1 | //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This provides C++ name mangling targeting the Microsoft Visual C++ ABI. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/ASTContext.h" |
14 | #include "clang/AST/Attr.h" |
15 | #include "clang/AST/CXXInheritance.h" |
16 | #include "clang/AST/CharUnits.h" |
17 | #include "clang/AST/Decl.h" |
18 | #include "clang/AST/DeclCXX.h" |
19 | #include "clang/AST/DeclObjC.h" |
20 | #include "clang/AST/DeclOpenMP.h" |
21 | #include "clang/AST/DeclTemplate.h" |
22 | #include "clang/AST/Expr.h" |
23 | #include "clang/AST/ExprCXX.h" |
24 | #include "clang/AST/GlobalDecl.h" |
25 | #include "clang/AST/Mangle.h" |
26 | #include "clang/AST/VTableBuilder.h" |
27 | #include "clang/Basic/ABI.h" |
28 | #include "clang/Basic/DiagnosticOptions.h" |
29 | #include "clang/Basic/FileManager.h" |
30 | #include "clang/Basic/SourceManager.h" |
31 | #include "clang/Basic/TargetInfo.h" |
32 | #include "llvm/ADT/SmallVector.h" |
33 | #include "llvm/ADT/StringExtras.h" |
34 | #include "llvm/Support/CRC.h" |
35 | #include "llvm/Support/MD5.h" |
36 | #include "llvm/Support/MathExtras.h" |
37 | #include "llvm/Support/StringSaver.h" |
38 | #include "llvm/Support/xxhash.h" |
39 | #include <functional> |
40 | #include <optional> |
41 | |
42 | using namespace clang; |
43 | |
44 | namespace { |
45 | |
46 | // Get GlobalDecl of DeclContext of local entities. |
47 | static GlobalDecl getGlobalDeclAsDeclContext(const DeclContext *DC) { |
48 | GlobalDecl GD; |
49 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: DC)) |
50 | GD = GlobalDecl(CD, Ctor_Complete); |
51 | else if (auto *DD = dyn_cast<CXXDestructorDecl>(Val: DC)) |
52 | GD = GlobalDecl(DD, Dtor_Complete); |
53 | else |
54 | GD = GlobalDecl(cast<FunctionDecl>(Val: DC)); |
55 | return GD; |
56 | } |
57 | |
58 | struct msvc_hashing_ostream : public llvm::raw_svector_ostream { |
59 | raw_ostream &OS; |
60 | llvm::SmallString<64> Buffer; |
61 | |
62 | msvc_hashing_ostream(raw_ostream &OS) |
63 | : llvm::raw_svector_ostream(Buffer), OS(OS) {} |
64 | ~msvc_hashing_ostream() override { |
65 | StringRef MangledName = str(); |
66 | bool StartsWithEscape = MangledName.starts_with(Prefix: "\01" ); |
67 | if (StartsWithEscape) |
68 | MangledName = MangledName.drop_front(N: 1); |
69 | if (MangledName.size() < 4096) { |
70 | OS << str(); |
71 | return; |
72 | } |
73 | |
74 | llvm::MD5 Hasher; |
75 | llvm::MD5::MD5Result Hash; |
76 | Hasher.update(Str: MangledName); |
77 | Hasher.final(Result&: Hash); |
78 | |
79 | SmallString<32> HexString; |
80 | llvm::MD5::stringifyResult(Result&: Hash, Str&: HexString); |
81 | |
82 | if (StartsWithEscape) |
83 | OS << '\01'; |
84 | OS << "??@" << HexString << '@'; |
85 | } |
86 | }; |
87 | |
88 | static const DeclContext * |
89 | getLambdaDefaultArgumentDeclContext(const Decl *D) { |
90 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) |
91 | if (RD->isLambda()) |
92 | if (const auto *Parm = |
93 | dyn_cast_or_null<ParmVarDecl>(Val: RD->getLambdaContextDecl())) |
94 | return Parm->getDeclContext(); |
95 | return nullptr; |
96 | } |
97 | |
98 | /// Retrieve the declaration context that should be used when mangling |
99 | /// the given declaration. |
100 | static const DeclContext *getEffectiveDeclContext(const Decl *D) { |
101 | // The ABI assumes that lambda closure types that occur within |
102 | // default arguments live in the context of the function. However, due to |
103 | // the way in which Clang parses and creates function declarations, this is |
104 | // not the case: the lambda closure type ends up living in the context |
105 | // where the function itself resides, because the function declaration itself |
106 | // had not yet been created. Fix the context here. |
107 | if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(D)) |
108 | return LDADC; |
109 | |
110 | // Perform the same check for block literals. |
111 | if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: D)) { |
112 | if (ParmVarDecl *ContextParam = |
113 | dyn_cast_or_null<ParmVarDecl>(Val: BD->getBlockManglingContextDecl())) |
114 | return ContextParam->getDeclContext(); |
115 | } |
116 | |
117 | const DeclContext *DC = D->getDeclContext(); |
118 | if (isa<CapturedDecl>(Val: DC) || isa<OMPDeclareReductionDecl>(Val: DC) || |
119 | isa<OMPDeclareMapperDecl>(Val: DC)) { |
120 | return getEffectiveDeclContext(D: cast<Decl>(Val: DC)); |
121 | } |
122 | |
123 | return DC->getRedeclContext(); |
124 | } |
125 | |
126 | static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { |
127 | return getEffectiveDeclContext(D: cast<Decl>(Val: DC)); |
128 | } |
129 | |
130 | static const FunctionDecl *getStructor(const NamedDecl *ND) { |
131 | if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: ND)) |
132 | return FTD->getTemplatedDecl()->getCanonicalDecl(); |
133 | |
134 | const auto *FD = cast<FunctionDecl>(Val: ND); |
135 | if (const auto *FTD = FD->getPrimaryTemplate()) |
136 | return FTD->getTemplatedDecl()->getCanonicalDecl(); |
137 | |
138 | return FD->getCanonicalDecl(); |
139 | } |
140 | |
141 | /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the |
142 | /// Microsoft Visual C++ ABI. |
143 | class MicrosoftMangleContextImpl : public MicrosoftMangleContext { |
144 | typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy; |
145 | llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; |
146 | llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier; |
147 | llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds; |
148 | llvm::DenseMap<GlobalDecl, unsigned> SEHFilterIds; |
149 | llvm::DenseMap<GlobalDecl, unsigned> SEHFinallyIds; |
150 | SmallString<16> AnonymousNamespaceHash; |
151 | |
152 | public: |
153 | MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags, |
154 | bool IsAux = false); |
155 | bool shouldMangleCXXName(const NamedDecl *D) override; |
156 | bool shouldMangleStringLiteral(const StringLiteral *SL) override; |
157 | void mangleCXXName(GlobalDecl GD, raw_ostream &Out) override; |
158 | void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, |
159 | const MethodVFTableLocation &ML, |
160 | raw_ostream &Out) override; |
161 | void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, |
162 | raw_ostream &) override; |
163 | void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, |
164 | const ThisAdjustment &ThisAdjustment, |
165 | raw_ostream &) override; |
166 | void mangleCXXVFTable(const CXXRecordDecl *Derived, |
167 | ArrayRef<const CXXRecordDecl *> BasePath, |
168 | raw_ostream &Out) override; |
169 | void mangleCXXVBTable(const CXXRecordDecl *Derived, |
170 | ArrayRef<const CXXRecordDecl *> BasePath, |
171 | raw_ostream &Out) override; |
172 | void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD, |
173 | const CXXRecordDecl *DstRD, |
174 | raw_ostream &Out) override; |
175 | void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile, |
176 | bool IsUnaligned, uint32_t NumEntries, |
177 | raw_ostream &Out) override; |
178 | void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries, |
179 | raw_ostream &Out) override; |
180 | void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD, |
181 | CXXCtorType CT, uint32_t Size, uint32_t NVOffset, |
182 | int32_t VBPtrOffset, uint32_t VBIndex, |
183 | raw_ostream &Out) override; |
184 | void mangleCXXRTTI(QualType T, raw_ostream &Out) override; |
185 | void mangleCXXRTTIName(QualType T, raw_ostream &Out, |
186 | bool NormalizeIntegers) override; |
187 | void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived, |
188 | uint32_t NVOffset, int32_t VBPtrOffset, |
189 | uint32_t VBTableOffset, uint32_t Flags, |
190 | raw_ostream &Out) override; |
191 | void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived, |
192 | raw_ostream &Out) override; |
193 | void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived, |
194 | raw_ostream &Out) override; |
195 | void |
196 | mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived, |
197 | ArrayRef<const CXXRecordDecl *> BasePath, |
198 | raw_ostream &Out) override; |
199 | void mangleCanonicalTypeName(QualType T, raw_ostream &, |
200 | bool NormalizeIntegers) override; |
201 | void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber, |
202 | raw_ostream &) override; |
203 | void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override; |
204 | void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum, |
205 | raw_ostream &Out) override; |
206 | void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; |
207 | void mangleDynamicAtExitDestructor(const VarDecl *D, |
208 | raw_ostream &Out) override; |
209 | void mangleSEHFilterExpression(GlobalDecl EnclosingDecl, |
210 | raw_ostream &Out) override; |
211 | void mangleSEHFinallyBlock(GlobalDecl EnclosingDecl, |
212 | raw_ostream &Out) override; |
213 | void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override; |
214 | bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { |
215 | const DeclContext *DC = getEffectiveDeclContext(ND); |
216 | if (!DC->isFunctionOrMethod()) |
217 | return false; |
218 | |
219 | // Lambda closure types are already numbered, give out a phony number so |
220 | // that they demangle nicely. |
221 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) { |
222 | if (RD->isLambda()) { |
223 | disc = 1; |
224 | return true; |
225 | } |
226 | } |
227 | |
228 | // Use the canonical number for externally visible decls. |
229 | if (ND->isExternallyVisible()) { |
230 | disc = getASTContext().getManglingNumber(ND, ForAuxTarget: isAux()); |
231 | return true; |
232 | } |
233 | |
234 | // Anonymous tags are already numbered. |
235 | if (const TagDecl *Tag = dyn_cast<TagDecl>(Val: ND)) { |
236 | if (!Tag->hasNameForLinkage() && |
237 | !getASTContext().getDeclaratorForUnnamedTagDecl(TD: Tag) && |
238 | !getASTContext().getTypedefNameForUnnamedTagDecl(TD: Tag)) |
239 | return false; |
240 | } |
241 | |
242 | // Make up a reasonable number for internal decls. |
243 | unsigned &discriminator = Uniquifier[ND]; |
244 | if (!discriminator) |
245 | discriminator = ++Discriminator[std::make_pair(x&: DC, y: ND->getIdentifier())]; |
246 | disc = discriminator + 1; |
247 | return true; |
248 | } |
249 | |
250 | std::string getLambdaString(const CXXRecordDecl *Lambda) override { |
251 | assert(Lambda->isLambda() && "RD must be a lambda!" ); |
252 | std::string Name("<lambda_" ); |
253 | |
254 | Decl *LambdaContextDecl = Lambda->getLambdaContextDecl(); |
255 | unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber(); |
256 | unsigned LambdaId; |
257 | const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(Val: LambdaContextDecl); |
258 | const FunctionDecl *Func = |
259 | Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; |
260 | |
261 | if (Func) { |
262 | unsigned DefaultArgNo = |
263 | Func->getNumParams() - Parm->getFunctionScopeIndex(); |
264 | Name += llvm::utostr(X: DefaultArgNo); |
265 | Name += "_" ; |
266 | } |
267 | |
268 | if (LambdaManglingNumber) |
269 | LambdaId = LambdaManglingNumber; |
270 | else |
271 | LambdaId = getLambdaIdForDebugInfo(RD: Lambda); |
272 | |
273 | Name += llvm::utostr(X: LambdaId); |
274 | Name += ">" ; |
275 | return Name; |
276 | } |
277 | |
278 | unsigned getLambdaId(const CXXRecordDecl *RD) { |
279 | assert(RD->isLambda() && "RD must be a lambda!" ); |
280 | assert(!RD->isExternallyVisible() && "RD must not be visible!" ); |
281 | assert(RD->getLambdaManglingNumber() == 0 && |
282 | "RD must not have a mangling number!" ); |
283 | std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool> |
284 | Result = LambdaIds.insert(KV: std::make_pair(x&: RD, y: LambdaIds.size())); |
285 | return Result.first->second; |
286 | } |
287 | |
288 | unsigned getLambdaIdForDebugInfo(const CXXRecordDecl *RD) { |
289 | assert(RD->isLambda() && "RD must be a lambda!" ); |
290 | assert(!RD->isExternallyVisible() && "RD must not be visible!" ); |
291 | assert(RD->getLambdaManglingNumber() == 0 && |
292 | "RD must not have a mangling number!" ); |
293 | // The lambda should exist, but return 0 in case it doesn't. |
294 | return LambdaIds.lookup(Val: RD); |
295 | } |
296 | |
297 | /// Return a character sequence that is (somewhat) unique to the TU suitable |
298 | /// for mangling anonymous namespaces. |
299 | StringRef getAnonymousNamespaceHash() const { |
300 | return AnonymousNamespaceHash; |
301 | } |
302 | |
303 | private: |
304 | void mangleInitFiniStub(const VarDecl *D, char CharCode, raw_ostream &Out); |
305 | }; |
306 | |
307 | /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the |
308 | /// Microsoft Visual C++ ABI. |
309 | class MicrosoftCXXNameMangler { |
310 | MicrosoftMangleContextImpl &Context; |
311 | raw_ostream &Out; |
312 | |
313 | /// The "structor" is the top-level declaration being mangled, if |
314 | /// that's not a template specialization; otherwise it's the pattern |
315 | /// for that specialization. |
316 | const NamedDecl *Structor; |
317 | unsigned StructorType; |
318 | |
319 | typedef llvm::SmallVector<std::string, 10> BackRefVec; |
320 | BackRefVec NameBackReferences; |
321 | |
322 | typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap; |
323 | ArgBackRefMap FunArgBackReferences; |
324 | ArgBackRefMap TemplateArgBackReferences; |
325 | |
326 | typedef llvm::DenseMap<const void *, StringRef> TemplateArgStringMap; |
327 | TemplateArgStringMap TemplateArgStrings; |
328 | llvm::BumpPtrAllocator TemplateArgStringStorageAlloc; |
329 | llvm::StringSaver TemplateArgStringStorage; |
330 | |
331 | typedef std::set<std::pair<int, bool>> PassObjectSizeArgsSet; |
332 | PassObjectSizeArgsSet PassObjectSizeArgs; |
333 | |
334 | ASTContext &getASTContext() const { return Context.getASTContext(); } |
335 | |
336 | const bool PointersAre64Bit; |
337 | |
338 | public: |
339 | enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result }; |
340 | enum class TplArgKind { ClassNTTP, StructuralValue }; |
341 | |
342 | MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_) |
343 | : Context(C), Out(Out_), Structor(nullptr), StructorType(-1), |
344 | TemplateArgStringStorage(TemplateArgStringStorageAlloc), |
345 | PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth( |
346 | AddrSpace: LangAS::Default) == 64) {} |
347 | |
348 | MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, |
349 | const CXXConstructorDecl *D, CXXCtorType Type) |
350 | : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), |
351 | TemplateArgStringStorage(TemplateArgStringStorageAlloc), |
352 | PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth( |
353 | AddrSpace: LangAS::Default) == 64) {} |
354 | |
355 | MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_, |
356 | const CXXDestructorDecl *D, CXXDtorType Type) |
357 | : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), |
358 | TemplateArgStringStorage(TemplateArgStringStorageAlloc), |
359 | PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth( |
360 | AddrSpace: LangAS::Default) == 64) {} |
361 | |
362 | raw_ostream &getStream() const { return Out; } |
363 | |
364 | void mangle(GlobalDecl GD, StringRef Prefix = "?" ); |
365 | void mangleName(GlobalDecl GD); |
366 | void mangleFunctionEncoding(GlobalDecl GD, bool ShouldMangle); |
367 | void mangleVariableEncoding(const VarDecl *VD); |
368 | void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD, |
369 | StringRef Prefix = "$" ); |
370 | void mangleMemberDataPointerInClassNTTP(const CXXRecordDecl *, |
371 | const ValueDecl *); |
372 | void mangleMemberFunctionPointer(const CXXRecordDecl *RD, |
373 | const CXXMethodDecl *MD, |
374 | StringRef Prefix = "$" ); |
375 | void mangleMemberFunctionPointerInClassNTTP(const CXXRecordDecl *RD, |
376 | const CXXMethodDecl *MD); |
377 | void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD, |
378 | const MethodVFTableLocation &ML); |
379 | void mangleNumber(int64_t Number); |
380 | void mangleNumber(llvm::APSInt Number); |
381 | void mangleFloat(llvm::APFloat Number); |
382 | void mangleBits(llvm::APInt Number); |
383 | void mangleTagTypeKind(TagTypeKind TK); |
384 | void mangleArtificialTagType(TagTypeKind TK, StringRef UnqualifiedName, |
385 | ArrayRef<StringRef> NestedNames = std::nullopt); |
386 | void mangleAddressSpaceType(QualType T, Qualifiers Quals, SourceRange Range); |
387 | void mangleType(QualType T, SourceRange Range, |
388 | QualifierMangleMode QMM = QMM_Mangle); |
389 | void mangleFunctionType(const FunctionType *T, |
390 | const FunctionDecl *D = nullptr, |
391 | bool ForceThisQuals = false, |
392 | bool MangleExceptionSpec = true); |
393 | void mangleSourceName(StringRef Name); |
394 | void mangleNestedName(GlobalDecl GD); |
395 | |
396 | private: |
397 | bool isStructorDecl(const NamedDecl *ND) const { |
398 | return ND == Structor || getStructor(ND) == Structor; |
399 | } |
400 | |
401 | bool is64BitPointer(Qualifiers Quals) const { |
402 | LangAS AddrSpace = Quals.getAddressSpace(); |
403 | return AddrSpace == LangAS::ptr64 || |
404 | (PointersAre64Bit && !(AddrSpace == LangAS::ptr32_sptr || |
405 | AddrSpace == LangAS::ptr32_uptr)); |
406 | } |
407 | |
408 | void mangleUnqualifiedName(GlobalDecl GD) { |
409 | mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName()); |
410 | } |
411 | void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name); |
412 | void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc); |
413 | void mangleCXXDtorType(CXXDtorType T); |
414 | void mangleQualifiers(Qualifiers Quals, bool IsMember); |
415 | void mangleRefQualifier(RefQualifierKind RefQualifier); |
416 | void manglePointerCVQualifiers(Qualifiers Quals); |
417 | void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType); |
418 | |
419 | void mangleUnscopedTemplateName(GlobalDecl GD); |
420 | void |
421 | mangleTemplateInstantiationName(GlobalDecl GD, |
422 | const TemplateArgumentList &TemplateArgs); |
423 | void mangleObjCMethodName(const ObjCMethodDecl *MD); |
424 | |
425 | void mangleFunctionArgumentType(QualType T, SourceRange Range); |
426 | void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA); |
427 | |
428 | bool isArtificialTagType(QualType T) const; |
429 | |
430 | // Declare manglers for every type class. |
431 | #define ABSTRACT_TYPE(CLASS, PARENT) |
432 | #define NON_CANONICAL_TYPE(CLASS, PARENT) |
433 | #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \ |
434 | Qualifiers Quals, \ |
435 | SourceRange Range); |
436 | #include "clang/AST/TypeNodes.inc" |
437 | #undef ABSTRACT_TYPE |
438 | #undef NON_CANONICAL_TYPE |
439 | #undef TYPE |
440 | |
441 | void mangleType(const TagDecl *TD); |
442 | void mangleDecayedArrayType(const ArrayType *T); |
443 | void mangleArrayType(const ArrayType *T); |
444 | void mangleFunctionClass(const FunctionDecl *FD); |
445 | void mangleCallingConvention(CallingConv CC); |
446 | void mangleCallingConvention(const FunctionType *T); |
447 | void mangleIntegerLiteral(const llvm::APSInt &Number, |
448 | const NonTypeTemplateParmDecl *PD = nullptr, |
449 | QualType TemplateArgType = QualType()); |
450 | void mangleExpression(const Expr *E, const NonTypeTemplateParmDecl *PD); |
451 | void mangleThrowSpecification(const FunctionProtoType *T); |
452 | |
453 | void mangleTemplateArgs(const TemplateDecl *TD, |
454 | const TemplateArgumentList &TemplateArgs); |
455 | void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA, |
456 | const NamedDecl *Parm); |
457 | void mangleTemplateArgValue(QualType T, const APValue &V, TplArgKind, |
458 | bool WithScalarType = false); |
459 | |
460 | void mangleObjCProtocol(const ObjCProtocolDecl *PD); |
461 | void mangleObjCLifetime(const QualType T, Qualifiers Quals, |
462 | SourceRange Range); |
463 | void mangleObjCKindOfType(const ObjCObjectType *T, Qualifiers Quals, |
464 | SourceRange Range); |
465 | }; |
466 | } |
467 | |
468 | MicrosoftMangleContextImpl::MicrosoftMangleContextImpl(ASTContext &Context, |
469 | DiagnosticsEngine &Diags, |
470 | bool IsAux) |
471 | : MicrosoftMangleContext(Context, Diags, IsAux) { |
472 | // To mangle anonymous namespaces, hash the path to the main source file. The |
473 | // path should be whatever (probably relative) path was passed on the command |
474 | // line. The goal is for the compiler to produce the same output regardless of |
475 | // working directory, so use the uncanonicalized relative path. |
476 | // |
477 | // It's important to make the mangled names unique because, when CodeView |
478 | // debug info is in use, the debugger uses mangled type names to distinguish |
479 | // between otherwise identically named types in anonymous namespaces. |
480 | // |
481 | // These symbols are always internal, so there is no need for the hash to |
482 | // match what MSVC produces. For the same reason, clang is free to change the |
483 | // hash at any time without breaking compatibility with old versions of clang. |
484 | // The generated names are intended to look similar to what MSVC generates, |
485 | // which are something like "?A0x01234567@". |
486 | SourceManager &SM = Context.getSourceManager(); |
487 | if (OptionalFileEntryRef FE = SM.getFileEntryRefForID(FID: SM.getMainFileID())) { |
488 | // Truncate the hash so we get 8 characters of hexadecimal. |
489 | uint32_t TruncatedHash = uint32_t(xxh3_64bits(data: FE->getName())); |
490 | AnonymousNamespaceHash = llvm::utohexstr(X: TruncatedHash); |
491 | } else { |
492 | // If we don't have a path to the main file, we'll just use 0. |
493 | AnonymousNamespaceHash = "0" ; |
494 | } |
495 | } |
496 | |
497 | bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { |
498 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) { |
499 | LanguageLinkage L = FD->getLanguageLinkage(); |
500 | // Overloadable functions need mangling. |
501 | if (FD->hasAttr<OverloadableAttr>()) |
502 | return true; |
503 | |
504 | // The ABI expects that we would never mangle "typical" user-defined entry |
505 | // points regardless of visibility or freestanding-ness. |
506 | // |
507 | // N.B. This is distinct from asking about "main". "main" has a lot of |
508 | // special rules associated with it in the standard while these |
509 | // user-defined entry points are outside of the purview of the standard. |
510 | // For example, there can be only one definition for "main" in a standards |
511 | // compliant program; however nothing forbids the existence of wmain and |
512 | // WinMain in the same translation unit. |
513 | if (FD->isMSVCRTEntryPoint()) |
514 | return false; |
515 | |
516 | // C++ functions and those whose names are not a simple identifier need |
517 | // mangling. |
518 | if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) |
519 | return true; |
520 | |
521 | // C functions are not mangled. |
522 | if (L == CLanguageLinkage) |
523 | return false; |
524 | } |
525 | |
526 | // Otherwise, no mangling is done outside C++ mode. |
527 | if (!getASTContext().getLangOpts().CPlusPlus) |
528 | return false; |
529 | |
530 | const VarDecl *VD = dyn_cast<VarDecl>(Val: D); |
531 | if (VD && !isa<DecompositionDecl>(Val: D)) { |
532 | // C variables are not mangled. |
533 | if (VD->isExternC()) |
534 | return false; |
535 | |
536 | // Variables at global scope with internal linkage are not mangled. |
537 | const DeclContext *DC = getEffectiveDeclContext(D); |
538 | // Check for extern variable declared locally. |
539 | if (DC->isFunctionOrMethod() && D->hasLinkage()) |
540 | while (!DC->isNamespace() && !DC->isTranslationUnit()) |
541 | DC = getEffectiveParentContext(DC); |
542 | |
543 | if (DC->isTranslationUnit() && D->getFormalLinkage() == Linkage::Internal && |
544 | !isa<VarTemplateSpecializationDecl>(Val: D) && D->getIdentifier() != nullptr) |
545 | return false; |
546 | } |
547 | |
548 | return true; |
549 | } |
550 | |
551 | bool |
552 | MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) { |
553 | return true; |
554 | } |
555 | |
556 | void MicrosoftCXXNameMangler::mangle(GlobalDecl GD, StringRef Prefix) { |
557 | const NamedDecl *D = cast<NamedDecl>(Val: GD.getDecl()); |
558 | // MSVC doesn't mangle C++ names the same way it mangles extern "C" names. |
559 | // Therefore it's really important that we don't decorate the |
560 | // name with leading underscores or leading/trailing at signs. So, by |
561 | // default, we emit an asm marker at the start so we get the name right. |
562 | // Callers can override this with a custom prefix. |
563 | |
564 | // <mangled-name> ::= ? <name> <type-encoding> |
565 | Out << Prefix; |
566 | mangleName(GD); |
567 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) |
568 | mangleFunctionEncoding(GD, ShouldMangle: Context.shouldMangleDeclName(FD)); |
569 | else if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) |
570 | mangleVariableEncoding(VD); |
571 | else if (isa<MSGuidDecl>(Val: D)) |
572 | // MSVC appears to mangle GUIDs as if they were variables of type |
573 | // 'const struct __s_GUID'. |
574 | Out << "3U__s_GUID@@B" ; |
575 | else if (isa<TemplateParamObjectDecl>(Val: D)) { |
576 | // Template parameter objects don't get a <type-encoding>; their type is |
577 | // specified as part of their value. |
578 | } else |
579 | llvm_unreachable("Tried to mangle unexpected NamedDecl!" ); |
580 | } |
581 | |
582 | void MicrosoftCXXNameMangler::mangleFunctionEncoding(GlobalDecl GD, |
583 | bool ShouldMangle) { |
584 | const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl()); |
585 | // <type-encoding> ::= <function-class> <function-type> |
586 | |
587 | // Since MSVC operates on the type as written and not the canonical type, it |
588 | // actually matters which decl we have here. MSVC appears to choose the |
589 | // first, since it is most likely to be the declaration in a header file. |
590 | FD = FD->getFirstDecl(); |
591 | |
592 | // We should never ever see a FunctionNoProtoType at this point. |
593 | // We don't even know how to mangle their types anyway :). |
594 | const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>(); |
595 | |
596 | // extern "C" functions can hold entities that must be mangled. |
597 | // As it stands, these functions still need to get expressed in the full |
598 | // external name. They have their class and type omitted, replaced with '9'. |
599 | if (ShouldMangle) { |
600 | // We would like to mangle all extern "C" functions using this additional |
601 | // component but this would break compatibility with MSVC's behavior. |
602 | // Instead, do this when we know that compatibility isn't important (in |
603 | // other words, when it is an overloaded extern "C" function). |
604 | if (FD->isExternC() && FD->hasAttr<OverloadableAttr>()) |
605 | Out << "$$J0" ; |
606 | |
607 | mangleFunctionClass(FD); |
608 | |
609 | mangleFunctionType(FT, FD, false, false); |
610 | } else { |
611 | Out << '9'; |
612 | } |
613 | } |
614 | |
615 | void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) { |
616 | // <type-encoding> ::= <storage-class> <variable-type> |
617 | // <storage-class> ::= 0 # private static member |
618 | // ::= 1 # protected static member |
619 | // ::= 2 # public static member |
620 | // ::= 3 # global |
621 | // ::= 4 # static local |
622 | |
623 | // The first character in the encoding (after the name) is the storage class. |
624 | if (VD->isStaticDataMember()) { |
625 | // If it's a static member, it also encodes the access level. |
626 | switch (VD->getAccess()) { |
627 | default: |
628 | case AS_private: Out << '0'; break; |
629 | case AS_protected: Out << '1'; break; |
630 | case AS_public: Out << '2'; break; |
631 | } |
632 | } |
633 | else if (!VD->isStaticLocal()) |
634 | Out << '3'; |
635 | else |
636 | Out << '4'; |
637 | // Now mangle the type. |
638 | // <variable-type> ::= <type> <cvr-qualifiers> |
639 | // ::= <type> <pointee-cvr-qualifiers> # pointers, references |
640 | // Pointers and references are odd. The type of 'int * const foo;' gets |
641 | // mangled as 'QAHA' instead of 'PAHB', for example. |
642 | SourceRange SR = VD->getSourceRange(); |
643 | QualType Ty = VD->getType(); |
644 | if (Ty->isPointerType() || Ty->isReferenceType() || |
645 | Ty->isMemberPointerType()) { |
646 | mangleType(T: Ty, Range: SR, QMM: QMM_Drop); |
647 | manglePointerExtQualifiers( |
648 | Quals: Ty.getDesugaredType(Context: getASTContext()).getLocalQualifiers(), PointeeType: QualType()); |
649 | if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) { |
650 | mangleQualifiers(Quals: MPT->getPointeeType().getQualifiers(), IsMember: true); |
651 | // Member pointers are suffixed with a back reference to the member |
652 | // pointer's class name. |
653 | mangleName(MPT->getClass()->getAsCXXRecordDecl()); |
654 | } else |
655 | mangleQualifiers(Quals: Ty->getPointeeType().getQualifiers(), IsMember: false); |
656 | } else if (const ArrayType *AT = getASTContext().getAsArrayType(T: Ty)) { |
657 | // Global arrays are funny, too. |
658 | mangleDecayedArrayType(T: AT); |
659 | if (AT->getElementType()->isArrayType()) |
660 | Out << 'A'; |
661 | else |
662 | mangleQualifiers(Quals: Ty.getQualifiers(), IsMember: false); |
663 | } else { |
664 | mangleType(T: Ty, Range: SR, QMM: QMM_Drop); |
665 | mangleQualifiers(Quals: Ty.getQualifiers(), IsMember: false); |
666 | } |
667 | } |
668 | |
669 | void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD, |
670 | const ValueDecl *VD, |
671 | StringRef Prefix) { |
672 | // <member-data-pointer> ::= <integer-literal> |
673 | // ::= $F <number> <number> |
674 | // ::= $G <number> <number> <number> |
675 | |
676 | int64_t FieldOffset; |
677 | int64_t VBTableOffset; |
678 | MSInheritanceModel IM = RD->getMSInheritanceModel(); |
679 | if (VD) { |
680 | FieldOffset = getASTContext().getFieldOffset(FD: VD); |
681 | assert(FieldOffset % getASTContext().getCharWidth() == 0 && |
682 | "cannot take address of bitfield" ); |
683 | FieldOffset /= getASTContext().getCharWidth(); |
684 | |
685 | VBTableOffset = 0; |
686 | |
687 | if (IM == MSInheritanceModel::Virtual) |
688 | FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); |
689 | } else { |
690 | FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1; |
691 | |
692 | VBTableOffset = -1; |
693 | } |
694 | |
695 | char Code = '\0'; |
696 | switch (IM) { |
697 | case MSInheritanceModel::Single: Code = '0'; break; |
698 | case MSInheritanceModel::Multiple: Code = '0'; break; |
699 | case MSInheritanceModel::Virtual: Code = 'F'; break; |
700 | case MSInheritanceModel::Unspecified: Code = 'G'; break; |
701 | } |
702 | |
703 | Out << Prefix << Code; |
704 | |
705 | mangleNumber(Number: FieldOffset); |
706 | |
707 | // The C++ standard doesn't allow base-to-derived member pointer conversions |
708 | // in template parameter contexts, so the vbptr offset of data member pointers |
709 | // is always zero. |
710 | if (inheritanceModelHasVBPtrOffsetField(Inheritance: IM)) |
711 | mangleNumber(Number: 0); |
712 | if (inheritanceModelHasVBTableOffsetField(Inheritance: IM)) |
713 | mangleNumber(Number: VBTableOffset); |
714 | } |
715 | |
716 | void MicrosoftCXXNameMangler::mangleMemberDataPointerInClassNTTP( |
717 | const CXXRecordDecl *RD, const ValueDecl *VD) { |
718 | MSInheritanceModel IM = RD->getMSInheritanceModel(); |
719 | // <nttp-class-member-data-pointer> ::= <member-data-pointer> |
720 | // ::= N |
721 | // ::= 8 <postfix> @ <unqualified-name> @ |
722 | |
723 | if (IM != MSInheritanceModel::Single && IM != MSInheritanceModel::Multiple) |
724 | return mangleMemberDataPointer(RD, VD, Prefix: "" ); |
725 | |
726 | if (!VD) { |
727 | Out << 'N'; |
728 | return; |
729 | } |
730 | |
731 | Out << '8'; |
732 | mangleNestedName(VD); |
733 | Out << '@'; |
734 | mangleUnqualifiedName(VD); |
735 | Out << '@'; |
736 | } |
737 | |
738 | void |
739 | MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD, |
740 | const CXXMethodDecl *MD, |
741 | StringRef Prefix) { |
742 | // <member-function-pointer> ::= $1? <name> |
743 | // ::= $H? <name> <number> |
744 | // ::= $I? <name> <number> <number> |
745 | // ::= $J? <name> <number> <number> <number> |
746 | |
747 | MSInheritanceModel IM = RD->getMSInheritanceModel(); |
748 | |
749 | char Code = '\0'; |
750 | switch (IM) { |
751 | case MSInheritanceModel::Single: Code = '1'; break; |
752 | case MSInheritanceModel::Multiple: Code = 'H'; break; |
753 | case MSInheritanceModel::Virtual: Code = 'I'; break; |
754 | case MSInheritanceModel::Unspecified: Code = 'J'; break; |
755 | } |
756 | |
757 | // If non-virtual, mangle the name. If virtual, mangle as a virtual memptr |
758 | // thunk. |
759 | uint64_t NVOffset = 0; |
760 | uint64_t VBTableOffset = 0; |
761 | uint64_t VBPtrOffset = 0; |
762 | if (MD) { |
763 | Out << Prefix << Code << '?'; |
764 | if (MD->isVirtual()) { |
765 | MicrosoftVTableContext *VTContext = |
766 | cast<MicrosoftVTableContext>(Val: getASTContext().getVTableContext()); |
767 | MethodVFTableLocation ML = |
768 | VTContext->getMethodVFTableLocation(GD: GlobalDecl(MD)); |
769 | mangleVirtualMemPtrThunk(MD, ML); |
770 | NVOffset = ML.VFPtrOffset.getQuantity(); |
771 | VBTableOffset = ML.VBTableIndex * 4; |
772 | if (ML.VBase) { |
773 | const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD); |
774 | VBPtrOffset = Layout.getVBPtrOffset().getQuantity(); |
775 | } |
776 | } else { |
777 | mangleName(MD); |
778 | mangleFunctionEncoding(MD, /*ShouldMangle=*/true); |
779 | } |
780 | |
781 | if (VBTableOffset == 0 && IM == MSInheritanceModel::Virtual) |
782 | NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity(); |
783 | } else { |
784 | // Null single inheritance member functions are encoded as a simple nullptr. |
785 | if (IM == MSInheritanceModel::Single) { |
786 | Out << Prefix << "0A@" ; |
787 | return; |
788 | } |
789 | if (IM == MSInheritanceModel::Unspecified) |
790 | VBTableOffset = -1; |
791 | Out << Prefix << Code; |
792 | } |
793 | |
794 | if (inheritanceModelHasNVOffsetField(/*IsMemberFunction=*/true, Inheritance: IM)) |
795 | mangleNumber(Number: static_cast<uint32_t>(NVOffset)); |
796 | if (inheritanceModelHasVBPtrOffsetField(Inheritance: IM)) |
797 | mangleNumber(Number: VBPtrOffset); |
798 | if (inheritanceModelHasVBTableOffsetField(Inheritance: IM)) |
799 | mangleNumber(Number: VBTableOffset); |
800 | } |
801 | |
802 | void MicrosoftCXXNameMangler::mangleMemberFunctionPointerInClassNTTP( |
803 | const CXXRecordDecl *RD, const CXXMethodDecl *MD) { |
804 | // <nttp-class-member-function-pointer> ::= <member-function-pointer> |
805 | // ::= N |
806 | // ::= E? <virtual-mem-ptr-thunk> |
807 | // ::= E? <mangled-name> <type-encoding> |
808 | |
809 | if (!MD) { |
810 | if (RD->getMSInheritanceModel() != MSInheritanceModel::Single) |
811 | return mangleMemberFunctionPointer(RD, MD, Prefix: "" ); |
812 | |
813 | Out << 'N'; |
814 | return; |
815 | } |
816 | |
817 | Out << "E?" ; |
818 | if (MD->isVirtual()) { |
819 | MicrosoftVTableContext *VTContext = |
820 | cast<MicrosoftVTableContext>(Val: getASTContext().getVTableContext()); |
821 | MethodVFTableLocation ML = |
822 | VTContext->getMethodVFTableLocation(GD: GlobalDecl(MD)); |
823 | mangleVirtualMemPtrThunk(MD, ML); |
824 | } else { |
825 | mangleName(MD); |
826 | mangleFunctionEncoding(MD, /*ShouldMangle=*/true); |
827 | } |
828 | } |
829 | |
830 | void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk( |
831 | const CXXMethodDecl *MD, const MethodVFTableLocation &ML) { |
832 | // Get the vftable offset. |
833 | CharUnits PointerWidth = getASTContext().toCharUnitsFromBits( |
834 | BitSize: getASTContext().getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default)); |
835 | uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity(); |
836 | |
837 | Out << "?_9" ; |
838 | mangleName(MD->getParent()); |
839 | Out << "$B" ; |
840 | mangleNumber(Number: OffsetInVFTable); |
841 | Out << 'A'; |
842 | mangleCallingConvention(MD->getType()->castAs<FunctionProtoType>()); |
843 | } |
844 | |
845 | void MicrosoftCXXNameMangler::mangleName(GlobalDecl GD) { |
846 | // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ |
847 | |
848 | // Always start with the unqualified name. |
849 | mangleUnqualifiedName(GD); |
850 | |
851 | mangleNestedName(GD); |
852 | |
853 | // Terminate the whole name with an '@'. |
854 | Out << '@'; |
855 | } |
856 | |
857 | void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) { |
858 | mangleNumber(Number: llvm::APSInt(llvm::APInt(64, Number), /*IsUnsigned*/false)); |
859 | } |
860 | |
861 | void MicrosoftCXXNameMangler::mangleNumber(llvm::APSInt Number) { |
862 | // MSVC never mangles any integer wider than 64 bits. In general it appears |
863 | // to convert every integer to signed 64 bit before mangling (including |
864 | // unsigned 64 bit values). Do the same, but preserve bits beyond the bottom |
865 | // 64. |
866 | unsigned Width = std::max(a: Number.getBitWidth(), b: 64U); |
867 | llvm::APInt Value = Number.extend(width: Width); |
868 | |
869 | // <non-negative integer> ::= A@ # when Number == 0 |
870 | // ::= <decimal digit> # when 1 <= Number <= 10 |
871 | // ::= <hex digit>+ @ # when Number >= 10 |
872 | // |
873 | // <number> ::= [?] <non-negative integer> |
874 | |
875 | if (Value.isNegative()) { |
876 | Value = -Value; |
877 | Out << '?'; |
878 | } |
879 | mangleBits(Number: Value); |
880 | } |
881 | |
882 | void MicrosoftCXXNameMangler::mangleFloat(llvm::APFloat Number) { |
883 | using llvm::APFloat; |
884 | |
885 | switch (APFloat::SemanticsToEnum(Sem: Number.getSemantics())) { |
886 | case APFloat::S_IEEEsingle: Out << 'A'; break; |
887 | case APFloat::S_IEEEdouble: Out << 'B'; break; |
888 | |
889 | // The following are all Clang extensions. We try to pick manglings that are |
890 | // unlikely to conflict with MSVC's scheme. |
891 | case APFloat::S_IEEEhalf: Out << 'V'; break; |
892 | case APFloat::S_BFloat: Out << 'W'; break; |
893 | case APFloat::S_x87DoubleExtended: Out << 'X'; break; |
894 | case APFloat::S_IEEEquad: Out << 'Y'; break; |
895 | case APFloat::S_PPCDoubleDouble: Out << 'Z'; break; |
896 | case APFloat::S_Float8E5M2: |
897 | case APFloat::S_Float8E4M3FN: |
898 | case APFloat::S_Float8E5M2FNUZ: |
899 | case APFloat::S_Float8E4M3FNUZ: |
900 | case APFloat::S_Float8E4M3B11FNUZ: |
901 | case APFloat::S_FloatTF32: |
902 | llvm_unreachable("Tried to mangle unexpected APFloat semantics" ); |
903 | } |
904 | |
905 | mangleBits(Number: Number.bitcastToAPInt()); |
906 | } |
907 | |
908 | void MicrosoftCXXNameMangler::mangleBits(llvm::APInt Value) { |
909 | if (Value == 0) |
910 | Out << "A@" ; |
911 | else if (Value.uge(RHS: 1) && Value.ule(RHS: 10)) |
912 | Out << (Value - 1); |
913 | else { |
914 | // Numbers that are not encoded as decimal digits are represented as nibbles |
915 | // in the range of ASCII characters 'A' to 'P'. |
916 | // The number 0x123450 would be encoded as 'BCDEFA' |
917 | llvm::SmallString<32> EncodedNumberBuffer; |
918 | for (; Value != 0; Value.lshrInPlace(ShiftAmt: 4)) |
919 | EncodedNumberBuffer.push_back(Elt: 'A' + (Value & 0xf).getZExtValue()); |
920 | std::reverse(first: EncodedNumberBuffer.begin(), last: EncodedNumberBuffer.end()); |
921 | Out.write(Ptr: EncodedNumberBuffer.data(), Size: EncodedNumberBuffer.size()); |
922 | Out << '@'; |
923 | } |
924 | } |
925 | |
926 | static GlobalDecl isTemplate(GlobalDecl GD, |
927 | const TemplateArgumentList *&TemplateArgs) { |
928 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
929 | // Check if we have a function template. |
930 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: ND)) { |
931 | if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { |
932 | TemplateArgs = FD->getTemplateSpecializationArgs(); |
933 | return GD.getWithDecl(TD); |
934 | } |
935 | } |
936 | |
937 | // Check if we have a class template. |
938 | if (const ClassTemplateSpecializationDecl *Spec = |
939 | dyn_cast<ClassTemplateSpecializationDecl>(Val: ND)) { |
940 | TemplateArgs = &Spec->getTemplateArgs(); |
941 | return GD.getWithDecl(Spec->getSpecializedTemplate()); |
942 | } |
943 | |
944 | // Check if we have a variable template. |
945 | if (const VarTemplateSpecializationDecl *Spec = |
946 | dyn_cast<VarTemplateSpecializationDecl>(Val: ND)) { |
947 | TemplateArgs = &Spec->getTemplateArgs(); |
948 | return GD.getWithDecl(Spec->getSpecializedTemplate()); |
949 | } |
950 | |
951 | return GlobalDecl(); |
952 | } |
953 | |
954 | void MicrosoftCXXNameMangler::mangleUnqualifiedName(GlobalDecl GD, |
955 | DeclarationName Name) { |
956 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
957 | // <unqualified-name> ::= <operator-name> |
958 | // ::= <ctor-dtor-name> |
959 | // ::= <source-name> |
960 | // ::= <template-name> |
961 | |
962 | // Check if we have a template. |
963 | const TemplateArgumentList *TemplateArgs = nullptr; |
964 | if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { |
965 | // Function templates aren't considered for name back referencing. This |
966 | // makes sense since function templates aren't likely to occur multiple |
967 | // times in a symbol. |
968 | if (isa<FunctionTemplateDecl>(Val: TD.getDecl())) { |
969 | mangleTemplateInstantiationName(GD: TD, TemplateArgs: *TemplateArgs); |
970 | Out << '@'; |
971 | return; |
972 | } |
973 | |
974 | // Here comes the tricky thing: if we need to mangle something like |
975 | // void foo(A::X<Y>, B::X<Y>), |
976 | // the X<Y> part is aliased. However, if you need to mangle |
977 | // void foo(A::X<A::Y>, A::X<B::Y>), |
978 | // the A::X<> part is not aliased. |
979 | // That is, from the mangler's perspective we have a structure like this: |
980 | // namespace[s] -> type[ -> template-parameters] |
981 | // but from the Clang perspective we have |
982 | // type [ -> template-parameters] |
983 | // \-> namespace[s] |
984 | // What we do is we create a new mangler, mangle the same type (without |
985 | // a namespace suffix) to a string using the extra mangler and then use |
986 | // the mangled type name as a key to check the mangling of different types |
987 | // for aliasing. |
988 | |
989 | // It's important to key cache reads off ND, not TD -- the same TD can |
990 | // be used with different TemplateArgs, but ND uniquely identifies |
991 | // TD / TemplateArg pairs. |
992 | ArgBackRefMap::iterator Found = TemplateArgBackReferences.find(Val: ND); |
993 | if (Found == TemplateArgBackReferences.end()) { |
994 | |
995 | TemplateArgStringMap::iterator Found = TemplateArgStrings.find(Val: ND); |
996 | if (Found == TemplateArgStrings.end()) { |
997 | // Mangle full template name into temporary buffer. |
998 | llvm::SmallString<64> TemplateMangling; |
999 | llvm::raw_svector_ostream Stream(TemplateMangling); |
1000 | MicrosoftCXXNameMangler (Context, Stream); |
1001 | Extra.mangleTemplateInstantiationName(GD: TD, TemplateArgs: *TemplateArgs); |
1002 | |
1003 | // Use the string backref vector to possibly get a back reference. |
1004 | mangleSourceName(Name: TemplateMangling); |
1005 | |
1006 | // Memoize back reference for this type if one exist, else memoize |
1007 | // the mangling itself. |
1008 | BackRefVec::iterator StringFound = |
1009 | llvm::find(Range&: NameBackReferences, Val: TemplateMangling); |
1010 | if (StringFound != NameBackReferences.end()) { |
1011 | TemplateArgBackReferences[ND] = |
1012 | StringFound - NameBackReferences.begin(); |
1013 | } else { |
1014 | TemplateArgStrings[ND] = |
1015 | TemplateArgStringStorage.save(S: TemplateMangling.str()); |
1016 | } |
1017 | } else { |
1018 | Out << Found->second << '@'; // Outputs a StringRef. |
1019 | } |
1020 | } else { |
1021 | Out << Found->second; // Outputs a back reference (an int). |
1022 | } |
1023 | return; |
1024 | } |
1025 | |
1026 | switch (Name.getNameKind()) { |
1027 | case DeclarationName::Identifier: { |
1028 | if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { |
1029 | bool IsDeviceStub = |
1030 | ND && |
1031 | ((isa<FunctionDecl>(ND) && ND->hasAttr<CUDAGlobalAttr>()) || |
1032 | (isa<FunctionTemplateDecl>(ND) && |
1033 | cast<FunctionTemplateDecl>(ND) |
1034 | ->getTemplatedDecl() |
1035 | ->hasAttr<CUDAGlobalAttr>())) && |
1036 | GD.getKernelReferenceKind() == KernelReferenceKind::Stub; |
1037 | if (IsDeviceStub) |
1038 | mangleSourceName( |
1039 | Name: (llvm::Twine("__device_stub__" ) + II->getName()).str()); |
1040 | else |
1041 | mangleSourceName(Name: II->getName()); |
1042 | break; |
1043 | } |
1044 | |
1045 | // Otherwise, an anonymous entity. We must have a declaration. |
1046 | assert(ND && "mangling empty name without declaration" ); |
1047 | |
1048 | if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Val: ND)) { |
1049 | if (NS->isAnonymousNamespace()) { |
1050 | Out << "?A0x" << Context.getAnonymousNamespaceHash() << '@'; |
1051 | break; |
1052 | } |
1053 | } |
1054 | |
1055 | if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(Val: ND)) { |
1056 | // Decomposition declarations are considered anonymous, and get |
1057 | // numbered with a $S prefix. |
1058 | llvm::SmallString<64> Name("$S" ); |
1059 | // Get a unique id for the anonymous struct. |
1060 | Name += llvm::utostr(X: Context.getAnonymousStructId(DD) + 1); |
1061 | mangleSourceName(Name); |
1062 | break; |
1063 | } |
1064 | |
1065 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: ND)) { |
1066 | // We must have an anonymous union or struct declaration. |
1067 | const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl(); |
1068 | assert(RD && "expected variable decl to have a record type" ); |
1069 | // Anonymous types with no tag or typedef get the name of their |
1070 | // declarator mangled in. If they have no declarator, number them with |
1071 | // a $S prefix. |
1072 | llvm::SmallString<64> Name("$S" ); |
1073 | // Get a unique id for the anonymous struct. |
1074 | Name += llvm::utostr(X: Context.getAnonymousStructId(RD) + 1); |
1075 | mangleSourceName(Name: Name.str()); |
1076 | break; |
1077 | } |
1078 | |
1079 | if (const MSGuidDecl *GD = dyn_cast<MSGuidDecl>(Val: ND)) { |
1080 | // Mangle a GUID object as if it were a variable with the corresponding |
1081 | // mangled name. |
1082 | SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab" )> GUID; |
1083 | llvm::raw_svector_ostream GUIDOS(GUID); |
1084 | Context.mangleMSGuidDecl(GD, GUIDOS); |
1085 | mangleSourceName(Name: GUID); |
1086 | break; |
1087 | } |
1088 | |
1089 | if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(Val: ND)) { |
1090 | Out << "?__N" ; |
1091 | mangleTemplateArgValue(T: TPO->getType().getUnqualifiedType(), |
1092 | V: TPO->getValue(), TplArgKind::ClassNTTP); |
1093 | break; |
1094 | } |
1095 | |
1096 | // We must have an anonymous struct. |
1097 | const TagDecl *TD = cast<TagDecl>(Val: ND); |
1098 | if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { |
1099 | assert(TD->getDeclContext() == D->getDeclContext() && |
1100 | "Typedef should not be in another decl context!" ); |
1101 | assert(D->getDeclName().getAsIdentifierInfo() && |
1102 | "Typedef was not named!" ); |
1103 | mangleSourceName(Name: D->getDeclName().getAsIdentifierInfo()->getName()); |
1104 | break; |
1105 | } |
1106 | |
1107 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: TD)) { |
1108 | if (Record->isLambda()) { |
1109 | llvm::SmallString<10> Name("<lambda_" ); |
1110 | |
1111 | Decl *LambdaContextDecl = Record->getLambdaContextDecl(); |
1112 | unsigned LambdaManglingNumber = Record->getLambdaManglingNumber(); |
1113 | unsigned LambdaId; |
1114 | const ParmVarDecl *Parm = |
1115 | dyn_cast_or_null<ParmVarDecl>(Val: LambdaContextDecl); |
1116 | const FunctionDecl *Func = |
1117 | Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; |
1118 | |
1119 | if (Func) { |
1120 | unsigned DefaultArgNo = |
1121 | Func->getNumParams() - Parm->getFunctionScopeIndex(); |
1122 | Name += llvm::utostr(X: DefaultArgNo); |
1123 | Name += "_" ; |
1124 | } |
1125 | |
1126 | if (LambdaManglingNumber) |
1127 | LambdaId = LambdaManglingNumber; |
1128 | else |
1129 | LambdaId = Context.getLambdaId(RD: Record); |
1130 | |
1131 | Name += llvm::utostr(X: LambdaId); |
1132 | Name += ">" ; |
1133 | |
1134 | mangleSourceName(Name); |
1135 | |
1136 | // If the context is a variable or a class member and not a parameter, |
1137 | // it is encoded in a qualified name. |
1138 | if (LambdaManglingNumber && LambdaContextDecl) { |
1139 | if ((isa<VarDecl>(Val: LambdaContextDecl) || |
1140 | isa<FieldDecl>(Val: LambdaContextDecl)) && |
1141 | !isa<ParmVarDecl>(Val: LambdaContextDecl)) { |
1142 | mangleUnqualifiedName(GD: cast<NamedDecl>(Val: LambdaContextDecl)); |
1143 | } |
1144 | } |
1145 | break; |
1146 | } |
1147 | } |
1148 | |
1149 | llvm::SmallString<64> Name; |
1150 | if (DeclaratorDecl *DD = |
1151 | Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) { |
1152 | // Anonymous types without a name for linkage purposes have their |
1153 | // declarator mangled in if they have one. |
1154 | Name += "<unnamed-type-" ; |
1155 | Name += DD->getName(); |
1156 | } else if (TypedefNameDecl *TND = |
1157 | Context.getASTContext().getTypedefNameForUnnamedTagDecl( |
1158 | TD)) { |
1159 | // Anonymous types without a name for linkage purposes have their |
1160 | // associate typedef mangled in if they have one. |
1161 | Name += "<unnamed-type-" ; |
1162 | Name += TND->getName(); |
1163 | } else if (isa<EnumDecl>(Val: TD) && |
1164 | cast<EnumDecl>(Val: TD)->enumerator_begin() != |
1165 | cast<EnumDecl>(Val: TD)->enumerator_end()) { |
1166 | // Anonymous non-empty enums mangle in the first enumerator. |
1167 | auto *ED = cast<EnumDecl>(Val: TD); |
1168 | Name += "<unnamed-enum-" ; |
1169 | Name += ED->enumerator_begin()->getName(); |
1170 | } else { |
1171 | // Otherwise, number the types using a $S prefix. |
1172 | Name += "<unnamed-type-$S" ; |
1173 | Name += llvm::utostr(X: Context.getAnonymousStructId(TD) + 1); |
1174 | } |
1175 | Name += ">" ; |
1176 | mangleSourceName(Name: Name.str()); |
1177 | break; |
1178 | } |
1179 | |
1180 | case DeclarationName::ObjCZeroArgSelector: |
1181 | case DeclarationName::ObjCOneArgSelector: |
1182 | case DeclarationName::ObjCMultiArgSelector: { |
1183 | // This is reachable only when constructing an outlined SEH finally |
1184 | // block. Nothing depends on this mangling and it's used only with |
1185 | // functinos with internal linkage. |
1186 | llvm::SmallString<64> Name; |
1187 | mangleSourceName(Name: Name.str()); |
1188 | break; |
1189 | } |
1190 | |
1191 | case DeclarationName::CXXConstructorName: |
1192 | if (isStructorDecl(ND)) { |
1193 | if (StructorType == Ctor_CopyingClosure) { |
1194 | Out << "?_O" ; |
1195 | return; |
1196 | } |
1197 | if (StructorType == Ctor_DefaultClosure) { |
1198 | Out << "?_F" ; |
1199 | return; |
1200 | } |
1201 | } |
1202 | Out << "?0" ; |
1203 | return; |
1204 | |
1205 | case DeclarationName::CXXDestructorName: |
1206 | if (isStructorDecl(ND)) |
1207 | // If the named decl is the C++ destructor we're mangling, |
1208 | // use the type we were given. |
1209 | mangleCXXDtorType(T: static_cast<CXXDtorType>(StructorType)); |
1210 | else |
1211 | // Otherwise, use the base destructor name. This is relevant if a |
1212 | // class with a destructor is declared within a destructor. |
1213 | mangleCXXDtorType(T: Dtor_Base); |
1214 | break; |
1215 | |
1216 | case DeclarationName::CXXConversionFunctionName: |
1217 | // <operator-name> ::= ?B # (cast) |
1218 | // The target type is encoded as the return type. |
1219 | Out << "?B" ; |
1220 | break; |
1221 | |
1222 | case DeclarationName::CXXOperatorName: |
1223 | mangleOperatorName(OO: Name.getCXXOverloadedOperator(), Loc: ND->getLocation()); |
1224 | break; |
1225 | |
1226 | case DeclarationName::CXXLiteralOperatorName: { |
1227 | Out << "?__K" ; |
1228 | mangleSourceName(Name: Name.getCXXLiteralIdentifier()->getName()); |
1229 | break; |
1230 | } |
1231 | |
1232 | case DeclarationName::CXXDeductionGuideName: |
1233 | llvm_unreachable("Can't mangle a deduction guide name!" ); |
1234 | |
1235 | case DeclarationName::CXXUsingDirective: |
1236 | llvm_unreachable("Can't mangle a using directive name!" ); |
1237 | } |
1238 | } |
1239 | |
1240 | // <postfix> ::= <unqualified-name> [<postfix>] |
1241 | // ::= <substitution> [<postfix>] |
1242 | void MicrosoftCXXNameMangler::mangleNestedName(GlobalDecl GD) { |
1243 | const NamedDecl *ND = cast<NamedDecl>(Val: GD.getDecl()); |
1244 | |
1245 | if (const auto *ID = dyn_cast<IndirectFieldDecl>(Val: ND)) |
1246 | for (unsigned I = 1, IE = ID->getChainingSize(); I < IE; ++I) |
1247 | mangleSourceName(Name: "<unnamed-tag>" ); |
1248 | |
1249 | const DeclContext *DC = getEffectiveDeclContext(ND); |
1250 | while (!DC->isTranslationUnit()) { |
1251 | if (isa<TagDecl>(Val: ND) || isa<VarDecl>(Val: ND)) { |
1252 | unsigned Disc; |
1253 | if (Context.getNextDiscriminator(ND, disc&: Disc)) { |
1254 | Out << '?'; |
1255 | mangleNumber(Number: Disc); |
1256 | Out << '?'; |
1257 | } |
1258 | } |
1259 | |
1260 | if (const BlockDecl *BD = dyn_cast<BlockDecl>(Val: DC)) { |
1261 | auto Discriminate = |
1262 | [](StringRef Name, const unsigned Discriminator, |
1263 | const unsigned ParameterDiscriminator) -> std::string { |
1264 | std::string Buffer; |
1265 | llvm::raw_string_ostream Stream(Buffer); |
1266 | Stream << Name; |
1267 | if (Discriminator) |
1268 | Stream << '_' << Discriminator; |
1269 | if (ParameterDiscriminator) |
1270 | Stream << '_' << ParameterDiscriminator; |
1271 | return Stream.str(); |
1272 | }; |
1273 | |
1274 | unsigned Discriminator = BD->getBlockManglingNumber(); |
1275 | if (!Discriminator) |
1276 | Discriminator = Context.getBlockId(BD, /*Local=*/false); |
1277 | |
1278 | // Mangle the parameter position as a discriminator to deal with unnamed |
1279 | // parameters. Rather than mangling the unqualified parameter name, |
1280 | // always use the position to give a uniform mangling. |
1281 | unsigned ParameterDiscriminator = 0; |
1282 | if (const auto *MC = BD->getBlockManglingContextDecl()) |
1283 | if (const auto *P = dyn_cast<ParmVarDecl>(MC)) |
1284 | if (const auto *F = dyn_cast<FunctionDecl>(P->getDeclContext())) |
1285 | ParameterDiscriminator = |
1286 | F->getNumParams() - P->getFunctionScopeIndex(); |
1287 | |
1288 | DC = getEffectiveDeclContext(BD); |
1289 | |
1290 | Out << '?'; |
1291 | mangleSourceName(Name: Discriminate("_block_invoke" , Discriminator, |
1292 | ParameterDiscriminator)); |
1293 | // If we have a block mangling context, encode that now. This allows us |
1294 | // to discriminate between named static data initializers in the same |
1295 | // scope. This is handled differently from parameters, which use |
1296 | // positions to discriminate between multiple instances. |
1297 | if (const auto *MC = BD->getBlockManglingContextDecl()) |
1298 | if (!isa<ParmVarDecl>(MC)) |
1299 | if (const auto *ND = dyn_cast<NamedDecl>(MC)) |
1300 | mangleUnqualifiedName(ND); |
1301 | // MS ABI and Itanium manglings are in inverted scopes. In the case of a |
1302 | // RecordDecl, mangle the entire scope hierarchy at this point rather than |
1303 | // just the unqualified name to get the ordering correct. |
1304 | if (const auto *RD = dyn_cast<RecordDecl>(DC)) |
1305 | mangleName(GD: RD); |
1306 | else |
1307 | Out << '@'; |
1308 | // void __cdecl |
1309 | Out << "YAX" ; |
1310 | // struct __block_literal * |
1311 | Out << 'P'; |
1312 | // __ptr64 |
1313 | if (PointersAre64Bit) |
1314 | Out << 'E'; |
1315 | Out << 'A'; |
1316 | mangleArtificialTagType(TK: TagTypeKind::Struct, |
1317 | UnqualifiedName: Discriminate("__block_literal" , Discriminator, |
1318 | ParameterDiscriminator)); |
1319 | Out << "@Z" ; |
1320 | |
1321 | // If the effective context was a Record, we have fully mangled the |
1322 | // qualified name and do not need to continue. |
1323 | if (isa<RecordDecl>(Val: DC)) |
1324 | break; |
1325 | continue; |
1326 | } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Val: DC)) { |
1327 | mangleObjCMethodName(MD: Method); |
1328 | } else if (isa<NamedDecl>(Val: DC)) { |
1329 | ND = cast<NamedDecl>(Val: DC); |
1330 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: ND)) { |
1331 | mangle(GD: getGlobalDeclAsDeclContext(FD), Prefix: "?" ); |
1332 | break; |
1333 | } else { |
1334 | mangleUnqualifiedName(GD: ND); |
1335 | // Lambdas in default arguments conceptually belong to the function the |
1336 | // parameter corresponds to. |
1337 | if (const auto *LDADC = getLambdaDefaultArgumentDeclContext(ND)) { |
1338 | DC = LDADC; |
1339 | continue; |
1340 | } |
1341 | } |
1342 | } |
1343 | DC = DC->getParent(); |
1344 | } |
1345 | } |
1346 | |
1347 | void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) { |
1348 | // Microsoft uses the names on the case labels for these dtor variants. Clang |
1349 | // uses the Itanium terminology internally. Everything in this ABI delegates |
1350 | // towards the base dtor. |
1351 | switch (T) { |
1352 | // <operator-name> ::= ?1 # destructor |
1353 | case Dtor_Base: Out << "?1" ; return; |
1354 | // <operator-name> ::= ?_D # vbase destructor |
1355 | case Dtor_Complete: Out << "?_D" ; return; |
1356 | // <operator-name> ::= ?_G # scalar deleting destructor |
1357 | case Dtor_Deleting: Out << "?_G" ; return; |
1358 | // <operator-name> ::= ?_E # vector deleting destructor |
1359 | // FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need |
1360 | // it. |
1361 | case Dtor_Comdat: |
1362 | llvm_unreachable("not expecting a COMDAT" ); |
1363 | } |
1364 | llvm_unreachable("Unsupported dtor type?" ); |
1365 | } |
1366 | |
1367 | void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, |
1368 | SourceLocation Loc) { |
1369 | switch (OO) { |
1370 | // ?0 # constructor |
1371 | // ?1 # destructor |
1372 | // <operator-name> ::= ?2 # new |
1373 | case OO_New: Out << "?2" ; break; |
1374 | // <operator-name> ::= ?3 # delete |
1375 | case OO_Delete: Out << "?3" ; break; |
1376 | // <operator-name> ::= ?4 # = |
1377 | case OO_Equal: Out << "?4" ; break; |
1378 | // <operator-name> ::= ?5 # >> |
1379 | case OO_GreaterGreater: Out << "?5" ; break; |
1380 | // <operator-name> ::= ?6 # << |
1381 | case OO_LessLess: Out << "?6" ; break; |
1382 | // <operator-name> ::= ?7 # ! |
1383 | case OO_Exclaim: Out << "?7" ; break; |
1384 | // <operator-name> ::= ?8 # == |
1385 | case OO_EqualEqual: Out << "?8" ; break; |
1386 | // <operator-name> ::= ?9 # != |
1387 | case OO_ExclaimEqual: Out << "?9" ; break; |
1388 | // <operator-name> ::= ?A # [] |
1389 | case OO_Subscript: Out << "?A" ; break; |
1390 | // ?B # conversion |
1391 | // <operator-name> ::= ?C # -> |
1392 | case OO_Arrow: Out << "?C" ; break; |
1393 | // <operator-name> ::= ?D # * |
1394 | case OO_Star: Out << "?D" ; break; |
1395 | // <operator-name> ::= ?E # ++ |
1396 | case OO_PlusPlus: Out << "?E" ; break; |
1397 | // <operator-name> ::= ?F # -- |
1398 | case OO_MinusMinus: Out << "?F" ; break; |
1399 | // <operator-name> ::= ?G # - |
1400 | case OO_Minus: Out << "?G" ; break; |
1401 | // <operator-name> ::= ?H # + |
1402 | case OO_Plus: Out << "?H" ; break; |
1403 | // <operator-name> ::= ?I # & |
1404 | case OO_Amp: Out << "?I" ; break; |
1405 | // <operator-name> ::= ?J # ->* |
1406 | case OO_ArrowStar: Out << "?J" ; break; |
1407 | // <operator-name> ::= ?K # / |
1408 | case OO_Slash: Out << "?K" ; break; |
1409 | // <operator-name> ::= ?L # % |
1410 | case OO_Percent: Out << "?L" ; break; |
1411 | // <operator-name> ::= ?M # < |
1412 | case OO_Less: Out << "?M" ; break; |
1413 | // <operator-name> ::= ?N # <= |
1414 | case OO_LessEqual: Out << "?N" ; break; |
1415 | // <operator-name> ::= ?O # > |
1416 | case OO_Greater: Out << "?O" ; break; |
1417 | // <operator-name> ::= ?P # >= |
1418 | case OO_GreaterEqual: Out << "?P" ; break; |
1419 | // <operator-name> ::= ?Q # , |
1420 | case OO_Comma: Out << "?Q" ; break; |
1421 | // <operator-name> ::= ?R # () |
1422 | case OO_Call: Out << "?R" ; break; |
1423 | // <operator-name> ::= ?S # ~ |
1424 | case OO_Tilde: Out << "?S" ; break; |
1425 | // <operator-name> ::= ?T # ^ |
1426 | case OO_Caret: Out << "?T" ; break; |
1427 | // <operator-name> ::= ?U # | |
1428 | case OO_Pipe: Out << "?U" ; break; |
1429 | // <operator-name> ::= ?V # && |
1430 | case OO_AmpAmp: Out << "?V" ; break; |
1431 | // <operator-name> ::= ?W # || |
1432 | case OO_PipePipe: Out << "?W" ; break; |
1433 | // <operator-name> ::= ?X # *= |
1434 | case OO_StarEqual: Out << "?X" ; break; |
1435 | // <operator-name> ::= ?Y # += |
1436 | case OO_PlusEqual: Out << "?Y" ; break; |
1437 | // <operator-name> ::= ?Z # -= |
1438 | case OO_MinusEqual: Out << "?Z" ; break; |
1439 | // <operator-name> ::= ?_0 # /= |
1440 | case OO_SlashEqual: Out << "?_0" ; break; |
1441 | // <operator-name> ::= ?_1 # %= |
1442 | case OO_PercentEqual: Out << "?_1" ; break; |
1443 | // <operator-name> ::= ?_2 # >>= |
1444 | case OO_GreaterGreaterEqual: Out << "?_2" ; break; |
1445 | // <operator-name> ::= ?_3 # <<= |
1446 | case OO_LessLessEqual: Out << "?_3" ; break; |
1447 | // <operator-name> ::= ?_4 # &= |
1448 | case OO_AmpEqual: Out << "?_4" ; break; |
1449 | // <operator-name> ::= ?_5 # |= |
1450 | case OO_PipeEqual: Out << "?_5" ; break; |
1451 | // <operator-name> ::= ?_6 # ^= |
1452 | case OO_CaretEqual: Out << "?_6" ; break; |
1453 | // ?_7 # vftable |
1454 | // ?_8 # vbtable |
1455 | // ?_9 # vcall |
1456 | // ?_A # typeof |
1457 | // ?_B # local static guard |
1458 | // ?_C # string |
1459 | // ?_D # vbase destructor |
1460 | // ?_E # vector deleting destructor |
1461 | // ?_F # default constructor closure |
1462 | // ?_G # scalar deleting destructor |
1463 | // ?_H # vector constructor iterator |
1464 | // ?_I # vector destructor iterator |
1465 | // ?_J # vector vbase constructor iterator |
1466 | // ?_K # virtual displacement map |
1467 | // ?_L # eh vector constructor iterator |
1468 | // ?_M # eh vector destructor iterator |
1469 | // ?_N # eh vector vbase constructor iterator |
1470 | // ?_O # copy constructor closure |
1471 | // ?_P<name> # udt returning <name> |
1472 | // ?_Q # <unknown> |
1473 | // ?_R0 # RTTI Type Descriptor |
1474 | // ?_R1 # RTTI Base Class Descriptor at (a,b,c,d) |
1475 | // ?_R2 # RTTI Base Class Array |
1476 | // ?_R3 # RTTI Class Hierarchy Descriptor |
1477 | // ?_R4 # RTTI Complete Object Locator |
1478 | // ?_S # local vftable |
1479 | // ?_T # local vftable constructor closure |
1480 | // <operator-name> ::= ?_U # new[] |
1481 | case OO_Array_New: Out << "?_U" ; break; |
1482 | // <operator-name> ::= ?_V # delete[] |
1483 | case OO_Array_Delete: Out << "?_V" ; break; |
1484 | // <operator-name> ::= ?__L # co_await |
1485 | case OO_Coawait: Out << "?__L" ; break; |
1486 | // <operator-name> ::= ?__M # <=> |
1487 | case OO_Spaceship: Out << "?__M" ; break; |
1488 | |
1489 | case OO_Conditional: { |
1490 | DiagnosticsEngine &Diags = Context.getDiags(); |
1491 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
1492 | FormatString: "cannot mangle this conditional operator yet" ); |
1493 | Diags.Report(Loc, DiagID); |
1494 | break; |
1495 | } |
1496 | |
1497 | case OO_None: |
1498 | case NUM_OVERLOADED_OPERATORS: |
1499 | llvm_unreachable("Not an overloaded operator" ); |
1500 | } |
1501 | } |
1502 | |
1503 | void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) { |
1504 | // <source name> ::= <identifier> @ |
1505 | BackRefVec::iterator Found = llvm::find(Range&: NameBackReferences, Val: Name); |
1506 | if (Found == NameBackReferences.end()) { |
1507 | if (NameBackReferences.size() < 10) |
1508 | NameBackReferences.push_back(Elt: std::string(Name)); |
1509 | Out << Name << '@'; |
1510 | } else { |
1511 | Out << (Found - NameBackReferences.begin()); |
1512 | } |
1513 | } |
1514 | |
1515 | void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { |
1516 | Context.mangleObjCMethodNameAsSourceName(MD, Out); |
1517 | } |
1518 | |
1519 | void MicrosoftCXXNameMangler::mangleTemplateInstantiationName( |
1520 | GlobalDecl GD, const TemplateArgumentList &TemplateArgs) { |
1521 | // <template-name> ::= <unscoped-template-name> <template-args> |
1522 | // ::= <substitution> |
1523 | // Always start with the unqualified name. |
1524 | |
1525 | // Templates have their own context for back references. |
1526 | ArgBackRefMap OuterFunArgsContext; |
1527 | ArgBackRefMap OuterTemplateArgsContext; |
1528 | BackRefVec OuterTemplateContext; |
1529 | PassObjectSizeArgsSet OuterPassObjectSizeArgs; |
1530 | NameBackReferences.swap(RHS&: OuterTemplateContext); |
1531 | FunArgBackReferences.swap(RHS&: OuterFunArgsContext); |
1532 | TemplateArgBackReferences.swap(RHS&: OuterTemplateArgsContext); |
1533 | PassObjectSizeArgs.swap(x&: OuterPassObjectSizeArgs); |
1534 | |
1535 | mangleUnscopedTemplateName(GD); |
1536 | mangleTemplateArgs(TD: cast<TemplateDecl>(Val: GD.getDecl()), TemplateArgs); |
1537 | |
1538 | // Restore the previous back reference contexts. |
1539 | NameBackReferences.swap(RHS&: OuterTemplateContext); |
1540 | FunArgBackReferences.swap(RHS&: OuterFunArgsContext); |
1541 | TemplateArgBackReferences.swap(RHS&: OuterTemplateArgsContext); |
1542 | PassObjectSizeArgs.swap(x&: OuterPassObjectSizeArgs); |
1543 | } |
1544 | |
1545 | void MicrosoftCXXNameMangler::mangleUnscopedTemplateName(GlobalDecl GD) { |
1546 | // <unscoped-template-name> ::= ?$ <unqualified-name> |
1547 | Out << "?$" ; |
1548 | mangleUnqualifiedName(GD); |
1549 | } |
1550 | |
1551 | void MicrosoftCXXNameMangler::mangleIntegerLiteral( |
1552 | const llvm::APSInt &Value, const NonTypeTemplateParmDecl *PD, |
1553 | QualType TemplateArgType) { |
1554 | // <integer-literal> ::= $0 <number> |
1555 | Out << "$" ; |
1556 | |
1557 | // Since MSVC 2019, add 'M[<type>]' after '$' for auto template parameter when |
1558 | // argument is integer. |
1559 | if (getASTContext().getLangOpts().isCompatibleWithMSVC( |
1560 | LangOptions::MSVC2019) && |
1561 | PD && PD->getType()->getTypeClass() == Type::Auto && |
1562 | !TemplateArgType.isNull()) { |
1563 | Out << "M" ; |
1564 | mangleType(T: TemplateArgType, Range: SourceRange(), QMM: QMM_Drop); |
1565 | } |
1566 | |
1567 | Out << "0" ; |
1568 | |
1569 | mangleNumber(Number: Value); |
1570 | } |
1571 | |
1572 | void MicrosoftCXXNameMangler::mangleExpression( |
1573 | const Expr *E, const NonTypeTemplateParmDecl *PD) { |
1574 | // See if this is a constant expression. |
1575 | if (std::optional<llvm::APSInt> Value = |
1576 | E->getIntegerConstantExpr(Ctx: Context.getASTContext())) { |
1577 | mangleIntegerLiteral(Value: *Value, PD, TemplateArgType: E->getType()); |
1578 | return; |
1579 | } |
1580 | |
1581 | // As bad as this diagnostic is, it's better than crashing. |
1582 | DiagnosticsEngine &Diags = Context.getDiags(); |
1583 | unsigned DiagID = Diags.getCustomDiagID( |
1584 | L: DiagnosticsEngine::Error, FormatString: "cannot yet mangle expression type %0" ); |
1585 | Diags.Report(Loc: E->getExprLoc(), DiagID) << E->getStmtClassName() |
1586 | << E->getSourceRange(); |
1587 | } |
1588 | |
1589 | void MicrosoftCXXNameMangler::mangleTemplateArgs( |
1590 | const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) { |
1591 | // <template-args> ::= <template-arg>+ |
1592 | const TemplateParameterList *TPL = TD->getTemplateParameters(); |
1593 | assert(TPL->size() == TemplateArgs.size() && |
1594 | "size mismatch between args and parms!" ); |
1595 | |
1596 | for (size_t i = 0; i < TemplateArgs.size(); ++i) { |
1597 | const TemplateArgument &TA = TemplateArgs[i]; |
1598 | |
1599 | // Separate consecutive packs by $$Z. |
1600 | if (i > 0 && TA.getKind() == TemplateArgument::Pack && |
1601 | TemplateArgs[i - 1].getKind() == TemplateArgument::Pack) |
1602 | Out << "$$Z" ; |
1603 | |
1604 | mangleTemplateArg(TD, TA, Parm: TPL->getParam(Idx: i)); |
1605 | } |
1606 | } |
1607 | |
1608 | /// If value V (with type T) represents a decayed pointer to the first element |
1609 | /// of an array, return that array. |
1610 | static ValueDecl *getAsArrayToPointerDecayedDecl(QualType T, const APValue &V) { |
1611 | // Must be a pointer... |
1612 | if (!T->isPointerType() || !V.isLValue() || !V.hasLValuePath() || |
1613 | !V.getLValueBase()) |
1614 | return nullptr; |
1615 | // ... to element 0 of an array. |
1616 | QualType BaseT = V.getLValueBase().getType(); |
1617 | if (!BaseT->isArrayType() || V.getLValuePath().size() != 1 || |
1618 | V.getLValuePath()[0].getAsArrayIndex() != 0) |
1619 | return nullptr; |
1620 | return const_cast<ValueDecl *>( |
1621 | V.getLValueBase().dyn_cast<const ValueDecl *>()); |
1622 | } |
1623 | |
1624 | void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD, |
1625 | const TemplateArgument &TA, |
1626 | const NamedDecl *Parm) { |
1627 | // <template-arg> ::= <type> |
1628 | // ::= <integer-literal> |
1629 | // ::= <member-data-pointer> |
1630 | // ::= <member-function-pointer> |
1631 | // ::= $ <constant-value> |
1632 | // ::= <template-args> |
1633 | // |
1634 | // <constant-value> ::= 0 <number> # integer |
1635 | // ::= 1 <mangled-name> # address of D |
1636 | // ::= 2 <type> <typed-constant-value>* @ # struct |
1637 | // ::= 3 <type> <constant-value>* @ # array |
1638 | // ::= 4 ??? # string |
1639 | // ::= 5 <constant-value> @ # address of subobject |
1640 | // ::= 6 <constant-value> <unqualified-name> @ # a.b |
1641 | // ::= 7 <type> [<unqualified-name> <constant-value>] @ |
1642 | // # union, with or without an active member |
1643 | // # pointer to member, symbolically |
1644 | // ::= 8 <class> <unqualified-name> @ |
1645 | // ::= A <type> <non-negative integer> # float |
1646 | // ::= B <type> <non-negative integer> # double |
1647 | // # pointer to member, by component value |
1648 | // ::= F <number> <number> |
1649 | // ::= G <number> <number> <number> |
1650 | // ::= H <mangled-name> <number> |
1651 | // ::= I <mangled-name> <number> <number> |
1652 | // ::= J <mangled-name> <number> <number> <number> |
1653 | // |
1654 | // <typed-constant-value> ::= [<type>] <constant-value> |
1655 | // |
1656 | // The <type> appears to be included in a <typed-constant-value> only in the |
1657 | // '0', '1', '8', 'A', 'B', and 'E' cases. |
1658 | |
1659 | switch (TA.getKind()) { |
1660 | case TemplateArgument::Null: |
1661 | llvm_unreachable("Can't mangle null template arguments!" ); |
1662 | case TemplateArgument::TemplateExpansion: |
1663 | llvm_unreachable("Can't mangle template expansion arguments!" ); |
1664 | case TemplateArgument::Type: { |
1665 | QualType T = TA.getAsType(); |
1666 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
1667 | break; |
1668 | } |
1669 | case TemplateArgument::Declaration: { |
1670 | const NamedDecl *ND = TA.getAsDecl(); |
1671 | if (isa<FieldDecl>(Val: ND) || isa<IndirectFieldDecl>(Val: ND)) { |
1672 | mangleMemberDataPointer(RD: cast<CXXRecordDecl>(ND->getDeclContext()) |
1673 | ->getMostRecentNonInjectedDecl(), |
1674 | VD: cast<ValueDecl>(Val: ND)); |
1675 | } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: ND)) { |
1676 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD); |
1677 | if (MD && MD->isInstance()) { |
1678 | mangleMemberFunctionPointer( |
1679 | RD: MD->getParent()->getMostRecentNonInjectedDecl(), MD); |
1680 | } else { |
1681 | Out << "$1?" ; |
1682 | mangleName(GD: FD); |
1683 | mangleFunctionEncoding(GD: FD, /*ShouldMangle=*/true); |
1684 | } |
1685 | } else if (TA.getParamTypeForDecl()->isRecordType()) { |
1686 | Out << "$" ; |
1687 | auto *TPO = cast<TemplateParamObjectDecl>(Val: ND); |
1688 | mangleTemplateArgValue(T: TPO->getType().getUnqualifiedType(), |
1689 | V: TPO->getValue(), TplArgKind::ClassNTTP); |
1690 | } else { |
1691 | mangle(GD: ND, Prefix: "$1?" ); |
1692 | } |
1693 | break; |
1694 | } |
1695 | case TemplateArgument::Integral: { |
1696 | QualType T = TA.getIntegralType(); |
1697 | mangleIntegerLiteral(Value: TA.getAsIntegral(), |
1698 | PD: cast<NonTypeTemplateParmDecl>(Val: Parm), TemplateArgType: T); |
1699 | break; |
1700 | } |
1701 | case TemplateArgument::NullPtr: { |
1702 | QualType T = TA.getNullPtrType(); |
1703 | if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) { |
1704 | const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); |
1705 | if (MPT->isMemberFunctionPointerType() && |
1706 | !isa<FunctionTemplateDecl>(Val: TD)) { |
1707 | mangleMemberFunctionPointer(RD, MD: nullptr); |
1708 | return; |
1709 | } |
1710 | if (MPT->isMemberDataPointer()) { |
1711 | if (!isa<FunctionTemplateDecl>(Val: TD)) { |
1712 | mangleMemberDataPointer(RD, VD: nullptr); |
1713 | return; |
1714 | } |
1715 | // nullptr data pointers are always represented with a single field |
1716 | // which is initialized with either 0 or -1. Why -1? Well, we need to |
1717 | // distinguish the case where the data member is at offset zero in the |
1718 | // record. |
1719 | // However, we are free to use 0 *if* we would use multiple fields for |
1720 | // non-nullptr member pointers. |
1721 | if (!RD->nullFieldOffsetIsZero()) { |
1722 | mangleIntegerLiteral(Value: llvm::APSInt::get(X: -1), |
1723 | PD: cast<NonTypeTemplateParmDecl>(Val: Parm), TemplateArgType: T); |
1724 | return; |
1725 | } |
1726 | } |
1727 | } |
1728 | mangleIntegerLiteral(Value: llvm::APSInt::getUnsigned(X: 0), |
1729 | PD: cast<NonTypeTemplateParmDecl>(Val: Parm), TemplateArgType: T); |
1730 | break; |
1731 | } |
1732 | case TemplateArgument::StructuralValue: |
1733 | if (ValueDecl *D = getAsArrayToPointerDecayedDecl( |
1734 | T: TA.getStructuralValueType(), V: TA.getAsStructuralValue())) { |
1735 | // Mangle the result of array-to-pointer decay as if it were a reference |
1736 | // to the original declaration, to match MSVC's behavior. This can result |
1737 | // in mangling collisions in some cases! |
1738 | return mangleTemplateArg( |
1739 | TD, TA: TemplateArgument(D, TA.getStructuralValueType()), Parm); |
1740 | } |
1741 | Out << "$" ; |
1742 | if (cast<NonTypeTemplateParmDecl>(Val: Parm) |
1743 | ->getType() |
1744 | ->getContainedDeducedType()) { |
1745 | Out << "M" ; |
1746 | mangleType(T: TA.getNonTypeTemplateArgumentType(), Range: SourceRange(), QMM: QMM_Drop); |
1747 | } |
1748 | mangleTemplateArgValue(T: TA.getStructuralValueType(), |
1749 | V: TA.getAsStructuralValue(), |
1750 | TplArgKind::StructuralValue, |
1751 | /*WithScalarType=*/false); |
1752 | break; |
1753 | case TemplateArgument::Expression: |
1754 | mangleExpression(E: TA.getAsExpr(), PD: cast<NonTypeTemplateParmDecl>(Val: Parm)); |
1755 | break; |
1756 | case TemplateArgument::Pack: { |
1757 | ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray(); |
1758 | if (TemplateArgs.empty()) { |
1759 | if (isa<TemplateTypeParmDecl>(Val: Parm) || |
1760 | isa<TemplateTemplateParmDecl>(Val: Parm)) |
1761 | // MSVC 2015 changed the mangling for empty expanded template packs, |
1762 | // use the old mangling for link compatibility for old versions. |
1763 | Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC( |
1764 | MajorVersion: LangOptions::MSVC2015) |
1765 | ? "$$V" |
1766 | : "$$$V" ); |
1767 | else if (isa<NonTypeTemplateParmDecl>(Val: Parm)) |
1768 | Out << "$S" ; |
1769 | else |
1770 | llvm_unreachable("unexpected template parameter decl!" ); |
1771 | } else { |
1772 | for (const TemplateArgument &PA : TemplateArgs) |
1773 | mangleTemplateArg(TD, TA: PA, Parm); |
1774 | } |
1775 | break; |
1776 | } |
1777 | case TemplateArgument::Template: { |
1778 | const NamedDecl *ND = |
1779 | TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl(); |
1780 | if (const auto *TD = dyn_cast<TagDecl>(Val: ND)) { |
1781 | mangleType(TD); |
1782 | } else if (isa<TypeAliasDecl>(Val: ND)) { |
1783 | Out << "$$Y" ; |
1784 | mangleName(GD: ND); |
1785 | } else { |
1786 | llvm_unreachable("unexpected template template NamedDecl!" ); |
1787 | } |
1788 | break; |
1789 | } |
1790 | } |
1791 | } |
1792 | |
1793 | void MicrosoftCXXNameMangler::mangleTemplateArgValue(QualType T, |
1794 | const APValue &V, |
1795 | TplArgKind TAK, |
1796 | bool WithScalarType) { |
1797 | switch (V.getKind()) { |
1798 | case APValue::None: |
1799 | case APValue::Indeterminate: |
1800 | // FIXME: MSVC doesn't allow this, so we can't be sure how it should be |
1801 | // mangled. |
1802 | if (WithScalarType) |
1803 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
1804 | Out << '@'; |
1805 | return; |
1806 | |
1807 | case APValue::Int: |
1808 | if (WithScalarType) |
1809 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
1810 | Out << '0'; |
1811 | mangleNumber(Number: V.getInt()); |
1812 | return; |
1813 | |
1814 | case APValue::Float: |
1815 | if (WithScalarType) |
1816 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
1817 | mangleFloat(Number: V.getFloat()); |
1818 | return; |
1819 | |
1820 | case APValue::LValue: { |
1821 | if (WithScalarType) |
1822 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
1823 | |
1824 | // We don't know how to mangle past-the-end pointers yet. |
1825 | if (V.isLValueOnePastTheEnd()) |
1826 | break; |
1827 | |
1828 | APValue::LValueBase Base = V.getLValueBase(); |
1829 | if (!V.hasLValuePath() || V.getLValuePath().empty()) { |
1830 | // Taking the address of a complete object has a special-case mangling. |
1831 | if (Base.isNull()) { |
1832 | // MSVC emits 0A@ for null pointers. Generalize this for arbitrary |
1833 | // integers cast to pointers. |
1834 | // FIXME: This mangles 0 cast to a pointer the same as a null pointer, |
1835 | // even in cases where the two are different values. |
1836 | Out << "0" ; |
1837 | mangleNumber(Number: V.getLValueOffset().getQuantity()); |
1838 | } else if (!V.hasLValuePath()) { |
1839 | // FIXME: This can only happen as an extension. Invent a mangling. |
1840 | break; |
1841 | } else if (auto *VD = Base.dyn_cast<const ValueDecl*>()) { |
1842 | Out << "E" ; |
1843 | mangle(VD); |
1844 | } else { |
1845 | break; |
1846 | } |
1847 | } else { |
1848 | if (TAK == TplArgKind::ClassNTTP && T->isPointerType()) |
1849 | Out << "5" ; |
1850 | |
1851 | SmallVector<char, 2> EntryTypes; |
1852 | SmallVector<std::function<void()>, 2> EntryManglers; |
1853 | QualType ET = Base.getType(); |
1854 | for (APValue::LValuePathEntry E : V.getLValuePath()) { |
1855 | if (auto *AT = ET->getAsArrayTypeUnsafe()) { |
1856 | EntryTypes.push_back(Elt: 'C'); |
1857 | EntryManglers.push_back(Elt: [this, I = E.getAsArrayIndex()] { |
1858 | Out << '0'; |
1859 | mangleNumber(Number: I); |
1860 | Out << '@'; |
1861 | }); |
1862 | ET = AT->getElementType(); |
1863 | continue; |
1864 | } |
1865 | |
1866 | const Decl *D = E.getAsBaseOrMember().getPointer(); |
1867 | if (auto *FD = dyn_cast<FieldDecl>(Val: D)) { |
1868 | ET = FD->getType(); |
1869 | if (const auto *RD = ET->getAsRecordDecl()) |
1870 | if (RD->isAnonymousStructOrUnion()) |
1871 | continue; |
1872 | } else { |
1873 | ET = getASTContext().getRecordType(cast<CXXRecordDecl>(Val: D)); |
1874 | // Bug in MSVC: fully qualified name of base class should be used for |
1875 | // mangling to prevent collisions e.g. on base classes with same names |
1876 | // in different namespaces. |
1877 | } |
1878 | |
1879 | EntryTypes.push_back(Elt: '6'); |
1880 | EntryManglers.push_back(Elt: [this, D] { |
1881 | mangleUnqualifiedName(GD: cast<NamedDecl>(Val: D)); |
1882 | Out << '@'; |
1883 | }); |
1884 | } |
1885 | |
1886 | for (auto I = EntryTypes.rbegin(), E = EntryTypes.rend(); I != E; ++I) |
1887 | Out << *I; |
1888 | |
1889 | auto *VD = Base.dyn_cast<const ValueDecl*>(); |
1890 | if (!VD) |
1891 | break; |
1892 | Out << (TAK == TplArgKind::ClassNTTP ? 'E' : '1'); |
1893 | mangle(VD); |
1894 | |
1895 | for (const std::function<void()> &Mangler : EntryManglers) |
1896 | Mangler(); |
1897 | if (TAK == TplArgKind::ClassNTTP && T->isPointerType()) |
1898 | Out << '@'; |
1899 | } |
1900 | |
1901 | return; |
1902 | } |
1903 | |
1904 | case APValue::MemberPointer: { |
1905 | if (WithScalarType) |
1906 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
1907 | |
1908 | const CXXRecordDecl *RD = |
1909 | T->castAs<MemberPointerType>()->getMostRecentCXXRecordDecl(); |
1910 | const ValueDecl *D = V.getMemberPointerDecl(); |
1911 | if (TAK == TplArgKind::ClassNTTP) { |
1912 | if (T->isMemberDataPointerType()) |
1913 | mangleMemberDataPointerInClassNTTP(RD, VD: D); |
1914 | else |
1915 | mangleMemberFunctionPointerInClassNTTP(RD, |
1916 | MD: cast_or_null<CXXMethodDecl>(Val: D)); |
1917 | } else { |
1918 | if (T->isMemberDataPointerType()) |
1919 | mangleMemberDataPointer(RD, VD: D, Prefix: "" ); |
1920 | else |
1921 | mangleMemberFunctionPointer(RD, MD: cast_or_null<CXXMethodDecl>(Val: D), Prefix: "" ); |
1922 | } |
1923 | return; |
1924 | } |
1925 | |
1926 | case APValue::Struct: { |
1927 | Out << '2'; |
1928 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
1929 | const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
1930 | assert(RD && "unexpected type for record value" ); |
1931 | |
1932 | unsigned BaseIndex = 0; |
1933 | for (const CXXBaseSpecifier &B : RD->bases()) |
1934 | mangleTemplateArgValue(T: B.getType(), V: V.getStructBase(i: BaseIndex++), TAK); |
1935 | for (const FieldDecl *FD : RD->fields()) |
1936 | if (!FD->isUnnamedBitField()) |
1937 | mangleTemplateArgValue(FD->getType(), |
1938 | V.getStructField(FD->getFieldIndex()), TAK, |
1939 | /*WithScalarType*/ true); |
1940 | Out << '@'; |
1941 | return; |
1942 | } |
1943 | |
1944 | case APValue::Union: |
1945 | Out << '7'; |
1946 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
1947 | if (const FieldDecl *FD = V.getUnionField()) { |
1948 | mangleUnqualifiedName(FD); |
1949 | mangleTemplateArgValue(T: FD->getType(), V: V.getUnionValue(), TAK); |
1950 | } |
1951 | Out << '@'; |
1952 | return; |
1953 | |
1954 | case APValue::ComplexInt: |
1955 | // We mangle complex types as structs, so mangle the value as a struct too. |
1956 | Out << '2'; |
1957 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
1958 | Out << '0'; |
1959 | mangleNumber(Number: V.getComplexIntReal()); |
1960 | Out << '0'; |
1961 | mangleNumber(Number: V.getComplexIntImag()); |
1962 | Out << '@'; |
1963 | return; |
1964 | |
1965 | case APValue::ComplexFloat: |
1966 | Out << '2'; |
1967 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
1968 | mangleFloat(Number: V.getComplexFloatReal()); |
1969 | mangleFloat(Number: V.getComplexFloatImag()); |
1970 | Out << '@'; |
1971 | return; |
1972 | |
1973 | case APValue::Array: { |
1974 | Out << '3'; |
1975 | QualType ElemT = getASTContext().getAsArrayType(T)->getElementType(); |
1976 | mangleType(T: ElemT, Range: SourceRange(), QMM: QMM_Escape); |
1977 | for (unsigned I = 0, N = V.getArraySize(); I != N; ++I) { |
1978 | const APValue &ElemV = I < V.getArrayInitializedElts() |
1979 | ? V.getArrayInitializedElt(I) |
1980 | : V.getArrayFiller(); |
1981 | mangleTemplateArgValue(T: ElemT, V: ElemV, TAK); |
1982 | Out << '@'; |
1983 | } |
1984 | Out << '@'; |
1985 | return; |
1986 | } |
1987 | |
1988 | case APValue::Vector: { |
1989 | // __m128 is mangled as a struct containing an array. We follow this |
1990 | // approach for all vector types. |
1991 | Out << '2'; |
1992 | mangleType(T, Range: SourceRange(), QMM: QMM_Escape); |
1993 | Out << '3'; |
1994 | QualType ElemT = T->castAs<VectorType>()->getElementType(); |
1995 | mangleType(T: ElemT, Range: SourceRange(), QMM: QMM_Escape); |
1996 | for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) { |
1997 | const APValue &ElemV = V.getVectorElt(I); |
1998 | mangleTemplateArgValue(T: ElemT, V: ElemV, TAK); |
1999 | Out << '@'; |
2000 | } |
2001 | Out << "@@" ; |
2002 | return; |
2003 | } |
2004 | |
2005 | case APValue::AddrLabelDiff: |
2006 | case APValue::FixedPoint: |
2007 | break; |
2008 | } |
2009 | |
2010 | DiagnosticsEngine &Diags = Context.getDiags(); |
2011 | unsigned DiagID = Diags.getCustomDiagID( |
2012 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle this template argument yet" ); |
2013 | Diags.Report(DiagID); |
2014 | } |
2015 | |
2016 | void MicrosoftCXXNameMangler::mangleObjCProtocol(const ObjCProtocolDecl *PD) { |
2017 | llvm::SmallString<64> TemplateMangling; |
2018 | llvm::raw_svector_ostream Stream(TemplateMangling); |
2019 | MicrosoftCXXNameMangler (Context, Stream); |
2020 | |
2021 | Stream << "?$" ; |
2022 | Extra.mangleSourceName(Name: "Protocol" ); |
2023 | Extra.mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: PD->getName()); |
2024 | |
2025 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__ObjC" }); |
2026 | } |
2027 | |
2028 | void MicrosoftCXXNameMangler::mangleObjCLifetime(const QualType Type, |
2029 | Qualifiers Quals, |
2030 | SourceRange Range) { |
2031 | llvm::SmallString<64> TemplateMangling; |
2032 | llvm::raw_svector_ostream Stream(TemplateMangling); |
2033 | MicrosoftCXXNameMangler (Context, Stream); |
2034 | |
2035 | Stream << "?$" ; |
2036 | switch (Quals.getObjCLifetime()) { |
2037 | case Qualifiers::OCL_None: |
2038 | case Qualifiers::OCL_ExplicitNone: |
2039 | break; |
2040 | case Qualifiers::OCL_Autoreleasing: |
2041 | Extra.mangleSourceName(Name: "Autoreleasing" ); |
2042 | break; |
2043 | case Qualifiers::OCL_Strong: |
2044 | Extra.mangleSourceName(Name: "Strong" ); |
2045 | break; |
2046 | case Qualifiers::OCL_Weak: |
2047 | Extra.mangleSourceName(Name: "Weak" ); |
2048 | break; |
2049 | } |
2050 | Extra.manglePointerCVQualifiers(Quals); |
2051 | Extra.manglePointerExtQualifiers(Quals, PointeeType: Type); |
2052 | Extra.mangleType(T: Type, Range); |
2053 | |
2054 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__ObjC" }); |
2055 | } |
2056 | |
2057 | void MicrosoftCXXNameMangler::mangleObjCKindOfType(const ObjCObjectType *T, |
2058 | Qualifiers Quals, |
2059 | SourceRange Range) { |
2060 | llvm::SmallString<64> TemplateMangling; |
2061 | llvm::raw_svector_ostream Stream(TemplateMangling); |
2062 | MicrosoftCXXNameMangler (Context, Stream); |
2063 | |
2064 | Stream << "?$" ; |
2065 | Extra.mangleSourceName(Name: "KindOf" ); |
2066 | Extra.mangleType(QualType(T, 0) |
2067 | .stripObjCKindOfType(ctx: getASTContext()) |
2068 | ->castAs<ObjCObjectType>(), |
2069 | Quals, Range); |
2070 | |
2071 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__ObjC" }); |
2072 | } |
2073 | |
2074 | void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals, |
2075 | bool IsMember) { |
2076 | // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers> |
2077 | // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only); |
2078 | // 'I' means __restrict (32/64-bit). |
2079 | // Note that the MSVC __restrict keyword isn't the same as the C99 restrict |
2080 | // keyword! |
2081 | // <base-cvr-qualifiers> ::= A # near |
2082 | // ::= B # near const |
2083 | // ::= C # near volatile |
2084 | // ::= D # near const volatile |
2085 | // ::= E # far (16-bit) |
2086 | // ::= F # far const (16-bit) |
2087 | // ::= G # far volatile (16-bit) |
2088 | // ::= H # far const volatile (16-bit) |
2089 | // ::= I # huge (16-bit) |
2090 | // ::= J # huge const (16-bit) |
2091 | // ::= K # huge volatile (16-bit) |
2092 | // ::= L # huge const volatile (16-bit) |
2093 | // ::= M <basis> # based |
2094 | // ::= N <basis> # based const |
2095 | // ::= O <basis> # based volatile |
2096 | // ::= P <basis> # based const volatile |
2097 | // ::= Q # near member |
2098 | // ::= R # near const member |
2099 | // ::= S # near volatile member |
2100 | // ::= T # near const volatile member |
2101 | // ::= U # far member (16-bit) |
2102 | // ::= V # far const member (16-bit) |
2103 | // ::= W # far volatile member (16-bit) |
2104 | // ::= X # far const volatile member (16-bit) |
2105 | // ::= Y # huge member (16-bit) |
2106 | // ::= Z # huge const member (16-bit) |
2107 | // ::= 0 # huge volatile member (16-bit) |
2108 | // ::= 1 # huge const volatile member (16-bit) |
2109 | // ::= 2 <basis> # based member |
2110 | // ::= 3 <basis> # based const member |
2111 | // ::= 4 <basis> # based volatile member |
2112 | // ::= 5 <basis> # based const volatile member |
2113 | // ::= 6 # near function (pointers only) |
2114 | // ::= 7 # far function (pointers only) |
2115 | // ::= 8 # near method (pointers only) |
2116 | // ::= 9 # far method (pointers only) |
2117 | // ::= _A <basis> # based function (pointers only) |
2118 | // ::= _B <basis> # based function (far?) (pointers only) |
2119 | // ::= _C <basis> # based method (pointers only) |
2120 | // ::= _D <basis> # based method (far?) (pointers only) |
2121 | // ::= _E # block (Clang) |
2122 | // <basis> ::= 0 # __based(void) |
2123 | // ::= 1 # __based(segment)? |
2124 | // ::= 2 <name> # __based(name) |
2125 | // ::= 3 # ? |
2126 | // ::= 4 # ? |
2127 | // ::= 5 # not really based |
2128 | bool HasConst = Quals.hasConst(), |
2129 | HasVolatile = Quals.hasVolatile(); |
2130 | |
2131 | if (!IsMember) { |
2132 | if (HasConst && HasVolatile) { |
2133 | Out << 'D'; |
2134 | } else if (HasVolatile) { |
2135 | Out << 'C'; |
2136 | } else if (HasConst) { |
2137 | Out << 'B'; |
2138 | } else { |
2139 | Out << 'A'; |
2140 | } |
2141 | } else { |
2142 | if (HasConst && HasVolatile) { |
2143 | Out << 'T'; |
2144 | } else if (HasVolatile) { |
2145 | Out << 'S'; |
2146 | } else if (HasConst) { |
2147 | Out << 'R'; |
2148 | } else { |
2149 | Out << 'Q'; |
2150 | } |
2151 | } |
2152 | |
2153 | // FIXME: For now, just drop all extension qualifiers on the floor. |
2154 | } |
2155 | |
2156 | void |
2157 | MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { |
2158 | // <ref-qualifier> ::= G # lvalue reference |
2159 | // ::= H # rvalue-reference |
2160 | switch (RefQualifier) { |
2161 | case RQ_None: |
2162 | break; |
2163 | |
2164 | case RQ_LValue: |
2165 | Out << 'G'; |
2166 | break; |
2167 | |
2168 | case RQ_RValue: |
2169 | Out << 'H'; |
2170 | break; |
2171 | } |
2172 | } |
2173 | |
2174 | void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals, |
2175 | QualType PointeeType) { |
2176 | // Check if this is a default 64-bit pointer or has __ptr64 qualifier. |
2177 | bool is64Bit = PointeeType.isNull() ? PointersAre64Bit : |
2178 | is64BitPointer(Quals: PointeeType.getQualifiers()); |
2179 | if (is64Bit && (PointeeType.isNull() || !PointeeType->isFunctionType())) |
2180 | Out << 'E'; |
2181 | |
2182 | if (Quals.hasRestrict()) |
2183 | Out << 'I'; |
2184 | |
2185 | if (Quals.hasUnaligned() || |
2186 | (!PointeeType.isNull() && PointeeType.getLocalQualifiers().hasUnaligned())) |
2187 | Out << 'F'; |
2188 | } |
2189 | |
2190 | void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) { |
2191 | // <pointer-cv-qualifiers> ::= P # no qualifiers |
2192 | // ::= Q # const |
2193 | // ::= R # volatile |
2194 | // ::= S # const volatile |
2195 | bool HasConst = Quals.hasConst(), |
2196 | HasVolatile = Quals.hasVolatile(); |
2197 | |
2198 | if (HasConst && HasVolatile) { |
2199 | Out << 'S'; |
2200 | } else if (HasVolatile) { |
2201 | Out << 'R'; |
2202 | } else if (HasConst) { |
2203 | Out << 'Q'; |
2204 | } else { |
2205 | Out << 'P'; |
2206 | } |
2207 | } |
2208 | |
2209 | void MicrosoftCXXNameMangler::mangleFunctionArgumentType(QualType T, |
2210 | SourceRange Range) { |
2211 | // MSVC will backreference two canonically equivalent types that have slightly |
2212 | // different manglings when mangled alone. |
2213 | |
2214 | // Decayed types do not match up with non-decayed versions of the same type. |
2215 | // |
2216 | // e.g. |
2217 | // void (*x)(void) will not form a backreference with void x(void) |
2218 | void *TypePtr; |
2219 | if (const auto *DT = T->getAs<DecayedType>()) { |
2220 | QualType OriginalType = DT->getOriginalType(); |
2221 | // All decayed ArrayTypes should be treated identically; as-if they were |
2222 | // a decayed IncompleteArrayType. |
2223 | if (const auto *AT = getASTContext().getAsArrayType(OriginalType)) |
2224 | OriginalType = getASTContext().getIncompleteArrayType( |
2225 | EltTy: AT->getElementType(), ASM: AT->getSizeModifier(), |
2226 | IndexTypeQuals: AT->getIndexTypeCVRQualifiers()); |
2227 | |
2228 | TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr(); |
2229 | // If the original parameter was textually written as an array, |
2230 | // instead treat the decayed parameter like it's const. |
2231 | // |
2232 | // e.g. |
2233 | // int [] -> int * const |
2234 | if (OriginalType->isArrayType()) |
2235 | T = T.withConst(); |
2236 | } else { |
2237 | TypePtr = T.getCanonicalType().getAsOpaquePtr(); |
2238 | } |
2239 | |
2240 | ArgBackRefMap::iterator Found = FunArgBackReferences.find(Val: TypePtr); |
2241 | |
2242 | if (Found == FunArgBackReferences.end()) { |
2243 | size_t OutSizeBefore = Out.tell(); |
2244 | |
2245 | mangleType(T, Range, QMM: QMM_Drop); |
2246 | |
2247 | // See if it's worth creating a back reference. |
2248 | // Only types longer than 1 character are considered |
2249 | // and only 10 back references slots are available: |
2250 | bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1); |
2251 | if (LongerThanOneChar && FunArgBackReferences.size() < 10) { |
2252 | size_t Size = FunArgBackReferences.size(); |
2253 | FunArgBackReferences[TypePtr] = Size; |
2254 | } |
2255 | } else { |
2256 | Out << Found->second; |
2257 | } |
2258 | } |
2259 | |
2260 | void MicrosoftCXXNameMangler::manglePassObjectSizeArg( |
2261 | const PassObjectSizeAttr *POSA) { |
2262 | int Type = POSA->getType(); |
2263 | bool Dynamic = POSA->isDynamic(); |
2264 | |
2265 | auto Iter = PassObjectSizeArgs.insert(x: {Type, Dynamic}).first; |
2266 | auto *TypePtr = (const void *)&*Iter; |
2267 | ArgBackRefMap::iterator Found = FunArgBackReferences.find(TypePtr); |
2268 | |
2269 | if (Found == FunArgBackReferences.end()) { |
2270 | std::string Name = |
2271 | Dynamic ? "__pass_dynamic_object_size" : "__pass_object_size" ; |
2272 | mangleArtificialTagType(TK: TagTypeKind::Enum, UnqualifiedName: Name + llvm::utostr(X: Type), |
2273 | NestedNames: {"__clang" }); |
2274 | |
2275 | if (FunArgBackReferences.size() < 10) { |
2276 | size_t Size = FunArgBackReferences.size(); |
2277 | FunArgBackReferences[TypePtr] = Size; |
2278 | } |
2279 | } else { |
2280 | Out << Found->second; |
2281 | } |
2282 | } |
2283 | |
2284 | void MicrosoftCXXNameMangler::mangleAddressSpaceType(QualType T, |
2285 | Qualifiers Quals, |
2286 | SourceRange Range) { |
2287 | // Address space is mangled as an unqualified templated type in the __clang |
2288 | // namespace. The demangled version of this is: |
2289 | // In the case of a language specific address space: |
2290 | // __clang::struct _AS[language_addr_space]<Type> |
2291 | // where: |
2292 | // <language_addr_space> ::= <OpenCL-addrspace> | <CUDA-addrspace> |
2293 | // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | |
2294 | // "private"| "generic" | "device" | "host" ] |
2295 | // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] |
2296 | // Note that the above were chosen to match the Itanium mangling for this. |
2297 | // |
2298 | // In the case of a non-language specific address space: |
2299 | // __clang::struct _AS<TargetAS, Type> |
2300 | assert(Quals.hasAddressSpace() && "Not valid without address space" ); |
2301 | llvm::SmallString<32> ASMangling; |
2302 | llvm::raw_svector_ostream Stream(ASMangling); |
2303 | MicrosoftCXXNameMangler (Context, Stream); |
2304 | Stream << "?$" ; |
2305 | |
2306 | LangAS AS = Quals.getAddressSpace(); |
2307 | if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { |
2308 | unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); |
2309 | Extra.mangleSourceName(Name: "_AS" ); |
2310 | Extra.mangleIntegerLiteral(Value: llvm::APSInt::getUnsigned(X: TargetAS)); |
2311 | } else { |
2312 | switch (AS) { |
2313 | default: |
2314 | llvm_unreachable("Not a language specific address space" ); |
2315 | case LangAS::opencl_global: |
2316 | Extra.mangleSourceName(Name: "_ASCLglobal" ); |
2317 | break; |
2318 | case LangAS::opencl_global_device: |
2319 | Extra.mangleSourceName(Name: "_ASCLdevice" ); |
2320 | break; |
2321 | case LangAS::opencl_global_host: |
2322 | Extra.mangleSourceName(Name: "_ASCLhost" ); |
2323 | break; |
2324 | case LangAS::opencl_local: |
2325 | Extra.mangleSourceName(Name: "_ASCLlocal" ); |
2326 | break; |
2327 | case LangAS::opencl_constant: |
2328 | Extra.mangleSourceName(Name: "_ASCLconstant" ); |
2329 | break; |
2330 | case LangAS::opencl_private: |
2331 | Extra.mangleSourceName(Name: "_ASCLprivate" ); |
2332 | break; |
2333 | case LangAS::opencl_generic: |
2334 | Extra.mangleSourceName(Name: "_ASCLgeneric" ); |
2335 | break; |
2336 | case LangAS::cuda_device: |
2337 | Extra.mangleSourceName(Name: "_ASCUdevice" ); |
2338 | break; |
2339 | case LangAS::cuda_constant: |
2340 | Extra.mangleSourceName(Name: "_ASCUconstant" ); |
2341 | break; |
2342 | case LangAS::cuda_shared: |
2343 | Extra.mangleSourceName(Name: "_ASCUshared" ); |
2344 | break; |
2345 | case LangAS::ptr32_sptr: |
2346 | case LangAS::ptr32_uptr: |
2347 | case LangAS::ptr64: |
2348 | llvm_unreachable("don't mangle ptr address spaces with _AS" ); |
2349 | } |
2350 | } |
2351 | |
2352 | Extra.mangleType(T, Range, QMM: QMM_Escape); |
2353 | mangleQualifiers(Quals: Qualifiers(), IsMember: false); |
2354 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: ASMangling, NestedNames: {"__clang" }); |
2355 | } |
2356 | |
2357 | void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range, |
2358 | QualifierMangleMode QMM) { |
2359 | // Don't use the canonical types. MSVC includes things like 'const' on |
2360 | // pointer arguments to function pointers that canonicalization strips away. |
2361 | T = T.getDesugaredType(Context: getASTContext()); |
2362 | Qualifiers Quals = T.getLocalQualifiers(); |
2363 | |
2364 | if (const ArrayType *AT = getASTContext().getAsArrayType(T)) { |
2365 | // If there were any Quals, getAsArrayType() pushed them onto the array |
2366 | // element type. |
2367 | if (QMM == QMM_Mangle) |
2368 | Out << 'A'; |
2369 | else if (QMM == QMM_Escape || QMM == QMM_Result) |
2370 | Out << "$$B" ; |
2371 | mangleArrayType(T: AT); |
2372 | return; |
2373 | } |
2374 | |
2375 | bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() || |
2376 | T->isReferenceType() || T->isBlockPointerType(); |
2377 | |
2378 | switch (QMM) { |
2379 | case QMM_Drop: |
2380 | if (Quals.hasObjCLifetime()) |
2381 | Quals = Quals.withoutObjCLifetime(); |
2382 | break; |
2383 | case QMM_Mangle: |
2384 | if (const FunctionType *FT = dyn_cast<FunctionType>(Val&: T)) { |
2385 | Out << '6'; |
2386 | mangleFunctionType(T: FT); |
2387 | return; |
2388 | } |
2389 | mangleQualifiers(Quals, IsMember: false); |
2390 | break; |
2391 | case QMM_Escape: |
2392 | if (!IsPointer && Quals) { |
2393 | Out << "$$C" ; |
2394 | mangleQualifiers(Quals, IsMember: false); |
2395 | } |
2396 | break; |
2397 | case QMM_Result: |
2398 | // Presence of __unaligned qualifier shouldn't affect mangling here. |
2399 | Quals.removeUnaligned(); |
2400 | if (Quals.hasObjCLifetime()) |
2401 | Quals = Quals.withoutObjCLifetime(); |
2402 | if ((!IsPointer && Quals) || isa<TagType>(Val: T) || isArtificialTagType(T)) { |
2403 | Out << '?'; |
2404 | mangleQualifiers(Quals, IsMember: false); |
2405 | } |
2406 | break; |
2407 | } |
2408 | |
2409 | const Type *ty = T.getTypePtr(); |
2410 | |
2411 | switch (ty->getTypeClass()) { |
2412 | #define ABSTRACT_TYPE(CLASS, PARENT) |
2413 | #define NON_CANONICAL_TYPE(CLASS, PARENT) \ |
2414 | case Type::CLASS: \ |
2415 | llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ |
2416 | return; |
2417 | #define TYPE(CLASS, PARENT) \ |
2418 | case Type::CLASS: \ |
2419 | mangleType(cast<CLASS##Type>(ty), Quals, Range); \ |
2420 | break; |
2421 | #include "clang/AST/TypeNodes.inc" |
2422 | #undef ABSTRACT_TYPE |
2423 | #undef NON_CANONICAL_TYPE |
2424 | #undef TYPE |
2425 | } |
2426 | } |
2427 | |
2428 | void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers, |
2429 | SourceRange Range) { |
2430 | // <type> ::= <builtin-type> |
2431 | // <builtin-type> ::= X # void |
2432 | // ::= C # signed char |
2433 | // ::= D # char |
2434 | // ::= E # unsigned char |
2435 | // ::= F # short |
2436 | // ::= G # unsigned short (or wchar_t if it's not a builtin) |
2437 | // ::= H # int |
2438 | // ::= I # unsigned int |
2439 | // ::= J # long |
2440 | // ::= K # unsigned long |
2441 | // L # <none> |
2442 | // ::= M # float |
2443 | // ::= N # double |
2444 | // ::= O # long double (__float80 is mangled differently) |
2445 | // ::= _J # long long, __int64 |
2446 | // ::= _K # unsigned long long, __int64 |
2447 | // ::= _L # __int128 |
2448 | // ::= _M # unsigned __int128 |
2449 | // ::= _N # bool |
2450 | // _O # <array in parameter> |
2451 | // ::= _Q # char8_t |
2452 | // ::= _S # char16_t |
2453 | // ::= _T # __float80 (Intel) |
2454 | // ::= _U # char32_t |
2455 | // ::= _W # wchar_t |
2456 | // ::= _Z # __float80 (Digital Mars) |
2457 | switch (T->getKind()) { |
2458 | case BuiltinType::Void: |
2459 | Out << 'X'; |
2460 | break; |
2461 | case BuiltinType::SChar: |
2462 | Out << 'C'; |
2463 | break; |
2464 | case BuiltinType::Char_U: |
2465 | case BuiltinType::Char_S: |
2466 | Out << 'D'; |
2467 | break; |
2468 | case BuiltinType::UChar: |
2469 | Out << 'E'; |
2470 | break; |
2471 | case BuiltinType::Short: |
2472 | Out << 'F'; |
2473 | break; |
2474 | case BuiltinType::UShort: |
2475 | Out << 'G'; |
2476 | break; |
2477 | case BuiltinType::Int: |
2478 | Out << 'H'; |
2479 | break; |
2480 | case BuiltinType::UInt: |
2481 | Out << 'I'; |
2482 | break; |
2483 | case BuiltinType::Long: |
2484 | Out << 'J'; |
2485 | break; |
2486 | case BuiltinType::ULong: |
2487 | Out << 'K'; |
2488 | break; |
2489 | case BuiltinType::Float: |
2490 | Out << 'M'; |
2491 | break; |
2492 | case BuiltinType::Double: |
2493 | Out << 'N'; |
2494 | break; |
2495 | // TODO: Determine size and mangle accordingly |
2496 | case BuiltinType::LongDouble: |
2497 | Out << 'O'; |
2498 | break; |
2499 | case BuiltinType::LongLong: |
2500 | Out << "_J" ; |
2501 | break; |
2502 | case BuiltinType::ULongLong: |
2503 | Out << "_K" ; |
2504 | break; |
2505 | case BuiltinType::Int128: |
2506 | Out << "_L" ; |
2507 | break; |
2508 | case BuiltinType::UInt128: |
2509 | Out << "_M" ; |
2510 | break; |
2511 | case BuiltinType::Bool: |
2512 | Out << "_N" ; |
2513 | break; |
2514 | case BuiltinType::Char8: |
2515 | Out << "_Q" ; |
2516 | break; |
2517 | case BuiltinType::Char16: |
2518 | Out << "_S" ; |
2519 | break; |
2520 | case BuiltinType::Char32: |
2521 | Out << "_U" ; |
2522 | break; |
2523 | case BuiltinType::WChar_S: |
2524 | case BuiltinType::WChar_U: |
2525 | Out << "_W" ; |
2526 | break; |
2527 | |
2528 | #define BUILTIN_TYPE(Id, SingletonId) |
2529 | #define PLACEHOLDER_TYPE(Id, SingletonId) \ |
2530 | case BuiltinType::Id: |
2531 | #include "clang/AST/BuiltinTypes.def" |
2532 | case BuiltinType::Dependent: |
2533 | llvm_unreachable("placeholder types shouldn't get to name mangling" ); |
2534 | |
2535 | case BuiltinType::ObjCId: |
2536 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "objc_object" ); |
2537 | break; |
2538 | case BuiltinType::ObjCClass: |
2539 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "objc_class" ); |
2540 | break; |
2541 | case BuiltinType::ObjCSel: |
2542 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "objc_selector" ); |
2543 | break; |
2544 | |
2545 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
2546 | case BuiltinType::Id: \ |
2547 | Out << "PAUocl_" #ImgType "_" #Suffix "@@"; \ |
2548 | break; |
2549 | #include "clang/Basic/OpenCLImageTypes.def" |
2550 | case BuiltinType::OCLSampler: |
2551 | Out << "PA" ; |
2552 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "ocl_sampler" ); |
2553 | break; |
2554 | case BuiltinType::OCLEvent: |
2555 | Out << "PA" ; |
2556 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "ocl_event" ); |
2557 | break; |
2558 | case BuiltinType::OCLClkEvent: |
2559 | Out << "PA" ; |
2560 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "ocl_clkevent" ); |
2561 | break; |
2562 | case BuiltinType::OCLQueue: |
2563 | Out << "PA" ; |
2564 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "ocl_queue" ); |
2565 | break; |
2566 | case BuiltinType::OCLReserveID: |
2567 | Out << "PA" ; |
2568 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "ocl_reserveid" ); |
2569 | break; |
2570 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
2571 | case BuiltinType::Id: \ |
2572 | mangleArtificialTagType(TagTypeKind::Struct, "ocl_" #ExtType); \ |
2573 | break; |
2574 | #include "clang/Basic/OpenCLExtensionTypes.def" |
2575 | |
2576 | case BuiltinType::NullPtr: |
2577 | Out << "$$T" ; |
2578 | break; |
2579 | |
2580 | case BuiltinType::Float16: |
2581 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "_Float16" , NestedNames: {"__clang" }); |
2582 | break; |
2583 | |
2584 | case BuiltinType::Half: |
2585 | if (!getASTContext().getLangOpts().HLSL) |
2586 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "_Half" , NestedNames: {"__clang" }); |
2587 | else if (getASTContext().getLangOpts().NativeHalfType) |
2588 | Out << "$f16@" ; |
2589 | else |
2590 | Out << "$halff@" ; |
2591 | break; |
2592 | |
2593 | case BuiltinType::BFloat16: |
2594 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: "__bf16" , NestedNames: {"__clang" }); |
2595 | break; |
2596 | |
2597 | #define WASM_REF_TYPE(InternalName, MangledName, Id, SingletonId, AS) \ |
2598 | case BuiltinType::Id: \ |
2599 | mangleArtificialTagType(TagTypeKind::Struct, MangledName); \ |
2600 | mangleArtificialTagType(TagTypeKind::Struct, MangledName, {"__clang"}); \ |
2601 | break; |
2602 | |
2603 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
2604 | #define SVE_TYPE(Name, Id, SingletonId) \ |
2605 | case BuiltinType::Id: |
2606 | #include "clang/Basic/AArch64SVEACLETypes.def" |
2607 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
2608 | case BuiltinType::Id: |
2609 | #include "clang/Basic/PPCTypes.def" |
2610 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
2611 | #include "clang/Basic/RISCVVTypes.def" |
2612 | case BuiltinType::ShortAccum: |
2613 | case BuiltinType::Accum: |
2614 | case BuiltinType::LongAccum: |
2615 | case BuiltinType::UShortAccum: |
2616 | case BuiltinType::UAccum: |
2617 | case BuiltinType::ULongAccum: |
2618 | case BuiltinType::ShortFract: |
2619 | case BuiltinType::Fract: |
2620 | case BuiltinType::LongFract: |
2621 | case BuiltinType::UShortFract: |
2622 | case BuiltinType::UFract: |
2623 | case BuiltinType::ULongFract: |
2624 | case BuiltinType::SatShortAccum: |
2625 | case BuiltinType::SatAccum: |
2626 | case BuiltinType::SatLongAccum: |
2627 | case BuiltinType::SatUShortAccum: |
2628 | case BuiltinType::SatUAccum: |
2629 | case BuiltinType::SatULongAccum: |
2630 | case BuiltinType::SatShortFract: |
2631 | case BuiltinType::SatFract: |
2632 | case BuiltinType::SatLongFract: |
2633 | case BuiltinType::SatUShortFract: |
2634 | case BuiltinType::SatUFract: |
2635 | case BuiltinType::SatULongFract: |
2636 | case BuiltinType::Ibm128: |
2637 | case BuiltinType::Float128: { |
2638 | DiagnosticsEngine &Diags = Context.getDiags(); |
2639 | unsigned DiagID = Diags.getCustomDiagID( |
2640 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle this built-in %0 type yet" ); |
2641 | Diags.Report(Loc: Range.getBegin(), DiagID) |
2642 | << T->getName(Policy: Context.getASTContext().getPrintingPolicy()) << Range; |
2643 | break; |
2644 | } |
2645 | } |
2646 | } |
2647 | |
2648 | // <type> ::= <function-type> |
2649 | void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers, |
2650 | SourceRange) { |
2651 | // Structors only appear in decls, so at this point we know it's not a |
2652 | // structor type. |
2653 | // FIXME: This may not be lambda-friendly. |
2654 | if (T->getMethodQuals() || T->getRefQualifier() != RQ_None) { |
2655 | Out << "$$A8@@" ; |
2656 | mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true); |
2657 | } else { |
2658 | Out << "$$A6" ; |
2659 | mangleFunctionType(T); |
2660 | } |
2661 | } |
2662 | void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T, |
2663 | Qualifiers, SourceRange) { |
2664 | Out << "$$A6" ; |
2665 | mangleFunctionType(T); |
2666 | } |
2667 | |
2668 | void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T, |
2669 | const FunctionDecl *D, |
2670 | bool ForceThisQuals, |
2671 | bool MangleExceptionSpec) { |
2672 | // <function-type> ::= <this-cvr-qualifiers> <calling-convention> |
2673 | // <return-type> <argument-list> <throw-spec> |
2674 | const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(Val: T); |
2675 | |
2676 | SourceRange Range; |
2677 | if (D) Range = D->getSourceRange(); |
2678 | |
2679 | bool IsInLambda = false; |
2680 | bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false; |
2681 | CallingConv CC = T->getCallConv(); |
2682 | if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Val: D)) { |
2683 | if (MD->getParent()->isLambda()) |
2684 | IsInLambda = true; |
2685 | if (MD->isImplicitObjectMemberFunction()) |
2686 | HasThisQuals = true; |
2687 | if (isa<CXXDestructorDecl>(Val: MD)) { |
2688 | IsStructor = true; |
2689 | } else if (isa<CXXConstructorDecl>(Val: MD)) { |
2690 | IsStructor = true; |
2691 | IsCtorClosure = (StructorType == Ctor_CopyingClosure || |
2692 | StructorType == Ctor_DefaultClosure) && |
2693 | isStructorDecl(MD); |
2694 | if (IsCtorClosure) |
2695 | CC = getASTContext().getDefaultCallingConvention( |
2696 | /*IsVariadic=*/false, /*IsCXXMethod=*/true); |
2697 | } |
2698 | } |
2699 | |
2700 | // If this is a C++ instance method, mangle the CVR qualifiers for the |
2701 | // this pointer. |
2702 | if (HasThisQuals) { |
2703 | Qualifiers Quals = Proto->getMethodQuals(); |
2704 | manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType()); |
2705 | mangleRefQualifier(RefQualifier: Proto->getRefQualifier()); |
2706 | mangleQualifiers(Quals, /*IsMember=*/false); |
2707 | } |
2708 | |
2709 | mangleCallingConvention(CC); |
2710 | |
2711 | // <return-type> ::= <type> |
2712 | // ::= @ # structors (they have no declared return type) |
2713 | if (IsStructor) { |
2714 | if (isa<CXXDestructorDecl>(Val: D) && isStructorDecl(D)) { |
2715 | // The scalar deleting destructor takes an extra int argument which is not |
2716 | // reflected in the AST. |
2717 | if (StructorType == Dtor_Deleting) { |
2718 | Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z" ); |
2719 | return; |
2720 | } |
2721 | // The vbase destructor returns void which is not reflected in the AST. |
2722 | if (StructorType == Dtor_Complete) { |
2723 | Out << "XXZ" ; |
2724 | return; |
2725 | } |
2726 | } |
2727 | if (IsCtorClosure) { |
2728 | // Default constructor closure and copy constructor closure both return |
2729 | // void. |
2730 | Out << 'X'; |
2731 | |
2732 | if (StructorType == Ctor_DefaultClosure) { |
2733 | // Default constructor closure always has no arguments. |
2734 | Out << 'X'; |
2735 | } else if (StructorType == Ctor_CopyingClosure) { |
2736 | // Copy constructor closure always takes an unqualified reference. |
2737 | mangleFunctionArgumentType(T: getASTContext().getLValueReferenceType( |
2738 | T: Proto->getParamType(i: 0) |
2739 | ->castAs<LValueReferenceType>() |
2740 | ->getPointeeType(), |
2741 | /*SpelledAsLValue=*/true), |
2742 | Range); |
2743 | Out << '@'; |
2744 | } else { |
2745 | llvm_unreachable("unexpected constructor closure!" ); |
2746 | } |
2747 | Out << 'Z'; |
2748 | return; |
2749 | } |
2750 | Out << '@'; |
2751 | } else if (IsInLambda && D && isa<CXXConversionDecl>(Val: D)) { |
2752 | // The only lambda conversion operators are to function pointers, which |
2753 | // can differ by their calling convention and are typically deduced. So |
2754 | // we make sure that this type gets mangled properly. |
2755 | mangleType(T: T->getReturnType(), Range, QMM: QMM_Result); |
2756 | } else { |
2757 | QualType ResultType = T->getReturnType(); |
2758 | if (IsInLambda && isa<CXXConversionDecl>(Val: D)) { |
2759 | // The only lambda conversion operators are to function pointers, which |
2760 | // can differ by their calling convention and are typically deduced. So |
2761 | // we make sure that this type gets mangled properly. |
2762 | mangleType(T: ResultType, Range, QMM: QMM_Result); |
2763 | } else if (const auto *AT = dyn_cast_or_null<AutoType>( |
2764 | ResultType->getContainedAutoType())) { |
2765 | Out << '?'; |
2766 | mangleQualifiers(Quals: ResultType.getLocalQualifiers(), /*IsMember=*/false); |
2767 | Out << '?'; |
2768 | assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType && |
2769 | "shouldn't need to mangle __auto_type!" ); |
2770 | mangleSourceName(Name: AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>" ); |
2771 | Out << '@'; |
2772 | } else if (IsInLambda) { |
2773 | Out << '@'; |
2774 | } else { |
2775 | if (ResultType->isVoidType()) |
2776 | ResultType = ResultType.getUnqualifiedType(); |
2777 | mangleType(T: ResultType, Range, QMM: QMM_Result); |
2778 | } |
2779 | } |
2780 | |
2781 | // <argument-list> ::= X # void |
2782 | // ::= <type>+ @ |
2783 | // ::= <type>* Z # varargs |
2784 | if (!Proto) { |
2785 | // Function types without prototypes can arise when mangling a function type |
2786 | // within an overloadable function in C. We mangle these as the absence of |
2787 | // any parameter types (not even an empty parameter list). |
2788 | Out << '@'; |
2789 | } else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { |
2790 | Out << 'X'; |
2791 | } else { |
2792 | // Happens for function pointer type arguments for example. |
2793 | for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { |
2794 | // Explicit object parameters are prefixed by "_V". |
2795 | if (I == 0 && D && D->getParamDecl(i: I)->isExplicitObjectParameter()) |
2796 | Out << "_V" ; |
2797 | |
2798 | mangleFunctionArgumentType(T: Proto->getParamType(i: I), Range); |
2799 | // Mangle each pass_object_size parameter as if it's a parameter of enum |
2800 | // type passed directly after the parameter with the pass_object_size |
2801 | // attribute. The aforementioned enum's name is __pass_object_size, and we |
2802 | // pretend it resides in a top-level namespace called __clang. |
2803 | // |
2804 | // FIXME: Is there a defined extension notation for the MS ABI, or is it |
2805 | // necessary to just cross our fingers and hope this type+namespace |
2806 | // combination doesn't conflict with anything? |
2807 | if (D) |
2808 | if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) |
2809 | manglePassObjectSizeArg(P); |
2810 | } |
2811 | // <builtin-type> ::= Z # ellipsis |
2812 | if (Proto->isVariadic()) |
2813 | Out << 'Z'; |
2814 | else |
2815 | Out << '@'; |
2816 | } |
2817 | |
2818 | if (MangleExceptionSpec && getASTContext().getLangOpts().CPlusPlus17 && |
2819 | getASTContext().getLangOpts().isCompatibleWithMSVC( |
2820 | MajorVersion: LangOptions::MSVC2017_5)) |
2821 | mangleThrowSpecification(T: Proto); |
2822 | else |
2823 | Out << 'Z'; |
2824 | } |
2825 | |
2826 | void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) { |
2827 | // <function-class> ::= <member-function> E? # E designates a 64-bit 'this' |
2828 | // # pointer. in 64-bit mode *all* |
2829 | // # 'this' pointers are 64-bit. |
2830 | // ::= <global-function> |
2831 | // <member-function> ::= A # private: near |
2832 | // ::= B # private: far |
2833 | // ::= C # private: static near |
2834 | // ::= D # private: static far |
2835 | // ::= E # private: virtual near |
2836 | // ::= F # private: virtual far |
2837 | // ::= I # protected: near |
2838 | // ::= J # protected: far |
2839 | // ::= K # protected: static near |
2840 | // ::= L # protected: static far |
2841 | // ::= M # protected: virtual near |
2842 | // ::= N # protected: virtual far |
2843 | // ::= Q # public: near |
2844 | // ::= R # public: far |
2845 | // ::= S # public: static near |
2846 | // ::= T # public: static far |
2847 | // ::= U # public: virtual near |
2848 | // ::= V # public: virtual far |
2849 | // <global-function> ::= Y # global near |
2850 | // ::= Z # global far |
2851 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
2852 | bool IsVirtual = MD->isVirtual(); |
2853 | // When mangling vbase destructor variants, ignore whether or not the |
2854 | // underlying destructor was defined to be virtual. |
2855 | if (isa<CXXDestructorDecl>(Val: MD) && isStructorDecl(MD) && |
2856 | StructorType == Dtor_Complete) { |
2857 | IsVirtual = false; |
2858 | } |
2859 | switch (MD->getAccess()) { |
2860 | case AS_none: |
2861 | llvm_unreachable("Unsupported access specifier" ); |
2862 | case AS_private: |
2863 | if (!MD->isImplicitObjectMemberFunction()) |
2864 | Out << 'C'; |
2865 | else if (IsVirtual) |
2866 | Out << 'E'; |
2867 | else |
2868 | Out << 'A'; |
2869 | break; |
2870 | case AS_protected: |
2871 | if (!MD->isImplicitObjectMemberFunction()) |
2872 | Out << 'K'; |
2873 | else if (IsVirtual) |
2874 | Out << 'M'; |
2875 | else |
2876 | Out << 'I'; |
2877 | break; |
2878 | case AS_public: |
2879 | if (!MD->isImplicitObjectMemberFunction()) |
2880 | Out << 'S'; |
2881 | else if (IsVirtual) |
2882 | Out << 'U'; |
2883 | else |
2884 | Out << 'Q'; |
2885 | } |
2886 | } else { |
2887 | Out << 'Y'; |
2888 | } |
2889 | } |
2890 | void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) { |
2891 | // <calling-convention> ::= A # __cdecl |
2892 | // ::= B # __export __cdecl |
2893 | // ::= C # __pascal |
2894 | // ::= D # __export __pascal |
2895 | // ::= E # __thiscall |
2896 | // ::= F # __export __thiscall |
2897 | // ::= G # __stdcall |
2898 | // ::= H # __export __stdcall |
2899 | // ::= I # __fastcall |
2900 | // ::= J # __export __fastcall |
2901 | // ::= Q # __vectorcall |
2902 | // ::= S # __attribute__((__swiftcall__)) // Clang-only |
2903 | // ::= T # __attribute__((__swiftasynccall__)) |
2904 | // // Clang-only |
2905 | // ::= w # __regcall |
2906 | // ::= x # __regcall4 |
2907 | // The 'export' calling conventions are from a bygone era |
2908 | // (*cough*Win16*cough*) when functions were declared for export with |
2909 | // that keyword. (It didn't actually export them, it just made them so |
2910 | // that they could be in a DLL and somebody from another module could call |
2911 | // them.) |
2912 | |
2913 | switch (CC) { |
2914 | default: |
2915 | llvm_unreachable("Unsupported CC for mangling" ); |
2916 | case CC_Win64: |
2917 | case CC_X86_64SysV: |
2918 | case CC_C: Out << 'A'; break; |
2919 | case CC_X86Pascal: Out << 'C'; break; |
2920 | case CC_X86ThisCall: Out << 'E'; break; |
2921 | case CC_X86StdCall: Out << 'G'; break; |
2922 | case CC_X86FastCall: Out << 'I'; break; |
2923 | case CC_X86VectorCall: Out << 'Q'; break; |
2924 | case CC_Swift: Out << 'S'; break; |
2925 | case CC_SwiftAsync: Out << 'W'; break; |
2926 | case CC_PreserveMost: Out << 'U'; break; |
2927 | case CC_X86RegCall: |
2928 | if (getASTContext().getLangOpts().RegCall4) |
2929 | Out << "x" ; |
2930 | else |
2931 | Out << "w" ; |
2932 | break; |
2933 | } |
2934 | } |
2935 | void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) { |
2936 | mangleCallingConvention(CC: T->getCallConv()); |
2937 | } |
2938 | |
2939 | void MicrosoftCXXNameMangler::mangleThrowSpecification( |
2940 | const FunctionProtoType *FT) { |
2941 | // <throw-spec> ::= Z # (default) |
2942 | // ::= _E # noexcept |
2943 | if (FT->canThrow()) |
2944 | Out << 'Z'; |
2945 | else |
2946 | Out << "_E" ; |
2947 | } |
2948 | |
2949 | void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T, |
2950 | Qualifiers, SourceRange Range) { |
2951 | // Probably should be mangled as a template instantiation; need to see what |
2952 | // VC does first. |
2953 | DiagnosticsEngine &Diags = Context.getDiags(); |
2954 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
2955 | FormatString: "cannot mangle this unresolved dependent type yet" ); |
2956 | Diags.Report(Loc: Range.getBegin(), DiagID) |
2957 | << Range; |
2958 | } |
2959 | |
2960 | // <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type> |
2961 | // <union-type> ::= T <name> |
2962 | // <struct-type> ::= U <name> |
2963 | // <class-type> ::= V <name> |
2964 | // <enum-type> ::= W4 <name> |
2965 | void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) { |
2966 | switch (TTK) { |
2967 | case TagTypeKind::Union: |
2968 | Out << 'T'; |
2969 | break; |
2970 | case TagTypeKind::Struct: |
2971 | case TagTypeKind::Interface: |
2972 | Out << 'U'; |
2973 | break; |
2974 | case TagTypeKind::Class: |
2975 | Out << 'V'; |
2976 | break; |
2977 | case TagTypeKind::Enum: |
2978 | Out << "W4" ; |
2979 | break; |
2980 | } |
2981 | } |
2982 | void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers, |
2983 | SourceRange) { |
2984 | mangleType(TD: cast<TagType>(Val: T)->getDecl()); |
2985 | } |
2986 | void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers, |
2987 | SourceRange) { |
2988 | mangleType(TD: cast<TagType>(Val: T)->getDecl()); |
2989 | } |
2990 | void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) { |
2991 | mangleTagTypeKind(TTK: TD->getTagKind()); |
2992 | mangleName(TD); |
2993 | } |
2994 | |
2995 | // If you add a call to this, consider updating isArtificialTagType() too. |
2996 | void MicrosoftCXXNameMangler::mangleArtificialTagType( |
2997 | TagTypeKind TK, StringRef UnqualifiedName, |
2998 | ArrayRef<StringRef> NestedNames) { |
2999 | // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @ |
3000 | mangleTagTypeKind(TTK: TK); |
3001 | |
3002 | // Always start with the unqualified name. |
3003 | mangleSourceName(Name: UnqualifiedName); |
3004 | |
3005 | for (StringRef N : llvm::reverse(C&: NestedNames)) |
3006 | mangleSourceName(Name: N); |
3007 | |
3008 | // Terminate the whole name with an '@'. |
3009 | Out << '@'; |
3010 | } |
3011 | |
3012 | // <type> ::= <array-type> |
3013 | // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> |
3014 | // [Y <dimension-count> <dimension>+] |
3015 | // <element-type> # as global, E is never required |
3016 | // It's supposed to be the other way around, but for some strange reason, it |
3017 | // isn't. Today this behavior is retained for the sole purpose of backwards |
3018 | // compatibility. |
3019 | void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) { |
3020 | // This isn't a recursive mangling, so now we have to do it all in this |
3021 | // one call. |
3022 | manglePointerCVQualifiers(Quals: T->getElementType().getQualifiers()); |
3023 | mangleType(T: T->getElementType(), Range: SourceRange()); |
3024 | } |
3025 | void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers, |
3026 | SourceRange) { |
3027 | llvm_unreachable("Should have been special cased" ); |
3028 | } |
3029 | void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers, |
3030 | SourceRange) { |
3031 | llvm_unreachable("Should have been special cased" ); |
3032 | } |
3033 | void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T, |
3034 | Qualifiers, SourceRange) { |
3035 | llvm_unreachable("Should have been special cased" ); |
3036 | } |
3037 | void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T, |
3038 | Qualifiers, SourceRange) { |
3039 | llvm_unreachable("Should have been special cased" ); |
3040 | } |
3041 | void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) { |
3042 | QualType ElementTy(T, 0); |
3043 | SmallVector<llvm::APInt, 3> Dimensions; |
3044 | for (;;) { |
3045 | if (ElementTy->isConstantArrayType()) { |
3046 | const ConstantArrayType *CAT = |
3047 | getASTContext().getAsConstantArrayType(T: ElementTy); |
3048 | Dimensions.push_back(Elt: CAT->getSize()); |
3049 | ElementTy = CAT->getElementType(); |
3050 | } else if (ElementTy->isIncompleteArrayType()) { |
3051 | const IncompleteArrayType *IAT = |
3052 | getASTContext().getAsIncompleteArrayType(T: ElementTy); |
3053 | Dimensions.push_back(Elt: llvm::APInt(32, 0)); |
3054 | ElementTy = IAT->getElementType(); |
3055 | } else if (ElementTy->isVariableArrayType()) { |
3056 | const VariableArrayType *VAT = |
3057 | getASTContext().getAsVariableArrayType(T: ElementTy); |
3058 | Dimensions.push_back(Elt: llvm::APInt(32, 0)); |
3059 | ElementTy = VAT->getElementType(); |
3060 | } else if (ElementTy->isDependentSizedArrayType()) { |
3061 | // The dependent expression has to be folded into a constant (TODO). |
3062 | const DependentSizedArrayType *DSAT = |
3063 | getASTContext().getAsDependentSizedArrayType(T: ElementTy); |
3064 | DiagnosticsEngine &Diags = Context.getDiags(); |
3065 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3066 | FormatString: "cannot mangle this dependent-length array yet" ); |
3067 | Diags.Report(Loc: DSAT->getSizeExpr()->getExprLoc(), DiagID) |
3068 | << DSAT->getBracketsRange(); |
3069 | return; |
3070 | } else { |
3071 | break; |
3072 | } |
3073 | } |
3074 | Out << 'Y'; |
3075 | // <dimension-count> ::= <number> # number of extra dimensions |
3076 | mangleNumber(Number: Dimensions.size()); |
3077 | for (const llvm::APInt &Dimension : Dimensions) |
3078 | mangleNumber(Number: Dimension.getLimitedValue()); |
3079 | mangleType(T: ElementTy, Range: SourceRange(), QMM: QMM_Escape); |
3080 | } |
3081 | |
3082 | void MicrosoftCXXNameMangler::mangleType(const ArrayParameterType *T, |
3083 | Qualifiers, SourceRange) { |
3084 | mangleArrayType(cast<ConstantArrayType>(Val: T)); |
3085 | } |
3086 | |
3087 | // <type> ::= <pointer-to-member-type> |
3088 | // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers> |
3089 | // <class name> <type> |
3090 | void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, |
3091 | Qualifiers Quals, SourceRange Range) { |
3092 | QualType PointeeType = T->getPointeeType(); |
3093 | manglePointerCVQualifiers(Quals); |
3094 | manglePointerExtQualifiers(Quals, PointeeType); |
3095 | if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) { |
3096 | Out << '8'; |
3097 | mangleName(T->getClass()->castAs<RecordType>()->getDecl()); |
3098 | mangleFunctionType(FPT, nullptr, true); |
3099 | } else { |
3100 | mangleQualifiers(Quals: PointeeType.getQualifiers(), IsMember: true); |
3101 | mangleName(T->getClass()->castAs<RecordType>()->getDecl()); |
3102 | mangleType(T: PointeeType, Range, QMM: QMM_Drop); |
3103 | } |
3104 | } |
3105 | |
3106 | void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T, |
3107 | Qualifiers, SourceRange Range) { |
3108 | DiagnosticsEngine &Diags = Context.getDiags(); |
3109 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3110 | FormatString: "cannot mangle this template type parameter type yet" ); |
3111 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3112 | << Range; |
3113 | } |
3114 | |
3115 | void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T, |
3116 | Qualifiers, SourceRange Range) { |
3117 | DiagnosticsEngine &Diags = Context.getDiags(); |
3118 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3119 | FormatString: "cannot mangle this substituted parameter pack yet" ); |
3120 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3121 | << Range; |
3122 | } |
3123 | |
3124 | // <type> ::= <pointer-type> |
3125 | // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type> |
3126 | // # the E is required for 64-bit non-static pointers |
3127 | void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals, |
3128 | SourceRange Range) { |
3129 | QualType PointeeType = T->getPointeeType(); |
3130 | manglePointerCVQualifiers(Quals); |
3131 | manglePointerExtQualifiers(Quals, PointeeType); |
3132 | |
3133 | // For pointer size address spaces, go down the same type mangling path as |
3134 | // non address space types. |
3135 | LangAS AddrSpace = PointeeType.getQualifiers().getAddressSpace(); |
3136 | if (isPtrSizeAddressSpace(AS: AddrSpace) || AddrSpace == LangAS::Default) |
3137 | mangleType(T: PointeeType, Range); |
3138 | else |
3139 | mangleAddressSpaceType(T: PointeeType, Quals: PointeeType.getQualifiers(), Range); |
3140 | } |
3141 | |
3142 | void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T, |
3143 | Qualifiers Quals, SourceRange Range) { |
3144 | QualType PointeeType = T->getPointeeType(); |
3145 | switch (Quals.getObjCLifetime()) { |
3146 | case Qualifiers::OCL_None: |
3147 | case Qualifiers::OCL_ExplicitNone: |
3148 | break; |
3149 | case Qualifiers::OCL_Autoreleasing: |
3150 | case Qualifiers::OCL_Strong: |
3151 | case Qualifiers::OCL_Weak: |
3152 | return mangleObjCLifetime(Type: PointeeType, Quals, Range); |
3153 | } |
3154 | manglePointerCVQualifiers(Quals); |
3155 | manglePointerExtQualifiers(Quals, PointeeType); |
3156 | mangleType(T: PointeeType, Range); |
3157 | } |
3158 | |
3159 | // <type> ::= <reference-type> |
3160 | // <reference-type> ::= A E? <cvr-qualifiers> <type> |
3161 | // # the E is required for 64-bit non-static lvalue references |
3162 | void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T, |
3163 | Qualifiers Quals, SourceRange Range) { |
3164 | QualType PointeeType = T->getPointeeType(); |
3165 | assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!" ); |
3166 | Out << 'A'; |
3167 | manglePointerExtQualifiers(Quals, PointeeType); |
3168 | mangleType(T: PointeeType, Range); |
3169 | } |
3170 | |
3171 | // <type> ::= <r-value-reference-type> |
3172 | // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type> |
3173 | // # the E is required for 64-bit non-static rvalue references |
3174 | void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T, |
3175 | Qualifiers Quals, SourceRange Range) { |
3176 | QualType PointeeType = T->getPointeeType(); |
3177 | assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!" ); |
3178 | Out << "$$Q" ; |
3179 | manglePointerExtQualifiers(Quals, PointeeType); |
3180 | mangleType(T: PointeeType, Range); |
3181 | } |
3182 | |
3183 | void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers, |
3184 | SourceRange Range) { |
3185 | QualType ElementType = T->getElementType(); |
3186 | |
3187 | llvm::SmallString<64> TemplateMangling; |
3188 | llvm::raw_svector_ostream Stream(TemplateMangling); |
3189 | MicrosoftCXXNameMangler (Context, Stream); |
3190 | Stream << "?$" ; |
3191 | Extra.mangleSourceName(Name: "_Complex" ); |
3192 | Extra.mangleType(T: ElementType, Range, QMM: QMM_Escape); |
3193 | |
3194 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__clang" }); |
3195 | } |
3196 | |
3197 | // Returns true for types that mangleArtificialTagType() gets called for with |
3198 | // TagTypeKind Union, Struct, Class and where compatibility with MSVC's |
3199 | // mangling matters. |
3200 | // (It doesn't matter for Objective-C types and the like that cl.exe doesn't |
3201 | // support.) |
3202 | bool MicrosoftCXXNameMangler::isArtificialTagType(QualType T) const { |
3203 | const Type *ty = T.getTypePtr(); |
3204 | switch (ty->getTypeClass()) { |
3205 | default: |
3206 | return false; |
3207 | |
3208 | case Type::Vector: { |
3209 | // For ABI compatibility only __m64, __m128(id), and __m256(id) matter, |
3210 | // but since mangleType(VectorType*) always calls mangleArtificialTagType() |
3211 | // just always return true (the other vector types are clang-only). |
3212 | return true; |
3213 | } |
3214 | } |
3215 | } |
3216 | |
3217 | void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals, |
3218 | SourceRange Range) { |
3219 | QualType EltTy = T->getElementType(); |
3220 | const BuiltinType *ET = EltTy->getAs<BuiltinType>(); |
3221 | const BitIntType *BitIntTy = EltTy->getAs<BitIntType>(); |
3222 | assert((ET || BitIntTy) && |
3223 | "vectors with non-builtin/_BitInt elements are unsupported" ); |
3224 | uint64_t Width = getASTContext().getTypeSize(T); |
3225 | // Pattern match exactly the typedefs in our intrinsic headers. Anything that |
3226 | // doesn't match the Intel types uses a custom mangling below. |
3227 | size_t OutSizeBefore = Out.tell(); |
3228 | if (!isa<ExtVectorType>(Val: T)) { |
3229 | if (getASTContext().getTargetInfo().getTriple().isX86() && ET) { |
3230 | if (Width == 64 && ET->getKind() == BuiltinType::LongLong) { |
3231 | mangleArtificialTagType(TK: TagTypeKind::Union, UnqualifiedName: "__m64" ); |
3232 | } else if (Width >= 128) { |
3233 | if (ET->getKind() == BuiltinType::Float) |
3234 | mangleArtificialTagType(TK: TagTypeKind::Union, |
3235 | UnqualifiedName: "__m" + llvm::utostr(X: Width)); |
3236 | else if (ET->getKind() == BuiltinType::LongLong) |
3237 | mangleArtificialTagType(TK: TagTypeKind::Union, |
3238 | UnqualifiedName: "__m" + llvm::utostr(X: Width) + 'i'); |
3239 | else if (ET->getKind() == BuiltinType::Double) |
3240 | mangleArtificialTagType(TK: TagTypeKind::Struct, |
3241 | UnqualifiedName: "__m" + llvm::utostr(X: Width) + 'd'); |
3242 | } |
3243 | } |
3244 | } |
3245 | |
3246 | bool IsBuiltin = Out.tell() != OutSizeBefore; |
3247 | if (!IsBuiltin) { |
3248 | // The MS ABI doesn't have a special mangling for vector types, so we define |
3249 | // our own mangling to handle uses of __vector_size__ on user-specified |
3250 | // types, and for extensions like __v4sf. |
3251 | |
3252 | llvm::SmallString<64> TemplateMangling; |
3253 | llvm::raw_svector_ostream Stream(TemplateMangling); |
3254 | MicrosoftCXXNameMangler (Context, Stream); |
3255 | Stream << "?$" ; |
3256 | Extra.mangleSourceName(Name: "__vector" ); |
3257 | Extra.mangleType(QualType(ET ? static_cast<const Type *>(ET) : BitIntTy, 0), |
3258 | Range, QMM_Escape); |
3259 | Extra.mangleIntegerLiteral(Value: llvm::APSInt::getUnsigned(X: T->getNumElements())); |
3260 | |
3261 | mangleArtificialTagType(TK: TagTypeKind::Union, UnqualifiedName: TemplateMangling, NestedNames: {"__clang" }); |
3262 | } |
3263 | } |
3264 | |
3265 | void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T, |
3266 | Qualifiers Quals, SourceRange Range) { |
3267 | mangleType(static_cast<const VectorType *>(T), Quals, Range); |
3268 | } |
3269 | |
3270 | void MicrosoftCXXNameMangler::mangleType(const DependentVectorType *T, |
3271 | Qualifiers, SourceRange Range) { |
3272 | DiagnosticsEngine &Diags = Context.getDiags(); |
3273 | unsigned DiagID = Diags.getCustomDiagID( |
3274 | L: DiagnosticsEngine::Error, |
3275 | FormatString: "cannot mangle this dependent-sized vector type yet" ); |
3276 | Diags.Report(Loc: Range.getBegin(), DiagID) << Range; |
3277 | } |
3278 | |
3279 | void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T, |
3280 | Qualifiers, SourceRange Range) { |
3281 | DiagnosticsEngine &Diags = Context.getDiags(); |
3282 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3283 | FormatString: "cannot mangle this dependent-sized extended vector type yet" ); |
3284 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3285 | << Range; |
3286 | } |
3287 | |
3288 | void MicrosoftCXXNameMangler::mangleType(const ConstantMatrixType *T, |
3289 | Qualifiers quals, SourceRange Range) { |
3290 | DiagnosticsEngine &Diags = Context.getDiags(); |
3291 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3292 | FormatString: "Cannot mangle this matrix type yet" ); |
3293 | Diags.Report(Loc: Range.getBegin(), DiagID) << Range; |
3294 | } |
3295 | |
3296 | void MicrosoftCXXNameMangler::mangleType(const DependentSizedMatrixType *T, |
3297 | Qualifiers quals, SourceRange Range) { |
3298 | DiagnosticsEngine &Diags = Context.getDiags(); |
3299 | unsigned DiagID = Diags.getCustomDiagID( |
3300 | L: DiagnosticsEngine::Error, |
3301 | FormatString: "Cannot mangle this dependent-sized matrix type yet" ); |
3302 | Diags.Report(Loc: Range.getBegin(), DiagID) << Range; |
3303 | } |
3304 | |
3305 | void MicrosoftCXXNameMangler::mangleType(const DependentAddressSpaceType *T, |
3306 | Qualifiers, SourceRange Range) { |
3307 | DiagnosticsEngine &Diags = Context.getDiags(); |
3308 | unsigned DiagID = Diags.getCustomDiagID( |
3309 | L: DiagnosticsEngine::Error, |
3310 | FormatString: "cannot mangle this dependent address space type yet" ); |
3311 | Diags.Report(Loc: Range.getBegin(), DiagID) << Range; |
3312 | } |
3313 | |
3314 | void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers, |
3315 | SourceRange) { |
3316 | // ObjC interfaces have structs underlying them. |
3317 | mangleTagTypeKind(TTK: TagTypeKind::Struct); |
3318 | mangleName(T->getDecl()); |
3319 | } |
3320 | |
3321 | void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, |
3322 | Qualifiers Quals, SourceRange Range) { |
3323 | if (T->isKindOfType()) |
3324 | return mangleObjCKindOfType(T, Quals, Range); |
3325 | |
3326 | if (T->qual_empty() && !T->isSpecialized()) |
3327 | return mangleType(T: T->getBaseType(), Range, QMM: QMM_Drop); |
3328 | |
3329 | ArgBackRefMap OuterFunArgsContext; |
3330 | ArgBackRefMap OuterTemplateArgsContext; |
3331 | BackRefVec OuterTemplateContext; |
3332 | |
3333 | FunArgBackReferences.swap(RHS&: OuterFunArgsContext); |
3334 | TemplateArgBackReferences.swap(RHS&: OuterTemplateArgsContext); |
3335 | NameBackReferences.swap(RHS&: OuterTemplateContext); |
3336 | |
3337 | mangleTagTypeKind(TTK: TagTypeKind::Struct); |
3338 | |
3339 | Out << "?$" ; |
3340 | if (T->isObjCId()) |
3341 | mangleSourceName(Name: "objc_object" ); |
3342 | else if (T->isObjCClass()) |
3343 | mangleSourceName(Name: "objc_class" ); |
3344 | else |
3345 | mangleSourceName(Name: T->getInterface()->getName()); |
3346 | |
3347 | for (const auto &Q : T->quals()) |
3348 | mangleObjCProtocol(Q); |
3349 | |
3350 | if (T->isSpecialized()) |
3351 | for (const auto &TA : T->getTypeArgs()) |
3352 | mangleType(T: TA, Range, QMM: QMM_Drop); |
3353 | |
3354 | Out << '@'; |
3355 | |
3356 | Out << '@'; |
3357 | |
3358 | FunArgBackReferences.swap(RHS&: OuterFunArgsContext); |
3359 | TemplateArgBackReferences.swap(RHS&: OuterTemplateArgsContext); |
3360 | NameBackReferences.swap(RHS&: OuterTemplateContext); |
3361 | } |
3362 | |
3363 | void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T, |
3364 | Qualifiers Quals, SourceRange Range) { |
3365 | QualType PointeeType = T->getPointeeType(); |
3366 | manglePointerCVQualifiers(Quals); |
3367 | manglePointerExtQualifiers(Quals, PointeeType); |
3368 | |
3369 | Out << "_E" ; |
3370 | |
3371 | mangleFunctionType(PointeeType->castAs<FunctionProtoType>()); |
3372 | } |
3373 | |
3374 | void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *, |
3375 | Qualifiers, SourceRange) { |
3376 | llvm_unreachable("Cannot mangle injected class name type." ); |
3377 | } |
3378 | |
3379 | void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T, |
3380 | Qualifiers, SourceRange Range) { |
3381 | DiagnosticsEngine &Diags = Context.getDiags(); |
3382 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3383 | FormatString: "cannot mangle this template specialization type yet" ); |
3384 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3385 | << Range; |
3386 | } |
3387 | |
3388 | void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers, |
3389 | SourceRange Range) { |
3390 | DiagnosticsEngine &Diags = Context.getDiags(); |
3391 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3392 | FormatString: "cannot mangle this dependent name type yet" ); |
3393 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3394 | << Range; |
3395 | } |
3396 | |
3397 | void MicrosoftCXXNameMangler::mangleType( |
3398 | const DependentTemplateSpecializationType *T, Qualifiers, |
3399 | SourceRange Range) { |
3400 | DiagnosticsEngine &Diags = Context.getDiags(); |
3401 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3402 | FormatString: "cannot mangle this dependent template specialization type yet" ); |
3403 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3404 | << Range; |
3405 | } |
3406 | |
3407 | void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers, |
3408 | SourceRange Range) { |
3409 | DiagnosticsEngine &Diags = Context.getDiags(); |
3410 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3411 | FormatString: "cannot mangle this pack expansion yet" ); |
3412 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3413 | << Range; |
3414 | } |
3415 | |
3416 | void MicrosoftCXXNameMangler::mangleType(const PackIndexingType *T, |
3417 | Qualifiers Quals, SourceRange Range) { |
3418 | manglePointerCVQualifiers(Quals); |
3419 | mangleType(T: T->getSelectedType(), Range); |
3420 | } |
3421 | |
3422 | void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers, |
3423 | SourceRange Range) { |
3424 | DiagnosticsEngine &Diags = Context.getDiags(); |
3425 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3426 | FormatString: "cannot mangle this typeof(type) yet" ); |
3427 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3428 | << Range; |
3429 | } |
3430 | |
3431 | void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers, |
3432 | SourceRange Range) { |
3433 | DiagnosticsEngine &Diags = Context.getDiags(); |
3434 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3435 | FormatString: "cannot mangle this typeof(expression) yet" ); |
3436 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3437 | << Range; |
3438 | } |
3439 | |
3440 | void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers, |
3441 | SourceRange Range) { |
3442 | DiagnosticsEngine &Diags = Context.getDiags(); |
3443 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3444 | FormatString: "cannot mangle this decltype() yet" ); |
3445 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3446 | << Range; |
3447 | } |
3448 | |
3449 | void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T, |
3450 | Qualifiers, SourceRange Range) { |
3451 | DiagnosticsEngine &Diags = Context.getDiags(); |
3452 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3453 | FormatString: "cannot mangle this unary transform type yet" ); |
3454 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3455 | << Range; |
3456 | } |
3457 | |
3458 | void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers, |
3459 | SourceRange Range) { |
3460 | assert(T->getDeducedType().isNull() && "expecting a dependent type!" ); |
3461 | |
3462 | DiagnosticsEngine &Diags = Context.getDiags(); |
3463 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3464 | FormatString: "cannot mangle this 'auto' type yet" ); |
3465 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3466 | << Range; |
3467 | } |
3468 | |
3469 | void MicrosoftCXXNameMangler::mangleType( |
3470 | const DeducedTemplateSpecializationType *T, Qualifiers, SourceRange Range) { |
3471 | assert(T->getDeducedType().isNull() && "expecting a dependent type!" ); |
3472 | |
3473 | DiagnosticsEngine &Diags = Context.getDiags(); |
3474 | unsigned DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error, |
3475 | FormatString: "cannot mangle this deduced class template specialization type yet" ); |
3476 | Diags.Report(Loc: Range.getBegin(), DiagID) |
3477 | << Range; |
3478 | } |
3479 | |
3480 | void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers, |
3481 | SourceRange Range) { |
3482 | QualType ValueType = T->getValueType(); |
3483 | |
3484 | llvm::SmallString<64> TemplateMangling; |
3485 | llvm::raw_svector_ostream Stream(TemplateMangling); |
3486 | MicrosoftCXXNameMangler (Context, Stream); |
3487 | Stream << "?$" ; |
3488 | Extra.mangleSourceName(Name: "_Atomic" ); |
3489 | Extra.mangleType(T: ValueType, Range, QMM: QMM_Escape); |
3490 | |
3491 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__clang" }); |
3492 | } |
3493 | |
3494 | void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers, |
3495 | SourceRange Range) { |
3496 | QualType ElementType = T->getElementType(); |
3497 | |
3498 | llvm::SmallString<64> TemplateMangling; |
3499 | llvm::raw_svector_ostream Stream(TemplateMangling); |
3500 | MicrosoftCXXNameMangler (Context, Stream); |
3501 | Stream << "?$" ; |
3502 | Extra.mangleSourceName(Name: "ocl_pipe" ); |
3503 | Extra.mangleType(T: ElementType, Range, QMM: QMM_Escape); |
3504 | Extra.mangleIntegerLiteral(Value: llvm::APSInt::get(X: T->isReadOnly())); |
3505 | |
3506 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__clang" }); |
3507 | } |
3508 | |
3509 | void MicrosoftMangleContextImpl::mangleCXXName(GlobalDecl GD, |
3510 | raw_ostream &Out) { |
3511 | const NamedDecl *D = cast<NamedDecl>(Val: GD.getDecl()); |
3512 | PrettyStackTraceDecl CrashInfo(D, SourceLocation(), |
3513 | getASTContext().getSourceManager(), |
3514 | "Mangling declaration" ); |
3515 | |
3516 | msvc_hashing_ostream MHO(Out); |
3517 | |
3518 | if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: D)) { |
3519 | auto Type = GD.getCtorType(); |
3520 | MicrosoftCXXNameMangler mangler(*this, MHO, CD, Type); |
3521 | return mangler.mangle(GD); |
3522 | } |
3523 | |
3524 | if (auto *DD = dyn_cast<CXXDestructorDecl>(Val: D)) { |
3525 | auto Type = GD.getDtorType(); |
3526 | MicrosoftCXXNameMangler mangler(*this, MHO, DD, Type); |
3527 | return mangler.mangle(GD); |
3528 | } |
3529 | |
3530 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3531 | return Mangler.mangle(GD); |
3532 | } |
3533 | |
3534 | void MicrosoftCXXNameMangler::mangleType(const BitIntType *T, Qualifiers, |
3535 | SourceRange Range) { |
3536 | llvm::SmallString<64> TemplateMangling; |
3537 | llvm::raw_svector_ostream Stream(TemplateMangling); |
3538 | MicrosoftCXXNameMangler (Context, Stream); |
3539 | Stream << "?$" ; |
3540 | if (T->isUnsigned()) |
3541 | Extra.mangleSourceName(Name: "_UBitInt" ); |
3542 | else |
3543 | Extra.mangleSourceName(Name: "_BitInt" ); |
3544 | Extra.mangleIntegerLiteral(Value: llvm::APSInt::getUnsigned(X: T->getNumBits())); |
3545 | |
3546 | mangleArtificialTagType(TK: TagTypeKind::Struct, UnqualifiedName: TemplateMangling, NestedNames: {"__clang" }); |
3547 | } |
3548 | |
3549 | void MicrosoftCXXNameMangler::mangleType(const DependentBitIntType *T, |
3550 | Qualifiers, SourceRange Range) { |
3551 | DiagnosticsEngine &Diags = Context.getDiags(); |
3552 | unsigned DiagID = Diags.getCustomDiagID( |
3553 | L: DiagnosticsEngine::Error, FormatString: "cannot mangle this DependentBitInt type yet" ); |
3554 | Diags.Report(Loc: Range.getBegin(), DiagID) << Range; |
3555 | } |
3556 | |
3557 | // <this-adjustment> ::= <no-adjustment> | <static-adjustment> | |
3558 | // <virtual-adjustment> |
3559 | // <no-adjustment> ::= A # private near |
3560 | // ::= B # private far |
3561 | // ::= I # protected near |
3562 | // ::= J # protected far |
3563 | // ::= Q # public near |
3564 | // ::= R # public far |
3565 | // <static-adjustment> ::= G <static-offset> # private near |
3566 | // ::= H <static-offset> # private far |
3567 | // ::= O <static-offset> # protected near |
3568 | // ::= P <static-offset> # protected far |
3569 | // ::= W <static-offset> # public near |
3570 | // ::= X <static-offset> # public far |
3571 | // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near |
3572 | // ::= $1 <virtual-shift> <static-offset> # private far |
3573 | // ::= $2 <virtual-shift> <static-offset> # protected near |
3574 | // ::= $3 <virtual-shift> <static-offset> # protected far |
3575 | // ::= $4 <virtual-shift> <static-offset> # public near |
3576 | // ::= $5 <virtual-shift> <static-offset> # public far |
3577 | // <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift> |
3578 | // <vtordisp-shift> ::= <offset-to-vtordisp> |
3579 | // <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset> |
3580 | // <offset-to-vtordisp> |
3581 | static void mangleThunkThisAdjustment(AccessSpecifier AS, |
3582 | const ThisAdjustment &Adjustment, |
3583 | MicrosoftCXXNameMangler &Mangler, |
3584 | raw_ostream &Out) { |
3585 | if (!Adjustment.Virtual.isEmpty()) { |
3586 | Out << '$'; |
3587 | char AccessSpec; |
3588 | switch (AS) { |
3589 | case AS_none: |
3590 | llvm_unreachable("Unsupported access specifier" ); |
3591 | case AS_private: |
3592 | AccessSpec = '0'; |
3593 | break; |
3594 | case AS_protected: |
3595 | AccessSpec = '2'; |
3596 | break; |
3597 | case AS_public: |
3598 | AccessSpec = '4'; |
3599 | } |
3600 | if (Adjustment.Virtual.Microsoft.VBPtrOffset) { |
3601 | Out << 'R' << AccessSpec; |
3602 | Mangler.mangleNumber( |
3603 | Number: static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset)); |
3604 | Mangler.mangleNumber( |
3605 | Number: static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset)); |
3606 | Mangler.mangleNumber( |
3607 | Number: static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); |
3608 | Mangler.mangleNumber(Number: static_cast<uint32_t>(Adjustment.NonVirtual)); |
3609 | } else { |
3610 | Out << AccessSpec; |
3611 | Mangler.mangleNumber( |
3612 | Number: static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset)); |
3613 | Mangler.mangleNumber(Number: -static_cast<uint32_t>(Adjustment.NonVirtual)); |
3614 | } |
3615 | } else if (Adjustment.NonVirtual != 0) { |
3616 | switch (AS) { |
3617 | case AS_none: |
3618 | llvm_unreachable("Unsupported access specifier" ); |
3619 | case AS_private: |
3620 | Out << 'G'; |
3621 | break; |
3622 | case AS_protected: |
3623 | Out << 'O'; |
3624 | break; |
3625 | case AS_public: |
3626 | Out << 'W'; |
3627 | } |
3628 | Mangler.mangleNumber(Number: -static_cast<uint32_t>(Adjustment.NonVirtual)); |
3629 | } else { |
3630 | switch (AS) { |
3631 | case AS_none: |
3632 | llvm_unreachable("Unsupported access specifier" ); |
3633 | case AS_private: |
3634 | Out << 'A'; |
3635 | break; |
3636 | case AS_protected: |
3637 | Out << 'I'; |
3638 | break; |
3639 | case AS_public: |
3640 | Out << 'Q'; |
3641 | } |
3642 | } |
3643 | } |
3644 | |
3645 | void MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk( |
3646 | const CXXMethodDecl *MD, const MethodVFTableLocation &ML, |
3647 | raw_ostream &Out) { |
3648 | msvc_hashing_ostream MHO(Out); |
3649 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3650 | Mangler.getStream() << '?'; |
3651 | Mangler.mangleVirtualMemPtrThunk(MD, ML); |
3652 | } |
3653 | |
3654 | void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, |
3655 | const ThunkInfo &Thunk, |
3656 | raw_ostream &Out) { |
3657 | msvc_hashing_ostream MHO(Out); |
3658 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3659 | Mangler.getStream() << '?'; |
3660 | Mangler.mangleName(MD); |
3661 | |
3662 | // Usually the thunk uses the access specifier of the new method, but if this |
3663 | // is a covariant return thunk, then MSVC always uses the public access |
3664 | // specifier, and we do the same. |
3665 | AccessSpecifier AS = Thunk.Return.isEmpty() ? MD->getAccess() : AS_public; |
3666 | mangleThunkThisAdjustment(AS, Adjustment: Thunk.This, Mangler, Out&: MHO); |
3667 | |
3668 | if (!Thunk.Return.isEmpty()) |
3669 | assert(Thunk.Method != nullptr && |
3670 | "Thunk info should hold the overridee decl" ); |
3671 | |
3672 | const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD; |
3673 | Mangler.mangleFunctionType( |
3674 | T: DeclForFPT->getType()->castAs<FunctionProtoType>(), D: MD); |
3675 | } |
3676 | |
3677 | void MicrosoftMangleContextImpl::mangleCXXDtorThunk( |
3678 | const CXXDestructorDecl *DD, CXXDtorType Type, |
3679 | const ThisAdjustment &Adjustment, raw_ostream &Out) { |
3680 | // FIXME: Actually, the dtor thunk should be emitted for vector deleting |
3681 | // dtors rather than scalar deleting dtors. Just use the vector deleting dtor |
3682 | // mangling manually until we support both deleting dtor types. |
3683 | assert(Type == Dtor_Deleting); |
3684 | msvc_hashing_ostream MHO(Out); |
3685 | MicrosoftCXXNameMangler Mangler(*this, MHO, DD, Type); |
3686 | Mangler.getStream() << "??_E" ; |
3687 | Mangler.mangleName(GD: DD->getParent()); |
3688 | mangleThunkThisAdjustment(DD->getAccess(), Adjustment, Mangler, MHO); |
3689 | Mangler.mangleFunctionType(T: DD->getType()->castAs<FunctionProtoType>(), D: DD); |
3690 | } |
3691 | |
3692 | void MicrosoftMangleContextImpl::mangleCXXVFTable( |
3693 | const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, |
3694 | raw_ostream &Out) { |
3695 | // <mangled-name> ::= ?_7 <class-name> <storage-class> |
3696 | // <cvr-qualifiers> [<name>] @ |
3697 | // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> |
3698 | // is always '6' for vftables. |
3699 | msvc_hashing_ostream MHO(Out); |
3700 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3701 | if (Derived->hasAttr<DLLImportAttr>()) |
3702 | Mangler.getStream() << "??_S" ; |
3703 | else |
3704 | Mangler.getStream() << "??_7" ; |
3705 | Mangler.mangleName(Derived); |
3706 | Mangler.getStream() << "6B" ; // '6' for vftable, 'B' for const. |
3707 | for (const CXXRecordDecl *RD : BasePath) |
3708 | Mangler.mangleName(RD); |
3709 | Mangler.getStream() << '@'; |
3710 | } |
3711 | |
3712 | void MicrosoftMangleContextImpl::mangleCXXVBTable( |
3713 | const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, |
3714 | raw_ostream &Out) { |
3715 | // <mangled-name> ::= ?_8 <class-name> <storage-class> |
3716 | // <cvr-qualifiers> [<name>] @ |
3717 | // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> |
3718 | // is always '7' for vbtables. |
3719 | msvc_hashing_ostream MHO(Out); |
3720 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3721 | Mangler.getStream() << "??_8" ; |
3722 | Mangler.mangleName(Derived); |
3723 | Mangler.getStream() << "7B" ; // '7' for vbtable, 'B' for const. |
3724 | for (const CXXRecordDecl *RD : BasePath) |
3725 | Mangler.mangleName(RD); |
3726 | Mangler.getStream() << '@'; |
3727 | } |
3728 | |
3729 | void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) { |
3730 | msvc_hashing_ostream MHO(Out); |
3731 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3732 | Mangler.getStream() << "??_R0" ; |
3733 | Mangler.mangleType(T, Range: SourceRange(), QMM: MicrosoftCXXNameMangler::QMM_Result); |
3734 | Mangler.getStream() << "@8" ; |
3735 | } |
3736 | |
3737 | void MicrosoftMangleContextImpl::mangleCXXRTTIName( |
3738 | QualType T, raw_ostream &Out, bool NormalizeIntegers = false) { |
3739 | MicrosoftCXXNameMangler Mangler(*this, Out); |
3740 | Mangler.getStream() << '.'; |
3741 | Mangler.mangleType(T, Range: SourceRange(), QMM: MicrosoftCXXNameMangler::QMM_Result); |
3742 | } |
3743 | |
3744 | void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap( |
3745 | const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) { |
3746 | msvc_hashing_ostream MHO(Out); |
3747 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3748 | Mangler.getStream() << "??_K" ; |
3749 | Mangler.mangleName(SrcRD); |
3750 | Mangler.getStream() << "$C" ; |
3751 | Mangler.mangleName(DstRD); |
3752 | } |
3753 | |
3754 | void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T, bool IsConst, |
3755 | bool IsVolatile, |
3756 | bool IsUnaligned, |
3757 | uint32_t NumEntries, |
3758 | raw_ostream &Out) { |
3759 | msvc_hashing_ostream MHO(Out); |
3760 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3761 | Mangler.getStream() << "_TI" ; |
3762 | if (IsConst) |
3763 | Mangler.getStream() << 'C'; |
3764 | if (IsVolatile) |
3765 | Mangler.getStream() << 'V'; |
3766 | if (IsUnaligned) |
3767 | Mangler.getStream() << 'U'; |
3768 | Mangler.getStream() << NumEntries; |
3769 | Mangler.mangleType(T, Range: SourceRange(), QMM: MicrosoftCXXNameMangler::QMM_Result); |
3770 | } |
3771 | |
3772 | void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray( |
3773 | QualType T, uint32_t NumEntries, raw_ostream &Out) { |
3774 | msvc_hashing_ostream MHO(Out); |
3775 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3776 | Mangler.getStream() << "_CTA" ; |
3777 | Mangler.getStream() << NumEntries; |
3778 | Mangler.mangleType(T, Range: SourceRange(), QMM: MicrosoftCXXNameMangler::QMM_Result); |
3779 | } |
3780 | |
3781 | void MicrosoftMangleContextImpl::mangleCXXCatchableType( |
3782 | QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size, |
3783 | uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex, |
3784 | raw_ostream &Out) { |
3785 | MicrosoftCXXNameMangler Mangler(*this, Out); |
3786 | Mangler.getStream() << "_CT" ; |
3787 | |
3788 | llvm::SmallString<64> RTTIMangling; |
3789 | { |
3790 | llvm::raw_svector_ostream Stream(RTTIMangling); |
3791 | msvc_hashing_ostream MHO(Stream); |
3792 | mangleCXXRTTI(T, Out&: MHO); |
3793 | } |
3794 | Mangler.getStream() << RTTIMangling; |
3795 | |
3796 | // VS2015 and VS2017.1 omit the copy-constructor in the mangled name but |
3797 | // both older and newer versions include it. |
3798 | // FIXME: It is known that the Ctor is present in 2013, and in 2017.7 |
3799 | // (_MSC_VER 1914) and newer, and that it's omitted in 2015 and 2017.4 |
3800 | // (_MSC_VER 1911), but it's unknown when exactly it reappeared (1914? |
3801 | // Or 1912, 1913 already?). |
3802 | bool OmitCopyCtor = getASTContext().getLangOpts().isCompatibleWithMSVC( |
3803 | MajorVersion: LangOptions::MSVC2015) && |
3804 | !getASTContext().getLangOpts().isCompatibleWithMSVC( |
3805 | MajorVersion: LangOptions::MSVC2017_7); |
3806 | llvm::SmallString<64> CopyCtorMangling; |
3807 | if (!OmitCopyCtor && CD) { |
3808 | llvm::raw_svector_ostream Stream(CopyCtorMangling); |
3809 | msvc_hashing_ostream MHO(Stream); |
3810 | mangleCXXName(GD: GlobalDecl(CD, CT), Out&: MHO); |
3811 | } |
3812 | Mangler.getStream() << CopyCtorMangling; |
3813 | |
3814 | Mangler.getStream() << Size; |
3815 | if (VBPtrOffset == -1) { |
3816 | if (NVOffset) { |
3817 | Mangler.getStream() << NVOffset; |
3818 | } |
3819 | } else { |
3820 | Mangler.getStream() << NVOffset; |
3821 | Mangler.getStream() << VBPtrOffset; |
3822 | Mangler.getStream() << VBIndex; |
3823 | } |
3824 | } |
3825 | |
3826 | void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor( |
3827 | const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset, |
3828 | uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) { |
3829 | msvc_hashing_ostream MHO(Out); |
3830 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3831 | Mangler.getStream() << "??_R1" ; |
3832 | Mangler.mangleNumber(Number: NVOffset); |
3833 | Mangler.mangleNumber(Number: VBPtrOffset); |
3834 | Mangler.mangleNumber(Number: VBTableOffset); |
3835 | Mangler.mangleNumber(Number: Flags); |
3836 | Mangler.mangleName(Derived); |
3837 | Mangler.getStream() << "8" ; |
3838 | } |
3839 | |
3840 | void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray( |
3841 | const CXXRecordDecl *Derived, raw_ostream &Out) { |
3842 | msvc_hashing_ostream MHO(Out); |
3843 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3844 | Mangler.getStream() << "??_R2" ; |
3845 | Mangler.mangleName(Derived); |
3846 | Mangler.getStream() << "8" ; |
3847 | } |
3848 | |
3849 | void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor( |
3850 | const CXXRecordDecl *Derived, raw_ostream &Out) { |
3851 | msvc_hashing_ostream MHO(Out); |
3852 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3853 | Mangler.getStream() << "??_R3" ; |
3854 | Mangler.mangleName(Derived); |
3855 | Mangler.getStream() << "8" ; |
3856 | } |
3857 | |
3858 | void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator( |
3859 | const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath, |
3860 | raw_ostream &Out) { |
3861 | // <mangled-name> ::= ?_R4 <class-name> <storage-class> |
3862 | // <cvr-qualifiers> [<name>] @ |
3863 | // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class> |
3864 | // is always '6' for vftables. |
3865 | llvm::SmallString<64> VFTableMangling; |
3866 | llvm::raw_svector_ostream Stream(VFTableMangling); |
3867 | mangleCXXVFTable(Derived, BasePath, Out&: Stream); |
3868 | |
3869 | if (VFTableMangling.starts_with(Prefix: "??@" )) { |
3870 | assert(VFTableMangling.ends_with("@" )); |
3871 | Out << VFTableMangling << "??_R4@" ; |
3872 | return; |
3873 | } |
3874 | |
3875 | assert(VFTableMangling.starts_with("??_7" ) || |
3876 | VFTableMangling.starts_with("??_S" )); |
3877 | |
3878 | Out << "??_R4" << VFTableMangling.str().drop_front(N: 4); |
3879 | } |
3880 | |
3881 | void MicrosoftMangleContextImpl::mangleSEHFilterExpression( |
3882 | GlobalDecl EnclosingDecl, raw_ostream &Out) { |
3883 | msvc_hashing_ostream MHO(Out); |
3884 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3885 | // The function body is in the same comdat as the function with the handler, |
3886 | // so the numbering here doesn't have to be the same across TUs. |
3887 | // |
3888 | // <mangled-name> ::= ?filt$ <filter-number> @0 |
3889 | Mangler.getStream() << "?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@" ; |
3890 | Mangler.mangleName(GD: EnclosingDecl); |
3891 | } |
3892 | |
3893 | void MicrosoftMangleContextImpl::mangleSEHFinallyBlock( |
3894 | GlobalDecl EnclosingDecl, raw_ostream &Out) { |
3895 | msvc_hashing_ostream MHO(Out); |
3896 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3897 | // The function body is in the same comdat as the function with the handler, |
3898 | // so the numbering here doesn't have to be the same across TUs. |
3899 | // |
3900 | // <mangled-name> ::= ?fin$ <filter-number> @0 |
3901 | Mangler.getStream() << "?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@" ; |
3902 | Mangler.mangleName(GD: EnclosingDecl); |
3903 | } |
3904 | |
3905 | void MicrosoftMangleContextImpl::mangleCanonicalTypeName( |
3906 | QualType T, raw_ostream &Out, bool NormalizeIntegers = false) { |
3907 | // This is just a made up unique string for the purposes of tbaa. undname |
3908 | // does *not* know how to demangle it. |
3909 | MicrosoftCXXNameMangler Mangler(*this, Out); |
3910 | Mangler.getStream() << '?'; |
3911 | Mangler.mangleType(T: T.getCanonicalType(), Range: SourceRange()); |
3912 | } |
3913 | |
3914 | void MicrosoftMangleContextImpl::mangleReferenceTemporary( |
3915 | const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) { |
3916 | msvc_hashing_ostream MHO(Out); |
3917 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3918 | |
3919 | Mangler.getStream() << "?" ; |
3920 | Mangler.mangleSourceName(Name: "$RT" + llvm::utostr(X: ManglingNumber)); |
3921 | Mangler.mangle(GD: VD, Prefix: "" ); |
3922 | } |
3923 | |
3924 | void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable( |
3925 | const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) { |
3926 | msvc_hashing_ostream MHO(Out); |
3927 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3928 | |
3929 | Mangler.getStream() << "?" ; |
3930 | Mangler.mangleSourceName(Name: "$TSS" + llvm::utostr(X: GuardNum)); |
3931 | Mangler.mangleNestedName(GD: VD); |
3932 | Mangler.getStream() << "@4HA" ; |
3933 | } |
3934 | |
3935 | void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD, |
3936 | raw_ostream &Out) { |
3937 | // <guard-name> ::= ?_B <postfix> @5 <scope-depth> |
3938 | // ::= ?__J <postfix> @5 <scope-depth> |
3939 | // ::= ?$S <guard-num> @ <postfix> @4IA |
3940 | |
3941 | // The first mangling is what MSVC uses to guard static locals in inline |
3942 | // functions. It uses a different mangling in external functions to support |
3943 | // guarding more than 32 variables. MSVC rejects inline functions with more |
3944 | // than 32 static locals. We don't fully implement the second mangling |
3945 | // because those guards are not externally visible, and instead use LLVM's |
3946 | // default renaming when creating a new guard variable. |
3947 | msvc_hashing_ostream MHO(Out); |
3948 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3949 | |
3950 | bool Visible = VD->isExternallyVisible(); |
3951 | if (Visible) { |
3952 | Mangler.getStream() << (VD->getTLSKind() ? "??__J" : "??_B" ); |
3953 | } else { |
3954 | Mangler.getStream() << "?$S1@" ; |
3955 | } |
3956 | unsigned ScopeDepth = 0; |
3957 | if (Visible && !getNextDiscriminator(VD, ScopeDepth)) |
3958 | // If we do not have a discriminator and are emitting a guard variable for |
3959 | // use at global scope, then mangling the nested name will not be enough to |
3960 | // remove ambiguities. |
3961 | Mangler.mangle(GD: VD, Prefix: "" ); |
3962 | else |
3963 | Mangler.mangleNestedName(GD: VD); |
3964 | Mangler.getStream() << (Visible ? "@5" : "@4IA" ); |
3965 | if (ScopeDepth) |
3966 | Mangler.mangleNumber(Number: ScopeDepth); |
3967 | } |
3968 | |
3969 | void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D, |
3970 | char CharCode, |
3971 | raw_ostream &Out) { |
3972 | msvc_hashing_ostream MHO(Out); |
3973 | MicrosoftCXXNameMangler Mangler(*this, MHO); |
3974 | Mangler.getStream() << "??__" << CharCode; |
3975 | if (D->isStaticDataMember()) { |
3976 | Mangler.getStream() << '?'; |
3977 | Mangler.mangleName(GD: D); |
3978 | Mangler.mangleVariableEncoding(VD: D); |
3979 | Mangler.getStream() << "@@" ; |
3980 | } else { |
3981 | Mangler.mangleName(GD: D); |
3982 | } |
3983 | // This is the function class mangling. These stubs are global, non-variadic, |
3984 | // cdecl functions that return void and take no args. |
3985 | Mangler.getStream() << "YAXXZ" ; |
3986 | } |
3987 | |
3988 | void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D, |
3989 | raw_ostream &Out) { |
3990 | // <initializer-name> ::= ?__E <name> YAXXZ |
3991 | mangleInitFiniStub(D, CharCode: 'E', Out); |
3992 | } |
3993 | |
3994 | void |
3995 | MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, |
3996 | raw_ostream &Out) { |
3997 | // <destructor-name> ::= ?__F <name> YAXXZ |
3998 | mangleInitFiniStub(D, CharCode: 'F', Out); |
3999 | } |
4000 | |
4001 | void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL, |
4002 | raw_ostream &Out) { |
4003 | // <char-type> ::= 0 # char, char16_t, char32_t |
4004 | // # (little endian char data in mangling) |
4005 | // ::= 1 # wchar_t (big endian char data in mangling) |
4006 | // |
4007 | // <literal-length> ::= <non-negative integer> # the length of the literal |
4008 | // |
4009 | // <encoded-crc> ::= <hex digit>+ @ # crc of the literal including |
4010 | // # trailing null bytes |
4011 | // |
4012 | // <encoded-string> ::= <simple character> # uninteresting character |
4013 | // ::= '?$' <hex digit> <hex digit> # these two nibbles |
4014 | // # encode the byte for the |
4015 | // # character |
4016 | // ::= '?' [a-z] # \xe1 - \xfa |
4017 | // ::= '?' [A-Z] # \xc1 - \xda |
4018 | // ::= '?' [0-9] # [,/\:. \n\t'-] |
4019 | // |
4020 | // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc> |
4021 | // <encoded-string> '@' |
4022 | MicrosoftCXXNameMangler Mangler(*this, Out); |
4023 | Mangler.getStream() << "??_C@_" ; |
4024 | |
4025 | // The actual string length might be different from that of the string literal |
4026 | // in cases like: |
4027 | // char foo[3] = "foobar"; |
4028 | // char bar[42] = "foobar"; |
4029 | // Where it is truncated or zero-padded to fit the array. This is the length |
4030 | // used for mangling, and any trailing null-bytes also need to be mangled. |
4031 | unsigned StringLength = |
4032 | getASTContext().getAsConstantArrayType(T: SL->getType())->getZExtSize(); |
4033 | unsigned StringByteLength = StringLength * SL->getCharByteWidth(); |
4034 | |
4035 | // <char-type>: The "kind" of string literal is encoded into the mangled name. |
4036 | if (SL->isWide()) |
4037 | Mangler.getStream() << '1'; |
4038 | else |
4039 | Mangler.getStream() << '0'; |
4040 | |
4041 | // <literal-length>: The next part of the mangled name consists of the length |
4042 | // of the string in bytes. |
4043 | Mangler.mangleNumber(Number: StringByteLength); |
4044 | |
4045 | auto GetLittleEndianByte = [&SL](unsigned Index) { |
4046 | unsigned CharByteWidth = SL->getCharByteWidth(); |
4047 | if (Index / CharByteWidth >= SL->getLength()) |
4048 | return static_cast<char>(0); |
4049 | uint32_t CodeUnit = SL->getCodeUnit(i: Index / CharByteWidth); |
4050 | unsigned OffsetInCodeUnit = Index % CharByteWidth; |
4051 | return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); |
4052 | }; |
4053 | |
4054 | auto GetBigEndianByte = [&SL](unsigned Index) { |
4055 | unsigned CharByteWidth = SL->getCharByteWidth(); |
4056 | if (Index / CharByteWidth >= SL->getLength()) |
4057 | return static_cast<char>(0); |
4058 | uint32_t CodeUnit = SL->getCodeUnit(i: Index / CharByteWidth); |
4059 | unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth); |
4060 | return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff); |
4061 | }; |
4062 | |
4063 | // CRC all the bytes of the StringLiteral. |
4064 | llvm::JamCRC JC; |
4065 | for (unsigned I = 0, E = StringByteLength; I != E; ++I) |
4066 | JC.update(Data: GetLittleEndianByte(I)); |
4067 | |
4068 | // <encoded-crc>: The CRC is encoded utilizing the standard number mangling |
4069 | // scheme. |
4070 | Mangler.mangleNumber(Number: JC.getCRC()); |
4071 | |
4072 | // <encoded-string>: The mangled name also contains the first 32 bytes |
4073 | // (including null-terminator bytes) of the encoded StringLiteral. |
4074 | // Each character is encoded by splitting them into bytes and then encoding |
4075 | // the constituent bytes. |
4076 | auto MangleByte = [&Mangler](char Byte) { |
4077 | // There are five different manglings for characters: |
4078 | // - [a-zA-Z0-9_$]: A one-to-one mapping. |
4079 | // - ?[a-z]: The range from \xe1 to \xfa. |
4080 | // - ?[A-Z]: The range from \xc1 to \xda. |
4081 | // - ?[0-9]: The set of [,/\:. \n\t'-]. |
4082 | // - ?$XX: A fallback which maps nibbles. |
4083 | if (isAsciiIdentifierContinue(c: Byte, /*AllowDollar=*/true)) { |
4084 | Mangler.getStream() << Byte; |
4085 | } else if (isLetter(c: Byte & 0x7f)) { |
4086 | Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f); |
4087 | } else { |
4088 | const char SpecialChars[] = {',', '/', '\\', ':', '.', |
4089 | ' ', '\n', '\t', '\'', '-'}; |
4090 | const char *Pos = llvm::find(Range: SpecialChars, Val: Byte); |
4091 | if (Pos != std::end(arr: SpecialChars)) { |
4092 | Mangler.getStream() << '?' << (Pos - std::begin(arr: SpecialChars)); |
4093 | } else { |
4094 | Mangler.getStream() << "?$" ; |
4095 | Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf)); |
4096 | Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf)); |
4097 | } |
4098 | } |
4099 | }; |
4100 | |
4101 | // Enforce our 32 bytes max, except wchar_t which gets 32 chars instead. |
4102 | unsigned MaxBytesToMangle = SL->isWide() ? 64U : 32U; |
4103 | unsigned NumBytesToMangle = std::min(a: MaxBytesToMangle, b: StringByteLength); |
4104 | for (unsigned I = 0; I != NumBytesToMangle; ++I) { |
4105 | if (SL->isWide()) |
4106 | MangleByte(GetBigEndianByte(I)); |
4107 | else |
4108 | MangleByte(GetLittleEndianByte(I)); |
4109 | } |
4110 | |
4111 | Mangler.getStream() << '@'; |
4112 | } |
4113 | |
4114 | MicrosoftMangleContext *MicrosoftMangleContext::create(ASTContext &Context, |
4115 | DiagnosticsEngine &Diags, |
4116 | bool IsAux) { |
4117 | return new MicrosoftMangleContextImpl(Context, Diags, IsAux); |
4118 | } |
4119 | |