1 | //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "Compiler.h" |
10 | #include "ByteCodeEmitter.h" |
11 | #include "Context.h" |
12 | #include "FixedPoint.h" |
13 | #include "Floating.h" |
14 | #include "Function.h" |
15 | #include "InterpShared.h" |
16 | #include "PrimType.h" |
17 | #include "Program.h" |
18 | #include "clang/AST/Attr.h" |
19 | |
20 | using namespace clang; |
21 | using namespace clang::interp; |
22 | |
23 | using APSInt = llvm::APSInt; |
24 | |
25 | namespace clang { |
26 | namespace interp { |
27 | |
28 | static std::optional<bool> getBoolValue(const Expr *E) { |
29 | if (const auto *CE = dyn_cast_if_present<ConstantExpr>(Val: E); |
30 | CE && CE->hasAPValueResult() && |
31 | CE->getResultAPValueKind() == APValue::ValueKind::Int) { |
32 | return CE->getResultAsAPSInt().getBoolValue(); |
33 | } |
34 | |
35 | return std::nullopt; |
36 | } |
37 | |
38 | /// Scope used to handle temporaries in toplevel variable declarations. |
39 | template <class Emitter> class DeclScope final : public LocalScope<Emitter> { |
40 | public: |
41 | DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) |
42 | : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P), |
43 | OldInitializingDecl(Ctx->InitializingDecl) { |
44 | Ctx->InitializingDecl = VD; |
45 | Ctx->InitStack.push_back(InitLink::Decl(D: VD)); |
46 | } |
47 | |
48 | ~DeclScope() { |
49 | this->Ctx->InitializingDecl = OldInitializingDecl; |
50 | this->Ctx->InitStack.pop_back(); |
51 | } |
52 | |
53 | private: |
54 | Program::DeclScope Scope; |
55 | const ValueDecl *OldInitializingDecl; |
56 | }; |
57 | |
58 | /// Scope used to handle initialization methods. |
59 | template <class Emitter> class OptionScope final { |
60 | public: |
61 | /// Root constructor, compiling or discarding primitives. |
62 | OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, |
63 | bool NewInitializing) |
64 | : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), |
65 | OldInitializing(Ctx->Initializing) { |
66 | Ctx->DiscardResult = NewDiscardResult; |
67 | Ctx->Initializing = NewInitializing; |
68 | } |
69 | |
70 | ~OptionScope() { |
71 | Ctx->DiscardResult = OldDiscardResult; |
72 | Ctx->Initializing = OldInitializing; |
73 | } |
74 | |
75 | private: |
76 | /// Parent context. |
77 | Compiler<Emitter> *Ctx; |
78 | /// Old discard flag to restore. |
79 | bool OldDiscardResult; |
80 | bool OldInitializing; |
81 | }; |
82 | |
83 | template <class Emitter> |
84 | bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { |
85 | switch (Kind) { |
86 | case K_This: |
87 | return Ctx->emitThis(E); |
88 | case K_Field: |
89 | // We're assuming there's a base pointer on the stack already. |
90 | return Ctx->emitGetPtrFieldPop(Offset, E); |
91 | case K_Temp: |
92 | return Ctx->emitGetPtrLocal(Offset, E); |
93 | case K_Decl: |
94 | return Ctx->visitDeclRef(D, E); |
95 | case K_Elem: |
96 | if (!Ctx->emitConstUint32(Offset, E)) |
97 | return false; |
98 | return Ctx->emitArrayElemPtrPopUint32(E); |
99 | case K_RVO: |
100 | return Ctx->emitRVOPtr(E); |
101 | case K_InitList: |
102 | return true; |
103 | default: |
104 | llvm_unreachable("Unhandled InitLink kind" ); |
105 | } |
106 | return true; |
107 | } |
108 | |
109 | /// Scope managing label targets. |
110 | template <class Emitter> class LabelScope { |
111 | public: |
112 | virtual ~LabelScope() {} |
113 | |
114 | protected: |
115 | LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} |
116 | /// Compiler instance. |
117 | Compiler<Emitter> *Ctx; |
118 | }; |
119 | |
120 | /// Sets the context for break/continue statements. |
121 | template <class Emitter> class LoopScope final : public LabelScope<Emitter> { |
122 | public: |
123 | using LabelTy = typename Compiler<Emitter>::LabelTy; |
124 | using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; |
125 | |
126 | LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) |
127 | : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), |
128 | OldContinueLabel(Ctx->ContinueLabel), |
129 | OldBreakVarScope(Ctx->BreakVarScope), |
130 | OldContinueVarScope(Ctx->ContinueVarScope) { |
131 | this->Ctx->BreakLabel = BreakLabel; |
132 | this->Ctx->ContinueLabel = ContinueLabel; |
133 | this->Ctx->BreakVarScope = this->Ctx->VarScope; |
134 | this->Ctx->ContinueVarScope = this->Ctx->VarScope; |
135 | } |
136 | |
137 | ~LoopScope() { |
138 | this->Ctx->BreakLabel = OldBreakLabel; |
139 | this->Ctx->ContinueLabel = OldContinueLabel; |
140 | this->Ctx->ContinueVarScope = OldContinueVarScope; |
141 | this->Ctx->BreakVarScope = OldBreakVarScope; |
142 | } |
143 | |
144 | private: |
145 | OptLabelTy OldBreakLabel; |
146 | OptLabelTy OldContinueLabel; |
147 | VariableScope<Emitter> *OldBreakVarScope; |
148 | VariableScope<Emitter> *OldContinueVarScope; |
149 | }; |
150 | |
151 | // Sets the context for a switch scope, mapping labels. |
152 | template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { |
153 | public: |
154 | using LabelTy = typename Compiler<Emitter>::LabelTy; |
155 | using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; |
156 | using CaseMap = typename Compiler<Emitter>::CaseMap; |
157 | |
158 | SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, |
159 | OptLabelTy DefaultLabel) |
160 | : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), |
161 | OldDefaultLabel(this->Ctx->DefaultLabel), |
162 | OldCaseLabels(std::move(this->Ctx->CaseLabels)), |
163 | OldLabelVarScope(Ctx->BreakVarScope) { |
164 | this->Ctx->BreakLabel = BreakLabel; |
165 | this->Ctx->DefaultLabel = DefaultLabel; |
166 | this->Ctx->CaseLabels = std::move(CaseLabels); |
167 | this->Ctx->BreakVarScope = this->Ctx->VarScope; |
168 | } |
169 | |
170 | ~SwitchScope() { |
171 | this->Ctx->BreakLabel = OldBreakLabel; |
172 | this->Ctx->DefaultLabel = OldDefaultLabel; |
173 | this->Ctx->CaseLabels = std::move(OldCaseLabels); |
174 | this->Ctx->BreakVarScope = OldLabelVarScope; |
175 | } |
176 | |
177 | private: |
178 | OptLabelTy OldBreakLabel; |
179 | OptLabelTy OldDefaultLabel; |
180 | CaseMap OldCaseLabels; |
181 | VariableScope<Emitter> *OldLabelVarScope; |
182 | }; |
183 | |
184 | template <class Emitter> class StmtExprScope final { |
185 | public: |
186 | StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { |
187 | Ctx->InStmtExpr = true; |
188 | } |
189 | |
190 | ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } |
191 | |
192 | private: |
193 | Compiler<Emitter> *Ctx; |
194 | bool OldFlag; |
195 | }; |
196 | |
197 | } // namespace interp |
198 | } // namespace clang |
199 | |
200 | template <class Emitter> |
201 | bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { |
202 | const Expr *SubExpr = CE->getSubExpr(); |
203 | |
204 | if (DiscardResult) |
205 | return this->delegate(SubExpr); |
206 | |
207 | switch (CE->getCastKind()) { |
208 | case CK_LValueToRValue: { |
209 | if (SubExpr->getType().isVolatileQualified()) |
210 | return this->emitInvalidCast(CastKind::Volatile, /*Fatal=*/true, CE); |
211 | |
212 | std::optional<PrimType> SubExprT = classify(SubExpr->getType()); |
213 | // Prepare storage for the result. |
214 | if (!Initializing && !SubExprT) { |
215 | std::optional<unsigned> LocalIndex = allocateLocal(Decl: SubExpr); |
216 | if (!LocalIndex) |
217 | return false; |
218 | if (!this->emitGetPtrLocal(*LocalIndex, CE)) |
219 | return false; |
220 | } |
221 | |
222 | if (!this->visit(SubExpr)) |
223 | return false; |
224 | |
225 | if (SubExprT) |
226 | return this->emitLoadPop(*SubExprT, CE); |
227 | |
228 | // If the subexpr type is not primitive, we need to perform a copy here. |
229 | // This happens for example in C when dereferencing a pointer of struct |
230 | // type. |
231 | return this->emitMemcpy(CE); |
232 | } |
233 | |
234 | case CK_DerivedToBaseMemberPointer: { |
235 | assert(classifyPrim(CE->getType()) == PT_MemberPtr); |
236 | assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); |
237 | const auto *FromMP = SubExpr->getType()->castAs<MemberPointerType>(); |
238 | const auto *ToMP = CE->getType()->castAs<MemberPointerType>(); |
239 | |
240 | unsigned DerivedOffset = |
241 | Ctx.collectBaseOffset(BaseDecl: ToMP->getMostRecentCXXRecordDecl(), |
242 | DerivedDecl: FromMP->getMostRecentCXXRecordDecl()); |
243 | |
244 | if (!this->delegate(SubExpr)) |
245 | return false; |
246 | |
247 | return this->emitGetMemberPtrBasePop(DerivedOffset, CE); |
248 | } |
249 | |
250 | case CK_BaseToDerivedMemberPointer: { |
251 | assert(classifyPrim(CE) == PT_MemberPtr); |
252 | assert(classifyPrim(SubExpr) == PT_MemberPtr); |
253 | const auto *FromMP = SubExpr->getType()->castAs<MemberPointerType>(); |
254 | const auto *ToMP = CE->getType()->castAs<MemberPointerType>(); |
255 | |
256 | unsigned DerivedOffset = |
257 | Ctx.collectBaseOffset(BaseDecl: FromMP->getMostRecentCXXRecordDecl(), |
258 | DerivedDecl: ToMP->getMostRecentCXXRecordDecl()); |
259 | |
260 | if (!this->delegate(SubExpr)) |
261 | return false; |
262 | return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); |
263 | } |
264 | |
265 | case CK_UncheckedDerivedToBase: |
266 | case CK_DerivedToBase: { |
267 | if (!this->delegate(SubExpr)) |
268 | return false; |
269 | |
270 | const auto = [](QualType Ty) -> const CXXRecordDecl * { |
271 | if (const auto *PT = dyn_cast<PointerType>(Val&: Ty)) |
272 | return PT->getPointeeType()->getAsCXXRecordDecl(); |
273 | return Ty->getAsCXXRecordDecl(); |
274 | }; |
275 | |
276 | // FIXME: We can express a series of non-virtual casts as a single |
277 | // GetPtrBasePop op. |
278 | QualType CurType = SubExpr->getType(); |
279 | for (const CXXBaseSpecifier *B : CE->path()) { |
280 | if (B->isVirtual()) { |
281 | if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) |
282 | return false; |
283 | CurType = B->getType(); |
284 | } else { |
285 | unsigned DerivedOffset = collectBaseOffset(BaseType: B->getType(), DerivedType: CurType); |
286 | if (!this->emitGetPtrBasePop( |
287 | DerivedOffset, /*NullOK=*/CE->getType()->isPointerType(), CE)) |
288 | return false; |
289 | CurType = B->getType(); |
290 | } |
291 | } |
292 | |
293 | return true; |
294 | } |
295 | |
296 | case CK_BaseToDerived: { |
297 | if (!this->delegate(SubExpr)) |
298 | return false; |
299 | unsigned DerivedOffset = |
300 | collectBaseOffset(BaseType: SubExpr->getType(), DerivedType: CE->getType()); |
301 | |
302 | const Type *TargetType = CE->getType().getTypePtr(); |
303 | if (TargetType->isPointerOrReferenceType()) |
304 | TargetType = TargetType->getPointeeType().getTypePtr(); |
305 | return this->emitGetPtrDerivedPop(DerivedOffset, |
306 | /*NullOK=*/CE->getType()->isPointerType(), |
307 | TargetType, CE); |
308 | } |
309 | |
310 | case CK_FloatingCast: { |
311 | // HLSL uses CK_FloatingCast to cast between vectors. |
312 | if (!SubExpr->getType()->isFloatingType() || |
313 | !CE->getType()->isFloatingType()) |
314 | return false; |
315 | if (!this->visit(SubExpr)) |
316 | return false; |
317 | const auto *TargetSemantics = &Ctx.getFloatSemantics(T: CE->getType()); |
318 | return this->emitCastFP(TargetSemantics, getRoundingMode(E: CE), CE); |
319 | } |
320 | |
321 | case CK_IntegralToFloating: { |
322 | if (!CE->getType()->isRealFloatingType()) |
323 | return false; |
324 | if (!this->visit(SubExpr)) |
325 | return false; |
326 | const auto *TargetSemantics = &Ctx.getFloatSemantics(T: CE->getType()); |
327 | return this->emitCastIntegralFloating( |
328 | classifyPrim(SubExpr), TargetSemantics, getFPOptions(E: CE), CE); |
329 | } |
330 | |
331 | case CK_FloatingToBoolean: { |
332 | if (!SubExpr->getType()->isRealFloatingType() || |
333 | !CE->getType()->isBooleanType()) |
334 | return false; |
335 | if (const auto *FL = dyn_cast<FloatingLiteral>(Val: SubExpr)) |
336 | return this->emitConstBool(FL->getValue().isNonZero(), CE); |
337 | if (!this->visit(SubExpr)) |
338 | return false; |
339 | return this->emitCastFloatingIntegralBool(getFPOptions(E: CE), CE); |
340 | } |
341 | |
342 | case CK_FloatingToIntegral: { |
343 | if (!this->visit(SubExpr)) |
344 | return false; |
345 | PrimType ToT = classifyPrim(CE); |
346 | if (ToT == PT_IntAP) |
347 | return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(T: CE->getType()), |
348 | getFPOptions(E: CE), CE); |
349 | if (ToT == PT_IntAPS) |
350 | return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(T: CE->getType()), |
351 | getFPOptions(E: CE), CE); |
352 | |
353 | return this->emitCastFloatingIntegral(ToT, getFPOptions(E: CE), CE); |
354 | } |
355 | |
356 | case CK_NullToPointer: |
357 | case CK_NullToMemberPointer: { |
358 | if (!this->discard(SubExpr)) |
359 | return false; |
360 | const Descriptor *Desc = nullptr; |
361 | const QualType PointeeType = CE->getType()->getPointeeType(); |
362 | if (!PointeeType.isNull()) { |
363 | if (std::optional<PrimType> T = classify(PointeeType)) |
364 | Desc = P.createDescriptor(D: SubExpr, T: *T); |
365 | else |
366 | Desc = P.createDescriptor(D: SubExpr, Ty: PointeeType.getTypePtr(), |
367 | MDSize: std::nullopt, /*IsConst=*/true); |
368 | } |
369 | |
370 | uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(QT: CE->getType()); |
371 | return this->emitNull(classifyPrim(CE->getType()), Val, Desc, CE); |
372 | } |
373 | |
374 | case CK_PointerToIntegral: { |
375 | if (!this->visit(SubExpr)) |
376 | return false; |
377 | |
378 | // If SubExpr doesn't result in a pointer, make it one. |
379 | if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { |
380 | assert(isPtrType(FromT)); |
381 | if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) |
382 | return false; |
383 | } |
384 | |
385 | PrimType T = classifyPrim(CE->getType()); |
386 | if (T == PT_IntAP) |
387 | return this->emitCastPointerIntegralAP(Ctx.getBitWidth(T: CE->getType()), |
388 | CE); |
389 | if (T == PT_IntAPS) |
390 | return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(T: CE->getType()), |
391 | CE); |
392 | return this->emitCastPointerIntegral(T, CE); |
393 | } |
394 | |
395 | case CK_ArrayToPointerDecay: { |
396 | if (!this->visit(SubExpr)) |
397 | return false; |
398 | return this->emitArrayDecay(CE); |
399 | } |
400 | |
401 | case CK_IntegralToPointer: { |
402 | QualType IntType = SubExpr->getType(); |
403 | assert(IntType->isIntegralOrEnumerationType()); |
404 | if (!this->visit(SubExpr)) |
405 | return false; |
406 | // FIXME: I think the discard is wrong since the int->ptr cast might cause a |
407 | // diagnostic. |
408 | PrimType T = classifyPrim(IntType); |
409 | QualType PtrType = CE->getType(); |
410 | const Descriptor *Desc; |
411 | if (std::optional<PrimType> T = classify(PtrType->getPointeeType())) |
412 | Desc = P.createDescriptor(D: SubExpr, T: *T); |
413 | else if (PtrType->getPointeeType()->isVoidType()) |
414 | Desc = nullptr; |
415 | else |
416 | Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), |
417 | Descriptor::InlineDescMD, /*IsConst=*/true); |
418 | |
419 | if (!this->emitGetIntPtr(T, Desc, CE)) |
420 | return false; |
421 | |
422 | PrimType DestPtrT = classifyPrim(PtrType); |
423 | if (DestPtrT == PT_Ptr) |
424 | return true; |
425 | |
426 | // In case we're converting the integer to a non-Pointer. |
427 | return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); |
428 | } |
429 | |
430 | case CK_AtomicToNonAtomic: |
431 | case CK_ConstructorConversion: |
432 | case CK_FunctionToPointerDecay: |
433 | case CK_NonAtomicToAtomic: |
434 | case CK_NoOp: |
435 | case CK_UserDefinedConversion: |
436 | case CK_AddressSpaceConversion: |
437 | case CK_CPointerToObjCPointerCast: |
438 | return this->delegate(SubExpr); |
439 | |
440 | case CK_BitCast: { |
441 | // Reject bitcasts to atomic types. |
442 | if (CE->getType()->isAtomicType()) { |
443 | if (!this->discard(SubExpr)) |
444 | return false; |
445 | return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE); |
446 | } |
447 | QualType SubExprTy = SubExpr->getType(); |
448 | std::optional<PrimType> FromT = classify(SubExprTy); |
449 | // Casts from integer/vector to vector. |
450 | if (CE->getType()->isVectorType()) |
451 | return this->emitBuiltinBitCast(CE); |
452 | |
453 | std::optional<PrimType> ToT = classify(CE->getType()); |
454 | if (!FromT || !ToT) |
455 | return false; |
456 | |
457 | assert(isPtrType(*FromT)); |
458 | assert(isPtrType(*ToT)); |
459 | if (FromT == ToT) { |
460 | if (CE->getType()->isVoidPointerType()) |
461 | return this->delegate(SubExpr); |
462 | |
463 | if (!this->visit(SubExpr)) |
464 | return false; |
465 | if (CE->getType()->isFunctionPointerType()) |
466 | return true; |
467 | if (FromT == PT_Ptr) |
468 | return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); |
469 | return true; |
470 | } |
471 | |
472 | if (!this->visit(SubExpr)) |
473 | return false; |
474 | return this->emitDecayPtr(*FromT, *ToT, CE); |
475 | } |
476 | case CK_IntegralToBoolean: |
477 | case CK_FixedPointToBoolean: { |
478 | // HLSL uses this to cast to one-element vectors. |
479 | std::optional<PrimType> FromT = classify(SubExpr->getType()); |
480 | if (!FromT) |
481 | return false; |
482 | |
483 | if (const auto *IL = dyn_cast<IntegerLiteral>(Val: SubExpr)) |
484 | return this->emitConst(IL->getValue(), CE); |
485 | if (!this->visit(SubExpr)) |
486 | return false; |
487 | return this->emitCast(*FromT, classifyPrim(CE), CE); |
488 | } |
489 | |
490 | case CK_BooleanToSignedIntegral: |
491 | case CK_IntegralCast: { |
492 | std::optional<PrimType> FromT = classify(SubExpr->getType()); |
493 | std::optional<PrimType> ToT = classify(CE->getType()); |
494 | if (!FromT || !ToT) |
495 | return false; |
496 | |
497 | // Try to emit a casted known constant value directly. |
498 | if (const auto *IL = dyn_cast<IntegerLiteral>(Val: SubExpr)) { |
499 | if (ToT != PT_IntAP && ToT != PT_IntAPS && FromT != PT_IntAP && |
500 | FromT != PT_IntAPS && !CE->getType()->isEnumeralType()) |
501 | return this->emitConst(IL->getValue(), CE); |
502 | if (!this->emitConst(IL->getValue(), SubExpr)) |
503 | return false; |
504 | } else { |
505 | if (!this->visit(SubExpr)) |
506 | return false; |
507 | } |
508 | |
509 | // Possibly diagnose casts to enum types if the target type does not |
510 | // have a fixed size. |
511 | if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { |
512 | if (const auto *ET = CE->getType().getCanonicalType()->castAs<EnumType>(); |
513 | !ET->getDecl()->isFixed()) { |
514 | if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) |
515 | return false; |
516 | } |
517 | } |
518 | |
519 | if (ToT == PT_IntAP) { |
520 | if (!this->emitCastAP(*FromT, Ctx.getBitWidth(T: CE->getType()), CE)) |
521 | return false; |
522 | } else if (ToT == PT_IntAPS) { |
523 | if (!this->emitCastAPS(*FromT, Ctx.getBitWidth(T: CE->getType()), CE)) |
524 | return false; |
525 | } else { |
526 | if (FromT == ToT) |
527 | return true; |
528 | if (!this->emitCast(*FromT, *ToT, CE)) |
529 | return false; |
530 | } |
531 | if (CE->getCastKind() == CK_BooleanToSignedIntegral) |
532 | return this->emitNeg(*ToT, CE); |
533 | return true; |
534 | } |
535 | |
536 | case CK_PointerToBoolean: |
537 | case CK_MemberPointerToBoolean: { |
538 | PrimType PtrT = classifyPrim(SubExpr->getType()); |
539 | |
540 | if (!this->visit(SubExpr)) |
541 | return false; |
542 | return this->emitIsNonNull(PtrT, CE); |
543 | } |
544 | |
545 | case CK_IntegralComplexToBoolean: |
546 | case CK_FloatingComplexToBoolean: { |
547 | if (!this->visit(SubExpr)) |
548 | return false; |
549 | return this->emitComplexBoolCast(SubExpr); |
550 | } |
551 | |
552 | case CK_IntegralComplexToReal: |
553 | case CK_FloatingComplexToReal: |
554 | return this->emitComplexReal(SubExpr); |
555 | |
556 | case CK_IntegralRealToComplex: |
557 | case CK_FloatingRealToComplex: { |
558 | // We're creating a complex value here, so we need to |
559 | // allocate storage for it. |
560 | if (!Initializing) { |
561 | std::optional<unsigned> LocalIndex = allocateTemporary(E: CE); |
562 | if (!LocalIndex) |
563 | return false; |
564 | if (!this->emitGetPtrLocal(*LocalIndex, CE)) |
565 | return false; |
566 | } |
567 | |
568 | PrimType T = classifyPrim(SubExpr->getType()); |
569 | // Init the complex value to {SubExpr, 0}. |
570 | if (!this->visitArrayElemInit(0, SubExpr, T)) |
571 | return false; |
572 | // Zero-init the second element. |
573 | if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) |
574 | return false; |
575 | return this->emitInitElem(T, 1, SubExpr); |
576 | } |
577 | |
578 | case CK_IntegralComplexCast: |
579 | case CK_FloatingComplexCast: |
580 | case CK_IntegralComplexToFloatingComplex: |
581 | case CK_FloatingComplexToIntegralComplex: { |
582 | assert(CE->getType()->isAnyComplexType()); |
583 | assert(SubExpr->getType()->isAnyComplexType()); |
584 | if (!Initializing) { |
585 | std::optional<unsigned> LocalIndex = allocateLocal(Decl: CE); |
586 | if (!LocalIndex) |
587 | return false; |
588 | if (!this->emitGetPtrLocal(*LocalIndex, CE)) |
589 | return false; |
590 | } |
591 | |
592 | // Location for the SubExpr. |
593 | // Since SubExpr is of complex type, visiting it results in a pointer |
594 | // anyway, so we just create a temporary pointer variable. |
595 | unsigned SubExprOffset = |
596 | allocateLocalPrimitive(Decl: SubExpr, Ty: PT_Ptr, /*IsConst=*/true); |
597 | if (!this->visit(SubExpr)) |
598 | return false; |
599 | if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) |
600 | return false; |
601 | |
602 | PrimType SourceElemT = classifyComplexElementType(T: SubExpr->getType()); |
603 | QualType DestElemType = |
604 | CE->getType()->getAs<ComplexType>()->getElementType(); |
605 | PrimType DestElemT = classifyPrim(DestElemType); |
606 | // Cast both elements individually. |
607 | for (unsigned I = 0; I != 2; ++I) { |
608 | if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) |
609 | return false; |
610 | if (!this->emitArrayElemPop(SourceElemT, I, CE)) |
611 | return false; |
612 | |
613 | // Do the cast. |
614 | if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) |
615 | return false; |
616 | |
617 | // Save the value. |
618 | if (!this->emitInitElem(DestElemT, I, CE)) |
619 | return false; |
620 | } |
621 | return true; |
622 | } |
623 | |
624 | case CK_VectorSplat: { |
625 | assert(!classify(CE->getType())); |
626 | assert(classify(SubExpr->getType())); |
627 | assert(CE->getType()->isVectorType()); |
628 | |
629 | if (!Initializing) { |
630 | std::optional<unsigned> LocalIndex = allocateLocal(Decl: CE); |
631 | if (!LocalIndex) |
632 | return false; |
633 | if (!this->emitGetPtrLocal(*LocalIndex, CE)) |
634 | return false; |
635 | } |
636 | |
637 | const auto *VT = CE->getType()->getAs<VectorType>(); |
638 | PrimType ElemT = classifyPrim(SubExpr->getType()); |
639 | unsigned ElemOffset = |
640 | allocateLocalPrimitive(Decl: SubExpr, Ty: ElemT, /*IsConst=*/true); |
641 | |
642 | // Prepare a local variable for the scalar value. |
643 | if (!this->visit(SubExpr)) |
644 | return false; |
645 | if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) |
646 | return false; |
647 | |
648 | if (!this->emitSetLocal(ElemT, ElemOffset, CE)) |
649 | return false; |
650 | |
651 | for (unsigned I = 0; I != VT->getNumElements(); ++I) { |
652 | if (!this->emitGetLocal(ElemT, ElemOffset, CE)) |
653 | return false; |
654 | if (!this->emitInitElem(ElemT, I, CE)) |
655 | return false; |
656 | } |
657 | |
658 | return true; |
659 | } |
660 | |
661 | case CK_HLSLVectorTruncation: { |
662 | assert(SubExpr->getType()->isVectorType()); |
663 | if (std::optional<PrimType> ResultT = classify(CE)) { |
664 | assert(!DiscardResult); |
665 | // Result must be either a float or integer. Take the first element. |
666 | if (!this->visit(SubExpr)) |
667 | return false; |
668 | return this->emitArrayElemPop(*ResultT, 0, CE); |
669 | } |
670 | // Otherwise, this truncates from one vector type to another. |
671 | assert(CE->getType()->isVectorType()); |
672 | |
673 | if (!Initializing) { |
674 | std::optional<unsigned> LocalIndex = allocateTemporary(E: CE); |
675 | if (!LocalIndex) |
676 | return false; |
677 | if (!this->emitGetPtrLocal(*LocalIndex, CE)) |
678 | return false; |
679 | } |
680 | unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements(); |
681 | assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize); |
682 | if (!this->visit(SubExpr)) |
683 | return false; |
684 | return this->emitCopyArray(classifyVectorElementType(T: CE->getType()), 0, 0, |
685 | ToSize, CE); |
686 | }; |
687 | |
688 | case CK_IntegralToFixedPoint: { |
689 | if (!this->visit(SubExpr)) |
690 | return false; |
691 | |
692 | auto Sem = |
693 | Ctx.getASTContext().getFixedPointSemantics(Ty: CE->getType()).toOpaqueInt(); |
694 | return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()), |
695 | Sem, CE); |
696 | } |
697 | case CK_FloatingToFixedPoint: { |
698 | if (!this->visit(SubExpr)) |
699 | return false; |
700 | |
701 | auto Sem = |
702 | Ctx.getASTContext().getFixedPointSemantics(Ty: CE->getType()).toOpaqueInt(); |
703 | return this->emitCastFloatingFixedPoint(Sem, CE); |
704 | } |
705 | case CK_FixedPointToFloating: { |
706 | if (!this->visit(SubExpr)) |
707 | return false; |
708 | const auto *TargetSemantics = &Ctx.getFloatSemantics(T: CE->getType()); |
709 | return this->emitCastFixedPointFloating(TargetSemantics, CE); |
710 | } |
711 | case CK_FixedPointToIntegral: { |
712 | if (!this->visit(SubExpr)) |
713 | return false; |
714 | return this->emitCastFixedPointIntegral(classifyPrim(CE->getType()), CE); |
715 | } |
716 | case CK_FixedPointCast: { |
717 | if (!this->visit(SubExpr)) |
718 | return false; |
719 | auto Sem = |
720 | Ctx.getASTContext().getFixedPointSemantics(Ty: CE->getType()).toOpaqueInt(); |
721 | return this->emitCastFixedPoint(Sem, CE); |
722 | } |
723 | |
724 | case CK_ToVoid: |
725 | return discard(E: SubExpr); |
726 | |
727 | default: |
728 | return this->emitInvalid(CE); |
729 | } |
730 | llvm_unreachable("Unhandled clang::CastKind enum" ); |
731 | } |
732 | |
733 | template <class Emitter> |
734 | bool Compiler<Emitter>::VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) { |
735 | return this->emitBuiltinBitCast(E); |
736 | } |
737 | |
738 | template <class Emitter> |
739 | bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { |
740 | if (DiscardResult) |
741 | return true; |
742 | |
743 | return this->emitConst(LE->getValue(), LE); |
744 | } |
745 | |
746 | template <class Emitter> |
747 | bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { |
748 | if (DiscardResult) |
749 | return true; |
750 | |
751 | return this->emitConstFloat(E->getValue(), E); |
752 | } |
753 | |
754 | template <class Emitter> |
755 | bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { |
756 | assert(E->getType()->isAnyComplexType()); |
757 | if (DiscardResult) |
758 | return true; |
759 | |
760 | if (!Initializing) { |
761 | std::optional<unsigned> LocalIndex = allocateTemporary(E); |
762 | if (!LocalIndex) |
763 | return false; |
764 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
765 | return false; |
766 | } |
767 | |
768 | const Expr *SubExpr = E->getSubExpr(); |
769 | PrimType SubExprT = classifyPrim(SubExpr->getType()); |
770 | |
771 | if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) |
772 | return false; |
773 | if (!this->emitInitElem(SubExprT, 0, SubExpr)) |
774 | return false; |
775 | return this->visitArrayElemInit(1, SubExpr, SubExprT); |
776 | } |
777 | |
778 | template <class Emitter> |
779 | bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) { |
780 | assert(E->getType()->isFixedPointType()); |
781 | assert(classifyPrim(E) == PT_FixedPoint); |
782 | |
783 | if (DiscardResult) |
784 | return true; |
785 | |
786 | auto Sem = Ctx.getASTContext().getFixedPointSemantics(Ty: E->getType()); |
787 | APInt Value = E->getValue(); |
788 | return this->emitConstFixedPoint(FixedPoint(Value, Sem), E); |
789 | } |
790 | |
791 | template <class Emitter> |
792 | bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { |
793 | return this->delegate(E->getSubExpr()); |
794 | } |
795 | |
796 | template <class Emitter> |
797 | bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { |
798 | // Need short-circuiting for these. |
799 | if (BO->isLogicalOp() && !BO->getType()->isVectorType()) |
800 | return this->VisitLogicalBinOp(BO); |
801 | |
802 | const Expr *LHS = BO->getLHS(); |
803 | const Expr *RHS = BO->getRHS(); |
804 | |
805 | // Handle comma operators. Just discard the LHS |
806 | // and delegate to RHS. |
807 | if (BO->isCommaOp()) { |
808 | if (!this->discard(LHS)) |
809 | return false; |
810 | if (RHS->getType()->isVoidType()) |
811 | return this->discard(RHS); |
812 | |
813 | return this->delegate(RHS); |
814 | } |
815 | |
816 | if (BO->getType()->isAnyComplexType()) |
817 | return this->VisitComplexBinOp(BO); |
818 | if (BO->getType()->isVectorType()) |
819 | return this->VisitVectorBinOp(BO); |
820 | if ((LHS->getType()->isAnyComplexType() || |
821 | RHS->getType()->isAnyComplexType()) && |
822 | BO->isComparisonOp()) |
823 | return this->emitComplexComparison(LHS, RHS, BO); |
824 | if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType()) |
825 | return this->VisitFixedPointBinOp(BO); |
826 | |
827 | if (BO->isPtrMemOp()) { |
828 | if (!this->visit(LHS)) |
829 | return false; |
830 | |
831 | if (!this->visit(RHS)) |
832 | return false; |
833 | |
834 | if (!this->emitToMemberPtr(BO)) |
835 | return false; |
836 | |
837 | if (classifyPrim(BO) == PT_MemberPtr) |
838 | return true; |
839 | |
840 | if (!this->emitCastMemberPtrPtr(BO)) |
841 | return false; |
842 | return DiscardResult ? this->emitPopPtr(BO) : true; |
843 | } |
844 | |
845 | // Typecheck the args. |
846 | std::optional<PrimType> LT = classify(LHS); |
847 | std::optional<PrimType> RT = classify(RHS); |
848 | std::optional<PrimType> T = classify(BO->getType()); |
849 | |
850 | // Special case for C++'s three-way/spaceship operator <=>, which |
851 | // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't |
852 | // have a PrimType). |
853 | if (!T && BO->getOpcode() == BO_Cmp) { |
854 | if (DiscardResult) |
855 | return true; |
856 | const ComparisonCategoryInfo *CmpInfo = |
857 | Ctx.getASTContext().CompCategories.lookupInfoForType(Ty: BO->getType()); |
858 | assert(CmpInfo); |
859 | |
860 | // We need a temporary variable holding our return value. |
861 | if (!Initializing) { |
862 | std::optional<unsigned> ResultIndex = this->allocateLocal(BO); |
863 | if (!this->emitGetPtrLocal(*ResultIndex, BO)) |
864 | return false; |
865 | } |
866 | |
867 | if (!visit(E: LHS) || !visit(E: RHS)) |
868 | return false; |
869 | |
870 | return this->emitCMP3(*LT, CmpInfo, BO); |
871 | } |
872 | |
873 | if (!LT || !RT || !T) |
874 | return false; |
875 | |
876 | // Pointer arithmetic special case. |
877 | if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { |
878 | if (isPtrType(T: *T) || (isPtrType(T: *LT) && isPtrType(T: *RT))) |
879 | return this->VisitPointerArithBinOp(BO); |
880 | } |
881 | |
882 | // Assignments require us to evalute the RHS first. |
883 | if (BO->getOpcode() == BO_Assign) { |
884 | |
885 | if (!visit(E: RHS) || !visit(E: LHS)) |
886 | return false; |
887 | |
888 | // We don't support assignments in C. |
889 | if (!Ctx.getLangOpts().CPlusPlus && !this->emitInvalid(BO)) |
890 | return false; |
891 | |
892 | if (!this->emitFlip(*LT, *RT, BO)) |
893 | return false; |
894 | } else { |
895 | if (!visit(E: LHS) || !visit(E: RHS)) |
896 | return false; |
897 | } |
898 | |
899 | // For languages such as C, cast the result of one |
900 | // of our comparision opcodes to T (which is usually int). |
901 | auto MaybeCastToBool = [this, T, BO](bool Result) { |
902 | if (!Result) |
903 | return false; |
904 | if (DiscardResult) |
905 | return this->emitPop(*T, BO); |
906 | if (T != PT_Bool) |
907 | return this->emitCast(PT_Bool, *T, BO); |
908 | return true; |
909 | }; |
910 | |
911 | auto Discard = [this, T, BO](bool Result) { |
912 | if (!Result) |
913 | return false; |
914 | return DiscardResult ? this->emitPop(*T, BO) : true; |
915 | }; |
916 | |
917 | switch (BO->getOpcode()) { |
918 | case BO_EQ: |
919 | return MaybeCastToBool(this->emitEQ(*LT, BO)); |
920 | case BO_NE: |
921 | return MaybeCastToBool(this->emitNE(*LT, BO)); |
922 | case BO_LT: |
923 | return MaybeCastToBool(this->emitLT(*LT, BO)); |
924 | case BO_LE: |
925 | return MaybeCastToBool(this->emitLE(*LT, BO)); |
926 | case BO_GT: |
927 | return MaybeCastToBool(this->emitGT(*LT, BO)); |
928 | case BO_GE: |
929 | return MaybeCastToBool(this->emitGE(*LT, BO)); |
930 | case BO_Sub: |
931 | if (BO->getType()->isFloatingType()) |
932 | return Discard(this->emitSubf(getFPOptions(E: BO), BO)); |
933 | return Discard(this->emitSub(*T, BO)); |
934 | case BO_Add: |
935 | if (BO->getType()->isFloatingType()) |
936 | return Discard(this->emitAddf(getFPOptions(E: BO), BO)); |
937 | return Discard(this->emitAdd(*T, BO)); |
938 | case BO_Mul: |
939 | if (BO->getType()->isFloatingType()) |
940 | return Discard(this->emitMulf(getFPOptions(E: BO), BO)); |
941 | return Discard(this->emitMul(*T, BO)); |
942 | case BO_Rem: |
943 | return Discard(this->emitRem(*T, BO)); |
944 | case BO_Div: |
945 | if (BO->getType()->isFloatingType()) |
946 | return Discard(this->emitDivf(getFPOptions(E: BO), BO)); |
947 | return Discard(this->emitDiv(*T, BO)); |
948 | case BO_Assign: |
949 | if (DiscardResult) |
950 | return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) |
951 | : this->emitStorePop(*T, BO); |
952 | if (LHS->refersToBitField()) { |
953 | if (!this->emitStoreBitField(*T, BO)) |
954 | return false; |
955 | } else { |
956 | if (!this->emitStore(*T, BO)) |
957 | return false; |
958 | } |
959 | // Assignments aren't necessarily lvalues in C. |
960 | // Load from them in that case. |
961 | if (!BO->isLValue()) |
962 | return this->emitLoadPop(*T, BO); |
963 | return true; |
964 | case BO_And: |
965 | return Discard(this->emitBitAnd(*T, BO)); |
966 | case BO_Or: |
967 | return Discard(this->emitBitOr(*T, BO)); |
968 | case BO_Shl: |
969 | return Discard(this->emitShl(*LT, *RT, BO)); |
970 | case BO_Shr: |
971 | return Discard(this->emitShr(*LT, *RT, BO)); |
972 | case BO_Xor: |
973 | return Discard(this->emitBitXor(*T, BO)); |
974 | case BO_LOr: |
975 | case BO_LAnd: |
976 | llvm_unreachable("Already handled earlier" ); |
977 | default: |
978 | return false; |
979 | } |
980 | |
981 | llvm_unreachable("Unhandled binary op" ); |
982 | } |
983 | |
984 | /// Perform addition/subtraction of a pointer and an integer or |
985 | /// subtraction of two pointers. |
986 | template <class Emitter> |
987 | bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { |
988 | BinaryOperatorKind Op = E->getOpcode(); |
989 | const Expr *LHS = E->getLHS(); |
990 | const Expr *RHS = E->getRHS(); |
991 | |
992 | if ((Op != BO_Add && Op != BO_Sub) || |
993 | (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) |
994 | return false; |
995 | |
996 | std::optional<PrimType> LT = classify(LHS); |
997 | std::optional<PrimType> RT = classify(RHS); |
998 | |
999 | if (!LT || !RT) |
1000 | return false; |
1001 | |
1002 | // Visit the given pointer expression and optionally convert to a PT_Ptr. |
1003 | auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool { |
1004 | if (!this->visit(E)) |
1005 | return false; |
1006 | if (T != PT_Ptr) |
1007 | return this->emitDecayPtr(T, PT_Ptr, E); |
1008 | return true; |
1009 | }; |
1010 | |
1011 | if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { |
1012 | if (Op != BO_Sub) |
1013 | return false; |
1014 | |
1015 | assert(E->getType()->isIntegerType()); |
1016 | if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT)) |
1017 | return false; |
1018 | |
1019 | PrimType IntT = classifyPrim(E->getType()); |
1020 | if (!this->emitSubPtr(IntT, E)) |
1021 | return false; |
1022 | return DiscardResult ? this->emitPop(IntT, E) : true; |
1023 | } |
1024 | |
1025 | PrimType OffsetType; |
1026 | if (LHS->getType()->isIntegerType()) { |
1027 | if (!visitAsPointer(RHS, *RT)) |
1028 | return false; |
1029 | if (!this->visit(LHS)) |
1030 | return false; |
1031 | OffsetType = *LT; |
1032 | } else if (RHS->getType()->isIntegerType()) { |
1033 | if (!visitAsPointer(LHS, *LT)) |
1034 | return false; |
1035 | if (!this->visit(RHS)) |
1036 | return false; |
1037 | OffsetType = *RT; |
1038 | } else { |
1039 | return false; |
1040 | } |
1041 | |
1042 | // Do the operation and optionally transform to |
1043 | // result pointer type. |
1044 | if (Op == BO_Add) { |
1045 | if (!this->emitAddOffset(OffsetType, E)) |
1046 | return false; |
1047 | |
1048 | if (classifyPrim(E) != PT_Ptr) |
1049 | return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); |
1050 | return true; |
1051 | } else if (Op == BO_Sub) { |
1052 | if (!this->emitSubOffset(OffsetType, E)) |
1053 | return false; |
1054 | |
1055 | if (classifyPrim(E) != PT_Ptr) |
1056 | return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E); |
1057 | return true; |
1058 | } |
1059 | |
1060 | return false; |
1061 | } |
1062 | |
1063 | template <class Emitter> |
1064 | bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { |
1065 | assert(E->isLogicalOp()); |
1066 | BinaryOperatorKind Op = E->getOpcode(); |
1067 | const Expr *LHS = E->getLHS(); |
1068 | const Expr *RHS = E->getRHS(); |
1069 | std::optional<PrimType> T = classify(E->getType()); |
1070 | |
1071 | if (Op == BO_LOr) { |
1072 | // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. |
1073 | LabelTy LabelTrue = this->getLabel(); |
1074 | LabelTy LabelEnd = this->getLabel(); |
1075 | |
1076 | if (!this->visitBool(LHS)) |
1077 | return false; |
1078 | if (!this->jumpTrue(LabelTrue)) |
1079 | return false; |
1080 | |
1081 | if (!this->visitBool(RHS)) |
1082 | return false; |
1083 | if (!this->jump(LabelEnd)) |
1084 | return false; |
1085 | |
1086 | this->emitLabel(LabelTrue); |
1087 | this->emitConstBool(true, E); |
1088 | this->fallthrough(LabelEnd); |
1089 | this->emitLabel(LabelEnd); |
1090 | |
1091 | } else { |
1092 | assert(Op == BO_LAnd); |
1093 | // Logical AND. |
1094 | // Visit LHS. Only visit RHS if LHS was TRUE. |
1095 | LabelTy LabelFalse = this->getLabel(); |
1096 | LabelTy LabelEnd = this->getLabel(); |
1097 | |
1098 | if (!this->visitBool(LHS)) |
1099 | return false; |
1100 | if (!this->jumpFalse(LabelFalse)) |
1101 | return false; |
1102 | |
1103 | if (!this->visitBool(RHS)) |
1104 | return false; |
1105 | if (!this->jump(LabelEnd)) |
1106 | return false; |
1107 | |
1108 | this->emitLabel(LabelFalse); |
1109 | this->emitConstBool(false, E); |
1110 | this->fallthrough(LabelEnd); |
1111 | this->emitLabel(LabelEnd); |
1112 | } |
1113 | |
1114 | if (DiscardResult) |
1115 | return this->emitPopBool(E); |
1116 | |
1117 | // For C, cast back to integer type. |
1118 | assert(T); |
1119 | if (T != PT_Bool) |
1120 | return this->emitCast(PT_Bool, *T, E); |
1121 | return true; |
1122 | } |
1123 | |
1124 | template <class Emitter> |
1125 | bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { |
1126 | // Prepare storage for result. |
1127 | if (!Initializing) { |
1128 | std::optional<unsigned> LocalIndex = allocateTemporary(E); |
1129 | if (!LocalIndex) |
1130 | return false; |
1131 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
1132 | return false; |
1133 | } |
1134 | |
1135 | // Both LHS and RHS might _not_ be of complex type, but one of them |
1136 | // needs to be. |
1137 | const Expr *LHS = E->getLHS(); |
1138 | const Expr *RHS = E->getRHS(); |
1139 | |
1140 | PrimType ResultElemT = this->classifyComplexElementType(E->getType()); |
1141 | unsigned ResultOffset = ~0u; |
1142 | if (!DiscardResult) |
1143 | ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, /*IsConst=*/true); |
1144 | |
1145 | // Save result pointer in ResultOffset |
1146 | if (!this->DiscardResult) { |
1147 | if (!this->emitDupPtr(E)) |
1148 | return false; |
1149 | if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) |
1150 | return false; |
1151 | } |
1152 | QualType LHSType = LHS->getType(); |
1153 | if (const auto *AT = LHSType->getAs<AtomicType>()) |
1154 | LHSType = AT->getValueType(); |
1155 | QualType RHSType = RHS->getType(); |
1156 | if (const auto *AT = RHSType->getAs<AtomicType>()) |
1157 | RHSType = AT->getValueType(); |
1158 | |
1159 | bool LHSIsComplex = LHSType->isAnyComplexType(); |
1160 | unsigned LHSOffset; |
1161 | bool RHSIsComplex = RHSType->isAnyComplexType(); |
1162 | |
1163 | // For ComplexComplex Mul, we have special ops to make their implementation |
1164 | // easier. |
1165 | BinaryOperatorKind Op = E->getOpcode(); |
1166 | if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { |
1167 | assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == |
1168 | classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); |
1169 | PrimType ElemT = |
1170 | classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); |
1171 | if (!this->visit(LHS)) |
1172 | return false; |
1173 | if (!this->visit(RHS)) |
1174 | return false; |
1175 | return this->emitMulc(ElemT, E); |
1176 | } |
1177 | |
1178 | if (Op == BO_Div && RHSIsComplex) { |
1179 | QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); |
1180 | PrimType ElemT = classifyPrim(ElemQT); |
1181 | // If the LHS is not complex, we still need to do the full complex |
1182 | // division, so just stub create a complex value and stub it out with |
1183 | // the LHS and a zero. |
1184 | |
1185 | if (!LHSIsComplex) { |
1186 | // This is using the RHS type for the fake-complex LHS. |
1187 | std::optional<unsigned> LocalIndex = allocateTemporary(E: RHS); |
1188 | if (!LocalIndex) |
1189 | return false; |
1190 | LHSOffset = *LocalIndex; |
1191 | |
1192 | if (!this->emitGetPtrLocal(LHSOffset, E)) |
1193 | return false; |
1194 | |
1195 | if (!this->visit(LHS)) |
1196 | return false; |
1197 | // real is LHS |
1198 | if (!this->emitInitElem(ElemT, 0, E)) |
1199 | return false; |
1200 | // imag is zero |
1201 | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
1202 | return false; |
1203 | if (!this->emitInitElem(ElemT, 1, E)) |
1204 | return false; |
1205 | } else { |
1206 | if (!this->visit(LHS)) |
1207 | return false; |
1208 | } |
1209 | |
1210 | if (!this->visit(RHS)) |
1211 | return false; |
1212 | return this->emitDivc(ElemT, E); |
1213 | } |
1214 | |
1215 | // Evaluate LHS and save value to LHSOffset. |
1216 | if (LHSType->isAnyComplexType()) { |
1217 | LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true); |
1218 | if (!this->visit(LHS)) |
1219 | return false; |
1220 | if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) |
1221 | return false; |
1222 | } else { |
1223 | PrimType LHST = classifyPrim(LHSType); |
1224 | LHSOffset = this->allocateLocalPrimitive(LHS, LHST, /*IsConst=*/true); |
1225 | if (!this->visit(LHS)) |
1226 | return false; |
1227 | if (!this->emitSetLocal(LHST, LHSOffset, E)) |
1228 | return false; |
1229 | } |
1230 | |
1231 | // Same with RHS. |
1232 | unsigned RHSOffset; |
1233 | if (RHSType->isAnyComplexType()) { |
1234 | RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true); |
1235 | if (!this->visit(RHS)) |
1236 | return false; |
1237 | if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) |
1238 | return false; |
1239 | } else { |
1240 | PrimType RHST = classifyPrim(RHSType); |
1241 | RHSOffset = this->allocateLocalPrimitive(RHS, RHST, /*IsConst=*/true); |
1242 | if (!this->visit(RHS)) |
1243 | return false; |
1244 | if (!this->emitSetLocal(RHST, RHSOffset, E)) |
1245 | return false; |
1246 | } |
1247 | |
1248 | // For both LHS and RHS, either load the value from the complex pointer, or |
1249 | // directly from the local variable. For index 1 (i.e. the imaginary part), |
1250 | // just load 0 and do the operation anyway. |
1251 | auto loadComplexValue = [this](bool IsComplex, bool LoadZero, |
1252 | unsigned ElemIndex, unsigned Offset, |
1253 | const Expr *E) -> bool { |
1254 | if (IsComplex) { |
1255 | if (!this->emitGetLocal(PT_Ptr, Offset, E)) |
1256 | return false; |
1257 | return this->emitArrayElemPop(classifyComplexElementType(T: E->getType()), |
1258 | ElemIndex, E); |
1259 | } |
1260 | if (ElemIndex == 0 || !LoadZero) |
1261 | return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); |
1262 | return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), |
1263 | E); |
1264 | }; |
1265 | |
1266 | // Now we can get pointers to the LHS and RHS from the offsets above. |
1267 | for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { |
1268 | // Result pointer for the store later. |
1269 | if (!this->DiscardResult) { |
1270 | if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) |
1271 | return false; |
1272 | } |
1273 | |
1274 | // The actual operation. |
1275 | switch (Op) { |
1276 | case BO_Add: |
1277 | if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) |
1278 | return false; |
1279 | |
1280 | if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) |
1281 | return false; |
1282 | if (ResultElemT == PT_Float) { |
1283 | if (!this->emitAddf(getFPOptions(E), E)) |
1284 | return false; |
1285 | } else { |
1286 | if (!this->emitAdd(ResultElemT, E)) |
1287 | return false; |
1288 | } |
1289 | break; |
1290 | case BO_Sub: |
1291 | if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) |
1292 | return false; |
1293 | |
1294 | if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) |
1295 | return false; |
1296 | if (ResultElemT == PT_Float) { |
1297 | if (!this->emitSubf(getFPOptions(E), E)) |
1298 | return false; |
1299 | } else { |
1300 | if (!this->emitSub(ResultElemT, E)) |
1301 | return false; |
1302 | } |
1303 | break; |
1304 | case BO_Mul: |
1305 | if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) |
1306 | return false; |
1307 | |
1308 | if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) |
1309 | return false; |
1310 | |
1311 | if (ResultElemT == PT_Float) { |
1312 | if (!this->emitMulf(getFPOptions(E), E)) |
1313 | return false; |
1314 | } else { |
1315 | if (!this->emitMul(ResultElemT, E)) |
1316 | return false; |
1317 | } |
1318 | break; |
1319 | case BO_Div: |
1320 | assert(!RHSIsComplex); |
1321 | if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) |
1322 | return false; |
1323 | |
1324 | if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) |
1325 | return false; |
1326 | |
1327 | if (ResultElemT == PT_Float) { |
1328 | if (!this->emitDivf(getFPOptions(E), E)) |
1329 | return false; |
1330 | } else { |
1331 | if (!this->emitDiv(ResultElemT, E)) |
1332 | return false; |
1333 | } |
1334 | break; |
1335 | |
1336 | default: |
1337 | return false; |
1338 | } |
1339 | |
1340 | if (!this->DiscardResult) { |
1341 | // Initialize array element with the value we just computed. |
1342 | if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) |
1343 | return false; |
1344 | } else { |
1345 | if (!this->emitPop(ResultElemT, E)) |
1346 | return false; |
1347 | } |
1348 | } |
1349 | return true; |
1350 | } |
1351 | |
1352 | template <class Emitter> |
1353 | bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) { |
1354 | assert(!E->isCommaOp() && |
1355 | "Comma op should be handled in VisitBinaryOperator" ); |
1356 | assert(E->getType()->isVectorType()); |
1357 | assert(E->getLHS()->getType()->isVectorType()); |
1358 | assert(E->getRHS()->getType()->isVectorType()); |
1359 | |
1360 | // Prepare storage for result. |
1361 | if (!Initializing && !E->isCompoundAssignmentOp()) { |
1362 | std::optional<unsigned> LocalIndex = allocateTemporary(E); |
1363 | if (!LocalIndex) |
1364 | return false; |
1365 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
1366 | return false; |
1367 | } |
1368 | |
1369 | const Expr *LHS = E->getLHS(); |
1370 | const Expr *RHS = E->getRHS(); |
1371 | const auto *VecTy = E->getType()->getAs<VectorType>(); |
1372 | auto Op = E->isCompoundAssignmentOp() |
1373 | ? BinaryOperator::getOpForCompoundAssignment(Opc: E->getOpcode()) |
1374 | : E->getOpcode(); |
1375 | |
1376 | PrimType ElemT = this->classifyVectorElementType(LHS->getType()); |
1377 | PrimType RHSElemT = this->classifyVectorElementType(RHS->getType()); |
1378 | PrimType ResultElemT = this->classifyVectorElementType(E->getType()); |
1379 | |
1380 | // Evaluate LHS and save value to LHSOffset. |
1381 | unsigned LHSOffset = |
1382 | this->allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true); |
1383 | if (!this->visit(LHS)) |
1384 | return false; |
1385 | if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) |
1386 | return false; |
1387 | |
1388 | // Evaluate RHS and save value to RHSOffset. |
1389 | unsigned RHSOffset = |
1390 | this->allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true); |
1391 | if (!this->visit(RHS)) |
1392 | return false; |
1393 | if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) |
1394 | return false; |
1395 | |
1396 | if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E)) |
1397 | return false; |
1398 | |
1399 | // BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the |
1400 | // integer promotion. |
1401 | bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp()); |
1402 | QualType PromotTy = |
1403 | Ctx.getASTContext().getPromotedIntegerType(PromotableType: Ctx.getASTContext().BoolTy); |
1404 | PrimType PromotT = classifyPrim(PromotTy); |
1405 | PrimType OpT = NeedIntPromot ? PromotT : ElemT; |
1406 | |
1407 | auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) { |
1408 | if (!this->emitGetLocal(PT_Ptr, Offset, E)) |
1409 | return false; |
1410 | if (!this->emitArrayElemPop(ElemT, Index, E)) |
1411 | return false; |
1412 | if (E->isLogicalOp()) { |
1413 | if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) |
1414 | return false; |
1415 | if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) |
1416 | return false; |
1417 | } else if (NeedIntPromot) { |
1418 | if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E)) |
1419 | return false; |
1420 | } |
1421 | return true; |
1422 | }; |
1423 | |
1424 | #define EMIT_ARITH_OP(OP) \ |
1425 | { \ |
1426 | if (ElemT == PT_Float) { \ |
1427 | if (!this->emit##OP##f(getFPOptions(E), E)) \ |
1428 | return false; \ |
1429 | } else { \ |
1430 | if (!this->emit##OP(ElemT, E)) \ |
1431 | return false; \ |
1432 | } \ |
1433 | break; \ |
1434 | } |
1435 | |
1436 | for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { |
1437 | if (!getElem(LHSOffset, ElemT, I)) |
1438 | return false; |
1439 | if (!getElem(RHSOffset, RHSElemT, I)) |
1440 | return false; |
1441 | switch (Op) { |
1442 | case BO_Add: |
1443 | EMIT_ARITH_OP(Add) |
1444 | case BO_Sub: |
1445 | EMIT_ARITH_OP(Sub) |
1446 | case BO_Mul: |
1447 | EMIT_ARITH_OP(Mul) |
1448 | case BO_Div: |
1449 | EMIT_ARITH_OP(Div) |
1450 | case BO_Rem: |
1451 | if (!this->emitRem(ElemT, E)) |
1452 | return false; |
1453 | break; |
1454 | case BO_And: |
1455 | if (!this->emitBitAnd(OpT, E)) |
1456 | return false; |
1457 | break; |
1458 | case BO_Or: |
1459 | if (!this->emitBitOr(OpT, E)) |
1460 | return false; |
1461 | break; |
1462 | case BO_Xor: |
1463 | if (!this->emitBitXor(OpT, E)) |
1464 | return false; |
1465 | break; |
1466 | case BO_Shl: |
1467 | if (!this->emitShl(OpT, RHSElemT, E)) |
1468 | return false; |
1469 | break; |
1470 | case BO_Shr: |
1471 | if (!this->emitShr(OpT, RHSElemT, E)) |
1472 | return false; |
1473 | break; |
1474 | case BO_EQ: |
1475 | if (!this->emitEQ(ElemT, E)) |
1476 | return false; |
1477 | break; |
1478 | case BO_NE: |
1479 | if (!this->emitNE(ElemT, E)) |
1480 | return false; |
1481 | break; |
1482 | case BO_LE: |
1483 | if (!this->emitLE(ElemT, E)) |
1484 | return false; |
1485 | break; |
1486 | case BO_LT: |
1487 | if (!this->emitLT(ElemT, E)) |
1488 | return false; |
1489 | break; |
1490 | case BO_GE: |
1491 | if (!this->emitGE(ElemT, E)) |
1492 | return false; |
1493 | break; |
1494 | case BO_GT: |
1495 | if (!this->emitGT(ElemT, E)) |
1496 | return false; |
1497 | break; |
1498 | case BO_LAnd: |
1499 | // a && b is equivalent to a!=0 & b!=0 |
1500 | if (!this->emitBitAnd(ResultElemT, E)) |
1501 | return false; |
1502 | break; |
1503 | case BO_LOr: |
1504 | // a || b is equivalent to a!=0 | b!=0 |
1505 | if (!this->emitBitOr(ResultElemT, E)) |
1506 | return false; |
1507 | break; |
1508 | default: |
1509 | return this->emitInvalid(E); |
1510 | } |
1511 | |
1512 | // The result of the comparison is a vector of the same width and number |
1513 | // of elements as the comparison operands with a signed integral element |
1514 | // type. |
1515 | // |
1516 | // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html |
1517 | if (E->isComparisonOp()) { |
1518 | if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E)) |
1519 | return false; |
1520 | if (!this->emitNeg(ResultElemT, E)) |
1521 | return false; |
1522 | } |
1523 | |
1524 | // If we performed an integer promotion, we need to cast the compute result |
1525 | // into result vector element type. |
1526 | if (NeedIntPromot && |
1527 | !this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E)) |
1528 | return false; |
1529 | |
1530 | // Initialize array element with the value we just computed. |
1531 | if (!this->emitInitElem(ResultElemT, I, E)) |
1532 | return false; |
1533 | } |
1534 | |
1535 | if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E)) |
1536 | return false; |
1537 | return true; |
1538 | } |
1539 | |
1540 | template <class Emitter> |
1541 | bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) { |
1542 | const Expr *LHS = E->getLHS(); |
1543 | const Expr *RHS = E->getRHS(); |
1544 | const ASTContext &ASTCtx = Ctx.getASTContext(); |
1545 | |
1546 | assert(LHS->getType()->isFixedPointType() || |
1547 | RHS->getType()->isFixedPointType()); |
1548 | |
1549 | auto LHSSema = ASTCtx.getFixedPointSemantics(Ty: LHS->getType()); |
1550 | auto LHSSemaInt = LHSSema.toOpaqueInt(); |
1551 | auto RHSSema = ASTCtx.getFixedPointSemantics(Ty: RHS->getType()); |
1552 | auto RHSSemaInt = RHSSema.toOpaqueInt(); |
1553 | |
1554 | if (!this->visit(LHS)) |
1555 | return false; |
1556 | if (!LHS->getType()->isFixedPointType()) { |
1557 | if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()), |
1558 | LHSSemaInt, E)) |
1559 | return false; |
1560 | } |
1561 | |
1562 | if (!this->visit(RHS)) |
1563 | return false; |
1564 | if (!RHS->getType()->isFixedPointType()) { |
1565 | if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()), |
1566 | RHSSemaInt, E)) |
1567 | return false; |
1568 | } |
1569 | |
1570 | // Convert the result to the target semantics. |
1571 | auto ConvertResult = [&](bool R) -> bool { |
1572 | if (!R) |
1573 | return false; |
1574 | auto ResultSema = ASTCtx.getFixedPointSemantics(Ty: E->getType()).toOpaqueInt(); |
1575 | auto CommonSema = LHSSema.getCommonSemantics(Other: RHSSema).toOpaqueInt(); |
1576 | if (ResultSema != CommonSema) |
1577 | return this->emitCastFixedPoint(ResultSema, E); |
1578 | return true; |
1579 | }; |
1580 | |
1581 | auto MaybeCastToBool = [&](bool Result) { |
1582 | if (!Result) |
1583 | return false; |
1584 | PrimType T = classifyPrim(E); |
1585 | if (DiscardResult) |
1586 | return this->emitPop(T, E); |
1587 | if (T != PT_Bool) |
1588 | return this->emitCast(PT_Bool, T, E); |
1589 | return true; |
1590 | }; |
1591 | |
1592 | switch (E->getOpcode()) { |
1593 | case BO_EQ: |
1594 | return MaybeCastToBool(this->emitEQFixedPoint(E)); |
1595 | case BO_NE: |
1596 | return MaybeCastToBool(this->emitNEFixedPoint(E)); |
1597 | case BO_LT: |
1598 | return MaybeCastToBool(this->emitLTFixedPoint(E)); |
1599 | case BO_LE: |
1600 | return MaybeCastToBool(this->emitLEFixedPoint(E)); |
1601 | case BO_GT: |
1602 | return MaybeCastToBool(this->emitGTFixedPoint(E)); |
1603 | case BO_GE: |
1604 | return MaybeCastToBool(this->emitGEFixedPoint(E)); |
1605 | case BO_Add: |
1606 | return ConvertResult(this->emitAddFixedPoint(E)); |
1607 | case BO_Sub: |
1608 | return ConvertResult(this->emitSubFixedPoint(E)); |
1609 | case BO_Mul: |
1610 | return ConvertResult(this->emitMulFixedPoint(E)); |
1611 | case BO_Div: |
1612 | return ConvertResult(this->emitDivFixedPoint(E)); |
1613 | case BO_Shl: |
1614 | return ConvertResult(this->emitShiftFixedPoint(/*Left=*/true, E)); |
1615 | case BO_Shr: |
1616 | return ConvertResult(this->emitShiftFixedPoint(/*Left=*/false, E)); |
1617 | |
1618 | default: |
1619 | return this->emitInvalid(E); |
1620 | } |
1621 | |
1622 | llvm_unreachable("unhandled binop opcode" ); |
1623 | } |
1624 | |
1625 | template <class Emitter> |
1626 | bool Compiler<Emitter>::VisitFixedPointUnaryOperator(const UnaryOperator *E) { |
1627 | const Expr *SubExpr = E->getSubExpr(); |
1628 | assert(SubExpr->getType()->isFixedPointType()); |
1629 | |
1630 | switch (E->getOpcode()) { |
1631 | case UO_Plus: |
1632 | return this->delegate(SubExpr); |
1633 | case UO_Minus: |
1634 | if (!this->visit(SubExpr)) |
1635 | return false; |
1636 | return this->emitNegFixedPoint(E); |
1637 | default: |
1638 | return false; |
1639 | } |
1640 | |
1641 | llvm_unreachable("Unhandled unary opcode" ); |
1642 | } |
1643 | |
1644 | template <class Emitter> |
1645 | bool Compiler<Emitter>::VisitImplicitValueInitExpr( |
1646 | const ImplicitValueInitExpr *E) { |
1647 | QualType QT = E->getType(); |
1648 | |
1649 | if (std::optional<PrimType> T = classify(QT)) |
1650 | return this->visitZeroInitializer(*T, QT, E); |
1651 | |
1652 | if (QT->isRecordType()) { |
1653 | const RecordDecl *RD = QT->getAsRecordDecl(); |
1654 | assert(RD); |
1655 | if (RD->isInvalidDecl()) |
1656 | return false; |
1657 | |
1658 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD); |
1659 | CXXRD && CXXRD->getNumVBases() > 0) { |
1660 | // TODO: Diagnose. |
1661 | return false; |
1662 | } |
1663 | |
1664 | const Record *R = getRecord(QT); |
1665 | if (!R) |
1666 | return false; |
1667 | |
1668 | assert(Initializing); |
1669 | return this->visitZeroRecordInitializer(R, E); |
1670 | } |
1671 | |
1672 | if (QT->isIncompleteArrayType()) |
1673 | return true; |
1674 | |
1675 | if (QT->isArrayType()) |
1676 | return this->visitZeroArrayInitializer(QT, E); |
1677 | |
1678 | if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { |
1679 | assert(Initializing); |
1680 | QualType ElemQT = ComplexTy->getElementType(); |
1681 | PrimType ElemT = classifyPrim(ElemQT); |
1682 | for (unsigned I = 0; I < 2; ++I) { |
1683 | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
1684 | return false; |
1685 | if (!this->emitInitElem(ElemT, I, E)) |
1686 | return false; |
1687 | } |
1688 | return true; |
1689 | } |
1690 | |
1691 | if (const auto *VecT = E->getType()->getAs<VectorType>()) { |
1692 | unsigned NumVecElements = VecT->getNumElements(); |
1693 | QualType ElemQT = VecT->getElementType(); |
1694 | PrimType ElemT = classifyPrim(ElemQT); |
1695 | |
1696 | for (unsigned I = 0; I < NumVecElements; ++I) { |
1697 | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
1698 | return false; |
1699 | if (!this->emitInitElem(ElemT, I, E)) |
1700 | return false; |
1701 | } |
1702 | return true; |
1703 | } |
1704 | |
1705 | return false; |
1706 | } |
1707 | |
1708 | template <class Emitter> |
1709 | bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { |
1710 | const Expr *LHS = E->getLHS(); |
1711 | const Expr *RHS = E->getRHS(); |
1712 | const Expr *Index = E->getIdx(); |
1713 | const Expr *Base = E->getBase(); |
1714 | |
1715 | // C++17's rules require us to evaluate the LHS first, regardless of which |
1716 | // side is the base. |
1717 | bool Success = true; |
1718 | for (const Expr *SubExpr : {LHS, RHS}) { |
1719 | if (!this->visit(SubExpr)) { |
1720 | Success = false; |
1721 | continue; |
1722 | } |
1723 | |
1724 | // Expand the base if this is a subscript on a |
1725 | // pointer expression. |
1726 | if (SubExpr == Base && Base->getType()->isPointerType()) { |
1727 | if (!this->emitExpandPtr(E)) |
1728 | Success = false; |
1729 | } |
1730 | } |
1731 | |
1732 | if (!Success) |
1733 | return false; |
1734 | |
1735 | std::optional<PrimType> IndexT = classify(Index->getType()); |
1736 | // In error-recovery cases, the index expression has a dependent type. |
1737 | if (!IndexT) |
1738 | return this->emitError(E); |
1739 | // If the index is first, we need to change that. |
1740 | if (LHS == Index) { |
1741 | if (!this->emitFlip(PT_Ptr, *IndexT, E)) |
1742 | return false; |
1743 | } |
1744 | |
1745 | if (!this->emitArrayElemPtrPop(*IndexT, E)) |
1746 | return false; |
1747 | if (DiscardResult) |
1748 | return this->emitPopPtr(E); |
1749 | return true; |
1750 | } |
1751 | |
1752 | template <class Emitter> |
1753 | bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, |
1754 | const Expr *ArrayFiller, const Expr *E) { |
1755 | InitLinkScope<Emitter> ILS(this, InitLink::InitList()); |
1756 | |
1757 | QualType QT = E->getType(); |
1758 | if (const auto *AT = QT->getAs<AtomicType>()) |
1759 | QT = AT->getValueType(); |
1760 | |
1761 | if (QT->isVoidType()) { |
1762 | if (Inits.size() == 0) |
1763 | return true; |
1764 | return this->emitInvalid(E); |
1765 | } |
1766 | |
1767 | // Handle discarding first. |
1768 | if (DiscardResult) { |
1769 | for (const Expr *Init : Inits) { |
1770 | if (!this->discard(Init)) |
1771 | return false; |
1772 | } |
1773 | return true; |
1774 | } |
1775 | |
1776 | // Primitive values. |
1777 | if (std::optional<PrimType> T = classify(QT)) { |
1778 | assert(!DiscardResult); |
1779 | if (Inits.size() == 0) |
1780 | return this->visitZeroInitializer(*T, QT, E); |
1781 | assert(Inits.size() == 1); |
1782 | return this->delegate(Inits[0]); |
1783 | } |
1784 | |
1785 | if (QT->isRecordType()) { |
1786 | const Record *R = getRecord(QT); |
1787 | |
1788 | if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) |
1789 | return this->delegate(Inits[0]); |
1790 | |
1791 | auto initPrimitiveField = [=](const Record::Field *FieldToInit, |
1792 | const Expr *Init, PrimType T) -> bool { |
1793 | InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Val: Init)); |
1794 | InitLinkScope<Emitter> ILS(this, InitLink::Field(Offset: FieldToInit->Offset)); |
1795 | if (!this->visit(Init)) |
1796 | return false; |
1797 | |
1798 | if (FieldToInit->isBitField()) |
1799 | return this->emitInitBitField(T, FieldToInit, E); |
1800 | return this->emitInitField(T, FieldToInit->Offset, E); |
1801 | }; |
1802 | |
1803 | auto initCompositeField = [=](const Record::Field *FieldToInit, |
1804 | const Expr *Init) -> bool { |
1805 | InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Val: Init)); |
1806 | InitLinkScope<Emitter> ILS(this, InitLink::Field(Offset: FieldToInit->Offset)); |
1807 | |
1808 | // Non-primitive case. Get a pointer to the field-to-initialize |
1809 | // on the stack and recurse into visitInitializer(). |
1810 | if (!this->emitGetPtrField(FieldToInit->Offset, Init)) |
1811 | return false; |
1812 | if (!this->visitInitializer(Init)) |
1813 | return false; |
1814 | return this->emitPopPtr(E); |
1815 | }; |
1816 | |
1817 | if (R->isUnion()) { |
1818 | if (Inits.size() == 0) { |
1819 | if (!this->visitZeroRecordInitializer(R, E)) |
1820 | return false; |
1821 | } else { |
1822 | const Expr *Init = Inits[0]; |
1823 | const FieldDecl *FToInit = nullptr; |
1824 | if (const auto *ILE = dyn_cast<InitListExpr>(Val: E)) |
1825 | FToInit = ILE->getInitializedFieldInUnion(); |
1826 | else |
1827 | FToInit = cast<CXXParenListInitExpr>(Val: E)->getInitializedFieldInUnion(); |
1828 | |
1829 | const Record::Field *FieldToInit = R->getField(FD: FToInit); |
1830 | if (std::optional<PrimType> T = classify(Init)) { |
1831 | if (!initPrimitiveField(FieldToInit, Init, *T)) |
1832 | return false; |
1833 | } else { |
1834 | if (!initCompositeField(FieldToInit, Init)) |
1835 | return false; |
1836 | } |
1837 | } |
1838 | return this->emitFinishInit(E); |
1839 | } |
1840 | |
1841 | assert(!R->isUnion()); |
1842 | unsigned InitIndex = 0; |
1843 | for (const Expr *Init : Inits) { |
1844 | // Skip unnamed bitfields. |
1845 | while (InitIndex < R->getNumFields() && |
1846 | R->getField(I: InitIndex)->isUnnamedBitField()) |
1847 | ++InitIndex; |
1848 | |
1849 | if (std::optional<PrimType> T = classify(Init)) { |
1850 | const Record::Field *FieldToInit = R->getField(I: InitIndex); |
1851 | if (!initPrimitiveField(FieldToInit, Init, *T)) |
1852 | return false; |
1853 | ++InitIndex; |
1854 | } else { |
1855 | // Initializer for a direct base class. |
1856 | if (const Record::Base *B = R->getBase(T: Init->getType())) { |
1857 | if (!this->emitGetPtrBase(B->Offset, Init)) |
1858 | return false; |
1859 | |
1860 | if (!this->visitInitializer(Init)) |
1861 | return false; |
1862 | |
1863 | if (!this->emitFinishInitPop(E)) |
1864 | return false; |
1865 | // Base initializers don't increase InitIndex, since they don't count |
1866 | // into the Record's fields. |
1867 | } else { |
1868 | const Record::Field *FieldToInit = R->getField(I: InitIndex); |
1869 | if (!initCompositeField(FieldToInit, Init)) |
1870 | return false; |
1871 | ++InitIndex; |
1872 | } |
1873 | } |
1874 | } |
1875 | return this->emitFinishInit(E); |
1876 | } |
1877 | |
1878 | if (QT->isArrayType()) { |
1879 | if (Inits.size() == 1 && QT == Inits[0]->getType()) |
1880 | return this->delegate(Inits[0]); |
1881 | |
1882 | const ConstantArrayType *CAT = |
1883 | Ctx.getASTContext().getAsConstantArrayType(T: QT); |
1884 | uint64_t NumElems = CAT->getZExtSize(); |
1885 | |
1886 | if (!this->emitCheckArraySize(NumElems, E)) |
1887 | return false; |
1888 | |
1889 | std::optional<PrimType> InitT = classify(CAT->getElementType()); |
1890 | unsigned ElementIndex = 0; |
1891 | for (const Expr *Init : Inits) { |
1892 | if (const auto *EmbedS = |
1893 | dyn_cast<EmbedExpr>(Val: Init->IgnoreParenImpCasts())) { |
1894 | PrimType TargetT = classifyPrim(Init->getType()); |
1895 | |
1896 | auto Eval = [&](const Expr *Init, unsigned ElemIndex) { |
1897 | PrimType InitT = classifyPrim(Init->getType()); |
1898 | if (!this->visit(Init)) |
1899 | return false; |
1900 | if (InitT != TargetT) { |
1901 | if (!this->emitCast(InitT, TargetT, E)) |
1902 | return false; |
1903 | } |
1904 | return this->emitInitElem(TargetT, ElemIndex, Init); |
1905 | }; |
1906 | if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) |
1907 | return false; |
1908 | } else { |
1909 | if (!this->visitArrayElemInit(ElementIndex, Init, InitT)) |
1910 | return false; |
1911 | ++ElementIndex; |
1912 | } |
1913 | } |
1914 | |
1915 | // Expand the filler expression. |
1916 | // FIXME: This should go away. |
1917 | if (ArrayFiller) { |
1918 | for (; ElementIndex != NumElems; ++ElementIndex) { |
1919 | if (!this->visitArrayElemInit(ElementIndex, ArrayFiller, InitT)) |
1920 | return false; |
1921 | } |
1922 | } |
1923 | |
1924 | return this->emitFinishInit(E); |
1925 | } |
1926 | |
1927 | if (const auto *ComplexTy = QT->getAs<ComplexType>()) { |
1928 | unsigned NumInits = Inits.size(); |
1929 | |
1930 | if (NumInits == 1) |
1931 | return this->delegate(Inits[0]); |
1932 | |
1933 | QualType ElemQT = ComplexTy->getElementType(); |
1934 | PrimType ElemT = classifyPrim(ElemQT); |
1935 | if (NumInits == 0) { |
1936 | // Zero-initialize both elements. |
1937 | for (unsigned I = 0; I < 2; ++I) { |
1938 | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
1939 | return false; |
1940 | if (!this->emitInitElem(ElemT, I, E)) |
1941 | return false; |
1942 | } |
1943 | } else if (NumInits == 2) { |
1944 | unsigned InitIndex = 0; |
1945 | for (const Expr *Init : Inits) { |
1946 | if (!this->visit(Init)) |
1947 | return false; |
1948 | |
1949 | if (!this->emitInitElem(ElemT, InitIndex, E)) |
1950 | return false; |
1951 | ++InitIndex; |
1952 | } |
1953 | } |
1954 | return true; |
1955 | } |
1956 | |
1957 | if (const auto *VecT = QT->getAs<VectorType>()) { |
1958 | unsigned NumVecElements = VecT->getNumElements(); |
1959 | assert(NumVecElements >= Inits.size()); |
1960 | |
1961 | QualType ElemQT = VecT->getElementType(); |
1962 | PrimType ElemT = classifyPrim(ElemQT); |
1963 | |
1964 | // All initializer elements. |
1965 | unsigned InitIndex = 0; |
1966 | for (const Expr *Init : Inits) { |
1967 | if (!this->visit(Init)) |
1968 | return false; |
1969 | |
1970 | // If the initializer is of vector type itself, we have to deconstruct |
1971 | // that and initialize all the target fields from the initializer fields. |
1972 | if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { |
1973 | if (!this->emitCopyArray(ElemT, 0, InitIndex, |
1974 | InitVecT->getNumElements(), E)) |
1975 | return false; |
1976 | InitIndex += InitVecT->getNumElements(); |
1977 | } else { |
1978 | if (!this->emitInitElem(ElemT, InitIndex, E)) |
1979 | return false; |
1980 | ++InitIndex; |
1981 | } |
1982 | } |
1983 | |
1984 | assert(InitIndex <= NumVecElements); |
1985 | |
1986 | // Fill the rest with zeroes. |
1987 | for (; InitIndex != NumVecElements; ++InitIndex) { |
1988 | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
1989 | return false; |
1990 | if (!this->emitInitElem(ElemT, InitIndex, E)) |
1991 | return false; |
1992 | } |
1993 | return true; |
1994 | } |
1995 | |
1996 | return false; |
1997 | } |
1998 | |
1999 | /// Pointer to the array(not the element!) must be on the stack when calling |
2000 | /// this. |
2001 | template <class Emitter> |
2002 | bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, const Expr *Init, |
2003 | std::optional<PrimType> InitT) { |
2004 | if (InitT) { |
2005 | // Visit the primitive element like normal. |
2006 | if (!this->visit(Init)) |
2007 | return false; |
2008 | return this->emitInitElem(*InitT, ElemIndex, Init); |
2009 | } |
2010 | |
2011 | InitLinkScope<Emitter> ILS(this, InitLink::Elem(Index: ElemIndex)); |
2012 | // Advance the pointer currently on the stack to the given |
2013 | // dimension. |
2014 | if (!this->emitConstUint32(ElemIndex, Init)) |
2015 | return false; |
2016 | if (!this->emitArrayElemPtrUint32(Init)) |
2017 | return false; |
2018 | if (!this->visitInitializer(Init)) |
2019 | return false; |
2020 | return this->emitFinishInitPop(Init); |
2021 | } |
2022 | |
2023 | template <class Emitter> |
2024 | bool Compiler<Emitter>::visitCallArgs(ArrayRef<const Expr *> Args, |
2025 | const FunctionDecl *FuncDecl) { |
2026 | assert(VarScope->getKind() == ScopeKind::Call); |
2027 | llvm::BitVector NonNullArgs = collectNonNullArgs(F: FuncDecl, Args); |
2028 | |
2029 | unsigned ArgIndex = 0; |
2030 | for (const Expr *Arg : Args) { |
2031 | if (std::optional<PrimType> T = classify(Arg)) { |
2032 | if (!this->visit(Arg)) |
2033 | return false; |
2034 | } else { |
2035 | |
2036 | std::optional<unsigned> LocalIndex = allocateLocal( |
2037 | Decl: Arg, Ty: Arg->getType(), /*ExtendingDecl=*/nullptr, ScopeKind::Call); |
2038 | if (!LocalIndex) |
2039 | return false; |
2040 | |
2041 | if (!this->emitGetPtrLocal(*LocalIndex, Arg)) |
2042 | return false; |
2043 | InitLinkScope<Emitter> ILS(this, InitLink::Temp(Offset: *LocalIndex)); |
2044 | if (!this->visitInitializer(Arg)) |
2045 | return false; |
2046 | } |
2047 | |
2048 | if (FuncDecl && NonNullArgs[ArgIndex]) { |
2049 | PrimType ArgT = classify(Arg).value_or(PT_Ptr); |
2050 | if (ArgT == PT_Ptr) { |
2051 | if (!this->emitCheckNonNullArg(ArgT, Arg)) |
2052 | return false; |
2053 | } |
2054 | } |
2055 | |
2056 | ++ArgIndex; |
2057 | } |
2058 | |
2059 | return true; |
2060 | } |
2061 | |
2062 | template <class Emitter> |
2063 | bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { |
2064 | return this->visitInitList(E->inits(), E->getArrayFiller(), E); |
2065 | } |
2066 | |
2067 | template <class Emitter> |
2068 | bool Compiler<Emitter>::VisitCXXParenListInitExpr( |
2069 | const CXXParenListInitExpr *E) { |
2070 | return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); |
2071 | } |
2072 | |
2073 | template <class Emitter> |
2074 | bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( |
2075 | const SubstNonTypeTemplateParmExpr *E) { |
2076 | return this->delegate(E->getReplacement()); |
2077 | } |
2078 | |
2079 | template <class Emitter> |
2080 | bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { |
2081 | std::optional<PrimType> T = classify(E->getType()); |
2082 | if (T && E->hasAPValueResult()) { |
2083 | // Try to emit the APValue directly, without visiting the subexpr. |
2084 | // This will only fail if we can't emit the APValue, so won't emit any |
2085 | // diagnostics or any double values. |
2086 | if (DiscardResult) |
2087 | return true; |
2088 | |
2089 | if (this->visitAPValue(E->getAPValueResult(), *T, E)) |
2090 | return true; |
2091 | } |
2092 | return this->delegate(E->getSubExpr()); |
2093 | } |
2094 | |
2095 | template <class Emitter> |
2096 | bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { |
2097 | auto It = E->begin(); |
2098 | return this->visit(*It); |
2099 | } |
2100 | |
2101 | static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, |
2102 | UnaryExprOrTypeTrait Kind) { |
2103 | bool AlignOfReturnsPreferred = |
2104 | ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; |
2105 | |
2106 | // C++ [expr.alignof]p3: |
2107 | // When alignof is applied to a reference type, the result is the |
2108 | // alignment of the referenced type. |
2109 | if (const auto *Ref = T->getAs<ReferenceType>()) |
2110 | T = Ref->getPointeeType(); |
2111 | |
2112 | if (T.getQualifiers().hasUnaligned()) |
2113 | return CharUnits::One(); |
2114 | |
2115 | // __alignof is defined to return the preferred alignment. |
2116 | // Before 8, clang returned the preferred alignment for alignof and |
2117 | // _Alignof as well. |
2118 | if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) |
2119 | return ASTCtx.toCharUnitsFromBits(BitSize: ASTCtx.getPreferredTypeAlign(T)); |
2120 | |
2121 | return ASTCtx.getTypeAlignInChars(T); |
2122 | } |
2123 | |
2124 | template <class Emitter> |
2125 | bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( |
2126 | const UnaryExprOrTypeTraitExpr *E) { |
2127 | UnaryExprOrTypeTrait Kind = E->getKind(); |
2128 | const ASTContext &ASTCtx = Ctx.getASTContext(); |
2129 | |
2130 | if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { |
2131 | QualType ArgType = E->getTypeOfArgument(); |
2132 | |
2133 | // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, |
2134 | // the result is the size of the referenced type." |
2135 | if (const auto *Ref = ArgType->getAs<ReferenceType>()) |
2136 | ArgType = Ref->getPointeeType(); |
2137 | |
2138 | CharUnits Size; |
2139 | if (ArgType->isVoidType() || ArgType->isFunctionType()) |
2140 | Size = CharUnits::One(); |
2141 | else { |
2142 | if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) |
2143 | return this->emitInvalid(E); |
2144 | |
2145 | if (Kind == UETT_SizeOf) |
2146 | Size = ASTCtx.getTypeSizeInChars(T: ArgType); |
2147 | else |
2148 | Size = ASTCtx.getTypeInfoDataSizeInChars(T: ArgType).Width; |
2149 | } |
2150 | |
2151 | if (DiscardResult) |
2152 | return true; |
2153 | |
2154 | return this->emitConst(Size.getQuantity(), E); |
2155 | } |
2156 | |
2157 | if (Kind == UETT_CountOf) { |
2158 | QualType Ty = E->getTypeOfArgument(); |
2159 | assert(Ty->isArrayType()); |
2160 | |
2161 | // We don't need to worry about array element qualifiers, so getting the |
2162 | // unsafe array type is fine. |
2163 | if (const auto *CAT = |
2164 | dyn_cast<ConstantArrayType>(Ty->getAsArrayTypeUnsafe())) { |
2165 | if (DiscardResult) |
2166 | return true; |
2167 | return this->emitConst(CAT->getSize(), E); |
2168 | } |
2169 | |
2170 | assert(!Ty->isConstantSizeType()); |
2171 | |
2172 | // If it's a variable-length array type, we need to check whether it is a |
2173 | // multidimensional array. If so, we need to check the size expression of |
2174 | // the VLA to see if it's a constant size. If so, we can return that value. |
2175 | const auto *VAT = ASTCtx.getAsVariableArrayType(T: Ty); |
2176 | assert(VAT); |
2177 | if (VAT->getElementType()->isArrayType()) { |
2178 | std::optional<APSInt> Res = |
2179 | VAT->getSizeExpr()->getIntegerConstantExpr(Ctx: ASTCtx); |
2180 | if (Res) { |
2181 | if (DiscardResult) |
2182 | return true; |
2183 | return this->emitConst(*Res, E); |
2184 | } |
2185 | } |
2186 | } |
2187 | |
2188 | if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { |
2189 | CharUnits Size; |
2190 | |
2191 | if (E->isArgumentType()) { |
2192 | QualType ArgType = E->getTypeOfArgument(); |
2193 | |
2194 | Size = AlignOfType(T: ArgType, ASTCtx, Kind); |
2195 | } else { |
2196 | // Argument is an expression, not a type. |
2197 | const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); |
2198 | |
2199 | // The kinds of expressions that we have special-case logic here for |
2200 | // should be kept up to date with the special checks for those |
2201 | // expressions in Sema. |
2202 | |
2203 | // alignof decl is always accepted, even if it doesn't make sense: we |
2204 | // default to 1 in those cases. |
2205 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: Arg)) |
2206 | Size = ASTCtx.getDeclAlign(DRE->getDecl(), |
2207 | /*RefAsPointee*/ true); |
2208 | else if (const auto *ME = dyn_cast<MemberExpr>(Val: Arg)) |
2209 | Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), |
2210 | /*RefAsPointee*/ true); |
2211 | else |
2212 | Size = AlignOfType(T: Arg->getType(), ASTCtx, Kind); |
2213 | } |
2214 | |
2215 | if (DiscardResult) |
2216 | return true; |
2217 | |
2218 | return this->emitConst(Size.getQuantity(), E); |
2219 | } |
2220 | |
2221 | if (Kind == UETT_VectorElements) { |
2222 | if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) |
2223 | return this->emitConst(VT->getNumElements(), E); |
2224 | assert(E->getTypeOfArgument()->isSizelessVectorType()); |
2225 | return this->emitSizelessVectorElementSize(E); |
2226 | } |
2227 | |
2228 | if (Kind == UETT_VecStep) { |
2229 | if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { |
2230 | unsigned N = VT->getNumElements(); |
2231 | |
2232 | // The vec_step built-in functions that take a 3-component |
2233 | // vector return 4. (OpenCL 1.1 spec 6.11.12) |
2234 | if (N == 3) |
2235 | N = 4; |
2236 | |
2237 | return this->emitConst(N, E); |
2238 | } |
2239 | return this->emitConst(1, E); |
2240 | } |
2241 | |
2242 | if (Kind == UETT_OpenMPRequiredSimdAlign) { |
2243 | assert(E->isArgumentType()); |
2244 | unsigned Bits = ASTCtx.getOpenMPDefaultSimdAlign(T: E->getArgumentType()); |
2245 | |
2246 | return this->emitConst(ASTCtx.toCharUnitsFromBits(BitSize: Bits).getQuantity(), E); |
2247 | } |
2248 | |
2249 | if (Kind == UETT_PtrAuthTypeDiscriminator) { |
2250 | if (E->getArgumentType()->isDependentType()) |
2251 | return this->emitInvalid(E); |
2252 | |
2253 | return this->emitConst( |
2254 | const_cast<ASTContext &>(ASTCtx).getPointerAuthTypeDiscriminator( |
2255 | T: E->getArgumentType()), |
2256 | E); |
2257 | } |
2258 | |
2259 | return false; |
2260 | } |
2261 | |
2262 | template <class Emitter> |
2263 | bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { |
2264 | // 'Base.Member' |
2265 | const Expr *Base = E->getBase(); |
2266 | const ValueDecl *Member = E->getMemberDecl(); |
2267 | |
2268 | if (DiscardResult) |
2269 | return this->discard(Base); |
2270 | |
2271 | // MemberExprs are almost always lvalues, in which case we don't need to |
2272 | // do the load. But sometimes they aren't. |
2273 | const auto maybeLoadValue = [&]() -> bool { |
2274 | if (E->isGLValue()) |
2275 | return true; |
2276 | if (std::optional<PrimType> T = classify(E)) |
2277 | return this->emitLoadPop(*T, E); |
2278 | return false; |
2279 | }; |
2280 | |
2281 | if (const auto *VD = dyn_cast<VarDecl>(Val: Member)) { |
2282 | // I am almost confident in saying that a var decl must be static |
2283 | // and therefore registered as a global variable. But this will probably |
2284 | // turn out to be wrong some time in the future, as always. |
2285 | if (auto GlobalIndex = P.getGlobal(VD)) |
2286 | return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); |
2287 | return false; |
2288 | } |
2289 | |
2290 | if (!isa<FieldDecl>(Val: Member)) { |
2291 | if (!this->discard(Base) && !this->emitSideEffect(E)) |
2292 | return false; |
2293 | |
2294 | return this->visitDeclRef(Member, E); |
2295 | } |
2296 | |
2297 | if (Initializing) { |
2298 | if (!this->delegate(Base)) |
2299 | return false; |
2300 | } else { |
2301 | if (!this->visit(Base)) |
2302 | return false; |
2303 | } |
2304 | |
2305 | // Base above gives us a pointer on the stack. |
2306 | const auto *FD = cast<FieldDecl>(Val: Member); |
2307 | const RecordDecl *RD = FD->getParent(); |
2308 | const Record *R = getRecord(RD); |
2309 | if (!R) |
2310 | return false; |
2311 | const Record::Field *F = R->getField(FD); |
2312 | // Leave a pointer to the field on the stack. |
2313 | if (F->Decl->getType()->isReferenceType()) |
2314 | return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); |
2315 | return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); |
2316 | } |
2317 | |
2318 | template <class Emitter> |
2319 | bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { |
2320 | // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated |
2321 | // stand-alone, e.g. via EvaluateAsInt(). |
2322 | if (!ArrayIndex) |
2323 | return false; |
2324 | return this->emitConst(*ArrayIndex, E); |
2325 | } |
2326 | |
2327 | template <class Emitter> |
2328 | bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { |
2329 | assert(Initializing); |
2330 | assert(!DiscardResult); |
2331 | |
2332 | // We visit the common opaque expression here once so we have its value |
2333 | // cached. |
2334 | if (!this->discard(E->getCommonExpr())) |
2335 | return false; |
2336 | |
2337 | // TODO: This compiles to quite a lot of bytecode if the array is larger. |
2338 | // Investigate compiling this to a loop. |
2339 | const Expr *SubExpr = E->getSubExpr(); |
2340 | size_t Size = E->getArraySize().getZExtValue(); |
2341 | std::optional<PrimType> SubExprT = classify(SubExpr); |
2342 | |
2343 | // So, every iteration, we execute an assignment here |
2344 | // where the LHS is on the stack (the target array) |
2345 | // and the RHS is our SubExpr. |
2346 | for (size_t I = 0; I != Size; ++I) { |
2347 | ArrayIndexScope<Emitter> IndexScope(this, I); |
2348 | BlockScope<Emitter> BS(this); |
2349 | |
2350 | if (!this->visitArrayElemInit(I, SubExpr, SubExprT)) |
2351 | return false; |
2352 | if (!BS.destroyLocals()) |
2353 | return false; |
2354 | } |
2355 | return true; |
2356 | } |
2357 | |
2358 | template <class Emitter> |
2359 | bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { |
2360 | const Expr *SourceExpr = E->getSourceExpr(); |
2361 | if (!SourceExpr) |
2362 | return false; |
2363 | |
2364 | if (Initializing) |
2365 | return this->visitInitializer(SourceExpr); |
2366 | |
2367 | PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); |
2368 | if (auto It = OpaqueExprs.find(Val: E); It != OpaqueExprs.end()) |
2369 | return this->emitGetLocal(SubExprT, It->second, E); |
2370 | |
2371 | if (!this->visit(SourceExpr)) |
2372 | return false; |
2373 | |
2374 | // At this point we either have the evaluated source expression or a pointer |
2375 | // to an object on the stack. We want to create a local variable that stores |
2376 | // this value. |
2377 | unsigned LocalIndex = allocateLocalPrimitive(Decl: E, Ty: SubExprT, /*IsConst=*/true); |
2378 | if (!this->emitSetLocal(SubExprT, LocalIndex, E)) |
2379 | return false; |
2380 | |
2381 | // Here the local variable is created but the value is removed from the stack, |
2382 | // so we put it back if the caller needs it. |
2383 | if (!DiscardResult) { |
2384 | if (!this->emitGetLocal(SubExprT, LocalIndex, E)) |
2385 | return false; |
2386 | } |
2387 | |
2388 | // This is cleaned up when the local variable is destroyed. |
2389 | OpaqueExprs.insert(KV: {E, LocalIndex}); |
2390 | |
2391 | return true; |
2392 | } |
2393 | |
2394 | template <class Emitter> |
2395 | bool Compiler<Emitter>::VisitAbstractConditionalOperator( |
2396 | const AbstractConditionalOperator *E) { |
2397 | const Expr *Condition = E->getCond(); |
2398 | const Expr *TrueExpr = E->getTrueExpr(); |
2399 | const Expr *FalseExpr = E->getFalseExpr(); |
2400 | |
2401 | auto visitChildExpr = [&](const Expr *E) -> bool { |
2402 | LocalScope<Emitter> S(this); |
2403 | if (!this->delegate(E)) |
2404 | return false; |
2405 | return S.destroyLocals(); |
2406 | }; |
2407 | |
2408 | if (std::optional<bool> BoolValue = getBoolValue(E: Condition)) { |
2409 | if (BoolValue) |
2410 | return visitChildExpr(TrueExpr); |
2411 | return visitChildExpr(FalseExpr); |
2412 | } |
2413 | |
2414 | bool IsBcpCall = false; |
2415 | if (const auto *CE = dyn_cast<CallExpr>(Val: Condition->IgnoreParenCasts()); |
2416 | CE && CE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) { |
2417 | IsBcpCall = true; |
2418 | } |
2419 | |
2420 | LabelTy LabelEnd = this->getLabel(); // Label after the operator. |
2421 | LabelTy LabelFalse = this->getLabel(); // Label for the false expr. |
2422 | |
2423 | if (IsBcpCall) { |
2424 | if (!this->emitStartSpeculation(E)) |
2425 | return false; |
2426 | } |
2427 | |
2428 | if (!this->visitBool(Condition)) { |
2429 | // If the condition failed and we're checking for undefined behavior |
2430 | // (which only happens with EvalEmitter) check the TrueExpr and FalseExpr |
2431 | // as well. |
2432 | if (this->checkingForUndefinedBehavior()) { |
2433 | if (!this->discard(TrueExpr)) |
2434 | return false; |
2435 | if (!this->discard(FalseExpr)) |
2436 | return false; |
2437 | } |
2438 | return false; |
2439 | } |
2440 | |
2441 | if (!this->jumpFalse(LabelFalse)) |
2442 | return false; |
2443 | if (!visitChildExpr(TrueExpr)) |
2444 | return false; |
2445 | if (!this->jump(LabelEnd)) |
2446 | return false; |
2447 | this->emitLabel(LabelFalse); |
2448 | if (!visitChildExpr(FalseExpr)) |
2449 | return false; |
2450 | this->fallthrough(LabelEnd); |
2451 | this->emitLabel(LabelEnd); |
2452 | |
2453 | if (IsBcpCall) |
2454 | return this->emitEndSpeculation(E); |
2455 | return true; |
2456 | } |
2457 | |
2458 | template <class Emitter> |
2459 | bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { |
2460 | if (DiscardResult) |
2461 | return true; |
2462 | |
2463 | if (!Initializing) { |
2464 | unsigned StringIndex = P.createGlobalString(S: E); |
2465 | return this->emitGetPtrGlobal(StringIndex, E); |
2466 | } |
2467 | |
2468 | // We are initializing an array on the stack. |
2469 | const ConstantArrayType *CAT = |
2470 | Ctx.getASTContext().getAsConstantArrayType(T: E->getType()); |
2471 | assert(CAT && "a string literal that's not a constant array?" ); |
2472 | |
2473 | // If the initializer string is too long, a diagnostic has already been |
2474 | // emitted. Read only the array length from the string literal. |
2475 | unsigned ArraySize = CAT->getZExtSize(); |
2476 | unsigned N = std::min(a: ArraySize, b: E->getLength()); |
2477 | unsigned CharWidth = E->getCharByteWidth(); |
2478 | |
2479 | for (unsigned I = 0; I != N; ++I) { |
2480 | uint32_t CodeUnit = E->getCodeUnit(i: I); |
2481 | |
2482 | if (CharWidth == 1) { |
2483 | this->emitConstSint8(CodeUnit, E); |
2484 | this->emitInitElemSint8(I, E); |
2485 | } else if (CharWidth == 2) { |
2486 | this->emitConstUint16(CodeUnit, E); |
2487 | this->emitInitElemUint16(I, E); |
2488 | } else if (CharWidth == 4) { |
2489 | this->emitConstUint32(CodeUnit, E); |
2490 | this->emitInitElemUint32(I, E); |
2491 | } else { |
2492 | llvm_unreachable("unsupported character width" ); |
2493 | } |
2494 | } |
2495 | |
2496 | // Fill up the rest of the char array with NUL bytes. |
2497 | for (unsigned I = N; I != ArraySize; ++I) { |
2498 | if (CharWidth == 1) { |
2499 | this->emitConstSint8(0, E); |
2500 | this->emitInitElemSint8(I, E); |
2501 | } else if (CharWidth == 2) { |
2502 | this->emitConstUint16(0, E); |
2503 | this->emitInitElemUint16(I, E); |
2504 | } else if (CharWidth == 4) { |
2505 | this->emitConstUint32(0, E); |
2506 | this->emitInitElemUint32(I, E); |
2507 | } else { |
2508 | llvm_unreachable("unsupported character width" ); |
2509 | } |
2510 | } |
2511 | |
2512 | return true; |
2513 | } |
2514 | |
2515 | template <class Emitter> |
2516 | bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { |
2517 | if (DiscardResult) |
2518 | return true; |
2519 | return this->emitDummyPtr(E, E); |
2520 | } |
2521 | |
2522 | template <class Emitter> |
2523 | bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { |
2524 | auto &A = Ctx.getASTContext(); |
2525 | std::string Str; |
2526 | A.getObjCEncodingForType(T: E->getEncodedType(), S&: Str); |
2527 | StringLiteral *SL = |
2528 | StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, |
2529 | /*Pascal=*/false, E->getType(), E->getAtLoc()); |
2530 | return this->delegate(SL); |
2531 | } |
2532 | |
2533 | template <class Emitter> |
2534 | bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( |
2535 | const SYCLUniqueStableNameExpr *E) { |
2536 | if (DiscardResult) |
2537 | return true; |
2538 | |
2539 | assert(!Initializing); |
2540 | |
2541 | auto &A = Ctx.getASTContext(); |
2542 | std::string ResultStr = E->ComputeName(Context&: A); |
2543 | |
2544 | QualType CharTy = A.CharTy.withConst(); |
2545 | APInt Size(A.getTypeSize(T: A.getSizeType()), ResultStr.size() + 1); |
2546 | QualType ArrayTy = A.getConstantArrayType(EltTy: CharTy, ArySize: Size, SizeExpr: nullptr, |
2547 | ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
2548 | |
2549 | StringLiteral *SL = |
2550 | StringLiteral::Create(Ctx: A, Str: ResultStr, Kind: StringLiteralKind::Ordinary, |
2551 | /*Pascal=*/false, Ty: ArrayTy, Loc: E->getLocation()); |
2552 | |
2553 | unsigned StringIndex = P.createGlobalString(S: SL); |
2554 | return this->emitGetPtrGlobal(StringIndex, E); |
2555 | } |
2556 | |
2557 | template <class Emitter> |
2558 | bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { |
2559 | if (DiscardResult) |
2560 | return true; |
2561 | return this->emitConst(E->getValue(), E); |
2562 | } |
2563 | |
2564 | template <class Emitter> |
2565 | bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( |
2566 | const CompoundAssignOperator *E) { |
2567 | |
2568 | const Expr *LHS = E->getLHS(); |
2569 | const Expr *RHS = E->getRHS(); |
2570 | QualType LHSType = LHS->getType(); |
2571 | QualType LHSComputationType = E->getComputationLHSType(); |
2572 | QualType ResultType = E->getComputationResultType(); |
2573 | std::optional<PrimType> LT = classify(LHSComputationType); |
2574 | std::optional<PrimType> RT = classify(ResultType); |
2575 | |
2576 | assert(ResultType->isFloatingType()); |
2577 | |
2578 | if (!LT || !RT) |
2579 | return false; |
2580 | |
2581 | PrimType LHST = classifyPrim(LHSType); |
2582 | |
2583 | // C++17 onwards require that we evaluate the RHS first. |
2584 | // Compute RHS and save it in a temporary variable so we can |
2585 | // load it again later. |
2586 | if (!visit(E: RHS)) |
2587 | return false; |
2588 | |
2589 | unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); |
2590 | if (!this->emitSetLocal(*RT, TempOffset, E)) |
2591 | return false; |
2592 | |
2593 | // First, visit LHS. |
2594 | if (!visit(E: LHS)) |
2595 | return false; |
2596 | if (!this->emitLoad(LHST, E)) |
2597 | return false; |
2598 | |
2599 | // If necessary, convert LHS to its computation type. |
2600 | if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), |
2601 | LHSComputationType, E)) |
2602 | return false; |
2603 | |
2604 | // Now load RHS. |
2605 | if (!this->emitGetLocal(*RT, TempOffset, E)) |
2606 | return false; |
2607 | |
2608 | switch (E->getOpcode()) { |
2609 | case BO_AddAssign: |
2610 | if (!this->emitAddf(getFPOptions(E), E)) |
2611 | return false; |
2612 | break; |
2613 | case BO_SubAssign: |
2614 | if (!this->emitSubf(getFPOptions(E), E)) |
2615 | return false; |
2616 | break; |
2617 | case BO_MulAssign: |
2618 | if (!this->emitMulf(getFPOptions(E), E)) |
2619 | return false; |
2620 | break; |
2621 | case BO_DivAssign: |
2622 | if (!this->emitDivf(getFPOptions(E), E)) |
2623 | return false; |
2624 | break; |
2625 | default: |
2626 | return false; |
2627 | } |
2628 | |
2629 | if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) |
2630 | return false; |
2631 | |
2632 | if (DiscardResult) |
2633 | return this->emitStorePop(LHST, E); |
2634 | return this->emitStore(LHST, E); |
2635 | } |
2636 | |
2637 | template <class Emitter> |
2638 | bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( |
2639 | const CompoundAssignOperator *E) { |
2640 | BinaryOperatorKind Op = E->getOpcode(); |
2641 | const Expr *LHS = E->getLHS(); |
2642 | const Expr *RHS = E->getRHS(); |
2643 | std::optional<PrimType> LT = classify(LHS->getType()); |
2644 | std::optional<PrimType> RT = classify(RHS->getType()); |
2645 | |
2646 | if (Op != BO_AddAssign && Op != BO_SubAssign) |
2647 | return false; |
2648 | |
2649 | if (!LT || !RT) |
2650 | return false; |
2651 | |
2652 | if (!visit(E: LHS)) |
2653 | return false; |
2654 | |
2655 | if (!this->emitLoad(*LT, LHS)) |
2656 | return false; |
2657 | |
2658 | if (!visit(E: RHS)) |
2659 | return false; |
2660 | |
2661 | if (Op == BO_AddAssign) { |
2662 | if (!this->emitAddOffset(*RT, E)) |
2663 | return false; |
2664 | } else { |
2665 | if (!this->emitSubOffset(*RT, E)) |
2666 | return false; |
2667 | } |
2668 | |
2669 | if (DiscardResult) |
2670 | return this->emitStorePopPtr(E); |
2671 | return this->emitStorePtr(E); |
2672 | } |
2673 | |
2674 | template <class Emitter> |
2675 | bool Compiler<Emitter>::VisitCompoundAssignOperator( |
2676 | const CompoundAssignOperator *E) { |
2677 | if (E->getType()->isVectorType()) |
2678 | return VisitVectorBinOp(E); |
2679 | |
2680 | const Expr *LHS = E->getLHS(); |
2681 | const Expr *RHS = E->getRHS(); |
2682 | std::optional<PrimType> LHSComputationT = |
2683 | classify(E->getComputationLHSType()); |
2684 | std::optional<PrimType> LT = classify(LHS->getType()); |
2685 | std::optional<PrimType> RT = classify(RHS->getType()); |
2686 | std::optional<PrimType> ResultT = classify(E->getType()); |
2687 | |
2688 | if (!Ctx.getLangOpts().CPlusPlus14) |
2689 | return this->visit(RHS) && this->visit(LHS) && this->emitError(E); |
2690 | |
2691 | if (!LT || !RT || !ResultT || !LHSComputationT) |
2692 | return false; |
2693 | |
2694 | // Handle floating point operations separately here, since they |
2695 | // require special care. |
2696 | |
2697 | if (ResultT == PT_Float || RT == PT_Float) |
2698 | return VisitFloatCompoundAssignOperator(E); |
2699 | |
2700 | if (E->getType()->isPointerType()) |
2701 | return VisitPointerCompoundAssignOperator(E); |
2702 | |
2703 | assert(!E->getType()->isPointerType() && "Handled above" ); |
2704 | assert(!E->getType()->isFloatingType() && "Handled above" ); |
2705 | |
2706 | // C++17 onwards require that we evaluate the RHS first. |
2707 | // Compute RHS and save it in a temporary variable so we can |
2708 | // load it again later. |
2709 | // FIXME: Compound assignments are unsequenced in C, so we might |
2710 | // have to figure out how to reject them. |
2711 | if (!visit(E: RHS)) |
2712 | return false; |
2713 | |
2714 | unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); |
2715 | |
2716 | if (!this->emitSetLocal(*RT, TempOffset, E)) |
2717 | return false; |
2718 | |
2719 | // Get LHS pointer, load its value and cast it to the |
2720 | // computation type if necessary. |
2721 | if (!visit(E: LHS)) |
2722 | return false; |
2723 | if (!this->emitLoad(*LT, E)) |
2724 | return false; |
2725 | if (LT != LHSComputationT) { |
2726 | if (!this->emitCast(*LT, *LHSComputationT, E)) |
2727 | return false; |
2728 | } |
2729 | |
2730 | // Get the RHS value on the stack. |
2731 | if (!this->emitGetLocal(*RT, TempOffset, E)) |
2732 | return false; |
2733 | |
2734 | // Perform operation. |
2735 | switch (E->getOpcode()) { |
2736 | case BO_AddAssign: |
2737 | if (!this->emitAdd(*LHSComputationT, E)) |
2738 | return false; |
2739 | break; |
2740 | case BO_SubAssign: |
2741 | if (!this->emitSub(*LHSComputationT, E)) |
2742 | return false; |
2743 | break; |
2744 | case BO_MulAssign: |
2745 | if (!this->emitMul(*LHSComputationT, E)) |
2746 | return false; |
2747 | break; |
2748 | case BO_DivAssign: |
2749 | if (!this->emitDiv(*LHSComputationT, E)) |
2750 | return false; |
2751 | break; |
2752 | case BO_RemAssign: |
2753 | if (!this->emitRem(*LHSComputationT, E)) |
2754 | return false; |
2755 | break; |
2756 | case BO_ShlAssign: |
2757 | if (!this->emitShl(*LHSComputationT, *RT, E)) |
2758 | return false; |
2759 | break; |
2760 | case BO_ShrAssign: |
2761 | if (!this->emitShr(*LHSComputationT, *RT, E)) |
2762 | return false; |
2763 | break; |
2764 | case BO_AndAssign: |
2765 | if (!this->emitBitAnd(*LHSComputationT, E)) |
2766 | return false; |
2767 | break; |
2768 | case BO_XorAssign: |
2769 | if (!this->emitBitXor(*LHSComputationT, E)) |
2770 | return false; |
2771 | break; |
2772 | case BO_OrAssign: |
2773 | if (!this->emitBitOr(*LHSComputationT, E)) |
2774 | return false; |
2775 | break; |
2776 | default: |
2777 | llvm_unreachable("Unimplemented compound assign operator" ); |
2778 | } |
2779 | |
2780 | // And now cast from LHSComputationT to ResultT. |
2781 | if (ResultT != LHSComputationT) { |
2782 | if (!this->emitCast(*LHSComputationT, *ResultT, E)) |
2783 | return false; |
2784 | } |
2785 | |
2786 | // And store the result in LHS. |
2787 | if (DiscardResult) { |
2788 | if (LHS->refersToBitField()) |
2789 | return this->emitStoreBitFieldPop(*ResultT, E); |
2790 | return this->emitStorePop(*ResultT, E); |
2791 | } |
2792 | if (LHS->refersToBitField()) |
2793 | return this->emitStoreBitField(*ResultT, E); |
2794 | return this->emitStore(*ResultT, E); |
2795 | } |
2796 | |
2797 | template <class Emitter> |
2798 | bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { |
2799 | LocalScope<Emitter> ES(this); |
2800 | const Expr *SubExpr = E->getSubExpr(); |
2801 | |
2802 | return this->delegate(SubExpr) && ES.destroyLocals(E); |
2803 | } |
2804 | |
2805 | template <class Emitter> |
2806 | bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( |
2807 | const MaterializeTemporaryExpr *E) { |
2808 | const Expr *SubExpr = E->getSubExpr(); |
2809 | |
2810 | if (Initializing) { |
2811 | // We already have a value, just initialize that. |
2812 | return this->delegate(SubExpr); |
2813 | } |
2814 | // If we don't end up using the materialized temporary anyway, don't |
2815 | // bother creating it. |
2816 | if (DiscardResult) |
2817 | return this->discard(SubExpr); |
2818 | |
2819 | // When we're initializing a global variable *or* the storage duration of |
2820 | // the temporary is explicitly static, create a global variable. |
2821 | std::optional<PrimType> SubExprT = classify(SubExpr); |
2822 | bool IsStatic = E->getStorageDuration() == SD_Static; |
2823 | if (IsStatic) { |
2824 | std::optional<unsigned> GlobalIndex = P.createGlobal(E); |
2825 | if (!GlobalIndex) |
2826 | return false; |
2827 | |
2828 | const LifetimeExtendedTemporaryDecl *TempDecl = |
2829 | E->getLifetimeExtendedTemporaryDecl(); |
2830 | if (IsStatic) |
2831 | assert(TempDecl); |
2832 | |
2833 | if (SubExprT) { |
2834 | if (!this->visit(SubExpr)) |
2835 | return false; |
2836 | if (IsStatic) { |
2837 | if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) |
2838 | return false; |
2839 | } else { |
2840 | if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) |
2841 | return false; |
2842 | } |
2843 | return this->emitGetPtrGlobal(*GlobalIndex, E); |
2844 | } |
2845 | |
2846 | if (!this->checkLiteralType(SubExpr)) |
2847 | return false; |
2848 | // Non-primitive values. |
2849 | if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
2850 | return false; |
2851 | if (!this->visitInitializer(SubExpr)) |
2852 | return false; |
2853 | if (IsStatic) |
2854 | return this->emitInitGlobalTempComp(TempDecl, E); |
2855 | return true; |
2856 | } |
2857 | |
2858 | // For everyhing else, use local variables. |
2859 | if (SubExprT) { |
2860 | bool IsConst = SubExpr->getType().isConstQualified(); |
2861 | unsigned LocalIndex = |
2862 | allocateLocalPrimitive(Decl: E, Ty: *SubExprT, IsConst, ExtendingDecl: E->getExtendingDecl()); |
2863 | if (!this->visit(SubExpr)) |
2864 | return false; |
2865 | if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) |
2866 | return false; |
2867 | return this->emitGetPtrLocal(LocalIndex, E); |
2868 | } else { |
2869 | |
2870 | if (!this->checkLiteralType(SubExpr)) |
2871 | return false; |
2872 | |
2873 | const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); |
2874 | if (std::optional<unsigned> LocalIndex = |
2875 | allocateLocal(Decl: E, Ty: Inner->getType(), ExtendingDecl: E->getExtendingDecl())) { |
2876 | InitLinkScope<Emitter> ILS(this, InitLink::Temp(Offset: *LocalIndex)); |
2877 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
2878 | return false; |
2879 | return this->visitInitializer(SubExpr) && this->emitFinishInit(E); |
2880 | } |
2881 | } |
2882 | return false; |
2883 | } |
2884 | |
2885 | template <class Emitter> |
2886 | bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( |
2887 | const CXXBindTemporaryExpr *E) { |
2888 | return this->delegate(E->getSubExpr()); |
2889 | } |
2890 | |
2891 | template <class Emitter> |
2892 | bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { |
2893 | const Expr *Init = E->getInitializer(); |
2894 | if (DiscardResult) |
2895 | return this->discard(Init); |
2896 | |
2897 | if (Initializing) { |
2898 | // We already have a value, just initialize that. |
2899 | return this->visitInitializer(Init) && this->emitFinishInit(E); |
2900 | } |
2901 | |
2902 | std::optional<PrimType> T = classify(E->getType()); |
2903 | if (E->isFileScope()) { |
2904 | // Avoid creating a variable if this is a primitive RValue anyway. |
2905 | if (T && !E->isLValue()) |
2906 | return this->delegate(Init); |
2907 | |
2908 | if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { |
2909 | if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
2910 | return false; |
2911 | |
2912 | if (T) { |
2913 | if (!this->visit(Init)) |
2914 | return false; |
2915 | return this->emitInitGlobal(*T, *GlobalIndex, E); |
2916 | } |
2917 | |
2918 | return this->visitInitializer(Init) && this->emitFinishInit(E); |
2919 | } |
2920 | |
2921 | return false; |
2922 | } |
2923 | |
2924 | // Otherwise, use a local variable. |
2925 | if (T && !E->isLValue()) { |
2926 | // For primitive types, we just visit the initializer. |
2927 | return this->delegate(Init); |
2928 | } |
2929 | |
2930 | unsigned LocalIndex; |
2931 | if (T) |
2932 | LocalIndex = this->allocateLocalPrimitive(Init, *T, /*IsConst=*/false); |
2933 | else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) |
2934 | LocalIndex = *MaybeIndex; |
2935 | else |
2936 | return false; |
2937 | |
2938 | if (!this->emitGetPtrLocal(LocalIndex, E)) |
2939 | return false; |
2940 | |
2941 | if (T) |
2942 | return this->visit(Init) && this->emitInit(*T, E); |
2943 | return this->visitInitializer(Init) && this->emitFinishInit(E); |
2944 | } |
2945 | |
2946 | template <class Emitter> |
2947 | bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { |
2948 | if (DiscardResult) |
2949 | return true; |
2950 | if (E->isStoredAsBoolean()) { |
2951 | if (E->getType()->isBooleanType()) |
2952 | return this->emitConstBool(E->getBoolValue(), E); |
2953 | return this->emitConst(E->getBoolValue(), E); |
2954 | } |
2955 | PrimType T = classifyPrim(E->getType()); |
2956 | return this->visitAPValue(E->getAPValue(), T, E); |
2957 | } |
2958 | |
2959 | template <class Emitter> |
2960 | bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { |
2961 | if (DiscardResult) |
2962 | return true; |
2963 | return this->emitConst(E->getValue(), E); |
2964 | } |
2965 | |
2966 | template <class Emitter> |
2967 | bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { |
2968 | if (DiscardResult) |
2969 | return true; |
2970 | |
2971 | assert(Initializing); |
2972 | const Record *R = P.getOrCreateRecord(E->getLambdaClass()); |
2973 | if (!R) |
2974 | return false; |
2975 | |
2976 | auto *CaptureInitIt = E->capture_init_begin(); |
2977 | // Initialize all fields (which represent lambda captures) of the |
2978 | // record with their initializers. |
2979 | for (const Record::Field &F : R->fields()) { |
2980 | const Expr *Init = *CaptureInitIt; |
2981 | if (!Init || Init->containsErrors()) |
2982 | continue; |
2983 | ++CaptureInitIt; |
2984 | |
2985 | if (std::optional<PrimType> T = classify(Init)) { |
2986 | if (!this->visit(Init)) |
2987 | return false; |
2988 | |
2989 | if (!this->emitInitField(*T, F.Offset, E)) |
2990 | return false; |
2991 | } else { |
2992 | if (!this->emitGetPtrField(F.Offset, E)) |
2993 | return false; |
2994 | |
2995 | if (!this->visitInitializer(Init)) |
2996 | return false; |
2997 | |
2998 | if (!this->emitPopPtr(E)) |
2999 | return false; |
3000 | } |
3001 | } |
3002 | |
3003 | return true; |
3004 | } |
3005 | |
3006 | template <class Emitter> |
3007 | bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { |
3008 | if (DiscardResult) |
3009 | return true; |
3010 | |
3011 | if (!Initializing) { |
3012 | unsigned StringIndex = P.createGlobalString(E->getFunctionName(), E); |
3013 | return this->emitGetPtrGlobal(StringIndex, E); |
3014 | } |
3015 | |
3016 | return this->delegate(E->getFunctionName()); |
3017 | } |
3018 | |
3019 | template <class Emitter> |
3020 | bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { |
3021 | if (E->getSubExpr() && !this->discard(E->getSubExpr())) |
3022 | return false; |
3023 | |
3024 | return this->emitInvalid(E); |
3025 | } |
3026 | |
3027 | template <class Emitter> |
3028 | bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( |
3029 | const CXXReinterpretCastExpr *E) { |
3030 | const Expr *SubExpr = E->getSubExpr(); |
3031 | |
3032 | std::optional<PrimType> FromT = classify(SubExpr); |
3033 | std::optional<PrimType> ToT = classify(E); |
3034 | |
3035 | if (!FromT || !ToT) |
3036 | return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E); |
3037 | |
3038 | if (FromT == PT_Ptr || ToT == PT_Ptr) { |
3039 | // Both types could be PT_Ptr because their expressions are glvalues. |
3040 | std::optional<PrimType> PointeeFromT; |
3041 | if (SubExpr->getType()->isPointerOrReferenceType()) |
3042 | PointeeFromT = classify(SubExpr->getType()->getPointeeType()); |
3043 | else |
3044 | PointeeFromT = classify(SubExpr->getType()); |
3045 | |
3046 | std::optional<PrimType> PointeeToT; |
3047 | if (E->getType()->isPointerOrReferenceType()) |
3048 | PointeeToT = classify(E->getType()->getPointeeType()); |
3049 | else |
3050 | PointeeToT = classify(E->getType()); |
3051 | |
3052 | bool Fatal = true; |
3053 | if (PointeeToT && PointeeFromT) { |
3054 | if (isIntegralType(T: *PointeeFromT) && isIntegralType(T: *PointeeToT)) |
3055 | Fatal = false; |
3056 | } else { |
3057 | Fatal = SubExpr->getType().getTypePtr() != E->getType().getTypePtr(); |
3058 | } |
3059 | |
3060 | if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) |
3061 | return false; |
3062 | |
3063 | if (E->getCastKind() == CK_LValueBitCast) |
3064 | return this->delegate(SubExpr); |
3065 | return this->VisitCastExpr(E); |
3066 | } |
3067 | |
3068 | // Try to actually do the cast. |
3069 | bool Fatal = (ToT != FromT); |
3070 | if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E)) |
3071 | return false; |
3072 | |
3073 | return this->VisitCastExpr(E); |
3074 | } |
3075 | |
3076 | template <class Emitter> |
3077 | bool Compiler<Emitter>::VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) { |
3078 | |
3079 | if (!Ctx.getLangOpts().CPlusPlus20) { |
3080 | if (!this->emitInvalidCast(CastKind::Dynamic, /*Fatal=*/false, E)) |
3081 | return false; |
3082 | } |
3083 | |
3084 | return this->VisitCastExpr(E); |
3085 | } |
3086 | |
3087 | template <class Emitter> |
3088 | bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { |
3089 | assert(E->getType()->isBooleanType()); |
3090 | |
3091 | if (DiscardResult) |
3092 | return true; |
3093 | return this->emitConstBool(E->getValue(), E); |
3094 | } |
3095 | |
3096 | template <class Emitter> |
3097 | bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { |
3098 | QualType T = E->getType(); |
3099 | assert(!classify(T)); |
3100 | |
3101 | if (T->isRecordType()) { |
3102 | const CXXConstructorDecl *Ctor = E->getConstructor(); |
3103 | |
3104 | // Trivial copy/move constructor. Avoid copy. |
3105 | if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && |
3106 | Ctor->isTrivial() && |
3107 | E->getArg(Arg: 0)->isTemporaryObject(Ctx&: Ctx.getASTContext(), |
3108 | TempTy: T->getAsCXXRecordDecl())) |
3109 | return this->visitInitializer(E->getArg(Arg: 0)); |
3110 | |
3111 | // If we're discarding a construct expression, we still need |
3112 | // to allocate a variable and call the constructor and destructor. |
3113 | if (DiscardResult) { |
3114 | if (Ctor->isTrivial()) |
3115 | return true; |
3116 | assert(!Initializing); |
3117 | std::optional<unsigned> LocalIndex = allocateLocal(Decl: E); |
3118 | |
3119 | if (!LocalIndex) |
3120 | return false; |
3121 | |
3122 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
3123 | return false; |
3124 | } |
3125 | |
3126 | // Zero initialization. |
3127 | if (E->requiresZeroInitialization()) { |
3128 | const Record *R = getRecord(E->getType()); |
3129 | |
3130 | if (!this->visitZeroRecordInitializer(R, E)) |
3131 | return false; |
3132 | |
3133 | // If the constructor is trivial anyway, we're done. |
3134 | if (Ctor->isTrivial()) |
3135 | return true; |
3136 | } |
3137 | |
3138 | const Function *Func = getFunction(FD: Ctor); |
3139 | |
3140 | if (!Func) |
3141 | return false; |
3142 | |
3143 | assert(Func->hasThisPointer()); |
3144 | assert(!Func->hasRVO()); |
3145 | |
3146 | // The This pointer is already on the stack because this is an initializer, |
3147 | // but we need to dup() so the call() below has its own copy. |
3148 | if (!this->emitDupPtr(E)) |
3149 | return false; |
3150 | |
3151 | // Constructor arguments. |
3152 | for (const auto *Arg : E->arguments()) { |
3153 | if (!this->visit(Arg)) |
3154 | return false; |
3155 | } |
3156 | |
3157 | if (Func->isVariadic()) { |
3158 | uint32_t VarArgSize = 0; |
3159 | unsigned NumParams = Func->getNumWrittenParams(); |
3160 | for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { |
3161 | VarArgSize += |
3162 | align(primSize(classify(E->getArg(Arg: I)->getType()).value_or(PT_Ptr))); |
3163 | } |
3164 | if (!this->emitCallVar(Func, VarArgSize, E)) |
3165 | return false; |
3166 | } else { |
3167 | if (!this->emitCall(Func, 0, E)) { |
3168 | // When discarding, we don't need the result anyway, so clean up |
3169 | // the instance dup we did earlier in case surrounding code wants |
3170 | // to keep evaluating. |
3171 | if (DiscardResult) |
3172 | (void)this->emitPopPtr(E); |
3173 | return false; |
3174 | } |
3175 | } |
3176 | |
3177 | if (DiscardResult) |
3178 | return this->emitPopPtr(E); |
3179 | return this->emitFinishInit(E); |
3180 | } |
3181 | |
3182 | if (T->isArrayType()) { |
3183 | const ConstantArrayType *CAT = |
3184 | Ctx.getASTContext().getAsConstantArrayType(T: E->getType()); |
3185 | if (!CAT) |
3186 | return false; |
3187 | |
3188 | size_t NumElems = CAT->getZExtSize(); |
3189 | const Function *Func = getFunction(FD: E->getConstructor()); |
3190 | if (!Func) |
3191 | return false; |
3192 | |
3193 | // FIXME(perf): We're calling the constructor once per array element here, |
3194 | // in the old intepreter we had a special-case for trivial constructors. |
3195 | for (size_t I = 0; I != NumElems; ++I) { |
3196 | if (!this->emitConstUint64(I, E)) |
3197 | return false; |
3198 | if (!this->emitArrayElemPtrUint64(E)) |
3199 | return false; |
3200 | |
3201 | // Constructor arguments. |
3202 | for (const auto *Arg : E->arguments()) { |
3203 | if (!this->visit(Arg)) |
3204 | return false; |
3205 | } |
3206 | |
3207 | if (!this->emitCall(Func, 0, E)) |
3208 | return false; |
3209 | } |
3210 | return true; |
3211 | } |
3212 | |
3213 | return false; |
3214 | } |
3215 | |
3216 | template <class Emitter> |
3217 | bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { |
3218 | if (DiscardResult) |
3219 | return true; |
3220 | |
3221 | const APValue Val = |
3222 | E->EvaluateInContext(Ctx: Ctx.getASTContext(), DefaultExpr: SourceLocDefaultExpr); |
3223 | |
3224 | // Things like __builtin_LINE(). |
3225 | if (E->getType()->isIntegerType()) { |
3226 | assert(Val.isInt()); |
3227 | const APSInt &I = Val.getInt(); |
3228 | return this->emitConst(I, E); |
3229 | } |
3230 | // Otherwise, the APValue is an LValue, with only one element. |
3231 | // Theoretically, we don't need the APValue at all of course. |
3232 | assert(E->getType()->isPointerType()); |
3233 | assert(Val.isLValue()); |
3234 | const APValue::LValueBase &Base = Val.getLValueBase(); |
3235 | if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) |
3236 | return this->visit(LValueExpr); |
3237 | |
3238 | // Otherwise, we have a decl (which is the case for |
3239 | // __builtin_source_location). |
3240 | assert(Base.is<const ValueDecl *>()); |
3241 | assert(Val.getLValuePath().size() == 0); |
3242 | const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); |
3243 | assert(BaseDecl); |
3244 | |
3245 | auto *UGCD = cast<UnnamedGlobalConstantDecl>(Val: BaseDecl); |
3246 | |
3247 | std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); |
3248 | if (!GlobalIndex) |
3249 | return false; |
3250 | |
3251 | if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
3252 | return false; |
3253 | |
3254 | const Record *R = getRecord(E->getType()); |
3255 | const APValue &V = UGCD->getValue(); |
3256 | for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { |
3257 | const Record::Field *F = R->getField(I); |
3258 | const APValue &FieldValue = V.getStructField(i: I); |
3259 | |
3260 | PrimType FieldT = classifyPrim(F->Decl->getType()); |
3261 | |
3262 | if (!this->visitAPValue(FieldValue, FieldT, E)) |
3263 | return false; |
3264 | if (!this->emitInitField(FieldT, F->Offset, E)) |
3265 | return false; |
3266 | } |
3267 | |
3268 | // Leave the pointer to the global on the stack. |
3269 | return true; |
3270 | } |
3271 | |
3272 | template <class Emitter> |
3273 | bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { |
3274 | unsigned N = E->getNumComponents(); |
3275 | if (N == 0) |
3276 | return false; |
3277 | |
3278 | for (unsigned I = 0; I != N; ++I) { |
3279 | const OffsetOfNode &Node = E->getComponent(Idx: I); |
3280 | if (Node.getKind() == OffsetOfNode::Array) { |
3281 | const Expr *ArrayIndexExpr = E->getIndexExpr(Idx: Node.getArrayExprIndex()); |
3282 | PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); |
3283 | |
3284 | if (DiscardResult) { |
3285 | if (!this->discard(ArrayIndexExpr)) |
3286 | return false; |
3287 | continue; |
3288 | } |
3289 | |
3290 | if (!this->visit(ArrayIndexExpr)) |
3291 | return false; |
3292 | // Cast to Sint64. |
3293 | if (IndexT != PT_Sint64) { |
3294 | if (!this->emitCast(IndexT, PT_Sint64, E)) |
3295 | return false; |
3296 | } |
3297 | } |
3298 | } |
3299 | |
3300 | if (DiscardResult) |
3301 | return true; |
3302 | |
3303 | PrimType T = classifyPrim(E->getType()); |
3304 | return this->emitOffsetOf(T, E, E); |
3305 | } |
3306 | |
3307 | template <class Emitter> |
3308 | bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( |
3309 | const CXXScalarValueInitExpr *E) { |
3310 | QualType Ty = E->getType(); |
3311 | |
3312 | if (DiscardResult || Ty->isVoidType()) |
3313 | return true; |
3314 | |
3315 | if (std::optional<PrimType> T = classify(Ty)) |
3316 | return this->visitZeroInitializer(*T, Ty, E); |
3317 | |
3318 | if (const auto *CT = Ty->getAs<ComplexType>()) { |
3319 | if (!Initializing) { |
3320 | std::optional<unsigned> LocalIndex = allocateLocal(Decl: E); |
3321 | if (!LocalIndex) |
3322 | return false; |
3323 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
3324 | return false; |
3325 | } |
3326 | |
3327 | // Initialize both fields to 0. |
3328 | QualType ElemQT = CT->getElementType(); |
3329 | PrimType ElemT = classifyPrim(ElemQT); |
3330 | |
3331 | for (unsigned I = 0; I != 2; ++I) { |
3332 | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
3333 | return false; |
3334 | if (!this->emitInitElem(ElemT, I, E)) |
3335 | return false; |
3336 | } |
3337 | return true; |
3338 | } |
3339 | |
3340 | if (const auto *VT = Ty->getAs<VectorType>()) { |
3341 | // FIXME: Code duplication with the _Complex case above. |
3342 | if (!Initializing) { |
3343 | std::optional<unsigned> LocalIndex = allocateLocal(Decl: E); |
3344 | if (!LocalIndex) |
3345 | return false; |
3346 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
3347 | return false; |
3348 | } |
3349 | |
3350 | // Initialize all fields to 0. |
3351 | QualType ElemQT = VT->getElementType(); |
3352 | PrimType ElemT = classifyPrim(ElemQT); |
3353 | |
3354 | for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { |
3355 | if (!this->visitZeroInitializer(ElemT, ElemQT, E)) |
3356 | return false; |
3357 | if (!this->emitInitElem(ElemT, I, E)) |
3358 | return false; |
3359 | } |
3360 | return true; |
3361 | } |
3362 | |
3363 | return false; |
3364 | } |
3365 | |
3366 | template <class Emitter> |
3367 | bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { |
3368 | return this->emitConst(E->getPackLength(), E); |
3369 | } |
3370 | |
3371 | template <class Emitter> |
3372 | bool Compiler<Emitter>::VisitGenericSelectionExpr( |
3373 | const GenericSelectionExpr *E) { |
3374 | return this->delegate(E->getResultExpr()); |
3375 | } |
3376 | |
3377 | template <class Emitter> |
3378 | bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { |
3379 | return this->delegate(E->getChosenSubExpr()); |
3380 | } |
3381 | |
3382 | template <class Emitter> |
3383 | bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { |
3384 | if (DiscardResult) |
3385 | return true; |
3386 | |
3387 | return this->emitConst(E->getValue(), E); |
3388 | } |
3389 | |
3390 | template <class Emitter> |
3391 | bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( |
3392 | const CXXInheritedCtorInitExpr *E) { |
3393 | const CXXConstructorDecl *Ctor = E->getConstructor(); |
3394 | assert(!Ctor->isTrivial() && |
3395 | "Trivial CXXInheritedCtorInitExpr, implement. (possible?)" ); |
3396 | const Function *F = this->getFunction(Ctor); |
3397 | assert(F); |
3398 | assert(!F->hasRVO()); |
3399 | assert(F->hasThisPointer()); |
3400 | |
3401 | if (!this->emitDupPtr(SourceInfo{})) |
3402 | return false; |
3403 | |
3404 | // Forward all arguments of the current function (which should be a |
3405 | // constructor itself) to the inherited ctor. |
3406 | // This is necessary because the calling code has pushed the pointer |
3407 | // of the correct base for us already, but the arguments need |
3408 | // to come after. |
3409 | unsigned Offset = align(Size: primSize(Type: PT_Ptr)); // instance pointer. |
3410 | for (const ParmVarDecl *PD : Ctor->parameters()) { |
3411 | PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); |
3412 | |
3413 | if (!this->emitGetParam(PT, Offset, E)) |
3414 | return false; |
3415 | Offset += align(primSize(PT)); |
3416 | } |
3417 | |
3418 | return this->emitCall(F, 0, E); |
3419 | } |
3420 | |
3421 | // FIXME: This function has become rather unwieldy, especially |
3422 | // the part where we initialize an array allocation of dynamic size. |
3423 | template <class Emitter> |
3424 | bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { |
3425 | assert(classifyPrim(E->getType()) == PT_Ptr); |
3426 | const Expr *Init = E->getInitializer(); |
3427 | QualType ElementType = E->getAllocatedType(); |
3428 | std::optional<PrimType> ElemT = classify(ElementType); |
3429 | unsigned PlacementArgs = E->getNumPlacementArgs(); |
3430 | const FunctionDecl *OperatorNew = E->getOperatorNew(); |
3431 | const Expr *PlacementDest = nullptr; |
3432 | bool IsNoThrow = false; |
3433 | |
3434 | if (PlacementArgs != 0) { |
3435 | // FIXME: There is no restriction on this, but it's not clear that any |
3436 | // other form makes any sense. We get here for cases such as: |
3437 | // |
3438 | // new (std::align_val_t{N}) X(int) |
3439 | // |
3440 | // (which should presumably be valid only if N is a multiple of |
3441 | // alignof(int), and in any case can't be deallocated unless N is |
3442 | // alignof(X) and X has new-extended alignment). |
3443 | if (PlacementArgs == 1) { |
3444 | const Expr *Arg1 = E->getPlacementArg(I: 0); |
3445 | if (Arg1->getType()->isNothrowT()) { |
3446 | if (!this->discard(Arg1)) |
3447 | return false; |
3448 | IsNoThrow = true; |
3449 | } else { |
3450 | // Invalid unless we have C++26 or are in a std:: function. |
3451 | if (!this->emitInvalidNewDeleteExpr(E, E)) |
3452 | return false; |
3453 | |
3454 | // If we have a placement-new destination, we'll later use that instead |
3455 | // of allocating. |
3456 | if (OperatorNew->isReservedGlobalPlacementOperator()) |
3457 | PlacementDest = Arg1; |
3458 | } |
3459 | } else { |
3460 | // Always invalid. |
3461 | return this->emitInvalid(E); |
3462 | } |
3463 | } else if (!OperatorNew |
3464 | ->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) |
3465 | return this->emitInvalidNewDeleteExpr(E, E); |
3466 | |
3467 | const Descriptor *Desc; |
3468 | if (!PlacementDest) { |
3469 | if (ElemT) { |
3470 | if (E->isArray()) |
3471 | Desc = nullptr; // We're not going to use it in this case. |
3472 | else |
3473 | Desc = P.createDescriptor(E, *ElemT, /*SourceTy=*/nullptr, |
3474 | Descriptor::InlineDescMD); |
3475 | } else { |
3476 | Desc = P.createDescriptor( |
3477 | E, ElementType.getTypePtr(), |
3478 | E->isArray() ? std::nullopt : Descriptor::InlineDescMD, |
3479 | /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, |
3480 | /*IsVolatile=*/false, Init); |
3481 | } |
3482 | } |
3483 | |
3484 | if (E->isArray()) { |
3485 | std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); |
3486 | if (!ArraySizeExpr) |
3487 | return false; |
3488 | |
3489 | const Expr *Stripped = *ArraySizeExpr; |
3490 | for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Val: Stripped); |
3491 | Stripped = ICE->getSubExpr()) |
3492 | if (ICE->getCastKind() != CK_NoOp && |
3493 | ICE->getCastKind() != CK_IntegralCast) |
3494 | break; |
3495 | |
3496 | PrimType SizeT = classifyPrim(Stripped->getType()); |
3497 | |
3498 | // Save evaluated array size to a variable. |
3499 | unsigned ArrayLen = |
3500 | allocateLocalPrimitive(Decl: Stripped, Ty: SizeT, /*IsConst=*/false); |
3501 | if (!this->visit(Stripped)) |
3502 | return false; |
3503 | if (!this->emitSetLocal(SizeT, ArrayLen, E)) |
3504 | return false; |
3505 | |
3506 | if (PlacementDest) { |
3507 | if (!this->visit(PlacementDest)) |
3508 | return false; |
3509 | if (!this->emitStartLifetime(E)) |
3510 | return false; |
3511 | if (!this->emitGetLocal(SizeT, ArrayLen, E)) |
3512 | return false; |
3513 | if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E)) |
3514 | return false; |
3515 | } else { |
3516 | if (!this->emitGetLocal(SizeT, ArrayLen, E)) |
3517 | return false; |
3518 | |
3519 | if (ElemT) { |
3520 | // N primitive elements. |
3521 | if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) |
3522 | return false; |
3523 | } else { |
3524 | // N Composite elements. |
3525 | if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) |
3526 | return false; |
3527 | } |
3528 | } |
3529 | |
3530 | if (Init) { |
3531 | QualType InitType = Init->getType(); |
3532 | size_t StaticInitElems = 0; |
3533 | const Expr *DynamicInit = nullptr; |
3534 | if (const ConstantArrayType *CAT = |
3535 | Ctx.getASTContext().getAsConstantArrayType(T: InitType)) { |
3536 | StaticInitElems = CAT->getZExtSize(); |
3537 | if (!this->visitInitializer(Init)) |
3538 | return false; |
3539 | |
3540 | if (const auto *ILE = dyn_cast<InitListExpr>(Val: Init); |
3541 | ILE && ILE->hasArrayFiller()) |
3542 | DynamicInit = ILE->getArrayFiller(); |
3543 | } |
3544 | |
3545 | // The initializer initializes a certain number of elements, S. |
3546 | // However, the complete number of elements, N, might be larger than that. |
3547 | // In this case, we need to get an initializer for the remaining elements. |
3548 | // There are to cases: |
3549 | // 1) For the form 'new Struct[n];', the initializer is a |
3550 | // CXXConstructExpr and its type is an IncompleteArrayType. |
3551 | // 2) For the form 'new Struct[n]{1,2,3}', the initializer is an |
3552 | // InitListExpr and the initializer for the remaining elements |
3553 | // is the array filler. |
3554 | |
3555 | if (DynamicInit || InitType->isIncompleteArrayType()) { |
3556 | const Function *CtorFunc = nullptr; |
3557 | if (const auto *CE = dyn_cast<CXXConstructExpr>(Val: Init)) { |
3558 | CtorFunc = getFunction(FD: CE->getConstructor()); |
3559 | if (!CtorFunc) |
3560 | return false; |
3561 | } else if (!DynamicInit) |
3562 | DynamicInit = Init; |
3563 | |
3564 | LabelTy EndLabel = this->getLabel(); |
3565 | LabelTy StartLabel = this->getLabel(); |
3566 | |
3567 | // In the nothrow case, the alloc above might have returned nullptr. |
3568 | // Don't call any constructors that case. |
3569 | if (IsNoThrow) { |
3570 | if (!this->emitDupPtr(E)) |
3571 | return false; |
3572 | if (!this->emitNullPtr(0, nullptr, E)) |
3573 | return false; |
3574 | if (!this->emitEQPtr(E)) |
3575 | return false; |
3576 | if (!this->jumpTrue(EndLabel)) |
3577 | return false; |
3578 | } |
3579 | |
3580 | // Create loop variables. |
3581 | unsigned Iter = |
3582 | allocateLocalPrimitive(Decl: Stripped, Ty: SizeT, /*IsConst=*/false); |
3583 | if (!this->emitConst(StaticInitElems, SizeT, E)) |
3584 | return false; |
3585 | if (!this->emitSetLocal(SizeT, Iter, E)) |
3586 | return false; |
3587 | |
3588 | this->fallthrough(StartLabel); |
3589 | this->emitLabel(StartLabel); |
3590 | // Condition. Iter < ArrayLen? |
3591 | if (!this->emitGetLocal(SizeT, Iter, E)) |
3592 | return false; |
3593 | if (!this->emitGetLocal(SizeT, ArrayLen, E)) |
3594 | return false; |
3595 | if (!this->emitLT(SizeT, E)) |
3596 | return false; |
3597 | if (!this->jumpFalse(EndLabel)) |
3598 | return false; |
3599 | |
3600 | // Pointer to the allocated array is already on the stack. |
3601 | if (!this->emitGetLocal(SizeT, Iter, E)) |
3602 | return false; |
3603 | if (!this->emitArrayElemPtr(SizeT, E)) |
3604 | return false; |
3605 | |
3606 | if (isa_and_nonnull<ImplicitValueInitExpr>(Val: DynamicInit) && |
3607 | DynamicInit->getType()->isArrayType()) { |
3608 | QualType ElemType = |
3609 | DynamicInit->getType()->getAsArrayTypeUnsafe()->getElementType(); |
3610 | PrimType InitT = classifyPrim(ElemType); |
3611 | if (!this->visitZeroInitializer(InitT, ElemType, E)) |
3612 | return false; |
3613 | if (!this->emitStorePop(InitT, E)) |
3614 | return false; |
3615 | } else if (DynamicInit) { |
3616 | if (std::optional<PrimType> InitT = classify(DynamicInit)) { |
3617 | if (!this->visit(DynamicInit)) |
3618 | return false; |
3619 | if (!this->emitStorePop(*InitT, E)) |
3620 | return false; |
3621 | } else { |
3622 | if (!this->visitInitializer(DynamicInit)) |
3623 | return false; |
3624 | if (!this->emitPopPtr(E)) |
3625 | return false; |
3626 | } |
3627 | } else { |
3628 | assert(CtorFunc); |
3629 | if (!this->emitCall(CtorFunc, 0, E)) |
3630 | return false; |
3631 | } |
3632 | |
3633 | // ++Iter; |
3634 | if (!this->emitGetPtrLocal(Iter, E)) |
3635 | return false; |
3636 | if (!this->emitIncPop(SizeT, false, E)) |
3637 | return false; |
3638 | |
3639 | if (!this->jump(StartLabel)) |
3640 | return false; |
3641 | |
3642 | this->fallthrough(EndLabel); |
3643 | this->emitLabel(EndLabel); |
3644 | } |
3645 | } |
3646 | } else { // Non-array. |
3647 | if (PlacementDest) { |
3648 | if (!this->visit(PlacementDest)) |
3649 | return false; |
3650 | if (!this->emitStartLifetime(E)) |
3651 | return false; |
3652 | if (!this->emitCheckNewTypeMismatch(E, E)) |
3653 | return false; |
3654 | } else { |
3655 | // Allocate just one element. |
3656 | if (!this->emitAlloc(Desc, E)) |
3657 | return false; |
3658 | } |
3659 | |
3660 | if (Init) { |
3661 | if (ElemT) { |
3662 | if (!this->visit(Init)) |
3663 | return false; |
3664 | |
3665 | if (!this->emitInit(*ElemT, E)) |
3666 | return false; |
3667 | } else { |
3668 | // Composite. |
3669 | if (!this->visitInitializer(Init)) |
3670 | return false; |
3671 | } |
3672 | } |
3673 | } |
3674 | |
3675 | if (DiscardResult) |
3676 | return this->emitPopPtr(E); |
3677 | |
3678 | return true; |
3679 | } |
3680 | |
3681 | template <class Emitter> |
3682 | bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { |
3683 | const Expr *Arg = E->getArgument(); |
3684 | |
3685 | const FunctionDecl *OperatorDelete = E->getOperatorDelete(); |
3686 | |
3687 | if (!OperatorDelete->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) |
3688 | return this->emitInvalidNewDeleteExpr(E, E); |
3689 | |
3690 | // Arg must be an lvalue. |
3691 | if (!this->visit(Arg)) |
3692 | return false; |
3693 | |
3694 | return this->emitFree(E->isArrayForm(), E->isGlobalDelete(), E); |
3695 | } |
3696 | |
3697 | template <class Emitter> |
3698 | bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) { |
3699 | if (DiscardResult) |
3700 | return true; |
3701 | |
3702 | const Function *Func = nullptr; |
3703 | if (auto F = Ctx.getOrCreateObjCBlock(E)) |
3704 | Func = F; |
3705 | |
3706 | if (!Func) |
3707 | return false; |
3708 | return this->emitGetFnPtr(Func, E); |
3709 | } |
3710 | |
3711 | template <class Emitter> |
3712 | bool Compiler<Emitter>::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { |
3713 | const Type *TypeInfoType = E->getType().getTypePtr(); |
3714 | |
3715 | auto canonType = [](const Type *T) { |
3716 | return T->getCanonicalTypeUnqualified().getTypePtr(); |
3717 | }; |
3718 | |
3719 | if (!E->isPotentiallyEvaluated()) { |
3720 | if (DiscardResult) |
3721 | return true; |
3722 | |
3723 | if (E->isTypeOperand()) |
3724 | return this->emitGetTypeid( |
3725 | canonType(E->getTypeOperand(Context: Ctx.getASTContext()).getTypePtr()), |
3726 | TypeInfoType, E); |
3727 | |
3728 | return this->emitGetTypeid( |
3729 | canonType(E->getExprOperand()->getType().getTypePtr()), TypeInfoType, |
3730 | E); |
3731 | } |
3732 | |
3733 | // Otherwise, we need to evaluate the expression operand. |
3734 | assert(E->getExprOperand()); |
3735 | assert(E->getExprOperand()->isLValue()); |
3736 | |
3737 | if (!Ctx.getLangOpts().CPlusPlus20 && !this->emitDiagTypeid(E)) |
3738 | return false; |
3739 | |
3740 | if (!this->visit(E->getExprOperand())) |
3741 | return false; |
3742 | |
3743 | if (!this->emitGetTypeidPtr(TypeInfoType, E)) |
3744 | return false; |
3745 | if (DiscardResult) |
3746 | return this->emitPopPtr(E); |
3747 | return true; |
3748 | } |
3749 | |
3750 | template <class Emitter> |
3751 | bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { |
3752 | assert(Ctx.getLangOpts().CPlusPlus); |
3753 | return this->emitConstBool(E->getValue(), E); |
3754 | } |
3755 | |
3756 | template <class Emitter> |
3757 | bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { |
3758 | if (DiscardResult) |
3759 | return true; |
3760 | assert(!Initializing); |
3761 | |
3762 | const MSGuidDecl *GuidDecl = E->getGuidDecl(); |
3763 | const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); |
3764 | assert(RD); |
3765 | // If the definiton of the result type is incomplete, just return a dummy. |
3766 | // If (and when) that is read from, we will fail, but not now. |
3767 | if (!RD->isCompleteDefinition()) |
3768 | return this->emitDummyPtr(GuidDecl, E); |
3769 | |
3770 | std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); |
3771 | if (!GlobalIndex) |
3772 | return false; |
3773 | if (!this->emitGetPtrGlobal(*GlobalIndex, E)) |
3774 | return false; |
3775 | |
3776 | assert(this->getRecord(E->getType())); |
3777 | |
3778 | const APValue &V = GuidDecl->getAsAPValue(); |
3779 | if (V.getKind() == APValue::None) |
3780 | return true; |
3781 | |
3782 | assert(V.isStruct()); |
3783 | assert(V.getStructNumBases() == 0); |
3784 | if (!this->visitAPValueInitializer(V, E, E->getType())) |
3785 | return false; |
3786 | |
3787 | return this->emitFinishInit(E); |
3788 | } |
3789 | |
3790 | template <class Emitter> |
3791 | bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { |
3792 | assert(classifyPrim(E->getType()) == PT_Bool); |
3793 | if (DiscardResult) |
3794 | return true; |
3795 | return this->emitConstBool(E->isSatisfied(), E); |
3796 | } |
3797 | |
3798 | template <class Emitter> |
3799 | bool Compiler<Emitter>::VisitConceptSpecializationExpr( |
3800 | const ConceptSpecializationExpr *E) { |
3801 | assert(classifyPrim(E->getType()) == PT_Bool); |
3802 | if (DiscardResult) |
3803 | return true; |
3804 | return this->emitConstBool(E->isSatisfied(), E); |
3805 | } |
3806 | |
3807 | template <class Emitter> |
3808 | bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( |
3809 | const CXXRewrittenBinaryOperator *E) { |
3810 | return this->delegate(E->getSemanticForm()); |
3811 | } |
3812 | |
3813 | template <class Emitter> |
3814 | bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { |
3815 | |
3816 | for (const Expr *SemE : E->semantics()) { |
3817 | if (auto *OVE = dyn_cast<OpaqueValueExpr>(Val: SemE)) { |
3818 | if (SemE == E->getResultExpr()) |
3819 | return false; |
3820 | |
3821 | if (OVE->isUnique()) |
3822 | continue; |
3823 | |
3824 | if (!this->discard(OVE)) |
3825 | return false; |
3826 | } else if (SemE == E->getResultExpr()) { |
3827 | if (!this->delegate(SemE)) |
3828 | return false; |
3829 | } else { |
3830 | if (!this->discard(SemE)) |
3831 | return false; |
3832 | } |
3833 | } |
3834 | return true; |
3835 | } |
3836 | |
3837 | template <class Emitter> |
3838 | bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { |
3839 | return this->delegate(E->getSelectedExpr()); |
3840 | } |
3841 | |
3842 | template <class Emitter> |
3843 | bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { |
3844 | return this->emitError(E); |
3845 | } |
3846 | |
3847 | template <class Emitter> |
3848 | bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { |
3849 | assert(E->getType()->isVoidPointerType()); |
3850 | |
3851 | unsigned Offset = |
3852 | allocateLocalPrimitive(Decl: E->getLabel(), Ty: PT_Ptr, /*IsConst=*/true); |
3853 | |
3854 | return this->emitGetLocal(PT_Ptr, Offset, E); |
3855 | } |
3856 | |
3857 | template <class Emitter> |
3858 | bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { |
3859 | assert(Initializing); |
3860 | const auto *VT = E->getType()->castAs<VectorType>(); |
3861 | QualType ElemType = VT->getElementType(); |
3862 | PrimType ElemT = classifyPrim(ElemType); |
3863 | const Expr *Src = E->getSrcExpr(); |
3864 | QualType SrcType = Src->getType(); |
3865 | PrimType SrcElemT = classifyVectorElementType(T: SrcType); |
3866 | |
3867 | unsigned SrcOffset = |
3868 | this->allocateLocalPrimitive(Src, PT_Ptr, /*IsConst=*/true); |
3869 | if (!this->visit(Src)) |
3870 | return false; |
3871 | if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) |
3872 | return false; |
3873 | |
3874 | for (unsigned I = 0; I != VT->getNumElements(); ++I) { |
3875 | if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) |
3876 | return false; |
3877 | if (!this->emitArrayElemPop(SrcElemT, I, E)) |
3878 | return false; |
3879 | |
3880 | // Cast to the desired result element type. |
3881 | if (SrcElemT != ElemT) { |
3882 | if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) |
3883 | return false; |
3884 | } else if (ElemType->isFloatingType() && SrcType != ElemType) { |
3885 | const auto *TargetSemantics = &Ctx.getFloatSemantics(T: ElemType); |
3886 | if (!this->emitCastFP(TargetSemantics, getRoundingMode(E), E)) |
3887 | return false; |
3888 | } |
3889 | if (!this->emitInitElem(ElemT, I, E)) |
3890 | return false; |
3891 | } |
3892 | |
3893 | return true; |
3894 | } |
3895 | |
3896 | template <class Emitter> |
3897 | bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { |
3898 | assert(Initializing); |
3899 | assert(E->getNumSubExprs() > 2); |
3900 | |
3901 | const Expr *Vecs[] = {E->getExpr(Index: 0), E->getExpr(Index: 1)}; |
3902 | const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); |
3903 | PrimType ElemT = classifyPrim(VT->getElementType()); |
3904 | unsigned NumInputElems = VT->getNumElements(); |
3905 | unsigned NumOutputElems = E->getNumSubExprs() - 2; |
3906 | assert(NumOutputElems > 0); |
3907 | |
3908 | // Save both input vectors to a local variable. |
3909 | unsigned VectorOffsets[2]; |
3910 | for (unsigned I = 0; I != 2; ++I) { |
3911 | VectorOffsets[I] = |
3912 | this->allocateLocalPrimitive(Vecs[I], PT_Ptr, /*IsConst=*/true); |
3913 | if (!this->visit(Vecs[I])) |
3914 | return false; |
3915 | if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) |
3916 | return false; |
3917 | } |
3918 | for (unsigned I = 0; I != NumOutputElems; ++I) { |
3919 | APSInt ShuffleIndex = E->getShuffleMaskIdx(N: I); |
3920 | assert(ShuffleIndex >= -1); |
3921 | if (ShuffleIndex == -1) |
3922 | return this->emitInvalidShuffleVectorIndex(I, E); |
3923 | |
3924 | assert(ShuffleIndex < (NumInputElems * 2)); |
3925 | if (!this->emitGetLocal(PT_Ptr, |
3926 | VectorOffsets[ShuffleIndex >= NumInputElems], E)) |
3927 | return false; |
3928 | unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; |
3929 | if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) |
3930 | return false; |
3931 | |
3932 | if (!this->emitInitElem(ElemT, I, E)) |
3933 | return false; |
3934 | } |
3935 | |
3936 | return true; |
3937 | } |
3938 | |
3939 | template <class Emitter> |
3940 | bool Compiler<Emitter>::VisitExtVectorElementExpr( |
3941 | const ExtVectorElementExpr *E) { |
3942 | const Expr *Base = E->getBase(); |
3943 | assert( |
3944 | Base->getType()->isVectorType() || |
3945 | Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); |
3946 | |
3947 | SmallVector<uint32_t, 4> Indices; |
3948 | E->getEncodedElementAccess(Elts&: Indices); |
3949 | |
3950 | if (Indices.size() == 1) { |
3951 | if (!this->visit(Base)) |
3952 | return false; |
3953 | |
3954 | if (E->isGLValue()) { |
3955 | if (!this->emitConstUint32(Indices[0], E)) |
3956 | return false; |
3957 | return this->emitArrayElemPtrPop(PT_Uint32, E); |
3958 | } |
3959 | // Else, also load the value. |
3960 | return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); |
3961 | } |
3962 | |
3963 | // Create a local variable for the base. |
3964 | unsigned BaseOffset = allocateLocalPrimitive(Decl: Base, Ty: PT_Ptr, /*IsConst=*/true); |
3965 | if (!this->visit(Base)) |
3966 | return false; |
3967 | if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) |
3968 | return false; |
3969 | |
3970 | // Now the vector variable for the return value. |
3971 | if (!Initializing) { |
3972 | std::optional<unsigned> ResultIndex; |
3973 | ResultIndex = allocateLocal(Decl: E); |
3974 | if (!ResultIndex) |
3975 | return false; |
3976 | if (!this->emitGetPtrLocal(*ResultIndex, E)) |
3977 | return false; |
3978 | } |
3979 | |
3980 | assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); |
3981 | |
3982 | PrimType ElemT = |
3983 | classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); |
3984 | uint32_t DstIndex = 0; |
3985 | for (uint32_t I : Indices) { |
3986 | if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) |
3987 | return false; |
3988 | if (!this->emitArrayElemPop(ElemT, I, E)) |
3989 | return false; |
3990 | if (!this->emitInitElem(ElemT, DstIndex, E)) |
3991 | return false; |
3992 | ++DstIndex; |
3993 | } |
3994 | |
3995 | // Leave the result pointer on the stack. |
3996 | assert(!DiscardResult); |
3997 | return true; |
3998 | } |
3999 | |
4000 | template <class Emitter> |
4001 | bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { |
4002 | const Expr *SubExpr = E->getSubExpr(); |
4003 | if (!E->isExpressibleAsConstantInitializer()) |
4004 | return this->discard(SubExpr) && this->emitInvalid(E); |
4005 | |
4006 | if (DiscardResult) |
4007 | return true; |
4008 | |
4009 | assert(classifyPrim(E) == PT_Ptr); |
4010 | return this->emitDummyPtr(E, E); |
4011 | } |
4012 | |
4013 | template <class Emitter> |
4014 | bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( |
4015 | const CXXStdInitializerListExpr *E) { |
4016 | const Expr *SubExpr = E->getSubExpr(); |
4017 | const ConstantArrayType *ArrayType = |
4018 | Ctx.getASTContext().getAsConstantArrayType(T: SubExpr->getType()); |
4019 | const Record *R = getRecord(E->getType()); |
4020 | assert(Initializing); |
4021 | assert(SubExpr->isGLValue()); |
4022 | |
4023 | if (!this->visit(SubExpr)) |
4024 | return false; |
4025 | if (!this->emitConstUint8(0, E)) |
4026 | return false; |
4027 | if (!this->emitArrayElemPtrPopUint8(E)) |
4028 | return false; |
4029 | if (!this->emitInitFieldPtr(R->getField(I: 0u)->Offset, E)) |
4030 | return false; |
4031 | |
4032 | PrimType SecondFieldT = classifyPrim(R->getField(I: 1u)->Decl->getType()); |
4033 | if (isIntegralType(T: SecondFieldT)) { |
4034 | if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), |
4035 | SecondFieldT, E)) |
4036 | return false; |
4037 | return this->emitInitField(SecondFieldT, R->getField(I: 1u)->Offset, E); |
4038 | } |
4039 | assert(SecondFieldT == PT_Ptr); |
4040 | |
4041 | if (!this->emitGetFieldPtr(R->getField(I: 0u)->Offset, E)) |
4042 | return false; |
4043 | if (!this->emitExpandPtr(E)) |
4044 | return false; |
4045 | if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) |
4046 | return false; |
4047 | if (!this->emitArrayElemPtrPop(PT_Uint64, E)) |
4048 | return false; |
4049 | return this->emitInitFieldPtr(R->getField(I: 1u)->Offset, E); |
4050 | } |
4051 | |
4052 | template <class Emitter> |
4053 | bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { |
4054 | BlockScope<Emitter> BS(this); |
4055 | StmtExprScope<Emitter> SS(this); |
4056 | |
4057 | const CompoundStmt *CS = E->getSubStmt(); |
4058 | const Stmt *Result = CS->getStmtExprResult(); |
4059 | for (const Stmt *S : CS->body()) { |
4060 | if (S != Result) { |
4061 | if (!this->visitStmt(S)) |
4062 | return false; |
4063 | continue; |
4064 | } |
4065 | |
4066 | assert(S == Result); |
4067 | if (const Expr *ResultExpr = dyn_cast<Expr>(Val: S)) |
4068 | return this->delegate(ResultExpr); |
4069 | return this->emitUnsupported(E); |
4070 | } |
4071 | |
4072 | return BS.destroyLocals(); |
4073 | } |
4074 | |
4075 | template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { |
4076 | OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, |
4077 | /*NewInitializing=*/false); |
4078 | return this->Visit(E); |
4079 | } |
4080 | |
4081 | template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { |
4082 | // We're basically doing: |
4083 | // OptionScope<Emitter> Scope(this, DicardResult, Initializing); |
4084 | // but that's unnecessary of course. |
4085 | return this->Visit(E); |
4086 | } |
4087 | |
4088 | template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { |
4089 | if (E->getType().isNull()) |
4090 | return false; |
4091 | |
4092 | if (E->getType()->isVoidType()) |
4093 | return this->discard(E); |
4094 | |
4095 | // Create local variable to hold the return value. |
4096 | if (!E->isGLValue() && !E->getType()->isAnyComplexType() && |
4097 | !classify(E->getType())) { |
4098 | std::optional<unsigned> LocalIndex = allocateLocal(Decl: E); |
4099 | if (!LocalIndex) |
4100 | return false; |
4101 | |
4102 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
4103 | return false; |
4104 | InitLinkScope<Emitter> ILS(this, InitLink::Temp(Offset: *LocalIndex)); |
4105 | return this->visitInitializer(E); |
4106 | } |
4107 | |
4108 | // Otherwise,we have a primitive return value, produce the value directly |
4109 | // and push it on the stack. |
4110 | OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, |
4111 | /*NewInitializing=*/false); |
4112 | return this->Visit(E); |
4113 | } |
4114 | |
4115 | template <class Emitter> |
4116 | bool Compiler<Emitter>::visitInitializer(const Expr *E) { |
4117 | assert(!classify(E->getType())); |
4118 | |
4119 | OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, |
4120 | /*NewInitializing=*/true); |
4121 | return this->Visit(E); |
4122 | } |
4123 | |
4124 | template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { |
4125 | std::optional<PrimType> T = classify(E->getType()); |
4126 | if (!T) { |
4127 | // Convert complex values to bool. |
4128 | if (E->getType()->isAnyComplexType()) { |
4129 | if (!this->visit(E)) |
4130 | return false; |
4131 | return this->emitComplexBoolCast(E); |
4132 | } |
4133 | return false; |
4134 | } |
4135 | |
4136 | if (!this->visit(E)) |
4137 | return false; |
4138 | |
4139 | if (T == PT_Bool) |
4140 | return true; |
4141 | |
4142 | // Convert pointers to bool. |
4143 | if (T == PT_Ptr) |
4144 | return this->emitIsNonNullPtr(E); |
4145 | |
4146 | // Or Floats. |
4147 | if (T == PT_Float) |
4148 | return this->emitCastFloatingIntegralBool(getFPOptions(E), E); |
4149 | |
4150 | // Or anything else we can. |
4151 | return this->emitCast(*T, PT_Bool, E); |
4152 | } |
4153 | |
4154 | template <class Emitter> |
4155 | bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, |
4156 | const Expr *E) { |
4157 | if (const auto *AT = QT->getAs<AtomicType>()) |
4158 | QT = AT->getValueType(); |
4159 | |
4160 | switch (T) { |
4161 | case PT_Bool: |
4162 | return this->emitZeroBool(E); |
4163 | case PT_Sint8: |
4164 | return this->emitZeroSint8(E); |
4165 | case PT_Uint8: |
4166 | return this->emitZeroUint8(E); |
4167 | case PT_Sint16: |
4168 | return this->emitZeroSint16(E); |
4169 | case PT_Uint16: |
4170 | return this->emitZeroUint16(E); |
4171 | case PT_Sint32: |
4172 | return this->emitZeroSint32(E); |
4173 | case PT_Uint32: |
4174 | return this->emitZeroUint32(E); |
4175 | case PT_Sint64: |
4176 | return this->emitZeroSint64(E); |
4177 | case PT_Uint64: |
4178 | return this->emitZeroUint64(E); |
4179 | case PT_IntAP: |
4180 | return this->emitZeroIntAP(Ctx.getBitWidth(T: QT), E); |
4181 | case PT_IntAPS: |
4182 | return this->emitZeroIntAPS(Ctx.getBitWidth(T: QT), E); |
4183 | case PT_Ptr: |
4184 | return this->emitNullPtr(Ctx.getASTContext().getTargetNullPointerValue(QT), |
4185 | nullptr, E); |
4186 | case PT_MemberPtr: |
4187 | return this->emitNullMemberPtr(0, nullptr, E); |
4188 | case PT_Float: |
4189 | return this->emitConstFloat(APFloat::getZero(Sem: Ctx.getFloatSemantics(T: QT)), E); |
4190 | case PT_FixedPoint: { |
4191 | auto Sem = Ctx.getASTContext().getFixedPointSemantics(Ty: E->getType()); |
4192 | return this->emitConstFixedPoint(FixedPoint::zero(Sem), E); |
4193 | } |
4194 | llvm_unreachable("Implement" ); |
4195 | } |
4196 | llvm_unreachable("unknown primitive type" ); |
4197 | } |
4198 | |
4199 | template <class Emitter> |
4200 | bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, |
4201 | const Expr *E) { |
4202 | assert(E); |
4203 | assert(R); |
4204 | // Fields |
4205 | for (const Record::Field &Field : R->fields()) { |
4206 | if (Field.isUnnamedBitField()) |
4207 | continue; |
4208 | |
4209 | const Descriptor *D = Field.Desc; |
4210 | if (D->isPrimitive()) { |
4211 | QualType QT = D->getType(); |
4212 | PrimType T = classifyPrim(D->getType()); |
4213 | if (!this->visitZeroInitializer(T, QT, E)) |
4214 | return false; |
4215 | if (!this->emitInitField(T, Field.Offset, E)) |
4216 | return false; |
4217 | if (R->isUnion()) |
4218 | break; |
4219 | continue; |
4220 | } |
4221 | |
4222 | if (!this->emitGetPtrField(Field.Offset, E)) |
4223 | return false; |
4224 | |
4225 | if (D->isPrimitiveArray()) { |
4226 | QualType ET = D->getElemQualType(); |
4227 | PrimType T = classifyPrim(ET); |
4228 | for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { |
4229 | if (!this->visitZeroInitializer(T, ET, E)) |
4230 | return false; |
4231 | if (!this->emitInitElem(T, I, E)) |
4232 | return false; |
4233 | } |
4234 | } else if (D->isCompositeArray()) { |
4235 | // Can't be a vector or complex field. |
4236 | if (!this->visitZeroArrayInitializer(D->getType(), E)) |
4237 | return false; |
4238 | } else if (D->isRecord()) { |
4239 | if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) |
4240 | return false; |
4241 | } else |
4242 | return false; |
4243 | |
4244 | if (!this->emitFinishInitPop(E)) |
4245 | return false; |
4246 | |
4247 | // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the |
4248 | // object's first non-static named data member is zero-initialized |
4249 | if (R->isUnion()) |
4250 | break; |
4251 | } |
4252 | |
4253 | for (const Record::Base &B : R->bases()) { |
4254 | if (!this->emitGetPtrBase(B.Offset, E)) |
4255 | return false; |
4256 | if (!this->visitZeroRecordInitializer(B.R, E)) |
4257 | return false; |
4258 | if (!this->emitFinishInitPop(E)) |
4259 | return false; |
4260 | } |
4261 | |
4262 | // FIXME: Virtual bases. |
4263 | |
4264 | return true; |
4265 | } |
4266 | |
4267 | template <class Emitter> |
4268 | bool Compiler<Emitter>::visitZeroArrayInitializer(QualType T, const Expr *E) { |
4269 | assert(T->isArrayType() || T->isAnyComplexType() || T->isVectorType()); |
4270 | const ArrayType *AT = T->getAsArrayTypeUnsafe(); |
4271 | QualType ElemType = AT->getElementType(); |
4272 | size_t NumElems = cast<ConstantArrayType>(Val: AT)->getZExtSize(); |
4273 | |
4274 | if (std::optional<PrimType> ElemT = classify(ElemType)) { |
4275 | for (size_t I = 0; I != NumElems; ++I) { |
4276 | if (!this->visitZeroInitializer(*ElemT, ElemType, E)) |
4277 | return false; |
4278 | if (!this->emitInitElem(*ElemT, I, E)) |
4279 | return false; |
4280 | } |
4281 | return true; |
4282 | } else if (ElemType->isRecordType()) { |
4283 | const Record *R = getRecord(ElemType); |
4284 | |
4285 | for (size_t I = 0; I != NumElems; ++I) { |
4286 | if (!this->emitConstUint32(I, E)) |
4287 | return false; |
4288 | if (!this->emitArrayElemPtr(PT_Uint32, E)) |
4289 | return false; |
4290 | if (!this->visitZeroRecordInitializer(R, E)) |
4291 | return false; |
4292 | if (!this->emitPopPtr(E)) |
4293 | return false; |
4294 | } |
4295 | return true; |
4296 | } else if (ElemType->isArrayType()) { |
4297 | for (size_t I = 0; I != NumElems; ++I) { |
4298 | if (!this->emitConstUint32(I, E)) |
4299 | return false; |
4300 | if (!this->emitArrayElemPtr(PT_Uint32, E)) |
4301 | return false; |
4302 | if (!this->visitZeroArrayInitializer(ElemType, E)) |
4303 | return false; |
4304 | if (!this->emitPopPtr(E)) |
4305 | return false; |
4306 | } |
4307 | return true; |
4308 | } |
4309 | |
4310 | return false; |
4311 | } |
4312 | |
4313 | template <class Emitter> |
4314 | template <typename T> |
4315 | bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { |
4316 | switch (Ty) { |
4317 | case PT_Sint8: |
4318 | return this->emitConstSint8(Value, E); |
4319 | case PT_Uint8: |
4320 | return this->emitConstUint8(Value, E); |
4321 | case PT_Sint16: |
4322 | return this->emitConstSint16(Value, E); |
4323 | case PT_Uint16: |
4324 | return this->emitConstUint16(Value, E); |
4325 | case PT_Sint32: |
4326 | return this->emitConstSint32(Value, E); |
4327 | case PT_Uint32: |
4328 | return this->emitConstUint32(Value, E); |
4329 | case PT_Sint64: |
4330 | return this->emitConstSint64(Value, E); |
4331 | case PT_Uint64: |
4332 | return this->emitConstUint64(Value, E); |
4333 | case PT_Bool: |
4334 | return this->emitConstBool(Value, E); |
4335 | case PT_Ptr: |
4336 | case PT_MemberPtr: |
4337 | case PT_Float: |
4338 | case PT_IntAP: |
4339 | case PT_IntAPS: |
4340 | case PT_FixedPoint: |
4341 | llvm_unreachable("Invalid integral type" ); |
4342 | break; |
4343 | } |
4344 | llvm_unreachable("unknown primitive type" ); |
4345 | } |
4346 | |
4347 | template <class Emitter> |
4348 | template <typename T> |
4349 | bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { |
4350 | return this->emitConst(Value, classifyPrim(E->getType()), E); |
4351 | } |
4352 | |
4353 | template <class Emitter> |
4354 | bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, |
4355 | const Expr *E) { |
4356 | if (Ty == PT_IntAPS) |
4357 | return this->emitConstIntAPS(Value, E); |
4358 | if (Ty == PT_IntAP) |
4359 | return this->emitConstIntAP(Value, E); |
4360 | |
4361 | if (Value.isSigned()) |
4362 | return this->emitConst(Value.getSExtValue(), Ty, E); |
4363 | return this->emitConst(Value.getZExtValue(), Ty, E); |
4364 | } |
4365 | |
4366 | template <class Emitter> |
4367 | bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { |
4368 | return this->emitConst(Value, classifyPrim(E->getType()), E); |
4369 | } |
4370 | |
4371 | template <class Emitter> |
4372 | unsigned Compiler<Emitter>::allocateLocalPrimitive( |
4373 | DeclTy &&Src, PrimType Ty, bool IsConst, const ValueDecl *ExtendingDecl, |
4374 | ScopeKind SC, bool IsConstexprUnknown) { |
4375 | // Make sure we don't accidentally register the same decl twice. |
4376 | if (const auto *VD = |
4377 | dyn_cast_if_present<ValueDecl>(Val: Src.dyn_cast<const Decl *>())) { |
4378 | assert(!P.getGlobal(VD)); |
4379 | assert(!Locals.contains(VD)); |
4380 | (void)VD; |
4381 | } |
4382 | |
4383 | // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. |
4384 | // (int){12} in C. Consider using Expr::isTemporaryObject() instead |
4385 | // or isa<MaterializeTemporaryExpr>(). |
4386 | Descriptor *D = P.createDescriptor(D: Src, T: Ty, SourceTy: nullptr, MDSize: Descriptor::InlineDescMD, |
4387 | IsConst, IsTemporary: isa<const Expr *>(Val: Src)); |
4388 | D->IsConstexprUnknown = IsConstexprUnknown; |
4389 | Scope::Local Local = this->createLocal(D); |
4390 | if (auto *VD = dyn_cast_if_present<ValueDecl>(Val: Src.dyn_cast<const Decl *>())) |
4391 | Locals.insert(KV: {VD, Local}); |
4392 | if (ExtendingDecl) |
4393 | VarScope->addExtended(Local, ExtendingDecl); |
4394 | else |
4395 | VarScope->addForScopeKind(Local, SC); |
4396 | return Local.Offset; |
4397 | } |
4398 | |
4399 | template <class Emitter> |
4400 | std::optional<unsigned> |
4401 | Compiler<Emitter>::allocateLocal(DeclTy &&Src, QualType Ty, |
4402 | const ValueDecl *ExtendingDecl, ScopeKind SC, |
4403 | bool IsConstexprUnknown) { |
4404 | // Make sure we don't accidentally register the same decl twice. |
4405 | if ([[maybe_unused]] const auto *VD = |
4406 | dyn_cast_if_present<ValueDecl>(Val: Src.dyn_cast<const Decl *>())) { |
4407 | assert(!P.getGlobal(VD)); |
4408 | assert(!Locals.contains(VD)); |
4409 | } |
4410 | |
4411 | const ValueDecl *Key = nullptr; |
4412 | const Expr *Init = nullptr; |
4413 | bool IsTemporary = false; |
4414 | if (auto *VD = dyn_cast_if_present<ValueDecl>(Val: Src.dyn_cast<const Decl *>())) { |
4415 | Key = VD; |
4416 | Ty = VD->getType(); |
4417 | |
4418 | if (const auto *VarD = dyn_cast<VarDecl>(Val: VD)) |
4419 | Init = VarD->getInit(); |
4420 | } |
4421 | if (auto *E = Src.dyn_cast<const Expr *>()) { |
4422 | IsTemporary = true; |
4423 | if (Ty.isNull()) |
4424 | Ty = E->getType(); |
4425 | } |
4426 | |
4427 | Descriptor *D = P.createDescriptor( |
4428 | D: Src, Ty: Ty.getTypePtr(), MDSize: Descriptor::InlineDescMD, IsConst: Ty.isConstQualified(), |
4429 | IsTemporary, /*IsMutable=*/false, /*IsVolatile=*/false, Init); |
4430 | if (!D) |
4431 | return std::nullopt; |
4432 | D->IsConstexprUnknown = IsConstexprUnknown; |
4433 | |
4434 | Scope::Local Local = this->createLocal(D); |
4435 | if (Key) |
4436 | Locals.insert(KV: {Key, Local}); |
4437 | if (ExtendingDecl) |
4438 | VarScope->addExtended(Local, ExtendingDecl); |
4439 | else |
4440 | VarScope->addForScopeKind(Local, SC); |
4441 | return Local.Offset; |
4442 | } |
4443 | |
4444 | template <class Emitter> |
4445 | std::optional<unsigned> Compiler<Emitter>::allocateTemporary(const Expr *E) { |
4446 | QualType Ty = E->getType(); |
4447 | assert(!Ty->isRecordType()); |
4448 | |
4449 | Descriptor *D = P.createDescriptor( |
4450 | D: E, Ty: Ty.getTypePtr(), MDSize: Descriptor::InlineDescMD, IsConst: Ty.isConstQualified(), |
4451 | /*IsTemporary=*/true); |
4452 | |
4453 | if (!D) |
4454 | return std::nullopt; |
4455 | |
4456 | Scope::Local Local = this->createLocal(D); |
4457 | VariableScope<Emitter> *S = VarScope; |
4458 | assert(S); |
4459 | // Attach to topmost scope. |
4460 | while (S->getParent()) |
4461 | S = S->getParent(); |
4462 | assert(S && !S->getParent()); |
4463 | S->addLocal(Local); |
4464 | return Local.Offset; |
4465 | } |
4466 | |
4467 | template <class Emitter> |
4468 | const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { |
4469 | if (const PointerType *PT = dyn_cast<PointerType>(Val&: Ty)) |
4470 | return PT->getPointeeType()->getAs<RecordType>(); |
4471 | return Ty->getAs<RecordType>(); |
4472 | } |
4473 | |
4474 | template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { |
4475 | if (const auto *RecordTy = getRecordTy(Ty)) |
4476 | return getRecord(RecordTy->getDecl()); |
4477 | return nullptr; |
4478 | } |
4479 | |
4480 | template <class Emitter> |
4481 | Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { |
4482 | return P.getOrCreateRecord(RD); |
4483 | } |
4484 | |
4485 | template <class Emitter> |
4486 | const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { |
4487 | return Ctx.getOrCreateFunction(FuncDecl: FD); |
4488 | } |
4489 | |
4490 | template <class Emitter> |
4491 | bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) { |
4492 | LocalScope<Emitter> RootScope(this); |
4493 | |
4494 | // If we won't destroy the toplevel scope, check for memory leaks first. |
4495 | if (!DestroyToplevelScope) { |
4496 | if (!this->emitCheckAllocations(E)) |
4497 | return false; |
4498 | } |
4499 | |
4500 | auto maybeDestroyLocals = [&]() -> bool { |
4501 | if (DestroyToplevelScope) |
4502 | return RootScope.destroyLocals() && this->emitCheckAllocations(E); |
4503 | return this->emitCheckAllocations(E); |
4504 | }; |
4505 | |
4506 | // Void expressions. |
4507 | if (E->getType()->isVoidType()) { |
4508 | if (!visit(E)) |
4509 | return false; |
4510 | return this->emitRetVoid(E) && maybeDestroyLocals(); |
4511 | } |
4512 | |
4513 | // Expressions with a primitive return type. |
4514 | if (std::optional<PrimType> T = classify(E)) { |
4515 | if (!visit(E)) |
4516 | return false; |
4517 | |
4518 | return this->emitRet(*T, E) && maybeDestroyLocals(); |
4519 | } |
4520 | |
4521 | // Expressions with a composite return type. |
4522 | // For us, that means everything we don't |
4523 | // have a PrimType for. |
4524 | if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { |
4525 | InitLinkScope<Emitter> ILS(this, InitLink::Temp(Offset: *LocalOffset)); |
4526 | if (!this->emitGetPtrLocal(*LocalOffset, E)) |
4527 | return false; |
4528 | |
4529 | if (!visitInitializer(E)) |
4530 | return false; |
4531 | |
4532 | if (!this->emitFinishInit(E)) |
4533 | return false; |
4534 | // We are destroying the locals AFTER the Ret op. |
4535 | // The Ret op needs to copy the (alive) values, but the |
4536 | // destructors may still turn the entire expression invalid. |
4537 | return this->emitRetValue(E) && maybeDestroyLocals(); |
4538 | } |
4539 | |
4540 | return maybeDestroyLocals() && this->emitCheckAllocations(E) && false; |
4541 | } |
4542 | |
4543 | template <class Emitter> |
4544 | VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD, |
4545 | bool IsConstexprUnknown) { |
4546 | |
4547 | auto R = this->visitVarDecl(VD, /*Toplevel=*/true, IsConstexprUnknown); |
4548 | |
4549 | if (R.notCreated()) |
4550 | return R; |
4551 | |
4552 | if (R) |
4553 | return true; |
4554 | |
4555 | if (!R && Context::shouldBeGloballyIndexed(VD)) { |
4556 | if (auto GlobalIndex = P.getGlobal(VD)) { |
4557 | Block *GlobalBlock = P.getGlobal(*GlobalIndex); |
4558 | GlobalInlineDescriptor &GD = |
4559 | *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); |
4560 | |
4561 | GD.InitState = GlobalInitState::InitializerFailed; |
4562 | GlobalBlock->invokeDtor(); |
4563 | } |
4564 | } |
4565 | |
4566 | return R; |
4567 | } |
4568 | |
4569 | /// Toplevel visitDeclAndReturn(). |
4570 | /// We get here from evaluateAsInitializer(). |
4571 | /// We need to evaluate the initializer and return its value. |
4572 | template <class Emitter> |
4573 | bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, |
4574 | bool ConstantContext) { |
4575 | std::optional<PrimType> VarT = classify(VD->getType()); |
4576 | |
4577 | // We only create variables if we're evaluating in a constant context. |
4578 | // Otherwise, just evaluate the initializer and return it. |
4579 | if (!ConstantContext) { |
4580 | DeclScope<Emitter> LS(this, VD); |
4581 | if (!this->visit(VD->getAnyInitializer())) |
4582 | return false; |
4583 | return this->emitRet(VarT.value_or(u: PT_Ptr), VD) && LS.destroyLocals() && |
4584 | this->emitCheckAllocations(VD); |
4585 | } |
4586 | |
4587 | LocalScope<Emitter> VDScope(this, VD); |
4588 | if (!this->visitVarDecl(VD, /*Toplevel=*/true)) |
4589 | return false; |
4590 | |
4591 | if (Context::shouldBeGloballyIndexed(VD)) { |
4592 | auto GlobalIndex = P.getGlobal(VD); |
4593 | assert(GlobalIndex); // visitVarDecl() didn't return false. |
4594 | if (VarT) { |
4595 | if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) |
4596 | return false; |
4597 | } else { |
4598 | if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) |
4599 | return false; |
4600 | } |
4601 | } else { |
4602 | auto Local = Locals.find(VD); |
4603 | assert(Local != Locals.end()); // Same here. |
4604 | if (VarT) { |
4605 | if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) |
4606 | return false; |
4607 | } else { |
4608 | if (!this->emitGetPtrLocal(Local->second.Offset, VD)) |
4609 | return false; |
4610 | } |
4611 | } |
4612 | |
4613 | // Return the value. |
4614 | if (!this->emitRet(VarT.value_or(u: PT_Ptr), VD)) { |
4615 | // If the Ret above failed and this is a global variable, mark it as |
4616 | // uninitialized, even everything else succeeded. |
4617 | if (Context::shouldBeGloballyIndexed(VD)) { |
4618 | auto GlobalIndex = P.getGlobal(VD); |
4619 | assert(GlobalIndex); |
4620 | Block *GlobalBlock = P.getGlobal(*GlobalIndex); |
4621 | GlobalInlineDescriptor &GD = |
4622 | *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); |
4623 | |
4624 | GD.InitState = GlobalInitState::InitializerFailed; |
4625 | GlobalBlock->invokeDtor(); |
4626 | } |
4627 | return false; |
4628 | } |
4629 | |
4630 | return VDScope.destroyLocals() && this->emitCheckAllocations(VD); |
4631 | } |
4632 | |
4633 | template <class Emitter> |
4634 | VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, |
4635 | bool Toplevel, |
4636 | bool IsConstexprUnknown) { |
4637 | // We don't know what to do with these, so just return false. |
4638 | if (VD->getType().isNull()) |
4639 | return false; |
4640 | |
4641 | // This case is EvalEmitter-only. If we won't create any instructions for the |
4642 | // initializer anyway, don't bother creating the variable in the first place. |
4643 | if (!this->isActive()) |
4644 | return VarCreationState::NotCreated(); |
4645 | |
4646 | const Expr *Init = VD->getInit(); |
4647 | std::optional<PrimType> VarT = classify(VD->getType()); |
4648 | |
4649 | if (Init && Init->isValueDependent()) |
4650 | return false; |
4651 | |
4652 | if (Context::shouldBeGloballyIndexed(VD)) { |
4653 | auto checkDecl = [&]() -> bool { |
4654 | bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); |
4655 | return !NeedsOp || this->emitCheckDecl(VD, VD); |
4656 | }; |
4657 | |
4658 | auto initGlobal = [&](unsigned GlobalIndex) -> bool { |
4659 | assert(Init); |
4660 | |
4661 | if (VarT) { |
4662 | if (!this->visit(Init)) |
4663 | return checkDecl() && false; |
4664 | |
4665 | return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); |
4666 | } |
4667 | |
4668 | if (!checkDecl()) |
4669 | return false; |
4670 | |
4671 | if (!this->emitGetPtrGlobal(GlobalIndex, Init)) |
4672 | return false; |
4673 | |
4674 | if (!visitInitializer(E: Init)) |
4675 | return false; |
4676 | |
4677 | if (!this->emitFinishInit(Init)) |
4678 | return false; |
4679 | |
4680 | return this->emitPopPtr(Init); |
4681 | }; |
4682 | |
4683 | DeclScope<Emitter> LocalScope(this, VD); |
4684 | |
4685 | // We've already seen and initialized this global. |
4686 | if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { |
4687 | if (P.getPtrGlobal(Idx: *GlobalIndex).isInitialized()) |
4688 | return checkDecl(); |
4689 | |
4690 | // The previous attempt at initialization might've been unsuccessful, |
4691 | // so let's try this one. |
4692 | return Init && checkDecl() && initGlobal(*GlobalIndex); |
4693 | } |
4694 | |
4695 | std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); |
4696 | |
4697 | if (!GlobalIndex) |
4698 | return false; |
4699 | |
4700 | return !Init || (checkDecl() && initGlobal(*GlobalIndex)); |
4701 | } else { |
4702 | InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); |
4703 | |
4704 | if (VarT) { |
4705 | unsigned Offset = this->allocateLocalPrimitive( |
4706 | VD, *VarT, VD->getType().isConstQualified(), nullptr, |
4707 | ScopeKind::Block, IsConstexprUnknown); |
4708 | if (Init) { |
4709 | // If this is a toplevel declaration, create a scope for the |
4710 | // initializer. |
4711 | if (Toplevel) { |
4712 | LocalScope<Emitter> Scope(this); |
4713 | if (!this->visit(Init)) |
4714 | return false; |
4715 | return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); |
4716 | } else { |
4717 | if (!this->visit(Init)) |
4718 | return false; |
4719 | return this->emitSetLocal(*VarT, Offset, VD); |
4720 | } |
4721 | } |
4722 | } else { |
4723 | if (std::optional<unsigned> Offset = |
4724 | this->allocateLocal(VD, VD->getType(), nullptr, ScopeKind::Block, |
4725 | IsConstexprUnknown)) { |
4726 | if (!Init) |
4727 | return true; |
4728 | |
4729 | if (!this->emitGetPtrLocal(*Offset, Init)) |
4730 | return false; |
4731 | |
4732 | if (!visitInitializer(E: Init)) |
4733 | return false; |
4734 | |
4735 | if (!this->emitFinishInit(Init)) |
4736 | return false; |
4737 | |
4738 | return this->emitPopPtr(Init); |
4739 | } |
4740 | return false; |
4741 | } |
4742 | return true; |
4743 | } |
4744 | |
4745 | return false; |
4746 | } |
4747 | |
4748 | template <class Emitter> |
4749 | bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, |
4750 | const Expr *E) { |
4751 | assert(!DiscardResult); |
4752 | if (Val.isInt()) |
4753 | return this->emitConst(Val.getInt(), ValType, E); |
4754 | else if (Val.isFloat()) |
4755 | return this->emitConstFloat(Val.getFloat(), E); |
4756 | |
4757 | if (Val.isLValue()) { |
4758 | if (Val.isNullPointer()) |
4759 | return this->emitNull(ValType, 0, nullptr, E); |
4760 | APValue::LValueBase Base = Val.getLValueBase(); |
4761 | if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) |
4762 | return this->visit(BaseExpr); |
4763 | else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { |
4764 | return this->visitDeclRef(VD, E); |
4765 | } |
4766 | } else if (Val.isMemberPointer()) { |
4767 | if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) |
4768 | return this->emitGetMemberPtr(MemberDecl, E); |
4769 | return this->emitNullMemberPtr(0, nullptr, E); |
4770 | } |
4771 | |
4772 | return false; |
4773 | } |
4774 | |
4775 | template <class Emitter> |
4776 | bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, |
4777 | const Expr *E, QualType T) { |
4778 | if (Val.isStruct()) { |
4779 | const Record *R = this->getRecord(T); |
4780 | assert(R); |
4781 | for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { |
4782 | const APValue &F = Val.getStructField(i: I); |
4783 | const Record::Field *RF = R->getField(I); |
4784 | QualType FieldType = RF->Decl->getType(); |
4785 | |
4786 | if (std::optional<PrimType> PT = classify(FieldType)) { |
4787 | if (!this->visitAPValue(F, *PT, E)) |
4788 | return false; |
4789 | if (!this->emitInitField(*PT, RF->Offset, E)) |
4790 | return false; |
4791 | } else { |
4792 | if (!this->emitGetPtrField(RF->Offset, E)) |
4793 | return false; |
4794 | if (!this->visitAPValueInitializer(F, E, FieldType)) |
4795 | return false; |
4796 | if (!this->emitPopPtr(E)) |
4797 | return false; |
4798 | } |
4799 | } |
4800 | return true; |
4801 | } else if (Val.isUnion()) { |
4802 | const FieldDecl *UnionField = Val.getUnionField(); |
4803 | const Record *R = this->getRecord(UnionField->getParent()); |
4804 | assert(R); |
4805 | const APValue &F = Val.getUnionValue(); |
4806 | const Record::Field *RF = R->getField(FD: UnionField); |
4807 | PrimType T = classifyPrim(RF->Decl->getType()); |
4808 | if (!this->visitAPValue(F, T, E)) |
4809 | return false; |
4810 | return this->emitInitField(T, RF->Offset, E); |
4811 | } else if (Val.isArray()) { |
4812 | const auto *ArrType = T->getAsArrayTypeUnsafe(); |
4813 | QualType ElemType = ArrType->getElementType(); |
4814 | for (unsigned A = 0, AN = Val.getArraySize(); A != AN; ++A) { |
4815 | const APValue &Elem = Val.getArrayInitializedElt(I: A); |
4816 | if (std::optional<PrimType> ElemT = classify(ElemType)) { |
4817 | if (!this->visitAPValue(Elem, *ElemT, E)) |
4818 | return false; |
4819 | if (!this->emitInitElem(*ElemT, A, E)) |
4820 | return false; |
4821 | } else { |
4822 | if (!this->emitConstUint32(A, E)) |
4823 | return false; |
4824 | if (!this->emitArrayElemPtrUint32(E)) |
4825 | return false; |
4826 | if (!this->visitAPValueInitializer(Elem, E, ElemType)) |
4827 | return false; |
4828 | if (!this->emitPopPtr(E)) |
4829 | return false; |
4830 | } |
4831 | } |
4832 | return true; |
4833 | } |
4834 | // TODO: Other types. |
4835 | |
4836 | return false; |
4837 | } |
4838 | |
4839 | template <class Emitter> |
4840 | bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E, |
4841 | unsigned BuiltinID) { |
4842 | |
4843 | if (BuiltinID == Builtin::BI__builtin_constant_p) { |
4844 | // Void argument is always invalid and harder to handle later. |
4845 | if (E->getArg(Arg: 0)->getType()->isVoidType()) { |
4846 | if (DiscardResult) |
4847 | return true; |
4848 | return this->emitConst(0, E); |
4849 | } |
4850 | |
4851 | if (!this->emitStartSpeculation(E)) |
4852 | return false; |
4853 | LabelTy EndLabel = this->getLabel(); |
4854 | if (!this->speculate(E, EndLabel)) |
4855 | return false; |
4856 | this->fallthrough(EndLabel); |
4857 | if (!this->emitEndSpeculation(E)) |
4858 | return false; |
4859 | if (DiscardResult) |
4860 | return this->emitPop(classifyPrim(E), E); |
4861 | return true; |
4862 | } |
4863 | |
4864 | // For these, we're expected to ultimately return an APValue pointing |
4865 | // to the CallExpr. This is needed to get the correct codegen. |
4866 | if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || |
4867 | BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString || |
4868 | BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant || |
4869 | BuiltinID == Builtin::BI__builtin_function_start) { |
4870 | if (DiscardResult) |
4871 | return true; |
4872 | return this->emitDummyPtr(E, E); |
4873 | } |
4874 | |
4875 | QualType ReturnType = E->getType(); |
4876 | std::optional<PrimType> ReturnT = classify(E); |
4877 | |
4878 | // Non-primitive return type. Prepare storage. |
4879 | if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { |
4880 | std::optional<unsigned> LocalIndex = allocateLocal(Src: E); |
4881 | if (!LocalIndex) |
4882 | return false; |
4883 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
4884 | return false; |
4885 | } |
4886 | |
4887 | if (!Context::isUnevaluatedBuiltin(ID: BuiltinID)) { |
4888 | // Put arguments on the stack. |
4889 | for (const auto *Arg : E->arguments()) { |
4890 | if (!this->visit(Arg)) |
4891 | return false; |
4892 | } |
4893 | } |
4894 | |
4895 | if (!this->emitCallBI(E, BuiltinID, E)) |
4896 | return false; |
4897 | |
4898 | if (DiscardResult && !ReturnType->isVoidType()) { |
4899 | assert(ReturnT); |
4900 | return this->emitPop(*ReturnT, E); |
4901 | } |
4902 | |
4903 | return true; |
4904 | } |
4905 | |
4906 | template <class Emitter> |
4907 | bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { |
4908 | const FunctionDecl *FuncDecl = E->getDirectCallee(); |
4909 | |
4910 | if (FuncDecl) { |
4911 | if (unsigned BuiltinID = FuncDecl->getBuiltinID()) |
4912 | return VisitBuiltinCallExpr(E, BuiltinID); |
4913 | |
4914 | // Calls to replaceable operator new/operator delete. |
4915 | if (FuncDecl->isUsableAsGlobalAllocationFunctionInConstantEvaluation()) { |
4916 | if (FuncDecl->getDeclName().isAnyOperatorNew()) { |
4917 | return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new); |
4918 | } else { |
4919 | assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete); |
4920 | return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete); |
4921 | } |
4922 | } |
4923 | |
4924 | // Explicit calls to trivial destructors |
4925 | if (const auto *DD = dyn_cast<CXXDestructorDecl>(Val: FuncDecl); |
4926 | DD && DD->isTrivial()) { |
4927 | const auto *MemberCall = cast<CXXMemberCallExpr>(Val: E); |
4928 | if (!this->visit(MemberCall->getImplicitObjectArgument())) |
4929 | return false; |
4930 | return this->emitCheckDestruction(E) && this->emitEndLifetime(E) && |
4931 | this->emitPopPtr(E); |
4932 | } |
4933 | } |
4934 | |
4935 | BlockScope<Emitter> CallScope(this, ScopeKind::Call); |
4936 | |
4937 | QualType ReturnType = E->getCallReturnType(Ctx: Ctx.getASTContext()); |
4938 | std::optional<PrimType> T = classify(ReturnType); |
4939 | bool HasRVO = !ReturnType->isVoidType() && !T; |
4940 | |
4941 | if (HasRVO) { |
4942 | if (DiscardResult) { |
4943 | // If we need to discard the return value but the function returns its |
4944 | // value via an RVO pointer, we need to create one such pointer just |
4945 | // for this call. |
4946 | if (std::optional<unsigned> LocalIndex = allocateLocal(Src: E)) { |
4947 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
4948 | return false; |
4949 | } |
4950 | } else { |
4951 | // We need the result. Prepare a pointer to return or |
4952 | // dup the current one. |
4953 | if (!Initializing) { |
4954 | if (std::optional<unsigned> LocalIndex = allocateLocal(Src: E)) { |
4955 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
4956 | return false; |
4957 | } |
4958 | } |
4959 | if (!this->emitDupPtr(E)) |
4960 | return false; |
4961 | } |
4962 | } |
4963 | |
4964 | SmallVector<const Expr *, 8> Args( |
4965 | llvm::ArrayRef(E->getArgs(), E->getNumArgs())); |
4966 | |
4967 | bool IsAssignmentOperatorCall = false; |
4968 | if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(Val: E); |
4969 | OCE && OCE->isAssignmentOp()) { |
4970 | // Just like with regular assignments, we need to special-case assignment |
4971 | // operators here and evaluate the RHS (the second arg) before the LHS (the |
4972 | // first arg). We fix this by using a Flip op later. |
4973 | assert(Args.size() == 2); |
4974 | IsAssignmentOperatorCall = true; |
4975 | std::reverse(first: Args.begin(), last: Args.end()); |
4976 | } |
4977 | // Calling a static operator will still |
4978 | // pass the instance, but we don't need it. |
4979 | // Discard it here. |
4980 | if (isa<CXXOperatorCallExpr>(Val: E)) { |
4981 | if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(Val: FuncDecl); |
4982 | MD && MD->isStatic()) { |
4983 | if (!this->discard(E->getArg(Arg: 0))) |
4984 | return false; |
4985 | // Drop first arg. |
4986 | Args.erase(CI: Args.begin()); |
4987 | } |
4988 | } |
4989 | |
4990 | std::optional<unsigned> CalleeOffset; |
4991 | // Add the (optional, implicit) This pointer. |
4992 | if (const auto *MC = dyn_cast<CXXMemberCallExpr>(Val: E)) { |
4993 | if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { |
4994 | // If we end up creating a CallPtr op for this, we need the base of the |
4995 | // member pointer as the instance pointer, and later extract the function |
4996 | // decl as the function pointer. |
4997 | const Expr *Callee = E->getCallee(); |
4998 | CalleeOffset = |
4999 | this->allocateLocalPrimitive(Callee, PT_MemberPtr, /*IsConst=*/true); |
5000 | if (!this->visit(Callee)) |
5001 | return false; |
5002 | if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) |
5003 | return false; |
5004 | if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) |
5005 | return false; |
5006 | if (!this->emitGetMemberPtrBase(E)) |
5007 | return false; |
5008 | } else if (!this->visit(MC->getImplicitObjectArgument())) { |
5009 | return false; |
5010 | } |
5011 | } else if (const auto *PD = |
5012 | dyn_cast<CXXPseudoDestructorExpr>(Val: E->getCallee())) { |
5013 | if (!this->emitCheckPseudoDtor(E)) |
5014 | return false; |
5015 | const Expr *Base = PD->getBase(); |
5016 | if (!Base->isGLValue()) |
5017 | return this->discard(Base); |
5018 | if (!this->visit(Base)) |
5019 | return false; |
5020 | return this->emitEndLifetimePop(E); |
5021 | } else if (!FuncDecl) { |
5022 | const Expr *Callee = E->getCallee(); |
5023 | CalleeOffset = |
5024 | this->allocateLocalPrimitive(Callee, PT_Ptr, /*IsConst=*/true); |
5025 | if (!this->visit(Callee)) |
5026 | return false; |
5027 | if (!this->emitSetLocal(PT_Ptr, *CalleeOffset, E)) |
5028 | return false; |
5029 | } |
5030 | |
5031 | if (!this->visitCallArgs(Args, FuncDecl)) |
5032 | return false; |
5033 | |
5034 | // Undo the argument reversal we did earlier. |
5035 | if (IsAssignmentOperatorCall) { |
5036 | assert(Args.size() == 2); |
5037 | PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr); |
5038 | PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr); |
5039 | if (!this->emitFlip(Arg2T, Arg1T, E)) |
5040 | return false; |
5041 | } |
5042 | |
5043 | if (FuncDecl) { |
5044 | const Function *Func = getFunction(FD: FuncDecl); |
5045 | if (!Func) |
5046 | return false; |
5047 | assert(HasRVO == Func->hasRVO()); |
5048 | |
5049 | bool HasQualifier = false; |
5050 | if (const auto *ME = dyn_cast<MemberExpr>(Val: E->getCallee())) |
5051 | HasQualifier = ME->hasQualifier(); |
5052 | |
5053 | bool IsVirtual = false; |
5054 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FuncDecl)) |
5055 | IsVirtual = MD->isVirtual(); |
5056 | |
5057 | // In any case call the function. The return value will end up on the stack |
5058 | // and if the function has RVO, we already have the pointer on the stack to |
5059 | // write the result into. |
5060 | if (IsVirtual && !HasQualifier) { |
5061 | uint32_t VarArgSize = 0; |
5062 | unsigned NumParams = |
5063 | Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(Val: E); |
5064 | for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) |
5065 | VarArgSize += align(primSize(classify(E->getArg(Arg: I)).value_or(PT_Ptr))); |
5066 | |
5067 | if (!this->emitCallVirt(Func, VarArgSize, E)) |
5068 | return false; |
5069 | } else if (Func->isVariadic()) { |
5070 | uint32_t VarArgSize = 0; |
5071 | unsigned NumParams = |
5072 | Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(Val: E); |
5073 | for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) |
5074 | VarArgSize += align(primSize(classify(E->getArg(Arg: I)).value_or(PT_Ptr))); |
5075 | if (!this->emitCallVar(Func, VarArgSize, E)) |
5076 | return false; |
5077 | } else { |
5078 | if (!this->emitCall(Func, 0, E)) |
5079 | return false; |
5080 | } |
5081 | } else { |
5082 | // Indirect call. Visit the callee, which will leave a FunctionPointer on |
5083 | // the stack. Cleanup of the returned value if necessary will be done after |
5084 | // the function call completed. |
5085 | |
5086 | // Sum the size of all args from the call expr. |
5087 | uint32_t ArgSize = 0; |
5088 | for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) |
5089 | ArgSize += align(primSize(classify(E->getArg(Arg: I)).value_or(PT_Ptr))); |
5090 | |
5091 | // Get the callee, either from a member pointer or function pointer saved in |
5092 | // CalleeOffset. |
5093 | if (isa<CXXMemberCallExpr>(Val: E) && CalleeOffset) { |
5094 | if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) |
5095 | return false; |
5096 | if (!this->emitGetMemberPtrDecl(E)) |
5097 | return false; |
5098 | } else { |
5099 | if (!this->emitGetLocal(PT_Ptr, *CalleeOffset, E)) |
5100 | return false; |
5101 | } |
5102 | if (!this->emitCallPtr(ArgSize, E, E)) |
5103 | return false; |
5104 | } |
5105 | |
5106 | // Cleanup for discarded return values. |
5107 | if (DiscardResult && !ReturnType->isVoidType() && T) |
5108 | return this->emitPop(*T, E) && CallScope.destroyLocals(); |
5109 | |
5110 | return CallScope.destroyLocals(); |
5111 | } |
5112 | |
5113 | template <class Emitter> |
5114 | bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { |
5115 | SourceLocScope<Emitter> SLS(this, E); |
5116 | |
5117 | return this->delegate(E->getExpr()); |
5118 | } |
5119 | |
5120 | template <class Emitter> |
5121 | bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { |
5122 | SourceLocScope<Emitter> SLS(this, E); |
5123 | |
5124 | return this->delegate(E->getExpr()); |
5125 | } |
5126 | |
5127 | template <class Emitter> |
5128 | bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
5129 | if (DiscardResult) |
5130 | return true; |
5131 | |
5132 | return this->emitConstBool(E->getValue(), E); |
5133 | } |
5134 | |
5135 | template <class Emitter> |
5136 | bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( |
5137 | const CXXNullPtrLiteralExpr *E) { |
5138 | if (DiscardResult) |
5139 | return true; |
5140 | |
5141 | uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(QT: E->getType()); |
5142 | return this->emitNullPtr(Val, nullptr, E); |
5143 | } |
5144 | |
5145 | template <class Emitter> |
5146 | bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { |
5147 | if (DiscardResult) |
5148 | return true; |
5149 | |
5150 | assert(E->getType()->isIntegerType()); |
5151 | |
5152 | PrimType T = classifyPrim(E->getType()); |
5153 | return this->emitZero(T, E); |
5154 | } |
5155 | |
5156 | template <class Emitter> |
5157 | bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { |
5158 | if (DiscardResult) |
5159 | return true; |
5160 | |
5161 | if (this->LambdaThisCapture.Offset > 0) { |
5162 | if (this->LambdaThisCapture.IsPtr) |
5163 | return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); |
5164 | return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); |
5165 | } |
5166 | |
5167 | // In some circumstances, the 'this' pointer does not actually refer to the |
5168 | // instance pointer of the current function frame, but e.g. to the declaration |
5169 | // currently being initialized. Here we emit the necessary instruction(s) for |
5170 | // this scenario. |
5171 | if (!InitStackActive) |
5172 | return this->emitThis(E); |
5173 | |
5174 | if (!InitStack.empty()) { |
5175 | // If our init stack is, for example: |
5176 | // 0 Stack: 3 (decl) |
5177 | // 1 Stack: 6 (init list) |
5178 | // 2 Stack: 1 (field) |
5179 | // 3 Stack: 6 (init list) |
5180 | // 4 Stack: 1 (field) |
5181 | // |
5182 | // We want to find the LAST element in it that's an init list, |
5183 | // which is marked with the K_InitList marker. The index right |
5184 | // before that points to an init list. We need to find the |
5185 | // elements before the K_InitList element that point to a base |
5186 | // (e.g. a decl or This), optionally followed by field, elem, etc. |
5187 | // In the example above, we want to emit elements [0..2]. |
5188 | unsigned StartIndex = 0; |
5189 | unsigned EndIndex = 0; |
5190 | // Find the init list. |
5191 | for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { |
5192 | if (InitStack[StartIndex].Kind == InitLink::K_InitList || |
5193 | InitStack[StartIndex].Kind == InitLink::K_This) { |
5194 | EndIndex = StartIndex; |
5195 | --StartIndex; |
5196 | break; |
5197 | } |
5198 | } |
5199 | |
5200 | // Walk backwards to find the base. |
5201 | for (; StartIndex > 0; --StartIndex) { |
5202 | if (InitStack[StartIndex].Kind == InitLink::K_InitList) |
5203 | continue; |
5204 | |
5205 | if (InitStack[StartIndex].Kind != InitLink::K_Field && |
5206 | InitStack[StartIndex].Kind != InitLink::K_Elem) |
5207 | break; |
5208 | } |
5209 | |
5210 | // Emit the instructions. |
5211 | for (unsigned I = StartIndex; I != EndIndex; ++I) { |
5212 | if (InitStack[I].Kind == InitLink::K_InitList) |
5213 | continue; |
5214 | if (!InitStack[I].template emit<Emitter>(this, E)) |
5215 | return false; |
5216 | } |
5217 | return true; |
5218 | } |
5219 | return this->emitThis(E); |
5220 | } |
5221 | |
5222 | template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { |
5223 | switch (S->getStmtClass()) { |
5224 | case Stmt::CompoundStmtClass: |
5225 | return visitCompoundStmt(S: cast<CompoundStmt>(Val: S)); |
5226 | case Stmt::DeclStmtClass: |
5227 | return visitDeclStmt(DS: cast<DeclStmt>(Val: S), /*EvaluateConditionDecl=*/true); |
5228 | case Stmt::ReturnStmtClass: |
5229 | return visitReturnStmt(RS: cast<ReturnStmt>(Val: S)); |
5230 | case Stmt::IfStmtClass: |
5231 | return visitIfStmt(IS: cast<IfStmt>(Val: S)); |
5232 | case Stmt::WhileStmtClass: |
5233 | return visitWhileStmt(S: cast<WhileStmt>(Val: S)); |
5234 | case Stmt::DoStmtClass: |
5235 | return visitDoStmt(S: cast<DoStmt>(Val: S)); |
5236 | case Stmt::ForStmtClass: |
5237 | return visitForStmt(S: cast<ForStmt>(Val: S)); |
5238 | case Stmt::CXXForRangeStmtClass: |
5239 | return visitCXXForRangeStmt(S: cast<CXXForRangeStmt>(Val: S)); |
5240 | case Stmt::BreakStmtClass: |
5241 | return visitBreakStmt(S: cast<BreakStmt>(Val: S)); |
5242 | case Stmt::ContinueStmtClass: |
5243 | return visitContinueStmt(S: cast<ContinueStmt>(Val: S)); |
5244 | case Stmt::SwitchStmtClass: |
5245 | return visitSwitchStmt(S: cast<SwitchStmt>(Val: S)); |
5246 | case Stmt::CaseStmtClass: |
5247 | return visitCaseStmt(S: cast<CaseStmt>(Val: S)); |
5248 | case Stmt::DefaultStmtClass: |
5249 | return visitDefaultStmt(S: cast<DefaultStmt>(Val: S)); |
5250 | case Stmt::AttributedStmtClass: |
5251 | return visitAttributedStmt(S: cast<AttributedStmt>(Val: S)); |
5252 | case Stmt::CXXTryStmtClass: |
5253 | return visitCXXTryStmt(S: cast<CXXTryStmt>(Val: S)); |
5254 | case Stmt::NullStmtClass: |
5255 | return true; |
5256 | // Always invalid statements. |
5257 | case Stmt::GCCAsmStmtClass: |
5258 | case Stmt::MSAsmStmtClass: |
5259 | case Stmt::GotoStmtClass: |
5260 | return this->emitInvalid(S); |
5261 | case Stmt::LabelStmtClass: |
5262 | return this->visitStmt(cast<LabelStmt>(Val: S)->getSubStmt()); |
5263 | default: { |
5264 | if (const auto *E = dyn_cast<Expr>(Val: S)) |
5265 | return this->discard(E); |
5266 | return false; |
5267 | } |
5268 | } |
5269 | } |
5270 | |
5271 | template <class Emitter> |
5272 | bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { |
5273 | BlockScope<Emitter> Scope(this); |
5274 | for (const auto *InnerStmt : S->body()) |
5275 | if (!visitStmt(S: InnerStmt)) |
5276 | return false; |
5277 | return Scope.destroyLocals(); |
5278 | } |
5279 | |
5280 | template <class Emitter> |
5281 | bool Compiler<Emitter>::maybeEmitDeferredVarInit(const VarDecl *VD) { |
5282 | if (auto *DD = dyn_cast_if_present<DecompositionDecl>(Val: VD)) { |
5283 | for (auto *BD : DD->bindings()) |
5284 | if (auto *KD = BD->getHoldingVar(); KD && !this->visitVarDecl(KD)) |
5285 | return false; |
5286 | } |
5287 | return true; |
5288 | } |
5289 | |
5290 | template <class Emitter> |
5291 | bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS, |
5292 | bool EvaluateConditionDecl) { |
5293 | for (const auto *D : DS->decls()) { |
5294 | if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, BaseUsingDecl, |
5295 | FunctionDecl, NamespaceAliasDecl, UsingDirectiveDecl>(Val: D)) |
5296 | continue; |
5297 | |
5298 | const auto *VD = dyn_cast<VarDecl>(Val: D); |
5299 | if (!VD) |
5300 | return false; |
5301 | if (!this->visitVarDecl(VD)) |
5302 | return false; |
5303 | |
5304 | // Register decomposition decl holding vars. |
5305 | if (EvaluateConditionDecl && !this->maybeEmitDeferredVarInit(VD)) |
5306 | return false; |
5307 | } |
5308 | |
5309 | return true; |
5310 | } |
5311 | |
5312 | template <class Emitter> |
5313 | bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { |
5314 | if (this->InStmtExpr) |
5315 | return this->emitUnsupported(RS); |
5316 | |
5317 | if (const Expr *RE = RS->getRetValue()) { |
5318 | LocalScope<Emitter> RetScope(this); |
5319 | if (ReturnType) { |
5320 | // Primitive types are simply returned. |
5321 | if (!this->visit(RE)) |
5322 | return false; |
5323 | this->emitCleanup(); |
5324 | return this->emitRet(*ReturnType, RS); |
5325 | } else if (RE->getType()->isVoidType()) { |
5326 | if (!this->visit(RE)) |
5327 | return false; |
5328 | } else { |
5329 | InitLinkScope<Emitter> ILS(this, InitLink::RVO()); |
5330 | // RVO - construct the value in the return location. |
5331 | if (!this->emitRVOPtr(RE)) |
5332 | return false; |
5333 | if (!this->visitInitializer(RE)) |
5334 | return false; |
5335 | if (!this->emitPopPtr(RE)) |
5336 | return false; |
5337 | |
5338 | this->emitCleanup(); |
5339 | return this->emitRetVoid(RS); |
5340 | } |
5341 | } |
5342 | |
5343 | // Void return. |
5344 | this->emitCleanup(); |
5345 | return this->emitRetVoid(RS); |
5346 | } |
5347 | |
5348 | template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { |
5349 | auto visitChildStmt = [&](const Stmt *S) -> bool { |
5350 | LocalScope<Emitter> SScope(this); |
5351 | if (!visitStmt(S)) |
5352 | return false; |
5353 | return SScope.destroyLocals(); |
5354 | }; |
5355 | if (auto *CondInit = IS->getInit()) |
5356 | if (!visitStmt(S: CondInit)) |
5357 | return false; |
5358 | |
5359 | if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) |
5360 | if (!visitDeclStmt(DS: CondDecl)) |
5361 | return false; |
5362 | |
5363 | // Save ourselves compiling some code and the jumps, etc. if the condition is |
5364 | // stataically known to be either true or false. We could look at more cases |
5365 | // here, but I think all the ones that actually happen are using a |
5366 | // ConstantExpr. |
5367 | if (std::optional<bool> BoolValue = getBoolValue(E: IS->getCond())) { |
5368 | if (*BoolValue) |
5369 | return visitChildStmt(IS->getThen()); |
5370 | else if (const Stmt *Else = IS->getElse()) |
5371 | return visitChildStmt(Else); |
5372 | return true; |
5373 | } |
5374 | |
5375 | // Otherwise, compile the condition. |
5376 | if (IS->isNonNegatedConsteval()) { |
5377 | if (!this->emitIsConstantContext(IS)) |
5378 | return false; |
5379 | } else if (IS->isNegatedConsteval()) { |
5380 | if (!this->emitIsConstantContext(IS)) |
5381 | return false; |
5382 | if (!this->emitInv(IS)) |
5383 | return false; |
5384 | } else { |
5385 | if (!this->visitBool(IS->getCond())) |
5386 | return false; |
5387 | } |
5388 | |
5389 | if (!this->maybeEmitDeferredVarInit(IS->getConditionVariable())) |
5390 | return false; |
5391 | |
5392 | if (const Stmt *Else = IS->getElse()) { |
5393 | LabelTy LabelElse = this->getLabel(); |
5394 | LabelTy LabelEnd = this->getLabel(); |
5395 | if (!this->jumpFalse(LabelElse)) |
5396 | return false; |
5397 | if (!visitChildStmt(IS->getThen())) |
5398 | return false; |
5399 | if (!this->jump(LabelEnd)) |
5400 | return false; |
5401 | this->emitLabel(LabelElse); |
5402 | if (!visitChildStmt(Else)) |
5403 | return false; |
5404 | this->emitLabel(LabelEnd); |
5405 | } else { |
5406 | LabelTy LabelEnd = this->getLabel(); |
5407 | if (!this->jumpFalse(LabelEnd)) |
5408 | return false; |
5409 | if (!visitChildStmt(IS->getThen())) |
5410 | return false; |
5411 | this->emitLabel(LabelEnd); |
5412 | } |
5413 | |
5414 | return true; |
5415 | } |
5416 | |
5417 | template <class Emitter> |
5418 | bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { |
5419 | const Expr *Cond = S->getCond(); |
5420 | const Stmt *Body = S->getBody(); |
5421 | |
5422 | LabelTy CondLabel = this->getLabel(); // Label before the condition. |
5423 | LabelTy EndLabel = this->getLabel(); // Label after the loop. |
5424 | LoopScope<Emitter> LS(this, EndLabel, CondLabel); |
5425 | |
5426 | this->fallthrough(CondLabel); |
5427 | this->emitLabel(CondLabel); |
5428 | |
5429 | { |
5430 | LocalScope<Emitter> CondScope(this); |
5431 | if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) |
5432 | if (!visitDeclStmt(DS: CondDecl)) |
5433 | return false; |
5434 | |
5435 | if (!this->visitBool(Cond)) |
5436 | return false; |
5437 | |
5438 | if (!this->maybeEmitDeferredVarInit(S->getConditionVariable())) |
5439 | return false; |
5440 | |
5441 | if (!this->jumpFalse(EndLabel)) |
5442 | return false; |
5443 | |
5444 | if (!this->visitStmt(Body)) |
5445 | return false; |
5446 | |
5447 | if (!CondScope.destroyLocals()) |
5448 | return false; |
5449 | } |
5450 | if (!this->jump(CondLabel)) |
5451 | return false; |
5452 | this->fallthrough(EndLabel); |
5453 | this->emitLabel(EndLabel); |
5454 | |
5455 | return true; |
5456 | } |
5457 | |
5458 | template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { |
5459 | const Expr *Cond = S->getCond(); |
5460 | const Stmt *Body = S->getBody(); |
5461 | |
5462 | LabelTy StartLabel = this->getLabel(); |
5463 | LabelTy EndLabel = this->getLabel(); |
5464 | LabelTy CondLabel = this->getLabel(); |
5465 | LoopScope<Emitter> LS(this, EndLabel, CondLabel); |
5466 | |
5467 | this->fallthrough(StartLabel); |
5468 | this->emitLabel(StartLabel); |
5469 | |
5470 | { |
5471 | LocalScope<Emitter> CondScope(this); |
5472 | if (!this->visitStmt(Body)) |
5473 | return false; |
5474 | this->fallthrough(CondLabel); |
5475 | this->emitLabel(CondLabel); |
5476 | if (!this->visitBool(Cond)) |
5477 | return false; |
5478 | |
5479 | if (!CondScope.destroyLocals()) |
5480 | return false; |
5481 | } |
5482 | if (!this->jumpTrue(StartLabel)) |
5483 | return false; |
5484 | |
5485 | this->fallthrough(EndLabel); |
5486 | this->emitLabel(EndLabel); |
5487 | return true; |
5488 | } |
5489 | |
5490 | template <class Emitter> |
5491 | bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { |
5492 | // for (Init; Cond; Inc) { Body } |
5493 | const Stmt *Init = S->getInit(); |
5494 | const Expr *Cond = S->getCond(); |
5495 | const Expr *Inc = S->getInc(); |
5496 | const Stmt *Body = S->getBody(); |
5497 | |
5498 | LabelTy EndLabel = this->getLabel(); |
5499 | LabelTy CondLabel = this->getLabel(); |
5500 | LabelTy IncLabel = this->getLabel(); |
5501 | LoopScope<Emitter> LS(this, EndLabel, IncLabel); |
5502 | |
5503 | if (Init && !this->visitStmt(Init)) |
5504 | return false; |
5505 | |
5506 | this->fallthrough(CondLabel); |
5507 | this->emitLabel(CondLabel); |
5508 | |
5509 | // Start of loop body. |
5510 | LocalScope<Emitter> CondScope(this); |
5511 | if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) |
5512 | if (!visitDeclStmt(DS: CondDecl)) |
5513 | return false; |
5514 | |
5515 | if (Cond) { |
5516 | if (!this->visitBool(Cond)) |
5517 | return false; |
5518 | if (!this->jumpFalse(EndLabel)) |
5519 | return false; |
5520 | } |
5521 | if (!this->maybeEmitDeferredVarInit(S->getConditionVariable())) |
5522 | return false; |
5523 | |
5524 | if (Body && !this->visitStmt(Body)) |
5525 | return false; |
5526 | |
5527 | this->fallthrough(IncLabel); |
5528 | this->emitLabel(IncLabel); |
5529 | if (Inc && !this->discard(Inc)) |
5530 | return false; |
5531 | |
5532 | if (!CondScope.destroyLocals()) |
5533 | return false; |
5534 | if (!this->jump(CondLabel)) |
5535 | return false; |
5536 | // End of loop body. |
5537 | |
5538 | this->emitLabel(EndLabel); |
5539 | // If we jumped out of the loop above, we still need to clean up the condition |
5540 | // scope. |
5541 | return CondScope.destroyLocals(); |
5542 | } |
5543 | |
5544 | template <class Emitter> |
5545 | bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { |
5546 | const Stmt *Init = S->getInit(); |
5547 | const Expr *Cond = S->getCond(); |
5548 | const Expr *Inc = S->getInc(); |
5549 | const Stmt *Body = S->getBody(); |
5550 | const Stmt *BeginStmt = S->getBeginStmt(); |
5551 | const Stmt *RangeStmt = S->getRangeStmt(); |
5552 | const Stmt *EndStmt = S->getEndStmt(); |
5553 | const VarDecl *LoopVar = S->getLoopVariable(); |
5554 | |
5555 | LabelTy EndLabel = this->getLabel(); |
5556 | LabelTy CondLabel = this->getLabel(); |
5557 | LabelTy IncLabel = this->getLabel(); |
5558 | LoopScope<Emitter> LS(this, EndLabel, IncLabel); |
5559 | |
5560 | // Emit declarations needed in the loop. |
5561 | if (Init && !this->visitStmt(Init)) |
5562 | return false; |
5563 | if (!this->visitStmt(RangeStmt)) |
5564 | return false; |
5565 | if (!this->visitStmt(BeginStmt)) |
5566 | return false; |
5567 | if (!this->visitStmt(EndStmt)) |
5568 | return false; |
5569 | |
5570 | // Now the condition as well as the loop variable assignment. |
5571 | this->fallthrough(CondLabel); |
5572 | this->emitLabel(CondLabel); |
5573 | if (!this->visitBool(Cond)) |
5574 | return false; |
5575 | if (!this->jumpFalse(EndLabel)) |
5576 | return false; |
5577 | |
5578 | if (!this->visitVarDecl(LoopVar)) |
5579 | return false; |
5580 | |
5581 | // Body. |
5582 | { |
5583 | if (!this->visitStmt(Body)) |
5584 | return false; |
5585 | |
5586 | this->fallthrough(IncLabel); |
5587 | this->emitLabel(IncLabel); |
5588 | if (!this->discard(Inc)) |
5589 | return false; |
5590 | } |
5591 | |
5592 | if (!this->jump(CondLabel)) |
5593 | return false; |
5594 | |
5595 | this->fallthrough(EndLabel); |
5596 | this->emitLabel(EndLabel); |
5597 | return true; |
5598 | } |
5599 | |
5600 | template <class Emitter> |
5601 | bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { |
5602 | if (!BreakLabel) |
5603 | return false; |
5604 | |
5605 | for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope; |
5606 | C = C->getParent()) |
5607 | C->emitDestruction(); |
5608 | return this->jump(*BreakLabel); |
5609 | } |
5610 | |
5611 | template <class Emitter> |
5612 | bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { |
5613 | if (!ContinueLabel) |
5614 | return false; |
5615 | |
5616 | for (VariableScope<Emitter> *C = VarScope; |
5617 | C && C->getParent() != ContinueVarScope; C = C->getParent()) |
5618 | C->emitDestruction(); |
5619 | return this->jump(*ContinueLabel); |
5620 | } |
5621 | |
5622 | template <class Emitter> |
5623 | bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { |
5624 | const Expr *Cond = S->getCond(); |
5625 | PrimType CondT = this->classifyPrim(Cond->getType()); |
5626 | LocalScope<Emitter> LS(this); |
5627 | |
5628 | LabelTy EndLabel = this->getLabel(); |
5629 | OptLabelTy DefaultLabel = std::nullopt; |
5630 | unsigned CondVar = |
5631 | this->allocateLocalPrimitive(Cond, CondT, /*IsConst=*/true); |
5632 | |
5633 | if (const auto *CondInit = S->getInit()) |
5634 | if (!visitStmt(S: CondInit)) |
5635 | return false; |
5636 | |
5637 | if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) |
5638 | if (!visitDeclStmt(DS: CondDecl)) |
5639 | return false; |
5640 | |
5641 | // Initialize condition variable. |
5642 | if (!this->visit(Cond)) |
5643 | return false; |
5644 | if (!this->emitSetLocal(CondT, CondVar, S)) |
5645 | return false; |
5646 | |
5647 | if (!this->maybeEmitDeferredVarInit(S->getConditionVariable())) |
5648 | return false; |
5649 | |
5650 | CaseMap CaseLabels; |
5651 | // Create labels and comparison ops for all case statements. |
5652 | for (const SwitchCase *SC = S->getSwitchCaseList(); SC; |
5653 | SC = SC->getNextSwitchCase()) { |
5654 | if (const auto *CS = dyn_cast<CaseStmt>(Val: SC)) { |
5655 | // FIXME: Implement ranges. |
5656 | if (CS->caseStmtIsGNURange()) |
5657 | return false; |
5658 | CaseLabels[SC] = this->getLabel(); |
5659 | |
5660 | const Expr *Value = CS->getLHS(); |
5661 | PrimType ValueT = this->classifyPrim(Value->getType()); |
5662 | |
5663 | // Compare the case statement's value to the switch condition. |
5664 | if (!this->emitGetLocal(CondT, CondVar, CS)) |
5665 | return false; |
5666 | if (!this->visit(Value)) |
5667 | return false; |
5668 | |
5669 | // Compare and jump to the case label. |
5670 | if (!this->emitEQ(ValueT, S)) |
5671 | return false; |
5672 | if (!this->jumpTrue(CaseLabels[CS])) |
5673 | return false; |
5674 | } else { |
5675 | assert(!DefaultLabel); |
5676 | DefaultLabel = this->getLabel(); |
5677 | } |
5678 | } |
5679 | |
5680 | // If none of the conditions above were true, fall through to the default |
5681 | // statement or jump after the switch statement. |
5682 | if (DefaultLabel) { |
5683 | if (!this->jump(*DefaultLabel)) |
5684 | return false; |
5685 | } else { |
5686 | if (!this->jump(EndLabel)) |
5687 | return false; |
5688 | } |
5689 | |
5690 | SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); |
5691 | if (!this->visitStmt(S->getBody())) |
5692 | return false; |
5693 | this->emitLabel(EndLabel); |
5694 | |
5695 | return LS.destroyLocals(); |
5696 | } |
5697 | |
5698 | template <class Emitter> |
5699 | bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { |
5700 | this->emitLabel(CaseLabels[S]); |
5701 | return this->visitStmt(S->getSubStmt()); |
5702 | } |
5703 | |
5704 | template <class Emitter> |
5705 | bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { |
5706 | this->emitLabel(*DefaultLabel); |
5707 | return this->visitStmt(S->getSubStmt()); |
5708 | } |
5709 | |
5710 | template <class Emitter> |
5711 | bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { |
5712 | if (this->Ctx.getLangOpts().CXXAssumptions && |
5713 | !this->Ctx.getLangOpts().MSVCCompat) { |
5714 | for (const Attr *A : S->getAttrs()) { |
5715 | auto *AA = dyn_cast<CXXAssumeAttr>(A); |
5716 | if (!AA) |
5717 | continue; |
5718 | |
5719 | assert(isa<NullStmt>(S->getSubStmt())); |
5720 | |
5721 | const Expr *Assumption = AA->getAssumption(); |
5722 | if (Assumption->isValueDependent()) |
5723 | return false; |
5724 | |
5725 | if (Assumption->HasSideEffects(Ctx: this->Ctx.getASTContext())) |
5726 | continue; |
5727 | |
5728 | // Evaluate assumption. |
5729 | if (!this->visitBool(Assumption)) |
5730 | return false; |
5731 | |
5732 | if (!this->emitAssume(Assumption)) |
5733 | return false; |
5734 | } |
5735 | } |
5736 | |
5737 | // Ignore other attributes. |
5738 | return this->visitStmt(S->getSubStmt()); |
5739 | } |
5740 | |
5741 | template <class Emitter> |
5742 | bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { |
5743 | // Ignore all handlers. |
5744 | return this->visitStmt(S->getTryBlock()); |
5745 | } |
5746 | |
5747 | template <class Emitter> |
5748 | bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { |
5749 | assert(MD->isLambdaStaticInvoker()); |
5750 | assert(MD->hasBody()); |
5751 | assert(cast<CompoundStmt>(MD->getBody())->body_empty()); |
5752 | |
5753 | const CXXRecordDecl *ClosureClass = MD->getParent(); |
5754 | const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); |
5755 | assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); |
5756 | const Function *Func = this->getFunction(LambdaCallOp); |
5757 | if (!Func) |
5758 | return false; |
5759 | assert(Func->hasThisPointer()); |
5760 | assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); |
5761 | |
5762 | if (Func->hasRVO()) { |
5763 | if (!this->emitRVOPtr(MD)) |
5764 | return false; |
5765 | } |
5766 | |
5767 | // The lambda call operator needs an instance pointer, but we don't have |
5768 | // one here, and we don't need one either because the lambda cannot have |
5769 | // any captures, as verified above. Emit a null pointer. This is then |
5770 | // special-cased when interpreting to not emit any misleading diagnostics. |
5771 | if (!this->emitNullPtr(0, nullptr, MD)) |
5772 | return false; |
5773 | |
5774 | // Forward all arguments from the static invoker to the lambda call operator. |
5775 | for (const ParmVarDecl *PVD : MD->parameters()) { |
5776 | auto It = this->Params.find(PVD); |
5777 | assert(It != this->Params.end()); |
5778 | |
5779 | // We do the lvalue-to-rvalue conversion manually here, so no need |
5780 | // to care about references. |
5781 | PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); |
5782 | if (!this->emitGetParam(ParamType, It->second.Offset, MD)) |
5783 | return false; |
5784 | } |
5785 | |
5786 | if (!this->emitCall(Func, 0, LambdaCallOp)) |
5787 | return false; |
5788 | |
5789 | this->emitCleanup(); |
5790 | if (ReturnType) |
5791 | return this->emitRet(*ReturnType, MD); |
5792 | |
5793 | // Nothing to do, since we emitted the RVO pointer above. |
5794 | return this->emitRetVoid(MD); |
5795 | } |
5796 | |
5797 | template <class Emitter> |
5798 | bool Compiler<Emitter>::checkLiteralType(const Expr *E) { |
5799 | if (Ctx.getLangOpts().CPlusPlus23) |
5800 | return true; |
5801 | |
5802 | if (!E->isPRValue() || E->getType()->isLiteralType(Ctx: Ctx.getASTContext())) |
5803 | return true; |
5804 | |
5805 | return this->emitCheckLiteralType(E->getType().getTypePtr(), E); |
5806 | } |
5807 | |
5808 | template <class Emitter> |
5809 | bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) { |
5810 | assert(!ReturnType); |
5811 | |
5812 | auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, |
5813 | const Expr *InitExpr) -> bool { |
5814 | // We don't know what to do with these, so just return false. |
5815 | if (InitExpr->getType().isNull()) |
5816 | return false; |
5817 | |
5818 | if (std::optional<PrimType> T = this->classify(InitExpr)) { |
5819 | if (!this->visit(InitExpr)) |
5820 | return false; |
5821 | |
5822 | if (F->isBitField()) |
5823 | return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); |
5824 | return this->emitInitThisField(*T, FieldOffset, InitExpr); |
5825 | } |
5826 | // Non-primitive case. Get a pointer to the field-to-initialize |
5827 | // on the stack and call visitInitialzer() for it. |
5828 | InitLinkScope<Emitter> FieldScope(this, InitLink::Field(Offset: F->Offset)); |
5829 | if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) |
5830 | return false; |
5831 | |
5832 | if (!this->visitInitializer(InitExpr)) |
5833 | return false; |
5834 | |
5835 | return this->emitFinishInitPop(InitExpr); |
5836 | }; |
5837 | |
5838 | const RecordDecl *RD = Ctor->getParent(); |
5839 | const Record *R = this->getRecord(RD); |
5840 | if (!R) |
5841 | return false; |
5842 | |
5843 | if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) { |
5844 | // union copy and move ctors are special. |
5845 | assert(cast<CompoundStmt>(Ctor->getBody())->body_empty()); |
5846 | if (!this->emitThis(Ctor)) |
5847 | return false; |
5848 | |
5849 | auto PVD = Ctor->getParamDecl(0); |
5850 | ParamOffset PO = this->Params[PVD]; // Must exist. |
5851 | |
5852 | if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor)) |
5853 | return false; |
5854 | |
5855 | return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) && |
5856 | this->emitRetVoid(Ctor); |
5857 | } |
5858 | |
5859 | InitLinkScope<Emitter> InitScope(this, InitLink::This()); |
5860 | for (const auto *Init : Ctor->inits()) { |
5861 | // Scope needed for the initializers. |
5862 | BlockScope<Emitter> Scope(this); |
5863 | |
5864 | const Expr *InitExpr = Init->getInit(); |
5865 | if (const FieldDecl *Member = Init->getMember()) { |
5866 | const Record::Field *F = R->getField(FD: Member); |
5867 | |
5868 | if (!emitFieldInitializer(F, F->Offset, InitExpr)) |
5869 | return false; |
5870 | } else if (const Type *Base = Init->getBaseClass()) { |
5871 | const auto *BaseDecl = Base->getAsCXXRecordDecl(); |
5872 | assert(BaseDecl); |
5873 | |
5874 | if (Init->isBaseVirtual()) { |
5875 | assert(R->getVirtualBase(BaseDecl)); |
5876 | if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) |
5877 | return false; |
5878 | |
5879 | } else { |
5880 | // Base class initializer. |
5881 | // Get This Base and call initializer on it. |
5882 | const Record::Base *B = R->getBase(BaseDecl); |
5883 | assert(B); |
5884 | if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) |
5885 | return false; |
5886 | } |
5887 | |
5888 | if (!this->visitInitializer(InitExpr)) |
5889 | return false; |
5890 | if (!this->emitFinishInitPop(InitExpr)) |
5891 | return false; |
5892 | } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { |
5893 | assert(IFD->getChainingSize() >= 2); |
5894 | |
5895 | unsigned NestedFieldOffset = 0; |
5896 | const Record::Field *NestedField = nullptr; |
5897 | for (const NamedDecl *ND : IFD->chain()) { |
5898 | const auto *FD = cast<FieldDecl>(Val: ND); |
5899 | const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); |
5900 | assert(FieldRecord); |
5901 | |
5902 | NestedField = FieldRecord->getField(FD); |
5903 | assert(NestedField); |
5904 | |
5905 | NestedFieldOffset += NestedField->Offset; |
5906 | } |
5907 | assert(NestedField); |
5908 | |
5909 | if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr)) |
5910 | return false; |
5911 | |
5912 | // Mark all chain links as initialized. |
5913 | unsigned InitFieldOffset = 0; |
5914 | for (const NamedDecl *ND : IFD->chain().drop_back()) { |
5915 | const auto *FD = cast<FieldDecl>(Val: ND); |
5916 | const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent()); |
5917 | assert(FieldRecord); |
5918 | NestedField = FieldRecord->getField(FD); |
5919 | InitFieldOffset += NestedField->Offset; |
5920 | assert(NestedField); |
5921 | if (!this->emitGetPtrThisField(InitFieldOffset, InitExpr)) |
5922 | return false; |
5923 | if (!this->emitFinishInitPop(InitExpr)) |
5924 | return false; |
5925 | } |
5926 | |
5927 | } else { |
5928 | assert(Init->isDelegatingInitializer()); |
5929 | if (!this->emitThis(InitExpr)) |
5930 | return false; |
5931 | if (!this->visitInitializer(Init->getInit())) |
5932 | return false; |
5933 | if (!this->emitPopPtr(InitExpr)) |
5934 | return false; |
5935 | } |
5936 | |
5937 | if (!Scope.destroyLocals()) |
5938 | return false; |
5939 | } |
5940 | |
5941 | if (const auto *Body = Ctor->getBody()) |
5942 | if (!visitStmt(S: Body)) |
5943 | return false; |
5944 | |
5945 | return this->emitRetVoid(SourceInfo{}); |
5946 | } |
5947 | |
5948 | template <class Emitter> |
5949 | bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) { |
5950 | const RecordDecl *RD = Dtor->getParent(); |
5951 | const Record *R = this->getRecord(RD); |
5952 | if (!R) |
5953 | return false; |
5954 | |
5955 | if (!Dtor->isTrivial() && Dtor->getBody()) { |
5956 | if (!this->visitStmt(Dtor->getBody())) |
5957 | return false; |
5958 | } |
5959 | |
5960 | if (!this->emitThis(Dtor)) |
5961 | return false; |
5962 | |
5963 | if (!this->emitCheckDestruction(Dtor)) |
5964 | return false; |
5965 | |
5966 | assert(R); |
5967 | if (!R->isUnion()) { |
5968 | // First, destroy all fields. |
5969 | for (const Record::Field &Field : llvm::reverse(R->fields())) { |
5970 | const Descriptor *D = Field.Desc; |
5971 | if (!D->isPrimitive() && !D->isPrimitiveArray()) { |
5972 | if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) |
5973 | return false; |
5974 | if (!this->emitDestruction(D, SourceInfo{})) |
5975 | return false; |
5976 | if (!this->emitPopPtr(SourceInfo{})) |
5977 | return false; |
5978 | } |
5979 | } |
5980 | } |
5981 | |
5982 | for (const Record::Base &Base : llvm::reverse(R->bases())) { |
5983 | if (Base.R->isAnonymousUnion()) |
5984 | continue; |
5985 | |
5986 | if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) |
5987 | return false; |
5988 | if (!this->emitRecordDestruction(Base.R, {})) |
5989 | return false; |
5990 | if (!this->emitPopPtr(SourceInfo{})) |
5991 | return false; |
5992 | } |
5993 | |
5994 | // FIXME: Virtual bases. |
5995 | return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor); |
5996 | } |
5997 | |
5998 | template <class Emitter> |
5999 | bool Compiler<Emitter>::compileUnionAssignmentOperator( |
6000 | const CXXMethodDecl *MD) { |
6001 | if (!this->emitThis(MD)) |
6002 | return false; |
6003 | |
6004 | auto PVD = MD->getParamDecl(0); |
6005 | ParamOffset PO = this->Params[PVD]; // Must exist. |
6006 | |
6007 | if (!this->emitGetParam(PT_Ptr, PO.Offset, MD)) |
6008 | return false; |
6009 | |
6010 | return this->emitMemcpy(MD) && this->emitRet(PT_Ptr, MD); |
6011 | } |
6012 | |
6013 | template <class Emitter> |
6014 | bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { |
6015 | // Classify the return type. |
6016 | ReturnType = this->classify(F->getReturnType()); |
6017 | |
6018 | if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Val: F)) |
6019 | return this->compileConstructor(Ctor); |
6020 | if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(Val: F)) |
6021 | return this->compileDestructor(Dtor); |
6022 | |
6023 | // Emit custom code if this is a lambda static invoker. |
6024 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: F)) { |
6025 | const RecordDecl *RD = MD->getParent(); |
6026 | |
6027 | if (RD->isUnion() && |
6028 | (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) |
6029 | return this->compileUnionAssignmentOperator(MD); |
6030 | |
6031 | if (MD->isLambdaStaticInvoker()) |
6032 | return this->emitLambdaStaticInvokerBody(MD); |
6033 | } |
6034 | |
6035 | // Regular functions. |
6036 | if (const auto *Body = F->getBody()) |
6037 | if (!visitStmt(S: Body)) |
6038 | return false; |
6039 | |
6040 | // Emit a guard return to protect against a code path missing one. |
6041 | if (F->getReturnType()->isVoidType()) |
6042 | return this->emitRetVoid(SourceInfo{}); |
6043 | return this->emitNoRet(SourceInfo{}); |
6044 | } |
6045 | |
6046 | template <class Emitter> |
6047 | bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { |
6048 | const Expr *SubExpr = E->getSubExpr(); |
6049 | if (SubExpr->getType()->isAnyComplexType()) |
6050 | return this->VisitComplexUnaryOperator(E); |
6051 | if (SubExpr->getType()->isVectorType()) |
6052 | return this->VisitVectorUnaryOperator(E); |
6053 | if (SubExpr->getType()->isFixedPointType()) |
6054 | return this->VisitFixedPointUnaryOperator(E); |
6055 | std::optional<PrimType> T = classify(SubExpr->getType()); |
6056 | |
6057 | switch (E->getOpcode()) { |
6058 | case UO_PostInc: { // x++ |
6059 | if (!Ctx.getLangOpts().CPlusPlus14) |
6060 | return this->emitInvalid(E); |
6061 | if (!T) |
6062 | return this->emitError(E); |
6063 | |
6064 | if (!this->visit(SubExpr)) |
6065 | return false; |
6066 | |
6067 | if (T == PT_Ptr) { |
6068 | if (!this->emitIncPtr(E)) |
6069 | return false; |
6070 | |
6071 | return DiscardResult ? this->emitPopPtr(E) : true; |
6072 | } |
6073 | |
6074 | if (T == PT_Float) { |
6075 | return DiscardResult ? this->emitIncfPop(getFPOptions(E), E) |
6076 | : this->emitIncf(getFPOptions(E), E); |
6077 | } |
6078 | |
6079 | return DiscardResult ? this->emitIncPop(*T, E->canOverflow(), E) |
6080 | : this->emitInc(*T, E->canOverflow(), E); |
6081 | } |
6082 | case UO_PostDec: { // x-- |
6083 | if (!Ctx.getLangOpts().CPlusPlus14) |
6084 | return this->emitInvalid(E); |
6085 | if (!T) |
6086 | return this->emitError(E); |
6087 | |
6088 | if (!this->visit(SubExpr)) |
6089 | return false; |
6090 | |
6091 | if (T == PT_Ptr) { |
6092 | if (!this->emitDecPtr(E)) |
6093 | return false; |
6094 | |
6095 | return DiscardResult ? this->emitPopPtr(E) : true; |
6096 | } |
6097 | |
6098 | if (T == PT_Float) { |
6099 | return DiscardResult ? this->emitDecfPop(getFPOptions(E), E) |
6100 | : this->emitDecf(getFPOptions(E), E); |
6101 | } |
6102 | |
6103 | return DiscardResult ? this->emitDecPop(*T, E->canOverflow(), E) |
6104 | : this->emitDec(*T, E->canOverflow(), E); |
6105 | } |
6106 | case UO_PreInc: { // ++x |
6107 | if (!Ctx.getLangOpts().CPlusPlus14) |
6108 | return this->emitInvalid(E); |
6109 | if (!T) |
6110 | return this->emitError(E); |
6111 | |
6112 | if (!this->visit(SubExpr)) |
6113 | return false; |
6114 | |
6115 | if (T == PT_Ptr) { |
6116 | if (!this->emitLoadPtr(E)) |
6117 | return false; |
6118 | if (!this->emitConstUint8(1, E)) |
6119 | return false; |
6120 | if (!this->emitAddOffsetUint8(E)) |
6121 | return false; |
6122 | return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); |
6123 | } |
6124 | |
6125 | // Post-inc and pre-inc are the same if the value is to be discarded. |
6126 | if (DiscardResult) { |
6127 | if (T == PT_Float) |
6128 | return this->emitIncfPop(getFPOptions(E), E); |
6129 | return this->emitIncPop(*T, E->canOverflow(), E); |
6130 | } |
6131 | |
6132 | if (T == PT_Float) { |
6133 | const auto &TargetSemantics = Ctx.getFloatSemantics(T: E->getType()); |
6134 | if (!this->emitLoadFloat(E)) |
6135 | return false; |
6136 | if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) |
6137 | return false; |
6138 | if (!this->emitAddf(getFPOptions(E), E)) |
6139 | return false; |
6140 | if (!this->emitStoreFloat(E)) |
6141 | return false; |
6142 | } else { |
6143 | assert(isIntegralType(*T)); |
6144 | if (!this->emitPreInc(*T, E->canOverflow(), E)) |
6145 | return false; |
6146 | } |
6147 | return E->isGLValue() || this->emitLoadPop(*T, E); |
6148 | } |
6149 | case UO_PreDec: { // --x |
6150 | if (!Ctx.getLangOpts().CPlusPlus14) |
6151 | return this->emitInvalid(E); |
6152 | if (!T) |
6153 | return this->emitError(E); |
6154 | |
6155 | if (!this->visit(SubExpr)) |
6156 | return false; |
6157 | |
6158 | if (T == PT_Ptr) { |
6159 | if (!this->emitLoadPtr(E)) |
6160 | return false; |
6161 | if (!this->emitConstUint8(1, E)) |
6162 | return false; |
6163 | if (!this->emitSubOffsetUint8(E)) |
6164 | return false; |
6165 | return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); |
6166 | } |
6167 | |
6168 | // Post-dec and pre-dec are the same if the value is to be discarded. |
6169 | if (DiscardResult) { |
6170 | if (T == PT_Float) |
6171 | return this->emitDecfPop(getFPOptions(E), E); |
6172 | return this->emitDecPop(*T, E->canOverflow(), E); |
6173 | } |
6174 | |
6175 | if (T == PT_Float) { |
6176 | const auto &TargetSemantics = Ctx.getFloatSemantics(T: E->getType()); |
6177 | if (!this->emitLoadFloat(E)) |
6178 | return false; |
6179 | if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) |
6180 | return false; |
6181 | if (!this->emitSubf(getFPOptions(E), E)) |
6182 | return false; |
6183 | if (!this->emitStoreFloat(E)) |
6184 | return false; |
6185 | } else { |
6186 | assert(isIntegralType(*T)); |
6187 | if (!this->emitPreDec(*T, E->canOverflow(), E)) |
6188 | return false; |
6189 | } |
6190 | return E->isGLValue() || this->emitLoadPop(*T, E); |
6191 | } |
6192 | case UO_LNot: // !x |
6193 | if (!T) |
6194 | return this->emitError(E); |
6195 | |
6196 | if (DiscardResult) |
6197 | return this->discard(SubExpr); |
6198 | |
6199 | if (!this->visitBool(SubExpr)) |
6200 | return false; |
6201 | |
6202 | if (!this->emitInv(E)) |
6203 | return false; |
6204 | |
6205 | if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) |
6206 | return this->emitCast(PT_Bool, ET, E); |
6207 | return true; |
6208 | case UO_Minus: // -x |
6209 | if (!T) |
6210 | return this->emitError(E); |
6211 | |
6212 | if (!this->visit(SubExpr)) |
6213 | return false; |
6214 | return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); |
6215 | case UO_Plus: // +x |
6216 | if (!T) |
6217 | return this->emitError(E); |
6218 | |
6219 | if (!this->visit(SubExpr)) // noop |
6220 | return false; |
6221 | return DiscardResult ? this->emitPop(*T, E) : true; |
6222 | case UO_AddrOf: // &x |
6223 | if (E->getType()->isMemberPointerType()) { |
6224 | // C++11 [expr.unary.op]p3 has very strict rules on how the address of a |
6225 | // member can be formed. |
6226 | return this->emitGetMemberPtr(cast<DeclRefExpr>(Val: SubExpr)->getDecl(), E); |
6227 | } |
6228 | // We should already have a pointer when we get here. |
6229 | return this->delegate(SubExpr); |
6230 | case UO_Deref: // *x |
6231 | if (DiscardResult) |
6232 | return this->discard(SubExpr); |
6233 | |
6234 | if (!this->visit(SubExpr)) |
6235 | return false; |
6236 | |
6237 | if (classifyPrim(SubExpr) == PT_Ptr) |
6238 | return this->emitNarrowPtr(E); |
6239 | return true; |
6240 | |
6241 | case UO_Not: // ~x |
6242 | if (!T) |
6243 | return this->emitError(E); |
6244 | |
6245 | if (!this->visit(SubExpr)) |
6246 | return false; |
6247 | return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); |
6248 | case UO_Real: // __real x |
6249 | assert(T); |
6250 | return this->delegate(SubExpr); |
6251 | case UO_Imag: { // __imag x |
6252 | assert(T); |
6253 | if (!this->discard(SubExpr)) |
6254 | return false; |
6255 | return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); |
6256 | } |
6257 | case UO_Extension: |
6258 | return this->delegate(SubExpr); |
6259 | case UO_Coawait: |
6260 | assert(false && "Unhandled opcode" ); |
6261 | } |
6262 | |
6263 | return false; |
6264 | } |
6265 | |
6266 | template <class Emitter> |
6267 | bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { |
6268 | const Expr *SubExpr = E->getSubExpr(); |
6269 | assert(SubExpr->getType()->isAnyComplexType()); |
6270 | |
6271 | if (DiscardResult) |
6272 | return this->discard(SubExpr); |
6273 | |
6274 | std::optional<PrimType> ResT = classify(E); |
6275 | auto prepareResult = [=]() -> bool { |
6276 | if (!ResT && !Initializing) { |
6277 | std::optional<unsigned> LocalIndex = allocateLocal(Src: SubExpr); |
6278 | if (!LocalIndex) |
6279 | return false; |
6280 | return this->emitGetPtrLocal(*LocalIndex, E); |
6281 | } |
6282 | |
6283 | return true; |
6284 | }; |
6285 | |
6286 | // The offset of the temporary, if we created one. |
6287 | unsigned SubExprOffset = ~0u; |
6288 | auto createTemp = [=, &SubExprOffset]() -> bool { |
6289 | SubExprOffset = |
6290 | this->allocateLocalPrimitive(SubExpr, PT_Ptr, /*IsConst=*/true); |
6291 | if (!this->visit(SubExpr)) |
6292 | return false; |
6293 | return this->emitSetLocal(PT_Ptr, SubExprOffset, E); |
6294 | }; |
6295 | |
6296 | PrimType ElemT = classifyComplexElementType(T: SubExpr->getType()); |
6297 | auto getElem = [=](unsigned Offset, unsigned Index) -> bool { |
6298 | if (!this->emitGetLocal(PT_Ptr, Offset, E)) |
6299 | return false; |
6300 | return this->emitArrayElemPop(ElemT, Index, E); |
6301 | }; |
6302 | |
6303 | switch (E->getOpcode()) { |
6304 | case UO_Minus: |
6305 | if (!prepareResult()) |
6306 | return false; |
6307 | if (!createTemp()) |
6308 | return false; |
6309 | for (unsigned I = 0; I != 2; ++I) { |
6310 | if (!getElem(SubExprOffset, I)) |
6311 | return false; |
6312 | if (!this->emitNeg(ElemT, E)) |
6313 | return false; |
6314 | if (!this->emitInitElem(ElemT, I, E)) |
6315 | return false; |
6316 | } |
6317 | break; |
6318 | |
6319 | case UO_Plus: // +x |
6320 | case UO_AddrOf: // &x |
6321 | case UO_Deref: // *x |
6322 | return this->delegate(SubExpr); |
6323 | |
6324 | case UO_LNot: |
6325 | if (!this->visit(SubExpr)) |
6326 | return false; |
6327 | if (!this->emitComplexBoolCast(SubExpr)) |
6328 | return false; |
6329 | if (!this->emitInv(E)) |
6330 | return false; |
6331 | if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) |
6332 | return this->emitCast(PT_Bool, ET, E); |
6333 | return true; |
6334 | |
6335 | case UO_Real: |
6336 | return this->emitComplexReal(SubExpr); |
6337 | |
6338 | case UO_Imag: |
6339 | if (!this->visit(SubExpr)) |
6340 | return false; |
6341 | |
6342 | if (SubExpr->isLValue()) { |
6343 | if (!this->emitConstUint8(1, E)) |
6344 | return false; |
6345 | return this->emitArrayElemPtrPopUint8(E); |
6346 | } |
6347 | |
6348 | // Since our _Complex implementation does not map to a primitive type, |
6349 | // we sometimes have to do the lvalue-to-rvalue conversion here manually. |
6350 | return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); |
6351 | |
6352 | case UO_Not: // ~x |
6353 | if (!this->visit(SubExpr)) |
6354 | return false; |
6355 | // Negate the imaginary component. |
6356 | if (!this->emitArrayElem(ElemT, 1, E)) |
6357 | return false; |
6358 | if (!this->emitNeg(ElemT, E)) |
6359 | return false; |
6360 | if (!this->emitInitElem(ElemT, 1, E)) |
6361 | return false; |
6362 | return DiscardResult ? this->emitPopPtr(E) : true; |
6363 | |
6364 | case UO_Extension: |
6365 | return this->delegate(SubExpr); |
6366 | |
6367 | default: |
6368 | return this->emitInvalid(E); |
6369 | } |
6370 | |
6371 | return true; |
6372 | } |
6373 | |
6374 | template <class Emitter> |
6375 | bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) { |
6376 | const Expr *SubExpr = E->getSubExpr(); |
6377 | assert(SubExpr->getType()->isVectorType()); |
6378 | |
6379 | if (DiscardResult) |
6380 | return this->discard(SubExpr); |
6381 | |
6382 | auto UnaryOp = E->getOpcode(); |
6383 | if (UnaryOp == UO_Extension) |
6384 | return this->delegate(SubExpr); |
6385 | |
6386 | if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot && |
6387 | UnaryOp != UO_Not && UnaryOp != UO_AddrOf) |
6388 | return this->emitInvalid(E); |
6389 | |
6390 | // Nothing to do here. |
6391 | if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf) |
6392 | return this->delegate(SubExpr); |
6393 | |
6394 | if (!Initializing) { |
6395 | std::optional<unsigned> LocalIndex = allocateLocal(Src: SubExpr); |
6396 | if (!LocalIndex) |
6397 | return false; |
6398 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
6399 | return false; |
6400 | } |
6401 | |
6402 | // The offset of the temporary, if we created one. |
6403 | unsigned SubExprOffset = |
6404 | this->allocateLocalPrimitive(SubExpr, PT_Ptr, /*IsConst=*/true); |
6405 | if (!this->visit(SubExpr)) |
6406 | return false; |
6407 | if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E)) |
6408 | return false; |
6409 | |
6410 | const auto *VecTy = SubExpr->getType()->getAs<VectorType>(); |
6411 | PrimType ElemT = classifyVectorElementType(T: SubExpr->getType()); |
6412 | auto getElem = [=](unsigned Offset, unsigned Index) -> bool { |
6413 | if (!this->emitGetLocal(PT_Ptr, Offset, E)) |
6414 | return false; |
6415 | return this->emitArrayElemPop(ElemT, Index, E); |
6416 | }; |
6417 | |
6418 | switch (UnaryOp) { |
6419 | case UO_Minus: |
6420 | for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { |
6421 | if (!getElem(SubExprOffset, I)) |
6422 | return false; |
6423 | if (!this->emitNeg(ElemT, E)) |
6424 | return false; |
6425 | if (!this->emitInitElem(ElemT, I, E)) |
6426 | return false; |
6427 | } |
6428 | break; |
6429 | case UO_LNot: { // !x |
6430 | // In C++, the logic operators !, &&, || are available for vectors. !v is |
6431 | // equivalent to v == 0. |
6432 | // |
6433 | // The result of the comparison is a vector of the same width and number of |
6434 | // elements as the comparison operands with a signed integral element type. |
6435 | // |
6436 | // https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html |
6437 | QualType ResultVecTy = E->getType(); |
6438 | PrimType ResultVecElemT = |
6439 | classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType()); |
6440 | for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { |
6441 | if (!getElem(SubExprOffset, I)) |
6442 | return false; |
6443 | // operator ! on vectors returns -1 for 'truth', so negate it. |
6444 | if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E)) |
6445 | return false; |
6446 | if (!this->emitInv(E)) |
6447 | return false; |
6448 | if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E)) |
6449 | return false; |
6450 | if (!this->emitNeg(ElemT, E)) |
6451 | return false; |
6452 | if (ElemT != ResultVecElemT && |
6453 | !this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E)) |
6454 | return false; |
6455 | if (!this->emitInitElem(ResultVecElemT, I, E)) |
6456 | return false; |
6457 | } |
6458 | break; |
6459 | } |
6460 | case UO_Not: // ~x |
6461 | for (unsigned I = 0; I != VecTy->getNumElements(); ++I) { |
6462 | if (!getElem(SubExprOffset, I)) |
6463 | return false; |
6464 | if (ElemT == PT_Bool) { |
6465 | if (!this->emitInv(E)) |
6466 | return false; |
6467 | } else { |
6468 | if (!this->emitComp(ElemT, E)) |
6469 | return false; |
6470 | } |
6471 | if (!this->emitInitElem(ElemT, I, E)) |
6472 | return false; |
6473 | } |
6474 | break; |
6475 | default: |
6476 | llvm_unreachable("Unsupported unary operators should be handled up front" ); |
6477 | } |
6478 | return true; |
6479 | } |
6480 | |
6481 | template <class Emitter> |
6482 | bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { |
6483 | if (DiscardResult) |
6484 | return true; |
6485 | |
6486 | if (const auto *ECD = dyn_cast<EnumConstantDecl>(Val: D)) { |
6487 | return this->emitConst(ECD->getInitVal(), E); |
6488 | } else if (const auto *BD = dyn_cast<BindingDecl>(Val: D)) { |
6489 | return this->visit(BD->getBinding()); |
6490 | } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(Val: D)) { |
6491 | const Function *F = getFunction(FD: FuncDecl); |
6492 | return F && this->emitGetFnPtr(F, E); |
6493 | } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(Val: D)) { |
6494 | if (std::optional<unsigned> Index = P.getOrCreateGlobal(VD: D)) { |
6495 | if (!this->emitGetPtrGlobal(*Index, E)) |
6496 | return false; |
6497 | if (std::optional<PrimType> T = classify(E->getType())) { |
6498 | if (!this->visitAPValue(TPOD->getValue(), *T, E)) |
6499 | return false; |
6500 | return this->emitInitGlobal(*T, *Index, E); |
6501 | } |
6502 | return this->visitAPValueInitializer(TPOD->getValue(), E, |
6503 | TPOD->getType()); |
6504 | } |
6505 | return false; |
6506 | } |
6507 | |
6508 | // References are implemented via pointers, so when we see a DeclRefExpr |
6509 | // pointing to a reference, we need to get its value directly (i.e. the |
6510 | // pointer to the actual value) instead of a pointer to the pointer to the |
6511 | // value. |
6512 | bool IsReference = D->getType()->isReferenceType(); |
6513 | |
6514 | // Check for local/global variables and parameters. |
6515 | if (auto It = Locals.find(Val: D); It != Locals.end()) { |
6516 | const unsigned Offset = It->second.Offset; |
6517 | if (IsReference) |
6518 | return this->emitGetLocal(classifyPrim(E), Offset, E); |
6519 | return this->emitGetPtrLocal(Offset, E); |
6520 | } else if (auto GlobalIndex = P.getGlobal(VD: D)) { |
6521 | if (IsReference) { |
6522 | if (!Ctx.getLangOpts().CPlusPlus11) |
6523 | return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); |
6524 | return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); |
6525 | } |
6526 | |
6527 | return this->emitGetPtrGlobal(*GlobalIndex, E); |
6528 | } else if (const auto *PVD = dyn_cast<ParmVarDecl>(Val: D)) { |
6529 | if (auto It = this->Params.find(PVD); It != this->Params.end()) { |
6530 | if (IsReference || !It->second.IsPtr) |
6531 | return this->emitGetParam(classifyPrim(E), It->second.Offset, E); |
6532 | |
6533 | return this->emitGetPtrParam(It->second.Offset, E); |
6534 | } |
6535 | } |
6536 | |
6537 | // In case we need to re-visit a declaration. |
6538 | auto revisit = [&](const VarDecl *VD) -> bool { |
6539 | if (!this->emitPushCC(VD->hasConstantInitialization(), E)) |
6540 | return false; |
6541 | auto VarState = this->visitDecl(VD, /*IsConstexprUnknown=*/true); |
6542 | |
6543 | if (!this->emitPopCC(E)) |
6544 | return false; |
6545 | |
6546 | if (VarState.notCreated()) |
6547 | return true; |
6548 | if (!VarState) |
6549 | return false; |
6550 | // Retry. |
6551 | return this->visitDeclRef(D, E); |
6552 | }; |
6553 | |
6554 | // Handle lambda captures. |
6555 | if (auto It = this->LambdaCaptures.find(D); |
6556 | It != this->LambdaCaptures.end()) { |
6557 | auto [Offset, IsPtr] = It->second; |
6558 | |
6559 | if (IsPtr) |
6560 | return this->emitGetThisFieldPtr(Offset, E); |
6561 | return this->emitGetPtrThisField(Offset, E); |
6562 | } else if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E); |
6563 | DRE && DRE->refersToEnclosingVariableOrCapture()) { |
6564 | if (const auto *VD = dyn_cast<VarDecl>(Val: D); VD && VD->isInitCapture()) |
6565 | return revisit(VD); |
6566 | } |
6567 | |
6568 | // Avoid infinite recursion. |
6569 | if (D == InitializingDecl) |
6570 | return this->emitDummyPtr(D, E); |
6571 | |
6572 | // Try to lazily visit (or emit dummy pointers for) declarations |
6573 | // we haven't seen yet. |
6574 | // For C. |
6575 | if (!Ctx.getLangOpts().CPlusPlus) { |
6576 | if (const auto *VD = dyn_cast<VarDecl>(Val: D); |
6577 | VD && VD->getAnyInitializer() && |
6578 | VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) |
6579 | return revisit(VD); |
6580 | return this->emitDummyPtr(D, E); |
6581 | } |
6582 | |
6583 | // ... and C++. |
6584 | const auto *VD = dyn_cast<VarDecl>(Val: D); |
6585 | if (!VD) |
6586 | return this->emitDummyPtr(D, E); |
6587 | |
6588 | const auto typeShouldBeVisited = [&](QualType T) -> bool { |
6589 | if (T.isConstant(Ctx: Ctx.getASTContext())) |
6590 | return true; |
6591 | return T->isReferenceType(); |
6592 | }; |
6593 | |
6594 | // DecompositionDecls are just proxies for us. |
6595 | if (isa<DecompositionDecl>(Val: VD)) |
6596 | return revisit(VD); |
6597 | |
6598 | if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) && |
6599 | typeShouldBeVisited(VD->getType())) { |
6600 | if (const Expr *Init = VD->getAnyInitializer(); |
6601 | Init && !Init->isValueDependent()) { |
6602 | // Whether or not the evaluation is successul doesn't really matter |
6603 | // here -- we will create a global variable in any case, and that |
6604 | // will have the state of initializer evaluation attached. |
6605 | APValue V; |
6606 | SmallVector<PartialDiagnosticAt> Notes; |
6607 | (void)Init->EvaluateAsInitializer(Result&: V, Ctx: Ctx.getASTContext(), VD, Notes, |
6608 | IsConstantInitializer: true); |
6609 | return this->visitDeclRef(D, E); |
6610 | } |
6611 | return revisit(VD); |
6612 | } |
6613 | |
6614 | // FIXME: The evaluateValue() check here is a little ridiculous, since |
6615 | // it will ultimately call into Context::evaluateAsInitializer(). In |
6616 | // other words, we're evaluating the initializer, just to know if we can |
6617 | // evaluate the initializer. |
6618 | if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) && |
6619 | VD->getInit() && !VD->getInit()->isValueDependent()) { |
6620 | |
6621 | if (VD->evaluateValue()) |
6622 | return revisit(VD); |
6623 | |
6624 | if (!D->getType()->isReferenceType()) |
6625 | return this->emitDummyPtr(D, E); |
6626 | |
6627 | return this->emitInvalidDeclRef(cast<DeclRefExpr>(Val: E), |
6628 | /*InitializerFailed=*/true, E); |
6629 | } |
6630 | |
6631 | return this->emitDummyPtr(D, E); |
6632 | } |
6633 | |
6634 | template <class Emitter> |
6635 | bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { |
6636 | const auto *D = E->getDecl(); |
6637 | return this->visitDeclRef(D, E); |
6638 | } |
6639 | |
6640 | template <class Emitter> void Compiler<Emitter>::emitCleanup() { |
6641 | for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) |
6642 | C->emitDestruction(); |
6643 | } |
6644 | |
6645 | template <class Emitter> |
6646 | unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, |
6647 | const QualType DerivedType) { |
6648 | const auto = [](QualType Ty) -> const CXXRecordDecl * { |
6649 | if (const auto *R = Ty->getPointeeCXXRecordDecl()) |
6650 | return R; |
6651 | return Ty->getAsCXXRecordDecl(); |
6652 | }; |
6653 | const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); |
6654 | const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); |
6655 | |
6656 | return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); |
6657 | } |
6658 | |
6659 | /// Emit casts from a PrimType to another PrimType. |
6660 | template <class Emitter> |
6661 | bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, |
6662 | QualType ToQT, const Expr *E) { |
6663 | |
6664 | if (FromT == PT_Float) { |
6665 | // Floating to floating. |
6666 | if (ToT == PT_Float) { |
6667 | const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(T: ToQT); |
6668 | return this->emitCastFP(ToSem, getRoundingMode(E), E); |
6669 | } |
6670 | |
6671 | if (ToT == PT_IntAP) |
6672 | return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(T: ToQT), |
6673 | getFPOptions(E), E); |
6674 | if (ToT == PT_IntAPS) |
6675 | return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(T: ToQT), |
6676 | getFPOptions(E), E); |
6677 | |
6678 | // Float to integral. |
6679 | if (isIntegralType(T: ToT) || ToT == PT_Bool) |
6680 | return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E); |
6681 | } |
6682 | |
6683 | if (isIntegralType(T: FromT) || FromT == PT_Bool) { |
6684 | if (ToT == PT_IntAP) |
6685 | return this->emitCastAP(FromT, Ctx.getBitWidth(T: ToQT), E); |
6686 | if (ToT == PT_IntAPS) |
6687 | return this->emitCastAPS(FromT, Ctx.getBitWidth(T: ToQT), E); |
6688 | |
6689 | // Integral to integral. |
6690 | if (isIntegralType(T: ToT) || ToT == PT_Bool) |
6691 | return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; |
6692 | |
6693 | if (ToT == PT_Float) { |
6694 | // Integral to floating. |
6695 | const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(T: ToQT); |
6696 | return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E); |
6697 | } |
6698 | } |
6699 | |
6700 | return false; |
6701 | } |
6702 | |
6703 | /// Emits __real(SubExpr) |
6704 | template <class Emitter> |
6705 | bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { |
6706 | assert(SubExpr->getType()->isAnyComplexType()); |
6707 | |
6708 | if (DiscardResult) |
6709 | return this->discard(SubExpr); |
6710 | |
6711 | if (!this->visit(SubExpr)) |
6712 | return false; |
6713 | if (SubExpr->isLValue()) { |
6714 | if (!this->emitConstUint8(0, SubExpr)) |
6715 | return false; |
6716 | return this->emitArrayElemPtrPopUint8(SubExpr); |
6717 | } |
6718 | |
6719 | // Rvalue, load the actual element. |
6720 | return this->emitArrayElemPop(classifyComplexElementType(T: SubExpr->getType()), |
6721 | 0, SubExpr); |
6722 | } |
6723 | |
6724 | template <class Emitter> |
6725 | bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { |
6726 | assert(!DiscardResult); |
6727 | PrimType ElemT = classifyComplexElementType(T: E->getType()); |
6728 | // We emit the expression (__real(E) != 0 || __imag(E) != 0) |
6729 | // for us, that means (bool)E[0] || (bool)E[1] |
6730 | if (!this->emitArrayElem(ElemT, 0, E)) |
6731 | return false; |
6732 | if (ElemT == PT_Float) { |
6733 | if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) |
6734 | return false; |
6735 | } else { |
6736 | if (!this->emitCast(ElemT, PT_Bool, E)) |
6737 | return false; |
6738 | } |
6739 | |
6740 | // We now have the bool value of E[0] on the stack. |
6741 | LabelTy LabelTrue = this->getLabel(); |
6742 | if (!this->jumpTrue(LabelTrue)) |
6743 | return false; |
6744 | |
6745 | if (!this->emitArrayElemPop(ElemT, 1, E)) |
6746 | return false; |
6747 | if (ElemT == PT_Float) { |
6748 | if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E)) |
6749 | return false; |
6750 | } else { |
6751 | if (!this->emitCast(ElemT, PT_Bool, E)) |
6752 | return false; |
6753 | } |
6754 | // Leave the boolean value of E[1] on the stack. |
6755 | LabelTy EndLabel = this->getLabel(); |
6756 | this->jump(EndLabel); |
6757 | |
6758 | this->emitLabel(LabelTrue); |
6759 | if (!this->emitPopPtr(E)) |
6760 | return false; |
6761 | if (!this->emitConstBool(true, E)) |
6762 | return false; |
6763 | |
6764 | this->fallthrough(EndLabel); |
6765 | this->emitLabel(EndLabel); |
6766 | |
6767 | return true; |
6768 | } |
6769 | |
6770 | template <class Emitter> |
6771 | bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, |
6772 | const BinaryOperator *E) { |
6773 | assert(E->isComparisonOp()); |
6774 | assert(!Initializing); |
6775 | assert(!DiscardResult); |
6776 | |
6777 | PrimType ElemT; |
6778 | bool LHSIsComplex; |
6779 | unsigned LHSOffset; |
6780 | if (LHS->getType()->isAnyComplexType()) { |
6781 | LHSIsComplex = true; |
6782 | ElemT = classifyComplexElementType(T: LHS->getType()); |
6783 | LHSOffset = allocateLocalPrimitive(Src: LHS, Ty: PT_Ptr, /*IsConst=*/true); |
6784 | if (!this->visit(LHS)) |
6785 | return false; |
6786 | if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) |
6787 | return false; |
6788 | } else { |
6789 | LHSIsComplex = false; |
6790 | PrimType LHST = classifyPrim(LHS->getType()); |
6791 | LHSOffset = this->allocateLocalPrimitive(LHS, LHST, /*IsConst=*/true); |
6792 | if (!this->visit(LHS)) |
6793 | return false; |
6794 | if (!this->emitSetLocal(LHST, LHSOffset, E)) |
6795 | return false; |
6796 | } |
6797 | |
6798 | bool RHSIsComplex; |
6799 | unsigned RHSOffset; |
6800 | if (RHS->getType()->isAnyComplexType()) { |
6801 | RHSIsComplex = true; |
6802 | ElemT = classifyComplexElementType(T: RHS->getType()); |
6803 | RHSOffset = allocateLocalPrimitive(Src: RHS, Ty: PT_Ptr, /*IsConst=*/true); |
6804 | if (!this->visit(RHS)) |
6805 | return false; |
6806 | if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) |
6807 | return false; |
6808 | } else { |
6809 | RHSIsComplex = false; |
6810 | PrimType RHST = classifyPrim(RHS->getType()); |
6811 | RHSOffset = this->allocateLocalPrimitive(RHS, RHST, /*IsConst=*/true); |
6812 | if (!this->visit(RHS)) |
6813 | return false; |
6814 | if (!this->emitSetLocal(RHST, RHSOffset, E)) |
6815 | return false; |
6816 | } |
6817 | |
6818 | auto getElem = [&](unsigned LocalOffset, unsigned Index, |
6819 | bool IsComplex) -> bool { |
6820 | if (IsComplex) { |
6821 | if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) |
6822 | return false; |
6823 | return this->emitArrayElemPop(ElemT, Index, E); |
6824 | } |
6825 | return this->emitGetLocal(ElemT, LocalOffset, E); |
6826 | }; |
6827 | |
6828 | for (unsigned I = 0; I != 2; ++I) { |
6829 | // Get both values. |
6830 | if (!getElem(LHSOffset, I, LHSIsComplex)) |
6831 | return false; |
6832 | if (!getElem(RHSOffset, I, RHSIsComplex)) |
6833 | return false; |
6834 | // And compare them. |
6835 | if (!this->emitEQ(ElemT, E)) |
6836 | return false; |
6837 | |
6838 | if (!this->emitCastBoolUint8(E)) |
6839 | return false; |
6840 | } |
6841 | |
6842 | // We now have two bool values on the stack. Compare those. |
6843 | if (!this->emitAddUint8(E)) |
6844 | return false; |
6845 | if (!this->emitConstUint8(2, E)) |
6846 | return false; |
6847 | |
6848 | if (E->getOpcode() == BO_EQ) { |
6849 | if (!this->emitEQUint8(E)) |
6850 | return false; |
6851 | } else if (E->getOpcode() == BO_NE) { |
6852 | if (!this->emitNEUint8(E)) |
6853 | return false; |
6854 | } else |
6855 | return false; |
6856 | |
6857 | // In C, this returns an int. |
6858 | if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) |
6859 | return this->emitCast(PT_Bool, ResT, E); |
6860 | return true; |
6861 | } |
6862 | |
6863 | /// When calling this, we have a pointer of the local-to-destroy |
6864 | /// on the stack. |
6865 | /// Emit destruction of record types (or arrays of record types). |
6866 | template <class Emitter> |
6867 | bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) { |
6868 | assert(R); |
6869 | assert(!R->isAnonymousUnion()); |
6870 | const CXXDestructorDecl *Dtor = R->getDestructor(); |
6871 | if (!Dtor || Dtor->isTrivial()) |
6872 | return true; |
6873 | |
6874 | assert(Dtor); |
6875 | const Function *DtorFunc = getFunction(FD: Dtor); |
6876 | if (!DtorFunc) |
6877 | return false; |
6878 | assert(DtorFunc->hasThisPointer()); |
6879 | assert(DtorFunc->getNumParams() == 1); |
6880 | if (!this->emitDupPtr(Loc)) |
6881 | return false; |
6882 | return this->emitCall(DtorFunc, 0, Loc); |
6883 | } |
6884 | /// When calling this, we have a pointer of the local-to-destroy |
6885 | /// on the stack. |
6886 | /// Emit destruction of record types (or arrays of record types). |
6887 | template <class Emitter> |
6888 | bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc, |
6889 | SourceInfo Loc) { |
6890 | assert(Desc); |
6891 | assert(!Desc->isPrimitive()); |
6892 | assert(!Desc->isPrimitiveArray()); |
6893 | |
6894 | // Can happen if the decl is invalid. |
6895 | if (Desc->isDummy()) |
6896 | return true; |
6897 | |
6898 | // Arrays. |
6899 | if (Desc->isArray()) { |
6900 | const Descriptor *ElemDesc = Desc->ElemDesc; |
6901 | assert(ElemDesc); |
6902 | |
6903 | // Don't need to do anything for these. |
6904 | if (ElemDesc->isPrimitiveArray()) |
6905 | return true; |
6906 | |
6907 | // If this is an array of record types, check if we need |
6908 | // to call the element destructors at all. If not, try |
6909 | // to save the work. |
6910 | if (const Record *ElemRecord = ElemDesc->ElemRecord) { |
6911 | if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); |
6912 | !Dtor || Dtor->isTrivial()) |
6913 | return true; |
6914 | } |
6915 | |
6916 | if (unsigned N = Desc->getNumElems()) { |
6917 | for (ssize_t I = N - 1; I >= 0; --I) { |
6918 | if (!this->emitConstUint64(I, Loc)) |
6919 | return false; |
6920 | if (!this->emitArrayElemPtrUint64(Loc)) |
6921 | return false; |
6922 | if (!this->emitDestruction(ElemDesc, Loc)) |
6923 | return false; |
6924 | if (!this->emitPopPtr(Loc)) |
6925 | return false; |
6926 | } |
6927 | } |
6928 | return true; |
6929 | } |
6930 | |
6931 | assert(Desc->ElemRecord); |
6932 | if (Desc->ElemRecord->isAnonymousUnion()) |
6933 | return true; |
6934 | |
6935 | return this->emitRecordDestruction(Desc->ElemRecord, Loc); |
6936 | } |
6937 | |
6938 | /// Create a dummy pointer for the given decl (or expr) and |
6939 | /// push a pointer to it on the stack. |
6940 | template <class Emitter> |
6941 | bool Compiler<Emitter>::emitDummyPtr(const DeclTy &D, const Expr *E) { |
6942 | assert(!DiscardResult && "Should've been checked before" ); |
6943 | |
6944 | unsigned DummyID = P.getOrCreateDummy(D); |
6945 | |
6946 | if (!this->emitGetPtrGlobal(DummyID, E)) |
6947 | return false; |
6948 | if (E->getType()->isVoidType()) |
6949 | return true; |
6950 | |
6951 | // Convert the dummy pointer to another pointer type if we have to. |
6952 | if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { |
6953 | if (isPtrType(T: PT)) |
6954 | return this->emitDecayPtr(PT_Ptr, PT, E); |
6955 | return false; |
6956 | } |
6957 | return true; |
6958 | } |
6959 | |
6960 | // This function is constexpr if and only if To, From, and the types of |
6961 | // all subobjects of To and From are types T such that... |
6962 | // (3.1) - is_union_v<T> is false; |
6963 | // (3.2) - is_pointer_v<T> is false; |
6964 | // (3.3) - is_member_pointer_v<T> is false; |
6965 | // (3.4) - is_volatile_v<T> is false; and |
6966 | // (3.5) - T has no non-static data members of reference type |
6967 | template <class Emitter> |
6968 | bool Compiler<Emitter>::emitBuiltinBitCast(const CastExpr *E) { |
6969 | const Expr *SubExpr = E->getSubExpr(); |
6970 | QualType FromType = SubExpr->getType(); |
6971 | QualType ToType = E->getType(); |
6972 | std::optional<PrimType> ToT = classify(ToType); |
6973 | |
6974 | assert(!ToType->isReferenceType()); |
6975 | |
6976 | // Prepare storage for the result in case we discard. |
6977 | if (DiscardResult && !Initializing && !ToT) { |
6978 | std::optional<unsigned> LocalIndex = allocateLocal(Src: E); |
6979 | if (!LocalIndex) |
6980 | return false; |
6981 | if (!this->emitGetPtrLocal(*LocalIndex, E)) |
6982 | return false; |
6983 | } |
6984 | |
6985 | // Get a pointer to the value-to-cast on the stack. |
6986 | // For CK_LValueToRValueBitCast, this is always an lvalue and |
6987 | // we later assume it to be one (i.e. a PT_Ptr). However, |
6988 | // we call this function for other utility methods where |
6989 | // a bitcast might be useful, so convert it to a PT_Ptr in that case. |
6990 | if (SubExpr->isGLValue() || FromType->isVectorType()) { |
6991 | if (!this->visit(SubExpr)) |
6992 | return false; |
6993 | } else if (std::optional<PrimType> FromT = classify(SubExpr)) { |
6994 | unsigned TempOffset = |
6995 | allocateLocalPrimitive(Src: SubExpr, Ty: *FromT, /*IsConst=*/true); |
6996 | if (!this->visit(SubExpr)) |
6997 | return false; |
6998 | if (!this->emitSetLocal(*FromT, TempOffset, E)) |
6999 | return false; |
7000 | if (!this->emitGetPtrLocal(TempOffset, E)) |
7001 | return false; |
7002 | } else { |
7003 | return false; |
7004 | } |
7005 | |
7006 | if (!ToT) { |
7007 | if (!this->emitBitCast(E)) |
7008 | return false; |
7009 | return DiscardResult ? this->emitPopPtr(E) : true; |
7010 | } |
7011 | assert(ToT); |
7012 | |
7013 | const llvm::fltSemantics *TargetSemantics = nullptr; |
7014 | if (ToT == PT_Float) |
7015 | TargetSemantics = &Ctx.getFloatSemantics(T: ToType); |
7016 | |
7017 | // Conversion to a primitive type. FromType can be another |
7018 | // primitive type, or a record/array. |
7019 | bool ToTypeIsUChar = (ToType->isSpecificBuiltinType(K: BuiltinType::UChar) || |
7020 | ToType->isSpecificBuiltinType(K: BuiltinType::Char_U)); |
7021 | uint32_t ResultBitWidth = std::max(a: Ctx.getBitWidth(T: ToType), b: 8u); |
7022 | |
7023 | if (!this->emitBitCastPrim(*ToT, ToTypeIsUChar || ToType->isStdByteType(), |
7024 | ResultBitWidth, TargetSemantics, E)) |
7025 | return false; |
7026 | |
7027 | if (DiscardResult) |
7028 | return this->emitPop(*ToT, E); |
7029 | |
7030 | return true; |
7031 | } |
7032 | |
7033 | namespace clang { |
7034 | namespace interp { |
7035 | |
7036 | template class Compiler<ByteCodeEmitter>; |
7037 | template class Compiler<EvalEmitter>; |
7038 | |
7039 | } // namespace interp |
7040 | } // namespace clang |
7041 | |