. |
| 5664 | if (!this->emitGetLocal(CondT, CondVar, CS)) |
| 5665 | return false; |
| 5666 | if (!this->visit(Value)) |
| 5667 | return false; |
| 5668 | |
| 5669 | // Compare and jump to the case label. |
| 5670 | if (!this->emitEQ(ValueT, S)) |
| 5671 | return false; |
| 5672 | if (!this->jumpTrue(CaseLabels[CS])) |
| 5673 | return false; |
| 5674 | } else { |
| 5675 | assert(!DefaultLabel); |
| 5676 | DefaultLabel = this->getLabel(); |
| 5677 | } |
| 5678 | } |
| 5679 | |
| 5680 | // If none of the conditions above were true, fall through to the default |
| 5681 | // statement or jump after the switch statement. |
| 5682 | if (DefaultLabel) { |
| 5683 | if (!this->jump(*DefaultLabel)) |
| 5684 | return false; |
| 5685 | } else { |
| 5686 | if (!this->jump(EndLabel)) |
| 5687 | return false; |
| 5688 | } |
| 5689 | |
| 5690 | SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); |
| 5691 | if (!this->visitStmt(S->getBody())) |
| 5692 | return false; |
| 5693 | this->emitLabel(EndLabel); |
| 5694 | |
| 5695 | return LS.destroyLocals(); |
| 5696 | } |
| 5697 | |
| 5698 | template <class Emitter> |
| 5699 | bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { |
| 5700 | this->emitLabel(CaseLabels[S]); |
| 5701 | return this->visitStmt(S->getSubStmt()); |
| 5702 | } |
| 5703 | |
| 5704 | template <class Emitter> |
| 5705 | bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { |
| 5706 | this->emitLabel(*DefaultLabel); |
| 5707 | return this->visitStmt(S->getSubStmt()); |
| 5708 | } |
| 5709 | |
| 5710 | template <class Emitter> |
| 5711 | bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { |
| 5712 | if (this->Ctx.getLangOpts().CXXAssumptions && |
| 5713 | !this->Ctx.getLangOpts().MSVCCompat) { |
| 5714 | for (const Attr *A : S->getAttrs()) { |
| 5715 | auto *AA = dyn_cast<CXXAssumeAttr>(A); |
| 5716 | if (!AA) |
| 5717 | continue; |
| 5718 | |
| 5719 | assert(isa<NullStmt>(S->getSubStmt())); |
| 5720 | |
| 5721 | const Expr *Assumption = AA->getAssumption(); |
| 5722 | if (Assumption->isValueDependent()) |
| 5723 | return false; |
| 5724 | |
| 5725 | if (Assumption->HasSideEffects(Ctx: this->Ctx.getASTContext())) |
| 5726 | continue; |
| 5727 | |
| 5728 | // Evaluate assumption. |
| 5729 | if (!this->visitBool(Assumption)) |
| 5730 | return false; |
| 5731 | |
| 5732 | if (!this->emitAssume(Assumption)) |
| 5733 | return false; |
| 5734 | } |
| 5735 | } |
| 5736 | |
| 5737 | // Ignore other attributes. |
| 5738 | return this->visitStmt(S->getSubStmt()); |
| 5739 | } |
| 5740 | |
| 5741 | template <class Emitter> |
| 5742 | bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { |
| 5743 | // Ignore all handlers. |
| 5744 | return this->visitStmt(S->getTryBlock()); |
| 5745 | } |
| 5746 | |
| 5747 | template <class Emitter> |
| 5748 | bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { |
| 5749 | assert(MD->isLambdaStaticInvoker()); |
| 5750 | assert(MD->hasBody()); |
| 5751 | assert(cast<CompoundStmt>(MD->getBody())->body_empty()); |
| 5752 | |
| 5753 | const CXXRecordDecl *ClosureClass = MD->getParent(); |
| 5754 | const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); |
| 5755 | assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); |
| 5756 | const Function *Func = this->getFunction(LambdaCallOp); |
| 5757 | if (!Func) |
| 5758 | return false; |
| 5759 | assert(Func->hasThisPointer()); |
| 5760 | assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); |
| 5761 | |
| 5762 | if (Func->hasRVO()) { |
| 5763 | if (!this->emitRVOPtr(MD)) |
| 5764 | return false; |
| 5765 | } |
| 5766 | |
| 5767 | // The lambda call operator needs an instance pointer, but we don't have |
| 5768 | // one here, and we don't need one either because the lambda cannot have |
| 5769 | // any captures, as verified above. Emit a null pointer. This is then |
| 5770 | // special-cased when interpreting to not emit any misleading diagnostics. |
| 5771 | if (!this->emitNullPtr(0, nullptr, MD)) |
| 5772 | return false; |
| 5773 | |
| 5774 | // Forward all arguments from the static invoker to the lambda call operator. |
| 5775 | for (const ParmVarDecl *PVD : MD->parameters()) { |
| 5776 | auto It = this->Params.find(PVD); |
| 5777 | assert(It != this->Params.end()); |
| 5778 | |
| 5779 | // We do the lvalue-to-rvalue conversion manually here, so no need |
| 5780 | // to care about references. |
| 5781 | PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); |
| 5782 | if (!this->emitGetParam(ParamType, It->second.Offset, MD)) |
| 5783 | return false; |
| 5784 | } |
| 5785 | |
| 5786 | if (!this->emitCall(Func, 0, LambdaCallOp)) |
| 5787 | return false; |
| 5788 | |
| 5789 | this->emitCleanup(); |
| 5790 | if (ReturnType) |
| 5791 | return this->emitRet(*ReturnType, MD); |
| 5792 | |
| 5793 | // Nothing to do, since we emitted the RVO pointer above. |
| 5794 | return this->emitRetVoid(MD); |
| 5795 | } |
| 5796 | |
| 5797 | template <class Emitter> |
| 5798 | bool Compiler<Emitter>::checkLiteralType(const Expr *E) { |
| 5799 | if (Ctx.getLangOpts().CPlusPlus23) |
| 5800 | return true; |
| 5801 | |
| 5802 | if (!E->isPRValue() || E->getType()->isLiteralType(Ctx: Ctx.getASTContext())) |
| 5803 | return true; |
| 5804 | |
| 5805 | return this->emitCheckLiteralType(E->getType().getTypePtr(), E); |
| 5806 | } |
| 5807 | |
| 5808 | template <class Emitter> |
| 5809 | bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) { |
| 5810 | assert(!ReturnType); |
| 5811 | |
| 5812 | auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, |
| 5813 | const Expr *InitExpr) -> bool { |
| 5814 | // We don't know what to do with these, so just return false. |
| 5815 | if (InitExpr->getType().isNull()) |
| 5816 | return false; |
| 5817 | |
| 5818 | if (std::optional<PrimType> T = this->classify(InitExpr)) { |
| 5819 | if (!this->visit(InitExpr)) |
| 5820 | return false; |
| 5821 | |
| 5822 | if (F->isBitField()) |
| 5823 | return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); |
| 5824 | return this->emitInitThisField(*T, FieldOffset, InitExpr); |
| 5825 | } |
| 5826 | // Non-primitive case. Get a pointer to the field-to-initialize |
| 5827 | // on the stack and call visitInitialzer() for it. |
| 5828 | InitLinkScope<Emitter> FieldScope(this, InitLink::Field(Offset: F->Offset)); |
| 5829 | if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) |
| 5830 | return false; |
| 5831 | |
| 5832 | if (!this->visitInitializer(InitExpr)) |
| 5833 | return false; |
| 5834 | |
| 5835 | return this->emitFinishInitPop(InitExpr); |
| 5836 | }; |
| 5837 | |
| 5838 | const RecordDecl *RD = Ctor->getParent(); |
| 5839 | const Record *R = this->getRecord(RD); |
| 5840 | if (!R) |
| 5841 | return false; |
| 5842 | |
| 5843 | if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) { |
| 5844 | // union copy and move ctors are special. |
| 5845 | assert(cast<CompoundStmt>(Ctor->getBody())->body_empty()); |
| 5846 | if (!this->emitThis(Ctor)) |
| 5847 | return false; |
| 5848 | |
| 5849 | auto PVD = Ctor->getParamDecl(0); |
| 5850 | ParamOffset PO = this->Params[PVD]; // Must exist. |
| 5851 | |
| 5852 | if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor)) |
| 5853 | return false; |
| 5854 | |
| 5855 | return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) && |
| 5856 | this->emitRetVoid(Ctor); |
| 5857 | } |
| 5858 | |
| 5859 | InitLinkScope<Emitter> InitScope(this, InitLink::This()); |
| 5860 | for (const auto *Init : Ctor->inits()) { |
| 5861 | // Scope needed for the initializers. |
| 5862 | BlockScope<Emitter> Scope(this); |
| 5863 | |
| 5864 | const Expr *InitExpr = Init->getInit(); |
| 5865 | if (const FieldDecl *Member = Init->getMember()) { |
| 5866 | const Record::Field *F = R->getField(FD: Member); |
| 5867 | |
| 5868 | if (!emitFieldInitializer(F, F->Offset, InitExpr)) |
| 5869 | return false; |
| 5870 | } else if (const Type *Base = Init->getBaseClass()) { |
| 5871 | const auto *BaseDecl = Base->getAsCXXRecordDecl(); |
| 5872 | assert(BaseDecl); |
| 5873 | |
| 5874 | if (Init->isBaseVirtual()) { |
| 5875 | assert(R->getVirtualBase(BaseDecl)); |
| 5876 | if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) |
| 5877 | return false; |
| 5878 | |
| 5879 | } else { |
| 5880 | // Base class initializer. |
| 5881 | // Get This Base and call initializer on it. |
| 5882 | const Record::Base *B = R->getBase(BaseDecl); |
| 5883 | assert(B); |
| 5884 | if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) |
| 5885 | return false; |
| 5886 | } |
| 5887 | |
| 5888 | if (!this->visitInitializer(InitExpr)) |
| 5889 | return false; |
| 5890 | if (!this->emitFinishInitPop(InitExpr)) |
| 5891 | return false; |
| 5892 | } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { |
| 5893 | assert(IFD->getChainingSize() >= 2); |
| 5894 | |
| 5895 | unsigned NestedFieldOffset = 0; |
| 5896 | const Record::Field *NestedField = nullptr; |
| 5897 | for (const NamedDecl *ND : IFD->chain()) { |
| 5898 | const auto *FD = cast<FieldDecl>(Val: ND); |
| 5899 | const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); |
| 5900 | assert(FieldRecord); |
| 5901 | |
| 5902 | NestedField = FieldRecord->getField(FD); |
| 5903 | assert(NestedField); |
| 5904 | |
| 5905 | NestedFieldOffset += NestedField->Offset; |
| 5906 | } |
| 5907 | assert(NestedField); |
| 5908 | |
| 5909 | if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr)) |
| 5910 | return false; |
| 5911 | |
| 5912 | // Mark all chain links as initialized. |
| 5913 | unsigned InitFieldOffset = 0; |
| 5914 | for (const NamedDecl *ND : IFD->chain().drop_back()) { |
| 5915 | const auto *FD = cast<FieldDecl>(Val: ND); |
| 5916 | const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); |
| 5917 | assert(FieldRecord); |
| 5918 | NestedField = FieldRecord->getField(FD); |
| 5919 | InitFieldOffset += NestedField->Offset; |
| 5920 | assert(NestedField); |
| 5921 | if (!this->emitGetPtrThisField(InitFieldOffset, InitExpr)) |
| 5922 | return false; |
| 5923 | if (!this->emitFinishInitPop(InitExpr)) |
| 5924 | return false; |
| 5925 | } |
| 5926 | |
| 5927 | } else { |
| 5928 | assert(Init->isDelegatingInitializer()); |
| 5929 | if (!this->emitThis(InitExpr)) |
| 5930 | return false; |
| 5931 | if (!this->visitInitializer(Init->getInit())) |
| 5932 | return false; |
| 5933 | if (!this->emitPopPtr(InitExpr)) |
| 5934 | return false; |
| 5935 | } |
| 5936 | |
| 5937 | if (!Scope.destroyLocals()) |
| 5938 | return false; |
| 5939 | } |
| 5940 | |
| 5941 | if (const auto *Body = Ctor->getBody()) |
| 5942 | if (!visitStmt(S: Body)) |
| 5943 | return false; |
| 5944 | |
| 5945 | return this->emitRetVoid(SourceInfo{}); |
| 5946 | } |
| 5947 | |
| 5948 | template <class Emitter> |
| 5949 | bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) { |
| 5950 | const RecordDecl *RD = Dtor->getParent(); |
| 5951 | const Record *R = this->getRecord(RD); |
| 5952 | if (!R) |
| 5953 | return false; |
| 5954 | |
| 5955 | if (!Dtor->isTrivial() && Dtor->getBody()) { |
| 5956 | if (!this->visitStmt(Dtor->getBody())) |
| 5957 | return false; |
| 5958 | } |
| 5959 | |
| 5960 | if (!this->emitThis(Dtor)) |
| 5961 | return false; |
| 5962 | |
| 5963 | if (!this->emitCheckDestruction(Dtor)) |
| 5964 | return false; |
| 5965 | |
| 5966 | assert(R); |
| 5967 | if (!R->isUnion()) { |
| 5968 | // First, destroy all fields. |
| 5969 | for (const Record::Field &Field : llvm::reverse(R->fields())) { |
| 5970 | const Descriptor *D = Field.Desc; |
| 5971 | if (!D->isPrimitive() && !D->isPrimitiveArray()) { |
| 5972 | if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) |
| 5973 | return false; |
| 5974 | if (!this->emitDestruction(D, SourceInfo{})) |
| 5975 | return false; |
| 5976 | if (!this->emitPopPtr(SourceInfo{})) |
| 5977 | return false; |
| 5978 | } |
| 5979 | } |
| 5980 | } |
| 5981 | |
| 5982 | for (const Record::Base &Base : llvm::reverse(R->bases())) { |
| 5983 | if (Base.R->isAnonymousUnion()) |
| 5984 | continue; |
| 5985 | |
| 5986 | if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) |
| 5987 | return false; |
| 5988 | if (!this->emitRecordDestruction(Base.R, {})) |
| 5989 | return false; |
| 5990 | if (!this->emitPopPtr(SourceInfo{})) |
| 5991 | return false; |
| 5992 | } |
| 5993 | |
| 5994 | // FIXME: Virtual bases. |
| 5995 | return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor); |
| 5996 | } |
| 5997 | |
| 5998 | template <class Emitter> |
| 5999 | bool Compiler<Emitter>::compileUnionAssignmentOperator( |
| 6000 | const CXXMethodDecl *MD) { |
| 6001 | if (!this->emitThis(MD)) |
| 6002 | return false; |
| 6003 | |
| 6004 | auto PVD = MD->getParamDecl(0); |
| 6005 | ParamOffset PO = this->Params[PVD]; // Must exist. |
| 6006 | |
| 6007 | if (!this->emitGetParam(PT_Ptr, PO.Offset, MD)) |
| 6008 | return false; |
| 6009 | |
| 6010 | return this->emitMemcpy(MD) && this->emitRet(PT_Ptr, MD); |
| 6011 | } |
| 6012 | |
| 6013 | template <class Emitter> |
| 6014 | bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { |
| 6015 | // Classify the return type. |
| 6016 | ReturnType = this->classify(F->getReturnType()); |
| 6017 | |
| 6018 | if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Val: F)) |
| 6019 | return this->compileConstructor(Ctor); |
| 6020 | if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(Val: F)) |
| 6021 | return this->compileDestructor(Dtor); |
| 6022 | |
| 6023 | // Emit custom code if this is a lambda static invoker. |
| 6024 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: F)) { |
| 6025 | const RecordDecl *RD = MD->getParent(); |
| 6026 | |
| 6027 | if (RD->isUnion() && |
| 6028 | (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) |
| 6029 | return this->compileUnionAssignmentOperator(MD); |
| 6030 | |
| 6031 | if (MD->isLambdaStaticInvoker()) |
| 6032 | return this->emitLambdaStaticInvokerBody(MD); |
| 6033 | } |
| 6034 | |
| 6035 | // Regular functions. |
| 6036 | if (const auto *Body = F->getBody()) |
| 6037 | if (!visitStmt(S: Body)) |
| 6038 | return false; |
| 6039 | |
| 6040 | // Emit a guard return to protect against a code path missing one. |
| 6041 | if (F->getReturnType()->isVoidType()) |
| 6042 | return this->emitRetVoid(SourceInfo{}); |
| 6043 | return this->emitNoRet(SourceInfo{}); |
| 6044 | } |
| 6045 | |
| 6046 | template <class Emitter> |
| 6047 | bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { |
| 6048 | const Expr *SubExpr = E->getSubExpr(); |
| 6049 | if (SubExpr->getType()->isAnyComplexType()) |
| 6050 | return this->VisitComplexUnaryOperator(E); |
| 6051 | if (SubExpr->getType()->isVectorType()) |
| 6052 | return this->VisitVectorUnaryOperator(E); |
| 6053 | if (SubExpr->getType()->isFixedPointType()) |
| 6054 | return this->VisitFixedPointUnaryOperator(E); |
| 6055 | std::optional<PrimType> T = classify(SubExpr->getType()); |
| 6056 | |
| 6057 | switch (E->getOpcode()) { |
| 6058 | case UO_PostInc: { // x++ |
| 6059 | if (!Ctx.getLangOpts().CPlusPlus14) |
| 6060 | return this->emitInvalid(E); |
| 6061 | if (!T) |
| 6062 | return this->emitError(E); |
| 6063 | |
| 6064 | if (!this->visit(SubExpr)) |
| 6065 | return false; |
| 6066 | |
| 6067 | if (T == PT_Ptr) { |
| 6068 | if (!this->emitIncPtr(E)) |
| 6069 | return false; |
| 6070 | |
| 6071 | return DiscardResult ? this->emitPopPtr(E) : true; |
| 6072 | } |
| 6073 | |
| 6074 | if (T == PT_Float) { |
| 6075 | return DiscardResult ? this->emitIncfPop(getFPOptions(E), E) |
| 6076 | : this->emitIncf(getFPOptions(E), E); |
| 6077 | } |
| 6078 | |
| 6079 | return DiscardResult ? this->emitIncPop(*T, E->canOverflow(), E) |
| 6080 | : this->emitInc(*T, E->canOverflow(), E); |
| 6081 | } |
| 6082 | case UO_PostDec: { // x-- |
| 6083 | if (!Ctx.getLangOpts().CPlusPlus14) |
| 6084 | return this->emitInvalid(E); |
| 6085 | if (!T) |
| 6086 | return this->emitError(E); |
| 6087 | |
| 6088 | if (!this->visit(SubExpr)) |
| 6089 | return false; |
| 6090 | |
| 6091 | if (T == PT_Ptr) { |
| 6092 | if (!this->emitDecPtr(E)) |
| 6093 | return false; |
| 6094 | |
| 6095 | return DiscardResult ? this->emitPopPtr(E) : true; |
| 6096 | } |
| 6097 | |
| 6098 | if (T == PT_Float) { |
| 6099 | return DiscardResult ? this->emitDecfPop(getFPOptions(E), E) |
| 6100 | : this->emitDecf(getFPOptions(E), E); |
| 6101 | } |
| 6102 | |
| 6103 | return DiscardResult ? this->emitDecPop(*T, E->canOverflow(), E) |
| 6104 | : this->emitDec(*T, E->canOverflow(), E); |
| 6105 | } |
| 6106 | case UO_PreInc: { // ++x |
| 6107 | if (!Ctx.getLangOpts().CPlusPlus14) |
| 6108 | return this->emitInvalid(E); |
| 6109 | if (!T) |
| 6110 | return this->emitError(E); |
| 6111 | |
| 6112 | if (!this->visit(SubExpr)) |
| 6113 | return false; |
| 6114 | |
| 6115 | if (T == PT_Ptr) { |
| 6116 | if (!this->emitLoadPtr(E)) |
| 6117 | return false; |
| 6118 | if (!this->emitConstUint8(1, E)) |
| 6119 | return false; |
| 6120 | if (!this->emitAddOffsetUint8(E)) |
| 6121 | return false; |
| 6122 | return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); |
| 6123 | } |
| 6124 | |
| 6125 | // Post-inc and pre-inc are the same if the value is to be discarded. |
| 6126 | if (DiscardResult) { |
| 6127 | if (T == PT_Float) |
| 6128 | return this->emitIncfPop(getFPOptions(E), E); |
| 6129 | return this->emitIncPop(*T, E->canOverflow(), E); |
| 6130 | } |
| 6131 | |
| 6132 | if (T == PT_Float) { |
| 6133 | const auto &TargetSemantics = Ctx.getFloatSemantics(T: E->getType()); |
| 6134 | if (!this->emitLoadFloat(E)) |
| 6135 | return false; |
| 6136 | if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) |
| 6137 | return false; |
| 6138 | if (!this->emitAddf(getFPOptions(E), E)) |
| 6139 | return false; |
| 6140 | if (!this->emitStoreFloat(E)) |
| 6141 | return false; |
| 6142 | } else { |
| 6143 | assert(isIntegralType(*T)); |
| 6144 | if (!this->emitPreInc(*T, E->canOverflow(), E)) |
| 6145 | return false; |
| 6146 | } |
| 6147 | return E->isGLValue() || this->emitLoadPop(*T, E); |
| 6148 | } |
| 6149 | case UO_PreDec: { // --x |
| 6150 | if (!Ctx.getLangOpts().CPlusPlus14) |
| 6151 | return this->emitInvalid(E); |
| 6152 | if (!T) |
| 6153 | return this->emitError(E); |
| 6154 | |
| 6155 | if (!this->visit(SubExpr)) |
| 6156 | return false; |
| 6157 | |
| 6158 | if (T == PT_Ptr) { |
| 6159 | if (!this->emitLoadPtr(E)) |
| 6160 | return false; |
| 6161 | if (!this->emitConstUint8(1, E)) |
| 6162 | return false; |
| 6163 | if (!this->emitSubOffsetUint8(E)) |
| 6164 | return false; |
| 6165 | return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); |
| 6166 | } |
| 6167 | |
| 6168 | // Post-dec and pre-dec are the same if the value is to be discarded. |
| 6169 | if (DiscardResult) { |
| 6170 | if (T == PT_Float) |
| 6171 | return this->emitDecfPop(getFPOptions(E), E); |
| 6172 | return this->emitDecPop(*T, E->canOverflow(), E); |
| 6173 | } |
| 6174 | |
| 6175 | if (T == PT_Float) { |
| 6176 | const auto &TargetSemantics = Ctx.getFloatSemantics(T: E->getType()); |
| 6177 | if (!this->emitLoadFloat(E)) |
| 6178 | return false; |
| 6179 | if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) |
| 6180 | return false; |
| 6181 | if (!this->emitSubf(getFPOptions(E), E)) |
| 6182 | return false; |
| 6183 | if (!this->emitStoreFloat(E)) |
| 6184 | return false; |
| 6185 | } else { |
| 6186 | assert(isIntegralType(*T)); |
| 6187 | if (!this->emitPreDec(*T, E->canOverflow(), E)) |
| 6188 | return false; |
| 6189 | } |
| 6190 | return E->isGLValue() || this->emitLoadPop(*T, E); |
| 6191 | } |
| 6192 | case UO_LNot: // !x |
| 6193 | if (!T) |
| 6194 | return this->emitError(E); |
| 6195 | |
| 6196 | if (DiscardResult) |
| 6197 | return this->discard(SubExpr); |
| 6198 | |
| 6199 | if (!this->visitBool(SubExpr)) |
| 6200 | return false; |
| 6201 | |
| 6202 | if (!this->emitInv(E)) |
| 6203 | return false; |
| 6204 | |
| 6205 | if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) |
| 6206 | return this->emitCast(PT_Bool, ET, E); |
| 6207 | return true; |
| 6208 | case UO_Minus: // -x |
| 6209 | if (!T) |
| 6210 | return this->emitError(E); |
| 6211 | |
| 6212 | if (!this->visit(SubExpr)) |
| 6213 | return false; |
| 6214 | return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); |
| 6215 | case UO_Plus: // +x |
| 6216 | if (!T) |
| 6217 | return this->emitError(E); |
| 6218 | |
| 6219 | if (!this->visit(SubExpr)) // noop |
| 6220 | return false; |
| 6221 | return DiscardResult ? this->emitPop(*T, E) : true; |
| 6222 | case UO_AddrOf: // &x |
| 6223 | if (E->getType()->isMemberPointerType()) { |
| 6224 | // C++11 [expr.unary.op]p3 has very strict rules on how the address of a |
| 6225 | // member can be formed. |
| 6226 | return this->emitGetMemberPtr(cast<DeclRefExpr>(Val: SubExpr)->getDecl(), E); |
| 6227 | } |
| 6228 | // We should already have a pointer when we get here. |
| 6229 | return this->delegate(SubExpr); |
| 6230 | case UO_Deref: // *x |
| 6231 | if (DiscardResult) |
| 6232 | return this->discard(SubExpr); |
| 6233 | |
| 6234 | if (!this->visit(SubExpr)) |
| 6235 | return false; |
| 6236 | |
| 6237 | if (classifyPrim(SubExpr) == PT_Ptr) |
| 6238 | return this->emitNarrowPtr(E); |
| 6239 | return true; |
| 6240 | |
| 6241 | case UO_Not: // ~x |
| 6242 | if (!T) |
| 6243 | return this->emitError(E); |
| 6244 | |
| 6245 | if (!this->visit(SubExpr)) |
| 6246 | return false; |
| 6247 | return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); |
| 6248 | case UO_Real: // __real x |
| 6249 | assert(T); |
| 6250 | return this->delegate(SubExpr); |
| 6251 | case UO_Imag: { // __imag x |
| 6252 | assert(T); |
| 6253 | if (!this->discard(SubExpr)) |
| 6254 | return false; |
| 6255 | return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); |
| 6256 | } |
| 6257 | case UO_Extension: |
| 6258 | return this->delegate(SubExpr); |
| 6259 | case UO_Coawait: |
| 6260 | assert(false && "Unhandled opcode" ); |
| 6261 | } |
| 6262 | |
| 6263 | return false; |
| 6264 | } |
| 6265 | |
| 6266 | template <class Emitter> |
| 6267 | bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { |
| 6268 | const Expr *SubExpr = E->getSubExpr(); |
| 6269 | assert(SubExpr->getType()->isAnyComplexType()); |
| 6270 | |
| 6271 | if (DiscardResult) |
| 6272 | return this->discard(SubExpr); |
| 6273 | |
| 6274 | std::optional<PrimType> ResT = classify(E); |
| 6275 | auto prepareResult = [=]() -> bool { |
| 6276 | if (!ResT && !Initializing) { |
| 6277 | std::optional<unsigned> LocalIndex = allocateLocal(Src: SubExpr); |
| 6278 | if (!LocalIndex) |
| 6279 | return false; |
| 6280 | return this->emitGetPtrLocal(*LocalIndex, E); |
| 6281 | } |
| 6282 | |
| 6283 | return true; |
| 6284 | }; |
| 6285 | |
| 6286 | // The offset of the temporary, if we created one. |
| 6287 | unsigned SubExprOffset = ~0u; |
| 6288 | auto createTemp = [=, &SubExprOffset]() -> bool { |
| 6289 | SubExprOffset = |
| 6290 | this->allocateLocalPrimitive(SubExpr, PT_Ptr, /*IsConst=*/true); |
| 6291 | if (!this->visit(SubExpr)) |
| 6292 | return false; |
| 6293 | return this->emitSetLocal(PT_Ptr, SubExprOffset, E); |
| 6294 | }; |
| 6295 | |
| 6296 | PrimType ElemT = classifyComplexElementType(T: SubExpr->getType()); |
| 6297 | auto getElem = [=](unsigned Offset, unsigned Index) -> bool { |
| 6298 | if (!this->emitGetLocal(PT_Ptr, Offset, E)) |
| 6299 | return false; |
| 6300 | return this->emitArrayElemPop(ElemT, Index, E); |
| 6301 | }; |
| 6302 | |
| 6303 | switch (E->getOpcode()) { |
| 6304 | case UO_Minus: |
| 6305 | if (!prepareResult()) |
| 6306 | return false; |
| 6307 | if (!createTemp()) |
| 6308 | return false; |
| 6309 | for (unsigned I = 0; I != 2; ++I) { |
| 6310 | if (!getElem(SubExprOffset, I)) |
| 6311 | return false; |
| 6312 | if (!this->emitNeg(ElemT, E)) |
| 6313 | return false; |
| 6314 | if (!this->emitInitElem(ElemT, I, E)) |
| 6315 | return false; |
| 6316 | } |
| 6317 | break; |
| 6318 | |
| 6319 | case UO_Plus: // +x |
| 6320 | case UO_AddrOf: // &x |
| 6321 | case UO_Deref: // *x |
| 6322 | return this->delegate(SubExpr); |
| 6323 | |
| 6324 | case UO_LNot: |
| 6325 | if (!this->visit(SubExpr)) |
| 6326 | return false; |
| 6327 | if (!this->emitComplexBoolCast(SubExpr)) |
| 6328 | return false; |
| 6329 | if (!this->emitInv(E)) |
| 6330 | return false; |
| 6331 | if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) |
| 6332 | return this->emitCast(PT_Bool, ET, E); |
| 6333 | return true; |
| 6334 | |
| 6335 | case UO_Real: |
| 6336 | return this->emitComplexReal(SubExpr); |
| 6337 | |
| 6338 | case UO_Imag: |
| 6339 | if (!this->visit(SubExpr)) |
| 6340 | return false; |
| 6341 | |
| 6342 | if (SubExpr->isLValue()) { |
| 6343 | if (!this->emitConstUint8(1, E)) |
| 6344 | return false; |
| 6345 | return this->emitArrayElemPtrPopUint8(E); |
| 6346 | } |
| 6347 | |
| 6348 | // Since our _Complex implementation does not map to a primitive type, |
| 6349 | // we sometimes have to do the lvalue-to-rvalue conversion here manually. |
| 6350 | return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); |
| 6351 | |
| 6352 | case UO_Not: // ~x |
| 6353 | if (!this->visit(SubExpr)) |
| 6354 | return false; |
| 6355 | // Negate the imaginary component. |
| 6356 | if (!this->emitArrayElem(ElemT, 1, E)) |
| 6357 | return false; |
| 6358 | if (!this->emitNeg(ElemT, E)) |
| 6359 | return false; |
| 6360 | if (!this->emitInitElem(ElemT, 1, E)) |
| 6361 | return false; |
| 6362 | return DiscardResult ? this->emitPopPtr(E) : true; |
| 6363 | |
| 6364 | case UO_Extension: |
| 6365 | return this->delegate(SubExpr); |
| 6366 | |
| 6367 | default: |
| 6368 | return this->emitInvalid(E); |
| 6369 | } |
| 6370 | |
| 6371 | return true; |
| 6372 | } |
| 6373 | |
| 6374 | template <class Emitter> |
| 6375 | bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) { |
| 6376 | const Expr *SubExpr = E->getSubExpr(); |
| 6377 | assert(SubExpr->getType()->isVectorType()); |
| 6378 | |
| 6379 | if (DiscardResult) |
| 6380 | return this->discard(SubExpr); |
| 6381 | |
| 6382 | auto UnaryOp = E->getOpcode(); |
| 6383 | if (UnaryOp == UO_Extension) |
| 6384 | return this->delegate(SubExpr); |
| 6385 | |
| 6386 | if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot && |
| 6387 | UnaryOp != UO_Not && UnaryOp != UO_AddrOf) |
| 6388 | return this->emitInvalid(E); |
| 6389 | |
| 6390 | // Nothing to do here. |
| 6391 | if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf) |
| 6392 | return this->delegate(SubExpr); |
| 6393 | |
| 6394 | if (!Initializing) { |
| 6395 | std::optional<unsigned> LocalIndex = allocateLocal(Src: SubExpr); |
| 6396 | if (!LocalIndex) |
| 6397 | return false; |
| 6398 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| 6399 | return false; |
| 6400 | } |
| 6401 | |
| 6402 | // The offset of the temporary, if we created one. |
| 6403 | unsigned SubExprOffset = |
| 6404 | this->allocateLocalPrimitive(SubExpr, PT_Ptr, /*IsConst=*/true); |
| 6405 | if (!this->visit(SubExpr)) |
| 6406 | return false; |
| 6407 | if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E)) |
| 6408 | return false; |
| 6409 | |
| 6410 | const auto *VecTy = SubExpr->getType()->getAs<VectorType>(); |
| 6411 | PrimType ElemT = classifyVectorElementType(T: SubExpr->getType()); |
| 6412 | auto getElem = [=](unsigned Offset, unsigned Index) -> bool { |
| 6413 | if (!this->emitGetLocal(PT_Ptr, Offset, E)) |
| 6414 | return false; |
| 6415 | return this->emitArrayElemPop(ElemT, Index, E); |
| 6416 | }; |
| 6417 | |
| 6418 | switch (UnaryOp) { |
| 6419 | case UO_Minus: |
| 6420 | for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { |
| 6421 | if (!getElem(SubExprOffset, I)) |
| 6422 | return false; |
| 6423 | if (!this->emitNeg(ElemT, E)) |
| 6424 | return false; |
| 6425 | if (!this->emitInitElem(ElemT, I, E)) |
| 6426 | return false; |
| 6427 | } |
| 6428 | break; |
| 6429 | case UO_LNot: { // !x |
| 6430 | // In C++, the logic operators !, &&, || are available for vectors. !v is |
| 6431 | // equivalent to v == 0. |
| 6432 | // |
| 6433 | // The result of the comparison is a vector of the same width and number of |
| 6434 | // elements as the comparison operands with a signed integral element type. |
| 6435 | // |
| 6436 | // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html |
| 6437 | QualType ResultVecTy = E->getType(); |
| 6438 | PrimType ResultVecElemT = |
| 6439 | classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType()); |
| 6440 | for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { |
| 6441 | if (!getElem(SubExprOffset, I)) |
| 6442 | return false; |
| 6443 | // operator ! on vectors returns -1 for 'truth', so negate it. |
| 6444 | if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) |
| 6445 | return false; |
| 6446 | if (!this->emitInv(E)) |
| 6447 | return false; |
| 6448 | if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E)) |
| 6449 | return false; |
| 6450 | if (!this->emitNeg(ElemT, E)) |
| 6451 | return false; |
| 6452 | if (ElemT != ResultVecElemT && |
| 6453 | !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E)) |
| 6454 | return false; |
| 6455 | if (!this->emitInitElem(ResultVecElemT, I, E)) |
| 6456 | return false; |
| 6457 | } |
| 6458 | break; |
| 6459 | } |
| 6460 | case UO_Not: // ~x |
| 6461 | for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { |
| 6462 | if (!getElem(SubExprOffset, I)) |
| 6463 | return false; |
| 6464 | if (ElemT == PT_Bool) { |
| 6465 | if (!this->emitInv(E)) |
| 6466 | return false; |
| 6467 | } else { |
| 6468 | if (!this->emitComp(ElemT, E)) |
| 6469 | return false; |
| 6470 | } |
| 6471 | if (!this->emitInitElem(ElemT, I, E)) |
| 6472 | return false; |
| 6473 | } |
| 6474 | break; |
| 6475 | default: |
| 6476 | llvm_unreachable("Unsupported unary operators should be handled up front" ); |
| 6477 | } |
| 6478 | return true; |
| 6479 | } |
| 6480 | |
| 6481 | template <class Emitter> |
| 6482 | bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { |
| 6483 | if (DiscardResult) |
| 6484 | return true; |
| 6485 | |
| 6486 | if (const auto *ECD = dyn_cast<EnumConstantDecl>(Val: D)) { |
| 6487 | return this->emitConst(ECD->getInitVal(), E); |
| 6488 | } else if (const auto *BD = dyn_cast<BindingDecl>(Val: D)) { |
| 6489 | return this->visit(BD->getBinding()); |
| 6490 | } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(Val: D)) { |
| 6491 | const Function *F = getFunction(FD: FuncDecl); |
| 6492 | return F && this->emitGetFnPtr(F, E); |
| 6493 | } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(Val: D)) { |
| 6494 | if (std::optional<unsigned> Index = P.getOrCreateGlobal(VD: D)) { |
| 6495 | if (!this->emitGetPtrGlobal(*Index, E)) |
| 6496 | return false; |
| 6497 | if (std::optional<PrimType> T = classify(E->getType())) { |
| 6498 | if (!this->visitAPValue(TPOD->getValue(), *T, E)) |
| 6499 | return false; |
| 6500 | return this->emitInitGlobal(*T, *Index, E); |
| 6501 | } |
| 6502 | return this->visitAPValueInitializer(TPOD->getValue(), E, |
| 6503 | TPOD->getType()); |
| 6504 | } |
| 6505 | return false; |
| 6506 | } |
| 6507 | |
| 6508 | // References are implemented via pointers, so when we see a DeclRefExpr |
| 6509 | // pointing to a reference, we need to get its value directly (i.e. the |
| 6510 | // pointer to the actual value) instead of a pointer to the pointer to the |
| 6511 | // value. |
| 6512 | bool IsReference = D->getType()->isReferenceType(); |
| 6513 | |
| 6514 | // Check for local/global variables and parameters. |
| 6515 | if (auto It = Locals.find(Val: D); It != Locals.end()) { |
| 6516 | const unsigned Offset = It->second.Offset; |
| 6517 | if (IsReference) |
| 6518 | return this->emitGetLocal(classifyPrim(E), Offset, E); |
| 6519 | return this->emitGetPtrLocal(Offset, E); |
| 6520 | } else if (auto GlobalIndex = P.getGlobal(VD: D)) { |
| 6521 | if (IsReference) { |
| 6522 | if (!Ctx.getLangOpts().CPlusPlus11) |
| 6523 | return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); |
| 6524 | return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); |
| 6525 | } |
| 6526 | |
| 6527 | return this->emitGetPtrGlobal(*GlobalIndex, E); |
| 6528 | } else if (const auto *PVD = dyn_cast<ParmVarDecl>(Val: D)) { |
| 6529 | if (auto It = this->Params.find(PVD); It != this->Params.end()) { |
| 6530 | if (IsReference || !It->second.IsPtr) |
| 6531 | return this->emitGetParam(classifyPrim(E), It->second.Offset, E); |
| 6532 | |
| 6533 | return this->emitGetPtrParam(It->second.Offset, E); |
| 6534 | } |
| 6535 | } |
| 6536 | |
| 6537 | // In case we need to re-visit a declaration. |
| 6538 | auto revisit = [&](const VarDecl *VD) -> bool { |
| 6539 | if (!this->emitPushCC(VD->hasConstantInitialization(), E)) |
| 6540 | return false; |
| 6541 | auto VarState = this->visitDecl(VD, /*IsConstexprUnknown=*/true); |
| 6542 | |
| 6543 | if (!this->emitPopCC(E)) |
| 6544 | return false; |
| 6545 | |
| 6546 | if (VarState.notCreated()) |
| 6547 | return true; |
| 6548 | if (!VarState) |
| 6549 | return false; |
| 6550 | // Retry. |
| 6551 | return this->visitDeclRef(D, E); |
| 6552 | }; |
| 6553 | |
| 6554 | // Handle lambda captures. |
| 6555 | if (auto It = this->LambdaCaptures.find(D); |
| 6556 | It != this->LambdaCaptures.end()) { |
| 6557 | auto [Offset, IsPtr] = It->second; |
| 6558 | |
| 6559 | if (IsPtr) |
| 6560 | return this->emitGetThisFieldPtr(Offset, E); |
| 6561 | return this->emitGetPtrThisField(Offset, E); |
| 6562 | } else if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E); |
| 6563 | DRE && DRE->refersToEnclosingVariableOrCapture()) { |
| 6564 | if (const auto *VD = dyn_cast<VarDecl>(Val: D); VD && VD->isInitCapture()) |
| 6565 | return revisit(VD); |
| 6566 | } |
| 6567 | |
| 6568 | // Avoid infinite recursion. |
| 6569 | if (D == InitializingDecl) |
| 6570 | return this->emitDummyPtr(D, E); |
| 6571 | |
| 6572 | // Try to lazily visit (or emit dummy pointers for) declarations |
| 6573 | // we haven't seen yet. |
| 6574 | // For C. |
| 6575 | if (!Ctx.getLangOpts().CPlusPlus) { |
| 6576 | if (const auto *VD = dyn_cast<VarDecl>(Val: D); |
| 6577 | VD && VD->getAnyInitializer() && |
| 6578 | VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) |
| 6579 | return revisit(VD); |
| 6580 | return this->emitDummyPtr(D, E); |
| 6581 | } |
| 6582 | |
| 6583 | // ... and C++. |
| 6584 | const auto *VD = dyn_cast<VarDecl>(Val: D); |
| 6585 | if (!VD) |
| 6586 | return this->emitDummyPtr(D, E); |
| 6587 | |
| 6588 | const auto typeShouldBeVisited = [&](QualType T) -> bool { |
| 6589 | if (T.isConstant(Ctx: Ctx.getASTContext())) |
| 6590 | return true; |
| 6591 | return T->isReferenceType(); |
| 6592 | }; |
| 6593 | |
| 6594 | // DecompositionDecls are just proxies for us. |
| 6595 | if (isa<DecompositionDecl>(Val: VD)) |
| 6596 | return revisit(VD); |
| 6597 | |
| 6598 | if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) && |
| 6599 | typeShouldBeVisited(VD->getType())) { |
| 6600 | if (const Expr *Init = VD->getAnyInitializer(); |
| 6601 | Init && !Init->isValueDependent()) { |
| 6602 | // Whether or not the evaluation is successul doesn't really matter |
| 6603 | // here -- we will create a global variable in any case, and that |
| 6604 | // will have the state of initializer evaluation attached. |
| 6605 | APValue V; |
| 6606 | SmallVector<PartialDiagnosticAt> Notes; |
| 6607 | (void)Init->EvaluateAsInitializer(Result&: V, Ctx: Ctx.getASTContext(), VD, Notes, |
| 6608 | IsConstantInitializer: true); |
| 6609 | return this->visitDeclRef(D, E); |
| 6610 | } |
| 6611 | return revisit(VD); |
| 6612 | } |
| 6613 | |
| 6614 | // FIXME: The evaluateValue() check here is a little ridiculous, since |
| 6615 | // it will ultimately call into Context::evaluateAsInitializer(). In |
| 6616 | // other words, we're evaluating the initializer, just to know if we can |
| 6617 | // evaluate the initializer. |
| 6618 | if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) && |
| 6619 | VD->getInit() && !VD->getInit()->isValueDependent()) { |
| 6620 | |
| 6621 | if (VD->evaluateValue()) |
| 6622 | return revisit(VD); |
| 6623 | |
| 6624 | if (!D->getType()->isReferenceType()) |
| 6625 | return this->emitDummyPtr(D, E); |
| 6626 | |
| 6627 | return this->emitInvalidDeclRef(cast<DeclRefExpr>(Val: E), |
| 6628 | /*InitializerFailed=*/true, E); |
| 6629 | } |
| 6630 | |
| 6631 | return this->emitDummyPtr(D, E); |
| 6632 | } |
| 6633 | |
| 6634 | template <class Emitter> |
| 6635 | bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { |
| 6636 | const auto *D = E->getDecl(); |
| 6637 | return this->visitDeclRef(D, E); |
| 6638 | } |
| 6639 | |
| 6640 | template <class Emitter> void Compiler<Emitter>::emitCleanup() { |
| 6641 | for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) |
| 6642 | C->emitDestruction(); |
| 6643 | } |
| 6644 | |
| 6645 | template <class Emitter> |
| 6646 | unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, |
| 6647 | const QualType DerivedType) { |
| 6648 | const auto = [](QualType Ty) -> const CXXRecordDecl * { |
| 6649 | if (const auto *R = Ty->getPointeeCXXRecordDecl()) |
| 6650 | return R; |
| 6651 | return Ty->getAsCXXRecordDecl(); |
| 6652 | }; |
| 6653 | const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); |
| 6654 | const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); |
| 6655 | |
| 6656 | return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); |
| 6657 | } |
| 6658 | |
| 6659 | /// Emit casts from a PrimType to another PrimType. |
| 6660 | template <class Emitter> |
| 6661 | bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, |
| 6662 | QualType ToQT, const Expr *E) { |
| 6663 | |
| 6664 | if (FromT == PT_Float) { |
| 6665 | // Floating to floating. |
| 6666 | if (ToT == PT_Float) { |
| 6667 | const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(T: ToQT); |
| 6668 | return this->emitCastFP(ToSem, getRoundingMode(E), E); |
| 6669 | } |
| 6670 | |
| 6671 | if (ToT == PT_IntAP) |
| 6672 | return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(T: ToQT), |
| 6673 | getFPOptions(E), E); |
| 6674 | if (ToT == PT_IntAPS) |
| 6675 | return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(T: ToQT), |
| 6676 | getFPOptions(E), E); |
| 6677 | |
| 6678 | // Float to integral. |
| 6679 | if (isIntegralType(T: ToT) || ToT == PT_Bool) |
| 6680 | return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E); |
| 6681 | } |
| 6682 | |
| 6683 | if (isIntegralType(T: FromT) || FromT == PT_Bool) { |
| 6684 | if (ToT == PT_IntAP) |
| 6685 | return this->emitCastAP(FromT, Ctx.getBitWidth(T: ToQT), E); |
| 6686 | if (ToT == PT_IntAPS) |
| 6687 | return this->emitCastAPS(FromT, Ctx.getBitWidth(T: ToQT), E); |
| 6688 | |
| 6689 | // Integral to integral. |
| 6690 | if (isIntegralType(T: ToT) || ToT == PT_Bool) |
| 6691 | return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; |
| 6692 | |
| 6693 | if (ToT == PT_Float) { |
| 6694 | // Integral to floating. |
| 6695 | const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(T: ToQT); |
| 6696 | return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E); |
| 6697 | } |
| 6698 | } |
| 6699 | |
| 6700 | return false; |
| 6701 | } |
| 6702 | |
| 6703 | /// Emits __real(SubExpr) |
| 6704 | template <class Emitter> |
| 6705 | bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { |
| 6706 | assert(SubExpr->getType()->isAnyComplexType()); |
| 6707 | |
| 6708 | if (DiscardResult) |
| 6709 | return this->discard(SubExpr); |
| 6710 | |
| 6711 | if (!this->visit(SubExpr)) |
| 6712 | return false; |
| 6713 | if (SubExpr->isLValue()) { |
| 6714 | if (!this->emitConstUint8(0, SubExpr)) |
| 6715 | return false; |
| 6716 | return this->emitArrayElemPtrPopUint8(SubExpr); |
| 6717 | } |
| 6718 | |
| 6719 | // Rvalue, load the actual element. |
| 6720 | return this->emitArrayElemPop(classifyComplexElementType(T: SubExpr->getType()), |
| 6721 | 0, SubExpr); |
| 6722 | } |
| 6723 | |
| 6724 | template <class Emitter> |
| 6725 | bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { |
| 6726 | assert(!DiscardResult); |
| 6727 | PrimType ElemT = classifyComplexElementType(T: E->getType()); |
| 6728 | // We emit the expression (__real(E) != 0 || __imag(E) != 0) |
| 6729 | // for us, that means (bool)E[0] || (bool)E[1] |
| 6730 | if (!this->emitArrayElem(ElemT, 0, E)) |
| 6731 | return false; |
| 6732 | if (ElemT == PT_Float) { |
| 6733 | if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) |
| 6734 | return false; |
| 6735 | } else { |
| 6736 | if (!this->emitCast(ElemT, PT_Bool, E)) |
| 6737 | return false; |
| 6738 | } |
| 6739 | |
| 6740 | // We now have the bool value of E[0] on the stack. |
| 6741 | LabelTy LabelTrue = this->getLabel(); |
| 6742 | if (!this->jumpTrue(LabelTrue)) |
| 6743 | return false; |
| 6744 | |
| 6745 | if (!this->emitArrayElemPop(ElemT, 1, E)) |
| 6746 | return false; |
| 6747 | if (ElemT == PT_Float) { |
| 6748 | if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) |
| 6749 | return false; |
| 6750 | } else { |
| 6751 | if (!this->emitCast(ElemT, PT_Bool, E)) |
| 6752 | return false; |
| 6753 | } |
| 6754 | // Leave the boolean value of E[1] on the stack. |
| 6755 | LabelTy EndLabel = this->getLabel(); |
| 6756 | this->jump(EndLabel); |
| 6757 | |
| 6758 | this->emitLabel(LabelTrue); |
| 6759 | if (!this->emitPopPtr(E)) |
| 6760 | return false; |
| 6761 | if (!this->emitConstBool(true, E)) |
| 6762 | return false; |
| 6763 | |
| 6764 | this->fallthrough(EndLabel); |
| 6765 | this->emitLabel(EndLabel); |
| 6766 | |
| 6767 | return true; |
| 6768 | } |
| 6769 | |
| 6770 | template <class Emitter> |
| 6771 | bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, |
| 6772 | const BinaryOperator *E) { |
| 6773 | assert(E->isComparisonOp()); |
| 6774 | assert(!Initializing); |
| 6775 | assert(!DiscardResult); |
| 6776 | |
| 6777 | PrimType ElemT; |
| 6778 | bool LHSIsComplex; |
| 6779 | unsigned LHSOffset; |
| 6780 | if (LHS->getType()->isAnyComplexType()) { |
| 6781 | LHSIsComplex = true; |
| 6782 | ElemT = classifyComplexElementType(T: LHS->getType()); |
| 6783 | LHSOffset = allocateLocalPrimitive(Src: LHS, Ty: PT_Ptr, /*IsConst=*/true); |
| 6784 | if (!this->visit(LHS)) |
| 6785 | return false; |
| 6786 | if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) |
| 6787 | return false; |
| 6788 | } else { |
| 6789 | LHSIsComplex = false; |
| 6790 | PrimType LHST = classifyPrim(LHS->getType()); |
| 6791 | LHSOffset = this->allocateLocalPrimitive(LHS, LHST, /*IsConst=*/true); |
| 6792 | if (!this->visit(LHS)) |
| 6793 | return false; |
| 6794 | if (!this->emitSetLocal(LHST, LHSOffset, E)) |
| 6795 | return false; |
| 6796 | } |
| 6797 | |
| 6798 | bool RHSIsComplex; |
| 6799 | unsigned RHSOffset; |
| 6800 | if (RHS->getType()->isAnyComplexType()) { |
| 6801 | RHSIsComplex = true; |
| 6802 | ElemT = classifyComplexElementType(T: RHS->getType()); |
| 6803 | RHSOffset = allocateLocalPrimitive(Src: RHS, Ty: PT_Ptr, /*IsConst=*/true); |
| 6804 | if (!this->visit(RHS)) |
| 6805 | return false; |
| 6806 | if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) |
| 6807 | return false; |
| 6808 | } else { |
| 6809 | RHSIsComplex = false; |
| 6810 | PrimType RHST = classifyPrim(RHS->getType()); |
| 6811 | RHSOffset = this->allocateLocalPrimitive(RHS, RHST, /*IsConst=*/true); |
| 6812 | if (!this->visit(RHS)) |
| 6813 | return false; |
| 6814 | if (!this->emitSetLocal(RHST, RHSOffset, E)) |
| 6815 | return false; |
| 6816 | } |
| 6817 | |
| 6818 | auto getElem = [&](unsigned LocalOffset, unsigned Index, |
| 6819 | bool IsComplex) -> bool { |
| 6820 | if (IsComplex) { |
| 6821 | if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) |
| 6822 | return false; |
| 6823 | return this->emitArrayElemPop(ElemT, Index, E); |
| 6824 | } |
| 6825 | return this->emitGetLocal(ElemT, LocalOffset, E); |
| 6826 | }; |
| 6827 | |
| 6828 | for (unsigned I = 0; I != 2; ++I) { |
| 6829 | // Get both values. |
| 6830 | if (!getElem(LHSOffset, I, LHSIsComplex)) |
| 6831 | return false; |
| 6832 | if (!getElem(RHSOffset, I, RHSIsComplex)) |
| 6833 | return false; |
| 6834 | // And compare them. |
| 6835 | if (!this->emitEQ(ElemT, E)) |
| 6836 | return false; |
| 6837 | |
| 6838 | if (!this->emitCastBoolUint8(E)) |
| 6839 | return false; |
| 6840 | } |
| 6841 | |
| 6842 | // We now have two bool values on the stack. Compare those. |
| 6843 | if (!this->emitAddUint8(E)) |
| 6844 | return false; |
| 6845 | if (!this->emitConstUint8(2, E)) |
| 6846 | return false; |
| 6847 | |
| 6848 | if (E->getOpcode() == BO_EQ) { |
| 6849 | if (!this->emitEQUint8(E)) |
| 6850 | return false; |
| 6851 | } else if (E->getOpcode() == BO_NE) { |
| 6852 | if (!this->emitNEUint8(E)) |
| 6853 | return false; |
| 6854 | } else |
| 6855 | return false; |
| 6856 | |
| 6857 | // In C, this returns an int. |
| 6858 | if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) |
| 6859 | return this->emitCast(PT_Bool, ResT, E); |
| 6860 | return true; |
| 6861 | } |
| 6862 | |
| 6863 | /// When calling this, we have a pointer of the local-to-destroy |
| 6864 | /// on the stack. |
| 6865 | /// Emit destruction of record types (or arrays of record types). |
| 6866 | template <class Emitter> |
| 6867 | bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) { |
| 6868 | assert(R); |
| 6869 | assert(!R->isAnonymousUnion()); |
| 6870 | const CXXDestructorDecl *Dtor = R->getDestructor(); |
| 6871 | if (!Dtor || Dtor->isTrivial()) |
| 6872 | return true; |
| 6873 | |
| 6874 | assert(Dtor); |
| 6875 | const Function *DtorFunc = getFunction(FD: Dtor); |
| 6876 | if (!DtorFunc) |
| 6877 | return false; |
| 6878 | assert(DtorFunc->hasThisPointer()); |
| 6879 | assert(DtorFunc->getNumParams() == 1); |
| 6880 | if (!this->emitDupPtr(Loc)) |
| 6881 | return false; |
| 6882 | return this->emitCall(DtorFunc, 0, Loc); |
| 6883 | } |
| 6884 | /// When calling this, we have a pointer of the local-to-destroy |
| 6885 | /// on the stack. |
| 6886 | /// Emit destruction of record types (or arrays of record types). |
| 6887 | template <class Emitter> |
| 6888 | bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc, |
| 6889 | SourceInfo Loc) { |
| 6890 | assert(Desc); |
| 6891 | assert(!Desc->isPrimitive()); |
| 6892 | assert(!Desc->isPrimitiveArray()); |
| 6893 | |
| 6894 | // Can happen if the decl is invalid. |
| 6895 | if (Desc->isDummy()) |
| 6896 | return true; |
| 6897 | |
| 6898 | // Arrays. |
| 6899 | if (Desc->isArray()) { |
| 6900 | const Descriptor *ElemDesc = Desc->ElemDesc; |
| 6901 | assert(ElemDesc); |
| 6902 | |
| 6903 | // Don't need to do anything for these. |
| 6904 | if (ElemDesc->isPrimitiveArray()) |
| 6905 | return true; |
| 6906 | |
| 6907 | // If this is an array of record types, check if we need |
| 6908 | // to call the element destructors at all. If not, try |
| 6909 | // to save the work. |
| 6910 | if (const Record *ElemRecord = ElemDesc->ElemRecord) { |
| 6911 | if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); |
| 6912 | !Dtor || Dtor->isTrivial()) |
| 6913 | return true; |
| 6914 | } |
| 6915 | |
| 6916 | if (unsigned N = Desc->getNumElems()) { |
| 6917 | for (ssize_t I = N - 1; I >= 0; --I) { |
| 6918 | if (!this->emitConstUint64(I, Loc)) |
| 6919 | return false; |
| 6920 | if (!this->emitArrayElemPtrUint64(Loc)) |
| 6921 | return false; |
| 6922 | if (!this->emitDestruction(ElemDesc, Loc)) |
| 6923 | return false; |
| 6924 | if (!this->emitPopPtr(Loc)) |
| 6925 | return false; |
| 6926 | } |
| 6927 | } |
| 6928 | return true; |
| 6929 | } |
| 6930 | |
| 6931 | assert(Desc->ElemRecord); |
| 6932 | if (Desc->ElemRecord->isAnonymousUnion()) |
| 6933 | return true; |
| 6934 | |
| 6935 | return this->emitRecordDestruction(Desc->ElemRecord, Loc); |
| 6936 | } |
| 6937 | |
| 6938 | /// Create a dummy pointer for the given decl (or expr) and |
| 6939 | /// push a pointer to it on the stack. |
| 6940 | template <class Emitter> |
| 6941 | bool Compiler<Emitter>::emitDummyPtr(const DeclTy &D, const Expr *E) { |
| 6942 | assert(!DiscardResult && "Should've been checked before" ); |
| 6943 | |
| 6944 | unsigned DummyID = P.getOrCreateDummy(D); |
| 6945 | |
| 6946 | if (!this->emitGetPtrGlobal(DummyID, E)) |
| 6947 | return false; |
| 6948 | if (E->getType()->isVoidType()) |
| 6949 | return true; |
| 6950 | |
| 6951 | // Convert the dummy pointer to another pointer type if we have to. |
| 6952 | if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { |
| 6953 | if (isPtrType(T: PT)) |
| 6954 | return this->emitDecayPtr(PT_Ptr, PT, E); |
| 6955 | return false; |
| 6956 | } |
| 6957 | return true; |
| 6958 | } |
| 6959 | |
| 6960 | // This function is constexpr if and only if To, From, and the types of |
| 6961 | // all subobjects of To and From are types T such that... |
| 6962 | // (3.1) - is_union_v<T> is false; |
| 6963 | // (3.2) - is_pointer_v<T> is false; |
| 6964 | // (3.3) - is_member_pointer_v<T> is false; |
| 6965 | // (3.4) - is_volatile_v<T> is false; and |
| 6966 | // (3.5) - T has no non-static data members of reference type |
| 6967 | template <class Emitter> |
| 6968 | bool Compiler<Emitter>::emitBuiltinBitCast(const CastExpr *E) { |
| 6969 | const Expr *SubExpr = E->getSubExpr(); |
| 6970 | QualType FromType = SubExpr->getType(); |
| 6971 | QualType ToType = E->getType(); |
| 6972 | std::optional<PrimType> ToT = classify(ToType); |
| 6973 | |
| 6974 | assert(!ToType->isReferenceType()); |
| 6975 | |
| 6976 | // Prepare storage for the result in case we discard. |
| 6977 | if (DiscardResult && !Initializing && !ToT) { |
| 6978 | std::optional<unsigned> LocalIndex = allocateLocal(Src: E); |
| 6979 | if (!LocalIndex) |
| 6980 | return false; |
| 6981 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
| 6982 | return false; |
| 6983 | } |
| 6984 | |
| 6985 | // Get a pointer to the value-to-cast on the stack. |
| 6986 | // For CK_LValueToRValueBitCast, this is always an lvalue and |
| 6987 | // we later assume it to be one (i.e. a PT_Ptr). However, |
| 6988 | // we call this function for other utility methods where |
| 6989 | // a bitcast might be useful, so convert it to a PT_Ptr in that case. |
| 6990 | if (SubExpr->isGLValue() || FromType->isVectorType()) { |
| 6991 | if (!this->visit(SubExpr)) |
| 6992 | return false; |
| 6993 | } else if (std::optional<PrimType> FromT = classify(SubExpr)) { |
| 6994 | unsigned TempOffset = |
| 6995 | allocateLocalPrimitive(Src: SubExpr, Ty: *FromT, /*IsConst=*/true); |
| 6996 | if (!this->visit(SubExpr)) |
| 6997 | return false; |
| 6998 | if (!this->emitSetLocal(*FromT, TempOffset, E)) |
| 6999 | return false; |
| 7000 | if (!this->emitGetPtrLocal(TempOffset, E)) |
| 7001 | return false; |
| 7002 | } else { |
| 7003 | return false; |
| 7004 | } |
| 7005 | |
| 7006 | if (!ToT) { |
| 7007 | if (!this->emitBitCast(E)) |
| 7008 | return false; |
| 7009 | return DiscardResult ? this->emitPopPtr(E) : true; |
| 7010 | } |
| 7011 | assert(ToT); |
| 7012 | |
| 7013 | const llvm::fltSemantics *TargetSemantics = nullptr; |
| 7014 | if (ToT == PT_Float) |
| 7015 | TargetSemantics = &Ctx.getFloatSemantics(T: ToType); |
| 7016 | |
| 7017 | // Conversion to a primitive type. FromType can be another |
| 7018 | // primitive type, or a record/array. |
| 7019 | bool ToTypeIsUChar = (ToType->isSpecificBuiltinType(K: BuiltinType::UChar) || |
| 7020 | ToType->isSpecificBuiltinType(K: BuiltinType::Char_U)); |
| 7021 | uint32_t ResultBitWidth = std::max(a: Ctx.getBitWidth(T: ToType), b: 8u); |
| 7022 | |
| 7023 | if (!this->emitBitCastPrim(*ToT, ToTypeIsUChar || ToType->isStdByteType(), |
| 7024 | ResultBitWidth, TargetSemantics, E)) |
| 7025 | return false; |
| 7026 | |
| 7027 | if (DiscardResult) |
| 7028 | return this->emitPop(*ToT, E); |
| 7029 | |
| 7030 | return true; |
| 7031 | } |
| 7032 | |
| 7033 | namespace clang { |
| 7034 | namespace interp { |
| 7035 | |
| 7036 | template class Compiler<ByteCodeEmitter>; |
| 7037 | template class Compiler<EvalEmitter>; |
| 7038 | |
| 7039 | } // namespace interp |
| 7040 | } // namespace clang |
| 7041 | |